A Criterion Based Hybrid Slicing Algorithm for
Object-Oriented Programs

Bin Wu

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements for the Degree of
Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August, 2003

© Bin Wu, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83922-2
Our file Notre référence
ISBN: 0-612-83922-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

A Criterion Based Hybrid Slicing Algorithm for
Object-Oriented Programs

Bin Wu

Program slicing, a program reduction technique that is used to simplify programs by
removing non-relevant parts with respect to a slicing criterion, is gaining more and more
attention in the software comprehension and maintenance community. In this research,
we provide an overview of program slicing approaches, which are categorized into static,
dynamic and hybrid slicing. Moreover, we present our own hybrid slicing algorithm that
is based on the notion of removable blocks and computes executable slices for Java
programs. The algorithm is implemented as part of the CONCEPT (Comprehension Of
Net-CEntered Programs and Techniques) project. One advantage of our hybrid slicing
algorithm is that it takes user inputs into account to customize the precision of the
algorithm accordingly to a user’s needs. As a result, our hybrid slicing algorithm
provides the user with the ability to take advantage of both static and dynamic slicing, by

avoiding at the same time their disadvantages.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Juergen Rilling for his
support, guidance, patience, and valuable insight, which have made the completion of my

thesis possible.

iv

Contents

LIST OF FIGURES

LIST OF TABLES

1 INTRDUCTION

2 BACKGROUND OF PROGRAM SLICING

2.1

2.2

23

2.4

STATIC PROGRAM SLICING

2.1.1 DATAFLOW EQUATIONS

2.1.2 PROGRAM DEPENDENCE GRAPH
2.1.3 SYSTEM DEPENDENCE GRAPH
DYNAMIC PROGRAM SLICING

221 DYNAMIC BACKWARD ALGORITHM
222 DYNAMIC FORWARD ALGORITHM
2.23 DYNAMIC DEPENDENCE GRAPH
HYBRID SLICING

2.3.1 BREAKPOINT HISTORY

2.3.2 CALL-MARK SLICING

2.3.3 CONDITIONED SLICING
APPLICATIONS OF PROGRAM SLICING

3 CONTRIBUTIONS

31
3.2
33
3.4

3.5

MOTIVATION

THE NOTION OF REMOVABLE BLOCKS
STATIC PROGRAM SLICING ALGORITHM
DYNAMIC SLICING ALGORITHM
HYBRID SLICING ALGORITHM

VII

VIII

10
14
17
18
20
22
23
25
27
28

31

31
36
37
46
49

3.5.1 BASIC HYBRID SLICING ALGORITHM

3.5.2 CRITERION BASED HYBRID SLICING ALGORITHM

4 IMPLEMENTATION

4.1 DATA BASE
4.2 SELECTIVE EXECUTION TRACE

4.3 STATIC SLICING ALGORITHM

5 CONCLUSIONS AND FUTURE WORK

REFERENCES

APPENDICES

vi

50

56

57
58
59

76

80

84

List of Figures

Figure 1. Sample program for introducing program slicing

Figure 2. Control flow graph of function “min” in Figure 1

Figure 3. PDG of function “min” of sample program in Figure 1
Figure 4. System Dependence Graph of sample program in Figure 1
Figure 5. An execution trace of sample program in Figure 1
Figure 6. A part of instrumented program for the sample program
Figure 7. DDG of “main” function of the sample program

Figure 8. Reduced sample program with respected to a condition
Figure 9. Static slicing algorithm

Figure 10. Syntax trees of the sample program in Figure 1

Figure 11. Dynamic slicing algorithm

Figure 12. Basic hybrid slicing algorithm

Figure 13. Criterion based hybrid slicing algorithm

Figure 14, Execution trace of hybrid algorithm

Figure 15. The structure of class StaticBlock

Figure 16. The structure of classes Nodes

vii

11

12

16

17

21

28

38

40

47

51

53

54

61

62

List of Tables

Table 1. Relevant sets for function “min” in Figure 1
Table 2. Dynamic forward slicing algorithm

Table 3. Dependency graph of program Panel.java

viii

19

66

1 Introduction

Software maintenance is a major part of the software development process. It
accounts for about 60% of the costs in the lifetime of the software system. In software
maintenance, however, understanding existing software is very difficult, accounting for
about half of a maintenance programmer’s time and effort [Sch95]. Program slicing can
simplify the program by removing parts of a program that are not relevant with respect to
a particular slicing criterion. In recent years program slicing has become an important
aide in software comprehension.

Through over two decades of research, many approaches to program slicing have
been proposed. In general, they can be classified into static program slicing and dynamic
program slicing. Static program slicing based only on statically available information was
first introduced by Weiser [Wei82, Wei84] in 1979. The approach uses dataflow equations
to find statements relevant to a set of variables at a point of interest. In 1988, Korel and
Laski [Kor88] introduced dynamic program slicing, which refined static program slicing
by involving dynamic information derived from program execution based on particular
inputs.

There are limitations in both static program slicing and dynamic program slicing. On
the one hand, static program slicing is not precise because it preserves the program
behaviour for the set of all inputs and has to consider all possibilities, especially for the

object-oriented program that involves polymorphism and dynamic bindings. On the other

hand, dynamic program slicing incurs a high run-time overhead either to record the
dynamic behaviour (execution) and/or to analyze every executed statement. The space
and time complexity becomes in particular an issue for long running programs with a
very large number of executed statements. Hybrid program slicing algorithms try to
combine the advantages of static and dynamic program slicing, by computing a hybrid
slice that is either as precise or more precise than the static slice and less costly than the
dynamic slice.

In this research, a hybrid program slicing algorithm for Java program is proposed and
implemented as part of the CONCEPT project. The remainder of the paper is organized
as follows: Section 2 introduces in more detail some general background about program
slicing, including existing static, dynamic and hybrid program slicing approaches.
Section 3 presents our hybrid program slicing algorithm and describes its static and
dynamic parts. In section 4, implementation issues of the algorithm in the context of the
CONCERPT project are presented. Section 5 concludes and discusses directions for future

work.

2 Background of Program Slicing

The concept of a program slice was first presented by Weiser in 1979. Weiser [Wei82,
WeiB4] defined a slice as a reduced, executable program that preserves the original

behaviour of the program with respect to a subset of variables of interest at a given

program point. That is, a program slice consists only of these parts of a program that can
potentially affect the values computed at a point of interest. Such a point of interest, that
combines a program location and a subset of program variables of interest, is called
slicing criterion. Usually, a slice criterion is represented by a pair (V, n), where V is a set
of variables and n is a point of interest within the program. Program slicing itself,

corresponds to the task of computing a program slice.

0 public class Sample{
1 private int val,
2 pablic Sarple(int x){
3 val=1x,
}
4 pablic int getVal(}{
5 return val,
}
& b lic void setVal(int x){
7 val=x;
g reburn;
}
9 pablic void nunint x, int ¥){
10 flx < ¥)
11 setVal(x);
12 ¥=X;
13 telse{
14 setVal(y);
15 }x =¥,
156 Systernout.printle(“Min is: “ + x),
}
17 pablic static woid main(S ting] ags){
18 int a= rew Integer(args[0]).intVahie();
19 inth = new Inbegerargs [1]).intV ahaa();
20 Sample s = new Sample(a);
21 inti=0,
P while(i < 2){
23 s minfa, b);
24 a=s get¥al(),
25 System.ont.prntina);
28 a=a+l10;
27 b=b-10,
18 1++;

Figure 1.5 anple program for introduring program slicing

An example of such a program slice computation is shown in Figure 1. Within this simple
program, a slice with respect to a slicing criterion (a, 25) is computed. The slice is shown
in a bold typeface. In general, a program slice can be executable or non-executable, with
executable referring to the fact, that the program slice can be recompiled and re-executed.
A non-executable slice on the other hand corresponds to a set of statements, which might
not guarantee a semantically and syntactically correct program and therefore it cannot be
re-compiled and re-executed. For the scope of this research we are focusing on the
computation of executable program slices, which is easier to be verified, at least from a
syntactical and logical viewpoint, since the output of the executable slice (with respect to
the slicing criterion) has to be identical to the original program. Since Weiser’s
introduction of the notion of program slicing, various types of other program slices, as
well as an even larger number of algorithms to compute program slicing have been
proposed. Generally, there are two major kinds of program slicing algorithms: static and
dynamic program slicing. A static slicing algorithm computes a static slice based only on
statically available information, considering all possible value inputs; while a dynamic
slice is to obtain by considering only statements that influence the value of variables of

interest based on particular input(s).

2.1 Static Program Slicing

The first published definition of program slicing was given by Mark Weiser, who

introduced the concept of static program slicing [Wei82] [Wei84]. He provided the

4

following definition of a static program slice:
Definition: Given is a slicing criterion as a pair C = (V, n), where V is a set of
variables, and n is a point of interest within a program p; a slice of p is any
program which has the same behavior as p upon the variables in V at n. A static
slice includes therefore all statements that potentially affect variables in V for a
set of all possible inputs at the point of interest n.

Program slicing uses methods and terminology from the program dependence theory.
No matter what kind of approach to program slicing is used, data dependence and control
dependence are the two basic program dependences to be analyzed by these algorithms.
Ferrante et al. [Fer87] introduced the notion of control dependence to represent the
relation between program entities due to control flow. Some relative and basic notions
including control flow graphs, dominator and post-dominator were defined by Brandis
[Bra95] and Aho et al [Aho96].

Definition: A control flow graph is a directed graph with a unique entry node START
and a unique exit node STOP. The nodes in the graph correspond to statements of the
program. There is a directed edge from node A to node B if control may flow from
block A directly to block B. This is the case if the last statement in A is a branch to B,
or when B is on the fall-through path from A. We assume that for any node N in the
graph there exists a path from START to N and a path from N to STOP. If an edge is
labelled T (or F), then the target node of the edge will be executed if the predicate at

the origin of the edge evaluates to TRUE (or FALSE).

5

An example of a control flow graph based on the function “min(int x, int y)” of

the sample program in Figure 1 is shown below in Figure 2.

S TART
g | Inmtx,y
10 x=y ?
4/&;
T
11| setVal(x) setVa(y) |14
L y
12 ¥=x X=y 15
Outputx |16
ITOP

Figure 2. Contral flow graph of finction “ruri” in Figurwe 1

Definition: In a directed graph with entry node START, node A dominates node B, if
for all paths P from START to B, A is a member of P. A is called a dominator of B.

In Figure 2, node 10 is a dominator of node 11.

Definition: In a directed graph with exit node STOP, a node A post-dominates node
B, if for all paths P from B to STOP, A is a member of P. A is called a post-dominator
of B.

For example, in Figure 2, node 12 is a post-dominator of node 11.

6

Definition: Let G be a control flow graph. Let A and B be nodes in G. B is control
dependent on A if all of the following hold:

1. There exists a directed path P from A to B.

2. B post-dominates any C in P (excluding A and B).

3. B does not post-dominate A.

In Figure 2, node 12 is control dependent on node 10.

Aho et al. [Aho86] introduced the concept of data dependence based on data flow that
describes the flow of the values of variables from the points of their definitions to the
points where their values are used.

Definition: Node U is data dependent on node D if all of the following hold:

1. Node D defines variable x. That is, a value is assigned to variable x.

2. Node U uses x. That is, variable x is in the statement but not be assigned a
value.

3. Control can reach U after D via an execution path along which there is no
intervening definition of x.

In Figure 1, node 18 defines the variable a that is used in node 20, and there is no
other definition of a within the path from node 18 to node 20. Therefore, node 20 is data

dependent on node 18.

2.1.1 Dataflow Equations

Dataflow equations, based on control flow graph are used to compute consecutive

7

sets of relevant variables for each node and were originally introduced in Weiser’s
algorithm [Wei84]. The slice with respect to node n and variables V can be derived by
analyzing the data flow information about the sets of relevant variables. The algorithm
can be described simply as follows:
1. Initialize the relevant sets of all nodes to be empty .
2. Insert all variables of V into relevant(n).
3. For n’s immediate predecessor m, let def(m) be the set of variables that are
defined in statement m. Compute relevant(m) as:
relevant(m) = relevant(n) — def(m)
if relevant(n) Ndef(m) != {} then
relevant(m) = relevant(m) U ref(m)
include m into the slice
include m’s control dependence into the slice
end
4. Work backwards in the control flow graph, repeating step 3 for m’s immediate
predecessors until the entry node is reached or the relevant set is empty.
In Table 1 an example for function “min()” based on the sample program in Figure 1
is shown to illustrate dataflow equations. The slicing criterions is C(x, 16) and the

slice includes all nodes in bold face.

Table 1. Relevant sets for function “min” in Figure 1

n Statement Ref(n) Def(n) Control(n) Relevant(n)
9 min(int x, int y) X, ¥
10 if(x <y) X,y X,y

11 setVal(x) X 10 X

12 y=Xx X y 10 X
13 Else 10

14 setVal(y) y 13 y
15 X=y y X 13 y
16 output x X X

2.1.2 Program Dependence Graph

A Program Dependence Graph (PDG) is a program representation where nodes
represent statements and edges carry information about control and data dependences.
The PDG was originally defined by Ottenstein [Ott84] and later refined by Horwitz et al.
and Reps[Hor88, Hor90a, Rep89, and Rep94]. The static slice of a program with respect
to a variable v at node n, consisting of all nodes whose execution could possibly affect
the value of variable v at node n, it can be easily constructed by traversing backwards
along the edges of a program dependence graph starting at node n. The nodes, which
were visited during the traversal, constitute the desired slice. According to the definition
of PDG, we can get the PDG of function “min()” of the sample program in Figure 1

shown in Figure 3.

Assuming the slicing criterion is C(x, 16), we traverse backwards through all

incoming edges starting at node 16. Hence we get the static slice that corresponds to a set
of nodes, in this case {9,10,13,15,16}. The result is equivalent to the slice derived using
Data Equations.

It should be noted that the PDG is only suited for intra-procedural analysis of a
program slice because there is no representation of information between functions in the

graph. For inter-procedural traversal, a System Dependence Graph (SDG) has to be used.

2.1.3 System Dependence Graph

A System Dependence Graph (SDG) [Hor89] is a collection of procedure dependence
graphs, one for each procedure. A Procedure Dependence Graph [Fer87] represents a
procedure as a graph where vertices are statements or predicate expressions, while edges
represent data and control dependences between statements or expressions. Each
Procedure Dependence Graph contains an entry vertex that represents an entry into the
procedure. To model parameter passing, in a SDG [Lar96] associates each procedure
entry vertex with a formal-in vertex for each formal parameter and a formal-out vertex
for each formal parameter that could be modified by the procedure. In addition to
formal-in and formal-out vertices, an SDG associates each call site in a procedure with a

call vertex and a set of actual-in and actual-out vertices. An actual-in vertex corresponds

10

Figuie 3. FDG of fanrtion “rin()” of sample reogram in Figume 1

to an actual parameter at the call site, while an actual-out vertex is for an actual parameter
that may be modified by the called procedure. Moreover, at procedure entry and call sites,

global variables are treated as parameters. Thus, there are actual-in, actual-out, formal-in

and formal-out vertices for these global variables.
The SDG uses a call edge to connect the call site vertex and the entry vertex of the

called procedure’s PDG. Parameter-in and parameter-out edges, representing parameter

passing, respectively connect actual-in and formal-in vertices, and formal-out and

11

actual-out vertices. Besides edges mentioned above, summary edges are most important

for the SDG to solve the “calling context” [Tip95] problem that is hard to solve by using

dataflow equations. There exist several different algorithms to compute these summary

edges [Hor90b, Rep94]. A SDG that represents the sample program of Figure 1 is shown

below in Figure 4.

F2-in Fl-out /Fl-in
v S

-

Figure 4. System Dependence Graph of sample program in Figure 1

Using the Horwitz-Reps-Binkley two-pass traversal algorithm [Hor94], the slice with

respect to a variable at a point of interest can be computed by including all nodes

12

reachable in the SDG In detail, during the first pass, the algorithm traverses backward
along all edges except parameter-out edges and mark those vertices reached; during the
second pass the algorithm traverses backward all vertices marked during the first pass,
except call and parameter-in edges and marks reached vertices. Then, the union of the
vertices marked during these two passes are included in the slice. Based on this algorithm,
the slice with respect to the slicing criterion C (x, 16) for the example in Figure 4 is the
following set of nodes: {0, 1, 2, 3, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21}.

Larsen et al. [Lar96] extended the notion of the SDG to compute slices for
object-oriented programs, by involving relations between classes in their Class
Dependence Graph. The two-pass traversal algorithm is also used.

Livadas et al. [Liv94, Liv95] simplified the computation of the summary edge and
other inter-procedural information when constructing the SDG, by considering following
situations:

1. When a reference parameter is never modified, no formal-out and actual-out

nodes are necessary.

2. When a reference parameter is always modified, that is, the variable is defined in

every possible path, formal-out and actual-out nodes are necessary. At the call site,
a killing definition that can completely take over previous definitions can be
generated for the actual-out node.

3. When a reference parameter is sometimes modified, that is, the variable is not

defined in every possible path, or when it is not known how it is used, formal-out

13

and actual-out nodes are necessary. At the call site, a non-killing definition must
be generated for the actual-out node.

4. For value parameters no formal-out and actual-out nodes are necessary.

2.2 Dynamic program slicing

A dynamic slice, originally introduced by Korel and Laski [Kor88], is an executable
part of the program whose behaviour is identical, for the same program input, to that of
the original program with respect to a variable of interest at some execution position.
Formally, if a slicing criterion of program P is executed on program input x representing a
tuple C = (x, v(q)), where v(q) is a variable v at execution position q. A dynamic slice of
program P on slicing criterion C is any syntactically correct and executable program P’
that is obtained from P by deleting zero or more statements. Furthermore, when the slice
is executed on program input x produces an execution trace T°(x) for which there exists
the corresponding execution position q’ such that the value of v(q) in T(x) equals the
value of v(q’) in T’(x). Therefore, a dynamic slice P’ preserves the value of v for a given
program input x.

Obviously, dynamic program slicing is based on the execution trace of the program.
An execution trace T(x) is a statement sequence when the program is executed on
particular inputs x. For example, the execution trace of the sample program in Figure 1
based on the input: a =20 and b = 30 is shown in Figure 5.

Notionally, an execution trace is an abstract list (sequence), for instance, T(x) in

14

Figure 5, T(x)(4) = 20, T(x)(9) = 10. By v(q) we denote variable v at position g, i.e.,
variable (object) v before execution of node T(x)(q). The notion of an execution position
is introduced in this thesis for presentation purpose. Existing dynamic slicing algorithms
use the notion of data and control dependences to compute dynamic program slices
[Kor98]. The concepts of data and control dependences used by the dynamic slicing
algorithm are similar to these defined in static slicing.

Dynamic data dependence captures the situation where one action assigns a
value to an item of data and the other action uses that value. For example, in the
execution trace of Figure 5, 23(9) is data dependent on 18(2).

Dynamic control dependence captures the influence between test actions and
actions that have been chosen to be executed by these test actions. The concept of control
dependence may be also extended to actions by using concept of control dependence
between nodes. Action Z(k) is control dependent on action Y(p) iff (1) p <K, 2) Zis
control dependent on 'Y, and (3) for all actions X(i) between Y(p) and Z(k), p <1<k, X is
control dependent on Y. For example, action 7(14) is control dependent on action 6(13) in
the execution trace of Figure 5.

Besides dynamic data and control dependences, another notion of last definition
LD(v(k)) of variable v(k) in execution trace T(x) has to be considered. By definition, v(p)
is v(k)’s LD when action v(p) assign a value to v and v is not modified between position
p and k. For example, the last definition of variable “x” at node 16(16) in execution trace

of Figure 5 is action 18(2).

15

1%1) pub lic static void main(S tringl] ags)

1%(2) int a = new Integer(asgs [0]).intValue();
1%3) intbh = nea Integer(args[1]).intVahie();
204 S ample 5 = rew Sanple(a),

2(5) public 5 anple(int x)

308) val=zx;

217 inti=0,

22(8) while(i = 2)

239 s.mr(a, b);

10 public void mun(int x, int ¥)

10(11) flx < y)
11(12) setVal(x)

(13 pablic void setVal(int x)
7(14) val=x;
115 y=x;

15(16) S ysetmout. println“Min 1s: * + %),
2417 a=s getVal(),

4(18) public it getVal()

5(19) rehurn val;

2520 S wtenout. pentla(a);

2821 a=a+10,

QK23 b =b-10,

2823) i+4;

2224) while(< 2)

2325 sair(sb);

Q(26) public void minivt x, int ¥)
1027 flx<y)

1328) else

1429 setVal(y)

&(30) public void setVal(int x)
31) val = x;

1532) X=¥

1&(33) S webnout.printly(“Min is: “+ x),
24(34) a=sgetVal),;

4(35) publicint get Val()

5(38) return val;

2537 S ystemout. println(a);

28(38) a=a+10,

2939 b=b-10,

28040 i++;

204N wrlulell = 20

Figum 5. An execution tace of sample piogram in Figure 1

16

2.2.1 Dynamic Backward Algorithm

The backward algorithm presented by Korel[Kor88] computes a dynamic slice based
on dataflow equations. After recording the execution trace during the execution
of the program on input x, the dynamic slicing algorithm traces backwards through the
execution trace to derive data and control dependencies that are then used for the
computation of the dynamic slice.

The execution trace records the executed nodes and the variables defined and used at
each executed node. The execution trace is created by embedded monitoring statements,
which record the used and defined variables at each node into the original source code.
The defined and used variables at each node are identified during the execution by their
memory addresses. The instrumentation is performed automatically by a source code
parser, which also provides additional information regarding the identification of node
types like while loop, selective statements and so forth. Figure 6 shows a part of the
instrumented program for the sample program in Figure 1 with the monitoring statements

that are used for this implementation of the algorithm.

System.out.println(“Node 10\n”); < Node 10

System.out.println(“used(“ + x’add +”;"+y’add+ “)\n”); <«—— Variable x, y are used
10 if(x<y){

System.out.println(“Node 11\n”); <«—— Node 11

System.out.println(“used(“ +x’add+ “)\n”); < Variable x is used

11 setVal(x);

Figure 6. A part of Instrumented Program for the sample program in Figure 1

17

Based on the execution trace created by the instrumented program shown above, the
dynamic slicing algorithm can compute the slice by traversing the execution trace in a
backward direction. There are two steps involved in the traversal: one is to find data
dependences by finding the last definition of the variable of interest and all variables used
in the relevant statements; the other one is to find the control dependences for all
statements that were identified earlier as relevant by applying the data dependences.

By combining the identified relevant statements based on data dependences and
control dependences, we compute the dynamic program slice for the variables v of

interest at execution position p.

2.2.2 Dynamic Forward Algorithm

Compared to dynamic backward slicing algorithm, the dynamic forward slicing
algorithm [Kor94] does not require the recording of an execution trace and therefore
overcomes one of the major weaknesses of the backward algorithm, its space complexity.

The algorithm starts from the entry of the program and computes every variable
defined during the program execution for particular inputs. Every time when a statement
is executed, the algorithm determines the relevancy of the executed statement for any of
variables declared up to the current execution position. The algorithm is illustrated in
Table 2, using the sample program in Figure 1.

To improve the comprehension of the illustration, we ignore the function calls and

18

Table 2. Dynamic forward slicing algorithm

Staternent a b s i

17(0) At the beginning {} {} {} {}
18(1) int a=new {18} {} {} {}
19(2) inth =new {18} {19} {} {}
20(3) Sample s = new Sample(a) {18} {19} {20} {}
21(4) inti=0 {18} {19} {20} {21}
22(5) while(i < 2) {18,21,22} {19,21,22} {20,21,22} {21,22}
23(6) s.min(a, b) {18,21,22} {19.21,22} {20,21,22} {21,223
24(7) a=s.getVal() {20,21,22,24} {19,21,22} {20,21,22} {21,22}
25(8) System.out.println(a) {20,21,22,24} {19,21,22} {20,21,22} {21,22}
26(9) a=a+10 {20,21,22,24,26} {19,21,22} {20,21,22}) {21,22}
27(10) b=b-10 {20,21,22,24,26} {19,21,22,27} {20,21,22} {21,22}
28(11) i+ {20,21,22,24,26} {19,21,22,27} {20,21,22} {21,22}
22(12) while(i < 2) {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
23(13) s.min(a, b) {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
24(14) a = s.getVal() {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
25(15) System.out.printin(a) {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
26(16) a=a+10 {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
27(17) b=b-10 {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
28(18) i++ {20,21,22,24,26,28} {19,21,22,27,28} {20,21,22,28} {21,22,28}
22(19) while(i <2) {20,21,22,24,26,28} {19,21,22,27,28} {20} {21,22,28}

only show the execution of the “main” function. In above table, we use {} to represent
the slice that is a set of statement numbers. Actually, in Korel’s algorithm, he did not
address how to solve the issue of replacement between the formal parameter and the
actual parameter that may happen in the function call, because the algorithm identifies the

variable according to the unique memory address not the name. This approach however,

19

is limited to programming languages that facilitate for the retrieval of unique variable
memory addresses.

In the algorithm, the slice for the variable defined at current execution position is
computed again. That is, current execution position and the slice for all variables used at
current execution position will be included. For example, in Table 2, at position 24(7)
variable “a” is re-defined, then statement “24” and the slice of used variable “s” —
{20,21,22} are included into the new slice for variable “a”.

Note that when the complex block [Kor94] like loop or conditional branch is
encountered, the algorithm will conservatively include it into the slice and store the slice
computed before it into a set of “TopSlice” [Kor94]. After the execution leaves the
complex block, the algorithm will determine if it is included eventually based on whether
the value of the variable of interest is changed within the complex block. In Table 2, for
example, at position 22(19), the slice for variable “s” resumes to {20} same as that before

the execution entry the while loop because the value of “s” is not changed within the

while loop.

2.2.3 Dynamic Dependence Graph

A dynamic variation of the PDG; called the dynamic program dependence graph were
introduced by Miller and Choi[Mil88]. Agrawal and Horgan[Agr90] proposed an
algorithm to produce more refined slices using the concept of dynamic program

dependence graph. Generally, a dynamic slice is determined by computing a static slice in

20

sub-graph of the PDG that is induced by the marked vertices, that is, vertices that are
executed. Agrawal and Horgan [Arg90] refined this concept further, by marking the PDG
edges, as the corresponding dependences arise during program execution instead of
marking vertices to generate more precise slices. Moreover, their later solution is to
create a distinct vertex in the dependence graph for each occurrence of a statement in the

execution history. The graph that consists of these vertices is called the Dynamic

Dependence Graph (DDG).
> Control Dependence

"""" * Data Dependence

17(0)

21(4)

VoSG

192) 2003)
' ’ A~ N

\ »2(5) 20 22(19)

*

’

~ 7
AN
~_7

S
RO Y
II, rl’ \A
! 23(6) 24(7) 25(8) 26(9) 27(10) 28(11)" 23(13) 24(14) 25(15) 26(16) 27(17) 28(18)
h P o~ A AU S X Noooon ~ A >
\\' \\ : ’\“l\ ",/ 'l ‘:

' ~
l‘\ ,
bl 4
N P \
LAY ~
~ ~
i~ \ -
-

Figure 7 DDG of “main” function of the sample program in Figure 1

A dynamic slicing criterion is identified with a vertex in the DDG, and a dynamic slice is

computed by determining all DDG vertices from which the criterion can be reached

21

According to the definition of DDG, we can create the DDG corresponding to the “main”
function in the sample program in Figure 1 as follows. By backward traversing the DDG
from the node of interest, we can get the corresponding dynamic slice easily.

Other algorithms have been proposed since dynamic slicing was originally defined
[Kor88]. An inter-procedural slicing algorithm based on dynamic dependence graph have

also been proposed by Kamkar et al. [Kam93].

2.3 Hybrid slicing

Both static and dynamic slicing have their inevitable drawbacks even though they are
widely used in program slicing and keep evolving [Gup97]. In particular imprecision is a
problem for the static slicing algorithms, since they are based on all possible executions
rather than one specific execution; on the other hand, dynamic slices are more precise but
incur high run-time and computation overhead due to the tracing information that is
collected during a program’s execution and the analysis of these often very large traces.
The hybrid slicing algorithm presented in this research attempts to overcome these
limitations by combining advantages of dynamic and static slicing. There exist two
variations in implementing hybrid slicing: one is to integrate dynamic information from a
specific execution into a static slice analysis to produce more precise slices; the other is
to embed static slicing into dynamic slicing to avoid recording some of the program

constructs that cause these large traces.

22

2.3.1 Breakpoint History

Rajiv Gupta et al. [Gup97] proposed a hybrid slicing algorithm in 1997, which made
static slicing more precise by using breakpoint information and the dynamic call graph. It
is actually an approach to integrate dynamic information into static program slicing. In
this algorithm, the breakpoints and call/return points are used as reference points, to
divide the execution path into intervals. The integration of dynamic information into a
static analysis can improve the accuracy in estimating which control flow path is
potentially taken by the program.

This approach assumes that there is at least one breakpoint set in the program during
execution, and the overall slice is split into sub-slices corresponding to relevant
statements that could have been executed between every successive pair of breakpoints
encountered so far. The following are some definitions used in their algorithm to compute
hybrid slices.

(1) The breakpoint history of a program execution is of the form

BH=<(b0, &), (bl,N1=B1-{bl}),... (bm, Nm = Bm-{bm})>,

Where b0 is the start node of the program; bm is the latest breakpoint encountered;

Bi is the set of breakpoints that were active during the execution interval from

breakpoint bi-1 to bi; and Ni is the set of breakpoints that were active but not

encountered during the execution interval from bi-1 to bi.

(2) A slicing criterion is of the form SC = (V, b), where V is the set of variables

whose values are of interest at breakpoint b.

23

(3) For a given breakpoint history, BH = <(b0,), (b1, N1), ... (bm, Nm)>, the

hybrid slice with respect to a slicing criterion SC = (V, bm) is defined as follows:
HSLICE(bO, bm) = QIHSLICE(bi-l, bi),

where HSLICE(bi-1, bi) contains those statements that were possibly executed after

the breakpoint bi-1 and prior to breakpoint bi and where their execution, directly or

indirectly, influenced the computation of the value of some variable in V at bm. The
statements that influence the computation of a variable are computed by taking the
transitive closure over both data and control dependences.

By involving call/return information, the algorithm is extended to deal with

inter-procedural slicing. Other relative definitions are introduced as follows:

(1) The call history of a program execution is of the form CH = <CRO0, CR1, ...,
CRm>, where Cri is either a procedure call or a return from a procedure, and
CRO is assumed to be a call to start execution of the main program.

(2) For a calling history, CH = <CRO, Crl, ..., CRm>, the overall hybrid slice with
respect to a slicing criterion SC = (V, CRm) is defined as flows:

HSLICE(CRm) = E_IHSSLICE(CRi—l, CRi),

where subslice HSSLICE(CRi-1, CRi) contains those statements that were possibly

executed after CRi-1 and before CRi, and their execution, directly or indirectly,

influenced the computation of the value of some variable in V at CRm.

(3) Given a call/return history, CH = <CRO0, CR1, ... , CRm>, a path from CRO to

CRm is feasible if and only if path P is composed of the following subpaths:

24

P =PATH(CRO; CR1).PATH(CR1;CR2)....PATH(CRm-1; CRm).

(4) The combined history of a program execution is of the form H = <HO, H1, ...,
Hm>, where Hi is one of the following: Breakpoint: (bi, Ni); Procedure Call:
CALL{P(caller) -> P(callee) at s}; or Procedure Return: RET[P(callee) -
P(caller) at s].

(5) For a given combined history, H = <HO, H1, ... , Hm>, the overall hybrid slice
with respect to a slicing criterion SC = (V, CRm) is defined as follows:

m-1

HSLICE(Hm) = U HSSLICE(Hi, Hi+1),
=0

1

where subslice HSSLICE(Hi, Hi+1) contains those statements that were possibly
executed after Hi and before Hi+1, and their execution, directly to indirectly,
influenced the computation of the value of some variable in V at CRm.

The limitations of this approach are that it only supports slice computation for

structured programs and the computed slices may not be executable [Ril01]. In addition,

another shortcoming is that users are required to interact with the program to determine

when and where the breakpoints are set.

2.3.2 Call-Mark Slicing

Another approach of hybrid program slicing, called Call-Mark Slicing, can also be

seen as a refined static slicing approach by including dynamic information, as proposed

by Akira Nishimatsu et al. [Nis99]. Their approach is based on the PDG and computes

the slice by only analyzing valid nodes according to execution dependences.

25

The approach introduces the Concept of Execution Dependence (CED), in which, a
statement sl is execution dependent on another statement s2, if execution of s2 is
necessity of execution of sl. CED(s), corresponds to a set of caller statements with
execution dependence, that can be defined as follows:

CED(s) ={t| tis a function/procedure call statement and s is executionally

dependent on t}

There are three steps to compute the call-mark slice:
1) Construct PDGs similarly to other static slicing algorithm and create CED(s) for each
statement;
2) Execute the program based on a particular input, then mark call statements and insert
them into a set called CM ;
3) Traverse backwards from the node of interest without considering a node n if CED(n)
NCM = {}.

This approach is suitable for analyzing procedural languages like C, but it does not
apply for object-oriented languages, because it is very difficult to derive the CED(s) for
object-oriented language constructs, in particular for inheritance and implicit function

calls.

26

2.3.3 Conditioned Slicing

The Conditioned Slicing [Can98] is a kind of hybrid slicing that combines static and
dynamic slicing by augmenting the static slicing criterion with a condition. It is formally
defined as a slice that is constructed with respect to a tuple, (V, n, 7), where V is a set of
variables, n is a point in the program and 7 is some condition. Firstly, the program is
simplified with respect to input condition. Then the slice is computed based on the
reduced program using static slicing. For example, in Figure 8, a reduced program based
on the sample program in Figure 1 that satisfy the condition 7= (a =1 AND b = 100) is
shown. Then a slice with respect to a slicing criterion C = (a, 23) is computed
{0,1,2,3,4,5,6,7,9,10,11,15,16,17,18,19,20,21,22,24,25,26}.

The process of reducing the program is based on the identification of infeasible paths,
which can be computed by the symbol executor [Kin76, Cow88] and be automatically
evaluated by a theorem prover [Boy79].

An automatic conditioned slicer is implemented by Danicic et al. [Dan00] in their
ConSIT system. A backward conditioning was also proposed to extend the conditioned
slicing based only on forward conditioning. The conditioned slicing based on symbolic
execution however has limitations, with respect to the input conditions which can be
handled by the symbolic execution and the language constructs supported. Other
limitations include restrictions with respect to language constructs and program
languages that are supported by both, the symbolic execution environment and the

theorem prover.

27

0 public class § ample{
1 private int val;
2 public S ample(int x){
3 val = x;
}
4 public int getVal(y
5 returm val;
}
public void setWVal(int x){
7 val = x;
2 retum,
}
9 public void ran(int %, int ¥){
1n iz < yX
1 setVal(x),
12 ¥=x
13 i
14 Systemout.prinfln(“Min is; “ + xJ;
1
15 public static void mainf3 tring[] ags X
18 int a = new Miteger(args [0]).intValne();
17 intb = newr Integer(args[17).intVahie();
18 Sample s = rew Sanmple(a),
19 inti=0,
20 while(i < 2)
21 s.min(a, b),
22 a=s getVal();
23 Systemont printlia);
24 a=a+10,
25 b=b-10,
25 1++;

Figuwe 8. Reduced sample programwith respect fo a cordition

2.4 Applications of program slicing

Program slicing was originally introduced as a technique that can be used to localize
program errors [Wei82]. In the last couple of years, the application domain of program

slicing has been extended into various areas of software maintenance, like program

28

differencing, program integration, software maintenance, program testing, debugging,
reverse engineering and program comprehension.
e Program Differencing

In the process of program development, only newly changed components are usually
interesting to be tested. Thus, program differencing [Hor89], which identifies the new
change syntactically and semantically is useful. The key issue in program differencing is
to partition the components of the old and new version in a way that two components are
in the same partition only if they have equivalent behaviours [Tip95]. Program slicing
can be applied in program differencing, by computing and comparing slices and their
behaviours, before and after performing a modification.
e Program Integration

Program Integration [Hor90, Hor89] is a process to merge two programs A and B that
both resulted from modification to the base version of the program. Program integration
relies on program slicing to produce slices with respect to the affected points and
compare them to determine if A and B can be integrated with each other.
e Software Maintenance

Ripple Effect Analysis (REA) determines whether a change at some place in a
program will affect the behaviour of other parts of the program. Ripple effect analysis
plays a very important part of software maintenance. Both backward and forward

program slicing can be applied within REA [Wan97].

29

e Program Testing

Data flow testing can be applied to check if all def-use pairs (pairs of variables
defined and used) occur in a successful test case. In this process, program slicing is used
to construct test-cases that test all def-use pairs [Kam93]. Regression testing reuses
existing test cases to test only these parts of the program that are affected by a
modification of a previously tested program. Program slicing can be used to determine
the program parts that are affected by the change [Gup92]. In addition, it can also be used
in incremental program testing [Bat93].
e Debugging

Debugging is the process of finding bugs in a program that lead to an unexpected
program behaviour. The backward slice can be used to extract those statements that affect
the variable at the point where the wrong value is produced. Moreover, static slicing can
be used to detect the “dead” code that cannot affect any output of the program [Ber85].
Agrawal [Agr92] discussed how dynamic and static slicing could be utilized for
semi-automated debugging of programs.
* Reverse Engineering and Program Comprehension

Reverse Engineering is a promising approach to combat legacy system problems
[Hau99]. Program comprehension, however, is the most important and hardest part of the
process of reverse engineering. Program slicing, abstracting out of source code the design
decision by reducing the amount information to be analyzed and therefore improving the

comprehension process. Furthermore, program slicing can be used to provide the

30

maintainer and reverse engineer with additional insights and abstractions of the legacy

system under investigation.

3 Contributions

The CONCEPT (Comprehension Of Net-CEntered Programs and Techniques)
project aims to provide and introduce novel approaches to software comprehension. An
important part of CONCEPT project is to support the comprehension process, by utilizing
various source code analysis techniques, namely program slicing and different
visualization techniques. The hybrid algorithm presented in this research simplifies the
program to be analyzed and provides the basic input for further analysis and visualization

of various program aspects.

3.1 Motivation

Though there have been many program slicing algorithms presented in the literature,
all of these algorithms have limitations with respect to their program language support,
slicing precision, parsing requriments, etc, These limitations make the integration and use
of these algorithms difficult. The introduction of our hybrid slicing algorithm is based on
the following motivations: combining advantages of static and dynamic slicing,
computing user specified executable hybrid slices, analyzing Java programs and

implementing the hybrid slicing algorithm.

31

e Combining Advantages of Static and Dynamic Slicing

Both the static and dynamic program slicing approaches have their respective
advantages and disadvantages even though they are effective techniques used in various
application domains ranging from program debugging to software reverse engineering.
Static program slicing that has to consider all possible inputs computes often program
slices that are imprecise. Especially when applied for objected-oriented programming
languages these limitations of static slicing become more obvious. Based on the static
nature of the algorithm and the necessity to consider all possible executions, the
algorithms have to make rather conservative assumptions with respect to dynamic
language constructs. For instance, polymorphism, an important feature that is often used
in object-oriented programs, may involve undetermined path at a call site, which will be
determined only at run time. Thus, static program slicing that uses only static information
cannot determine which path should be taken. Conservatively, all paths have to be
considered. The slice, therefore, is finally imprecise and often larger when necessary.

Dynamic program slicing has many advantages, compared to static program slicing,
in particular when object-oriented programs are analyzed. Advantages can be found in the
handling of dynamic language constructs. These dynamic aspects are resolved by
utilizing run-time information and therefore only considering the statements that were
executed. However, dynamic program slicing has also several disadvantages. The major

limitation of dynamic slicing is its high run-time overhead due to recording of the

32

program execution and/or run-time analysis of every executed statement [Ril01]. It is the
time and space complex (unbound space and time-complexity) caused by recording
execution traces, especially in situations when the program involves large loops. For
example, in the case that a program has a “for” loop that is traversed for n times and there
are m statements within the loop, the total number of statements that are stored and
analyzed is n x m. If both n and m are amplified to very big numbers, the recording of
execution trace and analyzing of the same could be a nightmare. In addition, the
execution of many statements that are recorded and analyzed may actually not be relevant
to the slice criterion. Since both static and dynamic program slicing have their inevitable
disadvantages, hybrid program slicing tries to overcome some of these limitations, by
combining the advantages of both algorithm, to derive an algorithm that computes slices
that are more precise than traditional static slices and at the same time have a lower

overhead and cost associated than the traditional dynamic slicing algorithms.

e User specified Executable Hybrid Slice

Existing approaches to hybrid program slicing either integrate dynamic information
into static program slicing or involve static computation in dynamic program slicing.
Gupta et al. [Gup97] proposed an approach that uses dynamic information to make the
static slice more precise. The dynamic information that the approach uses is breakpoint |
information and the dynamic call graph, which is readily available during debugging.

Thus, the slicing criterion is no longer only the pair of variable of interest and point. The

33

breakpoint or call/return point relative to an execution point is also included into the
criterion. For example, if a data dependency of the variable of interest is found, it is not
included into the slice immediately as static program slicing does. The approach must
ensure that the path on which the dependency is identified is feasible according to the
dynamic information. This approach produces the hybrid slice more precise than the
static slice and less costly than the dynamic slice. However, it only supports structured
programs [Rilling01] and the computed slice may not executable because it divides the
program into several intervals based on the breakpoint that might lead to the exclusion of
some statements that are relevant to make the slice executable. Another shortcoming
[Ril01] of this approach is that it requires the user to interact with the program to
determine when to set the breakpoint. Call-mark slicing [Nis99] is another approach to
hybrid program slicing, in which there is no any user involvement. Other approaches to
hybrid program slicing have been proposed [Cho91, Due92, Kam93, Net94]. All of these
approaches embed static computation in dynamic slicing, but they do not allow the user
to selectively adopt the algorithm to the specific needs. One major goal of the presented
hybrid slicing algorithm has to be to compute a precise slice using dynamic slicing
without the necessity of recording the execution trace that generates the space and time
complexity. In our approach we provide the user with the ability to determine what parts
of the program should be analyzed statically and which parts are analyzed dynamically.
Leaving the user with the ability to select the required slice precision and computation

complexity based on the particular needs.

34

e A Hybrid Slicing Algorithm for Java Program

Java is a portable and platform independent object-oriented language, which has
been used in Web based programming as well as in many mission critical applications.
Maintenance to Java programs is getting more and more important and urgent. However,
it is very difficult to create such a program slicing algorithm that can successfully analyze
any languages and so far it does not exist because every programming language has its
unique syntactical and semantic features. For example, Java’s mechanism of exception
handling is different from that of C++, although they are both object-oriented languages.
Existing approaches to hybrid program slicing including those mentioned in the literature
review support procedural languages. For example, Gupta et al’s approach [Gup97] is
implemented to analyze the program written in ANSI C, and the approach proposed by
Schoening and Ducase [Sch95] only supports Prolog. In addition, as a matter of fact, so
far there is no effective hybrid slicing algorithm particularly for Java and object-oriented
programs.
e An Implemented Hybrid Slicing Algorithm

It is difficult [Tom95] to compare program slicing tools because of several reasons:
1) they are generally very language/dialect specific; 2) Even if the tools are suppose to
compute slices for the same program language, they often only handle a subset of these
languages; and 3) constructing test programs of reasonable size is difficult. Anyway, the
bottom line of evaluating program slicing tools is that they must be implemented and

executable. However, many program slicing algorithms have not been implemented or

35

are only partially implemented to analyze some simple sample programs. They are often
limited in their capability of handling real world programs. For hybrid program slicing,
this situation is even more serious. For example, Gupta et al’s algorithm [Gup97] is
implemented to analyze programs with less than 700 lines of source code. In their article
they do not address the issue of scalability and performance of their algorithm for large
program. In order to evaluate performance of slicing tools between hybrid slicing and
others, the hybrid slicing algorithm must be implemented and has to be able to analyze
real software system. Therefore, the implementation have to be considered carefully on
how to extract useful information from the source code, and issues of information storage

as well as retrieval have to be addressed carefully.

3.2 The Notion of Removable Blocks

The notion of removable blocks was first introduced by Korel [Kor92] to represent
the smallest component of program text that can be removed during slice computation
without violating the syntactical correctness of the program. Every statement including
assignment statements, input and output statements and selective statements can be a
block. Moreover, a block can be a complex block or a simple one. If a block has other
blocks nested in it, it is a complex block. Otherwise, it is a simple block. For example, a
while loop that could contain some assignment statements is a complex block and every
assignment inside the loop block is a simple block. In addition, a block can be

non-removable or removable, which means a block can be either included into the slice

36

or not. Furthermore, if any inner block is to be considered as a non-removable and be
included, all the outer blocks encompassing the inner block are included automatically.
Likewise, if any outer block is to be included, automatically all the inner non-removable
blocks are included.

The advantages of the notion of a block are that it can represent not only control
dependences but also syntax dependences. That is, some statements in the program that
seem irrelevant to the point of interest based on control or data dependences, in order to
make the slice executable, can be considered as non-removable and included into the
slice. For example, the statement like “import java.util*;” is regarded as a
non-removable block and included into the slice to make the slice compilable and
executable.

Our hybrid slicing algorithm uses the same notion of removable/non-removable

blocks to ensure the computed slice executable.

3.3 Static Program Slicing Algorithm

Our static program slicing algorithm combines the syntax dependence and the
notion of removable blocks. By traversing the syntax trees, the algorithm identifies the
data dependences between the relevant block and the variable of interest, relying on a
collection of data flow equations. On the other hand, the algorithm uses the notion of
removable blocks to compute the control dependence and ensure therefore that the

computed slice is executable. The details of the static slice computation are shown in

37

Figure 9.

Imput:
Outpat:

5

a slicing eriterion C=(v, »)
astatc program slice for C

Setofblocks in the shice

ME: Setofmarked blocks

LN
n

25
28,
27
8.
29,
30.

The algorithm is straightforward. Step 4 to step 7 calculates the last definition of the

current variable of interes

is data dependent is put i

there may be multiple last definitions found because the static slicing algorithm cannot

completely know which

polymorphism is encount

Interesting varable
Irteres hng block

Initialize §={}, MB={}.
MB=MBU {r}
do
Find last definition 21 of variable v at »
iz ¢ 5 ard 22 ¢ MB)
MEB=MB U {m}
end-1if’
Letblock Abe »'s immediate outerb lock
iR ¢ Sand B ¢ ME)
MB =MB U {5}
end-if’
iffblock Cis 2% imerblock and C'is ronrerovable and C ¢ 5)
S=5U{C}
end-1f
S=50{x}
MEB =MEB- {r}
Let nbe the first element of MB
Letvbeused variables atn
. while MB = {}

. procedure Find last d efinihion
. Letblock »2is the precedent for » insymtax tree
. while #2is not the top of' the syntax tree
if' (v is not in varables defined in)
n=m
Letblock mis the precedent for # in syntax tree
else
break;
end-if
endrhila
end Find lost definitiom

Figure 9. Static slicing slgorithm

t.

n the set of marked blocks, MB, for further analysis. Note that

path will be taken when the case like conditional branch or

ered, but conservatively has to consider all possibilities. All of

38

Then the found block on which the current block of interest

blocks found are stored in the set MB no matter how many blocks are found. After
solving the data dependence, step 8 to step 11 addresses the issue of control dependence.
This is actually solved by including the outer block of the current block of interest into
the set MB. Nested blocks can express the control dependence between blocks. Step 12 to
step 14 includes all non-removable blocks nested in the current block into the slice set to
ensure that the computed slice is executable. Once the analysis for a variable at a block of
interest has finished, this block is included into the slice and removed from the set of
marked blocks. The algorithm will repeat the same process to analyze every variable used
in the block in the set MB until the set is empty.

The most important and complicated part of the algorithm is the procedure of
searching for the last definition of the variable of interest. The search involves navigating
the syntax trees, starting from the point of interest. The syntax tree consists of all
removable blocks that are nodes and control dependences that are edges. Each tree
represents a free function in the program and call edges are used to connect trees between
the caller and the callee. For example, the syntax trees of the sample program in Figure 1

is shown below in Figure 10.

39

.
o
L
1
1
Ly
.
[28]
>
-~
.

Pl

™ Control Dependence

* Callirg Edge

Figuwe 10. S yntax trees of s anple programin Figure 1

Assuming a slicing criterion C = (a, 25), the search for the last definition of

variable @ in the block 25 starts from the node 25 then moves “left & up” towards the root
block. In addition, the navigation jumps to the relevant syntax tree when a function-call is
encountered. In Figure 9, the navigation jumps to node 4 when it arrives node 24 because
there is a function call in block 24. Every time the navigation jumps to a syntax tree, it
always follows the “left & up” traversing principle that it starts from the last node and

moves “left & up” towards the root node. For example, after the navigation jumps to

40

node 4, it goes to node 5 immediately and starts the traverse within the new syntax tree
where node 4 is the root.

Then the navigation returns back to the call site and continues the search. In above
case, the navigation goes back to node 24 after it finishes visiting node 4. Usually, if the
last definition is found, the navigation stops immediately. For example, when the last
definition of variable a is found in node 24, the navigation stops and the algorithm begins
to handle the control dependence. However, there are still some special cases that have to
be addressed as follows: conditional branch, loop, inter-procedural navigation,
inheritance, exception handling and polymorphism.

3.3.1 Conditional Branch

The static slicing algorithm has to consider all possibilities when it handles
conditional branches, because the algorithm does not know which path the program takes.
There are two kinds of conditional branch in a Java program: if ... else and switch ...
case.
3.3.1.1 IF...ELSE

“If ... else” is a conditional statement that is often used in the program. There are four
kinds of cases that the static slicing algorithm has to handle: traverse from the true case,
traverse from the false case, the last definition found in the true case and the last
definition found in the false case.
Traverse from the true case

In this case, the static slicing algorithm just traverses “left & up” over the syntax tree,

41

like the normal case. The traverse from node 12 in Figure 9 is such an example.
Traverse from the false case
When traverse starts from the false case to search for the last definition of the variable of
interest, the true case of the same conditional statement will be ignored. That is, the
traverse will skip the nodes within the true case to get the “if” statement directly. The
reason is that simultaneous execution of the true case and the false case never happens.
The algorithm has to find and visit the node that corresponds to the “if” statement after
the traverse visits the “else” node. Then the traverse continues from the “if’ node. For
instance, the traverse starting from node 15 will skip node 11 and 12,
The last definition found in the true case

If the last definition of the variable of interest is found in the true case, the algorithm
must go to the false case to perform another search because the static slicing algorithm
cannot know which case will be executed. If the last definition is also found in the false
case, the search will stop. Otherwise, the search will continue beyond the “if ... else”
boundary. In Figure 9, for example, if the last definition of variable y is found in node 12,
the search will continue to node 15 rather than stop. In case there is nothing found in the

relevant false case ranging from node 15 to 13, the algorithm will go on to search “left &

up” from node 10.
The last definition found in the false case
Similar to the previous case, if the last definition is found in the false case, the

algorithm has to do another search in the true case. The search must continue if nothing is

42

found in the true case. The example mentioned above can be also used here.
3.3.1.2 SWITCH ... CASE

Although the “switch ... case” is similar to the “if ... else”, it is handled by the
algorithm differently. There are still two types of cases to be considered: traverse from a
case block and the last definition found in a case block.
Traverse from a case block

Normally, if the traversal starts from a case block, the algorithm will ignore the other
case blocks and go to the “switch” statement directly.
The last definition found in a case block

If the last definition of the variable of interest is found in a case block, the algorithm
must continue to search in every other case block. The traversal has to go on outside the
“switch” block if nothing is found in any one of other case blocks.
3.3.2 Loop

There are three kinds of loops in Java: for, while and do loop. The static slicing
algorithm, deals with these loops in a similar fashion.
3.3.2.1 Traverse from the loop node
Here the loop node corresponds to “for” statement, “while” statement or “do” statement

that represents the beginning of a loop. In this case, the traversal cannot go “left & up” as
usual because the statement could be affected by the statements after it. Hence the
traversal has to start from the last statement of the loop block. If the last definition is

found within the loop block, the position will be recorded and the traversal within the

43

loop block will stop, then the traversal continues from the loop statement. For example,
in Figure 9, the traverse starting from node 22 has to visit the nodes 28 to 23 before it
continues traversing to node 21.
3.3.2.2 Traverse from a node within the loop

Since the static slicing algorithm cannot know how many times the loop iterates, the
algorithm assumes that there exists at least one iteration. Therefore, the last definition of
the variable used in the statement within the loop block can be found before or after the
statement, because the control flow is based on at least one loop iteration. Thus the static
slicing algorithm must traverse the nodes both before and after the starting node. In
Figure 9, for example, the traverse starting from node 25 must go to node 28 after node
22 is encountered.
3.3.3 Inter-procedural Navigation

In addition to the special cases mentioned above, jump calls between syntax trees

involve an inter-procedural navigation that needs to be treated specially. Although the
system dependency graph (SDG) [Hor89] proposes a way to handle inter-procedural
program slicing, resolving the issues in inter-procedural navigation to compute a correct
and precise slice is still very difficult, especially for object-oriented programs. There are
too many possibilities that have to be considered because Java program consists of a large
number of function calls that could be found everywhere including assignment
expressions and parameter lists. In this paper the inter-procedural navigation is classified

into two types: outside-in and inside-out.

44

3.3.3.1 Outside-in Inter-procedural Navigation

The traveral that goes from the call site of a function to the body of that function is
called outside-in inter-procedural navigation. Sometimes a variable’s value could be
changed in a function along with the change of the variable name because of the
exchange between the actual parameter and the formal parameter. In static slicing
algorithm, the variable is recognized according to its name that could be changed when
the outside-in inter-procedural navigation happens. For example, variable a is changed to
x when the navigation jumps from node 22 to node 9. The algorithm replaces all formal
parameters with their corresponding actual parameters when the jump happens at the call
site. Actually, in Java, only object parameters can be changed permanently. Therefore,
replacement only happens when the parameter is an object.
3.3.3.2 Inside-out Inter-procedural Navigation

The traversal that goes from the body of a function to the call site of that function is
called inside-out inter-procedural navigation. The case of inside-out inter-procedural
navigation is similar to that of outside-in. In this case the algorithm replaces all actual
parameters with their respectively corresponding formal parameters when the navigation
jumps to the call site. In Figure 9, variable x is replaced by a when the navigation jumps
from node 9 to node 20.
3.3.4 Inheritance

Inheritance between classes can be recorded as a relationship in the block. If the

current class is included into the slice, the algorithm will find its base class based on the

45

recorded relationship and include the base class into the slice.
3.3.5 Exception Handling

Since the static slicing algorithm does not know when and which exception happens
and will be caught, we have to conservatively include all catch statements into the slice in
order to make the slice executable.
3.3.6 Polymorphism / Dynamic Binding

Polymorphism and dynamic binding provide much of the power of object-oriented
programming but at the same time, they represent also a major challenge for static slicing
algorithms. Traditionally, the static slicing algorithm has to handle them conservatively.
That is, it has to consider all possibilities. Our static slicing algorithm tries to solve this
issue by checking the object’s type to determine which path will be taken. However, the
issue can only be solved partially because the algorithm still cannot identify what the type
of the object is when it is represented by an element of an array. In this case, the

algorithm will take the traditional method to consider all possibilities.

3.4 Dynamic Slicing Algorithm

Our dynamic slicing algorithm looks similar to the static slicing algorithm except
that static blocks are replaced by dynamic actions combining the block with the execution
position, and that the navigation for finding the last definition of the variable of interest is
no longer based on the syntax tree but the execution trace. Details of the algorithm are

shown in Figure 10.

46

Imput: aslicing exiterion C=(v, nfg))
Outpat: astatic program slice foo C

5

MB:

v

Setof'blocks inthe slice
Set of marked blocks
Imerestivg variable

n(g): Imeresting block 2 at positiong

VOROLELWN -

Initalios S={}, MB={}.
MEB=MBU {n}
do
Find last definibion mip) of vanable v at nfg)
iflmip) ¢ 5and mip) ¢ ME)
MB=MB U {mp)}
end-if
Letblock Bip)be nig) 's inurediate outer block
il Bip) ¢ Sand B(z) ¢ MB)
ME =18 U {Bp)
end-if
iffblock Cip) is »’s irmerblock and Cp) is nonremovable and Cp) ¢ 5)
5=SU{Ceh
end-if’
5= U {ng)}
MB=MRB- {nig)}
Let n{g)be the first elewment of MB
Let vbeused variables at nig)

. while MFB = {}

. procedue Find lart d efinibion
. Letblock mp) is the precedert for nfg) inthe execution trace
. while m@) is not the top of the execution trace

if (v is not in variables defived in)]

nig)=mip),

Letblock mip) is the precedent for n{g) inthe execution trace
else

break;
end-if’

: end-while
. end Find last defingtion

Figure 11. Dynamic slicing algorithm

In the first step of the algorithm, the program is executed and its execution trace is
recorded up to execution position g of interest. Then the search for the last definition of
the variable of interest starts from the execution position ¢ and moves backward through
the execution trace. After the last definition is found, it is included into the set of marked

actions MB, referring to lines 5-7 in the algorithm. The next step is to handle control

47

dependences that correspond to actions where the block is the control dependency of
current block of interest and the execution position is closest to the execution position of
interest. For example, in the execution trace shown in Figure 5, control dependence of
action 25(37) is action 22(24), not 22(8) or 22(41). Furthermore, the identified control
dependency is stored in the set MB for further analysis. An executable slice is computed
by including all non-removable blocks within the currently analyzed block. In the next
step, the block is removed from the set MB and included into the slice. The algorithm
continues with the next iteration by analyzing the first element of MB and the variables
used in this action. The loop terminates when the set MB is empty, which means that the
analysis of all marked blocks is completed. Of course, some duplicates that have same
blocks but different execution positions are merged into one unique block in the final
result of the slice. For example, there may be actions 22(8), 22(24) and 22(41) in the slice,
which are merged into one block 22 finally.

The most challenging part of the dynamic slicing algorithm is the process of
searching for the last definition, even though it is much easier than that of static slicing
algorithm. The process involves a navigation based on the execution trace that
automatically resolves branches caused by conditional statements or polymorphism.
However, the algorithm has to consider the change of the variable when inter-procedural
navigation is encountered, since the variables are still identified by their variable name.
The reason is because gaining the memory address of a variable in a Java program is

much more difficult than in a C++ program. Like static slicing algorithms, dynamic

48

slicing algorithms also take two kinds of inter-procedural navigation into account:
outside-in and inside-out.
Outside-in Inter-procedural Navigation

When the navigation moves follows a function call to another function, and if the
variable of interest is an object and passed as an actual parameter, the variable must be
replaced by its corresponding formal parameter (also referred to as a reflection). For
example, in Figure 5, variable a will be replaced by variable x corresponding to action
24(17) and action 16(16).
Inside-out Inter-procedural Navigation

If the current variable of interest is a formal parameter of a function, and the

navigation is moving outside, the variable should be replaced by its corresponding formal
parameter at the nearest call site. In Figure 5, for example, variable x should be replaced

by variable a when the navigation from action 9(26) to action 23(25).

35 Hybrid Slicing Algorithm

The general hybrid slicing algorithm presented in this research attempts to utilize
advantages of both static and dynamic slicing algorithms. We design and implement two
types of hybrid slicing algorithm [Ril01]: basic hybrid slicing algorithm and criterion

based hybrid slicing algorithm.

49

3.5.1 Basic Hybrid Slicing Algorithm

The basic hybrid slicing algorithm is just a simple combination of static and dynamic
slicing algorithms. First of all, the algorithm uses the static slicing algorithm to produce
an executable slice that then is analyzed by the dynamic slicing algorithm as a reduced
source code. Figure 12 illustrates how the basic hybrid slicing algorithm works.

According to Figure 12, the source code is first passed through the static slicing
algorithm to become an executable static slice. This process can reduce the number of
statements in the source code significantly (depending on the slicing criterion and the
cohesiveness of the program). However, the slice is not as precise as a dynamic slice,
because the static slicing algorithm must consider all possible paths when it handles
conditional branches, polymorphism and dynamic bindings. After the computation of the
static slice, a dynamic slice for the same slicing criterion, except this time for a specific
mnput can be applied on top of the static slice to further refine the slice. Moreover, based
on the reduced source code rather than original source code, the dynamic slicing
algorithm has less of an overhead for recording the execution trace, because only the
statements that are potentially relevant to the slicing criterion are recorded. Finally the

hybrid slice is generated.

3.5.2 Criterion Based Hybrid Slicing Algorithm

The criterion based hybrid slicing algorithm is an enhancement of the previous

presented general hybrid slicing algorithm that allows the user to combine static and

50

dynamic analysis on an as-needed basis. Our hybrid slicing algorithm is based on the
hybrid slicing framework proposed in [Ril01]. The algorithm is illustrated in Figure 13.
For the criterion based hybrid slicing algorithm, static analysis is used to reduce

the overhead required by the trace and run-time evaluations associated with the dynamic

slicing algorithm.
3 tatic Hybrd Dynamic
slicing slicing slicing
criferion criterion criterion
cv.m CELV.0 CGV.m)

Hybrid Shcing Algontlm

Souwe

Code

Figure 12. Basic hybnid slicing algorithm

The user can choose to have certain language constructs like loops, function calls

handled statically, rather than dynamically. Hence the users can choose between precision

s

and time and space complexity, depending on their specific computation requirements.

51

The two extreme scenarios that can occur are: firstly, the algorithm can behave like a
traditional dynamic slicing algorithm (with all its advantages and disadvantages), if the
user opts to have all language constructs handled dynamically; secondly, if all loops and
function calls are handled statically, the algorithm will behave similarly to a traditional
static slicing algorithm, leading to a slice that is less precise than a dynamic slice, but
with less time and space complexity associated with it.

The first step of the hybrid algorithm, according to Figure 13, is to create the
syntax tree of the whole program. Then the execution trace, based on particular inputs is
recorded up to the point of interest without recording the user selected language
constructs blocks and their statements contained within. Generally speaking, some
language constructs that may lead to high run time overhead when the execution trace is
recorded can be handled statically, such as loops. These selected blocks will be handled
statically by the algorithm. For example, if the user chooses loops to be analyzed
statically, the execution trace excluding loops is recorded. If the user selects no static
criterion, the hybrid algorithm will compute a pure dynamic slice. On the other hand, if
the user selects all available static criteria, the algorithm will compute a pure static slice.
After the syntax tree and the execution trace are completed, the hybrid algorithm
determines to use static or dynamic slicing algorithm based on the current point of

interest and the user-selected options.

52

Static information

Static criterion

Static slicing algorithm

Is navigation at root?

Use static slicing?

Y

Dynamic information of

S the program with user

selected static criterion

\

Dynamic slicing algorithm

Are all actions marked

Create hybrid slice

End

Figure 13. Criterion based hybrid slicing algorithm

53

If the current point of interest is in one of the user selected language constructs, for
example, in a loop, the algorithm will apply static slicing to traverse the syntax tree; in all
other cases, the algorithm will use dynamic slicing to traverse the execution trace.
Whenever the hybrid algorithm encounters a user selected language construct, dynamic
analysis will suspend and the algorithm will switch to the static slicing algorithm. The
dynamic slicing algorithm will then resume until the analysis within the selected
language construct finishes. For example, if the criterion based hybrid slicing algorithm is
used to analyze the program in Figure 1 and the slicing criterion isC = (a, 25) and the
user selected to analyze loops statically. The syntax tree is the same as that shown in

Figure 5 and the execution trace is shown in Figure 14.

1AL public static void main(S ting[] args)

18(2) int a = new Integer args D). intVakhue(),
19(3) intb = new Integer(args[1]).intVahie();
2004) S ample 5 = new Sanmple(a);

2(3) public S ample(int x)

3(5) val=x;

21N nti=0,

Figure 14. Execution ttace of hybrid algoritlon
After the execution position 7, the hybrid algorithm switches to static analysis
without recording the execution trace. The point of interest is now in an user selected
construct and the hybrid slicing algorithm starts traversing the syntax tree to find the last

definition of variable a at node 25. In this example, the root of the syntax tree should be

54

node 22. That means, when the static slicing algorithm encounters node 22 and finishes
analyzing it, the hybrid algorithm will suspend the static slicing algorithm and switch to

the dynamic slicing algorithm.

55

4 Implementation

Our hybrid slicing algorithm is implemented in the CONCEPT (Comprehension Of
Net-CEntered Programs and Techniques) project that was founded with the motivation in
mind to address current and future challenges in the comprehension of large and
distributed systems, by providing programmers with novel comprehension techniques.
These techniques are based on a variety of source code analysis, visualization, and
application approaches.

The hybrid slicing algorithm is implemented based on both static and dynamic
information. To retrieve static information, the source code has to be parsed first and all
parsed information has to be stored after. The CONCEPT project uses JavaC [???] to
parse the source code to get the abstract syntax tree of the source code, which is stored in
a PostgreSQL database. The execution trace extracted by the tool of inst is also stored in
the database.

Since we do not take the memory address of the variable, it is hard to implement
the dynamic slicing algorithm just by tracing the variable along the execution tracé as it is
done in Korel’s algorithm[Kor88]. We had to make modifications to our hybrid slicing
algorithm to facilitate these differences accordingly when we use the dynamic
information to refine the result of the static slicing algorithm.

As part of this research, we implement the criterion based hybrid slicing algorithm

mentioned above. We also modify the instrumentation program to allow for a selective

56

recording of the execution traces based on the user’s choice. This leads to a reduced
execution trace and therefore to less overhead with respect to space and time complexity
involved in the computation of program slices (compared with the traditional dynamic
slice). The static slice computed by the static slicing algorithm is then reduced by
removing those statements that do not appear in the execution trace. The weakness of our
approach compared with the traditional dynamic slicing algorithm is that our approach
has to make conservative assumptions with respect to certain dynamic language
constructs, e.g. arrays. The reason for this imprecision is caused by the limited
information provided by the instrumenter and the recorded information in the execution

trace.

4.1 Database

We use PostgreSQL, an open source database management system to construct our
knowledge base where the static and dynamic information is stored. Our database system
[Zha03] includes the tables and the database interface (DBI). First of all, the data about
the source program - the Abstract Syntax Tree (AST) is generated by JavaC. Then the
whole AST is stored into the database. In order to view and extract the data easily, we
create 13 tables in our database system, which respectively correspond to the projects,
entities in projects, relationships between entities, java files, imported java files, classes,
interfaces implemented by classes, information about classes used in projects, class

members (methods, constructors and fields), method arguments, method members,

57

relation codes and type codes. The DBI is an interface between the database and the user.
It makes the database transparent to the user who just invokes functions without creating
SQL statements to access the database. Using the DBI, we can access the data stored in
the 13 tables mentioned above. For example, if we want to get the information about the
“min” function of the sample program shown in Figure 1 (assuming the class Sample is
in the project SampleProject’s SampleFile, and the AST of SampleProject has already
been generated and stored in the database), we can find SampleProject in the table about
projects first, then find SampleFile in the table about files, thereby we can find the class
Sample. After that, we can find function “min” that is a member of the class Sample.
Now what we get is the root of the sub-tree representing the whole “min” function. By

navigating the sub-tree, we can get all the data about the function.

4.2 Selective Execution Trace

The tool that we use to produce the execution trace is instr, a Java package for
instrumenting the Java source code. The program requires the following steps to
instrument and record the execution trace:

1. Read the source file and parse it into a tree, preserving all comments and white
space.

2. Annotate the parse tree with instrumentation, used to monitor the execution of the
program.,

3. Write the annotated tree to a file that contains Java source code with some additions.

58

4. Compile the annotated source.
5. Remove the annotations from the source code.
6. Execute the program and collect instrumentation data.

Based on the above steps, instr can generate the execution trace for the whole
program. But what we need is a selective execution trace to avoid some recording
overheads. Therefore, we modify instr to allow for a selective execution trace recording
according to the user’s choice. In the present implementation, the user’s choice is an
argument that is used as an input for instr, which does not annotate the statements that
satisfy the input. For example, the while loop block will not be annotated when a user
chooses to handle while loops statically and as a consequence, the execution trace will
not record any executions of while loops. In what follows, we will describe more in detail

the underlying static slicing algorithm and some of its implementation issues.

4.3 Static Slicing Algorithm

The static slicing algorithm is an important and the most complicated part of the
hybrid slicing algorithm implementation, in particular because the algorithm has to
support object-oriented programming language constructs. The major implementation
tasks of our algorithm are constructing the dependency graph, traversing the graph to get
data dependencies and including declarations.

4.3.1 Construct the dependency graph in memory

The static slicing algorithm has to construct a dependency graph that has to be

59

traversed to generate the slice. For the algorithm implementation, the graph must be
stored in memory at first. In this research, the graph representing control dependencies
and function calls is stored in a vector, whose elements are linked lists. The analysis is
performed in three phases: conversion of blocks, construction of the basic graph and
addition of control dependencies and function calls.
4.3.1.1 Conversion of blocks

Our static slicing algorithm is based on static blocks that package the information that
the algorithm needs to analyze the source code, such as used and defined variables and
control dependences. In addition, each static block corresponds to a statement in the
source code. However, this information is stored in the database separately in different
tables making a direct access to some of the information more complicated.

To implement the static slicing algorithm, therefore, conversion of this information
from its database representation to the specific algorithm needs was performed. The
structure of the static block is shown in Figure 15. So, the first step is to collect and

integrate the separate information into complete static blocks.

60

pullic class StaticBlock implemernts Constants{
private int lineNumber,
private int blockType;
private Object blockValue,
private int ciriDepStatementld; / Direct contral dependence
private Vector usedVariables,
private Vector defVanables;
private Vector functionCalls;
prvate Vector finDeclarations;

Figurel 5. The structure of class StaticBlock

In the program, every static block has an index, referred to a block id that consists of
the project, file and statement ids. When a static block is created, it and its index are
stored into a hash table — block table where the index is the key and the static block is the
value. Later on, we can find the static block using its block id.
4.3.1.2 Constructing the basic graph

As we mentioned before, the graph is stored in the memory as a vector whose
elements are linked lists. The basic graph corresponds to the root level representation of
the tree, where every linked list is represented only by the head of the sub-tree.

Before the graph is constructed, nodes have to be created. In the program, every node
maps one-to-one to a block id in the block table. When a node is created, the
corresponding block id is included into the node as a field of node value. After a node is
created, it is inserted into the linked list as the head of the list. The basic graph consists of
these linked lists that only contain heads. Besides the block id as the value, a node has

other elements like status and type.

61

There exist different types of nodes: regular and function-call nodes. Every regular
node corresponds to a real statement of the source code, while a function-call node
represents a function call that happens anywhere and might not correspond to a statement.
Although the edge of the graph should be used to express a function call, it is hard to
define different kinds of edges in a linked list. Furthermore, both regular nodes and
function-call nodes are derived from basic nodes. The structure of the class of Node,
RegularNode and FunctioncallNode is shown in Figure 16. More details about these two

kinds of nodes will be addressed.

public class Node {
private int nodeType;,
private int nodeStatus;
private Blockld nodeValue;

}

public class RegularNode extends Node implements Constants{
private boolean isTopNode,
// Record the number ofhow mary interesting definitions found in current " case” tlocks.
// visited but not marked' or ‘marked' to be analyzed and included into glice ultimately.
private int foundHowlanyBranches;
Verify ifthe found interesting defintions are in the same scope when deal with "if..else".
private int scopeNumber,

}

public class FunctionCallNode extends Node implements Constants(
private Vector actParameters,

}

Figurel6. The structures of classesN ode, RegularN ode and FunctionC allN ode

62

Add control dependencies and function calls

Control dependencies and function-call relations between nodes will be added into
the graph after the basic graph is constructed. Based on the static information from the
parser stored in the database, every static block is control dependent on another one
(except if they represent a root block). The control dependence is stored in the field of
“ctrlDepStatementId” in the class of StaticBlock, from which it is easy to identify the
node (called control dependent node) on which other blocks are control dependent. The
program traverses every node in the basic graph (that is, the head of every linked list) to
find its control dependent node, and then the node is inserted into the linked list
beginning with its control dependent node. The nodes in the linked list are then sorted in
a descending sequence in terms of “statementId”. Note that only the existing node in the
basic graph rather than the newly created node (actually there is no a node object newly
created) is inserted into the linked list, in order to make the regular node is unique in the
graphs.

Adding function-call nodes is different because the node has to remember the actual
parameters when the call occurs. The function-call nodes corresponding to the same
function are unique in the graph even though they have the same function names and the
function might be declared in the same place. Like adding control dependencies, the
program extracts the information about the actual parameters and the function’s
declaration dependency when it accesses a regular node. Based on this information, a

new function-call node is created. Then the node is inserted in the end of the linked list

63

whose head 1s the node where the function is called. If there are more than one functions
called in a node, these function-call nodes are sorted in a descending sequence in terms of
the locations of the function-call sites. In the graph, every function-call node corresponds
to a regular node where the function is defined. Actually, the node value of a function-call
node is the block id of the statement where the function is defined.

In what follows we consider a more challenging situation with the actual parameters
could be also a function call. In this case, every function-call parameter is extracted and a
function-call node is created based on the function-call parameter. Then these
function-call nodes are inserted into the linked list representing the call site in an
ascending sequence. Let’s take a look at the following example.

var = funl(fun2(fun3(a, b), fund(c, d)), fun5(e, f)).fun6().fun7();

In the above sample statement, there is a total of 7 functions-calls and some of them are
actual parameters. In the program, all these function-calls are inserted into the linked list
whose head is the block id of the statement in the following sequence:

fun7 - fun6 - funl > fun5 > fun2 <> fun4 > fun3

The source code for the sample program is shown in Appendix 1, which includes
three java files: Elevatorjava (filel), Paneljava (file2) and Button.java (file3). The
number in the first column of the table is the line number. In some cases the line number
is same as the statement id when there is only one statement in the line. A part of the
graph representing Panel.java is shown in Table 3. The whole table is a vector and each

row is an element of the vector. In the graph, the underlined numbers represent

64

function-call nodes, the non-underlined statements correspond to regular nodes. The node
“3.9” refers to the file 3’s node number 9, which is function “pressed()” defined in
Button.java.
4.3.2 Traverse the graph to search for the last definition

A depth-first-search algorithm is used in traversing the graph in implementation of the
static slicing algorithm. Usually the traversal process starts from the point of interest
defined by the user to search for the last definition of the variable of interest also defined
by the user. At first, the user enters the project name, file name and line where the point
of interest is located, as well as the variable name of interest. Then the program identifies
the node according to the input and validates if the variable of interest is used in there. If
not, the program will exit with an error message being returned, because the program
assumes that the starting point should be the place where the variable of interest is used.

After determining the starting node, the program finds the point where to start the
traversal. Note that there could be more than one place where the starting node is found.
For example, if the starting node like node 3.9 in Table 3 is the entry point of a function
and this function is called in different places. That is, the function has multiple related
function-call nodes in different linked lists. Conservatively, the static slicing algorithm
will take all possibilities into account. Thus, all of these places will be found and
remembered by a vector. Then the program will traverse beginning from them one by one

except for some special cases that will be addressed in the following sections.

65

Table 3. Dependency graph of program Panel.java

0 |[>|1

1 |23 (2|29 | 2|HU | 222172111219 |>]|4 (23 |>]2
2

3

4 > |7 > 16 >1|5
5

6 | > |35

7 > |8

8 | > |35

9 | => |10

10| > | 314

11| > |16 2> (13 12>112
12

13]-> (14

141> 115 2> |39

15

16

17| > | 18

181> |20 > |19]| ->](39
19

20| > 21

21

22> |23

23| > |31

24 | > | 28 2> |25

25| > | 26

26| > |27 > 139

27

28

29| >33 > |30

30| > | 31

31 > | 32 > |39

32

33

341 > | 38 > |35
351> |36

36 | > | 37 > |39

37

38

Since the static slicing algorithm is backward, the traversal should go backward from

66

the starting point. However, this might not always be the case. In the case that the starting
point is a loop statement, the traverse has to go forward to consider the statements after
the starting point. These special cases will be discussed in detail in the following part.
Assuming the starting point is identified, the algorithm will go to the node right next
to the starting point. The depth-first-search algorithm marks all relevant nodes be visited
as if follow the control flow to backward traverse the source code statement by statement
until the last definition of the variable of interest is found. In the program, the traverse
process is implemented by three overloaded functions: “searchLastDef(Node, Variable)”,
“searchLastDef(Node, Variable, LinkedList)” and “searchLastDef(Variable, Node)”. The
first step is to recursively find the linked list that includes starting point. In a second step
the search function handles the search within the list found in the first step. Note that the
starting point is changeable during the traversal, from the initial position determined by
the user’s input to the head of the linked list including the previous starting point. The
process continues recursively until the last definition is found or the top of the search
range is encountered. The concept of the search range is to be a boundary of the search
that will be addressed in detail in the following section. The second search function is in
charge of handling the search within the current list by calling the third search function.
The third search function recursively deals with the traversal beginning from the current
node, and different special cases including “if ... else”, “switch ... case” and parameters

in the function call.

There could be some branches in the traversal when the inside-out inter-procedural

67

call is encountered. In this situation, all possible paths have to be considered at first.
However, after the analysis, some of these paths can be eliminated if they do not contain
any relevant statements. The algorithm uses for this, a stack “tempMarkedNodeVectors”
to record all of possible paths temporarily. Every time a branch is encountered, a new
vector “tempMarkedNodes” is created and pushed onto the stack and every node
traversed afterward will be recorded into the vector. If there is nothing found after the last
node is visited, the latest vector in the stack will be popped and deleted. On the contrary,
all elements of the stack will be transferred to the collection “markedNodes” as relevant
nodes to be analyzed later.
4.3.3 Include declaration information

The last step of computing the slice is to take the declarations into account,
such as information about the variables, classes and functions involved in the relevant
nodes in “markedNodes”. Doing so can make the slice executable.
Variable declare information

In sample program “panel.java”, if the statement 8 is relevant and included in
“markedNodes”, the declaration of the variable “pbutton” — the statement 3 — has also to
be included.
Class declare information

Based on the previous example, if statement 3 is included, the declaration of class
“Button” has to be included. That is, the statement 1 in “button.java” should be included.

Obviously, it is not necessary to include the whole definition of the class.

68

Function declaration information

The function declaration information has to be extracted and analyzed. Take the same
Example that the function (constructor) “Button()” is called in statement 8, and statement
8 is in the slice. So the declaration of this function should be included into the slice.

434 Some special cases

As we mentioned in section 3, there are some special cases in traversing the graph
do not strictly follow the control flow. These special cases include “if ... else”,
“switch ... case”, loop and polymorphism. In wat follows, we illustrate how these special
cases are handled in the implementation.
4.3.4.1 Conditional branch

Unlike dynamic slicing algorithm, static slicing algorithm has to consider all
possibile paths when it analyzes the conditional branches, because the algorithm does not
know which path the program takes.

“IF... ELSE”

“If ... else” is a conditional statement that is often used in the program. There are four
kinds of cases that the static slicing algorithm has to handle: traverse from the true case,
traverse from the false case, the last definition found in the true case and the last
definition found in the false case.

e Traverse from the true case
In this case, the static slicing algorithm just traverses backward the graph as a normal

case. The traverse from node 15 in Table 3 is such an example.

69

e Traverse from the false case

When traverse starts from the false case to search for the last definition of the
variable of interest, the true case of the same conditional statement will be ignored. In
the implementation, the program gets the “if” node on which the current node is control
dependent and traverse from the “if” node immediately after the traversal in the false case
has finished. For instance, the traverse starting from node 21 will skip node 19.
e The last definition is found in a true case

If the last definition of the variable of interest is found in the true case, the
algorithm must go to the false case to do another search because the static slicing
algorithm should not know which case is exactly executed. In the implementation, firstly,
the program can get the “if” node on which the current node is control dependent when
the last definition of the variable of interest is found in the current node. Then the scope
number of the current node, which can be extracted from the database is recorded in the
field “scopeNumber” of the “if” node. And the search will continue in the linked list
where the “if” node is the head until another last definition of the variable of interest is
found. Then the program compares the scope number of the current node with another
one recorded in the “if” node. If they are different, the search will stop. Otherwise, the
search will continue. In sample program “Elevatorjava”, for example, if the last
definition of variable “current floor” is found in static block 31, the search will continue
to static block 33 rather than stop. In case there is nothing found in static block 33, the

algorithm will go on to search backward from static block 30.

70

e The last definition found in the false case

Similar to the case that the last definition is found in the true case, if the last
definition is found in the false case, the algorithm has to do another search in the true
case. The search must continue if nothing is found in the true case. “SWICH ... CASE”
“Switch ... case” is handled in the implementation similar to “if ... else”. There are still
two types of cases to be considered: traverse from a case block and the last definition
found in a case block.
e Traverse from a case block

Normally, if the traversal starts from a case block, the algorithm will ignore other
case blocks and go to the “switch” statement directly. In the implementation, the program
gets the “switch” node on which the current node in a case block is control dependent and
continues the traverse from the “switch” node immediately after the traversal in the case
block has finished.
e The last definition found in a case block

If the last definition of the variable of interest is found in a case block, the algorithm
must continue to search in every other case block. The traversal must continue outside the
“switch” block if nothing is found in any one of the case blocks. In the implementation,
this is supported by field "foundInHowManyBranches” of the “switch” node, which is
used to record how many case blocks where the last definition is found. When the
“switch” node is eventually encountered, comparison between the value of this field and

the number of case blocks that the “switch” node includes will check if every case block

71

has the last definition of the variable of interest. If not, the traverse will continue.
4.3.4.2 Loops

There are three kinds of loops in Java: for loop, while loop and do loop. In the static
slicing algorithm, the ways to deal with these loops are similar. No matter what kind of
loop, there are two following situations that have to be considered in the algorithm.
Traverse from the loop node

The loop statement is a “for” statement, “while” statement or “do” statement
that represents the beginning of a loop. The loop node corresponds to the loop statement.
In the implementation, if the current node is a loop node, the program will call the third
search function “searchLastDef(Variable, Node)” to search the last definition of the
variable of interest in the linked list with the loop node as the head before it calls the
second search function ‘“searchLastDef(Node, Variable, LinkedList)”. For example, in
Table 3, the traverse starting from node 13 has to visit node 14, 15 and 3.9 before going
to node 12.
Traverse from the statement within the loop block

Since the static slicing algorithm cannot know how many times the loop iterates,
conservatively, the algorithm assumes that it does at least one time. The program
traverses the graph until the loop node is encountered. Then the program continues the
search to the traversal of the loop node. In Table 3, for example, the traverse starting from
node 14 must go to node 15 after node 13 is encountered.

4.3.4.3 4.3.4.3 Inter-procedural traverse

72

As we mentioned in section 3, there are two kinds of inter-procedural traversals:
outside-in and inside-out.
Outside-in inter-procedural traversal
e Record the actual parameters

As we discussed in the previous sections, the function-call nodes in the graph are
used to record the actual parameters when function calls happen. Originally, the
information about the actual parameters is from the database. The information is stored
into the relative function-call node when the graph is constructed. For example, in the
sample program Elevator.java, the actual parameters of the function call — “top_floor”
and “current_floor” - happens in the static block 22 are recorded into the function-call
node 2.34 that is in the linked list 22. Likewise, the actual parameters of the same
function call — “current_floor” and “1” - happens in the static block 28 are recorded into
the function-call node 2.34 in the linked list 28. These two nodes 2.34 are different
objects with same declare-dependency keys, that is, correspond to the same regular node
2.34
It is straightforward to just record the actual parameter directly if it is a variable.

However, the case becomes complicated if the actual parameter is another function call or
even a nested function call whose parameter is also a function call. In this case, the
program must sort these function calls in a certain order that we mentioned in section
4.3.1.3. The traversal will go inside every function one by one.

e Pass the actual parameters to the formal parameters

73

In order to pass correct actual parameters to their corresponding formal parameters,
actual parameters have to be stored in a sequence in which formal parameters are
declared. When the traverse encounters a function-call node, the algorithm will go to the
corresponding regular node where the function is declared according to the declare
dependency keys.

In the process of searching for the last definition of the variable of interest, only
those statements relevant to the variable of interest should be considered. The
inter-procedural traverse is not an exception. Therefore, only in such a case that the actual
parameter is same as the variable of interest that is a reference of an object, it is necessary
to analyze what happens to the parameter within the definition of the function. Hence,
before the analysis, there should be a verification to check if 1) the actual parameters
include the variable of interest and 2) the variable of interest is a reference of an object.
The reason is that in Java, the parameter’s value could be permanently changed by a
function only when the parameter is the reference of an object.

In the implementation of the algorithm, the program checks the actual parameters
recorded in the function-call node to see if one of them is same as the variable of interest.
In the algorithm, two variables are same if they have same names and declare
dependency keys. If yes, and the variable of interest is a reference of an object, the
variable of interest will be temporarily replaced by the corresponding formal parameter
when the traverse is within the called function. Otherwise, if the actual parameters do not

include the variable of interest or the variable of interest is not a reference of an object,

74

there is nothing to do before traversing the called function.
Inside-out inter-procedural traverse
e When the variable of interest is of a global variable
In this case, the traversal is handled normally without exchanging between
parameters.
e When the variable of interest is a local variable
The traversal will be confined within the function.
e When the variable of interest is a formal parameter

The way to handle the case that the variable of interest is a formal parameter

is contrary to the way mentioned in the outside-in inter-procedural traversal. When the

node where the function is called is found, the formal parameter is replaced by its

corresponding actual parameter regardless of that the formal parameter is a reference of

an object or not, and the traversal continues outside the function.

4.3.4.4 Polymorphism

It is very difficult for a static slicing algorithm to gain some dynamic information

such as dynamic-binding. Therefore, polymorphism has to be handled by the static slicing

algorithm very conservatively, that is, all possibilities must be considered unless we can

extract the information about the object’s type to know which path will be taken.

75

5 Conclusions and future work

In this thesis, we presented our hybrid slicing algorithm that is based on the notion of
removable blocks and can compute executable slices for Java programs.
5.1 Summary of contributions
The contributions of this research can be summarized as the following:
5.1.1 A survey of slicing concepts

Various slicing algorithms have been proposed since Mark Weiser introduced the
concept of program slicing in 1979. This thesis presents a literature review of program
slicing based on the classification — static, dynamic and hybrid program slicing. For each
of these slicing categories we present several approaches and discuss their advantages
and disadvantage.
5.1.2 A modified version of the instrumentation program

To make the static slice more precise, similar to some other hybrid slicing algorithm,
our hybrid slicing algorithm uses the execution trace to refine the result of the static
slicing algorithm. In the implementation, a third party’s tool called instr is involved to
create the execution trace. On the other hand, our hybrid slicing algorithm must
overcome the drawback of the dynamic slicing algorithm that it sometimes incurs high
runtime overheads. Besides, as a criterion based hybrid slicing algorithm, our hybrid
slicing algorithm has to let the user determine what language construct is handled

statically or dynamically. Therefore, we modified instr to let it record the execution trace

76

selectively based on the user’s inputs. When the user thinks the loops in a program to be
analyzed could generate a high runtime overhead, he can input an code corresponding to
the loop as a criterion of the hybrid slicing algorithm. The modified version of instr will
not record the execution trace that happens within the loop.

5.1.3 A static object-oriented backward slicing algorithm for Java programs

Java programs are the target that our hybrid slicing algorithm analyzes. As an
object-oriented programming language, Java has some common features of
object-oriented programming languages, such as inheritance, polymorphism and so on.
Our hybrid slicing algorithm considers them when the static slicing algorithm is
implemented.

We use JavaC to extract the static information of a Java program, which includes
classes’ definitions and usages, inheritance between classes, function definitions and
function calls, and so on. Based on this information, the static slicing algorithm can take
most object-oriented features of the Java program into account.

5.1.4 The introduction of a criterion based hybrid slicing algorithm

This thesis introduces a criterion based hybrid slicing algorithm for object-oriented
programs, which can switch between the static and the dynamic slicing algorithms based
on the user’s inputs. It makes the static slice more precise and overcomes to some extent,
the disadvantage of dynamic slicing that it may be too expensive when it handles some

language constructs.

77

5.1.5 The implementation of the hybrid slicing algorithm

Our hybrid slicing algorithm is implemented in CONCEPT project in Java. It uses the
static information and the selective execution trace that stored in a PostgreSQL database
to compute the hybrid slice. According to the architecture of CONCEPT, the hybrid slice
will be used by applications like visualization and metrics.
5.2 Limitations

Our current hybrid slicing algorithm is based on some assumptions and limitations
that will be addressed as a part of future work. Some of these limitations include the
handling of polymorphisms and arrays.
5.2.1 Handling of polymorphisms

Even though JavaC can extract some information about the polymorphism when it is
obvious, some situations like that objects are expressed by elements of arrays cannot be
dealt with. That means our hybrid slicing algorithm can partially resolve the issue of the
polymorphism. For those cases that cannot be handled, our hybrid slicing algorithm has
to conservatively consider all possibilities.
5.2.2 Handling of arrays

When the index of a array’s elements is a variable and the variable of interest is a
certain element of the array, since the static slicing algorithm does not the value of the
index, the static slicing algorithm has to analyze all elements of the array leading to an
imprecise slice.

5.2.3 Line based execution traces

78

The execution trace created by the tool instr is only a set of line numbers. That is, the
execution trace is line based not statement based. For the case that there are more than
one statement in a line, instr may get an incorrect execution trace that causes a imprecise
slice.

5.3 Future work

The current hybrid slicing algorithm will be refined to overcome the limitations
addressed above. Also the algorithm has to be integrated with other parts of the
CONCEPT environment like visualization, testing and debugging. Future work should
also extend the application of the hybrid algorithm for distributed and concurrent

systems.

79

References

[Agr90]

[Agr92]

[Aho96]

[Bat93]

[Ber85]

[Boy79]

[Bra95]

[Can98]

[Cho91]

[Cow88]

[Dan00]

Agrawl, H., and Horgan, J. Dynamic program slicing. In Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (1990), pp. 246-256. SIGPLAN Notices 25(6).

Agrawal, H. Towards automatic debugging of Computer Programs. PhD
thesis, Purdue University, 1992.

Aho, A., Sethi, R., Ullman, J. Compilers: Principles, Techniques and Tools.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1996.

Bates, S., and Horwitz, S. Incremental program testing using program
dependence graphs. In Conference Record of the Twentieth ACM Symposium
on Principles of Programming Languages (Charleston, SC, 1993), pp.
384-396.

Bergeretti, J.-F., and Carre, B. Information-flow and data-flow analysis of

while-programs. ACM Transactions on Programming Languages and
Systems 7, 1 (1985), 37-61.

Boyer, R. S., and Moore, J. S. A Computational Logic. Academic Press,
New York, 1979.

Brandis, M. Optimizing Compilers for Structured Programming Languages.
Dissertation, ETH Zurich, 1995.

Canfora, G, Cimitile, A., and De Lucia, A. Conditioned program slicing.
Information and Software Technology, vol. 40, no. 11/12, 1998, pp.595-607.

Choi, J.-D., Miller, B., and Netzer, R. Techniques for debugging parallel
programs with flowback analysis. ACM Transactions on Programming
Languages and Systems 13, 4 (1991), 491-530.

Coward, P. D. Symbolic execution systems — a review. Software
Engineering Journal, vol. 3, no. 6, 1988, pp. 229-239.

Danicic, S., Fox, C., Harman, M., and Hierons, R. ConSIT: a conditioned

program slicer. In Proceedings of International Conference on Software
Maintenance, S.Jose, USA, 2000, IEEE CS Press, pp. 216-226.

80

[Due92]

[Fer87]

[Gup92]

[Gup97]

[Hor88]

[Hor89]

[Hor90a]

[Hor90b]

[Kam93]

[Kin76]

Duesterwald, E. Gupta, R., and Soffa, M. L. Rigorous data flow testing
through output influences. In Proceedings of the 2" Irvine Software
Symposium. (1992) 131-145.

Ferrante, J., Ottenstein, K., and Warren, J. The program dependence graph
and its use in optimization. ACM transactions on Programming Languages
and Systems 9, 3(1987), 319-349.

Gupta, R., Harrold, M., and Soffa, M. An approach to regression testing
using slicing. In proceedings of the Conference on Software Maintenance
(1992), pp. 299-308.

Gupta, R., Soffa, M., and Howard, J. Hybrid Slicing: Integrating Dynamic
Information with Static Analysis. ACM Transactions on Software
Engineering and Methodology, 6(4), October 1997, pp. 370-397.

Horwitz, S., Prins, J., and Reps, T. Integrating non-interfering versions of
programs. In Conference Record of the ACM SIGSOFT/SIGPLAN
Symposium on Principles of Programming Languages (1988), pp. 133-145.

Horwitz, S, Pfeiffer, P., and Reps, T. Dependence analysis for pointer
variables. In Proceedings of the ACM 1989 Conference on Programming
Language Design and Implementation (Portland, Oregon, 1989). SIGPLAN
Notices 24(7).

Horwitz, S. Identifying the semantic and textual difference between two
versions of a program. In proceedings of the ACM SIGPLAN’90 Conference
on Program Language Design and Implementation (White Plains, New York,
1990), pp. 234-245. SIGPLAN Notices 25(6).

Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and
Systems 12, 1(1990), 26-61.

Kamkar, M., Fritzson, P., and Shahmehri, N. Interprocedural dynamic
slicing applied to interprocedural data flow testing. In proceedings of the
Conference on Software Maintenance (Montreal, Canada, 1993), pp.
386-395.

King, J. C. Symbolic execution and program testing. Communications of the
ACM, vol. 19, no. 7, 1976, pp. 385-394.

81

[Kor88]

[Kor92]

[Kor98]

[Lar96]

[Livo4]

[Liv95]

[Mil88]

[Net94]

[Nis99]

[O1t84]

Korel, B., and Laski, J. Dynamic program slicing. Information Proceeding
Letters 29, 3 (1988), 155-163.

Korel, B., and Ferguson, R. Dynamic slicing of distributed programs.
Applied Mathematics & Computer Science Journal, 2(2), 1992, pp. 199-215.

Korel, B., and Rilling, J. CASE and dynamic program slicing in software
maintenance. International Journal of Computer Science and Information
Management, June 1998.

Larsen, L., and Harrold, M. Slicing Object-oriented Software. In

Proceedings of the 18" International Conference on Software Engineering
(Berlin, 1996), pp. 495-505.

Livadas, P. E., Croll, S. A New Algorithm for the Calculation of Transitive
Dependences. Technical Report, Computer and Information Science
Department, University of Florida, 1994.

Livadas, P. E., Johnson, T. An Optimal Algorithm for the Construction of the
System Dependence Graph. Technical Report, Computer and Information
Science Department, University Florida, 1995.

Miller, B., and Choi, J.-D. A mechanism for efficient debugging of parallel
programs. In Proceedings of the ACM SIGPLAN’88 Conference on
Programming Language Design and Implementation (Atlanta, 1988), pp.
135-144. SIGPLAN Notices 23(7).

Netzer, R., and Weaver, M. Optimal tracing and incremental reexecution for
debugging long-running programs. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. (1994).
ACM, New York, 313-325.

Nishimatsu, A., Jihira, M., Kusumoto, S., and Inoue, K. Call-Mark Slicing:
An Efficient and Economical Way of Reduce Slice. ICSE’99 Los Angeles
CA.

Ottenstein, K., and Ottenstein, L. The program dependence graph in a
software development environment. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments (1984), pp. 177-184. SIGPLAN
Notices 19(5).

82

[Rep89]

[Rep94]

[Ril01]

[Sch9s5]

[Tip95]

[Wei82]

[Wei84]

[Zha03]

Reps, T., and Bricker, T. Illustrating interference in interfering versions of
programs. In Proceedings of the Second International Workshop on Software
Configuration Management (Princeton 1989), pp. 46-55. ACM SIGSOFT
Software Engineering Notes Vol.17 No.7.

Reps, T., Sagiv, M., and Horwitz, S. Interprocedural dataflow analysis via
graph reachability. Report DIKU TR 94-14, University of Copenhagen,
Cepenhagen, 1994.

Rilling J., and Karanth, B. A Hybrid Program Slicing Framework. /EEE
International Workshop on Source Code Analysis and Manipulation SCAM
2001, Florence, Italy, November 2001.

Schoenig, S., and Ducass’e, M. A hybrid backward slicing algorithm
producing executable slices for Prolog. In Proceedings of the 7" Workshop
on Logic Programming Env, Portland, USA, December 1995, pp. 41-48.

Tip, F. A survey of program slicing techniques. Journal of Programming
Language, vol. 3, 1995, pp. 121-189.

Weiser, M. Programmers use slices when debugging. Communications of the
ACM 25,7 (1982), 446-452.

Weiser, M. Program slicing. IEEE Transactions on software Engineering 10,
4 (1984), 352-357.

Zhang, Y.G. Automatic design pattern recovery. Master thesis, Concordia
University, 2003.

83

Appendix 1. Sample program for the static slicing algorithm

0 pack r%c; elevatgr,
va.lo,
1 ghc Class Elevator 6
2 private boolean OPEN = true, CLOSED = false; //Door
3 Prwate nt current floor, next_floor;
tst inal int top_floor;
6 pnvate %nai boolean UP = true, DOWN = false; //Direction
7 private boolean door, direction;
8 public Eleyator(int num) {
9 top_floor = nui
10 parel = new Panel(num)
11 door = OPEN;
12 direction = UP;
13 current_floor = 1;
14 public void closedoor() {
15 door = CLOS
16 System out.printfn("Closing the door!");
17 bl d
I8 e ‘ffYS%rgé(‘t‘%Vneo—t{%) foor)
IT or
%(1) ! cudu‘?glc 10151)04r W?\i ©
22 1f (Ypanel. demandedIn’[‘l'nlerectlon(top floor, current_floor))
23 \ irection = DOWN;
24 if (dirgction == DOWN
25 ¢ % current_floor ——) {)
%§ irection = UP;
se
28 if (!panel. demandedInThlsD1rect10n(cun'ent floor, 1))
29) irection = UP;
30 if (direction == UP) {
%% current_floor = panel.findMiniumFloor(top_floor, current_floor);
se
33 current_floor = panel.findMaxiumFloor(current_floor, 1);
34 System.out.println("Now moving to floor; " + current_floor);
35 System.out.println("Arrived at floor: " + current_floof};
36 panel.buttonOff{current_floor);
37) openD oor?
%g pubhc vo1d ca)enDoor() {
40 System out.println “Door is open!");
41 System.out.println();
2% public v01d prompt() throws IOException §
m
44 Strmg stmum,
45 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
46 System.out.println(
47 "Enter the floor you want to go ﬁ etween 1 and " + top_floor +")");
48 while ((strnum = in.réadLine())
49 num = Integer. parselnt(s u
50 if (num == current,, floor)
g% System.out.println("We are at the current floor!");
53 if (num == 13) //there is no 13 floor
54 System.out.printin
55 clse "Sorry, this floor is not existed. Please press a button again!");
56 if (num > 0 && num <= top_floor) {
31 panel.pressButton(num;
58 } else
59 if (num ? { /go
60 (pane howmany() == 0)
61 ystem out. rm ln
. Nobody emande, evelator is stopping, please press a button before

2 closing the door!"); (

e
6 losed ;
¢ Hatedgord:
65 1
[ye Seif(num= -1)
gg reak;

¢
69 Syst t.printin("Invalid input, t again!");
70 Systerﬁ .out. prmH (v etr:1 o p(:nt‘: (nlla 1(31 T]:_ut re?lca afil I: $

e floor
} Jfend of wh e 00r you want to go: (between 1 an op_floor +")");

71 System.out.printin("Good-bye!");
% pubh%1 ?t;gtvr?d;jn ngnl(%x ing[] arfgs) throws IOException {
74 Elevator Otis = new Elevator(number),

84

B i et
\OCO~ISNA

—_—0 O~ LD — o

ndalobda—

(=)

BobD
=D~

NS
wha

DADINOND
N

UL [
h—OO [-<]

W
w

LY
~Ovnh

et e\ oo~ S\ B —

LN—O

F——
(9.2

System.out.prin ""[“ms is a simulator of an elevator,");
System.out.printin("0: close the door and go -1: terminate the program");
System.out.printin("Start the program now!)

System.out.prin n),
tis.prompt();

}

pack r§¢ elevator
import java.util.

public class Panel {

private int number of buttons;
private Button[] pbutton;

public Panel(int num) {
number_of_butfons = num;
gbutton new Button[num’ber of buttons]
or (inti=0 pbutton.length; 17+) {
P utton’[l] new Butfon();

}

public void buttonOff(int num) {
pbutton[num - 1].turnott();

public int howmany() {
int count = 0;

for (int 1 = 0;i <= number_of_buttons - 1; i++) {
if (pbuttonu_pl essed())

Eetum count;

public boolean on(int num) {
1f (pbutton[num - 1].pressed())
return true;

e
return false;

}

pubhc v01d pressButton(mt num) {
utton[num -
?/ Systemn.out. prm}t)ln("tiqe NO."+num+" is pressed!");

pubh? int findMiniumFloor(int upFloor, int downFloor) {
or (int 1 = downFloor; 1 <= upFloor; 1++) {
if (pbuttton[l - 1].pressed ‘()))

Teturn 0;

publig int, fmdMaxmmF loor(mt upFloor, int downFloor) {
for (int1= u;t) >= downkloor; 1--) {
if (pbu on[l - 1] pressed())

Eetum 0;

publlg boolean demandedInThllerectlon(mt up{F]oor, int downFloor) {

T (1nt1—downF1 i <= upFloor; i++
if (pb utton{l - l]pressed
ret

return false;
}
package elevator;
/*Class Button*/
public class Button {
private final boolean NOT LIT=false;
private fina] boolean LIT=True;
private boolean state;
//methods

blic Butt
pu stat:a1 =0§I(8)”i“_LIT;

pubhc v01d]f[e:_lss() {

publicflzoolean prcss)ed() {

else /‘}1f(state toString() =="not_lit")
return false;

x}aubhc v01d tumoffl(} %

85

