Dynamic Modeling and Optimal Operation of District
Heating Systems

LianZhong, Li

A thesis in
Department of Building, Civil and Environmental Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

August 2003

© LianZhong Li



National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83859-5
Our file  Notre référence
ISBN: 0-612-83859-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



ABSTRACT

Dynamic Modeling and Optimal Operation of District Heating

Systems

Lianzhong Lt

District Heating Systems (DHS) are widely utilized for space heating in residential
and commercial buildings. They offer economic benefits to consumers in terms of lower
heating costs. The energy efficiency of DHS can be further improved by optimally
controlling the operating parameters of the system. With this as a motivation, dynamic

modeling and optimal operation strategies of DHS are explored in this thesis.

Two typical District Heating Systems namely Direct District Heating System
(DDHS) and Indirect District Heating System (IDHS) are considered. Using typical
system configurations the components of the DHS were sized. Dynamic models of the
designed DHSs useful for control analysis were developed. Open loop tests subject to

constant inputs and loads were conducted to evaluate the time response characteristics of

DHS.

A methodology for computing optimal operating parameters of DHS is presented.

These optimal parameters so computed are used as set points for PID controllers. The

il



DHS by virtue of its long distribution network is subject to large transportation time
delays. To compensate such time delays, a PID controller augmented with a Smith
Predictor is developed. The designed controller is used to simulate closed loop operation
of DHS under variable load conditions. Results show that the optimal set point strategy

can save 10%~15% energy compared to conventional control strategies.
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Chapter 1 Introduction and Literature Review

1.1 Introduction

District heating systems are widely utilized for space heating in residential,
commercial, and industrial buildings. Since heating technology and equipment have
greatly developed in recent decades, the trend is to build larger district heating systems.
The larger the district heating systems are, larger is the energy consumption. Therefore, it
is of interest to consider energy conservation, through improved operating control
strategies. Generally, district heating systems can be divided into three types according to
the kind of heat source: heating from power plants, district boiler houses and others. In
this thesis, a district heating system with a district boiler house will be studied because it
is the one with higher potential for energy savings of all types of district heating systems.
1.1.1 Definition of a district heating system

A district heating system transmits and distributes heat from one or more energy
sources to residential, commercial, and industrial consumers for space conditioning, hot
water heating, and industrial processes. The definition includes, therefore, very small
schemes sometimes referred to group heating schemes or block centrals, and very large
schemes encompassing an entire city as well. District heating systems are extensively
used for space heating, especially where the thermal load density is high or the annual
load factor is high.

Based on economical and technical analysis, a district heating system can be



grouped into two types based on their structure. One is called a direct district heating
system (DDHS), which usually has heated floor area ranging between 50000m* to
250000m”. In this range they are the most cost-effective. If the heating area is larger than
this range, an alternate heating system, which is called an indirect district heating system
(IDHS), is recommended. Recently, several indirect district heating systems have already
been built with 10Mm? heated floor area. Both types of district heating systems consist of
production plant, transmission and distribution systems, and in-building equipment.
However, the main structural distribution between the two types of systems is that
indirect district heating systems consist of several heat exchange stations.

District heating systems are developing rapidly because of their advantages. District
heating systems offer several benefits not only environmental benefits but also consumer
economic benefits. For example, consumers can reduce energy consumption according to
their needs, they do not require additional space for housing the heating equipment, and
also they have less equipment maintenance.

A district heating system (DHS) is referred to as a direct district heating system
(DDHS) in which hot water from a boiler passes through piping network to each terminal
device directly and returns back to the heat source. On the other hand, in an indirect
district heating system (IDHS) hot water passes through primary piping network to each
heat exchange station and returns back to heat source directly. The secondary loop system
in each heat exchange station obtains heat from the primary system. The secondary

system works similarly to a direct district heating system. Some larger district heating
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systems have several heat sources, hundreds of heat exchange stations, and more complex
configuration.
1.1.2 Importance of this research

The use of DHS in cold climates especially in China has increased at a rapid rate and
continues to grow at significant rates. For example as shown in Table 1.1 and 1.2 over a
period of 8 years, the heated floor area in China has increased by 340%. Given such
growth potential, it is obvious that energy conservation in DHS plays a significant
economic role. If reasonable technologies are utilized in order to improve operating
efficiency, for example 1%, the energy saving obtained will be about 8.35 MGJ in the
year 2000. In addition, other advantages of improving operating efficiency are reducing

air pollution and reduction in CO; levels exhausted in environment.

Table 1.1 Statistical data of DHSs

Year 1992 1998 1999 | 2000
Number of metropolis 517 668 668 668
Number of DHSs in metropolis 158 286 286 286
Heated floor area 10°m® | 3.8 8.70 9.68 11.08
The amount of vapor supplied 10% - 1.70 2.20 240
The amount of heat supplied 10'7 - 6.50 6.98 8.35
Length of steam piping network km - 6933 | 7733 | 7963
Length of water piping network km - 27000 | 30506 | 35785

Table 1.2 Percentage of the types of heat source and heated floor area in 1998
Heated floor area for different heat sources

Heat power plant Do 62.90
District boiler house % 35.75
Others % 1.35
Total % 100
Heated floor area for different users
Commercial building % 33.12
Residential building %o 59.77
Others % 7.11
Total % 100




Improved operating strategies can save significant energy in DHS. For instance, the
use of variable speed pumps and optimal control of boiler in response to changing loads
on the system should be explored in order to improve overall energy efficiency of DHS.

It should be noted that, control strategies for large heating systems are quite different
compared with nominal control design method because of the transport time delays that
are usually large. Therefore, special control strategies have to be considered.

The motivation for this study is based on the following observations.

(1) A district heating system has a large heated floor area; therefore, it consumes
large amount of energy during heating season.

(2) Many heating systems currently do not operate based on automization; thus, the
potential of energy saving can be fulfilled by utilizing optimal operating set points
and appropriate control strategies.

(3) Because the transport time delay and disturbances cannot be neglected, there is a
need to develop an effective control strategy to handle the large time delay and
disturbances as well.

(4) Internal loads should be utilized in order to achieve more energy savings.

1.1.3 The scope and objectives

The focus of the thesis is to develop dynamic models, find optimal set points,
develop a control strategy, and simulate energy performance of DHS under realistic
operating conditions.

The main objectives of this study are as follows:
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(1) To design two typical district heating systems using practical guidelines and
steady state methods and examine the influence of design parameters on system
operation.

(2) To develop dynamic models of DDHS and IDHS suitable for control analysis and
design. The models can be used to study the effects of building load, indoor air
temperature, outdoor air temperature, solar radiation, circulating water flow rate,
heat exchanger area, and supply and return water temperatures. The dynamic
models can be used to analyze and simulate the responses of the DHS.

(3) To obtain optimal set of operating parameters by using multi-variable constraint
objective function optimization technique for energy efficient operation.

(4) To design a control strategy embedded with a Smith Predictor for compensating
the effect of large transport time delays that exist in piping networks and improve
the system performance.

(5) To carry out simulation runs to study the operating performance of DHS, evaluate

energy saving potential under different operating conditions.

1.2 Literature review

A literature review related to design, operation, optimization, dynamic models, and
control strategies of district heating systems is presented. Also, papers dealing with large
transportation delay have been reviewed. Since hot water space heating systems have

similar characteristics, some guidelines employed in space heating system design are also



reviewed.
1.2.1 Design and operation of district heating systems

District heating system design plays an important role not only in its first cost but
also in its operating cost. Normally, design of DHSs includes several subsystems such as
heat source, distribution system, terminal heaters, and heat exchangers. These
componeunts should be selected properly; otherwise, the first cost and the operating cost
increase significantly. For example, if variable speed water circulating pump and variable
speed supply air fan are designed for a heating system, pumping cost to the order of
15%~60% can be saved.

ASHRAE Handbook (2000) [1] stated several guidelines for hot water heating
system design. Appropriate pipe sizing was determined from an economic study of the
life-cycle cost based on construction and operation of heating systems. According to the
economic study, the design method based on maximum flow velocity is optimal. Also,
ASHRAE Handbook describes methods for the calculation of heat losses from insulated,
underground-buried pipes,Awhich are extensively used in DHS. Moreover, the advantages
and the use of plate heat exchangers were addressed. These include high heat transfer
efficiency, smaller size, low maintenance, and one-third to one-half the surface area
required by shell-and-tube units for the same operating conditions.

The use of plate heat exchangers to enhance heat transfer rate between water-to-
water in DHS is studied by Liu (1997) [14]. The paper gives an approach for designing

and calculating high efficiency plate heat exchangers using steady state design theory.
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However, the design method is not validated. The calculation method and a computer
program for design and selection of plate water-to-water heat exchanger, plate condenser,
and plate evaporate were reported. The theoretical analysis makes several simplifying
assumptions as such the accuracy of the model needs verification.

Li (1982) [16] formulated the principles and design methods of district heating
systems. Steady state design including heating load and circulating water flow rate
calculation, distribution system, equipment selection, make-up water, and operating
curves were focused on different types of heating systems such as direct district heating
systems and indirect district heating systems. Optimal operating parameters for direct
district heating systems depending on adjusting simultaneously supply water temperature
and circulating water flow rate were developed. In addition, a method of calculating
pressure drop in piping network and devices in heating systems is developed. However,
few factors such as exceés area factor of terminal heaters and heat exchangers were not
considered.

Many researchers have studied pipe sizing of hot water heating systems. Besides
ASHRAE Handbook (2000) [1], Europeans researchers have used the criterion that
pressure losses of pipe should be limited to 100Pa/m as stated by B®hm (1988) [4].
Studies indicated that higher levels of pressure losses could be acceptable as shown by
Stewart and Dona (1987) [28] and warranted from an economical standpoint according to
B®hm (1986) [3] and Phetteolace (1989) [7]. Also, Siegenthaler (1995) [19] pointed out

that several factors such as flow velocity, erosion corrosion, and operating cost enter into
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the selection of a pipe sizes for a given application. Flow velocities in piping network of
less than 1.2m/s were recommended. When the flow through a pipe increased, the heat
loss associated with the flow increased rapidly. The greater the heat loss was, the more
pumping power was needed to offset the heat losses. The determination of an optimal
pipe size based on minimizing total owning and operating cost could be a complex
process. To mitigate this difficulty, some equations and figures were presented to
estimate the theoretical annual operating cost of a piping system.

Hansen (1985) [6] formulated a steady state design method related to pressurization
of closed hot water systems in primary and secondary loops. Pressurizing at pump
suction, pump discharge, remote pressurization from return profiles were presented.
Pressures in user systems were governed by a number of variables, for instance, pipe
resistance and elevation. To keep the fluids separated, a primary-secondary system
separation was employed. The method was shown to be appropriate with both constant
and variable volume flow systems.

Bobenhausen (1994) [29] addressed how to design hot water heating systems using
steady state methodologies, such as calculation of hot water flow rate, selection of piping
system, boiler, and terminal devices. Also, for a closed heating system, the weight of the
column of water going up in the supply pipes was balanced by the weight of the water
coming down the return pipes. Therefore, the circulating water pump only overcame the
friction caused by flow through the pipes and fittings rather than the height of the water

column. The pressure drop of a distribution system was computed for several different
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field operating conditions.

Basu, Kefa, and Jestin (2000) {21] described fuel and combustion calculation,
burners design, corrosion and erosion prevention, and gas and air duct system design for
a boiler used in a DHS. Steady state method was used in the calculations. Based on heat
balance principle, the heat released by fuel combustion should be absorbed by circulating
water flow. However, for a variety of reasons, the released heat would not be utilized
completely because several heat losses occur in the heat transfer processes. A heat
balance between the thermal efficiency and heat losses was shown. The heat losses
included: heat loss though stack gas, incomplete combustion, owing to unburned carbon,
owing to convection, and radiation from the furnace exterior, through the sensible heat of
ash and slag. Some measured data was used in order to improve the accuracy of the
model.

It 1s noted from the above studies that most of the published research work are
related to the design aspects of DHS. The methodology used is based on steady state
analysis and design technologies. This points to the lack of suitable methods for dynamic
analysis and control design of DHS. To this end, in the next set of papers reviewed the
attention 1s focused on dynamic analysis and control methods used in hot water heating
systems, which are the closest to DHS in terms of operating characteristics.

1.2.2 Dynamic models for simulation and control design
Dynamic models of district heating systems are essential for simulation and control

design. A district heating system consists of several subsystems. Therefore, subsystem
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models have to be developed for the boiler, pipe network, heat exchangers, terminal
heaters, and building enclosure. Solar radiation and internal loads in buildings should be
considered because they are important factors for dynamic responses and energy savings.
Much of the work is done in developing dynamic models of single zone or multi-zone
buildings. However, there are no comprehensive dynamic models for the whole district
heating system.

Zhang (2001) [31] developed a simple and relatively accurate dynamic model of a
radiant floor heating system, which included a boiler, distribution system, floor slab, and
building enclosure. The model was utilized to determine effective and simple strategies
for operating the radiant floor heating system. By using the logarithmic-mean-
temperature-difference approach, significant reduction of the dynamic equations was
achieved. Validation between experimental results and predictions from the model
represented that the predictions were in agreement with the experimental data. Three
control strategies such as a multistage control, an augmented constant gain control, and a
variable gain control for improving the temperature regulation of the heating systems
were proposed. The limitations of the dynamic model were that the heat transfer process
of the floor slab was assumed as one-dimensional problem.

Saboksayr (1995) [24] developed a control strategy for a multi-zone space heating
system including a boiler and associated distribution network. The control system was a
multi-input multi-output system, which was consisted of five input signals and three

output signals. An analytical method was presented, and robust controller and
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decentralized control concept were addressed. Furthermore, three design methods, which
were linear robust servomechanism design, decentralized controller design, and nonlinear
decentralized servomechanism design, were provided. All of the three designed
controllers yielded similar performance. The decentralized neural network controller was
a nonlinear time varying and designed on minimizing decentralized cost function. The
controller had good performance over a wide range of operation and gave better
disturbance rejection compared to the existing controllers published before.

Zaheer-Uddin et al. (1993) [17] described a single zone space heating system by a
seventh-order linear model. The heat generated in a hot water boiler was transferred to
the zone air. The zone temperature was controlled by burner modulation and the hot
water valve associated with the heating coil. Optimal P and PI controller were designed
by using the reduced-order model of the heating system. The PI controller was used for
simulation with the full-order model. The simulation results show good regulation of
room temperature. In addition, a multi-input controller was designed by using a linear
model of the heating system.

Chen (1997) [5] developed a complex building transfer process model for a floor
heating system with a thermal network. The established thermal network was based on
not only the physical similarity but also the principle of equivalence. Thermal mass was
utilized in order to lower both peak loads and operating cost as well as to reduce room
temperature swings by predictive control while utilizing solar gains to reduce energy

consumption. A method was presented for the semi-symbolic network analysis of
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buildings. The algorithm based on Cayley’s expansion was then described to generate a
symbolic transfer function. Application of the techniques to the floor heating system
shows that significant operating cost savings might be achieved by predictive control
when the heating system was properly designed and operated. The limitation of the model
was that the internal loads were ignored.

Practical modeling and control design methods have been explored by Letherman
(1981) [11]. The examples presented illustrated application to heating and cooling
systems.

1.2.3 Optimization of hot water heating systems

The focus in this review is to examine the optimization techniques used in hot water
heating systems. Most studies have used optimization method to determine optimal
operating parameters by minimizing an objective function. Also, some studies have
shown how to develop cost functions in different systems in order to attain optimal
parameters.

Zheng (1997) [30] developed dynamic models and optimal control for a multi-zone
HVAC system. The nonlinear dynamic models integrated the building loads and all the
components of the multi-zone HVAC system. A methodology was developed for multiple
stage dynamic optimal operation problems in order to determine the optimal set point
profiles. The potential for energy savings was estimated by analyzing several simulations.
A global optimal control methodology to handle multiple stage operation and multiple

time scale processes was presented. The best solution that achieves an optimal balance
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among zone load, operating schedules, energy storage, energy price, and the comfort
requirement was determined.

Larsson and Mahgary (1977) [10] developed a general optimization model for a
district heating system by minimizing a cost function. The model consisted of numerous
sub-models so that the modular optimization was also possible. These sub-models were
the electrical system optimization model, the turbine model, the heat transport system
model, and the distribution and utilization model. Some preliminary results of the first
runs were presented with the general optimization model, showing the influence of
different parameters on the cost of heat delivery. One-way heat transport systems in
connection with low-temperatures were also evaluated and compared to conventional
solutions for high and low temperature techniques. The heat demand and supply and
return water temperature of the local system were given as functions over a period of one
year.

Kohoner (1984) [23] studied intermittent heating of public buildings both
theoretically and experimentally. Thermal behaviors of building under intermittent
heating operation were analyzed based on the heat balance method and simplified
models. A practical realization of the optimal strategy for intermittent heating was to stop
heating totally at the end of the occupied period and to use the maximum heat output of
the heating system for preheating. The measured seasonal energy savings compared with
the continuous heating were 20%~40% depending on the heating and ventilating system,

the massiveness, and the heating control system of the buildings. Some recommendations
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for the planning and application of intermittent heating systems were suggested. For a
single building, intermittent heating control could be used based on weather conditions
and internal loads, but for large district heating system, the approach is not practical.

House and Smith (1995) [9] described a system approach for optimal control of
HVAC and building systems and presented optimal control responses that demonstrated
the system approach for a large-scale system with multiple state and control variables.
The methodology utilized a system approach to the optimal control problem, wherein the
interactive nature of the HVAC components, the building system, and their associated
variables was accounted for, and an optimal control solution was sought. Four cases were
examined. The system-based optimal control approach resulted in energy savings of up to
24% in comparison to a conventional control strategy. Perhaps more important, the
system-based optimal control approach had the capacity to accommodate a variety of -
system conditions, including time-varying loads and occupancy schedules, system
constraints, and different set points in different zones, and, in so doing, minimized the
operating cost for the system. However, the humidity effects, transient and spatial effects,
and heat losses and gains were neglected in the governing equations.

Martin and Oughton (1995) [20] studied a heating system with optimum-start, plus a
conventional heating controller. The optimum-start control served to delay the start time
of a heating system until the latest possible time to give the shortest preheat period,
normally at full output, which would achieve the desired conditions at the start of the

occupancy period. The control system monitored the indoor and outdoor air temperature
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and considered the thermal response of the building and the system. In addition to
optimum-start control, the controller included thermostats to sense outdoor temperature
and circulating water flow temperature. By means of a calibrating mechanism, the
temperature of water leaving the three-way control valve was adjusted according to the
outdoor temperature. The open-loop controller effectively reset the desired temperature
set point depending on the outdoor conditions.

Zhang and Nelson (1992) [32] developed a numerical model to simulate a space
controlled by a HVAC system. The effects of building system components, including
envelope heat transmission, thermal mass of the building enclosure, non-temperature-
rel-ated heat gains, cooling system capacity, and time delay of thermal effect, were
examined. Furthermore, the influence of the control setup, such as the temperature
proportional band, minimum throttling rate, PI control, and temperature set point, were
studied. First-order linear dynamic model was used to develop a PI controller.

1.2.4 Smith Predictor control design

Smith Predictor (SP) is well known as an effective method in dealing with long time
delay compensation. This technique uses a model-based approach. Although Smith [18]
developed the concept first, it was not widely employed since the implementation of the
controller was difficult. Because of the development of computer technology and
hardware devices, the SP is used more and more these days, especially in industrial
processes and chemical processes. Many studies described the principle of SP design.

However, its applications in district heating systems have not been studied.
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Liu, Ni, and Yang (1999) [13] developed an analytical model to design a SP based
on loop shifting theory for handling large delay in industrial process control. First, the
equivalent inner model control of a SP was derived. And then, its stability and
performance were analyzed. Lastly, the analytical approach was used to design the SP.
The controller could be equivalently transferred into a PID type controller, and the
parameters were easily obtained. A first-order model with large delay was presented and
simulated. Simulation results showed that the resulted controller was able to achieve
good dynamic response as well as robust performance. The equivalent inner model
design method was used when the plant process control had a stable transfer function.

Glickman, Kulessky, and Nudelman [27] developed a new method for a PID-control
design in which the PID-control loop was represented as an equivalent one to a control
loop operating with an optimized Pl-controller and a SP in order to achieve optimal
control with time-delay compensation. The method was based on the PID-controller
transfer function identification, which approximately described dynamical properties of
the optimal PI-controller with the SP. In the approach presented the PID controller was
tuned as an equivalent PI-controller with an “ideal” SP; then, the PI-controller parameters
were calculated as the optimal ones for a process described without the dead-time;
finally, the algorithm in which the accurate descriptions of a process and a time-delay
were used represented the “ideal” SP. The tuned of PID controller was implemented on a
power plant process provided sufficiently good settings of the controller parameters and

exemplified industrial application of the approach. On the other hand, the approach
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required a close approximation of the process description and a dead-time transfer
function.
Deshpande and Ash (1980) [22] presented a control algorithm and simulaﬁon of a
SP to deal with long time delay process. The process was conceptually split into a pure
lag and a pure dead time. A SP moved the dead time outside the control loop. Since there
was no delay in the feedback signal, the response of the system was greatly improved. In
addition, an example of applying the SP algorithm for automatic control of a distillation
column was presented. The experimental responses of the system to a step change in set
point and load were presented. These results clearly showed the superior performance of
the SP algorithm compared with the digital PI controller without dead time compensation.
This approach requires that the model parameters must be known to a high degree of
accuracy in order to be assured of success.
Tzafestas and Pal (1991) [26] developed an approach for time delay compensation.
‘The time delay was common in the process industries due to recycle loop, distance-
velocity lags in fluid flow and the “dead time” inherent in many composition analysis. A
block diagram of the discrete form of a SP with a zero order hold was shown. The
feedback loop around the digital controller contained a block whose output represented
the difference between two model outputs: the responses of a system without and with
time delay. The process model was considered as a first-order model with time delay. The
algorithm required a high accuracy of the model without time delay.

Draganovi¢, Stoji¢, and Matijevi¢ (2001) [25] proposed a new SP for controlling a
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process with an integrator and long dead times. The structure comprised the classical SP,
in the main control loop, and the disturbance estimator, in the local minor loop. The
methods based upon the use of M circle and pole placement procedure were applied for
parameter setting according to the desired set point response and speed of disturbance
rejection. All tuning parameters, the single parameter of main controller and parameters
of disturbance estimator, had clear physical meanings. Several experimental results were
present to illustrate the design procedure and to demonstrate the efficiency of the control
structure in disturbance rejection. The modified SP was expressed by Laplace transfer
function.

From the above, we can group the literature review into three themes: (i) design
methods, (i1) dynamic models and optimization, and (iii) control design methods
including those involving a Smith Predictor.

It is apparent that most studies on DHS are related to design using steady state
methods. Dynamic models for control analysis and operation have not been adequately
addressed. Furthermore, the issue of compensating the large transport delay in DHS has
not been addressed.

To this end, the contributions of this thesis are described in the following.

1.3 Contributions and summary

The main contributions of the thesis are listed below:

(1) Steady state design models of the DHS are developed.
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(2) Important parameters impacting heating system operation are determined.

(3) Full-order dynamic models are developed in order to analyze and simulate the
responses of the DHS. The DDHS dynamic model includes 66 nodes and 44
dynamic equations, while the IDHS dynamic model includes 70 nodes and 59
dynamic equations.

(4) An optimization methodology is used to obtain optimal set points for energy
efficient operation of the DHS.

(5) A reduced-order model is described and used for the design of a Smith Predictor
in order to improve the system performance, especially disturbance rejection.

(6) A control strategy for energy-optimal operation of a typical DDHS is developed.

(7) Optimal set point algorithms are developed so as to reduce the fluctuation of
indoor air temperature by internal loads.

The thesis, which includes six chapters, is organized as follows:

In Chapter 2, the steady state models of the DHS are designed. Related design

parameters that will be used in the development of dynamic models are given. Also,

simulations based on parameter changes are studied in order to find which parameters are

most important affecting the heating system operation.

In Chapter 3, the dynamic models of the DHS are developed. Open loop tests are

used to evaluate the dynamic models.

In Chapter 4, an optimization methodology is described for the DHS in order to

attain optimal parameters that can be used as optimal set points for energy efficient
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operation.

In Chapter 5, a Smith Predictor is designed to compensate the larger transport time
delay. Several energy saving strategies are studied by considering combinations of
optimal set points of supply water temperature and internal loads.

Finally, in Chapter 6, summary and the conclusions of the thesis together with

suggestions for future work are given.
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Chapter 2 System Design and Performance Evaluation

2.1 Introduction

Two types of the DHS, namely DDHS and IDHS, will be designed and their steady
state performance will be studied in this chapter. First, the physical models of the DHS
are described, and then the design procedures for design the two types of the DHS are
introduced. After that, simple examples of design procedures for the DHS are shown.
Finally, steady state performance is evaluated in order to identify the important
parameters affecting the heating system operation. In addition, the detail data about the

DHS design are given in Appendix.

2.2 Physical models of the DHS

2.2.1 Physical model of the DDHS

The schematic diagram of the DDHS is shown in Figure 2.1. The DDHS consists of
a heat source, the distribution system, and user systems. The main components of the heat
source include the boiler, circulating water pumps, and the makeup water system that
maintains the constant pressure at the return water pressure set point. The distribution
system has the supply water piping network and direct-return return water piping
network. User systems include terminal heaters and indoor piping network. The
circulating water brings the heat generated by the boiler and passes through the supply

water piping network to each user, and then goes back to the boiler by means of return
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water piping network. The circulating pumps are utilized to operate the loop

continuously.
Supply water pipe
et
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Fuel pipe
e User User -« » | User User
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Circutating pump _@ Makeup water pump
.

Figure 2.1 Schematic diagram of the DDHS

The typical layout of the DDHS is presented in Figure 2.2. The designed heating
system has 30 buildings with total heated floor area 100137m” and total design heating
load of 6.23Mw. The heated floor area of the two types of buildings namely commercial
and residential buildings, are 27326m? and 72811m? respectively. The elevation of the
buildings (sea level) ranges from 32.25m to 35.23m. The height of the buildings ranges
from I-floor to 7-floors. In addition, the distribution system has three branches such as B-
B4, C-C6, and C-D-D2. The outdoor piping network is 5146m in length, and the nominal
dimension of the outdoor distribution system ranges from 50mm to 250mm. The velocity
of the piping network is under 1.4m/s. The heat capacity of the boiler is 7Mw, and it has
two circulating water pumps. One of the pumps is operated normally; the other is a

standby pump. The design circulating water flow rate is 214.29t/h. The nominal water
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flow rate, pressure head, shaft work, and efficiency of each circulating pump are 200t/h,

50m (H,O column), 36.3kw, and 75% respectively.
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Figure 2.2 Layout of the DDHS
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The symbols in Figure 2.2 are explained below.

: building number. For instance, it expresses the 15" building in the DDHS.

B, D3: nodes of piping network. For instance, “B” indicates the intersection of pipe
segment AB and BB1 in the DDHS, and D3 indicates the end of piping line D2D3.

: position of the heat source in the DDHS.

Moreover, the configuration of each user system (each building) is depicted in
Figure 2.3. There is a self-action AP control valve in the entrance of each building. In

each indoor heating system, the hot water is supplied from upper supply water pipe
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segment to each terminal heater. The amount of heat released to indoor air is controlled

by thermostat. And then, water returns back to the boiler.
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Figure 2.3 Configuration of the user system

2.2.2 Physical model of the IDHS

The typical schematic diagram of the IDHS is presented in Figure 2.4. It includes the
heat source, the distribution system, heat exchange stations, and terminal systems. It can
be seen from the figure that the distribution system is divided into two sections, which are
called the primary system and the secondary system. The major purpose of the primary
system is to generate the required heat and transport it to the secondary system. The main
purpose of the secondary system is to distribute the heat to each terminal heater. The heat
exchanger separates the two closed subsystems in the IDHS. The purpose of heat
exchange stations is to transfer heat from primary side to secondary side. An IDHS can

have many secondary systems based on the conditions of the whole district heating
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system although only one is shown in Figure 2.4. In some large IDHSs, for example,

more than 100 heat exchange stations are employed.
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Figure 2.4 Schematic diagram of an IDHS

The typical layout of the IDHS is presented in Figure 2.5. The designed heating

system includes 10 heat exchange stations with the total heated floor area of 851031m?

and total design heating load of 51.47Mw. The heated floor areas of the heat exchange

stations vary from 25641m” to 250495m”. In addition, the primary distribution system has

two branches named as B-H-I and B-D-G. The length of outdoor piping network is

12040m, and the nominal diameter of the outdoor distribution pipe range between

200mm to 500mm. The heat capacity of the boiler is 58Mw. The design circulating water

flow rate is 885t/h. The nominal water flow rate, pressure head, horsepower, and

efficiency of each circulating pump are 1260t/h, 75m (H;O column), 314kw, and 82%

respectively.
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In Figure 2.5 HES_i expresses the i™ heat exchange station and letter B denotes the

nodal designation.

2.3 DHS design procedure
2.3.1 Design heating load

For a DHS design, several factors have to be considered properly. For example, the
heating load of each building should be estimated as accurately as possible. However,
since some parameters in buildings vary with time and usage patterns, actual measured
heating load data is often utilized as the design heating load instead of original designed
heating load. The measured heating load data as a function of design conditions is

presented in Figure 2.6 for two types of buildings: commercial and residential buildings.
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These are assumed load profiles based on operating experience. In addition, for pipe
sizing, water velocity is limited to 1.4m/s [1, 4, 8, 15, 16, 19]. Furthermore, the heat

source and heat exchanger design are based on methods given in references [14, 15].

130 T T T T T T 1 1 1
- O measured commercial building
O measured residential buildin
120 g
(I
_ 1of .
E
E 9
= 100} -
3
O
[
—1
2w 4 -
w y
@ e
[l 80+ M ]
=2
§ o
0+ o o .
O - )
G0+ s o = 0 o =
o ~ - O
.Y o 5 B
50 g

1 1 L 1 1 1 i i 1
0 1000 2000 32000 4000 5000 6000 7000 G000 9000 10000
Heated Floar Area (rr|2)

Figure 2.6 Actual design heating load curves in the DHS

Moreover, some design parameters have to be assumed in order to design the entire

DHS. These are given in Table 2.1. The values are based on experience and local design

guidelines.
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Table 2.1 Design parameters of the DHS

Symbol Item Unit Data
Tha Design supply water temperature of primary system °C 130
Te1a | Design return water temperature of primary system °C 80
Tha Design supply water temperature of secondary system °C 95
Twoa | Design return water temperature of secondary system °C 70
Tow Makeup water temperature of primary system °C 60
T2 | Makeup water temperature of secondary system °C 5
T.d Design indoor air temperature °C 18
Toa Design outdoor air temperature °C -11
hv Heat value of the fuel (6 heavy oil) Ml/kg | 43.35
Tsoit Under ground soil temperature 1 m in depth °C 5
D, Days of heating season Day 137
Cw Specific heat capacity of water Jkg®C | 4180
dy Water density kg/m3 975
C; Specific heat capacity of air J/kg°C 1000
d, | Air density kg/m’ 1.2

2.3.2 Design procedure of the DDHS

The design approach of the DDHS is described as follows:

(1) Select a layout of the piping system

To determine the layout of the piping system, several factors should be taken into

account. First of all, the existing buildings and the buildings that will be built in the future

have to be considered. Second, the shortest path layout of the piping system that can be

connected to each building should be chosen, and the boiler has to be located as centrally

as possible in order to save the first cost as well as to balance circulating water flow

resistance easily. After that, the piping system should pass through a region that has a

smooth ground soil, lower underground water level, and better soil quality. Then, the

piping system should be installed along roads rather than passing through major street

frequently. Moreover, appropriate distance among the heating system pipes and other

public piping systems should be maintained. Lastly, the heating load in each branch of
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the distribution system should be closed so as to balance the flow resistance. Following
these principles, the layout of the DDHS presented in Figure 2.2 was chosen.
(2) Estimation of design heating load qq; for each building
Design heating load can be estimated by two methodologies. One is the steady state

method; the other is calied floor area based method.

Steady state method:
e c,d ACHV,

Q= QWU Ay + = )Ty = T)] (2.1)
i=l

3600
Floor area based method:
When a heated floor area of a building is known, the heating load per m® can be

interpolated by selecting two neighborhood points (A;, A,) from Figure 2.6 as follows

qdz qdl
! A ( 1 1)] 4 ( )

2 1

9 =g, +

Note that, for accuracy, the measured data shown in Figure 2.6 is used to calculate
the design heating load depending on different types of buildings.
(3) Estimation of design circulating water flow rate Gy for each building is calculated
from

G, =—Jda 2.3)

¢, (T = T00)
(4) The circulating flow rate G; for each building is estimated from

G, = nga'i (2.4)
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Note that the safety factor fg is selected based on the heat losses caused by pipe
insulation and water leakage, and it ranges from 1.07 to 1.25.
(5) Pipe sizing

(a) Calculation of circulated water flow rate G in each pipe segment is given by
Ny ,

G, =.(G,) (2.5)
k=1

(b) Determination of the range of water velocity V. in the outside pipe system

Depending on economic and technological comparison and local design standard,
the water velocity should be limited from 0.5m/s to 1.5m/s.

(c) Determination of pipe dimension di in each pipe segment

First, water velocity is assumed to be within the selected range. Then, pipe

dimension is computed from

Gck
Vv,

W

d, =1.128 (2.6)

and adjusted to nominal pipe dimension.
(d) Determination of friction rate Ry in each pipe segment

When nominal pipe dimension di >0.04m and water velocity >0.5m/s, the friction

factor Ay and friction rate Ry can be calculated from [16]

K
A, =0.11(—2)*% 2.7
int k
A,G.°
R, =0.626—*—%__ (2.8)
rk 5
dwdintk g
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In addition, both economic analysis and experience show that friction rate in main
pipe should be limited from 30Pa/m to 100Pa/m; while in branches it should be range
from 60Pa/m to 250Pa/m in outside piping systems.

(e) The friction resistance Ry in each pipe segment is determined from

R, =L (1+B,)R, (2.9)

Equivalent length factor i is a function of pipe dimension as shown in Figure 2.7.

Table 2.2 shows nominal diameters and wall thickness of commercially available pipes.
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Figure 2.7 Equivalent length factors of local friction resistance and internal dimension
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Table 2.2 Relationship between internal dimension and nominal dimension (mm)

External dimension X | 5.3 | 57,3 | 76x35 | 89x3.5 | 108x4 | 133x4 | 159x4.5
thickness
Nominal dimension 40 50 65 80 100 125 150
Internal dimension 39 50 65 80 100 125 150
External dimension X | g 6\ 973x7 | 305x7 | 377x8 | 426x8 | 477x8 | 529x9
thickness
Nominal dimension 200 250 300 350 400 450 500
Internal dimension 207 259 311 361 410 461 511
(6) Selection of circulating pump
Estimation of circulating water flow rate G, and pressure head AP is given by
G, =f;>.G, (2.10)
N,
AP = f,( R, (2.11)

m=1

Note that safety factor of water flow rate fr ranges from 1.05 to 1.15, and safety

factor of water friction resistance f; ranges from 1.1 to 1.2.

In addition, for each loop, both friction resistance of pipes and the equipment that

includes the boiler, the filter, throttling devices, and the terminal heater resistance have to
be considered. The pump selection is not only related to the circulating flow rate and its
friction resistance but also related to its efficiency e,. In the other words, the efficiency of
the selected pump should be as high as possible.

By comparing several characteristic figures of pumps, the circulating pump is
selected, and it has to satisfy all the requirement of G, AP, and e,

(7) Balancing of water flow
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The balancing requirement is that the water resistance difference between the largest
resistance loop and other loops should be less than 10%. Otherwise, either adjusting the
pipe dimension again or the use of throttling device has to be considered.

(8) Selection of the boiler

Estimation of the design heating load of the boiler is made using the following:

- Nb

0=f,Y 4 212)
i=1

When the design heating load of the boiler is calculated, this value sometimes
should be adjusted according to available capacity of the existing boiler series.

In addition to the consideration of the heating load of the boiler, other factors related
to the boiler selection such as water circulating resistance, working pressure, efficiency,
type of fuel, and characteristics of heating load should be considered in order to choose
the suitable boiler.

(9) Selection of makeup water system

The makeup water flow rate G, is estimated from
Gy =[G, (2.13)
The makeup water pressure set point Py is given by

) . P ..
Pw = fsme, valid between limits P fSpmin <p <--BE (2.14)

sp
f sp min
Makeup water rate f;,, ranges from 1% to 3% of design circulating water flow rate,

while safety factor of makeup water pressure set point f;, ranges from 1.05 to 1.2.
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Makeup water pressure, minimum makeup water pressure, and maximum makeup
water pressure should be computed based on several situations such as elevation of
buildings, circulating resistance of pipe and equipment, exact point of makeup water into
the circulating system, operating and adjusting methods, vaporizing pressure, highest
permitted pressure of terminal heaters, the highest point of the whole system, and the
lowest permitted inlet pressure of circulating pumps.

Note that the makeup water pump has to be selected based on: the normal makeup
water flow and the accident makeup water flow. As a result, two same sizes of pumps are

chosen generally. One is operated as running pump, while the other is held in standby

mode.
(10) Other considerations

Although the main design procedures related to the thesis are presented above, other
processes that are not mentioned here are also essential for designing complete direct
heating systems. Those parts include calculation of heat compensation system, selection
of adjusting valves, selection of fans, water treatment system, ventilation of pipe system,
discharge water system, and so forth.
2.3.3 DDHS design example

A simple example showing the DDHS design procedure is presented. At the
beginning, heating loads and circulating flow rates are calculated for a branch in detail.

Then, circulating water resistance in the branch is computed. Moreover, main equipment
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such as the circulating pump and the boiler is selected. Finally, the makeup water system
is chosen for the DDHS.

(1) Layout of the piping system

Based on the principles mentioned before, the layout of the DDHS piping system is
shown in Figure 2.2. Calculations are shown for the branch D-D4.

(2) Estimation of design heating load for buildings 12~19, 29, and 30

The heated floor area of the building 12 is 5632m’. The floor areas and heating load
standard of the two point 1 and 2 are: A;=5000m?, g, =57.5w/m’, A=6000m?, and

q,, = 56.25w/m*. Therefore, the design heating load of building 12:

9o =9aq _pyA, =[57.5+ 2027575 (5637 5000)]5632 = 319390w
A, - A 6000 — 5000

Garn =Gy +
By using the same principle, the heating loads of qqi3, Qai4, Qd1s, Qdi6> 4a17> a8, Gd19-

Qaze, and qq3o are 318768, 256696, 79621, 84931, 84931, 151812, 151812, 84390, and

84390w respectively.
(3) Estimation of design circulating water flow rate Gg;

For building 12, the design circulating water flow rate Ggiz 18

Gy =—— e S0 50560075 11/m.
(T —T,py)  4180(95-70)

Also, others circulating flow rates of buildings in this branch are computed as
Gd13=10.97, Gd14=8‘84, Gd15=2.74, Gd16=Gd17:2-927 GdlSZGd19:5~23, and
Gdzngd3():2.9t/h.

(4) Estimation of calculated circulating flow rate G;
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With a safety factor fy of 1.1, the calculated circulating flow rate of building 12 is

G.,=12.1t/h.

In addition, other water flow rates are G.3=12.07, G.4=9.72, G.5=3.01,

GC16=G017=3.21, GcngGC19=5.75, and Gc29=G030=3.19t/h.

(5) Pipe sizing of the branch D-D4
(a) Calculation of circulating water flow rate G

Circulating water flow rate Gepaps:

Gopopy = D (G) =Gy + Gy =12.1412.07 = 24171 /1.

k=1

Similarly, Gepaps=12.73, Gepi1p2=36.9, and G.pp;=43.32t/h.

(b) Determination of the range of water flow velocity

The water velocity in the branch D-D2-D3-D4 1s assumed to be Im/s.
(c) Determination of pipe dimension dy

Dimension of pipe D2D3:

Then, the calculated dimension is adjusted to nominal pipe dimension equal to

100mm. Likewise, dpops=65, dpip2=125, and dpp;=125mm.

(d) Determination of friction rate Ry

The absolute roughness of all outside pipe system is assumed as 0.0005m. Since the

internal dimension of pipe is dixp2p3=0.1m, the friction factor in D2D3 is:
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0.0005

K
Apaps = 0.11(——4—)*% = O'H(T

int D2D3

)*® =0.0293

The fiction rate 1n pipe D2D3 is:

2 2
:O.626i0—32£;—50—221—: . 0.0293x24.17 =112Pa/m. In a similar

d,d s 975%0.1° x9.81

D203 8

R

rD2D3

manner, we have Rippa=240.3, Rpip2=83.2, and Ripp1=112.3Pa/m.

(e) Determination of friction resistance Ry

Friction resistance Rpaps can be calculated as follows

Ryps = Lopops (U4 Braps )R papy =63(1+0.37)x112=9.7KPa. Other values are
Rpopa=25, Rpipp=14.1, and Rpp;=9KPa.

(6) Selection of circulating pump

With a safety factor frof 1.1, the circulating flow rate of the pump is

G, = ffZGd =(1.05~1.15)(214.29) =1.1x214.29 = 236t/ h..

Moreover, the loop that has the largest resistance is A-B-B4-BS5, and the highest
value is 108.8KPa per single pipe. Therefore, with f; equal to 1.1, the pressure head AP
can be calculated as follows

the resistance of the outside pipe network: 108.8x2=217.6KPa;

the assumed resistance in the indoor circulating system: S0KPa;

the assumed resistance of the filter: 30KPa;

236,

the boiler resistance: 120(55—6)“ =1069KPa. The nominal resistance and

circulating flow rate are 120KPa and 250t/h.
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Ny
AP = £, (3R, ) =11(217.6+106.9 +50 +30) = 445KPa = 44.5m (H;0 column)

m=1

Based on the circulating flow rate and pressure head, the pump that has highest
efficiency is selected. The nominal parameters of circulating flow rate, pressure head,
efficiency, and shaft work of the pump are 200t/h, S0m(H,O column), 75%, and 36.3Kw
respectively.

(7) Balancing of circulating system resistance

The largest resistance loop is A-B-BS5, which has the flow resistance of 108.8KPa
per single pipe. Also, in branches A-B-C-C6 and A-B-C-D-D4, the resistances are
108.3KPa and 105KPa respectively. Consequently, the difference in resistances is 0.5%

and 3.5%.
(8) Selection of the boiler

When the factor f, is assumed as 1.1, the calculated heating load of the boiler is

Ny

0=/, q,=1.1x6.23=685Mw.
i=1

Hence, an oil-fired boiler with nominal heat capacity TMw is suitable for the DDHS.
(9) Selection of makeup water system

The makeup water flow rate is computed below

G,, = [o:G, =3%x21429=64t/h.

By means of analyzing the whole pressure conditions of the heating system, the

maximum makeup water pressure and the minimum makeup water pressure are 290KPa
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and 180KPa respectively. As a result, the pressure set point can be chosen as
P,=220KPa, and the makeup water pressure set point Py, satisfying the constraints, is

P, = f,P, =1.1x220 = 240KPa

Therefore, the nominal parameters of the makeup water pump are: water flow
rate=12.5t/h, pressure head=200KPa, and shaft work=1.13Kw.
2.3.4 Design procedure of the IDHS

The design procedure of the IDHS is similar to the design approach of the DDHS.
However, there are two major differences between the design procedures. One of them is
the selection of plate heat exchanger. First, total calculated heating load of each heat
exchange station is estimated based on calculated heating load of each building in the
station. Then, Logarithmic Mean Temperature Difference (LMTD) of the heat exchanger
is computed. Lastly, area of the heat exchanger is obtained by considering a fouling

factor.

Selection of heat exchanger in each heat exchange station

Calculation of LMTD:
LMTD — de - Thd B Trela' + TreZd (2 15)
ln( de - Thd )
T T

reld ~ tre2d

Estimation of transfer area of each heat exchanger A; for j™ heat exchange station:

fg (iQdij)

A= (2.16)
nKf 4 LMTD
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Note that, for plate heat exchanger, the value K ranges from 2500 to 4500w/m”°C,
and for design case, fru can be assumed as 0.8.

The other difference is concerned about makeup water system. Two kinds of
makeup water systems should be considered: the primary makeup water system and
secondary makeup water system. Makeup water system in secondary pipe should be
designed for each secondary system, which is similar as the design procedure mentioned
before. The primary makeup water system is chosen according to considering the vapor
pressure of the highest supply water temperature and permissible inlet pressure of the
circulating water pump. Moreover, note that the water circulating resistance of the heat
exchanger should be added in the pressure loss calculations.

2.3.5 Example of designing the IDHS
Due to the fact that the design procedure for the IDHS is similar to it for the DDHS,

only the selection of heat exchanger is shown here.

Calculation of the LMTD:
T, T, ~T + ~80 -
LMTD — bd Thd Treld Tre21i’ — 130 80 95 + 70 — 19‘960C
(Lot =Ly 1n(30=80,
Treld - Tre2d 95 - 70

Estimation of transfer area of the heat exchanger in HES_1:
When the factor f; and the conductance K of the plate heat exchanger are assumed

as 1.1 and 300()w/m2°C, the transfer area of each of the two exchangers is:
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N,
.fg (quil) P
A = pory _ 1.1(6.23x10") — 67 Am?
anfoulLMTD 2x3000x0.8%x19.96

Finally, adjusting the heat transfer area to standard series, the heat transfer area of

each heat exchanger is 80m* respectively.

2.3.6 Some useful design parameters

Some important design parameters of DHS are listed in Tables 2.3 and 2.4.

Table 2.3 Design parameters of the DDHS

Symbol Item Unit Data
Ag Heated floor area m* 100137
q.¢i | Heating load Mw 6.23
Goyg Design circulating water flow rate t/h 214
Vi, Water capacity of the boiler m’ 6.5
Vo Water capacity of external piping network m’ 36.7
V., Water capacity of user side m’ 102.1
fsw2 Ratio of makeup water % 1

€bmax Maximum efficiency of the boiler %o 91.2
e Piping network efficiency Jo 91.74
U, Conductance of the envelope w/°C 214670
of Con@uctivity multiplying heat transfer area of w/°C 27571

terminal heaters
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Table 2.4 Design parameters of the IDHS

Symbol Item Unit Data
A% qud Gia
(m) | Mw) | (th)
A.1, a1, | Heated floor area, heating load, and
Gias circulating water flow rate of HES 1 100137} 6.23 107
Az, Quap, | Heated floor area, heating load, and
Gia circulating water flow rate of HES_2 250495 | 14.76 | 254
A3, Qua3, | Heated floor area, heating load, and
Gias circulating water flow rate of HES 3 35485 2.16 37
A4, Gza4, | Heated floor area, heating load, and
Gias circulating water flow rate of HES 4 o361, 670 115
Aus, Qza15, | Heated floor area, heating load, and 5
Gigs circulating water flow rate of HES_5 53682 3.28 26
A, Qzas, | Heated floor area, heating load, and
Gigs circulating water flow rate of HES_6 95232 3.1 102
A7, qza7, | Heated floor area, heating load, and
Giay circulating water flow rate of HES_7 73328 | 445 7
Azs, Quas, | Heated floor area, heating load, and -
Giag circulating water flow rate of HES 8 25641 L.57 27
A9, 9za9, | Heated floor area, heating load, and
Grao circulating water flow rate of HES_9 35417 3.37 58
Az10, Gzd10, | Heated floor area, heating load, and
Gia10 circulating water flow rate of HES 10 51053 3.05 52
Total heated floor area, heating load,
A, Gz, Gia | and circulating water flow rate of the 851031 | 5147 | 885
IDHS
b, Conve.ctu.)n hgat transfer coefficient of w/m®°C 350
water inside pipe
Ko Therm?ll conductivity of pipe W/meC 0.03
insulation
LMTD, Demgn logarithmic mean temperature oC 19.96
difference
Vo Water content of the heat source boiler m° 42
Vop Tf)t.exl water content of external o’ 669
piping network
Ve fl“ota% water ;ontent of the exchanger . 20
in primary side
Voo Total water Coptent of the exchanger o’ 40
in secondary side
fow Ratio of makeup water in the IDHS % 0.3
Maximum efficient of heat source
€bmax - % 9 1.3
boiler
e Efficiency of the piping network %o 97.51
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2.4 Aggregate steady state performance evaluation

Under design conditions the supply and return water temperature in secondary
system are 95°C and 70°C respectively and in primary system they are 130°C and 80°C
at design outdoor air temperature of -11°C. When the heating system operates at off-
design conditions, the operating parameters such as supply water temperature return
water temperature, and indoor air temperature change based on weather conditions. To
study the impact under off-design conditions, aggregate steady state models of the DHS
are required. Also, the aggregate steady state models can be used to determine which
parameters are more important in the system operation and to evaluate the performance
of the system under parameter changes.

2.4.1 Measured weather data

Real weather data obtained from a climate measuring station is used for analysis and
simulation. The weather station is located at latitude 38.7N and longitude 121.9E. The
measured data is from November 15", 2000 to March 31%, 2001 for a total of 137 days
with 1-hour time interval. The measured outdoor air temperature data is used not only in

the steady state tests but also in the dynamic simulations.
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2.4.2 Aggregate model and steady state performance of the DDHS
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Figure 2.8 Simplified schematic diagram of DDHS

In order to assess the steady state performance of DDHS, aggregate energy balance
equations consisting of important parameters of DDHS as shown in Figure 2.8 are

written. For the DDHS the aggregate model equations are

Gf ebh’v = CwGreab (Tb - Treab ) + CWGJ'W (Tb - T«;WZ) (2 17)
CwGreab (Tb - Treab )62 = fhaafl (OST[) + O'STreab - Tz )th (2 18)
fratf (05T, +0.5T,, ~T )™ =U(T,-T,) (2.19)

The equations above describe the interaction of energy from the boiler to the
terminal heater. For example, in Equation (2.17), net heat input from the fuel is utilized to
heat return water and makeup water. In Equation (2.18), heat losses from piping network
and water leakage are taken into account by introducing an effectiveness factor e;. In
Equation (2.19), the heat transferred by terminal heaters is used to heat indoor air

temperature. From these equations, the supply and return water temperatures and mass
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flow rate can be determined. These are

1

r -7)— U -T
Tb :T, +[Ut( Z 0)]1+bh + t( Z (1)
i St 2e,¢,G 4
T.-T,),— U, ~T
Treab :Tz +{Ut( £ (1)]1+bh - t( £ 0)
fhaafl 262chreab
G — Cw[(Greab +Gsw )Tb ‘GreabTrcab —GSWTYWZ]
P =

e, hv

(2.20)

(2.21)

(2.22)

The relationships among the parameters, design condition, and actual operations

were studied by carrying out simulations. The simulation results are depicted from

Figures 2.9 to 2.13.
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Figure 2.9 Design operation curves of the DDHS

From Figure 2.9, it is noted when outdoor temperature reaches design outdoor air

temperature, the supply, return water temperature, and fuel consumption were 96.31°C,

68.96°C, and 0.177kg/s respectively. On the other hand, when outdoor air temperature
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T,=5"C, which means at the beginning of the heating season normally, the supply, return

water temperature, and fuel consumption were 59.02°C, 46.68°C and 0.08kg/s. In

addition, the relationship between supply water temperature and outdoor air temperature

is approximately linear. Note that the supply water temperature is greater than 95°C at

design outdoor air temperature because of the heat losses other than space heating load.
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Figure 2.10 Actual operation curves of the DDHS

Off-design operation results are presented in Figure 2.10. When outdoor air

temperature increases, the supply, return water temperature, and fuel consumption of the

botler decrease as shown in the figure. Note that the supply water temperature is above
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95°C between 1:00 to 8:00 hours. It means that the supply water temperature has already
exceeded the maximum temperature limitation of the boiler, and it should not be above
this point. In this case the design zone air temperature must be decreased to bring the

supply water temperature within prescribed limits.
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Figure 2.11 Influences of parameter changes in the DDHS

The influences of several design parameters were examined as shown in Figure 2.11.
The assumed conditions are: decreasing the effectiveness e, by 10%, increasing the
circulating water flow rate by 100%, reducing the design indoor air temperature to 16°C,
and increasing heat transfer area of terminal heater by 100%. It can be seen that
decreasing zone air temperature has the biggest effect on supply water temperature.

However, one does not wish to decrease indoor air temperature in winter, as such
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decreasing indoor air temperature will not be considered. Hence, both added transfer area

of terminal heater and increased circulating water flow rate are more important factors

affecting supply water temperature.
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Figure 2.12 Relationship between Ty, and Gieqp

However, circulating water flow rate is more important parameter than heat transfer
area of terminal heaters because of its ability to control the rate of heat transfer. The
influence is illustrated in Figure 2.12. For example, if outdoor air temperature equals to —
5°C, the supply water temperature changes from 93.39°C to 77.32°C when the actual

circulating water flow rate increases from 50% to 100% of the design value.
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Figure 2.13 Relationship between Ty, and fy,

The influence of changing heat transfer area of terminal heater is presented in Figure
2.13. At outdoor air temperature equals to —5°C, supply water temperature of the boiler
changes from 87.24°C to 63.03°C when area of heater is changed from 10% to 80% of
the design value. It is not convenient to change this area because terminal heaters once
installed have a fixed area. Nevertheless, the result is important in design optimization.
2.4.3 Steady state model and responses of the IDHS

A simplified IDHS schematic diagram for the purpose of developing an aggregate
IDHS model is shown in Figure 2.14. The aggregate steady state model equations of

IDHS are given in the following.
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Figure 2.14 Simplified schematic diagram of IDHS
Gf €, hy = chreab (Tb - Treab ) + CwGsw (Z}J - Tsw) (223)

_ fea KF(TI) —Th B Treab + Tre2)

CwGreab (Tb - Treab )el - Tb _ Th (224)
In ——>=—
Treab - Tre2
CwGreab (Tb - Treab )el = CWG?, (T'h - TreZ ) (225)
¢,G, (T, ~T,,)e, = f,af (0.5T, +0.5T,,, —T. )" (2.26)
¢ Gy (T, =T,)e, =U (T, ~T,) 2.27)

A computer program is used to solve the above equations. Simulation results of the

IDHS are presented in Figures 2.15 to 2.19.
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Figure 2.15 Design operation curves of the IDHS

At design outdoor air temperature, the fuel consumption, supply and return water

temperature of the boiler, and supply and return water temperature of heat exchanger are

1.651kg/s, 133.67°C, 95.94°C, and 69.06°C respectively.
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Figure 2.16 Actual operation curves

Steady state simulation results for one day are shown in Figure 2.16. When outdoor
air temperature increases, supply and return water temperature and fuel consumption of
the IDHS decrease. Moreover, when outdoor air temperature is below —10°C, supply

water temperature of the boiler is greater than 130°C. This case should be avoided

because of the constraint on the boiler supply water temperature.
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Figure 2.17 Influences of parameters changes in the IDHS

The influences of several different parameters on boiler water temperature are
depicted in Figure 2.17. For comparing supply water temperature of the boiler, several
cases are taken into account: increasing by 30% the circulating water flow rate in primary
side, 25% increase in heat transfer area of heat exchangers, 100% increase in circulating
water flow rate in secondary side, 60% increase in heat transfer area of terminal heater,
and 2°C decrease in indoor air temperature. These cases usually happen in practical
DHSs. It can be seen from this figure that increasing heat transfer area of terminal heater
and decreasing indoor air temperature have greater influence on Ty than others. When the

outdoor air temperature equals to -5°C, the largest range of the boiler supply water
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temperature is about 16.37°C compared with the design condition at the same outdoor

temperature. Heat transfer area of terminal heater is the most important parameter.
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Figure 2.18 Relationship between Ty, and Gieap in primary side

The impact of changing circulating water flow rate in primary side is illustrated in

Figure 2.

18. When outdoor air temperature equals to —=5°C, for instance, the supply water

temperate decreases from 122.1°C to 105.8°C when the circulating water flow rate is

increased from 80% to 140% of the design value.
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Figure 2.19 Relationship between Ty, and f,, in the IDHS

The effect of increasing the heat transfer area of terminal heater on T, is shown in
Figure 2.19. When outdoor air temperature equals to —5°C, supply water temperate of the
boiler decreases from 113.9°C to 94.27°C as the heat transfer area of terminal heaters is
increased from 100% to 180%. Comparing with Figure 2.18, it is clear that decreasing T
by changing heat transfer area of the terminal heaters is more effective than that of
changing circulating water flow rate in primary side. These results are useful in the

design stage as well as in optimization of system operation.
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Chapter 3 Dynamic Models of District Heating Systems

3.1 Introduction

In this chapter, dynamic models of a direct district heating system (DDHS) and an
indirect district heating system (IDHS) are developed. First, the system layout, the nodal
arrangement of the two models is described. Then, dynamic models are developed in
order to simulate the performance. Finally, open loop tests are depicted to show the time
response characteristics.

Several researchers [5, 15] have developed dynamic models of HVAC systems.
These models were used for specific components or small systems. Some specific
parameters should be considered if one wants to build dynamic models of large DHS. In

addition, solar radiation effects [2] were taken into account for developing the models.

3.2 Physical model of a DDHS

A typical physical model of a DDHS is shown in Figure 2.1. The district heating
system includes 30 buildings with total heated floor area of 100137m”. It is connected
with three branch circuits and the heat source. Depending on the distance from the heat
source, the buildings were grouped in a simplified configuration consisting of three
zones. Zone 1 included buildings 20~28; zone 2 included buildings 12~19 and 29~30;
zone 3 included the buildings 1~11, shown in Figure 2.2. The buildings in branches B

and C were grouped and represented by node B1 and C, while the buildings in branch D
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were grouped and represented as node D. Thus, the simplified block diagram and its

nodes are displayed in Figure 3.1.
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Tow2 | Treabh g - Trebe o Trecd D

Figure 3.1 Schematic diagram of nodes in DDHS

3.3 Analytical model of the DDHS

By applying the energy balance principle, an analytical model of the DDHS was
developed. The underlying assumption made in the model development is that the
temperature distribution remained uniform and is represented by the respective nodal
temperature. The heat losses from pipe insulation and leakage of water caused by users
were included in the dynamic model. The underground soil temperature and the
insulation of the embedded piping network were computed using the method given in
reference [1]. The design parameters are shown in Table 2.1 and 2.2 in Chapter 2. From
the design and actual field operating conditions of DDHSs, the magnitude of makeup

water was chosen as 1% of the design value in the system. The analytical models
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included several subsystem models such as the equivalent building model, boiler model,
piping network model, and terminal heater model. There are 66 nodes in the model. For
cach node, the energy balance equations are written.
3.3.1 Equivalent building model

All buildings were grouped into three equivalent buildings (three zones) in order to
simplify the model. Subscript “ 1 ” is used to express the parameters of zonel, 2, and 3.
The layout, cross section details, and nodal arrangement of the equivalent building are

shown in Figures 3.2 and 3.3.
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Figure 3.2 Layout and cross-sections of the equivalent building
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Figure 3.3 Node diagram of the equivalent building

Solar

Sets of energy balance equations were written as shown below. The symbols used

are defined in the nomenclature.

For a three node south-facing wall

6U T, +U,.,T +§

wsiti2 wsoi wall _si
! 6Uwsi + Uw.\‘oi
d(T.
Cwsi _—(——{22- - 3Uwu ( T ) + 6Uwu ( 7—;2)
dt
d(T;)
Cwsl d - 3Uw5i (7:4 - 711'3 ) + 3Uw.\'i (7—12 - 713)
N k
CWSI ( ) Wbl (Tw ) + 3Uw i ( ]:4)
dt i s
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wsi & i4

" 6U,, +U

U, T, +U,.T,

wsii

wsii

Three node walls facing other orientations

T o 6Uwothi PTiG +Uwothoi Ta
5 T
6Uwothi + Uwothoi
d(T,
Conts “ =30 (T ~T,) + U, Ty =)
d(T,
Cwmhi (dtﬂ) = 3UW0£hi (T,s - Tn )+ 3Uwathi (Tzﬁ - Tz7)
d(Ty)
C i d tg =O0U i oy = Ti) +3U i (T 177 Tg)
T __ 6Uw0thi TiS + Uwathii Tzi
wothi
t 6mehi + Uwuthli
The roof
aq,
Cop _Zif“ = 2Urﬁ(T . —Ty) +Urfli(To —To)+S,
T = UrﬁiTzi + 2UrﬁTi9
T U, +2U,

Where U.g;1s the total value of Ui, Urinsi, and 2U4.
The floor

d(Tiw)

CﬁTZ ZUﬁ(Tﬁ '—Til(])'}_Ufu(Ts‘oil ~Tilo)

T - UﬁiTzi + ZUﬁTilo
fi
U, +2U,

Where Up; is the total value of Uy, Upng, and 2Ug.

Heating load of each zone
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For each zone i:

qu = h’i [(Tzi - Twsi )Awall _si + (Tzi - Twothi )Awothi + (Tzi - Trﬁ )Arooﬁ
A‘Win g T Aothwini cV d,ACH (3.15)
+(T,~T)HA,, . 1+—= T,-T)++~———T,-T,))
(L =T ) Ao R, ¢ 3600
Total heating load
q.= .4, (3.16)

Steady state energy balance principle is used to develop Equations (3.1), (3.5), (3.6),
(3.10), (3.12), and (3.14). In Equation (3.2), the rate of heat stored in node Tj, is equated
to the heat flow from the node Tis, plus the heat flow from the node Tj;. The other
dynamic equations express the heat fluxes in and out of the nodes. Equation (3.15)
describes heating load of each equivalent building is equated to the heat flow transferred
to interior surfaces of the equivalent building and windows, and infiltration component as
well. Equation (3.16) expresses that total heating load which is the sum of heating load of
three equivalent buildings.

3.3.2 Zone model
Indoor air temperatures of the three equivalent zones are referred to as T, Ty, and

T3 respectively. Energy balance equations are shown below.

c 40)

= —q.+S.,. 3.17
zl df qheatert q zi win _si ( )

In Equation (3.17), the rate of heat stored in zone1 is equated to the heat supplied by
the terminal heaters and solar radiation, minus the rate of heat transferred by windows

and inside surfaces.
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3.3.3 Boiler model

A steady state design is presented in reference [21]. However, an accurate dynamic
model of a boiler is very complex. To simplify the dynamic model of the boiler, some
operating data from in field operation is used. For example, the excess air factor, the
exhaust flue temperature, and heat loss owing to radiation and natural convection of
combustion are expressed as the ratio of heating load of the boiler. Therefore, the boiler

model is developed as follows.

U,G v
Py (3.18)
oiter
a =4.7321r," - 9.7036r, +6.32 (3.19)
T, =3.5714r," +26.2857r, +137.6 (3.20)
q, =0.01f, + f,a1-0.01g )T, ~T.) (3.21)
qs =11.8029r," ~20.3514r, +9.126 (3.22)
e, =1-0.01(q, +q, +q,+q5 +q,) (3.23)
Q, =e,U,G, , hv (3.24)
0, =080, (3.25)
Q,, =0.160; (3.26)
Q0,5 =0.040, (3.27)
C, % =0, —¢,G 0T, =T, )~ ¢, G (T, —T,.,) (3.28)
C,, fi%_zl =Q0,,+¢,(G, ., +G )T, ~T,,) (3.29)

62



Cys ii%—) =03 +¢,(G,p +G, )T, ~T,) (3.30)

Uy, is the normalized fuel flow rate corresponding to the burner capacity. The heat
transfer from the boiler is divided into three segments. The temperature of each internal
pipe segment is named as Ty, Tho, and Tp. In Equation (3.28), the rate of heat stored in
lower pipe segment of the boiler is equated to the net energy input to the water, minus the
rate of heat supplied to the middle segment and the heat loss by makeup water in the
primary system. The efficiency of the boiler is expressed by Equation (3.23).

3.3.4 Supply and return water temperature nodal model

In the DDHS, both the supply water pipe network and return water network are

divided into seven segments (Figure 3.1). Energy balance equations can be used to

describe the dynamics for these nodes.
Supply water nodes

d( sab)

C
@

w Sab (T Tmb) Ummb( sab mil ) CwG.\wab ( sab swl) (3‘3 1)

d (stc ) — (T Tvbc ) u

be d[ w abc

insbe (stc - Ts‘oil ) - CwGswbc (Z;bc - Tst ) (332)

d(T sbbl )

C
o

=C, sbbl( sab Abbl) - Uinsbbl (T;'bbl mzl) 4 Gswbbl( sbbl sw2) (333)

d(T, )
Ccd dtd - w xd( she scd ) Umscd ( sed so[l ) - CwGswcd (T;'m - Tsw2) (334)

dT,,)
Copd2 dtdz w 572 (T Tst) - Uinst (Tvd?, - Tmil ) - Cwasz (’Z;dZ - Tmz) (3‘35)

d(T,;)
Copr3 df3 - w s~3( sbe T :c3) Umu:B( se3 sod) chaw 3( s¢3 sw2) (3‘36)
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d(Tpn) _

Copbl 1 dl

w 52 l(stbl abll) - Uin:bll (stll - Tsoil ) - CwGswzl (stll - Tsw2 ) (337)

Return water nodes

AT, 1)
T = €6 T oot ~ Trannr) U tnstit Creoin = Tooir) = €0 G sint Trepn = Tona)

(3.38)
d(T,
Ccd ( d;Cd ) - CwGrecd (Tred2 recd ) Uzmcd ( recd sozl ) CwGswcd ( recd sw2) (339)
dT,,;) _
(COPC3 + Cu3) d : 7dz3( se3 rec3 ) T Y heaters (340)
mu3( recd _sozl) -C Gaw 3( recy sw2)
d(T, 1)
(Copbll + Cul)——gtbL =€, G0 Tty = Thopi1) = Dheatent (3.41)
Utmbll( rebll AOll) 4 Gsw 1( rebll m’Z)
a,.,)
(Copa'Z +C,0) dtd =G Loty = Trotn) = Greatern (3.42)
- Uirz.\'dZ (Tredl - 5011) c Gsw 7( red2 Mﬂ )
d( re c)
be dtb w re 3( rec3 rcbc ) + C Grecd( recd rebc) (343)
msbL (T .S()ll ) - G)wbc (Trebc - Tsw2)
d(T.)
Cab dt b= CwGrebbl (Trebbl - Trcab ) + chrebc (Trebc - Treab ) (344)

“Uinsas Crewr = T0a) = .G s T = Toi)
In these equations, the rate of heat stored in each pipe segment is equated to the heat
supplied by upstream section, minus heat losses through the pipe insulation and due to
water leakage.

3.3.5 Terminal heater model

The heat transferred by terminal heaters is shown in Equations (3.45) to (3.47) [16].
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Gregtort = Fra@f (05T, +0.5T . =T )" (3.45)

Gromers = fra@f5(0.5T 1, +0.5T,,, —T,,)""" (3.46)

Qroers = fra0f5(0.5T, 5 +0.5T, , —T )" (3.47)

For instance, the heat transferred by terminal heater 1 in zonel is equated to the
capacity of terminal heater’s average temperature minus indoor air temperature. Where
fha, afy, afy, afs, bhy, bhy, and bh; are factors related zone parameters.

In conclusion, the dynamic model of the typical DDHS consists of 79 energy
balance equations, which include 44 dynamic equations. The dynamic model was used to
simulate the dynamic responses of the DDHS by writing a computer simulation program
in Matlab environment.

3.3.6 Open loop tests

For the open loop tests of the DDHS, several operating conditions such as with or
without heat losses, solar radiation, and off-design conditions were simulated. Table 3.1
is presented in order to show the relationship between operating conditions and the

respective figures.
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Table 3.1 Open loop tests of the DDHS

Operating conditions Figure
Without heat losses, Fioure 3.4

Design condition T,=-11°C, no solar radiation & )
(Up=1, fra=1) With heat losses, T,=-11°C, Figure 3.5

no solar radiation

Transient response | Temperature With heat losses, To=-11°C, with

.. i .6
(Up=1, fia=1) responses solar radiation (300 W/mz) Figure 3
Off design
condition With heat losses, T,=-4.6°C, with Fioure 3.7
(Up=0.86, solar radiation (200 w/mz) & '
fha=1.57)
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Figure 3.4 OLT: temperature responses without heat losses and solar radiation

The slow temperature response curves in Figure 3.4 are indicative of the thermal
capacity of the overall system. These temperatures in the DDHS reach steady state in
about 24 hours. Moreover, in the first of five hours, the indoor air temperatures have

different responses because the capacity of each equivalent building is different. At 24:00
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hours, the temperatures of supply and return water reach 95.02°C and

respectively, as well as the temperatures in all zones reach 18°C.
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Figure 3.5 OLT: temperature responses with heat losses and without solar radiation

The temperature responses with heat losses are considered in Figure 3.5. The lower

temperatures are caused by the heat losses. After 24:00 hours, Ty, Trean, T2 reach the

steady state values 86.87°C, 62.56°C, and 15.01°C respectively. In addition, based on the

model simulation, the heat loss from water leakage is greater than that of piping

insulation.
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Figure 3.6 OLT: temperature responses with heat losses and solar radiation
Figure 3.6 shows the influence of solar radiation. The increased indoor air
temperature is caused by solar radiation during daytime and reaches 21.32°C at 13:00
hours. This means that the air temperatures should be controlled in a reasonable range
because solar radiation can result in larger indoor air temperature swing. If the supply

water temperature Ty, is above design temperature, it has to be decreased in order to avoid

severe overheating.

68



80 T T T

|
[}
]
i
i
i
i
1
4
‘
1
|
]
i
]
L
1
i
i
t
1
1
i
1
t
1
1
i
1
1
r
1
1
1
'
b
I
t
l:
g
t
‘)n
t
¢
.
'
'
i
i
t
]
r
t
[
'
)
i
[
i
1
i
1
i
i

i e
[ : .
ED .............. O [ S, G ormmcmmam e -
o
@ 50 —<-,L ““““““““““““““““““““““ -1
E . L T AU
= e SRR B L S LT T
5
,% A0 fr-mmmmm - ke Commmmmmmmmme q=-mmmoemmmoms foTmTmmmmoe ]
e —— T,,: supply water temperature
10 ______________1: ______________ r_ ———- Treab: returer? water temperature B
- Tz1. zonel air
20 I'.'I."_';"_'Z.'*.':'_'liff""":"::":"::-r“"}""l'":'”:"_Z:'":'“
10 i i i I
0 5 10 15 20 25
Time (h)

Figure 3.7 OLT: temperature responses in off-design condition
The simulation results in off-design conditions are depicted in Figure 3.7. The off-
design conditions considered are Up=0.86, To=-4.6°C, and 801:200w/m2. The highest
temperatures of the supply water, return water, and zone reach 69.95°C, 49.12°C, and

22.14°C at 14:10 hours, 14:30 hours, and 13:00 hours respectively.

3.4 Physical model of the IDHS

The main difference between an IDHS and a DDHS is that heat exchange stations
are added in order to transfer heat from primary side to secondary side. The layout of a
typical IDHS is illustrated in Figure 2.5, and its block diagram including nodes is shown

in Figure 3.8. The designed IDHS includes ten heat exchange stations. The total designed
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heated floor area and heating load are §5103 1m? and 51.47Mw respectively. Note that the

heat exchangers in each station are integrated as an equivalent exchanger represented by

2553
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Figure 3.8 Schematic diagram of nodes in IDHS

3.5 Dynamic model of the IDHS

Applying energy balance principle, a dynamic model of the IDHS is developed. The
model considers the heat losses from piping insulation and water leakage as well as solar
radiation. The analytical models included several subsystem models such as boiler model,
piping network model, heat exchanger model, and terminal heater model. There are 70
nodes in the dynamic model. For each node, the energy balance equations were

developed.

3.5.1 Boiler model

The boiler model is described by the following equations. Note that the structure of
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boiler model remains the same as in DDHS. The difference is in the magnitude of

empirical coefficients used in the model.

U,G bV
r, = o (3.48)
o =3.3929r," —7.4214r, +5.37 (3.49)
T,, =5.3571r,” +33.9286r, +127.99 (3.50)
q, =0.01f, + f,a1-0.01g)I(T,, -T,) (3.51)
gs =9.6429r," —16.9714r, +8 (3.52)
e, =1-0.0l(q, +q; +q,+q5 +q,) (3.53)
Q; =e,U,G/pp v (3.54)
0, =0.820; (3.55)
Q,, =0.1450, (3.56)
0, =0.0350, (3.57)
CuZC8 =0, 0,6y (T T, = .G, T, =) (3.58)
C,, g{%ﬁ =0, +¢,(G, 4 +G NI, ~T,,) (3.59)
Cps gl(_T_) =0 16, (G +G T, —T,) (3.60)

3.5.2 Supply and return water temperature nodal model in primary side

In the IDHS, both of the supply water pipe network and return water network in the
primary side are divided into eight segments as shown in Figure 3.8. Energy balance

equations are used to express the dynamics of these nodes.
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Supply water nodes

d(T,
C, (dtab) G Ty =T = Uy Ty = T00) €, Gy Ty = T5) (3.61)
d(T,
be (d;bc) = CWGSbC (Tsall Abc) Umsbc (stc - Tsoil ) - chswbc (T su ) (362)
d(T, ‘
Cu <d;d) =¢,G, Ty ~Toot)~Upord Tt = Tiot) = €0Goned Tooa = T)  (3.63)

d(T
Cde (dsfde ) - CWGsde (Tscd - Tsde ) - Uinxde (Tsde - ’Tsoil ) - CwGswdc (T - Sw) (364)

of dr =C, sef( sde Aef) uuef( sef sozl) C, swef( sef “v) ( . )

da(T.

)
511 .
fg dfg - CwGsfg (Tsef sfg ) Uuufg (71.sfg - Txoil ) Cw swig (T - sw ) (3‘66)

d(T,,)
Cbh dtbh w Abh ( sab th ) - Uim'bh (Tis‘bh wzl ) CwGswbh (Ts[)h sw) (367)

dT,, )

C
hi df

(T,

thl (sth - Tshi ) - U shi sozl ) c Gswhi (Txhi - Ywaw) (368)

inshi

Return water nodes

d(T . )

., dtfg =, G Ty ~T) U e Ty = Toi) =€, G e T = T,,)  (3.69)
d(Treef)

g dt B 1d9( rel9 reef)+cw refg (T Treef) (370)

Uim'ef (Treef sml )—c¢ GSWEf (Treef - TSW}

d(T )

de ———El—i—_ - CWGldS (Tre18 rede) tc Greef( reef Trede) (371)
msde (T soll ) Cantde ( rede TXW )
d(T,.) _

cd dt == 1d2( rel2 recd ) + chrede (T rede Tm(’d ) (372)

zmcd ( recd mzl ) c Gswcd ( recd Tsw)
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d( AT rebc/ )

be dt =c G1d3( rel3 rebc) t+c Gl(l4( reld rebr) t+c Greca'( recd Trebc) (373)
mAbc (Trebc mzl ) ¢ Gmbc (T rebc wa )
hi ( — e ) 1d7 ( rell rehl ) + C Glle( rell0 Trehi )
dt (3.74)
mshz (Trehz sozl ) c Gswhi (Tr va)
d(T, ) _
C — L = r r + CWG (Tre - Tre )+ CwGre i(Tre i ——Tre )
bh d[ 1d5 ( €15~ Lrebh ) 146 16 bh h h bh (375)
Ussion g, = T ) = €,G gy T = T,,)
d(Trea )
ab dt : w reb(‘ (T rebc Treab ) + chrebh (Trebh - Treab ) (3.76)

- Umsab ( reab sotl ) ¢ Gmab ( realy Tsw)

3.5.3 Heat exchanger model

(1552

Index “j”, which is equals to 1 to 10, is employed to describe the series of heat
exchange stations as well as the related zones. Note that the equivalent heat exchanger
concept 1s used to integrate the heat exchangers in each heat exchange station.

Supply water nodes of the secondary side

d(T,)
Chas dt

= oy — €, Gy (T —T,5;) (3.77)

The Equation (3.77) expresses the rate of heat stored in the secondary side of
equivalent heat exchanger j is equated to the heat input from the primary side, minus the
heat transferred to the secondary side.

Return water nodes of the primary side

d(T, “)

ChH dr

ldl(Txf;, T ) =Y. (3.78)

73



d(TreIZ ) —

Ci o ¢, GinToi = T02) = 4.1 (3.79)
Ciis d(zr:”) =¢, G (Ty. —T,053) = q.s (3.80)
Chs g%ﬁ =0, 0T ~Tria) = s (3.81)

P d(z’;‘s) =¢,Gys(Ty =T ,is) — .5 (3.82)
Chus d(gjﬁ) = C,Gra6 T = Tr16) ~ Qe (3.83)
Ciur d(i;’;” ) =¢,G T, —T 7)) 4, (3.84)
Cog ) = ¢ Gy (T =T =4 (3.85)
Chio da;;”) =, G0 = Tri0) = quss (3.86)
Churo il%iﬁ =¢G0T = Totro) = Duto (3.87)

From Equations (3.78) to (3.87), the rate of heat stored in the primary side of the
equivalent heat exchanger j is equated to the heat supplied by the primary piping
network, minus the heat transferred to secondary side.

Logarithmic mean temperature difference of each equivalent heat exchanger is

computed from

- Thl - Trell + Tre21
T, —T,

ln 5f Al

T, 1 Tre21

re

IMTD . = Ty (3.88)
extl .
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B Th?. B TrelZ +17,

T
LMTD“Z — sed T - T re22 (389)
h’l sed h2
Tre12 - TreZZ

T, — Th3 B Tre13 + TreZ3

LMTD,, = =2 (3.90)
In shc h3
Tre13 - Tre23
r, —-71,,-T ,+T
LMTDex4 = sbc h} :elff re24 (391)
In-——be__ "4
Tre14 - TreZ4
r, -T,.-T +T
LMID,,, = ”} I (3.92)
In sbh h3
TreIS - Tre25
T, —T,.-T,+7T
LMTDem — sbh h; —retllé re26 (3.93)
ln sbh h6
Trelﬁ - TreZﬁ
r,.—-1..-T .+T
LMTD”», —_ shi h"} re’lzi re27 (3.94)
I —3h —ip
Trel7 - Tre27
T ~T,.-T . +T.,
LMTD,, =% ’l; _”%é = (3.95)
ln sde h8
TrelS - TreZS
T, -T,-T ,+T
LMID,p = =2 (3.96)
h'l sef h9
Trel9 - Tre29
r. -1..-T ..+T
LMTDexlO - shi : thT —r-el]lﬂO re210 (397)
g —tshi " tmo
Treuo - Trezlo
The amount of heat transferred is determined from
Ao = [ KE,LMID, (3.98)
Qo = D ey (3.99)
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Return water temperature in the secondary side is determined from

d(Trer)
¥ar

= 62qexj - qheaterj

(3.100)

The rate of heat stored in the return water segment of the secondary side is equated
to the difference between the net heat supplied by the equivalent heat exchanger j and the
heat gain by the terminal heaters. Where e, means the average efficiency of the secondary

side, which is assumed as 0.9.

The terminal heater and zone model equations remain the same as in DDHS.

3.5.4 Open loop tests of the IDHS

Open loop tests are employed to examine the transient response characteristics of

IDHS. Several operating conditions showed in Table 3.2 are considered.

Table 3.2 Open loop tests of the IDHS

Operating conditions Figure
Design Without heat 10§se§, e,=1, no solar Figure 3.9
condition : radiation
(fo=l, fo=1, Temperature With heat lossc.:s,‘ezzl, no solar Figure 3.10
Up=1 Tesponses radiation
; With heat losses, ,=0.9, with solar )
To=-11° R ’ .
e radiation (200w/m®) Figure 3.1
] With heat losses, compare to
Cc)gigfé‘oglf Up=1,To= -11°C and Up=1, Figure 3.12
Temperature To=-15°C, no solar radiation
(fu=1.15 p
fea__':l '57 ’ responses With heat losses, compare to Up=1,
gd:O' 9)’ To=-11°C and Up=0.778,T,= -4.6°C, Figure 3.13
e no solar radiation

Figure 3.9 below shows that the temperature responses reach the steady state values
in about 24 hours. At 24:00 hours, Ty, Trean, Thi, 121, and T4 reach 129.90, 79.90, 94.90,

69.91, and 17.96°C respectively. When the simulation is made over 48 hours, Ty, Trean,
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Thi, Tre21, and T, reach 130, 80, 95, 70, and 18°C respectively. Since the thermal
capacity of the building is very large, the IDHS needs almost one day to reach the steady

state values.

140 T T T T
120 + -
100 -
5 ff_,«f"“"wx
‘é" B0 | e PPN deernuereserteneracrear s aans .
= T e
E %_r/"‘ v et . e e v e
‘é_ B0 L. T — T, boiler supply water i
K e [P T oq Doiler return water
— Tm: exchanger supply water
40 N
T‘,em: exchanger return water
. T,y zone
20+ e e e T
D i 1 1 ]
0 g 10 15 20 25
Time {n)

Figure 3.9 OLT: temperature responses without heat losses and solar radiation
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Figure 3.10 OLT: temperature responses with heat losses and without solar radiation

The temperature responses with heat losses in the IDHS system is presented in

Figure 3.10. Comparing with Figure 3.9, Tp, Trean, Thi, Tre21, and Ty decrease because of

the heat losses from piping network insulation and water leakage from the primary

system. For example, at 24:00 hours, Ty, Trean, Tni, Tre21, and Ty reach 127.60, 77.73,

92.11, 67.89, and 17.08°C respectively.
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Figure 3.11 OLT: temperature responses with heat losses and solar radiation
The temperature responses affected by solar radiation are depicted in Figure 3.11.
The largest value of indoor air temperature appears at 13:00 hours. However, the biggest
value of the supply water temperature appears at 16:00 hours because the solar radiation
impacts the heat transfer process slowly. In order to compensate the heat losses, the
efficiency of the secondary system is taken into account. Therefore, the indoor air

temperature reaches 18.14°C at 24:00 hours.
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Figure 3.12 OLT: comparison with different outdoor air temperature (T,=-11°C and T,=-
15°C)

It can be seen clearly from Figure 3.12 that when outdoor air temperature is less than
the design outdoor air temperature, indoor air temperature decreases. The case might take
place in heating season since the heating system design does not guarantee the designed
indoor air temperature for all outdoor air temperature. In this case, for instance, Ty and

T,t reach 112.30°C and 17.25°C at T,=-11°C, while they reach 108.39°C and 13.29°C at

To=-15°C.
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Figure 3.13 OLT: comparison with different outdoor air temperature (Ty=-11°C and T,=
-4.6°C)

In order to obtain the same indoor air temperature, the fuel consumption and the
supply water temperature should be different. Figure 3.13 shows this case. The supply
temperétures reach 112.3°C and 92.91°C when indoor air temperatures reach the same
value 17.25°C with different outdoor air temperature at 24:00 hours. Moreover, the fuel
consumption is 77.41% compared to the design outdoor air temperature.

In addition, the heat losses from piping insulation and water leakage in the primary
and secondary system are studied in order to find the percentage of component heat
losses. The results are presented in Figure 3.14. The pie chart shows heat loss from the

makeup water in primary system is the lowest, while heat loss from the makeup water in
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secondary system is the largest up to 6.1% except for considering boiler efficiency. Note
that effective heat utilization of the system is 78.7%, and total heat losses add up to

21.3%.

From boiler 8.7%)

Fram secondary insulation (3.9%j)
From primary insulation {1.7%)

From primary makeup water (0.8%}

Effective heat (78.7%)

Figure 3.14 Component heat losses and heat utilization efficiency in the IDHS
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Chapter 4 Optimization of Operating Parameters

4.1 Introduction

The total energy consumption in a district heating system consists of electrical
power for running supply fan, exhaust fan, circulating pump, makeup water pump, and
fuel consumed. In general, the electrical power consumption is less than 25% of the total
energy consumption.

Researchers addressed several approaches such as using variable speed devices,
designing optimal controllers, and optimal control strategies to save energy [5, 30]. These
methods are based on air handling systems in buildings. Therefore, it is necessary to
study the specific issues relevant to optimal operation of DHS.

Significant energy is consumed by large district heating systems. However,
operating the boiler at as high efficiency as possible at the given load and through
selecting optimal set points can achieve significant energy savings. To this end, a
constrained optimization problem was formulated and solved. The idea behind this is that
if the boiler control loop can track an energy optimal set point profile, significant energy
savings can be realized. The method of multi-variable constraint optimization is utilized
to obtain the optimal set point Ty,. The optimization approach consists of defining an
objective function and specifying the constraints.

The operating costs of the DHS are function of heating load. In other words, energy

consumption (fuel consumption) depends on outdoor weather condition. Also, electricity
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consumption by fans and pumps, and water consumption by compensating water leakage
are influenced by load. As a result, the objective function in the optimization problem
should include the effects of variables such as T, Gep, Gsr. A multi-variable constraint
optimization function was developed to obtain optimal operating set points based on
different weather conditions for both DDHS and IDHS.

The optimal operating condition and design operating condition are defined first
because they are quoted frequently in the thesis. Optimal operating condition refers to the
operating condition that has the minimal operating cost. Design operating condition refers
to the operating condition where the circulating water flow rate is constant and equals to

the design circulating water flow rate.

4.2 Optimization of DDHS operating parameters

4.2.1 Optimization methodology

The method of multi-variable constraint optimization was used to solve this
problem. To begin, the objective function requires establishing the variables that include
all of the energy consumption elements. Then, constraints such as linear and nonlinear
relationships with equality and inequality should be described. After that, upper bounds,
lower bounds, and initial values of these variables should be chosen. A computer

program was developed to find the optimal situation.
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Thirteen variables such as Gy, Gsr, Ger, Gy, T, Tre, Ts_d, Tre d» Tzups Taiows €, Ig, and

o were used in the optimization. The upper and lower bounds of the variables are given

in Table 4.1.
Table 4.1 Upper and lower bounds of the variables for the DDHS
Variable Gep Gyt G Gy T, | Te | T
Ulnt ke/s m’/s m’/s kgls | °C
Lower bounds 8.333 0.833 0 0.01 20 20 20
Upper bounds | 83.333 2.778 0 0.5 95 70 95
Variable Tre a Top Triow b 1Q o
Uint °C %
Lower bounds 20 17 17 0.3 0.01 0.5
Upper bounds 70 19 19 0.99 1.1 10

Objective function

The aim of the optimization is to minimize the objective function in order to fulfill

the minimum operating cost. The objective function is defined in Equation (4.1) and

sumplified in Equation (4.2).

J = I(J8+JW+Jf)dt 4.1

J. = ]'[Ep (N, +N, +N_ +N, ) +3.6W,G, +36000,G,di 4.2)
5

N, =1.6489G " ~5.6008G,, +10.6054 4.3)

N, =f.,N, (4.4)

N,, =0.0006G,,> +0.3738G,, +13.0354 (4.5)

N,, =04645f ,G_, (4.6)

The optimization problem was defined as the minimization of J (Equation (4.2))

subject to steady state constraints for the model Equations (3.1) through (3.47). The
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steady state constraint equations were simplified to reduce the number of equations. The
resulting equations are given below.

Linear and nonlinear equality constraints are described as follow.

A, X =b, @.7)
Where
X = [ch ’Gsf ’Gef ’Gf ’Tx ’Tre’Ts_d ’Tre_d ’Tzup ’Tzlow’eb’ rQ’a]"

—aV (273+T.
A, =100, a ) ,0,0,0,0,0,0,0,0,0],
273
beq =0.
thv @.8)
Ty = .
Qboiler
a =4.7321r," —9.7036r, +6.32 (4.9)
T, = 3.57I4FQ2 + 26.2857rQ +137.6 (4.10)
q, =004f, + f,ad-001g)IT, —T,) 4.11)
qs =11.8029r," —20.3514r, +9.126 4.12)
e, =1-0.01(qg, + g, +q,+q5 +q,) “4.13)
T,+T,, —2T. T -T ~ G (T,~-T T, -T,
7, =7, + Lu 5 Wy Lol gy Gae T~ T ) ! @.14)
fha (Tzd - Tad ) 2ch (Tzd - T d )
T =T + T, +7T,,-2T, )[ T,-T, ]T}bﬁ B chd T, -T )XI,-T) 4.15)
* ) 2 fha (Tzd - T d ) 2ch (Tzd - Tad ) ‘
T 4 — T + (Tsd + Tred B 2Tzd )[ Tz B To ]ﬁﬁ + (Tsd "Tred )(Tz _To) (416)
°- ) 2 fha (Tzd - T d ) 2’(T’:{d - Tod )
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1
Tre , = TZ + (Tsd + Tred - 2Tzd )[ Tz To ]1+bh — (TSFZ T’ed )(T: Ta) (417)
- 2 Jra Ty =T,y) 2Ty ~Toy)
. 1+bh
T, -T, L= Tar 418
r,-T B T _M_T -
§-d 2n “
T T 1+bh
T +-2 £ Tl
T =T, _ i 2n (4.19)
T, -T T, T, '
2d 0 ot _ied Tre-d T,
- 2n )
T +T -2T .
Gf = 1 J = sell + chCp (T\ - Tre ) + Cmep (Tr - Tst) (420)
e hv r,+d
b In(--—+%)
r€
+
L 2727‘, Lth,' zjzkins Lt

4.2.2 Simulation results of DDHS

Simulation results showing the optimization process are depicted in Figure 4.1. The

results correspond to outdoor air temperature of -7°C.
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Figure 4.1 Optimizing process at To=-7°C
At the beginning, the computer program sets the initial value of each variable, and
then tries to find the point that satisfies all of the constraints. After searching 85 times, J,
Gep, and T reach their optimal values 142.76CND/h, 176.74t/h, and 71.75°C respectively

as shown in Figure 4.1.
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Figure 4.2 Optimal circulating water flow rate and fuel consumption

The optimal circulating water flow rate ratio shown in Figure 4.2 increases from
20.12% to 84.74% compared to the design circulating water flow rate when the outdoor
air temperature varies from 17°C to —11°C. Moreover, it has nonlinear relationship
between G, and T,. Therefore, it is the most economical to vary the speed of circulating
water pump to modulate the water flow rate continuously as a function of T,. Note that
the relationship between Gy and T, is nonlinear because the efficiency of the boiler is a

nonlinear function of the ratio of heating load rg.
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Figure 4.3 Optimal and design operating temperatures

20

Figure 4.3 shows the optimal operating temperatures and design operating

temperatures as a function of T,. When To=-11°C, for instance, T, Tre, Tsq, and Treq are

78.34°C, 48.84°C, 76.09°C, and 51.09°C respectively.
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Figure 4.4 Indoor air temperatures with optimal operation

Figure 4.4 depicts the response of the indoor air temperature as a function of outdoor
air temperature. When outdoor air temperature is higher than the temperature at the
beginning of heating season (5°C), indoor air temperatures on the 7-floor and first floor
show opposite trends. When outdoor air temperature is less than 5°C, indoor air
temperature on the 7-floor tends to reach the highest temperature (18.78°C), while the
temperature on the first floor tends to reach the lowest temperature (17°C). Moreover,
although indoor air temperature on the first floor equals to 17°C, indoor air temperature
on the highest floor never reach the upper bound temperature. The reason is due to

decreased surface temperature of terminal heater caused by the return water. Note that the
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constraints are not satisfied at all outdoor temperatures for example, especially when

outdoor air temperature is in the 6°C to 14°C range.
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Figure 4.5 J and G, as a function of outdoor air temperature

Figure 4.5 shows the relationship for optimal operating cost and optimal circulating
water flow rate as a function of outdoor air temperature. When T, decreases, optimal
circulating water flow rate and operating cost increase simultaneously. For example,
when T, reduces from 1°C to -3°C, J and G, reach 102.61CND/h, 122.46CND/h,

75.02%, and 79.31% respectively.
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Figure 4.6 Comparison of operating costs with four cases

When the DDHS does not operate under optimal condition, operating cost will be
higher. Four cases are considered to make comparisons. These are:

Case 1: optimal operation,

Case 2: increasing makeup water flow rate from 1% to 3%,

Case 3: increasing the range of the indoor air temperature from 18+1°C to 18+2°C,

and

Case 4: keeping design circulating water flow rate as actual circulating water flow
rate.
The comparisons of operating costs are depicted in Figure 4.6. In Case 3, the

operating cost is reduced because of decreasing indoor air temperature. However, this is
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not desirable. Largest operating cost occurs in Case 2 because of the operating cost
includes not only the amount of makeup water but also the heat loss from water leakage.
For example, the operating cost in Case 2 increases by 2.5% compared with the optimal
case (Case 1) at —2°C. Case 4 and Case 1 are very similar since the pumping cost account

for a small contribution of the total operating cost.

4.3 Optimization of IDHS operating parameters
4.3.1 Optimization methodology

The major deference in the optimization problem between the IDHS and the DDHS
is the additional heat transfer process in each heat exchange station. For simplicity, all
heat exchangers were aggregated and represented as an equivalent heat exchanger. A
computer program was also developed using the constraint optimization methodology.

In the optimization program, eighteen variables were chosen as follows: Gy, Ger, Gy,
G, G, Ty, Tret, Thy Tre2s To_dr Tret d» Thods Tre2_ds Taup, Taiow, €b, 1o, and a. The upper and
lower bounds of these variables are listed in Table 4.2. The set of Equations describing

the optimization problems are given in (4.21) thru (4.52).

Table 4.2 Upper and lower bounds of the variables for the IDHS

Variable G | G | G | G [ G | Ty | T | Tw |Two
Uint 10° m’/h t/h kg/s °C
Lower bounds | 0.5 0.5 100 100 001 ] 20 [ 20 | 20 | 20
Upper bounds 9 12 885 | 2000 | 25 | 130 | 80 | 95 | 70
Variable Toag | Tetd | Tha | Teoda | Toap | Taow | €p o a
Uint °C
Lower bounds | 20 20 20 20 17 [ 17 [ 03 ]001] 1
Upper bounds 130 80 95 70 19 19 099 | 1.2 | 10

Objective function
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The equations of the objective function for the IDHS is presented in Equations

(4.21) and (4.22).
T= [+ dn+d,+ 7 )dt (4.21)
Join = ][3.6Wp G +G )+ E (N + N, +N_ +N_,+N, ,+N, )
5

+36000,G , )dt (4.22)
N,; =-0.3655G,,” +5.0583G,, +54.1786 (4.23)
N, =-0.6976G,, +14.9905G,, +28.625 (4.24)
N, =1.5476G, > ~15.0595G, , +418.8869 (4.25)
N, =0.4286G,," ~6.6143G,, +483.2671 (4.26)
N, =0.1465f, .G, (4.27)
N,,, =0.1101f,,,G,, (4.28)

Note that the units of G, Ger, Gepi, and Gy in Equations from (4.23) to (4.26) are
10*m’h, 10*m’h, 10™t/h, and 10™t/h respectively.
Linear and nonlinear equality constraints

A, X =b, (4.29)
Where

X = [Gsf’Gef7G1’G2’Gf’Tb’Trel’Th’TreZ’Tb_d’Trel_d’Th_d Ty 4T, Tzl()w’eb’rQ’a]"

zup

A =

€q

1O()O~O.36aVair-2—7—%;;f3—E’?~OOOOOOOOOOOOO

<

-15 1 0 O 0 0 0000O0OGCOOCOOOCOQO
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b,, =[0,01".

The simplified steady state constraints are defined as shown in the following:

thv
rp = (4.30)
Qboiler
o =3.3929r," —7.4214r, +5.37 (4.31)
T, = 5.35711’Q2 +33.9286rQ +127.99 (4.32)
q, = 0.0l[fm + f,a(1-0.01q, )](TW -T,) (4.33)
gs = 9.64291‘Q2 —16.9714rQ +8 4.34)
e, =1-00l(q, +q, +q,+q5 + q;) (4.35)
Gld (de =T la')
— re 4.36
Sfa T, T, (4.36)
fo = Toa = Tha — Tde +~T;2d @.37)
(Tzd _ Tod ) jn—fd__ “hd
Treld _TrEZd
sz (Thd - Tr Zd)
= £ 4.38
fd} Tzd _ Tad ( )
0.5T,, +0.5T ,, -1 )"
fd4 — ( hd re2d zd) (439)
Tzd —Tod
G (T, -T,)ee, = f,(T.-T,) (4.40)
T -1, -T +T
feaeg b h rel re — fdz(T1 ___To) (441)
Tb ~T, N
In———-"
Trel —-Trel
G,e, (T, —T,,) = fs(T,~T,) (4.42)
fua(0.5T, +0.5T,,, ~T )" = f,.(T,~T,) (4.43)
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Gy, Ty a1 a e, = fou, (1, -T,)

Tb_d —Thwa’ “Tde +Tr62_d _ de(Tz ‘"To)

feaez

In Tb,d "Th_d
Trgl,d “Trez_d

Gy, Ty, 4Ty )=, —T,)

Jra (05T, 4 +0.5T,,, ,~T )= [T -T,)

z

T T 1+bh
T —h_‘r2_ T
T, -1, _ § 2n “
Tzd - To Th_d - TreZ_d .
Th d 2 - de
n
T T 1+-bh
A tre2 _
Tzlow - To _ Tre2 i 2n Tz,lnw
La =T, Thalaa o
re2 _d zd
2n

Qins = Ufl (Tb + Trel - 2Ts0il ) + Uf?. (Th + TreZ - 2Tsoil )

q = CwGI (Tb - Trel ) +c G I(Tb - Ts‘wl ) + CWGmpZ (Th - Tst ) + qim;

w7 mp

q
G. =
4 e, hv
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(4.44)

(4.45)

(4.46)

4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)



4.3.2 Simulation results
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Figure 4.7 Optimal operating flow rates of fans and circulating pumps

Figure 4.7 shows that the optimal operating airflow rates (combustion air) and
circulating water flow rates as a function of outdoor air temperature. When To= -7°C, for
example, the magnitudes of Gy, G, Gy, and G; are 6555m>/h, 9861m3/h, 885t/h, and
1458t/h respectively. The relationship between airflow rate and outdoor air temperature is
approximately linear. In addition, this figure also depicts the obvious difference in the
optimal operating water flow rates in the primary and secondary system. In the primary
system, the optimal circulating water flow rate remains constant and is limited by its
upper bound. However, in the secondary system, the optimal circulating water flow rate

changes depending on the outdoor air temperature. Moreover, the circulating water flow
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rate is 84.76% compared to the design circulating water flow rate at To=-11°C. In other
words, the circulating water temperature difference in the secondary system should be

larger than that in the design case.

1 20 T T 1 T 1 T
. e Tb: optimal supply water (boiler)
110t %. e T, optimal supply water {(exchanger) !
% o Tm + optimal return water {exchanger)
100 L Sy e T, 4 SesSin supply water (hoiler) i
% » ---- T, ; design supply wster (exchanger)
. T__ - design return veater (exchanger)
. 2
—~ 90t .
9_‘ =
2 80r 4
= R "’14'.
® =
o 70t .
<
P
. BOFR .
Bis
(y4]
= 50k S N
40} .
30r -
20 ;
15 -10 20

Qutdoor Air Temperature {°C)

Figure 4.8 Comparison of optimal and design optimal operating supply water temperature

The optimal supply water temperature in the primary system is 0.2°C ~2°C less than
that of the design operating condition shown in Figure 4.8. On the other hand, the optimal
supply and return water temperature difference in the secondary system is greater than
that in design condition because the optimal circulating water flow rate in the secondary
system is reduced. Also, the decreased circulating water flow rate can reduce operating
cost. The optimal supply water temperature of the boiler can be used as optimal set points

to control the system operation.
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Figure 4.9 Optimal indoor air temperature
Figure 4.9 illustrates the indoor air temperature trends when outdoor air temperature

changes. This behavior is similar to the one observed in DDHS.
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Figure 4.10 Fuel consumption and optimal operating cost

Fuel consumption and operating cost as a function of outdoor air temperature are
illustrated in Figure 4.10. The relationship between the optimal operating cost and
outdoor air temperature seems like linear although it is nonlinear actually. The reason is
that the fuel cost is the largest part of the operating cost. At an outdoor air temperature of

-11°C, the fuel consumption and operating cost are 1.54kg/s and 1662CND/h

respectively.
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Figure 4.11 Comparison of operating costs with four cases

The effect of varying the operating conditions on cost was examined by carrying out

simulation runs. For this purpose four cases were defined.

Case 1: optimal operation,

Case 2: increasing makeup water flow rate of the primary and secondary systems,

Case 3: increasing the range of the indoor air temperature from 18+1°C to 18+2°C,

and

Case 4: keeping circulating water flow rate constant.

From the results shown in Figure 4.11 it is noted that, in Case 3, when the range of

the indoor air temperature is increased from 18+1°C to 18+2°C, the operating cost shows

no change because the average indoor air temperature does not change. In Case 4, when
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the circulating water flow rates of the primary and secondary system keep increasing, the
operating cost decreases about 2.9%~7.9% compared with Case 1 since the average of
indoor air temperature is reduced by about 0.1°C~0.5°C. In Case 2, when the makeup
flow rates in the primary and secondary system change from 0.3% and 1% to 0.5% and
2% respectively, the operating cost increases 11.5% and 4.6% compared with Case 1. It is

clear that the makeup water ratio plays the most important role in operating cost of IDHS.

4.4 Typical daily and monthly optimal operating costs

Three different days such as warm, cool, and cold day were chosen for simulating
typical daily operation. The average outdoor air temperature on these days were 5.12, -
1.03, and —6.89°C respectively.

The optimal operating costs for the three days are shown in Figure 4.12 and 4.13.
Note that on the cold day, the operating cost of the DHS is constant between 17:00 hours
to 21:00 hours because outdoor air temperature at that time is lower than design outdoor |
air temperature. In other words, the required heat cannot be provided because of the
limitations of the heating system, and indoor air temperature may be lower than design
temperature. The optimal daily operating costs for the three days are 1950, 2729, and
3416CND for the DDHS, while they are 20497, 27917, and 34641CND for the IDHS,

corresponding to warm, cool, and cold day respectively.
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Figure 4.14 Optimal operating cost in Jan. 2001

Figure 4.14 depicts the optimal operating cost for the month of January 2001, for
both DDHS and IDHS. Note that outdoor air temperatures on several days are lower than
design condition, and they last for about four days. This case is called “no guarantee
heating condition”. Also, the average outdoor air temperature for this month is —5.4°C,

and the monthly operating costs for the DDHS and IDHS are 9.8905x10°CND and

1.0055 MCND respectively.
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Chapter 5 A Control Strategy for Energy-Optimal Operation

5.1 Introduction

Since a DHS has a long transport time delay, special control strategy should be
considered in order to improve the temperature response in real time operation. This is
achieved by designing a Smith Predictor. The SP takes the transport time delay out of the
closed-loop feedback control system. Therefore, the time delay is completely
compensated if the system model is relatively accurate. In references [12, 13, 22, 25, 26,
27], the applications and the theory of control systems with time delay were described.

In this chapter, a reduced-order model of the DDHS is described and open-loop
responses are presented. Then, a methodology for computing optimal set points of supply
water temperature is described. Finally, a control strategy using the SP is designed, and
simulation results showing the influences of different parameters and the use of optimal
set points in improving energy efficiency are presented. Note that for design of the
control strategy, the DDHS was considered. The same methodology can be applied to

design the control strategy for the IDHS.

5.2 Reduced-order model of the DDHS

The full-order dynamic model of DDHS developed in Chapter 3 included 44
dynamic equations, which is too large for control design. Therefore, a reduced-order
model is developed for the purpose of designing a control strategy. By using steady state

approach, the dynamic equations are rewritten as
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2T +T,
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— - 21,5
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v W, +U .,

— 2UﬁTﬁ + UfliTsoil
o W, +U,
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CwGsz3T:bc ([ - le) + U
c, G +U,

w523 insc3

T,y +¢,G T (5.15)
+c¢,G

insc3

Tsc3 (Z) =

swz3

CWG stbl (t B lzl) + Uinsblthoil + Cwawles'WZ (5 16)

CwGszl + Uinsbll +c G

w " swzl

szl

T, (1) =

¢.GiTy G =1 ) +U

Trecd (t) — W recd” re inscd ~ soil w~ swed © sw2 (5'17)

c G ., +U. . +c¢c G

w " recd inscd w " swed

T ., +c G T

¢,GoiTst =1,) +¢,G,.T,

U, s T€,Go0n. T,
T, (1) = ——re

w ™~ recd ” recd insbc ™ soil w ' swhe T swl (5 18)

G t¢,G oy U 0 +€,G

w rec3 insbc w7 swhc

recd

CwGrebblTrebll (t B lbbl ) + Uilu‘bblTsoil + CwGswbblnv1’2 (5 19)
CwGrebbl + Uirzsbbl + CwGswbbl

T (n=

Where, Lp, loe, leas lbbis 121, 122, and 1,53 are equal to 58, 91, 275, 144, 212, 196, and 388sec
respectively. In summary, the reduced-order model is described by the above equations
together with Equations (3.17), (3.40) to (3.42), and (3.44), and this constitutes an eight
order model.

It can be seen that, in Equations (5.10) to (5.19), the transport delay is added to the
model. For instance, in Equation (5.10), Ty(t-1,») means that the present value of Tgp(t) is
dependent on that value of Ty, which is delayed by 58 seconds. Note that appropriate time

delays also exist in return pipe segments in zone 1, 2, and 3, as well as segment AB

shown in Figure 3.1.

5.3 Simulation model

The full-order model and the reduced-order models are simulated using the Simulink

(Matlab). The Simulink block diagram is depicted in Figure 5.1.
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Figure 5.1 Block diagram of the dynamic model

Trecd

In each block, one or more differential equations are included. Although the block

profile of the full-order model is the same as the reduced-order model, the content is

different. Input signal Uy and T, as well as output Ty, are represented in this figure. Note

that the transport time delays in the piping network are also included in some blocks.

5.4 Open loop simulation results

Open loop simulation runs at constant boiler input and water flow rate are conducted

to compare the results from full-order and reduced-order models. The results are depicted

in Figure 5.2.
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Figure 5.2 OLT: temperature responses under design condition (Ty=-11°C and Up=1)

The slow temperature response curves in Figure 5.2 are indicative of the transport
delay of the piping system and the thermal capacity of the overall system. These
temperatures in a typical system reach steady state in about 12 hours. At 12:00 hours, for
instance, the temperatures in the reduced-order model Ty, Tiear, and T, reach 76.88,
50.30, and 17.81°C respectively. In fact, the steady state values of these temperatures are
77.29, 50.71, and 18.03°C respectively. The design supply water, return water, and indoor

air temperatures are 95, 70, and 18°C respectively. Because of the heat transfer area of
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the terminal heaters in actual system is larger than that of the design values, the steady

state temperatures cannot reach the design temperatures.

5.5 Optimal set points

Significant energy savings can be achieved by operating the boiler at as high
efficiency as possible at the given load. To this end, a constrained optimization problem
was formulated and solved in Chapter 4. The idea behind this is that if the boiler control
loop can track an energy optimal set point profile, significant energy savings can be
realized.

In addition, since the users of the DDHS have different occupancy patterns, the
internal loads associated with variable occupancy have to be considered. To this end, the
internal load patterns were divided into three groups such as low-energy users, high-
energy users, and public building user group. This grouping is based on their function and
energy consumption. Indeed, each of these classes may have their own operating
parameters because of their different internal loads. The internal loads considered here
consist of individuals in room, heat gains from appliances, and solar radiation. These
profiles are shown in Figure 5.3. For example, the public buildings have the largest
internal load up to 22w/m? around 12:00 hours, while the internal load in the low-energy
user group has the lowest value (15.3w/m?). In the lower part of Figure 5.3, it can be seen
that the internal load in zone 1 is the greatest than that in other zones since the heating

floor area of the public buildings in zone 1 is larger. These internal load patterns in the
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DDHS are assumed to occur concurrently. In other words, they occur at identical supply

water temperatures and at the same time.
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Figure 5.3 Internal load in different patterns and zones

In addition, the equivalent outdoor air temperature is defined as the outside air
temperature at which the heat gain from internal loads such as people, appliances, as well
as solar radiation that affects buildings is no longer enough to offset heat losses occurring
in the space to maintain design room temperature. It is the “theoretical” temperature at
which additional heat is needed to maintain the set point temperature.

With this assumption and the concept of equivalent outdoor temperature, an

equivalent outdoor temperature 7,' was used to determine the optimal set point Tpsp. The
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equivalent outdoor temperature is calculated from

T'=T

o o

By calculating the equivalent outdoor air temperature 7" from Equation (5.20), one
could use the no internal load set point curve in Figure 5.4 to determine the boiler set
point in the presence of internal loads.

The optimal profile curves for each gy in different zone are also obtained according
to their respective weighting factors. These are depicted in Figure 5.4. Moreover, the
average set point Tyspavg Curve is also shown in this figure. Note that the case with no

internal load gives higher optimal set point Tygn compared to the cases with internal

loads.
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Figure 5.4 Optimal temperature set point profiles for the boiler
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5.6 Smith Predictor design for the DDHS
5.6.1 Principle of a Smith Predictor

Since many processes have apparent transport time delay phenomenon, there is
considerable incentive to develop advanced control algorithms that can compensate for
such kind of time delay. Smith [18] proposed a controller that became well known as the
Smith Predictor. Note that the response of the control system is based on the accuracy of
the plant model. Since plant models are not completely accurate, some unmodeled
dynamics always remain. The use of a PID controller could compensate the effects of

these unmodeled dynamics. The SP control scheme is presented in Figure 5.5.

- — T T T 7
Disturbance N .l Gr ‘
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» Gp hﬁ%( i
T ] » Transport ]
o 4,

. by |

.
L s Gp w Ry
Thsp +_ + GC 3
- Transpart
Controller Delay (“+

Figure 5.5 The Smith Predictor control scheme

The SP has two control loops: an internal feedback without time delay and an
external feedback loop with time delay. The controller operates on two separate models
of the plant. If the plant model is accurate and the plant performance is reliable, this

control system can provide good control of the real plant.
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5.6.2 SP design methodology

A real plant transfer function with transport delay e, is defined as G(s)= Gp(s)e'TS.
Since SP attempts to remove the effect of the T second time delay from the closed loop
system, the controller can be designed as if there is no time delay. To this end, the overall

transfer function of the reduced-order linearized closed loop system is written as

CT(s)  G.)G ()™
1,0 1+G(5)G, ()

G, (s) (5.21)

The SP design consists of two steps. In the first step, a control law for the system
without delay is designed; the second step consists of directly calculating an equivalent

controller for the system with delay as shown below.

Gcsp(S)Gp (S)Q“TS _ Gc (S)Gp (s)e~Ts
1+ G, ()G, (s)e " C1+G,(5)G,(s)

csp

(5.22)

- G, (s)
1+ (1-e™)G)G,(5)

G, () (5.23)

The equivalent plant concept is used to obtain equivalence between Equation (5.21)

and the SP controller that is described in Equation (5.22).
The design method is explained briefly. The linearized plant transfer function Gy(s)

of the reduced-order DDHS is obtained as in Equation (5.24).

0.05411s” +0.001082s% +3.392x107%s° +4.718x107° s*

+3.544x107% 5% +1.499x10 P s? +3.373x10 s +3.15x107%
s +0.02949s" +0.00025265° +6.134x1077 s° +6.859x107 5*

+4.02x1078s% +1.228x107%s% +1.676x10 P s +5.145x107%

G,(s)=

(5.24)

The specifications for nominal controller design are chosen such that (i) position

error =0. (i) overshoot <5%. (iil) settling time <1000sec. (iiii) rise time as small as
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possible.
Consider a PI controller G(s) for the nominal controller design, and let k;=0.05k,.

k (s+0.05
o ) and Gl(s):”O‘OS.
h) S

Then, G (s) =

The root locus transfer function is given by Gus(8)=G(s)Gp(s). From the trajectory
of Gps(s) in s-plane, the pole P, (-0.095,0) satisfies all of the above specifications.
Therefore, the corresponding value of the proportional gain k; is found to be 3.3358.

In the controller design with the SP, the transport time deia e ™ is approximated b
gn p y pp y

- 2
G,(s)= «gzg—gff—— where T=2728sec. Thus, using Equation (5.23), the SP controller
2728s+2
2 5.98 s
was designed and reduced to the form: G, (s) = 0-20545 +3.987x10 . For this plant

A

with SP, the designed parameters of PI controller are k,=0.2, ki=0.002.
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5.7 Simulation results

5.7.1 Control system configuration

Hominal design control systerm configuration

PID —fp i Ub
£ To T
PiD Saturatisn
DOHS_FD

Control system with Smith Predictor

Je| U
g T L
DDHS_FD1

g g PID | o Bl _%{

p——ge] T bl
[1*a] Saturation
DDHS_FHND Transport

Delay

Thsp To @———D— t

Thsp Tao Clodk ToW_time

Figure 5.6 Control system configurations

Figure 5.6 displays two control blocks: the upper part shows the nominal controller
and lower part depicts the SP controller. The block “DDHS_FD” is the full-order model,
while the block “DDHS_FND” refers to the model without time delay. The block
“Transport Delay” is the total transport time delay, which is set equal to 2728sec. Note
that in “DDHS_FD” block, there are 14 time delays corresponding to the transport delay
of pipe segments AB, BC, CD, BB1, and the supply and return piping network of each
zone (Figure 3.1).

5.7.2 The effect of set point changes
The simulation of step change in Ty, set point is shown in Figure 5.7. In this figure,

the set point changes from 40°C to 60°C at 12:00 hours, and from 60°C to 30°C at 24:00
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hours. Other than the influence of initial condition, the Ty response with SP is faster
than that of the system without SP. For example, in the set point increase phase, the
control system with SP reaches the new set point 3 hours faster compared to the case
without SP. Also, the fluctuations in indoor air temperature in each zone are smaller than

that in the control system without SP.
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Figure 5.7 Responses of changes in set point Ty, with and without SP
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5.7.3 Typical daily operation

In order to simulate typical daily heating process, a typical five-day weather data
with outside temperature ranging from 10.6°C to —-8.5°C is chosen as shown in Figure
5.8. The temperature profile denotes warm day, cool weather, and cold day in winter. The
optimal set points Ty corresponding to these outdoor temperature conditions is chosen
from Figure 5.4. In addition, a disturbance of +5°C in T, was considered because such
disturbance results from the fluctuations in the pressure and temperature of the
transported fuel, as well as other uncertain factors. Lastly, the internal load is also
considered in some simulations.

5.7.4 Temperature responses of the DDHS with disturbances in T,
The responses of the control system with and without SP are compared in Figure 5.8

and 5.9 in the presence of disturbances in Ty, acting on the system.
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The temperature responses of zone 1 in Figure 5.8 have obvious differences. Note
that good disturbance rejection is achieved by using SP. From these responses, one can
note that the biggest swing in Ty, in the control system without SP is around 5°C, while
the biggest swing in Ty, in the control system with SP is about 1°C. As a result, indoor air
temperatures in zone 1 also show clear differences. They fluctuate within a range of
18+0.5°C in most conditions in the control system with SP, while they vary from 18+1°C

to 18-1.5°C in the control system without SP. Therefore, it is obvious that the control



rejection.
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Figure 5.9 Real time responses of zone temperature with and without SP

The indoor air temperature responses in each zone are shown in Figure 5.9. For

example, the indoor air temperature response in zone 1 is somewhat faster than that in

zone 2 because of the transport time delay. In addition, the indoor air temperature

responses in each zone are slightly different. The reason is that each zone has different

load patterns and has their own Ty set points. However, this difference is around 0.1°C

~(0.3°C, and is not significant.
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5.7.5 The effect of changes in transport time delay

In practice, the time delay can change since the heating load and circulating water
flow rate may be varied in the heating season. Hence, simulation runs are made to study
the effect of a +25% change in time delay. The results are shown in Figure 5.10. It can be
seen that the heating system shows a slight difference in responses between the cases
with increasing and decreasing time delay compared to no time delay. The reason is that
the varying transport delay means the change in circulating water flow rate. However, it
is known that the effect of changing circulating water flow rate on indoor air temperature
is smaller than changing supply water temperature. Therefore, the cases with increasing
and decreasing time delay at this range show no significant differences. Another reason
for this is that the PI controller can also compensate for these changes as well.

It is also shown in Figure 5.10 that the tendency of changing transport time delay.
When the time delay increases, the indoor air temperature response is faster than that in

decreasing time delay.
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Figure 5.10 Response of changing time delay with SP
5.7.6 The effect of changes in model parameters

Because the physical properties of the building materials and heat transfer
coefficients are variable, the parameters of the analytical model should be varied
accordingly. In order to simulate this case, a simulation with a 40% increase in the

capacities of all zones was considered, and the results are presented in Figure 5.11.
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Figure 5.11 Response of model parameter change

The responses depicted in Figure 5.11 show that the SP is able to reject the effect of

changing capacities of the building.
5.7.7 The effect of internal loads

Internal loads always exist, and sometimes they have clear influence on indoor air
temperatures. This case is presented in Figure 5.12. It can be seen from this figure that

the indoor air temperatures fluctuate greatly by internal loads. The greatest swing in the

indoor air temperature is about 5.8°C compared to the design indoor air temperature.
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Figure 5.12 Responses of indoor air temperature with internal loads

5.7.8 Methods for reducing indoor air temperature fluctuation

The fluctuations in the indoor air temperature shown in Figure 5.12 are not
desirable, and it should be reduced by appropriate means. This can be achieved by
predicting internal loads and compensating for them in the selection of optimal boiler
water temperature. Therefore, adjusting the optimal set points in T, with internal loads is
considered. Based on the actual outdoor air temperature and the internal loads, the
equivalent outdoor air temperature can be determined.

Since each zone has its own internal load, the maximum internal loads in the three
zones are chosen at any given time in order to calculate the equivalent outdoor air

temperature. Using the maximum internal loads, the equivalent outdoor air temperature is
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plotted in Figure 5.13. For example, the temperature affected by internal loads, actual
outdoor air temperature, and equivalent outdoor air temperature at 36:00 hours are 3.6,
10.1, and 13.7°C respectively. Therefore, the supply water temperature will be decreased

if the optimal supply water temperature is determined based on the increased outdoor air

temperature.
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Figure 5.13 Equivalent outdoor air temperature by considering internal loads

The temperature responses of the DDHS with the equivalent outdoor air temperature
based Ty, set points are presented in Figure 5.14. The temperature responses with average
and instantaneous internal load are shown in the figure. The set points of the supply water
temperatures with instantaneous internal loads decrease compared to the average case,
especially around the noon. As a result, indoor air temperatures are also reduced. The

peak indoor air temperature is decreased by 1°C~1.5°C.
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Figure 5.14 Responses with set points T, based on Figure 5.13

However, the indoor air temperature still shows large swings. In order to lower the

fluctuations in indoor air temperature, adjustment of the set points in T}, were obtained by

fine tuning the boiler set point temperature. The results are presented in Figure 5.15. It is

apparent that indoor air temperatures are within a reasonable range (18+1°C).



O 70F
e8]
Seof
T
2 501
g 40 —f’ “ .' L ;
- fi v
‘Dg_ 30 \ :;“} Y ,] ---- with average internal loads [
% o0 kh} iﬂm —— with real-time internal loads
E% . 1 1 i : ;

0 20 40 &0 80 100 120
g 24 T T T L T "
S 2t Py k AR
i I L ~ . |
= S A ORI ¥ Y S
— 10 1 Sl e e e Tl N 4 e
2(': AU P S _M\, m{{,” A Y= - ,,X‘i:sc,fim — Wl
5187 Lﬂg _
E 14 1 i i 1 1
-0 20 40 60 80 100 120

Time {h)

Figure 5.15 Responses with tuned supply water temperature set points
5.7.9 Comparison of energy consumption

In order to assess the energy saving potential of the developed optimal control

strategy, four cases are simulated.
Case 1: arbitrary Ty set points without internal load
To>5°C, Thsp1=42°C;
T>0°C and To<5°C, Tpsp1=53°C;
T>-5°C and T,<0°C, Ty 1=65°C;
For all other outdoor air temperatures, Tpgp1=72°C,
Case 2: optimal Ty, set points without internal load,

Case 3: optimal T3 set points with internal load, and
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Case 4: adjusted optimal Typs set points with internal load.

The simulation results are depicted in Figure 5.16. In this figure, the magnitude of
the set point Ty is the highest, while the set point Tygps is the lowest because of the
internal loads considered in Case 4. For example, at 50:00 hours, the Ty =65°C.
Whereas, Ty,p4=60.2°C. In addition, Figure5.16 shows higher temperatures in zone 1 in
Case | compared with Case 2. Also, the variations in indoor temperature in Case 3 are
somewhat large because of the influence of internal loads. In order to tightly regulate the
zone temperatures, adjusted equivalent outdoor air temperature is utilized, and the
temperature responses are presented as in Case 4. It can be seen from Case 4, the indoor
air temperatures are regulated in the range of 17°C~19°C. In addition, the lower indoor
air temperatures that occur around 40:00 hours because of the change of outdoor air

temperatures are too fast.
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Figure 5.16 Responses of set point Ty, change in four cases

The energy consumption of the four cases discussed above is compared in Table 5.1.
Average outdoor air temperatures of warm, cool, and cold day are 6.4°C, -0.73°C, and —
5.84°C respectively. From this table, the energy saving achieved by using the adjusted
optimal supply water set points with internal loads (Case 4) is 19% compared to the Case
1 on a cold day. This is a significant saving in large systems such as the DDHS.
Moreover, from the simulation, the fuel consumption for the five-day period in Case 1, 2,

3, and 4 were calculated. They are 47663, 47328, 42631, and 37617kg respectively. The
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energy saving between Case 1 and 2 is about 1%, while the energy saving between Case

2 and 3 is about 10%. The biggest energy saving occurs in Case 4 is about 12% compared

to Case 3.
Table 5.1 Energy consumptions in four cases (kg)

Item Case 1 % Case 2 % Case 3 % Case 4 %
V‘;i;m 6260 100 | 6410 | 1024 | 5457 | 87.17 | 4363 | 697
Cool

day 10546 160 10341 98.06 9410 89.23 8294 78.65
Cold

Day 12941 100 12430 96.05 11512 88.96 10513 81.24

In Figure 5.17, the energy consumption for a typical 15-day period is simulated. It

can be seen that the largest energy saving are achieved in Case 4. For instance, the total

energy consumption over the 15-day period for Case 1, Case 2, Case 3, and Case 4 are

167206, 166387, 151793, and 139174kg respectively. In other words, energy saving

obtained in Case 2, Case 3, and Case 4 are 0.5%, 9.2%, and 16.8% compared with Case

1. Therefore, the largest energy savings occur in Case 4. Note that in the arbitrary set

point case, sometimes the energy consumption is lower than Case 2 because its indoor air

temperature is lower than that in Case 2.
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Figure 5.17 Energy consumption of four cases
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Chapter 6 Contributions, Conclusions, and Recommendations

for Future Research

6.1 Contributions and Conclusions

The contributions of this research are in the design, dynamic modeling, and optimal
control of district heating systems. The specific contributions and conclusions in each of
these areas are summarized below.

The contributions of the research work in terms of steady state design methodology
are:

(1) Steady state methods were used to design and size two typical DDHS and IDHS.

(2) The influence of varying circulating water flow rate, heat transfer area of terminal
heaters, and area of heat exchangers were investigated using aggregate models of
DHS.

From steady state analyses the following conclusions were drawn.

(1) The most important parameters affecting the operation of DHS are circulating
water flow rate and heat transfer area of terminal heaters in DDHS.

(2) The most important parameters affecting the operation of IDHS were circulating
water flow rate in the primary side and heat transfer area of terminal heaters.

The contributions in the area of dynamic model development are summarized below.

(1) Dynamics responses of overall heat transfer process in the DDHS and the IDHS

are influenced by heat losses due to water leakage and piping network as well as
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building loads.

(2) A boiler model was developed based on the type of boiler and actual measured
operating data.

(3) Large number of buildings and heat exchangers typically used in DHS were
aggregated and the concept of equivalent building (or zone) and equivalent heat
exchange station were used in the analyses.

(4) Nonlinear heat exchanger and terminal heater characteristics were taken into
account in the dynamic models.

From the open loop tests conducted on the dynamic models the following

conclusions were drawn.

(1) The time needed for the boiler temperature to reach steady state is influenced by
outdoor temperature and initial conditions. Typically 12 hours to 15 hours were
required for the boiler temperature to reach steady state.

(2) A typical daily breakdown of heat losses and heat utilization efficiency were
found to be 12.6% and 87.4% respectively.

The contributions in optimization of operating parameters are summarized below.

(1) A multi-variable constraint optimization problem was formulated and solved to

determine optimal operating parameters of DHS.

Results show that:

(2) Operating cost is significantly influenced by the makeup water used followed by

pumping costs of water flow in the system.
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(3) Optimal operating strategy of DHS can be implemented by modulating water flow
rate, changing the airflow rate of the supply and exhaust fan of the boiler, and
adjusting supply water temperature of the boiler using outdoor air temperature as a
load discriminating signal, and predicting optimal set points given in Chapters 4.
The contributions in energy-optimal operation are summarized as follows:

(1) A control strategy augmented with Smith Predictor is designed to compensate the
large transport time delays in the piping network.

From the closed loop simulation results the following conclusions were drawn.

(2) The developed optimal control strategy combined with a Smith Predictor
controller gives superior performance in terms of temperature regulation and
disturbance rejection.

(3) Simulation results show that significant savings in energy can be achieved by
using optimal set points to operate the boiler as well as by considering the
building’s internal loads. For instance, energy savings from 19% to 25% can be
realized compared with the conventional approach of using arbitrary set points.

(4) A small amount of fine tuning of optimal supply water temperature set points can
reduce the fluctuation in indoor air temperatures effectively.

(5) The designed control strategy is found to be robust to changes in time delay and
building parameters and give good temperature control under set point changes

and variable outdoor air temperature.
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6.2 Recommendations for future research

Research results conducted in the thesis present opportunities for further
developments in control strategy study and optimal operation.

(1) Varying circulating water flow rate together with optimal control of supply water
temperature could save greater energy.

(2) Comprehensive model-based computer programs of DHS will be very useful in
analyzing and simulating the impact of design and operating conditions.

(3) It is important to develop a control strategy involving multiple control loops in
IDHS.

(4) Dynamics of makeup water systems should be examined carefully by modeling
the pressure responses of the system.

(5) Adding zone control loop may improve indoor air temperature responses in

DDHS with fluctuating internal loads.
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