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Abstract

Dynamic Forward Slicing for Object-Oriented Programs
Zhi Cui

Program slicing, a program reduction technique, identifies codes that are related to a given
function or variable of interest in a given program. It fulfills the task of decomposing and
filtering a large program to restrict the focus to some specific parts. Program slicing has
applications in software maintenance, reverse engineering, testing, and debugging.
Program slicing can be mainly classified into static slicing and dynamic slicing. In this
thesis, we introduce a new forward slicing approach for computing dynamic slices for OO
programs. Qur algorithm computes dynamically slices for all program components
executed at run-time, without requiring any major recording of the program execution trace.
We also propose an optimized algorithm as a solution to compute slices in the presents of
exception handling in OO programs. The presented algorithm addresses additional issues
related to the elimination of the notion of TopSlices from the based algorithm. Instead, our
algorithm applies a registration strategy for slice computation, so that reducqs the run-time
storage overhead.
Keywords
Software maintenance, reverse engineering, program slicing, dynamic slicing, OO

program
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1 Imntroduction

Theory

Mark Weiser originally introduced the notion of program slicing [Wei82]. His intend was
to formally define the process of debugging. As part of his observation, he identified that
the debugging consisted of analysis of dependencies from error statements back to related
program subsets. According to his original definition, the notion of slicing was the
procedure of removing statements from a program to identify an executable subset of
statements that preserves the original behavior of the program with respect to variables of

interest at a given program point.

A program slice [Wei82] is a set of statements and predicates of program p that might
affect the value of a variable v that is defined or used at a program point. <y, p>is known as
slicing criterion. Weiser’s approach is based on static program dependencies, and obtained
slices are consecutive sets of statements, upon which variables have data dependencies or

control dependencies.

A refinement of Weiser’s static slicing approach is referred to as dynamic slicing.
Dynamic slicing was originally introduced by Korel [Kor88] in order to overcome some of
the limitations of static slicing. Dynamic slicing technique emphasizes the dynamic aspects
of the program execution, by considering the dependencies existing between executed

program components. The dynamic slicing approaches can be classified into two different



types. One is called dynamic backward slicing [Kor88] [Kor90], and the other is dynamic
Jforward slicing [Kor94]. Dynamic backward slicing requires the whole execution trace to
be recorded, and then traditional program dependency analysis is applied to either program
dependency graph (PDG) or system dependency graph (SDG). Dynamic forward slicing
does not rely on the prior recording of the whole execution trace; on the contrary, slice
computation for each executed variable is at run time of the program execution.
Applications of program slicing

Program slicing [Wei82] is a program analysis and reverse engineering technique that
reduces a program to those statements that are relevant with respect to a particular slicing
criterion. Originally, program slicing was introduced by Weiser {Wei82] to solve problems
encountered in regression testing and debugging. Informally, a slice provides the answer to
the question "What program statements potentially affect the value of a variable at a
particular point of the program?" [Ste99]. To a larger extend, it is used by maintainers in
the field of reverse engineering for program understanding and maintenance, e.g. coupling
metrics analysis [Li01], model checking [Zha01], etc.

Some researchers apply program slicing for Ripple Effect Analysis (REA) [Wan96].
REA is an iterative process used to find out and correct errors caused from software
changes. It also helps to ensure consistency and integrity of the software after corrections
are made. Due to the increasing need in maintaining legacy system, which may be
inconsistently or poorly documented, slicing techniques are also being used in recovering

architectural documentation by recreating architectural views and abstractions of
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subsystems.

Existing program slicing tools can be used to automatically compute and visualize
slices of program components. The Wisconsin Program Slicing System [Wis00] is a
commercially available tool for slicing C programs and is marketed by GrammaTech Inc.
Motivation
For applications such as testing and debugging, the computation of dynamic slice has
significant advantages over static slicing. Dynamic slicing not only produces smaller and
more precise slices but also considers the program behavior for a particular program
execution. Current dynamic slicing approaches are mostly based on the backward analysis,
requiring the recording of the whole execution trace as the necessary preprocessing. One of
the major drawbacks of the backward algorithm is the space and time complexity caused
by the recording of the trace and the requirement to traverse and analyze the whole

recorded execution trace.

The major motivation of this research is to address this shortcoming of current dynamic
backward slicing algorithms, and utilize a dynamic forward slicing approach for the
computation of program slices. Furthermore, we are proposing a new forward slicing
algorithm that overcomes the limitations of existing dynamic forward slicing algorithms.
Current forward slicing algorithms are limited in their applicability to structural and/or
procedural programs [Tip95] [Jeff01] [Lar96]. Korel and Yalamanchili’s algorithm

[Kor94] is limited in computing program slices only for structured, non-procedural



programs. Csaba Faragd and Tamas Gergely [Csa02] introduced a dynamic forward
approach to slice large C programs. However, few of the existing algorithms [Csa02]} are
addressing the specific langnage challenges of OO programs, such as inheritance, and
polymorphism.

Contributions

In this paper, we present a dynamic forward slicing approach for OO programs that is based
on an algorithm originally presented by Korel and Yalamanchili [Kor94]. Our algorithm is

extended in the following areas:

e Extending the applicability of the original algorithm to OO program including
inter-procedure slicing.

e Slicing objects and classes instead of only primitive type of variables.

e Computing precise slices for OO program components with inheritance and
polymorphism.

e Providing an approach to slice OO programs in the presence of exception handling.

e Eliminating the notion of TopSlice, which generates additional space complexity.

e Introducing the notion of “Registration Strategy” that registers parental
components with their children and delays the concern of control dependency, and
therefore allows for the forward computation of slices for arbitrary programs.

e Improving the efficiency of the algorithm by immediate access to computed and

stored program components.



Outline

Subsequent chapters explore problems and advantages of existing slicing approaches,
explain our proposed solution in slicing practical OO program, and present implementation

issues and initial experimental analysis.

Chapter 2 describes current slicing algorithms together with their applications and
limitations. The review includes the original approach where slicing is seen as a static data
flow and control flow problem to the state-of-the-art where slicing is viewed as a runtime

data flow and control flow problem.

Chapter 3 proposes a dynamic forward slicing algorithm that computes program slices for
the major OO programming language constructs. Then, an optimized algorithm that

supports slicing for Java programs with exception handling is illustrated.

Chapter 4 describes in detail design and implementation issues and analyzes experimental

results.

Chapter 5 provides a summary of the contributions of this thesis and outlines some areas

for future work.



2 Literature Review

In this section, after the introduction of basic slicing terminologies, we review the notion of
program dependency graph (PDG) based and system dependency graph (SDG) based static
slicing algorithms. We also survey current dynamic slicing algorithms and discuss their

trade-offs.

2.1 Basic Slicing Terminology

In what follows, we present some of the basic slicing related terminologies and their

definitions that we will adopt in the remainder of this thesis.

e Removable Block: corresponds to a statement, a function, a class, and a namespace
within a program. More specifically, it corresponds to the smallest part of program text
that can be removed without violating the syntactical correctness of the program.

e Used variable: variables that are evaluated or dereferenced in an expression.

e Defined variable: variables that are assigned or modified by value as result of a
computation.

e Data dependence: captures a data flow from where a program component is defined or
assigned to where this component is used.

e Control dependence: represents a control condition for which the execution of a

statement or expression depends within a single method/procedure [Zha02].

10



o Variable slice: a set of relevant program components that are directly or indirectly
affecting the value of this variable at a program point of interest.

o FExecution trace: corresponds to a sequence of executed program components for a
particular input. Execution traces are typically used for dynamic backward slicing to
derive a dynamic program slice.

e [Expression slice: expressions contain variables, function calls, and operators. An
expression slice is a set of slices of those variables and function calls in it.

e Statement slice: a statement contains expressions. A statement slice is a set of slices of

those participating expressions in that statement.

2.2 Static Slicing

Weiser [Wei82] originally introduced the notion of static program slicing — the process
identifying all statements in a program P that may potentially affect the value of variable v
at some point of p. A slicing criterion C can be defined as C=(x, V), where x is a statement
in program P and V is a subset of the variables defined in P. Given program P, the slices are

consisted of all statements in P that potentially satisfy the criteria C=(x, V).

In order to identify all directly and indirectly relevant statements in a program P with
respect to a particular slicing criterion C=(x, V), static slicing algorithms typically apply an
iterative approach to find all existing dependencies for a variable v within a Program
Dependence Graph (PDG) or System Dependence Graph (SDG). We simply classified
static slicing into PDG based approaches and SDG based approaches. In what follows we

11



illustrate the major differences between PDG and SDG based approaches.

2.2.1 PDG Based Approaches

Ottenstein [Ott84] originally defined Program Dependency Graph (PDG), Horwitz et al
[15] refined the original PDG. The static data dependency and static control dependency
among statements in a program P form a PDG. Each arc in the graph represents a reachable
relationship from one statement to another (static control dependency) or from one

definition of a variable to its usage (static data dependency).

Static Control Dependency represents “a control condition on which the execution of a
statement or expression depends on in a single method/procedure” [Zha02]. Generally
speaking, statement u is control dependent on statement v if and only if the execution of
statement u is determined by the computation of statement v. Under this circumstance,
statement u is nested within statement v. Meanwhile, Static Data Dependency captures a
data flow from where a program component is defined or assigned, to where it is used. Data
dependencies are carried by variables — between its definition and its usage; specially,
“there exists no other intervening definition for variable v between its definition position p

and the evaluation position ¢” [Ril98].
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1 package computerSystem;

2 public class Computer {

private double case_in_price;

4 private double case_out_price;

5 public Computer( doublemachine, double auxiliary ) {
6 case_in_price = machine;
7

8

9

(O8]

case_out_price=auxiliary;
}
public double getPrice() {
10 return case_in_pricetcase_in_price;
11}
12 public static void main(String argv{]) {
13 Computer aComputer = new Computer(900, 400);

14 if( true ) {

15 System.out.println( “Price: ” + aComputer.getPrice() );
16 }

17 }

18}

Figure 1 sample Java program

We take the sample program from Figure 1 to illustrate these static control and data

dependencies. Figure 1 illustrates a class Computer and one method getPrice(), they are

tested by a set of particular assumptions. Each program statement has a unique identifier.

For example, statement 15 is control dependent on statement 14 (a predicate test block),

and variable aComputer in statement 15, has a data dependency on statement 13, where

aComputer is defined.

Computing a static slice using a PDG

Parsing program source code is the first step in order to build a PDG that identifies all

existing data dependencies and control dependencies in the source code. To construct a

PDG all directly reachable statements from an executable point of the program will be

13




included and marked if either data dependency or control dependency exists. All
statements and relationships between statements are considered. Each node x within a PDG
represents a program statement, and the outgoing edges of x represents the data

dependencies or control dependencies other nodes have upon x.

In the second step, within a PDG the static slice for a variable v at a node x can be easily
computed as follows: the algorithm traverses backwards all reachable edges of the PDG
starting from node x. This process iterates until all reachable nodes are visited and included

into slice of x. A partial PDG for statement 15 is shown below (Figure 2).

—————¥ Data dependency
i —————— P> Control dependency

Figure 2 partial PDG for statement 13, 14, and 15 of program in Figure 1

For example, to compute a static slice for the variable aComputer in the sample
program shown in Figure 1, the algorithm traverses backward the simplified PDG in Figure
2 from node 13, the found nodes are node 13 and node 14 that are the elements of slices for
aComputer. At this stage, we include only data dependencies and control dependencies for
illustration purpose; statements 12, 2, and 1 are excluded to avoid unnecessary complexity,

even though they are logical parental dependent components (parent function, parent class,

and parent namespace).
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2.2.2 SDG Based Approaches

Static slicing of inter-procedural programs provides additional challenges. The traditional
notion of data and control flow is no longer sufficient since additional dependencies in the
form of function calls have to be considered. A System Dependency Graph (SDG), which
considers additionally the Procedure Dependence Graph for function calls [JFe87] [Lia98],

attempts to address this problem.

Within a SDG, the data flows are represented by data dependencies; control flows are
represented by control dependencies between statements or expressions. A Procedure
Dependence Graph [JFe87] represents an action as a graph where vertices are functions,
function calls, actual-in parameters, actual-out parameters, formal-in parameters, and
formal-out parameters. Each pair of actual-in parameter and actual-out parameter
corresponds an actual parameter used in the procedure call and each pair of formal-in

parameter and formal-out parameter corresponds a formal parameter used in the procedure.

Figure 3 provides a simplified system dependency graph for the program shown in
Figure 1. It illustrates that procedure dependencies introduce additional slices for variable
aComputer at statement 15. By traversing this SDG, the computed slice consists of the
following statements {3,4,10,12,13,14,15}. Among them statement 12 represents above
mentioned parent dependency, and dependency from statement 9 to statement 15
corresponds to a procedure dependency. Variable v corresponding to

aComputer.getPrice() at statement 15 is considered as parameter out dependent on

15



variables v’ corresponding to case_in_price+case_in_price in statement 10.

Figure 3 simplified SDG for partial statements of program in Figure 1

2.2.3 Limitation of Static Slicing Techniques

The original motivation for using program slicing was to reduce the comprehension
complexity during debugging, by focusing the programmer’s attention only on these parts
of the program that are related to a specific bug and variable of interest. However, static
slicing normally constructs rather large slices due to the assumption that all reachable
nodes within the PDG or SDG have to be included in the slice. In addition, slicing a
well-constructed program that is typically highly cohesive might result in the whole
program to be included in the slice. “The high level of cohesion results in programs where

the computation of the value of each variable is highly dependent upon the values of many
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other variables” [Harm01]. Other limitations of the static slicing techniques are related to
different types of dynamic language constructs, e.g. dynamic binding, polymorphism and
pointer handling. In most cases static slicing algorithms have to make, caused by a lack of
run-time information, conservative assumption with respect to the potential program flow,
and therefore the number of statements that have to be considered for the slice might be
larger than necessary. In what follows we introduce dynamic slicing as an extension to

static slicing that tries to overcome some of these limitations of static slicing.

2.3 Dynamic Slicing

Korel and Laski [Kor88] [Kor90] originally introduced dynamic slicing that considers only
one particular program execution rather than all possible program executions.

A dynamic slice is the executable subset of a program, for a variable at a specific
execution position; the behavior of a dynamic slice is identical to that of the original
program, given the same program input. A slicing criterion of program P executed on input
x is a duple C=(x,)?) where )7 is a variable at execution position g. [Kor88]

Agrawal and Horgan [Agr90] proposed a similar definition for a dynamic slice: given
an execution history EH of a program P, the dynamic slice of var is the set of all statements
in EH whose execution had effects on the value of var as it is observed at the end of the
execution. The main difference between Agrawal and Horgan’s algorithm and Korel’s
algorithm is that the former may compute non-executable slices that can’t be compiled and

executed afterwards, whereas the later emphasizes executable slices.
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In what follows we present in Figure 4 a sample program that is used to illustrate the

computation of a dynamic slice.

1 package computerSystem,;

2 public class Mouse {

3 private boolean left_button;
4 private boolean right_button;

5 public Mouse( boolean left_status, boolean right_status ){
6 left_button = left_staus;

7 right_button = right_status;

8§

9 public boolean getLeft( ){

10 return left_button;

1}

12 public boolean getRight(){

13 return left button;

14 }

15  public static void main( String argv[] ){

16 Mouse aMouse = new Mouse( false, true );
17 String show = new String(“NULL”);

18 if( aMouse.getLeft() == true )

19 show = “RUN”;

20 if( aMouse.getRight() == true )
21 show = “Property”;

22 System.out.println( show );
23

24 }

Figure 4 a sample program Mouse.java Computer model

The sample program shows a simple class called mouse, and a group of values that are
used as inputs for variable left_button and right_button when an object of the type aMouse
is instantiated. The program produces a wrong output at line 22 that corresponds “NULL”.
For a static slicing algorithm to identify the bug, a PDG of the whole program must be built,

and a slice for the variable of interest, in this case the variable show, may be computed by

18






































































































































































































