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ABSTRACT

Prime Component Decomposition of
Images and its Applications in an
Image Understanding System

Maciej Macieszczak, Ph.D.
Concordia University, 1997

A reliable and flexible model of a low-level processing stage is one of the most crucial
requirements in the development of an image understanding system (IUS). In this thesis,
a model for the low-level processing stage based on a new scheme of prime component
decomposition is proposed. This model is then used to develop a knowledge-based image
understanding system that is capable of solving many image processing problems without

employing complex algorithms.

A scheme for the prime component decomposition that utilizes the maximum size geo-
metrical polygons is devised. It is shown that the optimal decomposition element in the
continuous metric space has a circular shape. The decomposition operator is also opti-
mized in the discrete metric space to deal with the actual implementation of the prime
component decomposition operator, yielding square decomposition elements. The derived
decomposition operator is used to extract shape elements of the objects contained in input
scenes and to produce their intermediate object descriptions. In the proposed approach
of shape extraction, the prime component decomposition technique is used to partition
the object’s interior, while a modified Sobel operator is used to detect the object’s edges.
The typical errors of a shape extraction process such as noise sensitivity, description er-
rors of diagonal objects and the description errors caused by a small sampling frequency

1l



are reduced using a shape equalization approach that is based on Fourier descriptors and
nonlinear interpolation.

In the development of an image understanding system, a hierarchical approach of con-
structing the intermediate object representation is used to represent the knowledge within
the system. The knowledge base of the IUS is developed as a relational multidimensional
tree structure that dynamically changes the relational links among its elements. The
dynamical process of creating and transforming the knowledge base is controlled by a
feedback with the low-level processing stage that reduces the memory requirements of the
IUS. The traditional data type definitions are extended to include the base and derived
data types. These extensions effectively represent and process the time-varying knowl-
edge of the system and increase its overall efficiency. The high-level processing stage of
the IUS is implemented based on the black-board architecture with a specialized control
mechanism - the agenda-based control. This control mechanism reduces the number of
computational steps within the high-level processing stage by employing a selective fo-

cusing mechanism.

The functional behaviour of the proposed prime component decomposition scheme and
the model of the image understanding system is experimented with several application
examples including the isolation and identification of stationary and time-varying objects.

v
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Chapter 1

INTRODUCTION

An image understanding system (IUS) is essentially a knowledge transformation system
utilizing many information processing paradigms. Since majority of the developments
for image understanding systems have been achieved in the field of image processing and
artificial intelligence, an IUS is also known as the knowledge-based DSP architecture,
computer vision system or simply a knowledge-based system. The problems encountered
in an IUS are extremely difficult and involve many complex processes and representation
dilemmas. Some of them are related to the description of the knowledge in the physical
world, while others are the ones dealing with the knowledge transformation schemes.
These problems can be more explicitly stated as two major tasks but related to one

another: (a) the knowledge representation, and (b) the knowledge transformation.

1.1 Knowledge Representation

Solving the problem of a knowledge representation is one of the most difficult tasks faced
by the researches wanting to build a reliable IUS. Apart from the strict theoretical con-
siderations of the knowledge representation, one has to deal with the practical issues
concerning the implementation of a given theoretical model. Therefore, some of the so-
lutions that promote logically complex and computationally expensive algorithms might
be rejected. On the other hand, the “hardware” oriented approaches with simple models
might be too simple to effectively represent the complex relations between the objects in

the physical world.



There have been several attempts to develop a formal structure for the representation of
knowledge for various IUS. Among the most successful ones are the production systems
[61], the procedural systems [43], and the state-space representation [67], [99]. Each
of these systems has been used either in its original form or with some variations as
required by the application problems. In computer vision, the knowledge representation

may require to have the following features.

(i) The flexibility and consistency of a knowledge representation scheme to which one
can add or delete the needed pieces of knowledge in a systematic fashion.

(ii) A facility for representing factual information (predicates, functions or relations)
and procedures which could extract information on request from the input data

(1i1) An inference scheme, which could generate new reasoning strategies.

The development of an efficient model for an IUS would require the knowledge represen-

tation model to have these features.

Almost all researches agree that an effective scheme for the knowledge representation
should posses a mechanism to represent two major groups of relations between the ob-
jects of the physical world: the spatial relations and the time relations. Because of the
complexity of the problem, most of the efforts have concentrated on finding an optimal
knowledge representation scheme of the relations between the objects only in restricted
domains. As an example, a typical knowledge representation model may describe only
the spatial relations between the objects of the physical world. This approach seems to
be easier than the one that models the spatial and time relations between the objects at
the same time. The model of the knowledge representation together with the information
contained therein is usually called the knowledge base or the data base. In a simple case, a
knowledge representation scheme may be based on the approach that couples the objects
from the physical world to the concepts and relations among the objects to the rule bases.
Consequently, the information in this knowledge representation scheme can be expressed
as relations among the concepts, and then it can be listed as rule bases. This representa-
tion is known as a semantic (syntactic) representation of the knowledge and it is usually
modeled by graphs, networks or frames. Concepts are defined as the sets or fuzzy sets
of objects, observations, or actions. For example, in the knowledge representation model



described by a semantic network, the nodes of the network represent specific concepts and
the links among the nodes represent specific relations among the concepts. Figure 1.2(a)
shows a simple example of a world-scene, and Figure 1.1(b) shows its semantic network

representation.

(b)

Figure 1.1: Knowledge representation using a semantic network.(a) An example of a
simple scene. (b) Its semantic network representation.

The semantic network, that represents the knowledge is usually expressed in a high-level
formal language. The coupling between the high-level formal language and the physical
world is not unique in the sense that one formal language can represent many physical
worlds and one physical world can be represented by many formal languages. Therefore,
one of the biggest problems in this type of the description is to define and to understand
the connections between the syntax and semantics of the formal language to the physical

world.



Another problem related to the modeling of a knowledge representation scheme concerns
constructing the inference rules and reasoning strategies within the model of the knowl-
edge representation. Since a formal language can exist and define itself within its syntax,
it is very difficult to construct and develop appropriate heuristics and rules within the
logical system of the language itself. This is particularly difficult when one wants to
develop a self learning system with ability to act in an adaptive and intelligent manner
similar to human behavior. Trying to overcome these difficulties by the construction of
artificial built-in heuristics and inference rules can be very misleading. In this case, the
complexity and dynamical changes of the physical world very often result in the genera-
tion of syntactically correct but false entailed relations to the physical world (false rules).
Therefore, the built-in inference rules and the reasoning mechanisms should be chosen
very carefully and a proper knowledge transformation scheme, including learning strate-
gies, should determine the final form of the heuristics and rules in the model.

1.2 Knowledge Transformation

The development of the knowledge transformation model is another very important task
belonging to an IUS. Formally, the knowledge transformation is a process that generates
(produces) new forms of the output knowledge representation (knowledge description)
from the input knowledge representation. The transformation process in an IUS is based
on applying rules (productions), described by the semantic of the formal language and
its syntax (grammar) to the input knowledge representation. Built into the knowledge
base of an IUS, a set of productions and inference rules constitutes a base from which
the next production sets are generated. Conceptually, the generation process is similar
to the process which translates the formal symbolic language. Therefore, the knowledge
transformation model is sometimes known as the knowledge compilation or knowledge

translation model.

Similar to the knowledge representation, the knowledge transformation model should not
only be based on a some theoretical foundation, but should also take into consideration



its practical implementation. It is specially important, since the computational complex-
ity of the compilation process increases rapidly with the increase of the complexity of
the knowledge representation. There are many strategies that have been developed to
decrease the amount of information generated by the various stages of the knowledge
transformation module. Some of them utilize built in adaptive rules [82] while others are
based on fixed search algorithms (heuristics) {17]. Ideally, the generation process should
make use of the contextual information contained in the knowledge base which is similar
to the human reasoning strategies. This idea that is very easily accomplished by humans
is not easily convertible into the knowledge transformation model. The meaning of the
context itself does not have a formal description and many interpretations are possible
[97].

There have been a few attempts to propose models of the knowledge transformation based
on the contextual description. Among them, the two most important ones are the concep-
tion of frame model introduced by Minsky [57] and the conception of meaning condition
model introduced by Winograd [99]. In the approach presented by Minsky, the knowledge
transformation is performed by algorithms described by relational data-structures known
as frames. The algorithms can perform two main kinds of hierarchical transformation:
bottom-up and top-down. In the bottom-up transformation, features from the image are
extracted and grouped in some way, with no knowledge of the structure of the object
or the scene. A top-down transformation, on the other hand, starts with the hypothesis
that the image contains a particular object or it can be categorized as a particular type
of scene. This leads to entering deeper into the set of hypotheses about the parts of the
object present in the scene. The model introduced by Winograd is based on the bottom-
up approach of the knowledge transformation and the concepts of meaning conditions are
similar to the concepts of frames. In his model, the knowledge is represented and then
transformed by data structures whose terminal nodes consist of slots which are attributes,
and fillers which are the values of the attributes. In fact, a filler may be the name of a
procedure that must be executed to produce a new value. The data structures composed
of the slots and fillers are then connected similar to the objects in the link-list.

In order to formalize the contextual description, one can assume that the “meaning”, that



is, the entailed relations to the world of particular knowledge agents, can have many di-
mensions. Consequently, a particular dimension can be chosen depending on the context
of the input information. This mechanism allows to switch the context in which the input
information is analyzed. However, there are many problems associated with this type of
context switching. One of the most important ones is the classification mechanism for
mapping the context of the scene into one or more dimensions. The other problems con-
cern the practical implementation of the whole classification process i.e. its computational
complexity and associated with it the huge amount of the data to be stored and trans-
ferred. Even the most simple task performed by humans effortlessly require extremely
complicated and computationally very expensive algorithms. The typical and the most
difficult task of the knowledge transformation in an IUS is to identify the objects con-
tained in a scene and to produce the description of their spatial-time interrelations such
as shape analysis, stereo vision and motion estimation. Identification is generally done
on the basis of inner knowledge (knowledge base of the system) and on the knowledge
extracted from the image or image sequences (information extraction).

1.3 Image Understanding Systems

In order to deal with the complicated and involved issues as discussed in Sections 1.1 and
1.2, many models of image understanding architectures have been proposed [7]. Most of
these models are based on the approaches which divide the knowledge compilation process
into smaller sequential processes and group them into levels of hierarchical transforma-
tions. The hierarchical transformation is defined by a predefined hierarchy of ordering
of the procedures that performs the required analysis task. Typically, the models based
on the hierarchical approaches imply at least two levels of processing which are usually
called the low-level processing (or early stage vision) and the high-level processing. In
the most common scenario, a main procedure calls on a set of preprocessing routines
from the low-level processing stage of the IUS, that convert the original image to a form
most suitable for extracting the primitive features. This stage of transformation involves
the classical image processing techniques such as contrast enhancement or edge detec-
tion. Next, a feature extraction routine locates the features of interest and constructs a
symbolic description called the intermediate object description of these features and their
attributes and interrelations.



1.3.1 Intermediate Object Description

One of the major drawbacks that is present in most of the existing image understanding
systems is that they lack an effective mechanism which reduces the redundant input in-
formation and produces an efficient intermediate object description suitable for further
processing. This mechanism should be built into the low-level processing stage and it
should utilize in the most optimal way the available resources of the IUS. Typically, an
intermediate object description is a very complex data structure whose elements represent
the time-space relations between the objects contained in the input world-scene. Gener-
ally, there is little use of the past input information in the existing systems. Moreover, the
adaptability of the low-level processing stage to the changing environment of the existing
system is very limited. This makes high-level processing difficult, slow and complicated.
In addition, the organization of the commonly used data structures [92] for the interme-
diate object description and their syntax makes later processing even more complicated.
The formal description language of data structures, syntax and its semantic relations are
essential elements in order to develop an affective and flexible intermediate object de-

scription model.

1.3.2 Decomposition Operator in a Low-Level Processing Stage

The key idea in low-level processing is to find a method of the description of the image and
image sequences which minimizes the computational complexity of transformations and
simplifies the required algorithms for high-level processing. Usually, this goal is achieved
by performing several stages of transformations such as preprocessing, feature extraction
and mapping the extracted features into an intermediate object description. The feature
extraction is one of the most important and difficult tasks to model [35]. In an IUS
the feature extraction mechanism should effectively represent three groups of relations
present in world-scenes: (a) specialized measurement relations, (b) visual relations, and
(c) pattern synthesizing relations. The first group of relations describes a particular set of
outstanding measurements derived from the initial pattern measurements - outstanding in
the sense that they more strongly characterize and discriminate the classes than the raw



measurements obtained by the receptors. The second group of relations represents visual
(topological and geometrical) characteristics of patterns; for example, closed curves, forks,
corners, straight segments, bays, etc. Finally, the third group of relations describe sub-
patterns whose superposition results in a given pattern. The feature extraction algorithm
that extracts this group of relations is equivalent to determining a minimal set of features
which are sufficient to synthesize all the patterns found in world-scenes. Because of the
relational constrains, the typical feature extraction algorithms are based on the polygonal
decomposition approach [32] and they utilize sophisticated hierarchical data structures.

In order to construct an efficient feature extraction algorithm in an IUS, many models of
polygonal decomposition have been proposed [14], [32], [93]. Some of them are based on
the interior decomposition of the objects contained in the scene while others concentrate
on describing the object’s boundaries [95]. The group of polygonal decompositions based
on the description of the object’s interior includes quad-tree decomposition, symmetric
axis transformation and 2-D C-string representations [39], [74]. The transformations that
describe the object’s boundaries are Fourier descriptors, B-spline decomposition, moment
invariant transformations and others [2], [23], [53]. Both groups of polygonal decomposi-
tion can utilize many different data structures. Among the most popular ones are linear
lists, hierarchical structures, graph structures, complex recursive structures [85].

There are many problems in the existing decomposition approaches used in the low-level
stage of an IUS. First, the existing decomposition models [34] do not combine the de-
scription of the object’s interior with the description of the object’s boundaries. This
fusion is extremely important and it significantly simplifies the context-dependent trans-
formations in the high-level processing stage of an IUS. Second, most of the existing
polygonal decomposition models [10] are computationally very expensive and difficult to
implement, including parallel implementation of algorithms and optimal utilization of
system’s resources. Third, the existing decomposition models are too restrictive to effi-
ciently decompose typical time-varying events. Time-varying situations occur when an
IUS is involved in the analysis of image sequences containing objects that change their
form or shape with time. Fourth, most of the proposed decomposition models are very
rigid in the sense that they can describe only very simple input data such as regular and

symmetrical polygons.



1.4 Scope and Organization of the Thesis

The objective of this thesis is to propose an efficient model for a knowledge-based image
understanding system that can reduce the weaknesses of the existing models. The model
of the low-level processing stage is based on developing a new prime component decom-
position scheme that can produce an efficient intermediate representation of the objects
within the input world-scenes and facilitate an effective development of the models of the

knowledge base and the high-level processing stage of the IUS.

The thesis is organized as follows. Chapter 2 presents a general overview of an IUS and
gives the necessary background material. The model of image formation in an IUS, trans-

formations of the input image and their properties are discussed.

Since in majority of the cases, the essential relations are not those between elementary
objects (i.e. pixels) but those between the groups of elementary objects, one would like
to deal with a scene decomposed into groups of elementary objects and relations among
them. In Chapter 3, a decomposition operator based on an approach that reduces the
redundant information by an effective extraction of the repeated elements of the scene and
by grouping together the sets of pixels having similar relational properties in the space
and time domains is developed. In order to increase the implementation efficiency, the
decomposition model is optimized to yield polygonal prime components keeping in mind
many independent parameters related to the properties of the real world-scenes and to

the processing environment.

In Chapter 4, the scheme developed for polygonal decomposition is then used to model
the shape extraction process and to obtain a relational description of the patterns and
their clusters in world-scenes. The shape extraction process performs polygonal decom-
position of the interior of the objects in the scene and detects their boundaries. The



interior decomposition is done using squared polygons (prime components). The bound-
aries of the objects (edges) are determined using a modified Sobel operator. In order to
decrease the computational complexity of the shape extraction process and to eliminate
the geometrical distortions of diagonal, overlapped and neighborhood objects, the shape
extraction process also includes a shape equalization procedure. This procedure is based
on a smoothing the parametrically represented boundary of the extracted object by a 1-D
adaptive filter in the Fourier descriptor domain. After the decomposition of the objects’
interior and detection of their boundaries, a discrete set of points representing the edges
and coordinates of prime components are fused (clustered) together into a full discrete
skeleton of an object. The final stage of the extraction is to produce an intermediate
object description. This process is carried out by matching the B-spline curves to the
whole discrete skeleton of the object. The resulting intermediate object description is
composed of a set of extracted shape elements (set of B-spline curves) and interrelations

among them.

Chapter 5 presents models for the low-level processing stage, high-level processing stage
and the knowledge base of the IUS. These models are optimized to reduce the com-
plexity of the intermediate object description, and the amount of data for knowledge
representation. The reduction in the complexity of the intermediate object description is
achieved by a feedback mechanism with the knowledge base that utilizes the contextual
description and statistical properties of the objects in the world-scene now represented
by the polygonal prime components and their clusters. This feedback mechanism with
the knowledge base acts as a “filter” which further eliminates the redundant informa-
tion from the intermediate object description and it helps to perform top-down reasoning
process in the IUS. The knowledge representation in the IUS is based on the model of a
multidimensional stochastic tree graph structure. With this type of data representation,
one particular context of the intermediate object description corresponds to one dimen-
sion of the stochastic tree graph structure. In this manner, switching between contexts
is accomplished by switching the dimensions in the multidimensional data representa-
tion, which is very effective and easy to implement. In order to efficiently represent the
time-varying events described by the intermediate object description the knowledge rep-
resentation scheme has two additional timing mechanism. The first mechanism reduces
the size of the knowledge-base by eliminating “unused” or “rarely used” information. The
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second one incorporates into the knowledge base the time relations between the objects
of a world-scene. The model of the IUS composed of interacting low-level, high-level
processing stages and the knowledge base is shown in Figure 1.2. Additional blocks

Knowledge-based
image understanding system
[ Knowledge base (data-base) ]
ﬂ ? Interaction with knowledge-base ’ \ ﬁ
) Intermedia e B
INPUT chject
Low-level description
——> processing
stage
J High-level
processing
\ Image
OUTPUT ohject stage
Image synthesis deseription
<___ stage <__
J . J
- J

Figure 1.2: The proposed model of the image understanding system.
that are included in the IUS are an image synthesis stage and input-output devices. The

low-level processing stage is designed to include the elements of adaptability and self-
optimization.
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The task of the high-level processing stage is to generate from the intermediate object
description, the description of the image events and relations among them, and it is based
on the interaction with the knowledge base of the IUS. The generated description repre-
sents information about complex two-dimensional world-scenes, that can be used to form
symbolic representation of events. The high-level processing stage incorporates many
techniques of artificial intelligence (AI) such as symbolic reasoning, Black-Board (BB)
models and heuristic algorithms.

In order to demonstrate the effectiveness of the proposed prime component decomposition
scheme and the model of the image understanding system, in Chapter 6, several examples
of low-level and high-level processing applications are considered.

In Chapter 7, the results of this study are summarized and some suggestions for future
investigation are made.
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Chapter 2

IMAGE REPRESENTATION

One of the most fundamental and first operation of an image understanding system is
the task of the forming an internal image representation of a world-scene. The quality
of this operation directly determines many important characteristics of the IUS such as
memory requirements, real-time performance and the system’s hardware and software
resources. Moreover, the understanding of the image formation process helps to develop
efficient internal data structures and to better optimize the subsequent stages of the I1US.
particularly the low-level processing stage and the construction of intermediate object
representation. The construction of an accurate intermediate object representation, in
turn, can avoid the use of many computationally expensive algorithms within the low-
level and high-level processing stages of an IUS.

2.1 Image Formation Model

The image formation model of a vision system can be symbolically presented as in
Figure 2.1. The function W,.: X "xY' 5 G represents a real world-scene, whereas
Iim : X x Y — G represents the inner-image formation, where X', Y’, G’ denote the spa-
tial coordinates and gray level of the world-scene, and X, Y, G denote these quantities
for the inner-image representation. The function W, is defined as

W,C(z:',y') = {(:L",y',g') czeX A y' eY A g' € G'} , (2.1)
and similarly, [;,, is defined as

Lin(z,y) = {(z,y,9) :z€X ANyeY A geG}, (2.

o
N
e
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INPUT INNER-IMAGE
Y’ WORLD-SCENE Y REPRESENTATION

A A :

INPUT
TRANSFORMATION

W x'y) —> E() —>  [.kxy)
Figure 2.1: Model of the image formation in a vision system.

where X', Y'. G, X, Y, G C R, and R denotes the set of all real numbers. The transfor-

mation function
Fi,: X' xY' xG xXxY =G,

defined as
Rn(m"y,7g'vx$y) = {(xlv ylsg’vz’y’g) : (3,73/'79') e WSC /\ ($7y7g) 6 Iim}, (2'3)

transforms the world-scene onto the inner-image representation in the visual system. The
spatial coordinates X', Y’, X, Y are related by the relations CXYX': X xY = X' and
CXYY': X xY = Y'., which are defined by

CXY X (z.y) = {(z,y,CXY X' (z,y)) : (z,y) e X xY A CXX'(z,y) € X x¥Y x X'}.
(2.4)

and

CXYY'(z,y) = {(z,5.CXYY'(z,y)) : (z,y) € X xY ACXYY (z,y) € X xY xY'}.
(2.5)

In this manner, we obtain

I,-m(a:,y) = F'in(xlvylvglvxay)
= Rn(xlyylywsc(z,’yl)vz’y)
= Fa(CXYX'(z,y),CXYY'(2,y), Wil CXY X (2,y), CXYY (2,y)), 2,Y).
(2.6)
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The transformation given by (2.6), in the general case, is very complex. In order to
simplify the analysis, one can assume that the functions CXYX', CXYY" are just simple
substitutions that is, CXYX'(z,y) = z and CXYY'(z,y) = y. In addition, let ' = z
and y = y. After this simplification, the transformation F}, yields

Iim(zy y) = En(za Y, W,,_.(:z:, y)) .

Additional simplification can be achieved by linearizing (2.6), which in many cases is a
good approximation of ” word-scene — inner-image ” relation.

Definition 2.1 :
The transformation

Iim(zay) = Rn(z9 Y, Wsc(:z"’ y))
is said to be linear in respect to domain G (W, C X x Y x G) iff (Va,B8€ G)A
(VW1,, ,W2,,Cc X xY xG)
Fin(z,y, (aWle(z,y) + BW2,(z,y))) = aFin(z,y, Wls(z,y)) +8Fin(z.y, Wl (z.y)).

When the input is the two-dimensional delta function é(-,-) at (z;,4;) € X x Y, §(-,-) =
d(z — 1,y — 1), the output in coordinates (z,y) € X x Y can be expressed as

—_—
[SV)
.
-1

—

h(-’l'ay,l'hyl) = in(z —TnL,Yy— y1,6(z - T,y yx)) .

Now, for this linear system, the inner-image function /;,(z,y) can be written as
[im(z,y) = / / h(z,y, z1, y1)Wie(z1, y1) dx1 dys.- (2.8)
—oc J =00

Equation (2.8) represents spatially-varying point-spread transformation of the world-
scene. A spatially-varying transformation becomes spatially invariant or shift invariant.
if a translation in the domain of the world-scene W,. causes the same translation in the
domain of the inner-image representation I;,. Alternatively, (2.8) becomes spatially in-
variant if the function A(z,y, z;,y;) depends only on x and y.

Definition 2.2:
The transformation

I{m(IE, y) = En(za Y, WSC(‘T’ y))
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is said to be spatially invariant iff (Vz,2; € X) A (Vy,y1 € Y)A (YW, C X' x Y’ x G)

Iim(-’B —Z1,¥Y— yl) = Fin(-‘l? —ZI1,Y— yl,Wac(I —I),Yy— yl))

3 (2.9)

h(.’t, Y, i, yl) = F‘t‘n(z —TLYy— yl,a(z —TLY - yl))
= h(z-z1,y —41,0,0)
= h(z-zhy_yl)

Consequently, for the shift-invariant image formation model, the inner-image represen-
tation can be obtained by performing the convolution operation of the world-scene W,.
with the impulse response of the the system h(z,y) as given by

Lim(z,y) = /_oo /_oo h(z, y)Wee(z1, 1) dz dy;. (2.10)

For a shift-invariant image formation model, the convolution operation given by (2.10)
can be performed by utilizing the properties of the Fourier transformation, i.e.

Iim(xvy) = h(lry)GWsc(zvy) A Itm(€11€2) = H(61762) 35(61762) (211)

where T (€1, €2). H(&,&2) and W, (&, &) are the two-dimensional Fourier transforms
of the lim(z,y), h(z,y) and W, (z,y), respectively, and the symbol © represents the
convolution operation. The two dimensional Fourier transform F(£;,&;) of the function

f(z,y) is defined by the linear transformation as

Fleng) = [ [ fla etz gy (212
The inverse Fourier transform of F(§),&;) is given by

M@y = [ [ Fla,e)eseantl, dy, . (2.13)

The function H (&1, &), which is the Fourier transform of the impulse response k(z,y), is
also called the frequency response of the image formation.

16



2.2 Distortions and Geometrical Transformations

Equation (2.10) has been derived by setting the coordinate transformation functions (op-
erators) CXYX', CXYY" as identity operators, i.e., no geometrical distortion occurs. In a
practical IUS, the inner-image representation is constructed by transforming the physical
stimulus (world-scene W,.) into the internal data structures of the system. The transfor-
mation process is usually performed by different types of the input devices having their
own nonlinear or linear input-output characteristics. These characteristics are the major
factors in various types of geometrical distortions such as in displacement (translation),
dialation (magnification), rotation, perspective distortions. Considering the case in which
the geometrical distortion occurs, one should take into account the functions CXY X' and
CXYY' as well. Typical cases can be described as

(a) Identity operation:

CXYX'(z,y) T
, - 2.14
oxvriom] = (214
(b) Translation:
[CXYX'(z,y)] [z — z, ]
, = . 2.1
exyY'@y)] T ly-ul (2:19)
(c) Reflection:
[CXYX'(z,y)] _ [z1—2] (2.16)
| CXYY'(z,y)] | v -
(d) Magnification:
CXYX'(r,y) _ ]z (2.17)
CXYY'(z.y)|  ly/wl’ -
(e) Rotation through positive angle O:
CXYX'(z,y) __ |zcos® — ysin@® (2.18)
CXYY'(z,y)|  [zsin® + ycos@®| '

Taking into account the geometrical transformations of spatial coordinates, (2.10) becomes

Lim(z, y) / / (2,9)8(CXY X (z,y) — 21, CXY X (2, y) — y1)Wae(z1, 11) s dy.
(2.19)

In addition, some distortions may also occur due to the diffraction of the optical systems
used as input devices, the motion between the detector and the objects present in a
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world-scene, atmospheric turbulence or rectangular scanning aperture. This type of the
geometrical distortions can be described by the spatially invariant image formation models
having different impulse responses as given below [10], [11], [43].

(f) Limited coherent diffraction (with rectangular aperture)

h(z,y) = absinc(az)sinc(by) & H(&, &) = 1'ect:(£1 62) (2.20)
(g) Limited incoherent diffraction (with rectangular aperture)

h(z,y) = absinc*(az)sinc?(by) & H(&, &) = tri(%,%) (2.21)
(h) Horizontal motion

h(z,y) = aiorect(ai0 ~ 3)(3) & H(E,6) = sinc{rap)e=ime)  (2.29)

(i) Atmospheric turbulence

—wa?(z2 + y?) 1 :"_(‘12#%1
h(z,y) = ™ ¥ & H(6,6) = i (2.23)

(j) Rectangular scanning aperture

h(z,y) = rect(g,%) & H(61,6) = afsinc(at;) sinc(36;) (2.24)

In (2.20) and (2.21), the function rect(.,.) and tri(.,.) are defined as

1
ety = { | 10bel<d 229
11> 21
and
il &) = {(1—|a 12(1—1521) }i}}i}i . (2.26)

2.3 Summary

In this chapter, the necessary background material concerning image-formation model in
an [US has been presented. In the model presented, the inner image representation [,
is constructed by applying the input transformation F}, to the real world-scene W,.. The
input transformation F}, has been linearized in order to obtain a simple and convenient
expression that is suitable for analysis. In addition, the image formation model has been
refined to take into account the geometrical transformations and distortions due to the

diffraction occurring in optical systems.
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Chapter 3

PRIME COMPONENT
DECOMPOSITION

As mentioned in Chapter 1, one of the most important tasks of the low-level processing
stage in an IUS is to generate an intermediate object description of a scene [84], [90]. An
intermediate object description is obtained as a result of a transformation of the given
scene into set(s) of objects and “relations” (associations) among them. Because of the
physical properties of real world-scenes, the most natural relations are those between
the scene objects and the groups of geometrical objects represented as two-dimensional
polygons. Consequently, most of the transformations that produce intermediate object
description are based on geometrical transformations of input world-scenes. Conceptu-
ally, such transformations can be equivalent to a geometrical (polygonal) decomposition
of the scene into groups of pixels having similar relational properties (94]. In majority of
the cases, the typical result of the polygonal decomposition operation on a world-scene
followed by additional processing (such as shape equalization, edge detection etc.) in the

low-level stage is the intermediate object representation known as semantic network.

The process of generating an intermediate object description is extremely important part
of the knowledge transformation in an IUS. The structure of the intermediate object de-
scription and its complexity characterizes the properties and the capability of the IUS in
relation to its processing power. Therefore, the process of modeling the image decompo-
sition operator should be performed very carefully, keeping in mind many independent
parameters related to the properties of the decomposition operator developed and its im-

plementation.
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In this chapter, he decomposition operator is developed and optimized by the analysis
of the properties of world-scenes. First, the most general relations between the prime
components are investigated. Next, the basic relations among the objects found in a
scene are identified and their implications on the process of modeling of the decomposi-
tion operator are determined. The optimization process of the decomposition operator is
performed in the discreet metric space for its practical implementation. The results of the
mathematical analysis are supported through a statistical simulation employing a family

of world-scenes.

3.1 Prime Components and their Associations

In order to derive the basic properties of the decomposition, let us first assume that the
input transformation defined by (2.6) is an identity function (operator), that is,

Iim(xvy) = WSC(zlvy’)
z=z2 | = (G=G) (3.1)
y=19

Choosing the representation of a word-scene as a function W2 : X' x Y’ — G, where n
(the frame number) belongs to the set of natural numbers (A), we can construct a set of

all possible word-scenes Uyy, whose members are functions of the form

Uw

{.. WrLWR WEY L)

sc? sC

= {Wl:neN}. (3.2)
Similarly, we can construct a set of all possible inner-image representations Uz as

Up = {.. D00 Iy

trtrttm Y TtmY wm T

= {I} :neN}. (3.3)

Because of (3.1), these two sets are equal, i.e., Uy = Ur. We can now introduce a decom-
position operator DEC[:] as DEC : Ur — Up x U4, which maps the set of all inner-image
representations Ur into a set of all objects called the prime components Up and a set
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of associations (links) {4 among them. Consequently, the decomposition DEC[-] can be
defined as

DECIL] = {(WR,Z2) : I% €Ur N 2 € Up x Ua, n €N}, (3.4)

where Z7 denotes the resulting decomposition of the inner image representation W?=. For
a finite and countable set U/p having r elements PX { k,» € N and k < r < o0}, one can
write

U = {P°,PL P ... P71}

sc?

= {PE:keNANEk<T}. (3.5)

Similar to the set of all prime components Up, the countable set U4 of all associations
having s elements A™* { m,k € M and m,k < r < oo}, where superscript "mk” denotes

k

association between elements P? and P., can be expressed as

Us = {ATF : mke N Amk < r < oo}. (3.6)

The association AT* € Uy, { m,k € N and m,k < r < oo} is:
(i) reflective < (m=k),
(i) symmetric <= (AT"F = Akm),
The above two properties limit the number of distinct elements in ¢4 by

2

r if all associations are allowed,

s < ¢ r? —r if the reflective elements are excluded

r2—r

> if the reflective and symmetric elements are excluded.

Figure 3.1 shows an example of 4 prime components together with their associations.
The associations (links) should be understood as a collection of rules (operators) that
connect (unify) the given set of prime components to the equivalent description set of the
world-scene. By an equivalent description of the word-scene, it is meant that the given
description preserves all the information of the input world-scene W,.



Figure 3.1: Prime component representation of a world-scene. (a) allowing all associa-
tions A™F, (b) excluding reflective associations, (c) excluding reflective and symmetric

‘tsc !
associlations.

3.2 Relations between Prime Components

In the previous section, the relation between prime components have been defined as a
general set of rules known as associations that combine together the set of prime compo-
nents. In order to proceed further, the theoretically defined set of associations has to be
described in terms of the rules and relations from the real physical world.

Let Iim(z,y) represent the inner image representation of the real world-scene W, (z',y')
obtained by the applying the transformation (3.1). All functions IZ are projections
from the physical world, from which we can conclude that physical relations among the
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objects will have their natural reflection in the relations belonging to the inner image
representation ;. Let Rt be a relation giving rise to members V,,I; CXxYxG, meWN.
Now, for the given relation Ry, the equivalence set V% C X x Y x G can be formed. The
fact that every set VX C X x Y x G, m € N (member of VX C X x Y x G) is composed
of the elements

Tk = (Tho Yy Gk) € X X Y % G = (Zky Yoy lim (202 92)), K EN A (zho32) € X x Y, (3.7)

implies a relation
it €lmeViEe X xY xG.

Generally, the relation Ry that "extracts” the member VX from I;,, can be very broad
(30], [70], {87], [98] . It could be a set of elements having the same gray level g € G, or a
set of elements having "the same shape” or a set having some special properties. Some
examples of relations are presented in Figure 3.2. Figure 3.3 shows one particular example
of the relation Ry belonging to an inner image representation Iy, which groups together
the elements [;m(z,y) = i2,, @ € N having the same gray level g'. In this case 4-gray
level 128 x 128 image has been chosen.

Definition 3.1:

A relation Ry on a set X xYxG (RLC(X xY xG)x (X xY xG) is an
equivalence relation iff it has the following properties for all (z;,y1,41), (z2,92.92).
(r3,y3.93) in X xY x G:

(1) ((-‘l'hyhgl)’ (Il,yhgl)) €ERL
(2) if ((z1,¥1,91), (22, ¥2, 92)) € Ry then ((z2,y2,92), (z1,¥1,01)) € Re.

(3) if ((zlv yhgl)’ (.‘Eg, y2’g2)) € Ry and ((327 y2192)’(x3’ y:lhg3)) € Ry then
((Ihyl’gl)7 (.’1,‘3, Y3, 93)) € RL-

It is easy to check that the relations R,, Rz, and R3 shown on the Figure 3.2 as well as
the relation Ry shown in the Figure 3.3 are equivalence relations on aset X xY x G.
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Figure 3.2: Examples of the relations Ry, in an inner image representation [im.

For the equivalence relations Ry on a set X x Y x G, we define equivalence class (with
respect to equivalence relation Rp) of (z1,y1,01) € X XY x G to be the set

E(::;.yl,g;) = {(1‘2,3/2,92) : ((xz,yz,gz),(-’l'hyhgl)) € RL}-

Definition 3.2:
A partition of the set X xY x G is a collection C of nonempty subsets of X xY x G
such that:

(1) each (z1,y1,91) € X x Y x G belongs to some subset A€ C, and

(2) if A, B€C and A# B, then ANB = 0.
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d X ) X

Figure 3.3: Decomposition of a scene by a relation of groups of pixels with the same gray
level. (a) the scene. (b-e) members of the equivalence set VL.
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It can be easily verified that for an equivalence relation Ry, on the set X x Y x G, the
set

C = {E@2,¥2,92) : ((z2,¥2,92), (21,41, 41)) € Re}
is a partition of X x Y x G. Conversely, if C is a partition of X x Y x G using a relation
Ry, then Ry is an equivalence relation and the set of corresponding equivalence classes

is the same as C.

According to the definitions of equivalence class and partition, it follows that if a rela-
tion Ry is an equivalence relation then the set VX is a partition ( collection) of the set
X x Y x G and its each member VL C X xY x G, m € N stands for an equivalence class
of the relation Ry, "corresponding” to the set E(;, ,, o,) defined above. Thus, we will have

L L
Vm = E(l‘h!ll:m) g vsc’ meE N'

Consequently, the sets determined by relations R, (n = 1,2,3) in Figure 3.2 can be

grouped as
V.:c = {Vllvvzlvval’ V41} = {Cll’ ;’C:}’C;}v
Vs2c = {V127 V22’ V321 V42} = {Clza 022’03,03}7
v33c = {V137 V23} = {Ci?' Cg}

Vi = XxYxG\{VLuVviuVvi}
C = {VL, Vi V3 Vi}.

scy 7 scr 7 sc?

Having formally identified the relations in a scene, we can now define one of the most

important properties of the decomposition operator.

Proposition I :
The decomposition DEC : Ur — {Up,Ux} is contezt invariant under the equivalence
relation Ry C (X xY x G) x (X xY x G) iff

(a) for all equivalence classes VX (n € N') with respect to Ry,

(| DECIE.(z,y)] = PAL = PAL = {Pk, AL} (3.8)
VikeIn,
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(b) DEC[IZ (z,y)] N PAL = PAL, n € N = 3m € N such that VL € [,

mm

The set PAL = {P%, AL} is then called the representative of the relation Ryg.

If the inner image representation IZ (z,y), n € N, includes at least one equivalence class
VL with respect to Ry, then we can say that relation Ry is present in the inner image

representation I, (z,y)

3.3 Properties of a Decomposition Operator

Generally speaking, specific properties of a decomposition operator DEC|-] is difficult to
enunciate. Only the most general ones that characterize the decomposition can be stated

as follows.

(I) Decomposition should preserve all the input information.

(II) Decomposition should decompose information uniquely under the given context.
(III) Decomposition should be context invariant under the equivalence relation Ry.

(IV) Decomposition should significantly reduce the complexity of the description of a

given scene.

Corresponding to property (I}, the decomposition operator DEC|-] must posses its inverse
operator DEC™! : Up x U4 — Uz, such that the given input inner image representation
I? can be recovered. Further, because of properties (I) and (II), the decomposition op-

erator DEC[-] is a one-to-one mapping function (bijective).

Let X be a non-empty set. A metric on X is a real function d : (z,y) = z € R which
satisfies the following three conditions

(1) d(z,y) 20, and d(z,y) =0 <= z =y
(2) d(z,y) = d(y,z)

3) d(z,y) < d(z,z) + d(z,y).
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The function d(z,y) is called the distance between elements z and y. A metric space
consists of two objects: a non-empty set X and a metric d on X. Let A be subset of X
(A C X). If z € X, then the distance from z to A is defined by

d(z,A) = min{d(z,a) : a € A}. (3.9)

Similarly, let A and B be two subsets of X (A4, B C X). Then, the distance between A
and B is defined by

d(A, B) = min{d(a,b) : (a,b) € A x B}. (3.10)

According to (2.18), a rotation operator ROT[-] on a region R™(z,y) C I (z,y) can be
defined as

ROT[RY(z.y)(©)] = {((z,y),9) : Rie(z,y) = RY(CXYX(z,y),CXYY(z,y)) € I}.(2,

(3.11)
where by R" we denote any region (subset) of I, (R*(z,y) C IZ.(z,y), n,k € N)
and functions CXY X(z,y) and CXYY(z,y) are defined consistent to (2.4) and (2.5).
Usually, each set W2 is a frame from the physical world; therefore, one can assume that

the following properties hold.

(a) Probabilities of occurrence of a region R™(z,y) and the region R?(z.y). which
is a translation of the region R™(z,y) in an inner image representation I% (z.y)

(R¥(z,y) = R™(z — 20,y — o)), are the same, that is

P(R*(z—z0,y—w0) C I}, (z,y)) = P(R*(z,y) C I%.(z,y)), (z—z0,y—yo) € X xY.
(3.12)

(b) Probabilities of occurrence of a region R*(z,y) and the region R*(z,y) , which is
a rotated version of the region R"(z,y) through an angle © , in an inner image
representation I} (z,y) (R7(z,y) = ROT[R"(z,y)(0)]) are the same, that is

m

P(R™(z,y) € I1.(z,y)) = P(R{(z,y) € I7.(z,y)), (z,y)€X xY.  (3.13)
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(c) Given two disjoint regions R™(z,y) and R?(z,y) (R*(z,y) "R} (z,y) = 0), belong-
ing to the same equivalence class Ei,q) with respect to equivalence relation Ry

representing sets with the same gray level go
R (z,y), Ri(2,Y) € E(zy9 € Re,

Ri = {(z,4,9) : Iin(z,y) = 6o}
the conditional probability of occurrence of the region R™(z,y), given the region
R™(z,y), depends on the distance d(R",R}) between the region R(z,y) and the
region RY(z,y), that is,

P(R*(z,y) € I7.(z,y) | R} (2,y) € [n(z,y)) # P(R™(2,y) € Ii.(,y)). (3.14)

Consistent with (3.8), property (III), and taking into consideration the physical properties
(a), (b), and (c) of the objects in a real world-scene, it can be deduced that operator DEC
is spatially invariant and it decomposes the inner image representation /7, (z,y) into sets
(regions) R} _(z,y) and spatial relations among them. This type of decomposition can be

written as
Ih.(z,y) = R} (z,y)URE, (2, y)URE (z,y)U. .., (3.15)

In this manner, each region R}_(z,y) corresponds to a particular prime component Pkm
and the spatial relations among the regions correspond to the sets of associations Alts
The set of all prime components Up having r elements P£ { k,r € N and k < r < oc}
can be understood as a basis from which any given inner image representation [ (z.y)
(and the word scene W) can be reconstructed.

3.4 Derivation of Decomposition Operator

One of the most important parameters that characterizes the decomposition operator
DEC is the number of elements PX (prime components) required for the reconstruction of
the inner image representation I2.(z,y). The operator which generates statistically fewer
number of elements PX for the description of the inner image representation is considered
to be a better operator. Let the subset I's}% of a given inner image representation I7, (z,y)

represent areas with the same specific gray level go, as given below
Isin(z,y) = {(z,y) : I;a(z,y) =90 }-
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The decomposition operator DEC decomposes the subset Is;k(z,y) into a set of prime
components uz* and a set of associations uj*,

DEC[Isin(z,y)] = {up*,uz*} C {Up,Ua}-

P

Next, let us consider another inner image representation I;;? that contains the subset
I'si2(z,y) which is a translation and rotation of the subset Is}%(z,y) as given by

I'si(z,y) = ROT[Isii(z — 21,y —n)(O)] C I # I,

In this case, the operator DEC decomposes the subset I's;2(z,y) into a set of prime

ma

». and a set of associations u’;’,

components u
DECI'sF(z,y)] = {u, w3’} C{Up,Ua}-

Following this procedure many different subsets {u7*,u';*} can be constructed. All the

subsets obtained by applying this method are said to be mutually congruent. According to

the postulated properties of a world-scene, probabilities of finding the sets I’s% (z,y), ne =

1,2,...., are equal. Consequently, the number of elements of the sets uz*, u':’, ... should

be the same. This requirement in conjunction with the minimum number of elements of

the basis can be achieved only for the sets that are equivalent by finite decomposition, which
L

means, that for all the pairs [s%(z,y) and Is¥ (z,y), there exist the sets P%, ... Pkn
and P,..., P!» such that the following holds

sc?”

(a) Isii(z.y) = PR U...UP* and Is% (z,y) = Plu...u Pl

(b) Pk N P =0and P,’;:nP,’g = Pfor: # j.

(c) Pk is congruent to P, fori = 1,...,n.

Sc sc?

As a result, one can conclude that

P P
and
P% = Plifork #landi = j.
Since each prime component P%, k = 1,2,..., is a result of the decomposition of the

different subsets Is}%(z,y), each prime component becomes a representative of the rota-
tionally and spatially invariant regions (subsets) S,(z1,y1) C W2k. This yields

ROT[S, (z1,11)(01)] = ROT[S-,(22,y2)(©,)] = ... = ROT[S,.(zn,yn)(Ox)],
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and the sets S;, (zk,yx) C I, (z,y) have to be spheres in a metric on I2,(z,y), that is,

Sru(zr, ) = {(z,9) : d((=,9), (z6, 3e)) <7},

where the function d((z, y), (z, yx)) represents the distance between point (z,y) and point
(zk? yk)’

Two examples of decomposition of a particular subset s?,(z,y) of the inner image rep-
resentation I} (z,y) performed by the rotational invariant (spherical) prime components

are shown in Figures 3.4 and 3.5.

The decomposition of the inner-image representation I, (z,y) with prime components PX
can be performed in many different ways. Since every set S,(z4,y:) is uniquely described
by its radius r and the coordinates of its center point (z, yx), each individual prime com-
ponent obtained from the decomposition can be represented by its center point (zx,yx)
and the diameter d (d = 2r) of the set S, (zk, yx). One method of decomposition could be
to perform the decomposition process randomly - random decomposition (diameters d and
center point (zk, yx) of the S,, are taken randomly). Figure 3.4 is a particular example of
such a decomposition. In another method, we could set d = const. Different decompo-
sition methods would yield different performances (number of decomposed elements - i.e.
prime components). In order to generate a set of prime components A4 having minimum
number of elements, the diameters of the prime components should be taken as large as
possible. Consequently, the maximum diameter dp,z; of every prime component that can

be used as a decomposition element can be written as

dmazl = Sup{d : 54/2(1', y) € Ixr:n}

and

(xmazlaymaxl) = {(zay) : Sdmazl (x,y) € 1311}

One can now construct a new inner-image representation /2 by isolating from the set I,

the “largest” prime component Sy _, (Tmaz1, Ymaz1)

]3721 = [S'n \ Sdmul (zma::ly ymazl)-
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X

Figure 3.4: An example of random decomposition of a scene performed by rotational
invariant (spherical) prime components.

By repeating this operation, the next max-diameter prime component Sq,..., (Zmaz2, Ymaz2)

can be constructed as given below
dma:r:2 = sup{d : Sd/Z(xv y) € 1:11721}1

(zma:ﬂ, yma.::2) = {(.’B, y) : Sdm“z (:t, y) € I::;‘;} .

This process can be continued. Figure 3.5 is an example of a scene decomposition per-

formed by the maximum size rotational invariant (spherical) prime components.

Figure 3.6 shows the decompositions of an image representation [[, by maximum-size
prime components. The different sets of prime components shown in Figure 3.6(a) and
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3.6(b) prove that in this particular case, the decomposition of the inner-image represen-
tation I?, by using the operator DEC is not unique. This is true for majority of the
polygonal decompositions for which decomposed sets are not overlapping. That is, there

could exist inner-image representations for which
DEC[I;rn] = {21,22,...} =Zandz;Nz;=0,1#j=

32" ={2],2y,...} # Z suchthat DEC[I;n] = Z'.

Figure 3.5: An example of scene decomposition performed by maximum-size rotational
invariant (spherical) prime components.

The requirement on the decomposition operation, that the resulting prime components
be disjoint, has significant consequences on the properties of the decomposition operator
itself. The transformation described above is rotational invariant and shift invariant but

not unique. Moreover, the resulting non-overlapping prime components are difficult to
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process. Thus, with an objective of achieving a unique transformation, the decomposition
operator DEC should be modified.

Y
X
(a)
Y%
.°, = 'Q'
X

(b)

Figure 3.6: Examples of non-unique decomposition of inner-image representation [ with
maximum-size rotational invariant (spherical) prime components.

Suppose that the inner image representation I% (z,y) of a world-scene W2 (z,y) can be de-
composed, but not uniquely, by using the transformations DEC,, DEC,,...,DECrm, yielding
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n n

the sets of prime components u},, uJ,,...,u; and the sets of associations u7 , Uy, yeees Uy .
That is,

DECHIG(z,y)] = {up,, ug,

DEC?[I::n(zr y)] = {u;2 ’ u:z

Dgcm[lsn(zr y)] = {u;m ? u:m

By combining the sets of prime components uj}, and the sets of associations u?,, a new
unique decomposition operator DEC[I}, (z,y)] = {u, u';} can be constructed as given
below

u = uy Uup U...Uuy
and

ug = ug Uul U...Uuj .
Without losing the uniqueness property of the decomposition DEC, the set u of prime
components PX can be reduced by eliminating such spheres S,(zx, yx) that are the subsets
of any other prime components

n __ ,mn n n n
Up = Up \ (up.rx Utpr, U...u up.rz) ?

upr, = {USi(z.y) : 35 (21, 01) A r <7y, d((z,y), (21,41)) < 1}
u;,rz = {US,-(.’E, y) - asrz(IZa y2) Nr < T2, d((l?, y)a (1'2,3./2)) < 7‘2}
u;,r, = {UST(I’ y) : 351'1(21: yl) Ar< Tl, d((z:,y),(z,, yl')) < 7‘1}

and
Sri #F S, Vi # 5.
The application of the de Morgan rule yields
u, = S, US,U...US,, (3.16)

where the spheres S,,’s are totally included in the inner image representation I? (z,y).
Thus, u corresponds to the decomposition operator DEC that also generates set of asso-

ciations u;’s and this decomposition operator can be written as
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DEC[IZ (z,y)] = {up, uz}

In this particular case of the decomposition, the set uy is equivalent to the set that

represents centers of the maximal-sized spheres totally included in I2,(z,y). Figure 3.7
shows the decomposition of a particular inner-image representation I, - a rectangle in

R2.

Figure 3.7: Decomposition of a particular inner-image representation I, - a rectangle in
R?, performed by the operator DEC.

Let up , r > 0, denote the rth decomposition subset, i.e. the set of the centers of the
maximal diameter spheres S,(z,y) with radii equal to r. This decomposition subset can
also be obtained by using morphological operations: erosion and opening. Assume that
the class of subsets of the inner-image representation I (z,y) on which the decomposition
is defined is the class of closed sets by considering their complements. Selecting open sets
of IT, (z,y) as the class of decomposable sets excludes the isolated points and lines of zero
thickness, which are closed sets and their own subsets (subsets of uy ). Further, the open
sets of I7 (z,y) are assumed to be nonempty and to contain no half-space. Under this
assumption, it can be proved that a decomposition of the I7 (z,y) by erosion and opening
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exists (up # 0), that is,

= Uy, = Ul(z(2.9) 8 5:) \ (I%(2,9) © S )arsi ey (3.17)

where © is a Minkowski subtraction operator [83] and drS,(z,y) is a sphere Sr(z,y) of
infinitesimal radius dr. The Minkowski subtraction operator © is defined as

[(2,9) © Se(z,y) = (WI(z — 21,y —11) : (zu,11) € Si(z,9)}- (3.18)

Finally, based on properties of the morphological operator (83], the following properties
of the decomposition DEC operator can be identified:

e Property 1
Decomposition operator DEC is translation invariant.

e Property 2
Decomposition operator DEC in the two-dimensional Euclidean space is invariant
under the change of scale.

e Property 3
Decomposition operator DEC is anti-extensive and indepotent.

e Property 4
If up is a decomposition set of I7, (z.y) obtained by using the Minkowski operator
e and the structuring element S.(z,y) € I (z,y), then the decomposition DEC
which uses the structuring element S,.(z — z1,y — yl) gives the decomposition set
up’ that is translation of the set uy by the vector (—zl, -yl).

e Property 5
Members of the set u, are disjoint.

3.5  Discrete-Case Optimization Approach

Section 3.4 the decomposition operator DEC has been defined as an operator on a contin-
uous set. In order to examine the discrete case of the decomposition, let us first describe
the process of image formation in the discrete domain. The names of variables and func-
tions remain the same as in the continuous domain, keeping in mind the discrete context.
The function I}, : X x Y — G is now understood as a discrete bounded function of the
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inner-image formation and the variables X, Y and G take discrete finite values as given
by

X = {zmim T1,T2,T3y-.-, zmaz},
Y = {ymiru Y1,Y2,Y3,- -+, yma:r}v
G = {gminy 91,92,83,--- 1g‘m¢1'}’

Without loss of generality, Zmin, Ymin and gmin can be set to zero. The coordinates X x Y
represent a square grid and the input transformation Fi, : X xY xG 2 X xY x G
will now map continuous values of the function W.(z’,y’) into the discrete domain of the

function Iim(z,y) as
Finlz',y,g,z,y) = {(z,¥.,0,2,¥,9): (z,4,9) € Wi A (z,4,9) € Iin}.  (3.19)

Assuming the transformation given by (3.19) to be linear, the inner-image function can

now be expressed as

Im(@y) = 3 3 e,y u) Weelzr,31) - (3.20)

T1=—00 Y1 =—00

Similarly, imposing the constrain of spatial invariance on (3.19) simplifies (3.20) to
Lin(z,y) = Z Z h(z,y)Wie(z1,11) - (3.21)
T1==-0C Y1 =—00

The spatially invariant point-spread function [;(z,y) with geometrical transformation of

the spatial coordinates becomes

oc

Im(z,y) = Y. Y h(z,y)8(CXY X (z,y) — 21, CXY X (2,y) — y1)Wae(z1, 1) -
T|=—00 Yy} =—00
(3.22)
It is to be noted, that the functions CXYX', CXYY' now describe the discrete case of
transformation of the coordinate system X x Y and the rotation angle © can have only

values that are determined by the discrete grid X x Y.

The previously defined decomposition operator DEC was derived in a continuous metric
space and the issues of accuracy of the representation which are related to the number of
prime components used to represent the inner-image I;»(z, y) was not addressed. It is well

38



known that a complete description of any continuous function requires infinite number of
the discrete values of the function, which obviously is not practical. Therefore, describing
a continuous function I;,(z,y) by a countable and finite set of prime components makes
the result of the decomposition DEC an approximation of the real continuous function
Iim(z,y). On the other hand, the decomposition of the discrete function I;,(z,y) by
using a finite set of prime components should be done, so that the set fully represents
the discrete function I;m(z,y). However, the previous postulates concerning the rotation
invariance properties of prime components S,(z,y) are not valid in the discrete case of
function i (z, y) and they have to be reconsidered. This difficulty is overcome by defining
semi-rotational inveriant 2-dimensional objects (functions). For this purpose, the follow-
ing definition is first stated.

Definition 3.3:
A 2-dimensional object (function) F(z,y) is said to have a semi rotational invariance of
degree K in the plane X x Y iff

3O min, Omin = inf(O) € (0;27), suchthat

ROT[F(z,y)(9)] = F(z,y), (3.23)

where the rotation is performed in the plane X x Y and the degree of rotation K is equal
}C = 27r/€)m,-n

In addition, if ¥O,0 € (0;27) and (3.23) holds, then the object (function) F(z,y) is
rotational invariant in the plane X x Y.

According to this definition, a sphere in a continuous 2-dimensional metric space repre-
sents a rotational invariant object (function). Based on Definition 3.3, many models of
prime components can be constructed. Figure 3.8 shows a few examples of prime compo-
nents having different degrees of rotation, that can be used as decomposition elements.
It is to be noted that in a discrete metric space with a given type of the grid X x Y
(the domain of the inner image representation function l;(z,y)), only some of the prime
components shown in Figure 3.8 can be employed. For example, if the inner image rep-
resentation [, (z,y) is mapped onto the rectangular grid X x Y, only the cases (d) and

(f) are applicable.
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n/6 i /3

(a) (b) (c)

in/2 t2m/3 i

(d) (e) (f)

Figure 3.8: Examples of rotational invariant prime components.

Rotational invariant prime components of different degrees have different topological and
statistical characteristics. Consequently, the decomposition transformation which utilizes
prime components with different values of the parameter X will have different properties.
The decomposition that uses semi rotation invariant prime components having a degree
K, will have statistical properties more desirable than the one having a degree X,, when
K2 > K. On the other hand, the decomposition algorithms that use rotational invariant

prime components having a degree K << 1 is computationally very expensive.

Considerations as to the choice of prime components will now be examined under the
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assumption that the prime component P, refers to the polygon belonging to the two-
dimensional discrete space X x Y, that is, the discrete function P,(z,y) C X x Y. In
this case, the set X x Y describes the rectangular discrete grid of the inner image rep-
resentation. One of the main statistical criteria which determines the resulting shape
of the decomposition element is the probability of its occurrence in the sequence of real
world-scenes W, (z,y)- This criterion can be formulated as follows.

The probability of occurrence of a region R (z, y) selected as a prime component Py (z,y)
having a given area A, i.e., A(Ri(z,y)) =A, should be as large as possible. That is,
P(Py(z,y) S Wi(z,y)) =

c

sup{ P(R(z,y) C Wi(z,y))} N A(Re(z,y)) =A. (3.24)

C

It is to be noted, that the probability of occurrence of the prime component P (z,y)
is a monotonically decreasing function of its area .A. Thus, the minimum-area prime
component P.(z,y) used as the decomposition element would result in a set Up having
the largest number of elements, making the transformation process by the next stages
of a image understanding system very difficalt. Thus, the area of the desirable prime
component should be a compromise between the number of decomposed elements in a

given world-scene W,.(z,y) and the total number of elements in the set Up.

The analytical approach of finding the shape of an optimal prime component is based on
the theoretical analysis of the probability of occurrence of the given prime component in
the sequence of scenes, the set Uyy. A theoretical evaluation of the probability of occur-
rence of the given prime component PX in the set Uy is very difficult, since there is no
strict theoretical description of a world-scene W, and there do not exist simple explicit
formulae that count the number of occurrences of a given pattern in the two-dimensional
array. Therefore, all the functions that can be derived are only approximations of partic-
ular cases. In order to simplify the the analysis, the following assumptions are made.

(a) A prime component is considered to be a two-dimensional rectangle p(z—zo, y—yo) €
W2 (z,y) (discrete function p(z,y) =+ G),z=0,1,2,...,Zm-1,¥y=0,1,2,...,Yn_1,
coordinates zo and yo describing the position of the prime component in Wj(z,y)
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(b) A prime component can belong only to a specific subset sy(z,y) (strip) of Wh(z,y)
defined as

sy(z,y) = {Wi(z,y) : y € (o, %15-- -1 ¥n-1)}-

These two assumptions are schematically presented in Figure 3.9.

LRI
o

Figure 3.9: Two-dimensional prime component (white rectangle) in the strip (dark strip)
along the x-axis.

The two-dimensional prime component denoted by the function p(z, y) can be expressed as
a matrix P AT, xm, whose entries are discrete values of the gray level pg € G (z represents

columns, y represents rows), as given by

P91 PGz --- P9im
Pg21 PG22 --- P92m

p(z,y) & PAToxm = = [PAGI,PE:z,...,P&m], (3.25)

P9nt PGn2 --- PYnm
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A
where PG; (j = 1,2,...,m) represents a vector comprising the elements of the jth column
of PAT, «xm. Similarly, a matrix S TI-ZM,/;l can be formulated for the strip sy(x,y), as given

below
r3911 Sqiz --. Sg A ]
sy(@,y) & STR_, = | “9% %02 o S| SG1,5Gs, ..., SGy],  (3.26)
[ 9n1 Gn2z ... g A |

N
where SG; (j =1,2,..., r/r\z) represents a vector comprising the elements of the jth column
of § TRnx#l. The variable n represents the width of the strip sy(z, y) along the y-axis and

A A
the variable m is its length along the x-axis. Every vector PG; or SG; belongs to the set
G having a finite number of elements Ggy, i.e.,

PG, SGo€ G and Gz, = POW(G), (3.27)

where POW(.) represents the number of elements in the set (.)- If the maximum number
of gray levels g is equal t0 gmaz, then for the strip sy(z, y) the number of elements Gg,.
of the set G can be expressed as

GgL = POW(G) = (gmaz)"- (3.28)

Proposition II:

The number SYnum(ﬁ\z) of strips sy(z,y) € W2(z,y,) which do not contain the prime
2 . . . A

component p(z,y) € Wi(z,y,) is given by SY,um (M)

SYaum (M) = £74{SVnum (2)}, (3.29)

where SY,um(z) can be expressed as

z P,

SVnum(2) = 77 TR (3.30)

with m I
P. =3 (1-UXY | plk,5) — p(k —4,7) )20, (3.31)

=0 J=0 k=i
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and U(.) represents a unit step function.

Proof :

To prove this proposition, we first define SYA(r/r\z) to be the number of different strips of
the length m that contains the prime component p(z, y) at the right and only at the right
end of the strip.

A
Let us now consider any of the SY,wm(r?z) strips having m vector elements SG; (i =
1,2,..., rg\z) that do not contain the prime component p(z,y) as a subset. Append to such

A
an S TEfm";'\l at its right end any one of the vectors SG; from G. In this way we obtain

GELSYoum(m) distinct strips of length m +1. Each of the appended strips may or may
not contain the prime component. If it does contain the prime component, it must appear
at the rightmost position of the strip Therefore, the expression

GELSYaum (M) = SYium(™ +1) + SY4(m +1) (3.32)
holds for all rfﬁz 0. Taking one-sided Z-transform, we obtain

(2 = GEL)SYVnum(z) + 28Va(2) = =. (3.33)

A
Next, let us consider any one of the sy(z,y) strips having m vector elements SG; that
does not contain the prime component p(z,y). Now, append the prime component p(z, y)
at its right end. Suppose that the first (from the left) appearance of the prime component

A
p(z,y) in the strip sy(z,y) has its rightmost vector PG, at = =m +r. Then.
0<r<m.

Furthermore, since the prime component p(z,y) will necessarily appear in the last m
A
positions of the appended strip, the first r vectors PG; (¢ = 1,2,...,r) of prime component
A
p(z,y) have to be equal to the last r vectors PG; (i =m —n+1,...,m) of p(z,y). The

A
number of strips sy(z,y) having m -+ vector elements SG; is then counted at YA(rlr\z +7).
Conversely, for any given strip counted at SYA(% +r), there is a unique way to extend
it to a strip of length m +m in which the last m vectors equal to the prime component
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p(z,y). Consequently, for m> 0, we obtain

SYoum(®) = 3° P(r)SYa(P 47), (3.34)
r=1
where P(r) is given by
P(r) = (1= U3 [ p(k,5) — plk =75 ). (3.35)
1=0 k=r

Taking one-sided Z-transform of (3.34), we obtain

SVnum(z) = z P8V a(2). (3.36)
Combining together (3.33) and (3.36), we can easily obtain (3.29). O
Thus, the probability of finding the prime component p(z,y) in the set sy{z, y), where each

value g, = sy(z,y) is treated as an independent variable with equal uniform distribution,

can be written as

-1 =P
Z {1+(Z-GEL)P:}
(gm“)((m)(n))

One can note here that for a fixed m and n, the probability as given above depends

P(p(z,y) € sy(z,y)) =1 - (3.37)

only on the polynomial P, which reflects the autocorrelation (periodicity) of the prime
component p(z,y). For two prime components p;(z,y) and p;(z,y), the probability of

occurrence is higher for the one having more periodicity along the X axis.

Similar analysis can be carried out for the prime component belonging to the strip in the
direction of the Y axis, yielding an expression similar to (3.37), with only appropriate

changes in notations.

It can be concluded, that the probability of occurrence of a square prime component p(z, y)
(assuming independence and uniform distribution of the variable g.,) strongly depends
on polynomial P, obtained from autocorrelation function performed along the diagonal of
the prime component itself. Several examples of prime components p(z,y) with different
“strengths” of autocorrelation periodicity along the X or Y axis are presented in Figure
3.10, with the polygon i as an optimal choice for a decomposition element.
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Figure 3.10: Prime components with different symmetrical properties and autocorrelation
periodicity along X- or Y-axis. (a),(d),(g) Prime components without periodicity along
any axis. (b) Prime component with strong periodicity along X-axis. (c) Prime compo-
nent with weak periodicity along X-axis. (e) Prime component with strong periodicity
along Y-axis. (f) Prime component with weak periodicity along Y-axis. (h),(i) Prime
components with strong periodicity along both X- and Y-axes.

An analysis of (3.37) indicates, that probability of occurrence of a prime component is
higher for the polygon with strong periodic properties along its axes. Combining this
observation with the fact that most of the real world-scenes contain physical objects, one
can conclude that an optimal shape of the prime component in the discrete metric space
should be the rotational invariant polygon defined in Section 3.4 with the degree of rota-
tion as small as possible. For example, considering the shapes of the prime components
of Figure 3.10 in the rectangular grid X x Y, one should rather chose the square polygon
1 as a prime component instead of the rectangular polygon f.
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The algorithm used to perform square prime component decomposition of the objects
contained in a world-scene is now formally presented using pseudo codes.

Square Prime Component Decomposition Algorithm

start

{

Clear prime_component_array

Initialize number_of_pixels to number of scene_pixels
Set current_pixel_index to zero

}

while ( “current_pixel_index smaller than number._of_pixels” )

{

while ( “current_pixel_index belongs to an object” )
{
Set size_of_prime_component to one
Set prime_component to current_pixel_index
while ( “boundary_area belongs to an object” )
{
Increase size_of_prime_component
Fill boundary_area around prime_component

}

Store prime_component into prime_component_array

}

Increase current_pixel_index

}
end
3.6 Examples and Simulation Results

In this section, the results of the previous section are evaluated based on the analysis of
the simulation results applied to image sequences. In order to facilitate the experiment,
special test sequences of binary images and gray scale images are generated. The total
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number of images used in the experiment is 1200 in the case of the binary test image
sequence and 2500 in the case of the gray level sequence. A test sequence Uy represents
varieties of transformations that could be found in the real physical world: translation,
reflection, magnification and rotation. A few examples of images from the binary training
sequence are presented in Figure 3.11. Some examples of images from the gray-level test
sequence are shown in Figure 3.12.
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Figure 3.11: A few examples of images I%, from the test binary image sequence.
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Figure 3.12: A few examples of images I7, from the test gray level image sequence.

The test sequences used in our experiments are composed of the images representing con-
tinuous motion of the physical objects. This representation simulates in a natural way
the perception of the images performed by a human visual system.

The first step in the simulation process was to investigate the correctness of the hypothesis
of rotation invariance of the prime components. In order to evaluate this hypothesis, the
training binary and gray level sequences have been used. The method of searching for the
shape of the optimal prime component P,.(z,y) is to generate random sets of polygons
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(possibly disjoint) representing the prime components and to observe the statistical re-
sults of the scene decomposition performed by these generated prime components. This
procedure performed on a large set of the image sequences should give an indication about
the topological properties of the prime components itself.

The direct construction of the random polygons representing prime components (sets
Ri(z,y)) is not simple, and in practice, the hierarchical construction method is used [2],
(12], [25], [41], [85], [91]. The hierarchical construction of the prime components is based
on the approach that the structure of polygons representing the prime components can be
expressed in graph-theoretical trees such that one prime component is represented by one
tree. The terminal nodes (leaves) of the tree correspond to prime components called the
zeroth level prime components and the non-terminal nodes correspond to various clusters
of elements called the general-level prime components. In this type of representation of
the prime components, the zeroth level prime components correspond to pixels and the
general-level prime component is a set of any number of zeroth level prime components
or/and general level prime components. Every general-level prime component has to have
a decedent prime component(s) (children) and every zeroth level prime component has to
have its parent(s). Figure 3.13 presents a test frame [;m(z,y) from the binary sequence
showing examples of the zeroth and general-level (level 1 to level 6) prime components.

The algorithm analyzes sequentially the input image, creates general-level prime com-
ponents by generating clusters of the tree nodes. In this stage of simulation, creating
general-level prime components is arbitrary with no restriction on the shape (topological
properties) of the general-level prime component. The input image is then decomposed
using these general-level prime components created, and the procedure to create general-
level prime components and the decomposition process is repeated. The only criterion
which stops analysis of the current image is its full decomposition. The analysis process of
the gray-level training sequence (see Figure 3.12) is similar to that of the binary training
sequence. The only difference is that each frame from the test gray-level sequence is first
partitioned into 16 binary frames corresponding each of the 16 gray levels of the input
image. In this manner, the two training sequences have been processed sequentially with
a total of 3700 images. The results of the analysis for the binary test sequence of images
are presented in Figure 3.14.
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(b) (c)

(g) (h) (1)

Figure 3.13: An example of a test binary image I;m(z,y) together with its decomposition
by prime components. (a) Test binary image, (b), (c) zeroth level prime components,
(d)-(i) Prime components with levels 1, 2, 3, 4, 5 and 6, respectively.
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(c) (d)

Figure 3.14: The prime components with the maximum probability of occurrence in the
set Uy using random construction general-level prime components in the case of the
binary test sequence. (a) After 10 input world scenes. (b) After 50 input world scenes.
(c) After 200 input world scenes. (d) After 800 input world scenes.
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Careful observation of Figure 3.14 indicates two important facts:
o Symmetry of the prime components.

The symmetry of the prime components means that any particular prime component PX
has a tendency to form symmetric layout (shape). The symmetry of the prime components
is observed by noticing the fact that as the number of images processed increases, the shape
of generated prime components with the maximum probability of occurrence converges

to become circular.
o Grouping property of the prime components - clustering of the prime components.

Grouping property of the prime components means that for an arbitrarily chosen set of
prime components, the highest probability in the set Uy occurs for the prime components
composed of polygons whose decedents in the tree structure are the neighbours (joined
prime components). The grouping property of the clusters has been noticed by many
researches who have investigated biological visual systems, such as Julesz’ works on clus-
ters [45] and Beck’s work on grouping properties of random patterns (13]. The practical
experiments performed on prime component generation, fully conform the hypothesis that
prime components with symmetrical layout (ideally of circular shape) should be used as
decomposition elements.

3.7 Summary

In this chapter, a detailed theoretical analysis for the construction of the decomposi-
tion element - prime component has been presented. First, basic relations (associations)
among the prime components have been studied. Second, the basic relations among the
prime components have been described in terms of relations found in the physical world.
Based on these relations, a set of properties which characterize directly the decomposition
operator and indirectly the topological properties of the prime components itself, have
been obtained. Those properties have allowed to develop an optimized decomposition op-
erator in the continuous metric space, which utilizes symmetrical circular polygons (prime
components) as decomposition elements. Further, an optimization of the decomposition
elements in the discrete domain has also been performed.
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A mathematical analysis for an optimal shape of the prime component has been per-
formed for semi-rotational invariant polygons having degrees of rotation of 7/2 and .
An expression that allows to identify the usefulness of the decomposition element by the
analysis of its autocorrelation function performed in the direction of the principal axes
of these polygons has been derived. An analysis of the autocorrelation function indicates
that the semi-rotational invariant polygon having a degree of 7 /2 is a better decomposi-
tion element than the one having a degree of 7. In addition, it has been shown, that the
shape of the optimal prime components should converge to the polygon having a degree

tending to zero, i.e., circles.

The mathematical analysis has also been verified by a statistical simulation which shows
that the probability of the randomly generated polygons representing decomposition
elements (prime components) is the highest for a polygon with a symmetrical layout

(circular shape).

In the next chapter, the discrete metric space decomposition elements developed in this
chapter will be used to propose an efficient shape extraction scheme and to produce an

intermediate object representation for an IUS.
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Chapter 4

SHAPE REPRESENTATION

The notion of shape is one of the most fundamental concepts to understand and to pro-
cess visual information. Many complex processing tasks such as object identification,
feature extraction or segmentation is based on the analysis of the shape of the objects
in a scene. The properties of the objects found in typical world-scenes suggest highly
structured methods of shape description, in which the complex objects can be described
starting out from some simple shape primitives and group them into levels of relational
structures, typically characterized by graphs.

One of the most important steps for the shape representation process is the extraction
of shape elements. There are many models for the extraction of shape elements. One of
the most promising approaches is based on the skeletonization concept and is commonly
known as skeleton or medial axis transform [59]. However, despite the elegant original
definition in the continuous domain, the extension of the skeleton concept to the dis-
crete domain, in particular in the raster world, turns out to be surprisingly tedious. The
difficulties come from the finite number of the raster points in the discrete domain and
from the particular properties of the skeleton transform in which small changes of the
object’s boundary change the object’s skeleton drastically, introducing new branches and
removing old ones. In order to overcome the difficulties of the shape representation in the
discrete metric space, in this chapter the model of shape extraction based on the prime
component decomposition presented in Chapter 3, is proposed [54].
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The proposed approach of extraction of shape elements based on the polygonal decompo-
sition is derived using a modified definition of the skeleton in the discrete metric space.
This extraction scheme combines the boundary description model with a modified skele-
tonization process performed by the square prime components. This modification allows
to utilize efficiently the prime component decomposition technique developed in Chapter
3 and it minimizes the errors in the uncertainty of the description which might be critical
in the processing performed in the subsequent stages of an IUS.

In order to further improve the shape representation model and make it more suitable for
practical implementation, the concept of the shape equalization scheme based on Fourier
descriptor and nonlinear interpolation is introduced [55], [56] . This scheme avoids the
deficiencies of the discrete medial axis transform. These deficiencies may include noise
sensitivity, the description errors of the diagonal objects and objects having complex
edges that rapidly change their curvature, and the description errors caused by a small
sampling frequency. The scheme also reduces the distortions and artifacts of the input
transformation and maximizes the utilization of the system resources.

The scheme of the shape representation begin with a brief description in Section 4.1 on
the general issues related to the shape analysis. It also explains the purpose and impor-
tance of the shape extraction and shape equalization process in an IUS. In this section, a
brief review of the current major techniques used in the domain of the shape extraction
such as Voronoi diagrams and morphological operators is carried out. The detailed anal-
ysis concerning shape extraction model is presented in Section 4.2. Some of the available
operators for the boundary detection are considered. Next, the decomposition process
of the object’s interior using the prime component decomposition technique is analyzed.
The shape equalization concept is described in the Section 4.3. This concept is developed
by analyzing the model of the extraction of the shape elements in the context of the de-
scription errors, computational complexity, and its practical implementation. In Section
4.4, the proposed models for the extraction of the shape element and shape equalization
are compared with the two main techniques of the shape extraction based on the Voronoi
diagrams (3], [29] and morphological operators [83]. Simulation and comparisons are per-
formed on two different hardware platforms for sequential and parallel versions of the
algorithms, respectively.
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4.1

Shape Representation

The goal of shape representation is to encode the object’s 2-dimensional representation in
a manner that captures the object’s most salient features. Those features are then used to
classify and identify the objects in an input world-scene. In the domain of image analysis
in an [US, the process of shape representation should posses the following properties.

(1)

(2)

3)

(4)

(3)

Uniqueness - The algorithm used to represent shape elements in an input world-

scene should return a single solution.

Invariance - It is necessary that that the shape descriptor is invariant under geomet-
rical transformations of the shape such as rotation, translation, and scaling. That
is, the different varieties of the shape instances should not create problems in the

identification process.

Noise tolerance - The descriptor should be tolerant of artifacts introduced by noise.
There is little hope that noise and its effects can ever be eliminated completely
at the lowest level of image processing. Commonly , it is very difficult to decide
whether an artifact is actually due to noise or it represents a salient shape feature.
It seems that many of these ambiguities can be resolved only at a higher level of
scene analysis, possibly even at the highest level of visual semantics, during the

proper interpretation of the world-scene.

Rich local support - The shape descriptor should be insensitive to the modification
of the scene that occurs apart from the area of focusing. For example, for two
overlapped objects, the descriptor should enable a local match between the new
compound object and each of the isolated components.

Semantic support - Shape description should enable to facilitate a semantic of the
description. That is, the way the shape descriptor combines and assimilates the new
shape elements should be easily mapped into a semantic information of the shape
descriptor itself.
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There are many different models that have been proposed for the shape descriptors based
on the description of the boundary of the object (e.g. Fourier descriptors, chain codes,
moments analysis) [94]. However, the description of the object’s boundary is not effective
enough for carrying out most of the tasks performed in an IUS, such as object iden-
tification, segmentation or scene matching. The decomposition of the object’s interior
constitutes another approach of the shape description [75]. Some of the interior decom-
position methods include partition of the interior of the object into smaller polygons (e.g.
quad-trees, skeletons, pyramidal decompositions) [62], while others are based on the de-
scription of the deformation from a primordial shapes such as circles, ellipses, squares
etc (e.g geon decompositions) [47]. Many methods are based on grammatical approach
[69] and use semantic description of the decomposed elements. Unfortunately , none of
the shape decomposition models devised so far sufficiently fulfills all above prerequisites.
Many commonly used models cannot provide a “rich local support” and encode rather
global characteristics of the shape. In addition, almost all of the existing methods require
complicated algorithms, tremendous hardware demands and produce huge amount of in-
formation which is very difficult to process by the succeeding high-level processing stage

of an IUS.

In order to introduce the basic concepts of the shape representation, in the next few
subsections. an overview of the frequently employed methods to describe geometrical

shapes are presented.

4.1.1 Moment Descriptors

Moment invariant transforms were introduced by Hu [38] as 2 method of image recognition,
which has the desirable property of being invariant under such variations of the image
content as shift, scaling, and rotation. In the continuous metric space, the moment of

order (p + q) is defined by the relation

+00  p4o00
mpq=/_°° /_w 2Py f(z,y)dzdy p,q=0,1,2,... (4.1)

where f(z,y) represents an object in a world-scene. The central moments are expressed
as

pa= [ [ (@ - 2= S ey (42)
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where the center of gravity (Z, 7) is given by (m10/mo0, Mo1/mao), in which mgq is referred
to as the total function mass. A set of normalized central moments can be also defined as
77pq=#_:qa7=m+l' (4.3)
Hoo 2
The central moments are used to define a set of seven moments that are invariant to linear
transformations. The set is given by

My = pao+ oz (4.4)
My = (p20— po2)? +4p3, (4.5)
Ms = (p30—3p12)® + (31 — pio3)2 (4.6)
My = (pao+ #12)2 + (21 + o3)2 (4.7)
Ms = (pso —3p12)(p3o + p12)((130 + p12)? — 3(p21 + po3)?)

+(3p21 — po3)(3(pa0 + p12)? — (a1 + p03)?) (4.8)
Ms = (pa1 — po1)((p3o + p21)* — (pa1 + pos)?)

+4p11(#3o0 + p12) (21 + pao) (4.9)
Mz = (3par — pos)pao + p12)((pao0 + p12)? — 3(p21 + pe3)?)

—(p30 — 3p12)(p12 + p03)(3(pa0 + p12)? — (21 + pos)?) (4.10)

The normalized central moments 7,, are also invariant to scale changes. Assuming that

a is the scale change, it follows that 2’ = az , y' = ay, and

o (u')P? _ ppeaPtet? — tog _
P (o) PHI/ZHL — (Q2pugg)+al/ZH1  (pgo)eHal/zer — TP9

where
+00  ptoo 400 pf+co
to= [ [ £ w)dedy=a? [ 7 fa,y)dedy = a?poo

The moments M, through Mg are also invariant under reflection , while M- changes sign.

In the discrete metric space, the regular moments my,, and the central moments ,, are
defined, respectively, as

Mpe = Zzzpyqf(zay) (4.11)
Hpg = ZZ(Z -z (y — §)* f(z, y). (4.12)
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It should be noted, that the moment descriptors can be applied to both binary and gray-
level images. In the latter case, however, the interpretation of the results is even more
delicate than for binary silhouettes. According to the definition of m,, , the set of moment
invariants is a global shape descriptor. Consequently, the moment descriptors are useful
only for isolated objects. If this method is applied to scenes containing overlapped or
abutted objects, it must be preceded by a reliable separation procedure.

4.1.2 Fourier Descriptors

Fourier description is another very popular model of shape description. Let us consider a
clockwise-oriented simple closed curve « having a parametric representation Z([), Z(l) =
z(l) +i(y(l)), where { (0 <! < L) is the arc length [63]. The angular direction %ﬁ% of the
curve v can be normalized to be in the interval [0,27], yielding a periodic function ©(t)
that is invariant under translation, rotation, and changes of the perimeter L:

dz(z%)
o) = z (4.13)
The function O(t) can be expanded into a Fourier series as
O(t) = Ao + )_(ak cos(kt) + b sin(kt)) . (4.14)

k=1

The coefficients Ag, ax and by are known as Fourier descriptors of the curve 4 having the

parametric representation Z(l), and they are given by

1 27 ) =
Ag = 2_71: A O(t)dt (4.15)

1 2
o, = ;/0 O(t) cos(nt)dt (4.16)
1 2r . -
b=~ /0 O(t) sin(nt)dt . (4.17)

The function Z(l) can be easily reconstructed using the Reconstruction Theorem [79]

given below,

201 = 2(0) + ily) = 2(0) + o [ expli(@(E))}et - (4.18)

The Fourier descriptors can be also derived for a polygonal curve .. A polygonal curve o
is a closed curve with m vertices, Vj, - - -, Vin—1 and the edge (V;_;, V;) with length Al; is a
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straight line. The change in the angular direction at vertex V; is A¢; and L = 31, Al
It can be verified that [33]

k+1

o) =3 Ad: for SoAL< (L/2m) <3 AL (4.19)
=1 =1 i=1
and
O()=0 for 0<I<AL . (4.20)

Expanding ©(l), we obtain the same equation as (4.14).

Since O(t) is a step function, the integrals (4.15), (4.16) and (4.17) can be expressed as

1 m
Ao =-T — 'Z E lkA¢k (421)
k=1
=213 Agysin 2mnl (4.22)
nw =1 L
= — Z Ady cos 27r£llk (4.23)

where

k
L= Al

=1

Shift, scale and rotational invariant descriptors s(n) can be obtained as [21]

s(n) = (/llanl? + [6a12D) (/a2 + [1]2]) - (4.24)

4.1.3 Polygonal Chain

A simple way to describe the boundary of an object is to approximate it by a set of
piecewise linear fits /s, that consist of eight standardized line segments. The code of a
contour is then the chain V of length K [49]

V= aiaqadz---aK , (425)

where each link a; is an integer between 0 and 7 oriented in the direction (r/4)a; (as
measured counter-clockwise from the x- axis of an x-y coordinate system) and of length
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1 or v/2 depending on whether a; is even or odd, respectively. The vector representation
of the link a;, using phasor notation, is given by

(v2-1)
B

L= (1- (=1)%))etFe) (4.26)

The construction of a chain code starts out from the detection of the points that connect
the segments of the straight lines for the boundary approximation. In many cases this
is not very easily achievable, since majority of the objects found in a typical world-scene
are characterized by smooth boundaries and slowly changing curvature. This makes the
computation of the curvature difficult and complex. In addition, one has to deal with even
a more challenging issue of invariance and uniqueness of a straight line approximations.
Consequently , each attempt to provide a shape descriptor which is based on such an ap-
proximation must carefully analyze the consequences of missing or accidentally misplaced
straight line segments. A good example of an object recognition system which is based

on polygonal approximation is given in [49].

4.1.4 Pyramids, Quadtrees, Ribbons and Higher Order Curves

The pyramid models of shape description are based on the idea that the shape informa-
tion is stored according to a hierarchy of increasing levels of resolution. In the Laplacian
pyramid [60], the hierarchy is built by sampling the shape (possibly the gray-level) with
Laplacian operators of many scales. This approach of representing objects makes the anal-
ysis of world-scenes very complicated and practically very difficult. An IUS would have
to process many dependent planes of different resolutions representing the same physical

objects, which is highly redundant and inefficient.

Quadtrees [62] are obtained by successive subdivision of the shape in quadrants, sub-
quadrants, and so on until the process arrives at the lowest resolution level, typically
single pixels. The information is then organized as a tree structure. The root of the tree
corresponds to the rectangular pixel block, enclosing the entire shape. Its four ‘children’
denote the four quadrants of the rectangle. The modification of the quadtree techniques
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are binary and ternary tree decomposition methods. Analogous to the Laplacian pyramid,
there are many problems in employing a quadtree technique as a reliable shape extraction
method. One of the most critical problems in this type of shape representation is the
construction of “fixed” division regions. First, it is very difficult to propose practical al-
gorithms to perform the divisions of the world-scene into regions. Second, it is impossible
to have the dividing lines that correspond with the real boundaries of the physical objects
in the world-scene, which is one of the most fundamental requirements of an IUS.

The pyramid and quadtree concepts introduce important concepts of hierarchical rank
ordering of shape information, since tree-like data structures support object recognition
methods which first analyze the global shape before focusing on the details.

Ribbons and higher order curves [75] are the shape description methods in which the
straight line has been extended to a more flexible and general set of approximating ele-
ments. The richer set of primitives, however , increases the problem of a unique represen-
tation which makes it difficult to ensure the unigness of the representation and to have
an easy semantic description. Moreover , even modest variations of the contour can dra-
matically affect the segmentation process, e.g., it can force a selection of two second-order
polynomials instead of one straight line segment. In the case of ribbon shape representa-
tion, one of the most fundamental problems is a reliable and invariant segmentation of a
compound object into simple subparts that can be described by ribbons. Moreover , even
in the case of relatively simple objects, often several equivalent choices do exist, which

results in non-unique transformation of the object into its shape descriptors.

4.1.5 Skeletons

The idea of transforming an image to a skeleton was mentioned by Blum [36] in 1961.
Since then, a mathematical theory for the skeletons of images has been developed. The
skeleton SK(X) of a continuous [18], [48] (discrete [58], [59]) object X viewed as a subset
of R? (Z?), is defined as the set of the centers of the maximal disk totally included in X.
Hence, a maximal disk must touch the boundary of the object X at least at two different
points. Each point of the skeleton is associated with a radius r that corresponds to the
maximal disk. Therefore, a function skf(z) can be defined, whose domain is SK(X) and
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which takes the values in R,

ze SK(X) — skf(z)eR. (4.27)

This function is called the skeleton function or quench function.

Some very important properties of skeletons and advantages of the skeletonization tech-

niques can be summarized as follows.

(1)

(2)

(3)

(4)

(3)

Skeletonization transforms the a binary two-dimensional object into a one-
dimensional planar graph. Thus, all the methods of graph theory, e.g., graph traver-
sal [26], can be readily applied to the shape analysis techniques.

Each segment of the skeleton naturally represents a local symmetry axis. Since
detection of symmetries is an important issue in recognition both of artificial and
natural shapes, the skeleton can be used as a valuable tool in this domain. Moreover,
the radius of each maximal inscribed disk indicates the contribution of the associated

boundary to the entire shape.

The skeleton inherently embodies proximity information; therefore, the handling
of adjacency and neighborhood relations is effectively supported. Consequently .
the skeleton can be employed to assist the grouping processes and to solve obstacle
avoidance and path planning problems.

Every segment of the skeleton represents the result of a process of self-organization,
that only reflects the shape features of a limited neighborhood. Thus, even drastic
changes of the global shape, such as the overlapping of two objects, usually leave

most sections of the skeleton unmodified.

Frequently, the characteristic branching points of the skeleton indicates a candidate
for the separation of the original shape into subparts. Consequently, the skeleton
can also serve as a tool for shape decomposition, and thus it can serve as a base for
a semantic shape description that utilizes pure geometrical polygons.
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4.2 Shape Extraction

As described in Section 4.1, there is no ideal method to describe and to extract shape
elements. In order to derive a flexible and robust technique of the extraction of shape
elements, we will try to combine the best features of the shape description techniques [86]

already developed.

It is obvious that the shape extraction method to be developed should consider both the
boundary and the interior of the object in a scene at the same time. Consequently, the
proposed technique of extraction of the shape elements is based on the modification of
the two shape description models: skeletonization [18] and piecewise chain coding [49].
In order to improve the traditional skeletonization technique, the skeletonization process
is performed using prime component decomposition yielding a much more effective shape
extraction scheme. In fact, as it will be shown in this section, the polygonal decomposi-
tion of a world-scene performed by the maximum size square prime components will be
the principal part of the shape extraction process. The proposed shape decomposition
scheme also simplifies the preliminary transformations in the high-level processing stage
of an IUS by more explicit characterization of the shapes of the objects in a scene.

The first step in the extraction of the shape elements of the object is to determine the
object’s boundary (edges). Consider the image representation /(z,y) of a real world-
scene. The edge points can be thought of as pixel locations of abrupt gray-level change.
Consequently, for the image representation /(z,y), its partial derivative assumes a local
maximum in the direction of the edge. Therefore, using the polar coordinate system, the

expression,

oI(r,9) oz
ar or

should have its maximum value at the edge point of the object for a given 6. The

+ I(z, y)—a—y (4.28)

]
T

= I,.(T‘, 0) = Iz(z7 y)

symbol I(r,8) denotes the image representation of the world-scene expressed in the polar
coordinate system and the partial derivatives I (z,y) and I,(z,y) are given by

I(z,y) = w (4.29)
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and
_ 0l(z,y)
Iy(z,y) = 5y (4.30)

The maximum value of (4.28) is obtained when (8/36)(81(r,8)/dr) = 0. This yields

- ,,-(.‘13, y) sin 6. + Iy(za y) cosf. =0, (4.31)
8, = tan™! (gg z;) , (4.32)

and AL(r0
()~ EGrr+ G (4.33)

The angle 6, represents the direction of the edge. Therefore, the natural technique of
edge detection is to measure two gradient fields G, and G, of the image I(z,y) in two
orthogonal directions ¢, and ¢, and to use the expression given by (4.32) for the angle of
the edge point.

Let M, and M; denote two k xk squared mask (gradient operators). For a binary discrete
image representation of /(z,y), the gradient fields G, and G, in the two orthogonal
directions ¢; and ¢, can be calculated as

k k
G’l(m,n) = EZMI(Zs])I(Z+m1]+n)

=1 3=1

= I(m,n) ®M,(—m,—n), (4.34)
and
kK k
Ga(m,n) = Y 3 Ma(i,5)I(i+m,j+n)
=1 j=1
= I(m,n) ® M2(—m,—n), (4.35)

where the symbol ® denotes the discrete convolution operation between the image rep-
resentation and gradient operators. After the two orthogonal gradient fields G; and G,
have been constructed, the gradient vector magnitude field g(m,n) and direction field

0.(m,n) are given by

g(m,n) = /(G1(m,n))? + (Gz(m, n))? (4.36)
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and

_ -1 G'z(m,n)
9,(m, n) = tan (m) . (4.37)

By thresholding the vector magnitude field g(m,n) with the threshold value T}, the edge
map E of the object for tracing its boundary can be obtained as

1, if g(m,n) > T,

4.38
0, otherwise . ( )

E(m,n) = {
The binary masks M, and M; should be chosen in order to achieve the necessary sensi-
tivity of the edge detector. There are two suitable gradient operators M; and M, that
are very convenient for edge detector, the Prewitt operator and the Sobel operator [64].
For the Prewitt operator, the masks M; and M, are defined as

-1 01 -1 -1 -1
-1 01 1 1 1

and for the Sobel operator, they are given by

-1 0 1 -1 -2 -1
Ms;=}|-20 2|, Ms; = 0 0 O
-1 01 1 2 1

The decomposition of the object’s interior is the next step in the shape extraction process.
After constructing the map of the objects’ boundaries, we can represent the objects’
interior in the image using intrinsic coordinate system. Let the object map O,(z,y) of
one particular nth object in the image representation I(z,y) be expressed as

1, if point (z,y) belongs to the object O,

On(za y) = { (4'39)

0, otherwise

In the intrinsic coordinate description system, every point (z,y) which belongs to the
object O, € I(z,y) (i.e., Ox(z,y) # 0) having its own edge map E, in the image repre-
sentation /(z,y) is specified by giving its distance to the nearest boundary point (edge)
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of the object O (z,y). The transformation of the image using intrinsic coordinate system
yields
in.f(m'n)(d((z, y)1 (m7 n))) A En(m, n) # 0

4.40
0, otherwise , ( )

Is(z,y) = {
where /s(z,y) is the image representation in the intrinsic coordinate system and the
operator d((z,y), (m,n)) denotes the Euclidean distance between the point (z,y) and the
edge point (m,n). We can reduce the redundancy of the intrinsic coordinate system by
choosing the local maxima of the /s(z,y) and constructing a skeleton map $,(z,y) of the
object O.(z,y) , as given by

Is(z,y), if 2528 =g v 2s=a) - g

, (4.41)
0, otherwise .

e
Because the skeleton map s,(z,y) preserves all of the information about the object
On(z,y), it is possible to recover the original shape of the object O,, given its skele-
ton s,(z,y), by taking the union of the circular neighborhoods having radii s,(z,y) and

centered at points (z,y).

The process of constructing an object’s skeleton s, (skeletonization process) is concep-
tually very similar to the polygonal decomposition of the object O, with circular shape
polygons. It has already been shown in the Chapter 3, that polygonal decomposition
with rotational invariant circular shape polygons (prime components) gives statistically
the best decomposition of the interior of the object in the scene. It has also been shown,
that polygonal decomposition of an image can be carried out by other semi-rotational
invariant polygons, like rectangles, triangles or squares. Because of the availability of
simple and effective algorithms for implementation, especially interesting is the square
prime component decomposition. By modifying the distance operator d in (4.40), the
skeletonization process can be performed with square prime components as |

sup(SQR(m,n)), if On(m,n) #£0

. (4.42)
0, otherwise ,

Is(:c,y) = {

where the symbol sup(SQR(m,n)) denotes the size of the maximum-sized squared prime
component belonging to the object O, and centered at (m,n). We can now construct the
full skeleton Sy,(z,y) of the object O, composed of the edge map E, and the skeleton s,
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obtained from square prime component decomposition (prime skeleton) of the object O,,,

as
1, if Es(m,n)# 0 and s,(m,n) £ 0

, 4.43
0, otherwise . ( )

Sn(z,y) = {

The set of points (z,y) for which S,(z,y) = 1 is known as the point skeleton of the object
On.

The boundary decomposition of the input image is performed using a modified Sobel
operator. The Prewitt operator gives less discontinuities than does the Sobel operator,
but fails for less detailed edges. Therefore, the masks M; and M, of the Sobel operator
are modified as

-1 0 1 -1 ~-1.5 -1
M1 = —-1.5 0 15 " Mz = 0 0 0
-1 0 1 1 1.5 1

Next, the skeletonization process is performed using square prime component decom-
position. In order to proceed further in the extraction of the shape elements, the full
skeleton of the test object is filtered by a 2-D low-pass filter and a skeletonization process
is performed once more. The low-pass filtering process removes the possible discontinu-
ities from the skeleton description and makes the final extraction easier to perform. The
full skeleton point S, is composed of the boundary description of the object E, and its
prime skeleton s,. The full skeleton of the object is then transformed directly into OS

(shape-descriptor), a set of extracted shape elements, as given by

OS= {11,12,...,11',...,l:_l,lz}. (444)
The shape-descriptor OS contains z shape elements (curves) l;, j =1,..., z, of the form
lj={x1j’ylj1x2jay2j}7 j=l,...,z, (4.45)

where (z1;,y1;) is the coordinate of the starting point of the curve l; and (z2;,y2;)
describes the coordinate of the end point of the curve l;. The difficulties in the description
and further interpretation of complicated curves, practically reduces the type of possible
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curve models to simple straight lines. Therefore, four parameters are used to describe
the basic shape element. The use of straight lines as a basic shape element does not
restrict the accuracy of the representation, since we can always increase the number z of
the extracted shape elements. Consequently, the shape-descriptor OS is obtained by a
2-D interpolation of the full object skeleton S,(z,y) by straight lines. Set of parameters
(z1;,y1;) and (22;,y2;) of the shape element {;, j = 1,..., z, satisfies the equation

Ajiz + Bjy = C; . (4.46)

Therefore, finding the unknown parameters (z1;,y1;) and (z2;,y2;) can be considered
as finding the coefficients A;, B; and C; in (4.46). Thus, the interpolation process
consists of modifying the coeficients A;, B; and C; adaptively in such a way that
distance d between curve described by (4.46) and the set of m skeleton points SP;
(SP; = {(z1,11)s---»(Zm>¥ym)}» J =1,...,2) is less than dpin, i.e.,

Az + Byy — C -
d = < dmin- 44
VAt B +C2 (4.47)

Vk:l ..... m

Every set SP; denotes one extracted shape element /;, j = 1,...,z. The process of
interpolation is performed as long as all the skeleton points (z,y) have been transformed
into the shape elements /;. The minimum distance d,,;, is chosen appropriately to meet
the required accuracy of the shape extraction process. The adaptive algorithm for the
determination of the coefficients A;, B; and C; combines the skeleton points SP; into a
chain given as

CH= {(zlayl)’(z2’y2)v(x3a y3)7"'} (448)

under the constraint that the Euclidean distance di between the point (z,yx) and the
point (Zg41,Yr+1) is less than the searching distance d, given by

de = \/(zk-n = zk)? + (Yr+1 — Yk)? < d,. (4.49)

From the constrain given by (4.49), it can be concluded that the searching distance d, de-
termines the minimum number 2, of the extracted shape elements;, 7 = 1,...,z. Each
extracted shape element represents a specific case of the general level prime component
linked to the object of the world-scene by an appropriate equivalence relation Ry, the
points of the world-scene which belong to one and only one shape element. The spatial
relations between the extracted shape elements can be treated as associations between
general-level prime components (see Figure 3.1).
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4.3 Shape Equalization

As it has been already mentioned, the minimum distance dpn;, together with spatial sam-
pling frequency determines the accuracy of the boundary description. An example of
poor accuracy of the representation of an object’s boundary caused by a too small spatial
sampling frequency for rectangular sampling grid can be seen in Figure 4.1. This type of
distortion manifests itself as a large contour distortion and an overall loss in the resolu-
tion of small details of an object in a world-scene, particularly at corners and edges of the
objects which rapidly change their curvature. The poor accuracy of the representation of
the object’s boundary is one of the major factors resulting in errors in shape extraction
process and consequently it causes segmentation errors in the subsequent stages of an im-
age understanding system. In addition, poor accuracy of the representation together with
a rectangular sampling grid, makes the detection and extraction of the diagonal shape
elements, lines and rotated objects a very difficult problem. However, increasing the de-
scription accuracy by increasing the spatial sampling frequency, using a polar sampling
grid or minimizing the distance dnmi, is not a good idea. The computational complexity
and time required for the extraction of shape elements increases exponentially with an
increase of the sampling frequency or with a decrease in the distance dpir. The polar
sampling grid creates other types of difficulties.

Without changing the distance dm;» and the sampling frequency, an increase in accuracy
can be achieved by an equalization of the detected object’s boundary (shape equaliza-
tion) through a filtering operation performed on parametric representation of the objects’
boundaries. The object’s boundary (edges) can be obtained using the modified Sobel
operator described in Section 4.2. Then, a very simple filtering operation would increase
the accuracy of the description significantly. This filtering operation can be performed
with a little increase in computational complexity of the algorithm.

The accuracy of description in the continuous metric space can be defined as the norm
A= 2= Zill. = [1 Z,() - Z.0) | d, (4.50)

where Z, and Z, designate the parametric contour representation of the original and the
sampled version of the elements, respectively. For discrete representation, the accuracy
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of description can be defined as

N-1

Adl = ”Zo - Zr"dl = Z I Zo(n) - Zr(n) |1 (451)
n=0
or as
Aiz = |Zo = Zl|laz = sup | Zo(n) = Z;(n) | - (4.52)

(a) () (©)

Figure 4.1: An example of the binary image. (b) and (c) Sampled and thresholded version
of the image in (a) at two different sampling frequencies.

Let

Z(r) = z(n)+jy(n) = r(n)e*™,
n=0,1,..,.N—1land 0 < a <27, (4.53)

represent the discrete parametric contour representation of the curve Z (space domain
representation). It is obvious that for a polygon, the curve Z is closed, and the sum of
the differences Aa(n) defined as

Aa(n) = a(n)—a(n—1),n=0,1,..,.N-1 (4.54)

is equal to 2, that is,

N-1 N-1
Y Aa(n) = Y a(n)—a(n—1) = 27 . (4.55)
n=0 n=0
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For a closed boundary, the function given by (4.53) is periodic with a period N. There-
fore, the DFT of a parametrically represented closed contour Z (n) (Eqn. (4.53)) can be
expressed as

fd(k) = 1{5 Z(n)e 55", (4.56)

n=0

The complex coefficients fd(k) known as Fourier descriptors (spectrum) of the boundary
Z(n) have already been described in Section 4.1.2. The boundary Z(n) can be recovered
using the inverse DFT as given by

1 N-1

Z(n) = 5 Z; fd(k)e 2R, (4.57)
=0

The Fourier descriptor representation f d(k) directly reflects the changes in the curvature
of the boundary Z(n). This means, that the spectrum fd(k) of the boundary Z(n) con-
tains higher frequencies for complex shaped objects for which the boundary curve changes
its direction (angle) rapidly. Conversely, the spectrum of simple and smooth curves will
mostly contain low-frequency components. Typical spectrums of some object boundary
are shown in Figure 4.2.
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Figure 4.2: The typical Fourier spectrums of parametric curve representations. (a) Spec-
trum of the boundary curve of the shape shown in Figure 4.1(b). (b) Spectrum of the
boundary curve of the shape shown in Figure 4.1(c). (c) Spectrum of the extracted contour
from the gray-level image shown in Figure 4.5.
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The spectrum fd(k) of the boundary Z(n) can be transformed using a 1-D filter as
fdy(k) = F{fd(k)} , k=0,1,..,N -1, (4.58)

where the transformation F{.} performs a shape filtering of the boundary Z(n) by trans-
forming its spectrum fd into fd,. For linear filtering, the transformation F{.} reduces
itself to a multiplication in the frequency domain, as given by

fdy(k) = HS(k)fd(k) ’ k= 0’ 1’"'1 N-1 ’ (459)

where Hs(k) is the sampled frequency characteristic of the filter. In the space domain
representation, the transformation given by (4.58) can be understood as a circular con-
volution of the boundary Z(n) with the impulse response of the filter As(n). Thus, the
equalization process consists of filtering the Fourier spectrum fd(k) of the parametric
curve representation. The key point in this procedure is to transform the parametrically
represented contour into the Fourier description domain, and then to recover the shape of
the object by applying the traditional filtering. The amplitude characteristic of the filter
transfer function is determined in a learning phase using a sequence of real world-scenes
and their undersampled versions. For every object Z and the filtered output of its under-
sampled version Z7, the algorithm computes the norm 4%, using (4.51) or (4.52). After
all norms (for every pairs Z, and Z, from the training sequence) have been computed,
the average norm A, is determined as

-— 1 ¥ .

Ay = i _}:Af,. (4.60)

=1

The upper limit M denotes the total number of word-scenes in the training phase. The
amplitude characteristic of the filter is modified and the average norm Aj is calculated
repeatedly until there is an appreciable improvement in Aj.

Generally, a binary image contains a set of polygons each having its own boundary rep-
resentation Z,, (z =1,2,...) and the difference function Aa,(n) for its sampled version.
For the set of difference function Aa,(n), we can consider their statistical properties as

Mg = B{(Aac)’} = Y (Ae,) fi(Aa,), (4.61)

and

kg = E{(Acr — 1)} = Y (A — 1) fi(Aar), (4.62)
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where fi(Aa,) is the probability density function of the k-th contour, and m, and u,
are statistical q-th order moments of the k-th contour. The symbol E{.}, denotes the
expectation operator of the random variable. The polygons in a typical binary image
have typical statistical properties (moments as defined above), which allows the use of
this information to predict the phase characteristic of the filter. The coefficients’ angles
in the transfer function of the filter are determined in a similar adaptive manner as de-
scribed above. The only difference being that instead of minimizing the average norm
Ag, the differences between the moments of the same order are taken into account. The
moment values mg, and p;, are determined by estimating of the probability density func-
tion fi(Aa,) from a scene sequence. Consequently, the filter’s coefficients are determined
during the initial learning phase using a set of real-world scenes. After the amplitude and
phase characteristics of the filter are determined for the training sequence, the algorithm
is capable of modifying the filter characteristics on-line as a result of processing of real
world-scenes. However, the changes at this stage are only minor and they are in the
frequency domain.

The shape equalization operation ( filtering operation) that consists of 1-D multiplication
in frequency domain, is applied right after combining the skeleton points SP; into a chain
given by

CH = {(z1,51), (22, ¥2). (3, ¥3), -- -} (4.63)

and before finding the coefficients A;, B; and C; for every extracted shape element
lj, j=1,...,z.

As discussed above, the shape equalization process has two phases - the learning phase and
filtering. The algorithms corresponding to these two phases are now formally presented
using pseudo codes.
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Shape Equalization Algorithm I (Learning Phase)

start
{
Initialize maximum trial_number
Clear trial_counter
Clear accuracy.array
Initialize filter_coefficient_array
Initialise temporary_threshold_delta
Initialize threshold_delta
Clear amplitude_direction_vector
Clear phase_direction_vector
while ( “temporary_threshold_delta greater than threshold_delta™ )
{
Modify filter_coeflicient.array according to amplitude_direction_vector
Modify filter_coefficient.array according to phase_direction_vector
while ( “scene from training sequence” )
{
Compute accuracy Ay
Store accuracy A4 into accuracy.array
} —
Compute temporary.average norm Ay
Compute threshold_delta
Compute temporary_threshold_delta
Compute amplitude_direction_vector of filter coefficients
Compute phase_direction_vector of filter coefficients
}
Increment trial_counter
if ( “trial_counter greater than maximum_trial number” )

{
break

}

end
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Shape Equalization Algorithm II (Filtering)

start

{

Compute Fourier descriptors using parametric representation of object’s boundary
Perform filtering operation in Fourier domain

Compute Inverse Fourier Transform of the result of filtering operation

}

end

The shape equalization technique described above can also be applied to gray-level image
sequences. In this case, the areas of the images having the same gray-level (un-equalized
contours) are first extracted by a quantization process of the gray-level. The quantization
process produces a sequence of extracted regions which can be treated as a binary scene
sequence. Next, the filter coefficients are determined proceeding as in the case of binary
images presented earlier. Finally, the equalization process and the subsequent construc-
tion of the shape elements can be performed.

The algorithm for the shape extraction that employs the square prime component de-
composition and the shape equalization algorithms can now be formally presented using
pseudo codes.

Shape Extraction Algorithm

start

{

Clear shape_element_array
Detect objects’ boundaries

Perform shape equalization procedure of objects’ boundaries
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Compute prime_skeleton s, using square prime component decomposition
Compute full_skeleton S,

Compute chain_of_points representing shape elements: CH = {...}
Match B_spline curves to the chain_of_points

Store B_spline curves into shape_element_array

}

end

4.4 Intermediate Object Representation

In the Section 4.2, the method of the extraction of shape elements has been presented.
The set of extracted shape elements given by

08 = {lloy.. . L;y ... Loy, L) (4.64)

is an intermediate object representation used in the proposed IUS. The quality and ef-
ficiency of the intermediate object representation is improved significantly by applying
the shape equalization procedure as introduced in Section 4.3. The equalization scheme
reduces the number of shape elements in the intermediate object representation without
decreasing the description accuracy. It also reduces the errors caused by the description of

diagonal and rotated objects, the use of low sampling frequency and quantization errors.

Since the intermediate object representation composed of the extracted shape elements
includes the description of an object’s interior, the high-level processing tasks and inter-
action with the knowledge base becomes simpler and more efficient. For example, the
internal description of an object included in the intermediate object representation and
based on the prime component decomposition greatly simplifies the process of separation
and isolation of the objects in a scene. In addition, the prime component-based interme-
diate object representation is very suitable to perform one of the most computationally
expensive algorithms within an IUS, namely, the searching and matching of the elements
of the intermediate object representation within the knowledge base of an IUS.
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4.5 Examples and Simulation Results

In this section, the model of shape extraction together with the shape equalization tech-
nique is experimentally tested. The proposed square decomposition is compared to two
skeletonization algorithms, the Voronoi skeletonization algorithm (3], [29] and the mor-
phological skeletonization algorithm [83]. We examine the decomposition process and
generation of the intermediate object description performed on a test sequence of binary
images. We also examine the efficiency of the skeletonization and the extraction processes.

4.5.1 Shape Equalization

The simulation of the shape equalization technique is performed on binary images having
sizes ranging from 96x96 to 512x512 pixels. A Fast Fourier Transform algorithm has been
employed in order to perform the filtering operation in the Fourier domain. The analy-
sis of the shape equalization process is performed based on the comparison between the
original and the reconstructed binary image at two different spatial sampling frequencies.

The results of the reconstruction process of the shape of the binary image is presented in
Figure 4.3. Figure 4.3(a) shows the original binary image used in the experiment. The
original binary image is sampled giving the internal image representation a size of 96x96.
The sampling process simulates the image formation function in the low-level stage. The
total number of points of the contour is 236. In order to increase the image resolution,
the contour of inner image formation is equalized with a second-order filter. The filter
coefficients are obtained through a training phase using a set of binary images similar to
the original one. The result of the filtering operation is presented in Figure 4.3(c). As
it can be observed from this figure, the filtering operation has significantly increased the
spatial resolution of the inner image representation. The spatial resolution of the inner
image representation presented in Figure 4.3(c) is equivalent the inner image representa-
tion having a size of 260x260, i.e., the spatial resolution has been increased by a factor of
2.5. It is important to note that the increase in the spatial resolution does not increase
the number of points that are required to represent the contour of the object. The
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number of points that represent the inner image representation shown in Figure 4.3(c) is
the same as in Figure 4.3(b) and it is equal to 236.

(a) (b) (©

Figure 4.3: Shape reconstruction of a binary image by filtering the contour. (a) Original
image. (b) Sampled and thresholded as a 96x96 image. (c) Reconstructed shape image.

A similar equalization operation performed on an image having a size of 192x192 is pre-
sented in Figure 4.4. In this case the number of points of the contour of the inner image
representation is equal to 874. The resulting image of the shape equalization presented
in Figure 4.4(c) is equivalent to the inner image representation having a resolution of
510x510. Consequently, in this case the equalization process has increased the spatial
resolution of the inner image representation by a factor of 2.

An example of the equalization process of a particular region of a 96x96 gray-level im-
age Lenna is presented in Figure 4.5. Figure 4.5(a) shows a 4 gray-level 96x96 Lenna
image with one extracted binary region obtained through a quantization process of the
gray scale. The spectrum of the extracted region in the Fourier domain has been already
shown in Figure 4.2(c). The shape equalization process of the extracted region using the
filter coefficients obtained from the different stages of the training phase are shown in
Figure 4.5(b)-(d). The resulting inner image representation of the extracted region has a
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resolution equivalent to a 190x190 image, i.e., the equalization process has increased the
overall resolution to more than twice without increasing the number of contour points.

(@) (b) ©

Figure 4.4: Shape reconstruction of a binary image by filtering the contour. (a) Original
image. (b) Sampled and thresholded as a 192x192 image. (c) Reconstructed shape image.

4.5.2 Extraction of Shape Elements

In this subsection, the application of the square prime component decomposition to shape
extraction is considered. The results of the shape element extraction using the pro-
posed square decomposition is compared to that using two skeletonization algorithms,
the Voronoi skeletonization algorithm (3], [29] and the morphological skeletonization al-
gorithm [83]. We examine the decomposition process and generation of an intermediate
object description performed on a test sequence of binary images. We will consider the
practical aspects of the extraction of shape elements such as quality of the extraction of
the shape elements, and the computational complexity of the algorithms in sequential and

parallel implementations.

The first step in the simulation is to perform the edge detection, and independently,
the square prime component decomposition of the scene. The prime component
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(a) (b)

(e¢) (d)

Figure 4.5: Shape equalization applied to a gray-level image. (a) A 4 gray-level Lenna
image with an extracted region. Equalized shape using a second-order 1-D filter obtained
with (b) 30%, (c) 60 %, and (d) 100% training.

decomposition allows the construction of the prime skeleton of the object(s). After the
skeletonization process is completed, the full skeleton of the object is constructed from
the prime skeleton and the edge map. The images using the skeletonization algorithm
performed by employing the square prime component decomposition together with the
detected object’s boundary are shown in Figure 4.6.
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Figure 4.6: The full skeleton of the object composed of the boundary description of the
object and its prime skeleton. (a) Original scene. (b) Detected contour. (c) Prime
skeleton. (d) Full skeleton.

The full skeleton of the object is also obtained by using an optimized skeletonization
algorithm based on Voronoi skeletons and morphological operators. In order to compare
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the effectiveness of the proposed square decomposition algorithms with those based on
the Voronoi skeletons and the skeletons obtained from the morphological operators, the
skeletonization process is performed on the same 1200 binary test image sequence. The
comparison of the algorithms is performed using the same hardware platform and the
OS environment. The comparison results for the three skeletonization methods are pre-
sented in Table 4.1. This table clearly shows that the prime component decomposition
algorithms outperform those based on the optimized Voronoi skeletons and on the mor-
phological operators. The performance of the proposed algorithm gets even better for the
parallel implementations.

Type of algorithm
Time Implementation || Prime component | Voronoi Optimized | Morpholo
| decomposition skeleton operatc
=

Average decomposition Sequential 3.784 8.701 10.92

time in ms. of 1200
96 x 96 image sequence

Parallel 0.1577 0.5801 0.840:

Decomposition time in Sequential 98.4 236.2 2774
ms. of a particular

512 x 312 scene
Parallel 4.260 16.85 20.46

Table 4.1: Comparison of real-time performance of the skeletonization algorithms.

The last step in our experimentation is to extract the shape elements of the ob jects of a
scene. As mentioned earlier, the process of the extraction of shape elements is flexible.
The extraction of the shape elements can be controlled by optimizing of the parameters
such as d, and dpin. Figure 4.7 shows the shape-descriptor (extracted shape elements) of
the test object. The search distance and the minimum distance have been chosen as d,=6
and dnin=3 ( Figure 4.7(a) ) and d,=10 and dm:=8 ( Figure 4.7(b) ). In real applications,
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the controlling parameters should be adjusted automatically in an adaptive manner.

In Table 4.2, the numerical results of the real-time performance of the proposed shape
extraction algorithm are compared to those obtained by using the algorithm based on the
Voronoi diagrams [3], [29]. The algorithms were executed on a SPARC Station-2.
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Figure 4.7: The results of extraction of the shape elements. (a) Extraction of z = 134
shape elements (d, = 6 and dmin = 3). (b) Extraction of z = 88 shape elements (d, = 10
and dpin = 8). :

Shape extraction algorithm

Prime components

Voronoi diagrams

Data complexity

11104 points

11104 points

Computation time of raster points in seconds

0.13

0.96

Computation time of edges in seconds

0.32

2.89

Table 4.2: Comparison of real-time performances of the shape extraction algorithms with
sequential implementations applied to a 512x512 scene.
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As seen from Table 4.2, the proposed shape extraction algorithm is about 8 times faster
than the one based on the Voronoi diagrams. Storing the information regarding the raster
points and the edges of the shape elements constitute the intermediate ob Ject description.

The total real-time performance for processing a single 512x512 world-scene is shown in
Table 4.3. The total processing time indicates the processing time of one complete scene.
Integration timings of the intermediate objects description into the knowledge base tree
structure have not been included in this comparison.

Prime component | Voronoi | Morphological
Approach decomposition | diagrams operator

Total processing time of a
512x512 scene. 0.54 s 3.61s 4.2's

Table 4.3: Comparison of the real-time performances of three different approaches with
sequential implementations for a 512x512 world-scene.

4.6 Summary

In this chapter the techniques for the extraction shape elements and shape equalization
have been developed. In the proposed approach of shape extraction, the polygonal decom-
position of the interior of the object and the description of its boundary (edges) have been
used. The decomposition of the object’s interior is based on a skeletonization concept and
it is performed using square polygons (prime components). The boundary of the object
are determined using a modified Sobel operator.

In order to improve the accuracy of the extraction of the shape elements, an equalization
scheme has been employed. The shape equalization operation increases the accuracy of
the shape extraction process without increasing the complexity of the input information.
The method is based on data interpolation using Fourier descriptors taking advantage of

'An estimated real-time performance of the transformation
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the statistical properties of the shape boundary. After the transformation of the shape
boundary into the Fourier descriptor domain, the traditional 1-D filtering techniques has

been applied.

The final stage of the extraction is to transform the equalized discrete skeleton of the
object into its shape description (shape descriptor). This process has been carried out by
matching the B-spline curves to the whole discrete skeleton of the object. The resulting
shape descriptor of the object is composed of a set of the extracted shape elements (set
of B-spline curves) and inter-relations among them.

As the skeletonization process uses a square decomposition approach, the speed of the
shape extraction has been improved over that of the most of the morphological-based
skeletonization algorithms. The set of parameters d,;» and d, enables a full control of
the accuracy of the extraction process. The simple geometrical structures such as circles,
squares, rectangles etc. have been successfully extracted using as few as 5 to 6 extracted
shape elements. The description of more complex objects has required about 150 to 300

shape elements.

The shape elements of an object arising from shape equalization constitute the inter-
mediate object representation for an IUS. The equalization operation has reduced the
number of extracted shape elements in the intermediate object representation. This pro-
cess can also simplify the computational complexity of the algorithms used in low-level
and high-level processing tasks.
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Chapter 5

AN IMAGE UNDERSTANDING
SYSTEM

As mentioned in Chapter 1, a typical image understanding system (IUS) which performs
the knowledge transformation is composed of two major processing stages known as low-
level processing stage and high-level processing stage. These two stages are significant
components in modeling a complex IUS. For a knowledge-based IUS, another very impor-
tant component that is included in the model is the knowledge base itself.

The task of a low-level processing stage is concerned with the extraction of an efficient
intermediate knowledge representation from an input world-scene. This topic has been
treated in Chapters 3 and 4. The high-level processing stage, on the other hand, is
responsible for the analysis, interpretation and understanding of an input world-scene.
The knowledge base of an IUS helps to perform the high-level processing tasks by stor-
ing and retrieving the necessary information required for analysis and interpretation of
input world-scenes. In this chapter, a new knowledge-based image understanding sys-
tem is presented. The proposed model as shown in Figure 5.1 differs from the traditional
knowledge-based image understanding systems in that that low-level processing stage also
interacts with the knowledge base and the system utilizes a modified architecture for its

black-board approach in high-level processing.
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In this chapter, the models of the low-level and high-level processing stages of the pro-
posed IUS shown in Figure 5.1 are presented. The model of the low-level process-
ing stage includes processing paradigms that have already been presented, i.e., those
involving prime component decomposition, shape equalization and extraction. The
proposed model of the high-level processing stage is based on the black-board (BB)

Knowledge base
! Intermediate object !
' representation :
Input image Decisions
Low-level High-level results
B e | — >
processing stage processing stage
Extraction Analysis
of image interpretation
representation understanding

Figure 5.1: The proposed model of an IUS.

architecture with an agenda type scheduling mechanism [28]. This model allows to per-
form more effectively the goal-driven and data-driven reasoning by using incremental
problem solving strategies and by employing a selective focusing mechanism. The knowl-
edge base of the IUS is designed in terms of knowledge representation models and their
data structures. The interactions between the low-level processing stage and the knowl-
edge base are presented as a bottom-up reasoning process of updating the knowledge
base. The proposed scheme of integrating a new data structure within the knowledge
base simplifies the implementation and minimizes the hardware requirements of the low-
level processing stage. The interactions between the high-level processing stage and the
knowledge base are presented as a process of modifying the knowledge base by active
knowledge sources of the BB architecture.
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5.1 Knowledge Base of the Image Understanding Sys-

tem

Before proceeding with a detailed description of the low-level and high-level processing
stages, one should consider one of the most important aspects of a knowledge-based IUS,
namely, its knowledge base model. Informally, the knowledge base of a system is a set
of representations of facts about world-scenes. It is a data of the system that helps to
perform knowledge transformation within the IUS and simplifies the tasks of internal
computations. Moreover, in most cases, the interaction by a preprocessing stage with the
knowledge base is the only way to process a typical context-dependent and ambiguous
information that is present in real world-scenes.

5.1.1 Knowledge Representation Models

In order to propose an efficient and practically implementable model of the knowledge
base, the following issues should be addressed.

o The type of knowledge to be represented within the knowledge base of an IUS.

o The type of knowledge representation scheme to be used to represent the knowledge
within the knowledge base.

From the implementation point of view, the knowledge representation scheme should be
able to store and process effectively a huge amount of information from the physical world
through a knowledge compilation process. This should include the compilation of a se-
mantical (knowledge content [20]) as well as a procedural knowledge within the knowledge
base of the IUS. Other important issues that needs to be addressed during the develop-
ment of an effective model of the knowledge base are the initial creation and further run
time transformations of the knowledge within the IUS - modeling of the learning process.

Considering the IUS as a two-stage knowledge compilation system, one can infer some
preliminary characteristics of the knowledge representation model based on the nature of
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the transformations within the IUS. For example, there is a need to represent the pro-
cessing algorithms as a procedural knowledge in the high-level processing stage. However,
within the low-level processing stage this type of knowledge representation will have lim-
ited use. By analyzing particular aspects of the knowledge representation, one can find
the requirements of a knowledge representation scheme in the low-level processing stage

of the IUS as follows.

o Inhibition of grouping principles - The knowledge base of the IUS should allow to
effectively represent (incorporate and extract) the relevant features of the object
related to each other by following grouping principles:

(i) Prozimity - objects with spatially similar features,
(i)

(iii

Continuity - features enclosed within a single contour,
Symmetry - features of symmetrical objects, and

)
(iv) Common fate - features of moving objects.

o Inhibition of abstraction hierarchy- The knowledge base of the IUS should effectively
represent a hierarchy of feature abstractions.

o [nhibition of feature aggregation - The knowledge base of the IUS should effectively
combine subsets of object’s features under the given context into feature aggregates.

The above requirements for the knowledge representation suggest a combination of two
suitable models to represent the knowledge within the IUS. This combination should in-

clude the models based on the relational and hierarchical data structures.

A typical world-scene contains many complex objects composed of recognizable parts. A
full description of a complex object will then consist of its global features, global features
of each of its parts, and the relations among the parts. The features of an object are
simply tuple of measurements that have numeric or symbolic values. The relations among
the parts of the objects should be understood similar to the relations among the prime
components described in Chapter 3. In terms of the relational formalism presented in
Chapter 3, the relational structure D, of an object O is a pair (P,R), where P is a set of
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an object’s parts or primitives expressed using prime components, and R is a set of named
(numbered by index) relations among the prime components. For each relation R; €R,
a non-negative integer n; indicates the number of prime components involved in the tuple
of the relation R; and a non-negative integer m; indicates the number of features of the
attributes involved. Denoting by A the set of all possible attributes (attribute values),

one can write:

R:eP xA. (5.1)

That is, each tuple of R, represents an attribute relationship among the n; prime compo-
nents and characterized by the m; attributes. When n; = 1, and m; > 0, the relation R;
is just a feature vector representing the global attributes of the object O. When n; =2,
and m; > 0, the relation R; is the list of attributes of the prime components of the object
O. When n; > 2 and m; > 0, the relation R; describes the attribute relationship among

the prime components.

Since the utilization of the knowledge base of an IUS by the low-level processing stage does
not require retrieving and processing complex relationships, the main feature vector and
attributes should mostly include spatial, gray level and time-dependent relations. Let us
consider the following example. Suppose it is required to represent an intermediate ob ject
representation (extracted shape elements) by a relational description. Further, suppose
that the global attributes one wishes to represent are the total number of extracted shape
elements, average number of extracted shape elements per unit area, and the numbers of
rows and columns of the world-scene from which the shape elements have been extracted.
These global attributes can then be represented by a single-tuple relation Scene_Properties
having four components: Total_shape_elements, Density, Rows and Columns. If one wants
to keep track of coordinates of the starting and the end-points, the length, and the an-
gle of each extracted shape element, one could encode this information as an attribute
relation Shape_element_segments, whose tuple contains one extracted_shape_element and
the values of its six attributes: Row_start, Column._start, Row_end, Column_end, Length,

and Angle.

The perceptual relation between the extracted shape elements can also be described us-

ing three grouping categories: proximity, parallelism and collinearity. In this case, each
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relation is represented as an attribute of binary relation. The tuple of the proximity rela-
tion contains a pair of line segments and a real number indicating the minimum distance
between the line segments. Each of the parallel and collinear relation contains a tuple
with a pair of extracted shape elements and a measure of their parallelism or collinearity.
To illustrate these concepts, in Figure 5.2, Tables 5.1, 5.2 and 5.3, a decomposed scene
and the relational description employing the Scene Properties, Shape_element_segments,
Proximity, Parallelism and Collinearity relations are presented.

3 Y 1
2 3
4 > 6
7 8
9
X

Figure 5.2: The extracted shape elements of an object within a 512x512 world-scene. The
numbers indicate the extracted shape elements.

Total_shape_elements | Density | Rows | Columns

9 0.027 120 360

Table 5.1: The attributes of Scene_Properties relation of the object in Figure 5.2.
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Extracted_shape_element | Row_start | Column_start | Row_end | Column_end | Length i
Deg

1 200 40 200 400 360 0
2 200 40 120 120 226 31
3 120 320 200 400 226 ;
4 200 40 40 40 160 27
5 120 120 120 320 200 0
6 40 400 200 400 160 9(
7 40 40 120 120 226 4
8 120 320 40 400 226 31
9 40 40 40 400 360 0

Table 5.2: The attributes of Shape_element_segments relation of the object in Figure 5.2.

First shape element

Second shape element

Parallelism

YES

NO

YES

YES

NO

YES

NO

NO

YES

YES

NN R lWINID] =] -

DO |DD|ND|O|~N|w]|]w|lwlo]|w

NO

Table 5.3: The attributes Proximity, Parallelism and Collinearity relations between se-
lected pairs of shape elements of the object in Figure 5.2.
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The attributes of Scene_Properties relation presented in Table 5.1 give the global attribute
values of the world-scene. The attributes of Shape_element_segments relation presented
in Table 5.2 list each shape element along with its length and angle. The attributes of
binary Proximity, Parallelism and Collinearity relations for certain selected pairs of shape
elements are presented in Table 5.3. In this example, the the real-valued quantities of
density and length have been rounded off. Length is defined as the Euclidean distance
between starting- and end-point of an extracted shape element, and angle is defined as
arctan((Row_end -Row_start)/(Column_end - Column_start)).

The relational structures are sufficient to describe even very complex objects within a
world-scene. However, as the number of prime components (extracted shape elements)
increases, the relational description becomes cumbersome and oversized. In order to main-
tain the benefits of the relational model without increasing the description complexity,
the object to be described can be broken into its major parts, the major parts into sub-
parts and so on, yielding a hierarchical representation structure. Since the hierarchical
structure can effectively exploit the re-usability of its components, the whole description
results in a more compact (better) representation model. Formally, the hierarchical rela-
tional description D, of the object O is a pair (P,R), where P is a set of shape elements
and/or prime components and R is a set of relations among them. The relations work in
the same way as in a single-level non-hierarchical structure, in which the shape elements
(general-level prime components) can be broken down until they reach to the zeroth level
prime components. Since the zeroth level prime components (pixels) cannot be further
decomposed, they are called the atomic elements of the world-scene. An example of a
hierarchical relational structure was presented in Figure 1.1. In Figure 1.1(a), there are
eight elements, scene, objects, table, legs, board, book, bottle and glass and the rela-
tions, part, on and left as shown in Figure 1.1(b), define spatial relationships among the

elements of the scene.

5.1.2 Data Structure of the Knowledge Base

The definition of the data structures within the knowledge base is one of the most im-
portant steps in developing a practical IUS. Since the majority of algorithms within an
IUS deal with the searching and matching problems, an appropriate construction of data
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structures can speed-up the real-time performance of the system significantly. The pre-
liminary considerations related to the knowledge representation model within an IUS,
discussed in Section 5.1.1, restrict the data structure to be hierarchical, and relational.

Let us consider two clearly distinct abstract data objects: LENGTH and WIDTH repre-
senting the length and the width of a typical two-dimensional object within a scene. It is
quite clear, that these two data objects can be characterized using the same measurement
attribute - a real number. Since these two data objects are characterized by the same
measurement attribute, the classical data type definition would not distinguish these two
objects as two different data types. Consequently, this restriction of the classical model
would limit the flexibility of the tasks within an IUS and a new data type definition need
to be proposed. In the proposed definition, the data type is defined, determined and dis-
tinguished based on a concept of labels and attributes of the hierarchical relational data
structures presented in Section 5.1.1. In terms of the new data type definition, the two
data objects: LENGTH and WIDTH are viewed as two distinct data types derived from
the base data type representing the value - a real number. The data objects contracted
in this manner will be called clones of the base data type. Figure 5.3 shows the inference
diagram of deriving the new data types - the clones from the base data type.

Label:
real value

Derive clone

|2 N
Label: Label:
WIDTH LENGTH

Figure 5.3: Derivation of a new data type within the IUS.

The derivation of the data types does not have to be restricted to clone data types. For
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instance, a new data object (new data type) can be created by performing the clustering
operation on any number of data types. This operation is analogous to the construction
of the general-level prime components described in Chapter 3. In this case, the zeroth
level prime components correspond to the base data types and their clones, while the
general-level prime components correspond to the derived data types that are subsets of
any number of base and/or derived data types. Consequently, any data object within the
knowledge base of an IUS can be grouped into one of two data types:

e Base data type

e Derived data type

The graphical examples that explain the idea of the data type organization and the
construction of the derived data types are presented in F igure 5.4.

D, D D Ds
D:
D
. D, D, D, Ds D:
(a) (b)
D+ Ds

D, Ds Ds D, D,| |Ds Ds) D=4

(¢) (d)

Figure 5.4: Examples of constructing the derived data types within the knowledge base
of the IUS. (a) Base data types. (b) First-order derived data types. (c) Second-order
derived data type. (d) Third-order derived data type.

In Figure 5.4(b) the derived data type Ds is constructed from the base data types Dg and
D, while the derived data type Dg is constructed from the base data types D;, Dy and
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D;. The derived data types D7 and Dg presented in Figure 5.4(c) and (d) are obtained
from data types D3, Ds and Dg in the case of the derived type D7, and from D,, D,
D3, Ds and D+, in the case of the derived data type Dg. The arrows shown in F igure 5.4
describe membership relations among the data type and its members.

The clustering operation that produces a derived data type is carried out in such a way
that the resulting structure is a tree graph that can have one and only one parent. The
type of the parent described by its label determines the type of the derived data. Con-
sequently, the whole organization of the knowledge base is implemented as data objects
containing only pointers to the allocated memory of its members. An example of partition
of the hierarchical relational knowledge base into the data structures of the knowledge

base is presented in Figure 5.5.

Ds D+ Ds

D+

Ds

Ds

Ds D~

base data types derived data types

Figure 5.5: The partition of the knowledge base into the data structures containing only
parents and pointers to their members.

One of the most difficult problems in an IUS is to process a context-dependent information.
The notion and importance of context appear in many cases during conceptually-driven
or top-down interpretation methodologies in knowledge-based processing. The analysis of
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context-dependent and context-driven processing determines the family of relations that
can be mapped into the knowledge base of an IUS. For example, during a scene analysis
and interpretation process, one cannot neglect the dynamically changing relations be-
tween the objects within a scene, which depend on the environment and perceptual and
cognitive aspects of the analysis. One of the most important requirements of implement-
ing the necessary interpretation methodologies is the global and broad understanding of
the relational links between data structures. As a result, in order to manipulate complex
entities and concepts from the physical world, one has to extend the traditional meaning
of the relations by combining the semantical links with the operational and time-varying
knowledge of the IUS. In this extended meaning, the relational links are understood very
broadly. For example, they can characterize the production and inference rules, they can
determine more complex time dependencies, or they can describe the procedural knowl-
edge of the IUS.

The utilization of the knowledge base by the two stages of an IUS that transform the
knowledge on two different abstraction levels, results in a specific partition of the rela-
tional links between low-level and high-level processing stages. As already mentioned. the
most essential relation from the viewpoint of the low-level processing stage describes the
spatial data dependencies among the elements (e.g. prime components) within a scene.
We will denote this relation as an inclusion data-dependent relation. A few examples of
relations between various data types are shown in Figure 5.6. The relation R; shown
in Figure 5.6(a) represents the inclusion data-dependent relation between the parent D
and its members D3, Ds and Des. Figure 5.6(b) shows the complement of the inclusion
data-dependent relation, the relation “is subset” that describes supersets Ds and Dsg of
the parentDy. The relation Rz (“can produce”), shown in Figure 5.6(c), describes the pro-
cedural knowledge of an IUS such as processing algorithms, methods and inference rules.
In the examples presented in Figure 5.6, the low-level processing stage will utilize the
relations R, and R, that describe the clustering operation, while the high-level processing
stage will utilize the relations R, R; and Rs that describe both the clustering opera-
tion and the procedural knowledge of an IUS. In the case where the number of relational
types is insufficient, the new relational links can be created dynamically. From this
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R, - has memeber - is subset R, - can produce
/ 4\ Z \ / 1\
D, Ds Ds D, D3 D:

(a) (b) (c)

Figure 5.6: Examples of relations among various data types. (a) The example of the
inclusion data dependent relation R; - “has member”. (b) The example of the superset
relation R - “is subset”. (c) The example of the procedural relation Rz - “can produce”.

point of view the relations can be grouped similar to the data structures into one of the

two categories:
e Base relations,
e Derived relations.

The base relations are the ones that allow an IUS to begin its execution. While the de-
rived relations are created during the run-time execution in the IUS.

One of the most computationally expensive tasks within an IUS is to execute searching
and matching algorithms that operate on the knowledge base. The efficiency of these
algorithms can be drastically improved by including several additional parameters to
the data structures. These additional parameters describe the internal structure and the
statistical properties of the data objects within the knowledge base. They also synchronize
the access to the structures of the knowledge base and allow the new data types to be
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effectively incorporated into the existing ones. The following major parameters of the
data structures in a knowledge base can be distinguished.

e Statistical parameters

Life time statistic vector - LTgeq¢
Links statistic vector - LIgq,

Access statistic vector - Agy,
o Relational parameters

Connection vector - Cgry
Similarity vector - Sge

Link vector - Ly,
o Structural parameters

Descendent vector - Dg,,
Parent vector - PAg,,

Partial trees vector - PTs,,
e Access parameters

Access vector - A ..
Dimension vector - D 4.

Coordinate vector - C 4.

Among the parameters describing the statistical properties of the data objects, the pa-
rameters, life time statistic vector LTs,,; and access statistic vector Astat, are the most
important ones. These parameters describe "how old is” and "how often has been used” a
given data structure of the knowledge base. The relational parameters describe the inclu-
sion relation, i.e. the spatial dependencies between the data structure and the knowledge
base. These parameters also encode the information describing the similarity of data
objects to other data structures from the knowledge base. The structural parameters
specify the inner organization of the data structure such as the number of hierarchical
levels, the number of parents or the number of children. F inally, the access parameters
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help prevent locking and hazards during multiple accessing of a given data structure by
different processes of the IUS.

5.2 Proposed Model of the Low-Level Processing
Stage

It can be seen from the proposed model of an IUS (Figure 5.1) that the communication
process between the low-level and high-level processing stages is carried out through the
knowledge base of the system. This communication link between the low-level processing
stage and the knowledge base facilitates the merging of the general-level prime compo-
nents within the knowledge base, obtained as a result of the extraction of shape elements
from the low-level processing stage.

As it has been pointed out in Section 5.1, the hierarchical relational knowledge has the
ability to represent very complex relational dependencies required by the high-level pro-
cessing stage of the IUS. However, from the point of view of the low-level processing
stage, the most important relations are not the complex ones describing the sophisticated
spatial and time dependencies or procedural knowledge, but the ones that are needed
to represent simple spatial relations among the elements of a single scene. Therefore, in
order to clarify and simplify our discussion. we will focus our attention on those aspects
that are essential from the point of view of the low-level processing stage. The additional
explanation will be provided during a brief description of the high-level processing stage
in Section 5.3. Consequently, the knowledge base of the IUS will be viewed as a set of
data structures representing only the prime components and extracted shape elements
discussed in Chapters 3 and 4. Furthermore, since the extracted shape elements are com-
posed of (constructed from) the zeroth- and/or general-level prime components, we will
refer to the data structures of the knowledge base simply as prime components of appro-

priate levels.

The knowledge base of the system is seen by the low-level processing stage as a stochastic
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tree graph structure containing all the informaticn on the history of the prime compo-
nents and the actions performed on them. Every time, the general-level prime component
is created and merged, the structure of the knowledge base is changed. This also af-
fects all the subsets of the prime components that belong to the newly created and/or
merged general-level prime components - prime components connected by the inclusion
relation. The new general-level prime component is incorporated into a temporary tree
structure as a leaf node, and then, the temporary tree structure is incorporated into the
whole knowledge base of the system. Every temporary tree graph generated by the low-
level processing stage represents one object within the world-scene. During the merging
of the temporary tree structures into the stochastic tree graph of the knowledge base,
the set of statistical parameters and spatial relations of other general-level prime compo-
nents are examined. A set of prime components comprising the candidates for merging
is generated. If a “strong” equivalence relation among the merging candidates and the
appropriate structures of the knowledge base exists, the set of candidates is merged into a
new general-level prime component within the knowledge base of the system. This newly
created tree has all the properties of general-level prime components and it can be used

in the next merging cycle.

The concept of the merging procedure is equivalent to the bottom-up strategy of data
fusion, where during the backward chaining process, simple data objects are combined in
order to infer more complex structures. Processing of one world scene can generate many
stochastic tree graphs. The task of interpretation and analysis of the merged and active
regions of the knowledge base belongs to the next high-level processing stage of the IUS.

In Figure 5.7 a complete model of a low-level processing stage is proposed. As it can be
observed from this figure the proposed model of the low-level processing stage comprises
data flow channels and several processing blocks as described below.

The block Input Devices represents input media such as camera, VCR, scanner or any
other source that produces world-scene sequences. The major task of this block is to
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Figure 5.7: A complete proposed model of the low-level processing stage of an IUS.
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transform the input world scenes W,.(z,y) into its inner image representations /;(z,y)
inside the IUS with minimum distortion. This block also provides the communication
services with the storage media, performs the functions of network interfacing and syn-
chronizes the processes and the time events on various platforms of the distributed IUS.

The block Preliminary Processing prepares an input scene for low level processing.
This block performs most of the classical image processing operations such as low-pass
and high-pass filtering, contrast enhancement, histogram equalization, and simple non-
linear filtering (e.g. median filtering). The operations in this block are mostly point
and memoryless transformations. After preliminary processing, the inner image repre-
sentation [im(z,y) is ready for the next level of processing - the interior and boundary
decompositions of the objects within the scene.

The block Prime Component Decomposition is one of the most important and time
consuming tasks in the whole low-level processing. This block transforms a given inner
image representation [im(z,y) into a set of prime components uy and a set of associations
uy as given by

DEC(Lim(z,y)] = {up, ul}. (5.2)

The decomposition by maximum size square prime components of the objects in the inner
image representation I;m(z,y) is performed in parallel. The idea of the paralle] decompo-
sition is to partition the inner image representation into a set of binary sub-images, and
then to perform the square decomposition process by filling the non-overlapping square
areas of the objects of a particular binary sub-image. The decomposition operation is
performed on all of the binary sub-images. The resulting set of prime components u} and
association u} is then transformed in the same block into a skeleton map of the objects
as given by

sup(SQR(m,n)), if On(m,n) #0

5.3
0, otherwise. (5-3)

sa(z,y) = {

The block Boundary Detection performs a detection of the boundaries of the ob jects
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in the inner image representation I;,(z,y) and produces its edge map E,(m,n) as

1, if(z,y) belongs to the edge of the object

En(z,y) = { (5.4)

0, otherwise .

As it described in Chapter 4, the edge detector algorithm uses a modified Sobel operator.
The convolution operations between the modified Sobel operator and the inner image rep-
resentation I;m(z,y) is performed in the Fourier domain utilizing a 2-D FFT algorithm.
The boundary detection and the prime component decomposition operations are carried
out in parallel and independent of one another.

The block Shape Equalization increases the description accuracy of the edges E(z,y)
and the skeleton map s,(z,y) of the objects within the inner image representation
Iim(z,y). Its working principle is based on filtering the parametrically represented bound-
ary curves of the object and its skeleton map. As it has already been described in
Chapter 4, the shape equalization is performed by a 1-D convolution operation between
the parametric representation of the object’s boundaries and the coefficients of the 1-D
filter. The filter coefficients used to equalize the object’s boundaries are obtained during
a learning phase with a training sequence of the real world-scenes. In order to increase
the real-time performance of the block, the shape equalization process is performed in the
Fourier domain utilizing a 1-D FFT algorithm.

The block Shape Extraction first combines the skeieton map s, and the edge map
E.(z,y) of the object into its full skeleton S,(z,y) as

1, if En(z,y) # 0 and sq(z,y) # 0

0, otherwise .

Snlz,y) = {

At this point the whole inner image representation /;;,(z,y) has been transformed into its
full skeleton. The full skeleton can now be further transformed, as described in Section 4.2,
into its shape descriptor OS as given by

OS= {11,12,...,lj,...,lz_l,lz}, (56)

where [; ( = 1,2,...,z) are the extracted shape elements. Obtaining a shape descriptor
OS is next to the prime component decomposition, the most computationally expensive
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operation. In order to maximize the real-time performance of the operation, the full
skeleton of the object S,.(z,y) is partitioned into overlapped sub areas depending on the
density (nonzero values of S,(z,y) per unit area) of the skeleton itself. The partitioned
overlapped sub-areas are then redistributed over the network of processors. Every pro-
cessor transforms part of the full skeleton (one sub-area) into a partial shape descriptor.
At the end of the operation, all of the partial shape descriptors are combined into a set
of extracted shape elements - the shape descriptor @S.

The block Generation of Merging Candidates generates sets of merging candidates
- prime components from the set of extracted shape elements OS. The generated prime
components are of levels 1,2,...,k — 1 and k. Every extracted shape element I;, j =
1.2,...,z is considered as a general-level prime component from which, the next level
of merging candidates can be constructed. The n-th level prime components can only
be constructed from the (n-1)th level prime components. The process of generating the
merging candidates is controlled in such a way that for every generated merging candidate
PM | the probability of its being found in the knowledge base Up is the maximum, that is

Vm: PT €Up, P(PM) > P(P™) (5.7)

From a practical implementation point of view, finding an optimal set of merging candi-
dates is a very complex and time consuming process, requiring random generation proce-
dures and very efficient searching algorithms. Every generated merged candidate has to
be confronted with the knowledge base Up and the probability of its occurrence has to be
verified. In order to minimize the searching time, the knowledge base is organized as an
ordered multidimensional tree. Every dimension of the tree represents one searching con-
text - probability, spatial organization or time correlation. Every node of the tree changes
its position within the tree structure depending on the context (dimension). Using this
method of a representation, the searching area can be very easily narrowed down, while
the searching procedure becomes similar to a binary search algorithm. After comparison
against the knowledge base, the merging candidate can:

e join the family of merging candidates, if the probability of its being found in the
knowledge base is high enough,

e be discarded from the family of merging candidates if the probability of its being
found in the knowledge base is insufficient.
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The process of generation of the merging candidates stops if within the predefined period
of time, a new merging candidate cannot be generated. In this manner the whole family of
merging candidates of level k is generated. In the case when the set of generated merging
candidates of k-th level is not empty, the new set of merging candidates of level (k+1)
can be generated by repeating the generation procedure.

The block Combining Different Levels of Shape Descriptors has the ability to
merge the families of prime components of different levels into a single prime component
representation of the scene. Conceptually, this operation is similar to the one performed by
the block “generation of merging candidates” as presented above. In this case, however, a
set of families of prime components that represent the merging candidates can be clustered
into a new general-level prime component regardless of the representation levels of its
members. For example, the family of level k can be constructed from families of levels
(k—1),(k~2),...,,1 in a sequence that is reverse to the process of the constructing the
merging candidates allowing only the level (k — 1). All the merging families of prime
components are combined into one and only one world scene representation Z7. which is
the final result of the scene decomposition by the DEC|.] operator as given by

DEC(IE] = {I2,Z2) : IN €Ur A Zr € Up x UL, n € N}, (5.8)

where the set Up consists of all of the shape elements and the set U} represents the spatial

relations among the extracted shape elements.

The final block of the low-level processing stage Mapping into Intermediate Object
Description maps the newly generated prime component, into the knowledge base Up
by performing the following three steps:

(i) Determination of the inclusion coordinates in all dimensions of the knowledge base

for the prime component and for its decedents.
(i1) Inclusion of the prime component and its descendent into the knowledge base.

(iii) Updating the statistical parameters.
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Determination of the inclusion coordinates is based on comparison between the partial
tree structures of the knowledge base with the structure of the newly generated prime
component and its descendents for all possible dimensions. In the case in which there
exists a similarity in the structural level, the root of the partial tree structure from the
knowledge base becomes inclusion coordinate for the given prime component and/or its
descendents. Structure similarity between the given prime component and the partial
tree from the knowledge base means that the structure of the given prime component or
its descendents and structure of the partial tree from the knowledge base are the same.
Figure 5.8 explains the concepts of the structure similarities among prime components.

Searching for the inclusion coordinates begins from zeroth-level prime components. In
the case, when the inclusion point cannot be found for a prime component of level k but
it can be for the level (k — 1) (descendent of a prime component of level k), a new node
of the knowledge base is created. An example of a situation in which there is a structure
similarity between a decendent of the generated prime component P, and a partial tree
structure R, from within the knowledge base U, is shown in Figure 5.9. In this example,
the similarity between the descendent of the prime component P, and the partial tree
structure R, will result in the creation a new node in the knowledge base U,. After the
inclusion process has been performed, all of the statistical parameters of the similar prime
components in the entire knowledge base are updated. The statistical parameters of the
links of the prime components similar to other elements of the knowledge base (other

prime components) are also updated.

The process of inclusion of general-level prime components into the knowledge base of the
IUS is the last step in order to generate the intermediate object description. The newly
included prime component becomes an active part of the knowledge base. The included
active prime component represents the intermediate object description of the scene and
at this time the flow of control is transferred to the high-level processing of the IUS.
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Structure similarity

(c)

Figure 5.8: Structure similarity between a generated prime component P, and a partial
tree structure R, from the knowledge base U,. (a) The generated prime component P,.
(b) A partial tree structure R,. (c) The knowledge base U,.
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Similarity between decendent P, 4,
and partial tree structure R,
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level

(c)

Figure 5.9: Process of an inclusion a prime component P, into the knowledge base U,. (a)
The generated prime component P,. (b) A partial tree structure R, from the knowledge
base U, which has a structure similarity with the descendent P,g; of the prime component
Pn. (c) The knowledge base U, together with the included prime component P, with the
creation of a new node P, in the knowledge base structure.
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5.3 Proposed Model of the High-Level Processing
Stage

The high-level processing stage of the IUS is based on the distributed problem solving
black-board (BB) architectural model [28] developed in the field of artificial intelligence
(AI). The BB model has its roots in the Hearsay speech understanding systems [28] to
deal with the difficult characteristics of the speech recognition problems such as very
large search space, incomplete data, and imprecise and/or incomplete problem-solving
knowledge. These characteristics require a problem solving model that can support the
incremental development of solution, can apply diverse types of knowledge, and can adapt
itself with strategies to specific problem situations. Since these characteristics are needed
to solve problems found in both speech and image understanding systems, the BB ar-
chitectural model is ideally suited to perform the tasks of the high-level processing stage
of an IUS [28]. In the proposed model of the high-level processing stage, the control
mechanism of the BB architecture is modified to increase its efficiency.

5.3.1 The Black-Board Architecture of the High-Level Processing
Stage

The conceptual model of the high-level processing stage based on the BB architecture is
presented in Figure 5.10. It consists a set of knowledge sources (agents) KS; (: = 1,...,n)
and a set communication channels between the knowledge base and the knowledge sources.
The knowledge sources K'S;’s of the BB permanently monitor the knowledge base of the
system for a condition that will satisfy the requirements for their activation. The condi-
tions for the activation of the knowledge sources are described using the rule-base oriented
approaches and they are implemented by using a look-up table strategy. The activation of
a particular knowledge source may change the state of the knowledge base by generating
new or by changing the existing data structures (general-level prime components). It can
also change or generate the procedural knowledge (hypothesis and algorithms) within the
knowledge base of the system. This could provide the potential stimulus for the activation
of another knowledge source, and so on. The ability to self activate the knowledge sources,
gives the black-board system strong data-directed characteristics that are necessary for

supporting opportunistic problem solving.
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The knowledge sources of the BB architecture act as specialized, separate and indepen-
dent of each other execution threads, i.e., the execution of the knowledge sources do

ouT '~ High-Level Processing Stage

Knowledge Base (Data Base)
A
(XX
(X X ?

KS,

\ /
\%

Communication channels

From low-level processing stage

Figure 5.10: The conceptual model of the high-level processing stage using the black-board
architecture.
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not explicitly depend on the execution of other knowledge sources and any communication
of information between the knowledge sources occurs only via the creation and modifi-
cation of the data structures within the knowledge base of the system. In the present
implementation of the high-level processing stage, a total of 24 knowledge sources and
73 condition-action pairs (rules) are used. The knowledge sources are implemented as
separate functions that are executed concurrently within the IUS. Each knowledge source
is executed in parallel on a separate transputer.

5.3.2 Control Mechanism of the High-Level Processing Stage

Since the knowledge sources of the high-level processing stage are both independent and
self-activating, in a sense there is no need for any (additional) control mechanism. Despite
the appeal of a high-level processing stage of not requiring any control components, this
approach has two serious problems. First, since the number of executed instances of the
knowledge sources could be larger than the number of available processors, their execu-
tions have to be synchronized with each other and sequentialized. This means that the
knowledge sources cannot be executed as soon as the activation requirements are satisfied.
It also means that checking of these requirements must compete with the execution of
the knowledge sources for processor resources. The second problem with the “no control”
approach is that the typical problems for a high-level processing stage are very complex
and combinatorially highly explosive. Such problems become intractable if the IUS at-
tempts to execute all the applicable knowledge sources. When “unpromising™ actions are
executed, they can “block” the system by triggering further applicable but not useful ac-
tions that compete with the useful actions for the limited computational resources. This
greatly decreases the real-time performance of the system. Because of these problems the
high-level processing stage incorporates the control mechanism similar to the one found
in the Hearsay-II black-board architectural model - the agenda-based control mechanism
[28].

The major elements of the high-level processing stage with the agenda-based con-
trol mechanism is shown in Figure 5.11. In this model the Knowledge Base
Monitor receives a set of events from the Data Base that describes the status
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of the Knowledge Base. @ The Knowledge Base Monitor identifies which knowl-
edge source should be activated by these events and it invokes the precondi-
tion rules of the activated knowledge sources. Successful preconditions return

A

Knowledge Base (Data Base)
A

) )
] ®
o ®
< ~ KSq
V.
VaN Commaunication channels g )
A
Agenda
KnOWlCdge BaS Scheduler
Monitor
IN
Focus of Control
| -~---> Data

From low-level processing stage
——— Control

Figure 5.11: The high-level processing stage with agenda-based control mechanism.

the stimulus and response information that the Knowledge Base Monitor uses to create a
list of “passive” knowledge sources placed onto the Agenda. The Knowledge Base Monitor
also updates the Focus of Control based on the new events. The Scheduler evaluates the

115



priorities of “passive” knowledge sources that have been placed onto the agenda, selects
(and removes) the highest rated one, and invokes the action component of an appropriate

knowledge source.

Based on the above discussion, the algorithm used to control the high-level processing

stage is now formally presented using pseudo codes.

Control Algorithm for High-Level Processing Stage

start
while ( “TRUE” )
{
Check active prime components within knowledge base
Check preconditions for active prime components using rules of knowledge sources
Create list of passive knowledge sources
Create list of selected knowledge sources
while ( “passive knowledge source” )

{

if ( “priority of a knowledge source is sufficient” )

{

Include passive knowledge source in execution que

}
}

Prune execution que using list of selected knowledge sources

Execute knowledge source from execution que

}

end

The agenda-based control mechanism used in the high-level processing stage is inherently
opportunistic, since the knowledge sources are activated in a data-directed manner and

all possible actions are considered during each conmtrol cycle. This allows for a rapid
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refocusing (at every control cycle) between different lines of reasoning, different levels of

abstraction, and so on.

5.4 Summary

In this chapter a new model of a knowledge-based image understanding system along with
its three major components - the low- and high-level processing stages and the knowledge
base has been presented.

The model of the knowledge base has been proposed as a relational hierarchical multi-
dimensional structure, composed of the data objects. The structure of the knowledge base
has been optimized in order to maximize the utilization of the hardware and software re-
sources of the IUS. In order to enhance the flexibility of the knowledge representation,
the classical definitions of data types of the objects within the knowledge base has been
extended to include two new data categories: base data types and derived data types.
In the proposed knowledge base, the relational links between data structures have made
it possible to incorporate in it the semantical, operational and time-varying knowledge.
This approach thus avoids duplication of data structures and allows the knowledge base to
be accessed efficiently, without conflicts from both the high-level and low-level processing
stages of the IUS.

The low-level processing stage has been presented in a context of processing paradigms
developed in Chapters 3 and 4, focusing on prime component data representation within
the knowledge base. It has been shown that all of the transformations within the low-level

processing stage can be divided into two main processing phases:

1 Extraction of the shape elements viewed as general-level prime components that

describe an input world-scene,
2 Merging of the extracted shape elements into the knowledge base of the IUS.

The extraction of the shape elements has been presented as independent, self contained
blocks of processing transformations. Since most of these transformations have already
been described in earlier chapters, in this chapter only a brief and relevant information has
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been provided. The presentation of the merging process has contained a brief description
of the interactions between the low-level processing stage and the knowledge base of the
IUS. The concept of similarity between the general-level prime components of the IUS
has been introduced. The similarity concept has been then used in the merging process
to determine the inclusion coordinates within the knowledge base of the IUS.

The high-level processing stage has been proposed as a black-board (BB) architectural
model having an agenda-based control mechanism. The proposed BB model comprises in-
dependent knowledge sources (agents) implemented as a subprocesses (execution threads)
that are activated based on the state of the knowledge base. The agenda based control
mechanism eliminates the problems related to a purely data-driven execution mode. This
is achieved by a separation of the control and data flow of the system into independent
processes. Similar separation has been applied between the knowledge sources and their
communication mechanism. An efficient incremental and opportunistic problem solving
strategies have been employed by the high-level stage to obtain the final results of its

processing tasks.
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Chapter 6

APPLICATIONS OF THE PRIME
COMPONENT DECOMPOSITION

In Chapter 3, a new scheme of prime component decomposition has been presented. In
Chapter 4, this prime component decomposition has been combined with a shape equaliza-
tion technique to extract shape elements in the low-level stage of an Image Understanding
System (IUS). The complete model of an IUS comprising the low-level and high-level pro-
cessing stages along with a knowledge base component was presented in Chapter 5. In
this chapter, the proposed model of the IUS, in the context of the prime component de-
composition technique developed, will now be applied in carrying out several practical
experiments. In these experiments, we are concerned with several object identification
paradigms such as isolation, extraction, recognition and detection of the stationary and
moving objects within an input world-scene. The applications of the prime component
decomposition considered in this chapter, can be divided into two categories - the low-
level processing applications and the high-level processing applications.

Figure 6.1 shows the hardware configuration of the proposed IUS together with the sup-
porting I/O devices giving an overview of the system architecture used in our experimen-

tation.
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A Network of
Transputers
T800
PC
Transputer Server
Ethernet Link

Camera
Image Node Sparc 2
Frame Grabber, Used for Display and
Camera Control, Network Services
and VCR Control VCR

Figure 6.1: The hardware configuration of the IUS and supporting I/O devices.

The hardware configuration of the IUS is composed of several processing blocks. [/0 de-
vices and interconnections among them. The camera and the VCR are used as sources of
input world-scenes. The sequences of world-scenes are first recorded using the VCR and
then, sent through the Ethernet link to the Display Unit (Sparc 2) and to the Transputer
Server (PC). The process of digitizing the world-scenes is carried out by the Frame Grab-
ber (Image Node) and is controlled by the transputer system. The low-level and high-level
processing stages of the IUS are implemented by using a network of 32 T800 Tansputers
linked to the Transputer Server (PC). The result of the processing by the high-level and
low-level processing stages are then sent to Sparc 2.
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The software configuration of the system is based on two operating systems: SunQS4
(Sparc 2) and Linux-1.6 (PC). Three high-level programming languages: C++, parallel C
and OCCAM-2 have been used. Parts of the interfaces between the Transputer network
and the PC have been written and implemented using assembly language.

6.1 Low-Level Processing Applications

In the low-level processing experimentation, the proposed technique of prime component
decomposition and shape extraction are employed for the tasks of extraction of line graphs
and path planning, isolation of occluding and abutting objects, and for the identification
of stationary objects.

6.1.1 Extraction of Line Graphs and Path Planning

One of the most straightforward applications of the prime component decomposition is
the extraction of line graphs from binary images. The process of the extraction of a
line graph should result in a graph structure that is simple and can represent the object
efficiently without redundant connections among the nodes of the graph. That is, the ex-
traction process should preserve the graph topology and capture the essential symmetry
properties of the graph structure which are important attributes to identify and map the

object to the relational data structures.

The process of extraction of line graphs using the prime component decomposition per-
formed by the low-level processing stage of the IUS is shown in Figure 6.2. Figure 6.2(a)
shows a binary object. Figure 6.2(b) gives the first phase of a traditional extraction tech-
nique (without post processing). The extracted line graph performed by the traditional
post processing techniques is shown in Figure 6.2(c). Figure 6.2(d) shows the result of
the prime component decomposition of the object. Figure 6.2(e) displays the final result
of the extraction of line graphs performed by the proposed IUS. It is important to notice
the difference of the extracted line graphs obtained by using the traditional methods that
destroy the object’s symmetry (Figure 6.2(c)) and by using the prime component decom-
position (Figure 6.2(e)) that preserves this symmetry. The simplicity of the line graph
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and preservation of the symmetry of the original object is essentially due to the use of
the techniques of shape equalization and shape extraction developed in Chapter 4 using
the prime components.

(¢c) (d) (e)

Figure 6.2: The process of extraction of line graphs. (a) The object containing non-
deletable pixels. (b) The traditional graph representation of (a) in which the graph nodes
correspond to the pixels. (c) The final result of extraction of line graphs performed
by using the traditional methods based on deleting the graph’s nodes. (d) The prime
component decomposition of (a). (e) The result of extraction of line graphs by using the
shape extraction technique.

The process of extraction of line graphs supports the tasks dealing with the adjacency,
proximity and neighborhood relations among the prime components.
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The path planning problem was originated in connection with building automatic mobile
devices and constructing layouts of VLSI circuits. In order to demonstrate the main
concepts, consider the square area containing some simple geometrical shapes as shown in
Figure 6.3(a). The goal of the path planning problem is to determine the possible paths
among the geometrical object in such a way that the distance from every point of the
path to the closest object is maximized. Figure 6.3 shows the process of constructing the
solution path using the prime component decomposition approach.

(a) (b)

(¢) (d)

Figure 6.3: The process of finding paths among the objects. (a) A square area containing
geometrical objects. (b) The binary image representing the top view. (¢) Prime compo-
nent decomposition of (b). (d) The resulting paths after the shape element extraction
and equalization processes.
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As it can be observed from Figure 6.3, the process of constructing the solution paths is
composed of several steps. In the first step as shown in Figure 6.3(b), the binary image
of the top view is constructed. This binary image contains the information of all possible
regions where paths are allowed (gray area) and those where paths are forbidden (white
regions). In the next step, the binary image is decomposed using the prime component
decomposition (Figure 6.3(c)). The final solution of the path planning problem is obtained
by utilizing the shape extraction and shape equalization algorithms as shown in Figure
6.3(d). The black dots shown in Figure 6.3(d) indicate connections among the paths, i.e,
the connections among the equalized shape elements

6.1.2 Isolation of Occluding and Abutting Objects

In a typical world-scene, the isolation of the occluding and abutting objects is done
together with their identification in high-level processing stage of an IUS. However, in
specific cases, it is possible to perform a simple analysis of basic shape features within the
low-level processing stage. For example, this type of analysis can indicate that certain
subsets of the clusters of shape elements represents one single entity, i.e., one single
object. Considering simple geometrical shapes, occlusion or abutting often results in
areas with characteristic narrowings and bottlenecks. These areas can be identified as
local minima along the prime skeleton of the occluding objects. Figure 6.4 shows an
example of the process of isolating abutting geometrical objects by the low-level processing
stage using the prime component decomposition approach. Figure 6.4(a) shows the binary
scene containing abutting and occluding objects to be isolated. Figure 6.4(b) shows the
prime component decomposition of the scene shown in Figure 6.4(2) with characteristic
connections among prime skeletons of abutting and occluding objects. The isolation
points (dark dots) among the abutting and occluding objects presented in Figure 6.4(c)
have been found as local minima along these prime skeletons. It can be observed from
Figure 6.4(c) that the isolation process has successfully isolated all the abutting and

occluding objects within the scene.

6.1.3 Identification of Stationary Objects

The identification of stationary objects is the last application example of the
prime component decomposition within the low-level processing stage of the
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IUS, that is considered in this section. The approach of an object identi-
fication is based on the structure similarity between the general-level prime

(c)

Figure 6.4: An example of the application of the prime component decomposition scheme
to isolate abutting objects. (a) An input world-scene containing geometrical abutting
objects. (b) Prime component decomposition of the input scene from (a). (c) Isolation of
abutting objects. The dots indicate isolation of the abutting objects.
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components (shape elements) and the partial reference tree structures within the knowl-
edge base. We will utilize the merging algorithm in such a way, that the existence of
structure similarity between the prime component and the partial tree structure triggers
the additional action (algorithm) “display” within the low-level processing stage. This
additional algorithm simply displays and highlights the corresponding general-level prime
component within the input world-scene. In order for the identification process to be
possible, the partial reference tree structures within the knowledge base of the system
have to be created before the identification process starts. This is achieved by a learning
process with a test sequence of input world-scenes that contain only the objects to be
identified later. Figure 6.5 shows the complete process and the result of the identification
of a stationary object (plane) within an input scene.

Figure 6.5(a) shows the gray-level input world-scene with the object plane to be identi-
fied. In order to perform the prime component decomposition, the input scene is divided
into sixteen separate binary images each composed of one particular gray level, i.e, one
quantization level. The number of quantization levels has been chosen based on the ex-
perience from earlier practical experiments. It has been noticed from these experiments
that higher number of quantization levels does not generally improve the identification
process, but it significantly increases the computational time and the required hardware
resources. The sixteen binary images are decomposed using the prime component decom-
position scheme. The result of the prime component decomposition for all the sixteen
binary images is shown in Figure 6.5(b). In this example, the total number of prime com-
ponents is equal to 9658. Each binary image is then transformed into shape elements and
compared with the partial tree structures from the knowledge base and merged. Figure
6.5(c) shows fourth-level prime component (the shape elements). in the final identification
phase, the identification procedure monitors the active prime components corresponding
to the partial reference tree structure and displays them. Figure 6.5(d) shows the result
of this identification, i.e., the active general-level prime component corresponding to the
identified object.

6.2 High-Level Processing Applications

The applications of the prime component decomposition considered so far have been re-
stricted to those that do not utilize the knowledge base at all or in which the knowledge
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Figure 6.5: Results of the identification process of a stationary object (plane) within an
input scene. (a) The input scene with the object plane to be identified. (b) The prime
component decomposition of using sixteen binary frames obtained from the gray-level
scene of (a). (c) The fourth-level prime component (shape element) obtained using the
results of (b). (d) The final result of the object identification, i.e, active prime component
of the identified object.
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base is used mainly to compare the general-level prime components.

In this section, we present the examples of applications of the prime component decompo-
sition involving more complex analysis and requiring a full interaction with the knowledge
base by the high-level processing stage of the IUS. Since the high-level processing stage
performs its computational tasks (access and modification of the knowledge base) at a
higher level of abstraction, the domain of possible applications of the IUS increases sig-
nificantly, including those that need on-line learning or those that require analysis of the
relational links among the objects within the input scenes.

6.2.1 Identification of Moving Objects

In Section 6.1.3, the identification of stationary objects was carried out by utilizing a
comparison procedure between the partial tree structures of the prime components ob-
tained from the decomposition of the input scene and the reference partial tree structures
(reference prime components) constructed during the initial learning phase. This initial
learning phase is necessary to establish the static spatial reference relationships among
the elements of the object to be identified. In this section, we are concerned with the ap-
plication of the prime component decomposition with the identification of moving objects

involving the high-level processing stage.

The goal of this section is to demonstrate an application of the prime component decom-
position that does not require the initial learning phase. This is achieved by replacing
the spatial reference relationships (identification criteria) with the time-varying and time-
dependent relations. In this scheme, the necessary identification criteria used to identify
the objects within a scene are constructed on-line during the identification process itself.
Since the time-dependent relations within a scene can be constructed only by the analy-
sis of the time-related activities, the identification process performed by the IUS has to
include the analysis of a sequence of world-scenes. Figure 6.6 shows an example of the
identification process of a moving object car within the sequence of input scenes. However,
in this case, the model of the reference object does not exist and the high-level processing

stage constructs the necessary relations on-line during the analysis of the sequence.
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(c) (d)

Figure 6.6: Results of the identification process of a moving object car within a sequence
of scenes. (a) Frame number 80 from the sequence with the object car to be identified.
(b) The prime component decomposition using sixteen binary planes obtained from the
gray-level scene of (a). Every binary plane corresponds to one gray level. (c) The sixth-
level prime component (shape element) obtained using the result of (b). (d) The final
result of the object identification, i.e, active prime component of the identified object.
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During the identification process, 100 frames comprising the input sequence of moving
car are transformed and processed by the low-level processing stage, as in the case of
stationary objects discussed in Section 6.1.3. Figure 6.6(a) shows the 80th frame from
the sequence. Figure 6.6(b) shows the prime component decomposition of this frame
while Figure 6.6(c) depicts its sixth general-level prime component. After the general-
level prime components representing the sequence are merged into the knowledge base
as active entities, the knowledge sources of the high-level processing stage perform the
analysis of the general-level prime components within the knowledge base with respect
to the variations in time. This analysis is carried out by specifying the rules within the
high-level processing stage that control the activation (execution) of appropriate knowl-
edge sources. One of the most important rules used in dealing with time-varying events
describes the {condition <=> action} pairs among the prime components having dif-
ferent time-dependent characteristics. For example, in the present application this rule
activates the fifth knowledge source of the high-level processing stage when there is the
structure similarity between the general-level prime components of consecutive frames.
The fifth knowledge source modifies the knowledge base by activating those similar prime
components. This in turn activates the tenth knowledge source that displays the active
general-level prime components (Figure 6.6(d)). Thus, the high-level processing stage of
the IUS has identified the moving object car.

6.2.2 Identification of Time-Varying Objects

The identification of time-varying objects is one of the most difficult tasks faced by the
high-level processing stage of the IUS. A time-varying object is understood as an object
within an input sequence that does not have the time-independent spatial relations ,i.e,
its form, configuration and relations are time-varying. One of the most typical examples
of a time-varying object is a moving person within an input sequence.

There are several problems encountered during the identification process of time-varying
objects. One of the most difficult ones is the lack of static, spatial reference relations that
can characterize the time-varying objects. In the case of time-varying objects, the uti-
lization of simple rules, i.e., the assumptions based on structure similarities between the
same object belonging to two consecutive frames, would not work in the present situation

of time-varying objects.

130



The way to overcome the difficulties of constructing reference spatial relations needed for
the identification procedure is to update all potential reference prime components within
the knowledge base. The selection of the potential prime components within the IUS
is performed by utilizing the rule that activates the fifth knowledge source (see Section
6.2.1) and by monitoring the spatial relations between frames of the sequence. Those
selected prime components are then updated “frame by frame” in order to construct a
temporary prime component of the identified object - reference prime component. Every
consecutive frame updates the reference prime component. The updating of the refer-
ence prime components is conceptually equivalent to the learning procedure in which the
system “learns” to identify the object. As soon as the updating of the reference prime
component is insignificant or can be anticipated, the high-level processing stage triggers
the action (algorithm) “display”. Figure 6.7 shows the results from the selected phases of
the identification process of the time-varying object a moving person within the sequence.

The total number of frames of the input sequence used in the experiment is 100. Figure
6.7(a) shows the 95th frame from the input sequence. Figure 6.7(b) shows the prime
component decomposition of this frame. The updated fifth-level prime component of the
currently processed input frame depicted in Figure 6.7(c) shows the potential reference
prime components considered. The final result of the identification is shown in Figure
6.7(d) in which the area of the reference prime component instead of the reference prime

component itself is shown for better visualization.

6.3 Summary

In this chapter several applications of the prime component decomposition scheme used
in the low-level and high-level processing stages of the proposed IUS have been presented.

The low-level processing applications involve extraction of line graphs, path planning,
isolation of occluding and abutting objects, and identification of stationary objects. The
process of the extraction of the line graphs preserves the graphs topology and captures the
essential symmetry properties of the objects, which makes it very suitable to perform the
tasks dealing with adjacency, proximity and neighborhood relations among the prime
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Figure 6.7: Results of the identification process of a time-varying object person within a
sequence. (a) Frame number 95 from the sequence with the object person to be identified.
(b) The prime component decomposition using sixteen binary planes obtained from the
gray-level scene of (a). Each binary plane corresponds to one gray level. (c) The fifth-
level prime component (shape element) obtained using the result of (b). (d) The final
result of the object identification, i.e, the area of the currently processed input frame that
corresponds to the active prime component of the identified object.
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components. The application of the prime component decomposition to the path plan-
ning problem has been illustrated through an example of a rectangular area containing
geometrical shapes. In this case, the low-level processing stage of the IUS has determined
all possible paths among the objects within the room. The isolation of occluding and/or
abutting objects is performed based on the analysis of the object’s full skeleton and its lo-
cal minima. The low-level processing stage has successfully isolated the abbuting objects
within input world-scenes. The approach of the identification of the stationary object is
based on the structure similarity between the general-level prime component represent-
ing the input scene and the reference prime component representing the object to be
identified. The proposed identification method used in the low-level processing stage has

identified stationary objects within input world-scenes.

Two applications, identification of moving objects and identification of time-varying ob-
jects, of the high-level processing stage have been considered. The identification of moving
objects is achieved by the analysis of time-related activities within the sequence of input
scenes. In the proposed approach, the analysis with respect to variations in time have been
performed using specific rules defined in the high-level processing stage that control the
execution of appropriate knowledge sources. Once the condition of the rule is satisfied, the
activated knowledge source triggers the comparison process between the reference prime
component and the prime component obtained from the decomposition of the currently
processed scene. In the example considered, the IUS has identified the moving object
within the sequence of the 100 input frames. The identification of time varying objects
is based on updating the reference prime component representing the identified object.
The updating process has been carried out by the knowledge sources that monitor spatial
relations among the prime components of consecutive frames in a way similar to that of
identifying moving objects. In the example considered, the IUS has identified the moving
time-varying object within 100 input frames of the input sequence.
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Chapter 7

CONCLUSION

7.1 Concluding Remarks

Processing of complex context-dependent multidimensional signals require constructing
sophisticated expert systems capable of performing difficult tasks of knowledge acquisition,
compilation, and transformation. In the filed of image processing these sophisticated sys-
tems known as image understanding systems are usually composed of a knowledge base
and simpler subsystems performing tasks grouped into levels of hierarchical processing
stages. Typically, one can distinct these processing stages as low-level and high-level pro-
cessing stages. Traditionally, the low-level processing involves classical image processing
tasks such as contrast enhancement, edge detection and mapping the image pixel values
into an intermediate object description, while the tasks of the high-level processing is to

generate description of complex image events and relations among them.

The main objective of this work has been to present a new prime component decomposition
technique that reduces the redundant input information contained in input world-scenes
by an effective extraction of maximum-size geometrical polygons (prime components), and
to use this technique in developing an efficient model of an image understanding system
(IUS). The characteristics sought in the IUS model have been in its ability to create a
reliable knowledge representation, to produce a simple intermediate object description,
to process time-varying information, and to avoid the use of computationally expensive

algorithms.
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The investigation of prime component decomposition has started by an analysis of generic
relations among the polygons. These generic relations have been then examined in the
context of real world-scenes in order to derive a new type of polygonal decomposition
operator based on prime components. The mathematical analysis performed in the con-
tinuous metric space has indicated that the semi-rotational invariant polygons having a
degree of rotation of 7/2 radians are better decomposition elements than those having a
degree of rotation of r, i.e, the optimal decomposition element in the continuous metric
space should converge to a polygon having a degree of rotation tending to zero (circle).
The decomposition operator has been then optimized in the discrete metric space to in-
crease its implementation efficiency, yielding square decomposition elements.

As an intermediate object description generally relies on shape extraction, the proposed
prime component decomposition has been used for shape extraction and equalization. The
proposed approach of shape extraction has combined the description of an object’s bound-
aries (edges) obtained by using a modified Sobel operator with a skeletonization process of
the object’s interior performed by square prime components in the discrete metric space.
This approach has reduced the errors in the uncertainty of the description which might be
critical in the high-level processing stage of an IUS. Further improvements in the shape
extraction scheme have been achieved by introducing the concept of the shape equaliza-
tion based on Fourier descriptor and nonlinear interpolation. This has helped in reducing
the typical deficiencies of discrete medial axis transforms, such as noise sensitivity, the
description errors of the diagonal objects and of objects having complex edges that rapidly
change their curvature, and the description errors caused by a small sampling frequency.
The shape equalization scheme has also reduced distortions and artifacts caused by a digi-
tization process of input scenes and improved the utilization of the system resources. The
proposed shape extraction technique based on prime component decomposition has been
compared to two skeletonization algorithms, the Voronoi skeletonization algorithm and
the morphological skeletonization algorithm. The simulation results have shown that the
decomposition algorithm based on the proposed prime component decomposition scheme
outperforms those based on the optimized Voronoi skeletons or morphological operators.
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The process of developing an IUS has been divided into several overlapping phases. The
model of the low-level processing stage essentially combines the processing techniques of
prime component decomposition, shape extraction and shape equalization. A feedback
between the low-level processing stage and the knowledge base of the IUS has also been
introduced to decrease the memory and processing requirements of the system.

The high-level processing stage of the IUS has been implement based on the distributed
problem solving black-board architecture suitable to deal with problems of very large
search space, incomplete data, and imprecise and/or incomplete problem-solving knowl-
edge. The undesirable computational actions of the high-level processing stage have been
reduced by including a specialized control mechanism - the agenda based control. The
opportunistic control mechanism has allowed to perform more effectively the goal-driven
and data-driven reasoning by using incremental problem solving strategies and by employ-
ing a selective focusing mechanism. The rapid refocusing (at every control cycle) of the
control mechanism has also reduced the number of computational steps of the high-level
processing stage in arriving a solution.

The knowledge base of the IUS has been developed by optimizing the existing relational
knowledge representation models and their data structures. In order to enhance the real-
time performance of the IUS, these models have been carefully examined in the context
of their flexibility, consistency, facility and inference schemes. The model of the knowl-
edge base has been developed as a relational, hierarchical multidimensional tree structure
composed of the data objects. The traditional data type definition has been extended to
include the concepts such as labels, attributes, base data types and derived data types. In
the proposed approach, the relational links between the data structures have incorporated
within themselves the semantical, operational and time-varying knowledge. The proposed
model of the knowledge base has avoided duplication of the internal data structures and
allowed the data object of the knowledge base to be accessed efficiently, without conflicts
by both high-level and low-level processing stages of the IUS.
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The proposed prime component decomposition scheme and the IUS have been exper-
imented with several low-level and high-level processing applications. In the low-level
processing applications, examples of extraction of line graphs, path planning, isolation
of occluding and abutting objects and identification of stationary objects have been con-
sidered. In the high-level processing applications, examples of identification of moving
objects and identification of time-varying objects have been experimented. In all the low-
level and high-level application examples, the proposed IUS has successfully performed
the desired computational tasks and achieved the efficient solutions.

7.2 Suggestions for Future Investigations

During the development of the proposed IUS, many important issues have been addressed.
However, there are still many areas that could be the subject for further investigation.
For example, due to the focus on the main functions of the IUS itself, the implementation
architecture has not been fully optimized. Consequently, one of the areas of future inves-
tigation should include the practical implementation issues of the IUS in the context of
distributed network architectures. There are many topics in this area to be investigated,
such as distribution of knowledge sources among the network of processors, partition of
the processing algorithms, load balancing, inter-process communication, data transfer,
synchronization, and memory coherence.

The elements of the low-level and high-level processing stages and of the knowledge base
should be another topic of future investigation. It seems possible to merge the general-level
prime components within the low-level processing stage on higher level of abstraction, by
utilizing the context-dependent information obtained from the high-level processing stage.
This should possibly further improve the efficiency of intermediate object representation
and maximize the utilization of system resources. Another important element of the IUS
that could improve its efficiency is the control system of the high-level processing stage.
Several important issues related to the time-varying knowledge representation models such
as knowledge acquisition of time-varying events, optimal searching or optimal comparison
of partial tree structures would also need further attention. Finally, yet another open
area for future research is the modeling of the IUS itself, as it concerns to self learning
and inductive and non-inductive reasonings.
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