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ABSTRACT

MULTI-CHANNEL PROCESSING OF

TURBO CODES

Pouriya Sadeghi

A turbo decoder uses an iterative procedure and its performance is dependent on the
number of iterations it performs. In a turbo decoder, the number of iterations required to
achieve a certain FER is a function of the channel SNR. An example of this is a base
station in a mobile communication system, where turbo decoder receives data frames from
different users each with a given level of fading and as a result, with different SNR. If a
fixed number of iterations is allocated to each frame, it is possible that certain frames
remain erroneous while decoder is idle part of the time for other frames. In this thesis the
idea of sharing the processing power among different frames, possibly belonging to
different channels, is used. This time-sharing approach can increase the processing
throughput and/or the performance of the turbo decoding scheme. We present two schemes
and give their performance for the 3GPP and DVB-RCS codes. The first one is serial
processing algorithm, which decodes the input frames one by one and the other one is
parallel processing scheme that tries to decode all of those received channels

simultaneously.

We investigated the implementation of these schemes using a Digital Signal
Processor (DSP) chip (TI TMS320C6416 DSP CPU). We have developed an efficient
implementation algorithm by combining those two multi-channel processing schemes. All

the presented schemes can also be used for a single-channel communication system.
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Chapter 1

INTRODUCTION

More than fifty years ago Shannon discovered the limits on transmission rates in digital
communication systems. In “A Mathematical Theory of Communication” [1], he defined

the capacity of the Adaptive White Gaussian Noise (AWGN) channel as:
S
C=Wlog, 1+—A7 (1.1)

where W is the bandwidth of the channel in Hertz, S is the signal power and N =WN, is

the variance of the Gaussian noise.

Shannon’s channel coding theorems indicate that for an Additive White Gaussian

Noise (AWGN) channel with capacity C, there exist codes that using them the information



can be sent across the channel at a rate less than C, with an arbitrarily low bit error rate [2]

(for a proof refer to [3]).

For example, for a Binary Phase Shift Keying (BPSK) modulation system, which has
a spectral efficiency of 1 bps/Hz, over an AWGN channel, the lower limit for Signal to
Noise Ratio (SNR) to have an arbitrarily small Bit Error Rate (BER), is 0.0 dB. However,
an uncoded BPSK system requires 9.5 dB [4] for a BER of 1x107°. So the maximum

possible coding gain over an uncoded BPSK modulation scheme is (9.5 - 0.0) =9.5 dB.

The Consultative Committee for Space Data Systems (CCSDS) issued the

NASA/ESA standard in 1983, which has a coding gain of 7.4 dB for BER of 1x107° [5].

This standard is still 2.1 dB away from the theoretical Shannon limit. There were too

many efforts in 1980’s and early 1990°s to narrow this gap. There were just a few
improvements of a few tenths of dB by utilizing serial concatenated systems, Reed

Solomon code [6] and extremely complex Viterbi decoders [7].

In 1993 turbo coding was introduced. It provided a performance that was only a few
tenths of dB away from the Shannon limit. Turbo codes used decoders much less complex
than those used in NASA/ESA standard. The effect of this 2 dB extra coding gain, is even
stronger in the wireless communication systems, where the bandwidth demand is growing

very fast.

Turbo coding has two principle parts: parallel concatenated encoders and iterative
decoding system. Parallel concatenated encoder, which can be designed for convolutional
codes or block codes, works as follow: assume that there are two convolutional encoders (it
is also possible to have more than two encoders). The first encoder encodes the data

sequence (m) as (c;) (Fig. 1.1). Next, the original data sequence (m) is interleaved by the



interleaver resulting in m that is used as the input data sequence for the second encoder.
The output of the second encoder (c,), the output of the first encoder(c,) and the original
data sequence (m)are multiplexed, punctured and sent through an AWGN channel (the

channel model that has been used in this thesis) to the turbo decoder receiver.

>y
m ¢,
Encoder #1 —P - ¥,
p .
Interleaver N;’;::;t:i
~ c,
m Encoder#2 —¥»{ = p------o > v,

Fig. 1.1: Typical turbo encoder.

The excellent performance of turbo code is achieved at moderate decoding
complexity. A turbo decoding system consists of two iterative Soft-Input/Soft-Output
(SISO) decoders. The Soft-Input/Soft-Output property makes turbo coding perfect for
iterative decoding. These two decoders are serially concatenated trough an interleaver
identical to that used in the encoder side. In turbo coding system, the interleaver is one of
the most important components: producing good weight codewords and decrease the
correlation between the outputs of those two encoders. Producing good (high weight)
codewords reduces the probability that the turbo decoder decodes the received sequence to
a wrong codeword instead of the original one. Having less correlation between two output
parity sequences is the main concept of the iterative decoding. It causes the soft outputs of
the turbo decoder be relatively independent of each other, so the soft output of one
component decoder can be used as the soft input of the other and vice versa. This means

that for decoding a frame, the turbo decoder performs several iterations. For the first
3



iteration, it assumes that the probabilities of 0 and 1 are equal and based on the channel
information, produces a soft decision output for each data bit. For other iterations, the
decoder will use the soft output of the other decoder as a priori probability to perform the

next iteration.

The performance of the turbo decoder is directly related to the number of the
jterations that it performs to decode a received frame. If the turbo decoder can perform
more iterations to decode each input frame, it can achieve a better BER. The number of
iterations required to decode each input sequence can be assumed to be a random variable
dependent on the variance of the AWGN. In traditional turbo coding schemes, the number
of iterations is usually set to a fixed value, and the turbo decoder performs this fixed
number of iterations to decode each input frame. Another option for the turbo decoder is to
perform different number of iterations for each frame. In this case, to stop the decoding
procedure on each frame, it is possible to use some rules and conditions to check whether
the uncoded sequence is corrected or not. These rules and conditions are called “stopping
criteria”. There are several proposed stopping criteria so far. In [8], it has been shown that
using some stopping criteria, will add, on the average, less than one iteration to the number
of required iterations to correct each input channel (in comparison with the ideal case

where the decoder knows when it has to stop).

In several parts of a communication system, we need to decode more than one
channel simultaneously. These include the hub in a non-regenerative satellite
communication system, the on-board processor in a regenerative satellite payload and the
mobile base station where several channels are received from different terminals and the
base station has to decode all of them at the same time. The ideal situation for the decoder
is to have all information about all channels and the knowledge that how many iterations

each frame needs to be corrected. So the decoder decodes first the channel that needs less



iteration than others, and so on. This ideal method is optimum, but in the practice, the turbo
decoder does not know the original data sequence at the transmitter so it is not possible to
determine whether decoded sequence is erroneous or not .So this is not a practical method

and it is only for comparison and measuring the performance of other schemes.

In a traditional scheme, for each channel there is one decoder, and the procedure of
decoding each channel is exactly the same as the decoding of a one-channel system (Fig.
1.2). For implementing a turbo code system, this traditional method is inefficient in
practice, because in this method, each decoder has a fixed number of iterations, and if a
frame needs more iterations than this limit to be decoded correctly, the decoder is not
capable of correcting it. On the other hand, there are some other decoders that have
decoded their assigned frames in less number of iterations than this limit, so they are idle at
the same time. The basic idea in this thesis is to share these idle times for other sequences

and have an efficient turbo decoder with a good throughput and performance.

In this thesis, we investigate mainly two multi-channel processing turbo decoding
schemes in order to increase the performance and/or capacity of the turbo decoders. The

presented schemes can be applied to any other kind of iterative decoder.

Delnterleaver |g

y, —» Decoder #1 |——————pi Intetleaver

——
v, — > __l—_’ Decoder #2
p| Interleaver r

Y3

Fig. 1.2: Typical turbo decoder.



Chapter 2 deals with the subject of turbo decoding schemes and among these
schemes; Bahl-Coke-Jelinek-Raviv (BCJR) algorithm is mentioned in more detail. The
BCIJR algorithm is being used widely in the iterative decoding systems. BCJR algorithm is
an optimal algorithm over an AWGN charnnel and it has the minimum symbol error rate (or
bit error rate). Next, two practical variants of this algorithm are described in detail (Log-
MAP, Max-Log-MAP). Interleaver (permuter), which is one of the basic components of the
turbo decoding, is also explained in Chapter 2. After that, the principles of iterative
decoding are discussed. Then, the iterative nature of turbo decoder that is one of the main
factors in performance of the turbo decoder is explained by means of some computer-based
simulation examples. Chapter 2 ends with the introduction of the stopping criterion and

describing several stopping criteria for turbo decoding.

Chapter 3 provides a detailed investigation of multi-channel turbo coding systems
and proposes several multi-channel processing schemes for these systems. And at the end,
it describes how to use these multi-channel processing schemes for a single-channel turbo

decoding systems with some restrictions.

Chapter 4 begins with introducing Third Generation Partnership Project (3GPP) and
Digital Video Broadcasting for Return Channel via Satellite (DVB/RCS) turbo coding
standards. Then the results of computer-based simulations of 3GPP and DVB/RCS using
AWGN channel and BCJR algorithm for several SNRs are presented. Based on the
simulation results, the performance of each of the proposed parallel processing schemes in
Chapter 3 are analyzed. It is shown that the performance of the proposed parallel
processing scheme is close enough to the ideal case where prior to the decoding process,
the turbo decoder knows how many iterations each input frame requires to be corrected,

and it decodes the input frame that needs smaller number of iterations first.



In Chapter 5, implementation issues of the multi-channel processing schemes
proposed in Chapter 3 on a Digital Signal Processing (DSP) chip, “TMS320C6416”, for
3GPP turbo coding standard are investigated. This chip is one of the highest-performance
DSP CPU so far, and has also two embedded coprocessor; Viterbi coprocessor and turbo
decoder coprocessor (designed for 3GPP and CDMA2000 coding standards). The chapter
closes with introducing an efficient multi-channel processing implementation algorithm,
which can be considered as a combination of those proposed multi-channel processing
schemes. This efficient multi-channel processing algorithm is not restricted to only this

DSP CPU and can be used in any other hardware implementation of turbo codes.



Chapter 2

TURBO DECODING

A turbo decoder consists of two soft-input/soft-output (SISO) decoders concatenated
serially via an interleaver (permuter) identical to the one used in turbo encoder [4]. BCJR
(or MAP) decoder is an appropriate choice for those two decoders; because it is SISO

compatible and also an optimal algorithm in terms of Symbol Error Rate (SER) or BER [9].

In this chapter, first, three different versions of BCJR algorithm are described in
detail. Then, turbo code interleaver is discussed. Next, the structure of turbo decoder is
explained and its most important property, the iterative nature, is mentioned in more detail.
At the end of this chapter, some issues concerning parallel processing and early stopping

criteria are described.



2.1 BCJR Algorithm

The Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [10] which is also called forward-
backward or maximum a posteriori (MAP) algorithm, is one of the turbo decoding
algorithms that minimizes the SER or BER based on the information sequence received
from an AWGN channel [11]. This algorithm is an optimal algorithm in terms of the SER

(or BER).

Large number of calculations, complicated and non-linear mathematical functions
and huge amount of memory requirement, make the implementation of the MAP algorithm
in hardware or even in computer-based simulations tedious and time consuming. As a
result, some variants of this algorithm such as Log-MAP algorithm and Max-Log-MAP
algorithm are used in practice. The performance of the Log-MAP algorithm is the same as
original MAP algorithm. Although Max-Log-MAP algorithm is a sub optimal algorithm, in
most cases its performances is close enough to the original MAP algorithm, and it can be

utilized instead of MAP decoder [12].

2.1.1 Maximum A Posteriori Probability (MAP) Algorithm

In this section, we use a (n,1,v) binary convolutional code whose encoder has one bit input,
n bits output and a v-bit shift register (v bits of memory). Therefore, the encoder has

M, =2’ different states. The state sequence from time 0 to ¢ will be presented by:
So =(Sy,8,5-55,) 2.1
It is seen that the next state is only dependent on current state and the next input bit. So, the

state transition is a Markov process. The system block diagram is shown in Fig. 2.1.
9



Memoryless
noise

l g
c v X r ¢
—» Encoder ¥ Modulator Decoder —»

Fig. 2.1: Model of the communication system

In the following, each data sequence is defined in detail. The input binary message

sequence is denoted by:
€ =(C;,C54e03C, 000 Cyy ) 2.2)

where N is the length of the input sequence. The output sequence of the encoder is

represented by:

N
vy =(V, V., V) , V, =V, 05V Yy pey) (2.3)

v is modulated by a BPSK modulator and the output sequence of it, is defined by:

N
X, =(X,X,,...Xy) , X, = (X, 00X, 150000 X, y) (2.4)

x,=2v,, -1 , i=0]1,..,n-1

The output of the noisy channel is represented by:
r' =(r,,r,,...,ry) , r, =(r, 7 e Tn) (2.5)

N =X, 7, ) i=0l..,n-1

10



. . . . . gl .
where 7, is a zero-mean Gaussian random variable with variance o ~. The channel is

assumed to be an AWGN channel so each noise sample is independent from other noise

samples.

LA

The output of the decoder (estimated message sequence) is denoted by (we use

for representing the estimated variables):

8= (2,,8y0rCrrny) (2.6)

In the ideal case ¢ must be identical to ¢.

As a general rule, the output of the MAP decoder is in log-likelihood ratio format defined

as:

Pr{cr = 1‘ r }

A(Cr) = logm (27)

The above soft output can be converted into a hard decision output by using the following

criterion:

qz{l if Alc,)=0 28

0 otherwise

The MAP decoder starts decoding process from S, =0 producing output sequence X, and
it ends in S, = 0 by using trellis termination technique. It is obvious that 7 must be equal

to N+v.

The output sequence of the noisy channel is:
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r =(r,ry,..r.) (2.9)

For each received sequence (r; ) using an AWGN we have:

Pr{r’|x] }=]] R (r; |x,) (2.10)
j=1
where
n-1
R (r, |xj)=H pr{ r | x;, }
i=0
and

(2.11)

L=+l }=J_ e ¥ (2.12)

Let ¢, be the information bit input to the encoder at time ¢, associated to transition
from §,, to S, producing v,. The MAP decoder estimates ¢, based on the received

sequence (1, ) as a soft output (A(c,)):

Pr{ ¢, =0r }= Z Pr{ S =08, =lr }

(' heB!

2.13
Pr{ S, =08, =0Lrx } @19

- (' e8P Pr{ rlr }

where B, is the set of all possible transitions form S,_, to S, for which ¢, is equal to 0.
12



Pr{c =11/ }= Z Pr{ S =08, =1]r/ }
(' eB!

_ Pr{S_ =08 =Lx }
<z'%B,‘ Pf{ r/ }

(2.14)

where B! is the set of all possible transitions form S, to S, with ¢, = 1.

It is possible to define the log-likelihood ratio based on the following joint

probability function:
o,\)=Pe{ S _ =08, =1L } , I1=01..,(M,~1) (2.15)
P 0
Pr{c, =0|rS ' (2.16)
1 a éﬁﬂ Pr{ r/ }
o, l)
Pr{ c, =1|r] , (2.17)
: o %Bl Pr{ r/
and

Z(l',l)EB,' p’ (ll’l)

Alc,) =log ~
Z(l’,l)eB," o, (l ’l)

(2.18)

In order to calculate the joint probability function (o, (I ’.1)), it is useful to define it as

a function of 3 other probability functions as follows:
a,)=P{ S, =Lr } , BWO=P{r,|S =1} (2.19)
v\ )=Prfc =i,8 =1|S_ ="}t , i=01 (2.20)

13



The joint probability can be rewritten as:

o, \)=Pr{S_ =l,S, =1,x}
=Pr{r’,.r, ,x/7,S_ =0,S, =1}

=Pr{r}, |r, xS, =0,S, =1}.Prir, 5,8, =18, =1}
=Pr{r},|S, =1}.Pr{r, ,x/",S,_ =18, =1}

=g {).Prir, xS, =0,S, =1} (2.21)
= B,().Pe{S, =Lr, |x/",S,, ="} Pr{r/,S,, =1}
=Pr(r;™,S,, =1"}.6,\).Pr(S, =L, | S, =1}
=, ().B,1). 2y D)
i€(0,1)
> o (U)B(1)y LT
SO Ac, )=log (I'1e8 : , 22
> a (U)B(L)yALL)
(I'l e8]

&, (I) can be calculated recursively using boundary conditions ¢,(0)=1 and ,(!)=0

for 1 #0.

a, () =Pr(S, =11/}
M, -1
=> Pr{S,_ =0.S, =1r}
I'=0
M, -1
= PI‘{S,_I =l,’St =l7r][_17r, }
I'=0
M, -1
=Y Pr{S_ =Ur/"}Prir, .S, =1|S,, =05} (2.23)
I'=0
M, -1
=Y a_).Prr, .S, =1|S_ =)
I'=0
M, -1
= > a1 Y, Prir, ¢, =i,$, =1|S,_ =)
I'=0 i€ (0,1)
M -1 4
=> o, (). riad.n
=0

I i€(0,1)

14



B, () can be calculated recursively using boundary conditions of fS.(0)=1 and

B.(1)=0forl#0.

ﬁ(l)—Pr{ +1|S =1}

= Z Pr{SH-l_ 4 t+1|S —l}

_Mf'lPr{Sm =0r".,S =1}
& Prs, =1
S P(S,,, =S, = 1)
= Pr(S, _z}

&P, | S, =00r0,,S, =1} .Pr(S,,, =l'x,,,S, =1}
- ,ZO Pr{S, _1}
_MZIPr{ i | S =UHPr{S,, =1r,,, S, =1

=0 Pr{S, =1}

Z "B (NPr{S,,, =l |S =1}.Pr(S, =1}

Pr{S =1}

= ZIB;+1(ZI)'PT{S:+1 =, |S, =1}

- Zﬂrﬂ(l) Z Pr{ct+l l St+1 = l,7r/+1 [Sr = l}

i€(0,1)

- Zﬁt+1(l) z }/t+l(l l)

i€(0,1)

also ¥/ (I’,1) can be calculated as follows:

YD) =P(S, =Lx, ¢, =i|S,_ =1}
_Pr{S =l ¢, =i,5,_, =1}
Pr(S_ =1}
_Prfr, |, =1, =i,S,., =}.Pr{S, =L, =i, =1}
Pr{S,_, =1}

15
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(2.25)



_Pr{r, [x,}.Pc(S, =l,c,=i,8,, =1}

t=1

Pr{S,_ =1}
_ Prir, |x,}.Pr{c, =i|S, =1,S_ =I}.Pr{S, =15, =)
Pr{S,, =1}

=Prlr, |x,}.Prix, |S, =1,5,, =I'}.Pe{S, =1]5,, =1}

i(’}ij - xf,]. (l))z

Pr{r, |x }——l——ex -2
O e Y 207 (2.26)
With further expression:
( 1 ‘ . ,
Z(r:l,j =X, (l))
. _ =0 ’ i
YD) = p, (i)exp Sy for (I,I")e B, 2.27)
0 otherwise

where p,(i)is a priori probability of ¢, =i, B, is a set of all transitions from S, =1 to

S, =1 with ¢,= i and x, ;(1) 1s the encoder output associated with transitions of B;.

2.1.2 Max-Log-MAP Algorithm

The standard MAP algorithm needs huge amount of memory and also uses too many non-
linear mathematical operations and multiplications. Max-Log-MAP algorithm is an

approximation of MAP algorithm that is easier in implementation. However, this algorithm

16



is not an optimal algorithm as MAP algorithm (about 0.2dB difference in the performance

for 3GPP turbo codes).

Max-Log-MAP Algorithm utilizes logarithm format of ¢, (l), f,(I)and yid' D

which are denoted as &, (1), E (I)and 77," (I’,1) respectively.

7 D =logy, (I',1) (2.28)

a,(l)=loga, ()

M, o (2.29)

- 10g ; ‘iE%)e H+y, D

B, (1) =log B,()

M, 3 e (2.30)

= log I,Z:(;'E%)eﬁm”) Zia

and boundary conditions become:

Z,(000=0 and @()=-  forl#0 (2.31)
B.(0)=0 and JB.(I)=-o for [ #0 (2.32)

Using these new definitions, the log-likelihood ratio (LRR) can be rewritten as follows:

ZM 1 ec?._l(z')+f,‘<l’,t>+/?,(z>

— (=0
Ale,) =log ST A AR (2.33)
1=0
This log-likelihood ratio can be simplified by using the following approximation:
log(e® +e” +..+e”)= max 0, (2.34)

ie{1,2,...n)

17



This maximum value can be calculated by applying (n-1) max(x,y) function recursively

over each two values. So the LLR can be written as:

A(c,) = max 7, O+7:.D+ B.(D]- max (7., H+7° W D+B D] (235)

where,

g)y=max{ @ (O+7/A\D } for 0<UsM, -1 , i=0l  (236)

and

B,(l)zm?x{E+l(z’)+7;'+1(z’,1)} for 0<I'SM, -1 , i=01 (237)

2.1.3 Max*-Log-MAP Algorithm

Because of using the max(x,y) approximation in calculating the maximum-likehhood ratio
in the previous section, Max-Log-MAP algorithm is a sub optimal algorithm. It is possible

to improve the performance of the decoder by using the Jacobian algorithm [13]:

log(e” +¢%) =max(d,,d,) +log(l+e %)

(2.38)
=max(8,,8,) + f.(| 6, - 6,

where f.(.) is correction function that can be implemented as a simple look-up table. The

performance of this Log-MAP algorithm is dependent on the number of the levels of the
look-up table, but on the other hand multi-level look-up table can reduce the speed of the
decoder. In most cases using a 3-level or 4-level look-up table, the performance of the Log-

Max*-MAP algorithm can be identical to the performance of the optimum MAP algorithm.
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2.2 Interleaver (Permuter)

The function of the interleaver is to receive the N-bit sequence and rearrange it to construct
a new N-bit sequence, which is applied to the input of the second encoder. Since the
interleaver decorrelates the inputs of the two encoders [14], at the receiver side, after
correcting some of the errors by means of parity bits of first encoder, we will be able to
correct some remaining errors by using parity bits of the second encoder. There are two
major points in choosing the interleaver; choosing an interleaver to obtain an output as
uncorrelated as possible (with consideration of decoding constraints), and choosing. the

length of the output block code, N.

2.3 Iterative Decoding of Turbo Codes

Iterative decoding consists of two serially concatenated MAP-based decoders, separated by
an interleaver identical to that one at the encoder (Fig. 2.2). The inputs of the first MAP
decoder are the received noisy information sequence r, and the parity sequence produced
by the first encoder from the AWGN channel. The second MAP decoder uses the soft
output sequence of the first MAP decoder as one of its inputs. Other inputs of the second
decoder are an interleaved version of the received information sequence (¥,) and the
received encoded sequence produced by the second encoder. The second decoder also
produces a soft output that will be used as one of the inputs of the first decoder, and so on.
This feedback-loop is the distinguishing feature of turbo decoding algorithm. The name of
“Turbo Code™ is derived from the principle of the turbo engine that is using some kind of

feedback of the engine output at its input.
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1 Interleaver J - Del:/([)Ad:)r A oA
2
ry q

Deinterleaver

Fig. 2.2: An iterative turbo decoding system using MAP decoder

After performing a certain number of iterations, there will be no further improvement
in decoding performance, so the turbo decoder stops the decoding process and makes a

hard decision on the information bits based on the last iteration soft output sequence

[15,16].

It is possible to write the soft output of each of those MAP decoders as follows:

‘él(n,j—x,'_,(l))y

M, -1 207
> a().B,()-pl (e

Al(cr) - log - —le( i~ "-(l))2 (239)
M, -1 " 4]

a,,(IN.8.(1).p/ (0)e

=

(=]
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where p) (i) is the a priori probability for ¢, =i. In the first iteration of the first decoder, it

is reasonable to assume that pt’( 0)=pl(1)=1/2.A,(c, ) can be written as:

'((r:,o‘«"ll,o(l))z*”él(’ui _"fll.j(l))2 /
M, -1 207
> o 0B De

A(C)=10g ptl(l)+10gl’,l=0 (240)
o P (0) {lomstof+ 22,0 F / '
. 207

2 a_().L.(De

I',1=0

Since this code is systematic, x,, is independent of trellis diagram and state (I). Using

BPSK modulation x;, is equal to -1 and x; ,is equal to +1. LLR becomes:

p, (1)
P, (0)

2

Ay (c,) =log +t—r,+AL(c) (2.41)
o

where

—él(r,'j—x},,(l)f/
' 207
—él(r,,,-«x?.,mf/
! 207

M, -1
> o, )L 0e
Ale (CI) = log .

(2.42)

Z a_ (). (1)

U, i=0

A, (c, ) is called extrinsic information. This value does not contain the information of the
received data bit at time ¢ (7,,). This is the information that is produced by one MAP

decoder constituent and is used by the other one as the input.

21



The interleaved version of the first decoder’s extrinsic information (Kle( c, ))is used
as the a priori probability for the second decoder. The pl(i) is the a priori probability for

¢, =i of the input information bits for the second decoder

pX()

A, (c,) =log=% , pr)=1-p(0) (2.43)
p, (0)
It is straight forward to write:
, efw,)
P == (244)
2(0) = 1 2.45
p, ( )—W (2.45)

and for the second decoder, the LLR can be written:

2
S 2 .
A,(c,) =log ff_(df? 7o+ A () (2.46)
~ 2 -
Az(c[):Ale(c,)-}-Fr,,o+A26(c,) (2.47)

The extrinsic information of the second MAP decoder is interleaved and used as the a
priori probability for the first MAP decoder. By initializing A})/(c,)=0 in the first

iteration, and performing a definite maximum number of iterations, turbo decoder stops the

decoding process and makes a hard decision based on the last iteration’s soft output.
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2.4 Iterative Nature of Turbo Decoder

The most important property of the turbo decoder is its iterative nature [16,17]. This means
that for decoding a frame, the turbo decoder performs several iterations. For the first
iteration, it assumes that the probabilities of 0 and 1 are equal and based on the channel
information bits it produces a soft decision output for each data bit. For other iterations, the

decoder will use the soft output of the other decoder as the a priori probability.

In each iteration, the turbo decoder improves the SER or BER performance in
comparison with the previous iterations, and it can correct more number of erroneous bits.
As a result, the more number of iterations the turbo decoder can perform for each frame,
the better BER it can achieve. But the number of required iterations per each frame is a
random variable, and it is not possible to set the turbo decoder to perform a fixed number of

iterations per each frame and have an optimum receiver in terms of SER or BER.

As mentioned before, the performance of these kinds of iterative decoders is directly
related to the number of iterations that they perform to decode a frame. Here, we have
simulated the 3GPP turbo code for several values of signal-to-noise ratio (SNR) [18], in
order to use them as practical examples in the next chapters (the details of these computer-
based simulations will be given later). Table 1 shows the percentage of the 3GPP packets

being corrected at any given iteration.

For instance, for SNR = 1.5 dB in Table 1, if there is a turbo decoder capable of
performing a maximum of 3 iterations per frame, it will be able to correct 98.308%
(0.004+59.453+38.851) of the frames. As a result, the FER is equal to 0.01692, but if this
decoder was capable of performing a maximum of 4 iterations per frame (one more

iteration), the FER would be improved more than 10 times (0.00104).
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Table 2.1: Probabilities (%) of correction of a 3GPP frame vs. number of
iterations for several SNRs on an AWGN channel (k=1440, r=1/3).

Number of iterations SNR =1.0dB SNR=1.5dB SNR =2.0dB
1 10.000 0.004 1.467408
2 4615 59.453 95.48462
3 47.825 38.851 3.028626
4 31.920 1.588 0.016247
5 9.946 0.077 0.001644
6 3.059 0.007 0.000483
7 1.162 0.002 0.000000
8 0.528 0.002 0.000000
9 0.258 0.002 0.000000
10 0.159 0.000 0.000000
11 0.094 0.000 0.000000
12 0.085 0.000 0.000000
13 0.056 0.000 0.000000
14 0.034 0.000 0.000000
Not-correctable 0.259 0.014 0.000967

From Table 2.1, it can be seen that for SNR of 1.5 dB, there is no frame that can be
corrected in 10, 11, 12, 13 and 14 iterations. As a result, setting the maximum number of
iterations to more than 9 (this parameter will be described in detail in Chapter 3) for this
value of SNR, will not change the performance of the turbo decoder, and also in multi-

channel decoding systems, it will make it worse.

2.5 Early Stopping Criteria

Some of the turbo decoders are capable of performing various number of decoding
iterations for different input frames in order to achieve the desired performance (BER or
FER), while others only perform a fixed number of iterations for each frame. As indicated

in the previous sections, the required number of iterations for each frame is a random
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variable with a specific distribution function based on the channel characteristic, coding

specifications, etc.

The ideal case for the turbo decoder is that the decoder has the source information
and can compare it with the decoded sequence in order to determine if there is any symbols
(bits) in error or not. In this case, if the sequence is decoded correctly, the turbo decoder
stops decoding process and makes a hard decision based on the last soft output. However,
since the source information is not accessible to the receiver (had it been available, the

whole communication process would have been futile), this is not a realizable method.

One of the techniques that can give the turbo decoder an estimation of how correct a
frame is, is stopping criterion. At the end of each iteration for each frame, the decoder
checks the condition of the stopping criterion; if the condition is satisfied the turbo decoder
stops decoding and assumes that the output of the last iteration is reliable enough to make a
hard decision based on it and there will not exist any improvement in SER or BER by
performing more iterations on the current frame; otherwise the turbo decoder continues
decoding process and performs another iteration on the current frame. To prevent an
endless loop of performing iterations (when the stopping criterion is never satisfied or the
input frame is not a decodable one), it is possible to define a maximum number of iterations
per frame. After performing this number of iterations for each frame, if the stopping
criterion is not yet satisfied, the turbo decoder stops decoding process and makes a hard
decision based on the output of the last iteration, or in some cases turbo decoder assumes
that this frame is in error and it is not possible to make a decision based on this frame (this

depends on the application).

There are several proposed stopping criteria so far [19,8] such as soft-decision rules,

hard-decision rules and Cyclic Redundancy Check (CRC) rule. Besides all of the realizable
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stopping criteria, there is an unrealizable stopping rule that can be used as a limit for the
performance of other stopping criteria. We call this unrealizable stopping criterion “Genie
rule”. Theoretically, it is assumed that genie rule can recognize whether the decoded
sequence is corrected or not based on the knowledge of the original transmitted sequence,
and it can immediately stop the decoding process as soon as that specific frame becomes

corrected. In the following, some of the realizable stopping criteria are described in detail.

In one of the soft-decision rules, at the end of each iteration, the average value of the
extrinsic information of the second decoder component (KZe(ci)) is compared to a given

threshold (& ). This stopping rule is satisfied at the earliest iteration that:

N -~
%VZ 1X,.(c)] = @ (2.48)

In [8], it has been shown that using the above stopping criterion, will add on the average
less than one iteration to the number of required iterations to correct each input channel (in

comparison with the genie rule).

In another soft-decision rule, the minimum of the extrinsic value of the second
constituent decoder (XZe (c,)) for all of the symbols (bits) is compared to a threshold (& ).

The decoding procedure will stop at the moment that the following condition is satisfied:

min [ [A,(c)] ] 2 @ (2.49)

I<i<N

In one of the hard-decision rules, the decoder stops the decoding process as soon as
the hard decision at the end of the current iteration is identical to the hard decision of the

previous iteration.
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&r=¢"t 0 1<igN (2.50)

In CRC stopping criterion, a specific number of CRC bits is appended to the end of
each information sequence at the‘ input of the turbo encoder. At the decoder, after
performing each iteration, the decoder makes hard decision of the sequence and checks the
CRC bits for error. If decoder detects no error in those CRC bits, it assumes that the output
of the last iteration is reliable enough to make the final decision and it stops the decoding

process.

2.6 Summary

In this chapter, BCJR algorithm was presented and three versions of this algorithm
were described. Then, the turbo interleaver and turbo code structure were discussed. After
that, the iterative nature of turbo decoder was explained using some computer-based
simulations. And finally, the concept of stopping criteria and some of those rules were

presented in detail.
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Chapter 3

MULTI-CHANNEL PROCESSING

In some communication systems, the turbo decoder receives several input frames at the
same time, either from one transmitter (like another mobile base station) or from several
transmitters (like mobile handset terminals). These input frames are usually different and
have to be decoded separately. To obtain a better performance in these kinds of systems,

multi-channel processing techniques are being used widely.

In order to process all of the frames in real time, the maximum turbo decoding delay
for each frame is set equal to the period of each frame (7), so there is no need for data
buffering in the receiver. As it was mentioned in the previous chapter, each frame needs a
specific number of iterations to be decoded correctly. This number of iterations is different

from one frame to another.
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If the turbo decoder takes (7 ) seconds to perform one iteration, so the total number

of iterations that the turbo decoder can perform to decode all of (n,, ) frames in one time

slot (T) will be:

n, =\T/t] 3.1)

3.1 Ideal Scheme

When using one decoder to decode all the channels, the ideal situation is that the decoder
has the information about all frames (channels) and knows how many iterations each frame
needs to be decoded correctly. So, the decoder first decodes the frame that needs less
number of iterations, and after decoding it, it decodes the frame that needs also less number

of iterations among all of the remaining frames and so on. This ideal method is optimum.

But, the main problem is that the decoder neither has the capability to determine that
a specific channel has been corrected nor knows how many iterations a frame needs to be
corrected. As explained in the previous chapter, early stopping criteria can approximate
these parameters, but still to use the stopping criteria the turbo decoder has to perform a
few iterations for each frame, and it does not have access to this informationvprior to the
decoding process. This pre-decoding process will decrease the number of available

iterations for the rest of the process.

No other schemes can have better performance than this ideal (unrealizable) scheme.
In this thesis, this scheme will be used as the theoretical limit for analyzing the

performance of other schemes.
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3.2 Fixed-Iteration Scheme

Fixed-Iteration scheme is the traditional turbo processing scheme. It is designed based on
the decoding algorithm for a single input channel (single frame processing) system. In this
method, for each input channel, there is one turbo decoder capable of performing a definite

number of iterations (n,). So, for an n, -channel system, there will be n, completely

independent turbo decoders (Fig. 3.1).

Chll ChZJ Ch3l Ch4l ChSJ
Fixed Fixed Fixed Fixed Fixed

t@| | t@| t.@| It.4)| It. 4)
decoder] decoden decoder decoder decoder

Fig. 3.1: An example of the fixed-iteration method of multi-
channel decoding, consisting of 5 fixed-iteration turbo decoders

with 4 iterations per channel (n f =4), i.e., there is a total of 20

iterations for all channels (7, =20).

This decoding scheme is exactly equivalent to the scheme using a single turbo

decoder capable of performing a total of n, iterations in each time slot (frame period). The

n, is determined as follows:

n, =|n,/In,] (3.2)

This single turbo decoder performs a fixed number of iterations (n,) for decoding each

frame.
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The implementation of this scheme is very simple and straightforward. The main
disadvantage of this scheme is its performance. This disadvantage can be explained by

means of an example; assume that n, is equal to 4. There will be some input frames that

need less number of iterations to be decoded. For instance, if a frame needs 2 iterations to
be decoded, the turbo decoder decodes it in 2 iterations and spends the remaining 2
iterations on this frame without any gain or improvement. On the other hand, there may

exist some other frames that need more than n, iterations (e.g., 5 iterations) to be decoded.

So, the decoder performs 4 iterations on them and leaves these frames in error. In
summary, the turbo decoder is idle for early-decoded frames while it does not have enough

iterations to perform for the late decodable frames.

3.3 Serial Processing Scheme

The multi-channel processing algorithm that we call serial processing scheme is based on
the decoding method for a single-channel system using the stopping criteria technique
explained in Chapter 2. The decoding procedure is as follows: the decoder starts decoding
the first input frame and performs some iterations on this frame until the stopping criterion
1s satisfied; at this point the decoder assumes that the frame has been decoded correctly and
it makes the hard estimation on the frame. After decoding the first channel, the decoder
repeats the same procedure for the second frame and other frames one after the other (Fig.

3.2).

On the average, the decoder is supposed to decode each channel in 7, iterations and
if some of the channels are corrected in less than n s iterations, the decoder can save these

extra iterations and use them for decoding other frames that need more than 7, iterations.
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This method is much better than the fixed-iteration scheme, because the decoder can use
the idle time left after decoding the easier frames to correct the remaining frames. As a
result, with the same total number of iterations as the fixed-iteration scheme, we can
achieve a better BER or with the same performance, the decoder can decode more channels

(increasing the throughput of the decoder).

Chl Ch2 Ch3 Ch4 Ch5

15t Frame|2™ Frame{3'9 Frame|4t" Frame| 5 Frame

Decoder
(20 iterations)

v

Fig. 3.2: An example of the serial processing scheme of multi-
channel decoding, consisting of a single turbo decoder.

In this method, there are some cases where the decoder cannot perform even a single

iteration on some of the channels. As the worst-case scenario, assume that the first frame is
not correctable in less than 7, iterations (the total number of available iterations for one
time slot), so the decoder will spend all its time to decode this frame, and cannot do any

iterations on other frames. Therefore all of the frames will be in error. To avoid this

problem, we define Mipch as the maximum number of iterations per channel (Mipch must
be less than n, ). It means that if the decoder cannot decode a frame after Mipch iterations,

it will stop processing current frame and will go to the next frame. This Mipch is one of the

design parameters, which has to be set by the designer. In the next chapter, several
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computer-based simulations results are presented with different values of Mipch for

different SNRs.

Since this scheme -even when using the maximum number of iterations per channel-
is a serial processing technique, there are some cases where the turbo decoder cannot
decode the frames in the best way. We will explain these situations using an example:

assume that there are 5 input channels (n_,=5) and the turbo decoder is capable of
performing 20 iterations (7, =20) and the maximum number of iterations has been set to 7

(Mipch =T7). Suppose that the input frames need 7, 6, 8§, 4 and 2 iterations to be corrected.
Using the described scheme, the turbo decoder performs the maximum number of iterations
(Mipch =T) to correct the first frame, after that, it performs 6 iterations to decode the
second frame, and next, it performs the maximum number of iterations (Mipch =7) to
decode the third frame but this frame cannot be corrected with 7 iterations, and at the end
there is not any iterations left to decode the forth and fifth frames. As a result, the turbo
decoder corrects only 2 frames out of 5. If the decoder could decode the forth and fifth
frame prior to third frame, 4 frames instead of 2, would be corrected. But since this is a
serial processing technique, it always starts decoding process from the first received frame

to the last and it 1s not possible to change the order of the frames in the decoding process.

3.4 Parallel Processing Scheme

In the previous method, the decoder decodes the channels serially (it decodes the first one
completely, and goes to the next one and so on.), but in this new method, the decoder
decodes channels in parallel. This means that the decoder performs one iteration for each

frame, and checks whether that frame satisfies the stopping criterion or not. For the first
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round, it performs one iteration for each frame, and for the second and other rounds it will

do exactly the same procedure but only for the uncorrected frames (Fig. 3.3).

In the serial processing scheme, despite the introduction of a maximum number of
iterations per channel, there are some cases where the first frames need more than the
average number of iterations as explained before. So probably, the decoder cannot decode
the last frames (which may be correctable even in one or two iterations), due to the lack of
required iterations. In this new scheme the turbo decoder decodes the frame that needs least

number of iterations first.

Although the performance of this scheme is much better than the serial processing
algorithm (it will be discussed in detail in the next chapter), in the DSP implementation
chapter a new algorithm based on a combination of these two schemes will be suggested

which is optimum in terms of number of memory accesses.

Chl Ch2 Ch3 Ch4, Ch5

1%t Frame||2™ Frame| |39 Frame||4'"* Frame|| 5t Frame

Decoder
(20 iterations)

'

Fig. 3.3: An example of the parallel processing scheme for muiti-
channel decoding, consisting of a single turbo decoder.
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3.5 Multi-Channel Schemes for Single Channel Systems

The above parallel processing schemes not only can improve the performance and/or
throughput of the multi-channel systems, but also can be very useful for single channel

turbo decoding systems with the same benefits.

With a very simple buffering technique, it is possible to convert a single channel
system to a multi-channel one and apply all of the discussed schemes to it. For example, a
channel with a data rate of 2 Mbps can be assumed as a 10-channel system with the data
rates of 200 Kbps for each channel (Fig. 3.4). As a result, one turbo decoder can be utilized
to decode all of the 10 channels at the same time. The serial to parallel converter part
consists of 10 buffers each capable of storing a given number of frames (for example two)
at a time. The input frames will be placed in order from the first buffer to the last. This
process will be repeated at each time slot. When the frame at the top of a specific buffer
unit is processed, this frame will be erased and the frames in that buffer will be shifted one
place up and one empty place will be add to the end of the buffer. Each of these buffers is
considered as one channel and a multi-channel processing scheme will be applied to these

simulated channels.

30F|20F[10F|OF | Chl

Main Channel
e« |3F{2F | IF OF-—‘Q/

+=+ [39F|29F|19F|9F | Chl0

Fig. 3.4: An example of converting a one-channel system to a
multi-channel one by using 10 buffers.
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The only critical issue in this case, is the latency of the decoder, because the first
input frame (frame OF in Fig. 3.4) should be buffered until other 9 frames (1F...9F in Fig.
3.4) are received in order to start the decoding process. So the maximum acceptable latency

of the system determines the maximum number of channels that can be assumed:

Maximum Latency

The Frame Period (3-3)

Maximum Number of channels =

3.6 Summary

At the beginning of this chapter, the multi-channel turbo decoding system was
described, and then in order to improve the performance and/or throughput of this system
some multi-channel processing schemes were introduced. At the end, it was explained how

to use these schemes even for a single channel system.
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Chapter 4

COMPUTER SIMULATIONS

In this chapter, we will talk about two different turbo coding standards; 3GPP and
DVB/RCS. Next, we will simulate a simple turbo decoder for each of these standards for
several SNRs and code rates in order to obtain their FER. We will describe the computer
algorithms that we use to simulate the proposed multi-channel processing schemes. At the
end, we will simulate all those multi-channel processing schemes and will discuss their

performance in detail.

4.1 3GPP Standard

Second Generation (2G) mobile communication systems, which have been designed for
mobile digital telephony, have a very low data capacity [20]. For example, GSM supports

only data rates up to 9.6 Kbps. In order to transmit video and image on a mobile
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communication system, third generation (3G) standard has been proposed, which is capable

of transmitting data rates up to 2 Mbps.

The most important step in utilizing this new technology was its standardization
process between various regional and global operators. International Telecommunication
Union (ITU), which is the final organization responsible for adopting standards in
telecommunication area, set December 1998 as the deadline for submitting the 3G standard
proposals for all of organizations and countries around the world. The family of 3G
standards, which was approved later by ITU, is called IMT-2000 (International Mobile

Telecommunications for the year of 2000).

European Telecommunication Standards Institute (ETSI) is the organization
responsible for developing telecommunication standards (e.g. GSM) in Europe. ETSI
proposed UMTS (Universal Mobile Telecommunications System) standard as the 3G
candidate for the IMT-2000 (Table 4.1). UMTS is an evolutionary path form the old 2G
(e.g. GSM) to the new 3G and allows the 2G operators to keep their infrastructures and

investments during the upgrade process from 2G to 3G systems.

Table 4.1: UMTS key parameters

UMTS parameters FDD TDD
Multiple access scheme W-CDMA TD-CDMA
Crrier spacing 4.4-5.2 MHz 5 MHz
Chip rate 3.84 Mchip/s (Mcps)
Spreading factor range 4-512 1-16
Modulation QPSK
Pulse shaping Root raised cosine, roll-off = 0.22
Frame length 10 ms
Timeslots per frame 15
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Unlike Japan and Europe, there is not any nation-wide 2G standard in USA. In the
USA there are three main 2G standards; TDMA-based standard (IS-136), CDMA-based
standard (IS-91) and GSM derivative standard (PSC1900). CDMA2000 (Code Division
Multiple Access for the year of 2000) and UWC-136 were U.S. proposals to the ITU as the

evolutions of IS-95 and IS-136, respectively.

In 1998, 3" Generation Partnership Project (3GPP) was established to harmonize the
various 3G W-CDMA proposals based on the GSM core network. This organization was
founded by almost all of the major countries in the telecommunication field (Japan, Europe,
USA, ...). In order to merge Japanese 3G and UMTS standards into a single standard, this
organization proposed 3GPP and since that time, it has been developing and refining this
standard. The 3GPP2 organization was established around the CDMA2000 and it proposed
3GPP2 standard. In 1999, Operator Harmonization Groupe (OHG) proposed a
harmonization between 3GPP and 3GPP2, called G3G, in order to let CDMA2000 and
UMTS, work together.

4.1.1 3GPP Channel Coding

Information blocks, sent as the input data to the channel encoder, are denoted by

0,150,950y 3 Where i is the transport channel number, r is the code block number, and

irl?
K, is the number of information bits in each code block and the number of code blocks on
transport channel i, is denoted by C, [18]. After encoding, the bits are denoted by

Yirt» Yirz s Yiry » Where Y, is the number of encoded bits. The relationship between O,,

and y, and between K, and Y, is dependent on the channel coding scheme. The

i

following channel coding schemes can be applied to transport channels; convolutional

39



coding, turbo coding and no coding. Use of coding scheme and coding rate for different

types of transport channel is shown in Table 4.2. The value of Y, for each coding scheme

1s:

o Convolutional coding with rate 1/2: ¥, =2x K, +16;rate 1/3 ¥, =3x K, + 24,

o Turbo coding with rate 1/3: ¥, =3x K, +12;

o Nocoding ¥,=K,.

Table 4.2: Usage of channel coding scheme and coding rate.

Type of transport channel Coding scheme Coding rate
Broadcat channel
Paging channel . . 172
Randorrgl Agccess channel Convolutional coding
Dedicated Channel, 1/3, 1/2
Downlink Shared Channel, Turbo coding 1/3
Forward Access Channel No Coding

4.1.2 Turbo Coding Option of 3GPP

The turbo decoding scheme uses a Parallel Concatenated Convolutional Code (PCCC) with
two 8-state constituent encoders and one turbo code internal interleaver. The coding rate of
the turbo encoder is 1/3. The structure of turbo coder is illustrated in Fig. 4.1. the

generating function is,

14 &(D)
G(D) —l:l,————go (D)j| 4.1
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where g,(D)=1+D*+D* , g(D)=1+D+D"

the initial value of the shift registers of the 8-state constituent encoders shall be all zeros

when starting to encode the input bits.

XK
ZK
+ +
X
- D D D
A
[}
Turbo code
Internal
Interleaver
Zy
+
—e D D D

X

A

*-—--- <

E @ X;

Lm0 e i S o e 4 A 8 4 et o e o T e e »
Fig. 4.1: Structure of rate 1/3 Turbo coder (dotted lines apply for

trellis termination only)
The turbo encoder output sequence is:
x]7Zl,zl/’x2,22,Z;7---’xK7ZK7Z;( (42)

where x,,x,,...,x, are the input bits to the first constituent encoder and the interleaver, K is

the number of bits, and z,,z,,...,2, and z;,2,...,2 are the output bits from the first and

the second 8-state constituent encoders, respectively.
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The output bits from the interleaver are denoted by x{,x;,..., x} , and these bits are

applied to the second 8-state constituent encoder.

The 3GPP turbo decoder consists of two MAP decoders as described in Chapter 2.

4.1.3 Trellis Termination for 3GPP Turbo Codes

In order to have a better performance, trellis termination can be used in 3GPP turbo coding.
Trellis termination is performed by taking the tail bits from the shift registers feedback after
all information bits are encoded. Tail bits are padded after the encoding of information bits.
The first three tail bits shall be used to terminate the first constituent encoder (upper switch
of Fig. 4.1. in lower position) while the second constituent encoder is disabled. The last
three tail bits shall be used to terminate the second constituent encoder (lower switch of
Fig. 4.1. in lower position) while the first constituent encoder is disabled. So the

transmitted bits for trellis termination shall be:

’ ’ /’ ’ 7 /’ 43
Ao T g2 Lgra Xe3o Liazs Xgat s Lk X g2 Thoan a3 s Tes (4.3)

4.1.4 3GPP Turbo Code Interleaver

The 3GPP turbo code internal interleaver functions as follows: applying input bits to a
rectangular matrix with padding, performing intra-row and inter-row permutations of the

rectangular matrix, and producing the output bits from the rectangular matrix with pruning.
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The input bits to the turbo code internal interleaver are denoted by x,,x,,x;,...,x, , where K
is the number of information bits and takes a value between 40 and 5114. The relationship
between the input bits to the turbo code internal interleaver and the input bits to the encoder

is defined by x, =o0,, and K =K, [18].

4.1.5 3GPP Simulation Results

These simulation results are based on the 3GPP turbo codes using a simple 3GPP decoder.
These simulations were run on a “Sun-Blade-1000 (dual-processor)” with a “SUNOS 5.8”

operating system and “GCC 2.95“ C++ compiler.

In Fig. 4.2, the performance (FER) of 3GPP turbo code versus the number of
iterations per frame has been shown. The frame length is equal to 1440, code rate is 1/3 and
we have chosen an AWGN channel model. We will use the results of these simulations as

the inputs of the multi-channel processing simulations.
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4.2

Digital Video Broadcasting for Return Channel via Satellite (DVB/RSC) has been
proposed by the DVB Committee for the satellite communication systems [21]. ETSI
(European Telecommunication Standards Institute) has also a DVB/RCS standard [22] to
provide two-way, full-IP and asymmetric communications via satellite in order to be used
in the countries where Asymmetric Digital Subscriber Line (ADSL) and cable modem are
not economically capable of covering more than 25% of the demands. By using this

standard, a large number of small terminals will be capable of sending refurn signals to a

i U SR b SR I ‘: -e-3GrPP,H=1I/3, SNR[=1.5dB£
NG N . '.-SGPP ’H=1,/3' SNR\:‘].OdB ]
107 e SIE LTS
E 10‘2-_. e T ]
(1 .
10-3_ JIILIN D O N P
10'4 £ I L ) I L
0 2 4 6 8 10 12 14 16 18 20
Number of iterations
Fig. 4.2: 3GPP frame error rate (FER) vs. number of iterations
per frame for several SNRs on an AWGN channel (k=1440,
r=1/3).
DVB/RCS Standard
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central gateway and at the same time, receiving IP data from that gateway on the forward
link in the DVB/MPEG2 (Digital Video Broadcasting/Moving Picture Expert Group-2)
format. In DVB/RCS systems, the quality of service and the cost of terminals are almost
independent of the distance of the central gateway and terminals. This advantage puts
satellites in a favorable position. The speed of the return channel for DVB/RCS standard
can range from 144 Kbps to 2 Mbps and it is shared between all terminals sending small
packets using MF-TDMA (Multi-Frequency - Time Division Multiple Access)/DAMA
(Demand-assigned Multiple Access) techniques. Use of Turbo Codes is also an option in

DVB/RCS.

4.2.1 Turbo Coding Option of DVB/RCS

The DVB/RCS turbo encoder is depicted in Fig. 4.3. It uses double binary Circular
Recursive Systematic Convolutional (CRSC) codes. The most significant bit (MSB) of the
first byte, after the burst preamble, is assigned to A, the next bit to B and so on for the

remaining of the burst content.

The encoder is fed by blocks of & bits or N couples (k = 2 * N bits). N is a multiple of
4 (k is a multiple of 8). The polynomials defining the connections are described in octal and

symbolic notations as follows:

0 For the feedback branch: 15 (in octal), equivalently, 1+ D+ D’ (in symbolic

notation);
a Forthe Y parity bits: 13, equivalently, 1+ D* + D;

a For the W parity bits: 11, equivalently, 1+ D".
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The input bit A is connected to tap “1” of the shift register and the input bit B is
connected to the taps “1”, D and D’. First, the encoder (after initialization by the
circulation state S ) is fed by the sequence in the natural order (switch on position 1) with
incremental address i=0,...,N-1. This first encoding is called C,. Then, the encoder (after

initialization by the circulation state S ) is fed by the interleaved sequence (switch in

position 2) with incremental address j=0,...,N-1. This second encoding is called C,. The
I1(j) gives the natural address i of the considered couple, when reading it at place j for the

second encoding.

Systematic part

Redundancy part

PIOMIPO))

Permutatio o S
n ’/ Wlorll l Ylan
———— (k/2)
N=k/2 2
Couples

puncturing

A\ A 4

Fig. 4.3: DVB/RCS turbo encoder block diagram.
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The DVB/RCS permutation is done on two levels, the first one inside the couples,

and the second one between couples.

4.2.2 Determination of DVB/RCS Circulation States
The DVB/RCS turbo decoder consists of two MAP decoders as described in the Chapter 2.

The DVB/RCS turbo code is a Circular recursive systematic (CRSC) convolutional
code. Using circular coding technique will enable each encoder to retrieve the initial state
at the end of encoding procedure, as a result, data encoding process can be represented by a

circular trellis structure, and there is no need to add extra bits for trellis termination. To

determine the value of the circulation state (S ), DVB/RCS uses a pre-encoding operation.

The state of the encoder is denoted by S (0< S <7) with § =4xs, +2Xs, +s,. The

encoding procedure is as follows:

1. Initialize the encoder with state 0. Precode the sequence in the natural order for the

determination of S, or in the interleaved order for the determination of S.,. In

both cases, the final state of the encoder is denoted S _, .

2. According to the length N of the sequence, use the following correspondence to

find S, or S, (Table 4.3).

3. Encode for the second time starting from states S, and S, . The circular recursive

property of the constituent codes ensures that the two encoders will end in states

Sq and S,
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Table 4.3: Circulation state correspondence table

Sy =
LN 0 1 2 3 4 5 6 7
mod.7
1 S.=0 | S.=6 | Sc.=4 | S.=2 | S.=7 | S.=1 | S.=3 | S.=5
2 S.=0 | S.=3 | S.=7 | S.=4 | S.=5| S.=6 | S.=2 | S.=1
3 S.=0 | S.=5 | S.=3 | S.=6 | Sy=2 | S.=7 | S.=1 | S.=4
4 Se=0 | Se=4 | Se=1| S.=5 | S.=6 | S.=2 | S.=7 | S.=
5 Se=0 | Se=2 | S.=5| S.=7 | Sc=1 ]| S.=3 | S.=4 | S.=6
6 Se=0 | S.=7 | S.=6 | S.=1 | S,=3 | S.=4 | S.=5 | S.=2

4.2.3 DVB/RCS Code Rates

Seven code rates are defined for the DVB/RCS turbo code mode: R=1/3, 2/5, 1/2, 2/3, 3/4,
4/5, 6/7. This is achieved through selectively deleting the parity bits (puncturing). The

puncturing patterns are identical for both the first encoder (C,) and the second encoder

(C,) (deleting is always done in couples).

Rates 1/3, 2/5, 1/2, 2/3 and 4/5 are exact ones, independently of the block size. Rates
3/4 and 6/7 are exact ones only if N is a multiple of 3. In other cases, the actual rates are

slightly lower than the nominal ones.

Depending on the code rate, the length of the encoded block is:

2N+M for R<1/2, with:

- M=N for R=1/3;

- M=N/2 for R=2/5.
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N+M for R>1/2, with:

- M=N forR=1/2;

- M=N/2 for R=2/3;

- For R=3/4:

- M=N/3 (if N mod. 3=0); or

- M=(N-4)/3+2 (if N mod. 3=1); or

- M=(N-8)/3+3 (if N mod. 3=2).

- M=N/4 for R=4/5;

- For R=6/7:

- M=N/6 (if N mod. 3=0); or

- M=(N-4)/6+1 (if N mod. 3=1); or

- M=(N-8)/6+2 (if N mod. 3=2).

4.2.4 DVB/RCS Simulation Results

These simulation results are based on the DVB/RCS turbo codes using a simple DVB/RCS
decoder. These simulations were run on a “Sun-Blade-1000 (dual-processor)” with a

“SUNOS 5.8” operating system and “GCC 2.95* C++ compiler.
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In Fig. 4.4, the performance (FER) of the DVB/RCS turbo code versus the number of
iterations per frame has been shown. The frame length is equal to 212 (424 bits), code rate
is 1/2 and we have chosen an AWGN channel model. We will use all results from these

simulations as the inputs of the multi-channel processing simulations.

4.3 Simulation algorithms

In this section we describe the computer-based algorithms for the proposed multi-channel
processing schemes. We use “C++” programming language to analyze their performance

based on the probability statistics from computer-based DVB/RCS and 3GPP simulations.
Assume that the probability of decoding a frame in exactly i iteration is:

PG , 0<i<M (4.4)

M is bigger than the maximum number of iterations that turbo decoder can perform in each

time slot (M >n,,), as the result, the decoder is never capable of performing M iterations

on any frames. By defining P,, as the probability that a frame is not corrected in less than

M iteration, we will have:

~1

1-3 PG)=P, 4.5)

i=

By these assumptions, the frame error rate (FER) is always greater than P,, .
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These P(i) values are obtained from running DVB/RCS and 3GPP computer-based

simulations for different SNRs and code rates that were described earlier in detail and at

this point, we assume that we have those statistics.

It is important to note that in all of the following parts we will use the ideal stopping
criterion (Genie rule) that stops the decoding procedure exactly after correcting all of the

symbols of the frame.

‘[ olle DVB-RCS, R=1/2, SNR = 2.5dB | ]
| @« DVB-RCS, R=1/2, SNR = 2.0dB | ]}
i DVB-RCS, R=1/2, SNR = 1.50B | ]

FER

0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Fig. 4.4: DVB/RCS frame error rate (FER) vs. number of
iterations per frame for several SNRs on an AWGN channel
k=212, r=1/2).
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4.3.1 Fixed-Iteration Scheme

In practice, the performance of a multi-channel processing system using fixed-iteration

(traditional) scheme that receives n, channels at the same time and has n, iterations

available each time slot, is the same as the performance of a single channel system

performing |_n,.t / nch_| iterations on that channel. We will have:

Lnil/"clv_!
FER = 1- Y P(i)=1-(P(0)+P()+-+P(n,/n,)) (4.6)

i=0

4.3.2 Ideal Processing Scheme

In order to compute the performance of the ideal processing scheme applying to those turbo

coding standards, the mentioned C++ program creates a tree of n,, level of branches, and

using a recursive function (walk()) goes through those branches. At the end of each branch,
it performs a function that calculates the frame error rate (FER) of that specific branch

called Calculate_Brach_Error(x;,x;,x,). Using a practical example can illuminate this

process.

Assume n_, is equal to 3, so the program will create a tree of three levels of branches

as shown in Fig. 4.5, and the walk() procedure (the recursive procedure),walks through this

tree. As is shown in Fig. 4.5, the walk() procedure selects one branch at each time:

Probability of selecting this branch = P, (x;,x;,x,)

Since the required number of iterations for each frame is independent from other frames:
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Pbr(xi,xj,xk) = Pbr(xj,xk,xi) = Pbr(xk,xi,xj) 4.7
P, (x,x;,%x,)=P(x)XP(x;)xP(x,) (4.8)

The probability of receiving a frame that requires x number of iterations to be

corrected ( P(x)), is calculated from simulation results in section 4.1.5 and 4.2.4.

Calculate_Branch_Error(x,,x,,x,)

Second Channel <

First Channel <

Fig. 4.5: Tree of n_, level of branches, used for spanning all of
the possibilities.

The inputs of the Calculate_Branch_Error(x,, x j ,x, ) are the required number of iterations

for each frame, and it will return the number of frames that remain in error. For the ideal

processing scheme, Calculate_Branch_Error(x,, x, x, ) functions as follows:
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Initialization:
available_#_of_iterations = n, ;
# of _corrected_ frame = 0;
Procedure:

For n_, times do
x = find the minimum non-zero frame value between all frames ( x, );

if (x < available_#_of_iterations)
available_# of _iterations = available_#_of iterations - x;
x=0;
# of_corrected_ frame =#_of_ corrected_ frame + 1;
Output:

Return (n,, - #_of_ corrected_ frame).

So this program will calculate the FER as follows:

£
L
S

FER = (P, (x,,---,x,) x Calculate_Branch_Error(x,,---,x,)/ n,) (4.9)

1i
<
B

[}
i~
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4.3.3 Serial Processing Scheme without MIPCH

In the following, a formula will be derived for the serial processing scheme without
defining the maximum number of iteration per channel (Mipch) parameter. This formula

can be easily implemented in Matlab.

If we have a communication system with n_, input channels, for each channel, it is

possible to define a polynomial:
G(x)=P(O)x1+ P()xx+P(2)Xx* +...+ P(M —1)xx"! (4.10)
and for the whole system we will have:
H(x)=G(x)XG(x)X---XG(x) =(G(x))"™ (4.11)

If the maximum number of iterations that the decoder can perform in each time slot is

denoted be n_, then:

it?

R(x)=H(x) mod. x"* (4.12)

where R(x=1) is the probability of correcting a frame. As a result, frame error rate can be

obtained as follows:

FER = 1 - R(x=1) (4.13)

Another approach for serial processing scheme is using recursive programming

method in “C++” which can take a long time for each run.
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4.3.4 Serial Processing Scheme with MIPCH

The program written for this scheme is very similar to that one for ideal processing scheme
and the structure is the same, but it uses a different Calculate_Brach_Error() function. The

procedure of Calculate_Brach_Error() function is described as follows:

Initialization:

available_# of_iterations = n,;

Take one frame as x;

#_of_ corrected_ frame = 0;

Procedure:

If x >Maximum_#_of_iteration_per_frame

If Maximum_#_of_iteration_per_frame > available_#_of_iterations

Go to Output;

Else

available_# of iterations= available_#_of _iterations -

Maximum_#_of_iteration_per_frame;

Else

If x > available_#_of_iterations

Go to Output;
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Else
available_#_of_iterations = available_#_of _iterations — x;
# of corrected_ frame =#_of _ corrected_ frame + 1;
If there is any frame unprocessed
Take next frame as x
Else
Go to Output;
Go to Procedure
Output:

Return ((n,, - #_of _corrected_ frame)/ n_, ).

And FER will be calculated as follows:

M-~ -1
> > (P, (x;,-+,x,)x Calculate_Branch_Error(x,, -, x,)/ n,) (4.14)

H

a5

FER

k=0
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4.3.5 Parallel Processing Scheme

The program written for this scheme is very similar to that one for ideal processing scheme
and the structure is the same, but it uses a different Calculate_Brach_Error() function. The

procedure of Calculate_Brach_Error() function is described as follows:

Initialization:

available_#_of iterations = n,,;

# of corrected_ frame = 0;

Procedure:

While (available_#_of _iterations # 0)and(#_of_ corrected_ frame # n,_, ) do

For (each input frame( x; ) # 0) do

If (available_#_of_iterations # 0)

x;, =x;,—1

available # of iterations = available_#_of _iterations - 1

if (x=0)

# of corrected_ frame = #_of _ corrected_frame + 1;

Output:

Return (n,, - #_of_ corrected_ frame).
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And FER will be calculated as follows:

M- -1
FER= Y Y (B, (x,,x,)x Calculate_Branch_Error(x,,,x,)/ n,) (4.15)

i=0 k=0

—

4.4 Multi-Channel Processing Simulation Results

The simulation results for the above multi-channel processing schemes, are shown in Fig.
4.6 and Fig. 4.7 for SNR=1.0 dB and SNR=1.5 dB, respectively, for the 3GPP standard and
in Fig. 4.8 and Fig. 4.9 for SNR=2.0 dB (R=1/2) and SNR=3.0 dB (R=2/3), respectively,
for the DVB/RCS turbo code. These simulation results are based on the 3GPP and
DVB/RCS turbo codes, and we use the probabilities of frame error from computer-based
simulations for a single channel presented earlier in this chapter. These simulations were
run on a “Sun-Blade-1000 (dual-processor)” with a “SUNOS 5.8” operating system and
“GCC 2.95% C++ compiler.

It is shown in Fig. 4.6 and Fig. 4.7 for 3GPP, and in Fig. 4.8 and Fig. 4.9 for
DVB/RCS turbo codes that the fixed-iteration scheme (or the traditional scheme) has the

worst performance among the multi-channel processing schemes.

According to the 3GPP simulation graphs in Fig. 4.6 and Fig. 4.7, if the maximum
number of iterations is less than 20 and 14 for SNR=1.0 dB (R=1/3) and SNR=1.5 dB
(R=1/3), respectively, then the performance of the serial processing scheme is better than
that of the parallel processing. But, FER in this area is too high and, as a result, designing a
system operating within this range of FERs is not of practical interest. Therefore, we will
compare the performances of those schemes only in the practical region (Fig. 4.6 and Fig.
4.7). For the maximum number of iterations more than 20 and 14 for SNR=1.0 dB (R=1/3)
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and SNR=1.5 dB (R=1/3), respectively, the performance of the parallel processing scheme
is better than that of the serial processing and it is also close enough to the ideal scheme
where the decoder has the knowledge of the computational requirements of each channel

before starting the decoding process.

With the same reason explained for the 3GPP simulations, we compare the
performances of the proposed multi-channel processing schemes for DVB/RCS standard,
only in the practical region. As shown in Fig. 4.8 and Fig. 4.9, for the maximum number of
iterations more than 11 and 9 for SNR=2.0 dB (R1/2) and SNR=3.0 dB (R=2/3),
respectively, the performance of the parallel processing scheme is better than that of the

serial processing one and also close enough to the ideal scheme.
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Fig. 4.6: FER performance of all multi-channel processing schemes for
3GPP turbo codes at SNR=1.0 dB, Frame length=1440.
(Mipch=Maximum number of iterations per channel)
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For any given SNR, it is possible to design a serial processing scheme decoder with a
specific maximum number of iterations per channel having a performance near the
performance of the parallel processing scheme (not better). But the main problem with this
decoder is that its performance is very sensitive to the maximum number of iterations per
channel. For example, it can be seen that the best maximum number of iterations per
channel in Fig. 4.7, is 8, so if we design a decoder for this case, and for any reason the SNR
changes during the data transmission from 1.5 dB to 1.0 dB, according to Fig. 4.6, the
performance of the decoder is not appropriate at all for this new SNR, and the best
performance at SNR=1.0 dB, is obtained by 14 as the maximum number of iterations per

channel.

As a result, another advantage of the parallel processing scheme in comparison to the
serial processing scheme is its robustness with respect to the SNR of the input channels and
it always has the best performance for any given value of SNR. But in serial processing
scheme, as explained before, MIPCH parameter must be chosen carefully based on the
SNR of the channels in order to have a better performance, and since in a multi-channel
processing system, the decoder is receiving more than one channel at a same time and these
input channels are usually independent and have different SNRs, it is not possible to design
a single serial processing turbo decoder with an optimum MIPCH for all of the channels.

This disadvantage makes the serial processing scheme not a reliable scheme in practice.

It is possible to apply some modifications to the parallel processing algorithm to
increase its performance. For example, after the first step and performing one iteration for
each of the input frames, by using the stopping criterion concept, the decoder may decide
which channel might needs less number of iterations to be corrected and it can decode that
one first. The performance of this new scheme will be better than other proposed schemes.

But, the implementation of this method is too complicated and on the other hand, it was
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shown that the performance of the parallel processing algorithm is close enough to the

theoretical limit. So there is no need to try to improve its performance in practice.

4.5 Summary

In this chapter, 3GPP and DVB/RCS turbo codes were introduced. Then the results
of computer-based simulations of these turbo codes were presented. After that, based on the
simulation results the performance of all those multi-channel processing schemes
introduced in Chapter 3, were discussed and analyzed. And at end, it was shown that the
performance of the parallel processing scheme is close enough to the performance of the

ideal scheme.
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Chapter 5

DSP IMPLEMENTATION

The TMS320C6000 Digital Signal Processor (DSP) platform is a part of Texas Instrument
TMS320 DSP family, which has an architecture designed specifically for real-time signal
processing. TMS320C62x DSP and TMS320C64x DSP generations comprise fixed-point
devices and TMS320C67x DSP generation comprises floating point devices in the C6000
DSP platform. The C6000 family uses an advanced Very Long Instruction Word (VLIW)
architecture. The architecture contains multiple execution units running in parallel, which
allows it to perform multiple instructions in a single clock cycle. This parallelism is the key

to high performance.

The newest member of the C6000 family, the C64x, brings a very high level of
performance for data processing. At clock rates of 500-720 MHz, the C64x can process
information at a rate of 4000-5760 Million Instructions Per Second (MIPS). Besides these
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advantages, TMS320C6416, one of the members of C64x family, has also two embedded
coprocessors: Viterbi coprocessor and Turbo Decoder coprocessor (which will be described

in more detail later).

In this chapter, we will perform a feasibility study of the implementation of all those

proposed multi-channel processing schemes on the TMS320C6416 DSP.

5.1 TMS320C6416 Architecture

Fig. 5.1 shows the block diagram for the TMS320C6416 DSP CPU [23]. The C6000
devices come with program memory and various sizes of data memory. Peripherals such as
a Direct Memory Access (DMA) controller, power-down logic and External Memory
Interface (EMIF) usually come with the CPU, while peripherals such as serial ports and

host ports are only on certain devices.

5.1.1 Central Processing Unit (CPU)

As itis shown in Fig. 5.1, the TMS320C6416 CPU contains [24]:

Q Program fetch unit.

0 Instruction dispatch unit, advanced instruction packing.

a Instruction decode unit.

o Two data paths, each with four functional units.
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o 64 32-bit registers.

o Control registers and control logics

a Test, emulation and interrupt logic
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Fig. 5.1: Block diagram of TMS320C6416 DSP.
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The program fetch, instruction dispatch and instruction decode units can deliver up to
eight 32-bit instructions to the functional units every CPU clock cycle. The processing of
instructions occurs in each of the two data paths (A and B) and each, contains four
functional units (L, .S, .M, and .D) and 32 32-bit general purpose registers. As a result, this

DSP CPU is capable of performing up to 8 instructions in parallel.

5.1.2 Memory

The memory configuration of TMS320C6416 includes: internal data/program memory,
internal peripherals and external memory accessed through the External Memory Interface

(EMIF)[25].

TMS320C6416 DSP CPU has a cache-based architecture, with separate level-one
program and data caches. These cache spaces are not included in the memory map and are
enabled at all times. The level-one caches are only accessible by the CPU. The level-one
program cache (L1P) controller interfaces the CPU to the L1P. A 256-bit wide path is
provided from L1P to the CPU to allow a continuous stream of 8 32-bit instructions for
maximum performance. The level-one data cache (L1D) controller provides the interface
between the CPU and the L1D. The L1D allows simultaneous access by both sides of the

CPU.

On a miss to either L1D or L1P, the request is passed to the L2 controller. This CPU

can address up to 1280 Mbytes through L2 controller.
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5.1.3 Peripheral Options

The user-accessible peripherals are configured via a set of memory-mapped control
registers [26]. The main functions of the devices shown in Fig. 5.1 are summarized as

follows:

Enhanced Direct Memory Access (EDMA) Controller: The EDMA controller transfers
data between address ranges in the memory map without intervention by the CPU. The
EDMA has 64 programmable channels, as well as a RAM space to hold multiple

configurations for future transfers.

Multichannel Buffered Serial Port (McBSP): these three McBSPs interface to a variety of
standards. Each C6416 McBSP supports independent channel selection at any given time
for up to 128 channels. The 128 channels represent a full Serial Telecom (ST) Bus span.
ST-Bus in combination with the flexible asynchronous interface provides a glueless

connection to a variety of multi-channe] telecommunication interface products.

Turbo Decoder and Viterbi Decoder Coprocessor: The C6416 device has two high-
performance embedded coprocessors: Viterbi Decoder Coprocessor (VCP) and Turbo
Decoder Coprocessor (TCP), that significantly speed up channel-decoding operations on-
chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps
adaptive multi-rate voice channels. The VCP supports constraint lengths K =35, 6, 7, &, and
9, rates R = 1/2, 1/3 and 1/4, and flexible polynomials, while generating hard decisions or
soft decisions [27]. The Turbo Decoder Coprocessor will be described in next section in

details.
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5.2 Turbo Decoder Coprocessor (TCP)

The Turbo Coprocessor (TCP) is a programmable peripheral for decoding of 3GPP turbo
codes, integrated into Texas Instruments TMS320C6416 DSP device. The TCP, operating
at CPU clock divided by two, can decode up to thirty-six 384 Kbps or six 2 Mbps turbo
encoded channels (assuming 6 iterations). This turbo decoder implements the Max-Log-
MAP algorithm and is designed to support all polynomials and rates required by the Third-
Generation Partnership Projects (3GPP and 3GPP2). Communications between the TCP

and the CPU are carried out through the EDMA controller [28].

The TCP Programmable parameters are: code rate (1/2, 1/3 or 1/4), frame length,
maximum number of iterations, threshold for early stopping criterion, turbo interleaver,

number of iterations.

5.2.1 Interleaving/De-interleaving

In the standalone processing mode, the interleaving and de-interleaving are performed in
the TCP, for frames up to 5114 bits. The look up table is generated by the DSP CPU and
transferred to the TCP interleaver memory as a part of the TCP initialization process. This
transfer is optional and determined by the TCP from the value of one of the TCP flags. If
the current input frame uses the same turbo interleaver as the frame previously decoded, the
transfer of interleaver table can be omitted. In the shared processing mode, the interleaving

and the de-interleaving are done by the DSP CPU.
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5.2.2 Stopping Criterion

The stopping criterion implemented in the TCP is used in standalone processing only. It is
based on the measurement of the extrinsic SNR, comparison against a user-defined
threshold and stopping the iterative processing if the threshold has been reached or
exceeded. The SNR of extrinsic information is computed over the entire frame. The user-

defined threshold is input into the TCP for each frame and can range from 1 to 100.

Setting SNR to zero disables the stopping criterion, so in this case, the maximum

number of iterations (Mipch) specified for that particular frame will always be executed.

5.2.3 Data Format

Systematic and parity information from the channel, expected at the input of the TCP, are
8-bit signed quantities in (5,3) or 5Q3 fixed point representation. This means that there are
5 integer bits, followed by a binary point, followed by 3 fractional bits, which results in a
range from —32.000 to +31.875. The TCP assumes that the mapping from unsigned to

signed binary is 1 to-1 and O to +1.

5.2.4 MAP Processing Unit

The MAP decoder implements Max-Log-MAP algorithm with a small lookup table. The
TCP processing unit (MAP unit) is shown in Fig. 5.2. It is using also a sliding window

technique that allows parallel processing and reduces memory requirements [28].
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Fig. 5.2: MAP processing unit block diagram

The computation starts with S computation, with £ ’s for all states and all stages

stored to the TCP internal RAM, followed by the computation of ¢ and the extrinsic
information. The & values are used immediately for computation of extrinsic information.

The computation of £ is performed traversing the trellis from the end.

5.2.5 Sliding Windows Decoding

One of the drawbacks of the MAP decoding algorithm is its large storage requirement.
Forward metrics ¢ and backward metrics £ need to be computed and stored for all states
and all stages in the trellis, since they are required for the last step in the algorithm, which
is extrinsic information computation. It is possible to combine & or £ accumulation with

extrinsic information, such that only S or « needs to be stored. This represents

(N+K-1)x2%" values, which need to be stored, for a frame containing N information
bits and code constraint length K. In order to reduce memory requirement, large frames can
be split into sub-blocks or windows, and MAP decoding can be performed on each window

independently.
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When the frame is split into independent sliding windows, the initial and final states
for each window are not known. Therefore, equal probability is given to all & s at the first
stage in the window, and all s at the last stage of the window. In order to achieve
reliable decoding, the first segment of ¢ ’s as well as the last segment of £ s should not be
used in the final computation of extrinsic information. These initial and final segments of
the window are called header prolog and tail prolog, respectively, and both are denoted by

Pro. The extrinsic information is only computed over the middle segment of the sliding

window, also called reliability length denoted by Re. This concept is illustrated in Fig. 5.3.
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With sufficiently large values for Pro and Re, this approach does not result in any
BER degradation. Usually Pro is chosen equal to 4 to 6 times the constraint length (K ') of

the code (This DSP CPU, is using Pro equal to 3 to 5 times the number of states

25 [29D.

The alpha and beta have usually equal length of prolog. The reliability length and the
prolog length are user-defined. The frame length and number of sub-blocks are also user-
defined. The number of sliding windows will be decided by the MAP unit based on the
frame length (Table 5.1).

Table 5.1: Number of sliding windows per sub-block.

Frame Length Number of Sliding Windows per Sub-block
From 40 to 128 1
From 129 to 256 2
From 257 to 5114 4

The MAP unit supports reliability sizes ranging from 40 to 128, therefore sub-blocks
size ranges from 40 to 512 as there is a maximum of 4 sliding windows per sub-block.

Prolog size ranges from 24 to 48 [28].

5.2.6 TCP Processing Delay

The processing blocks shown in Fig. 5.2 (beta, alpha and extrinsic blocks) have a latency of
four TCP clock cycles (the TCP is running at a frequency of CPU clock divided by 2).
Because each cycle is independent, this allows each block to process 4 sliding windows in

parallel [28].
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The sliding window processing is being pipelined in each of the blocks, so the
performance of the MAP Unit will then depend on the number of sliding windows per sub-

block:

0 4 sliding windows per sub-block => 4 TCP cycles are required to process 4

symbols.

o 2 sliding windows per sub-block => 4 TCP cycles are required to process 2

symbols.

a 1 sliding windows per sub-block = 4 TCP cycles are required to process 1

symbols.

Fig. 5.4 shows the number of TCP cycles per symbol in the best-case scenario

(Pro=24) and Fig. 5.5 the worst-case scenario (Pro=48).

EDMA transfer cycles should also be added to the total number of processing cycles
for an estimation of the overall processing delay, which depend greatly on the system
partitioning and loading. The EDMA transfers are at a maximum rate of 64 bits at a
frequency of CPU clock divided by 4. It should be noted that the TCP will start processing

as soon as all systematic and parities have been transferred.
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Fig. 5.4: Processing unit performance for Pro=24 (with 4 sliding
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5.3 TCP Processing Modes

The TCP has two different processing modes. The TCP operates either as a complete turbo
decoder including the iterative structure (standalone processing mode), or it can operate as
a single MAP decoder (shared processing mode). In the following, these two processing

modes are described in details.

5.3.1 TCP Standalone Mode (SA Mode)

In SA mode, the DSP sends the systematic data, parity data, and the interleaver table. The
TCP then works independently of the DSP (standalone), iterates a user-defined maximum
number of iterations and outputs the hard decision data. In this mode, minimum DSP

processing is required.

A stopping criterion can be enabled to reduce the processing delay, and if the
stopping criterion is not satisfied after performing the user defined maximum number of
iterations, the TCP will discard this input frame and will start the decoding process on the

next frame. The SA block diagram is shown Fig. 5.6.

Systematic and parity information have to be quantized using 8 bits as (5,3) numbers,
ie., SIILFFF (S = sign bit, I = integer, F' = fractional bit). As a result, for every systematic
and parity information, the DSP CPU has to send one byte to the TCP. The outputs of the
TCP are the hard decision bits and TCP sends eight decoded symbols (bits) in each one

byte, to the DSP CPU.
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Fig. 5.6: TCP standalone mode block diagram.

5.3.2 TCP Shared-Processing Mode (SP Mode)

In SP mode, the DSP will send systematic, parity and a priori data. The TCP will perform
one single MAP decoding and output the extrinsic data. A priori information for MAP1
decoding is obtained by de-interleaving the extrinsic information from the MAP2 decoder,
and a priori data for MAP2 decoding is obtained by interleaving the extrinsic information

from MAP1 decoder. An overview of the shared processing is shown in Fig. 5.7.
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Fig. 5.7: TCP shared-processing mode block diagram.

The DSP CPU is responsible for the interleaving and de-interleaving operations, hard
decision calculations and any stopping criterion algorithm. As a result, in this mode, there

is too much load on the DSP CPU compared to the standalone mode.

In order to perform one complete iteration, the TCP has to perform two MAP
decodings. Two MAP decodings require two complete sets of data transfers including
sending information to the TCP and receiving its output. So, using the TCP in the shared

processing mode also requires much more data transfers than the standalone mode.

The systematic and the parity information quantization is the same as in the
standalone mode, and for every systematic and parity information, the DSP CPU has to
send one byte to the TCP. Each input a priori and output extrinsic information is in 8-bit
format as (5,2), i.e., SIHILFF (S = sign bit, I = integer, F' = fractional bit) and will be right
justified with O in the most significant bit position. As a result, the DSP CPU has to send
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one byte for each a priori information to the TCP and also receive one byte for each

extrinsic information output of the TCP.

5.4 Applying Multi-Channel Processing Schemes

In this section, we investigate the implementation issues of all of our multi-channel

processing schemes on TMS320C6416 DSP.

5.4.1 Fixed-Iteration Scheme

Based on the specifications of TMS320C6416 DSP, it is very straightforward to implement
the fixed-iteration scheme on this CPU. For this purpose, the TCP can be used in the
standalone processing mode. The user can define the number of iterations performed on
each frame and the stopping criterion must be disabled (by choosing zero as its value). So
the DSP CPU performs a fixed number of iterations on each frame and will send the

decoded symbols to the DSP CPU.

In the following we will investigate the maximum throughput of the TMS320C64 16

DSP implementing this scheme and performing n, iterations in each time slot for an n, -

channel system.

According to Fig. 5.5, in the worst case scenario, each symbol needs approximately

two TCP cycles for one MAP decoding, and since each complete iteration includes two

MAP decodings, and TCP performs n le_nit /n(,hJ iterations on each input frame, each
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symbol requires 4xn, TCP cycles or 8xn, DSP CPU cycles to be processed (TCP cycle

is DSP CPU cycle divided by two).

As explained before, the othér important factor for the performance of the TCP is
EDMA link, which is capable of transferring 16 bits in each cycle of DSP CPU. In the
standalone processing mode, the DSP CPU is sending 8 bits for each systematic
information and 16 bits for parity information (two 8-bit information for R=1/3) and it is

receiving 1 bit (decoded binary symbol) for each symbol of the input frame.

8+16+1

v =1.56 DSP CPU cycle (5.1

So the EDMA link takes 1.56 DSP CPU cycles for transferring required processing
information for each binary symbol. Assuming the maximum throughput of the system is

R, , we will have (DSP CPU clock rate is 600 MHz):

600x10° —1.56x R,
8X|_nil /nchJ

>R, (52)

For example, for a system receiving 5 2.4-Mbps channels (R, = 5x2.4 =12 Mbps),

we will have:

600x10°% —1.56x12x10°

12%10° .
8x|n, /5] e 69

Ln[,/nchJ=nf=6 , n, =30 (5.4)

it

As a result, this system will be capable of performing 30 iterations for 5 input frames in
each time slot. If 3GPP turbo code is used for this system, it will have a FER of 3x107 at

SNR=1.0 dB (Fig. 4.6).
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5.4.2 Serial Processing Scheme

The standalone mode of the TCP is suitable for implementing the serial-processing scheme.
As explained before, in this mode, the user can define the threshold of the stopping
criterion and also the maximum number of iterations performed on each channel. So in this
mode, after processing one channel (either correcting that frame by using the stopping
criterion or discarding it after performing maximum number of iterations), the TCP sends
the output to the DSP CPU, it receives the next frame form DSP CPU and starts decoding

this frame and so on.

Similar to the implementation of the fixed iteration method in the previous section,

there is only one set of data transfer by EDMA for processing each frame.

In the following we will investigate the maximum throughput of the TMS320C6416

DSP implementing serial processing scheme and performing n, iterations in each time slot

for an n_, -channel system (the same system we used in the previous section).

Here, we assume that the serial processing parameters have been chosen carefully in
a way, that the system is using all power of the TCP. So on the average, in each time slot

the TCP is performing all its n, iterations to decode the input frames (input symbols) and
there is no idle time for the TCP. As a result, on the average, TCP is performing n ; equal

to (n,/n

ch

) iterations on each input frame. Each symbols requires 4xn s TCP cycles or

8xn, DSP CPU cycles to be processed (TCP cycle is DSP CPU cycle divided by two).

As explained for the fixed iteration scheme in the previous section, the EDMA link

takes 1.56 DSP CPU cycles for transferring required processing information for each
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binary symbol. Assuming the maximum throughput of the system is R, (DSP CPU clock

rate is 600 MHz), we will have:

600x10° —~1.56x R,
&x(n,/n,)

>R, (5.5)

For example, for a system receiving 5 2.4-Mbps channels (R, =5x2.4 =12 Mbps),

we will have:

600x10°% -1.56x12x10°

>12x10° (5.6)
8x(n,/n,)

(n,/n,)=n,=6 , n,=30 (5.7)

i

As a result, this system will be capable of performing 30 iterations for 5 input frames in

each time slot. If 3GPP turbo code is used for this system, it will have a FER of 8§x107 at

SNR=1.0 dB (Fig. 4.6, serial processing scheme without Mipch).

5.3.4 Parallel Processing Scheme

As discussed in the previous chapters, for a parallel processing system, the TCP must be
capable of performing one iteration on each input frame and return the output extrinsic
information for the following iterations, which are usually performed after some processing
on other frames. Since, in the standalone processing mode, the only outputs of the TCP are
hard decision bits, it is not possible to implement the parallel processing scheme in this

mode as it is (later we will discuss about some possible hardware modifications).
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The parallel processing scheme can be implemented on this DSP using the TCP in
shared processing mode. For performing each iteration, the DSP core sends the systematic,
parities and input extrinsic information to the TCP, TCP performs one MAP decoding (half
iteration) on this input frame and sends back the output extrinsic information to the DSP
core, DSP core interleaves the required data for the next half iteration and sends them back
to the TCP, TCP performs another MAP decoding (the second half of an iteration) and
sends back the output extrinsic information to the DSP core, DSP core de-interleaves the
received data from TCP, calculates the likelihood ratio, checks the stopping criterion and if
that criterion is satisfied, the DSP core makes the hard decision output and if not, it stores
the last received extrinsic information from the TCP for the next iteration on this input

frame.

Using the TCP in the shared processing mode has some disadvantages. First of all,
there is too much load on the DSP core in this mode (explained in the previous sections),
and secondly, there are too many EDMA accesses by TCP and DSP core for even one
iteration. In the following we will investigate the throughput of the TMS320C6416 DSP

implementing this scheme and performing 7, iterations in each time slot for an n,, -

channel system.

As we did for serial processing system, we assume that the parallel processing

parameters have been chosen carefully in a way that the system is using all the power of the

TCP, so on the average, in each time slot, the TCP is performing all its n,, iterations to

decode the input frames (input symbols) and there is no idle time for the TCP. As a result,

on the average, TCP is performing n,=(n,/n,) iterations on each input frame, each

symbol requires 4xn; TCP cycles or 8xn, DSP CPU cycles to be processed.
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In the shared processing mode, the DSP CPU sends 8 bits for each systematic
information, 16 bits for parity information (two 8-bit information for R=1/3), 8 bits for the
a priori probabilities (or input extrinsic information) and it receives 8 bits for the output
extrinsic information for performing one MAP decoding on each symbol of the input

frame. Since each iteration includes two MAP decoding, we will have:

2xX(8+16+8)

= 40 DSPCPU cycle (5.8

So the EDMA link takes 4 DSP CPU cycles to transfer the required processing information

for each binary symbol for each iteration. The TCP performs (n,/n_) iterations on each

ch

input frame, therefore, the EDMA takes (n,/n_,)x4 DSP CPU cycles to transfer

necessary data for complete processing of one symbol. Assuming the maximum throughput

of the system is bit, ,, we will have (DSP CPU clock rate is 600 MHz):

rate ?

600x10° ~((n, /n_,)x4XR,) SR
8x(n,/n,)

) (5.9

For example, for a system receiving 5 2.4-Mbps channels (R, =5x2.4 =12 Mbps),

we will have:

600x10° - ((n, /n,,)x4x12x10°%)

>12x10° (5.10)
8x(n,/n,)

(n,/n,)=n,=4 , n, =20 (5.11)

i

As a result, this system will be capable of performing 20 iterations for 5 input frames in

each time slot. If 3GPP turbo code is used for this system, it will have a FER of 5x107* at
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SNR=1.0 dB (Fig. 4.6). The performance of this system has been decreased in comparison

to the serial processing scheme because of too many memory accesses.

5.5 TMS320C6416 Hardware Modification

Another approach to apply the parallel processing scheme to this TMS320C6416 DSP is to
try to use the TCP in the standalone mode. But, the main problem is that, in this mode, the

only output of the TCP is the hard decision.

At this point, we suggest a minor hardware modification easily implementable with
current technology. The modification consists in the addition of a programmable parameter
in this mode through which, the user can select the hard decision or the soft decision
output. If this parameter is enabled, there is no need for the TCP to calculate the hard
decisions, therefore, the load on this modified DSP is less than that without hardware
modification. To implement the parallel processing scheme on this modified DSP, for each
iteration there will be only one set data transfer by EDMA instead of two in the shared

processing mode (previous section).

Next, we calculate the maximum throughput of this modified TMS320C6416 DSP

implementing the parallel processing scheme and performing r, iterations in each time slot
for an n_, -channel system. The steps will be the same as that for the previous section, but

the only difference is that instead of two sets of data transfers there is only one set of data

transfer for each iteration:

(8+16+8)

v =2.0 DSPCPUcycle (5.12)
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So the EDMA link takes 2 DSP CPU cycles to transfer required processing information for

one iteration on each binary symbol. We will have:

600><106—((ni,/nch)><2><Rb)>R

5.13
8x(n, /n,) ’ G

For example, for a system receiving 5 2.4-Mbps channels (R, =5x 2.4 =12 Mbps),

we will have:

600x10° —((n, /n_,)x2x12x10°%)

>12x10° (5.14)
8x(n, /n,)

(n,/ny)=n;=5, n, =25 (5.15)

As a result, this system will be capable of performing 25 iterations for 5 input frames in
each time slot. If 3GPP turbo code is used for this system, it will have a FER of 6x107 at

SNR=1.0 dB (Fig. 4.6).

5.6 The New Implementation Scheme

In the previous section, we described how to implement the parallel processing scheme on
that modified DSP, but there are still too many sets of memory access (one set for each

iteration).

To decrease the number of direct memory accesses on that modified DSP, we
introduce a new algorithm which is a combination of parallel processing and serial
processing schemes, therefore it has the advantages of both schemes; less number of

memory accesses (similar to serial processing scheme) and the same performance as that of
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parallel processing scheme. This algorithm is based on the fact that in the parallel
processing scheme, decoder always performs more than one iteration (on the average
(n, / n,,) iterations) on each input frame, so most of the times, there is no need to send and
receive all the required data for each iteration, and those iterations on each frame can be
performed serially. In this new scheme, we use a combination of the serial and parallel
processing schemes. In the original parallel processing scheme, at each step, turbo decoder

performs one iteration on each input frame, but in this new scheme, turbo decoder performs

[_ni,_a / nfh_u_l iterations on each input frame (the maximum possible iterations at each step),
where n,_, is number of available (unused) iterations and n, , is the number of

U

undecoded frames in that time slot.

This new implementation scheme is as follows:

1. Initializing: n, , = maximum number of iterations (n,), n,_, = number of input

Sframes (n,);
2. Setting: Maximum number of iterations per channel (Mipch)=|n, , In, , |

3. Decode one processing step for each not-corrected channel with the modified

Mipch;

4. Reinitializing: n,_, = number of unused iterations, n__, = number of uncorrected

channels;
5. Ifn, ,#0and n,_, #0, goto (2);

An example of multi-channel processing using this new scheme is shown in Table

5.2. To process the input frames, the implementation of the parallel processing scheme in
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shared processing mode of the TCP, requires 30 sets of memory access and on the modified
DSP, it takes 30 sets of memory access. But by using this new implementation scheme on

the modified DSP, it takes only 8 sets of memory access.

Table 5.2: Example of a multi-channel processing system by using the new
implementation scheme.

Round | Chl Ch2 Ch3 Ch4 Ch5 | It./Round
- 4 8 6 3 9 -
1 0 2 0 0 3 25
2 - 0 - - 1 4
3 - - - - 0 1

Exact calculation of the maximum throughput of this new system is highly related to
the SNR and statistic specifications of the turbo coding standard, which is used in the
system. In the following we will investigate the maximum throughput of the modified DSP
implementing this new implementation scheme in a special case that on the average, each

frame needs two iterations to be decoded, for a system capable of performing n, iterations

in each time slot for an n_, -channel system.

The steps are the same as that for the parallel processing applied to the modified DSP
CPU. The only difference is the number of data transfers. For example, for a system
receiving 5 2.4-Mbps channels performing up to 30 iterations in each time slot, by using
computer simulations, there are only 11 sets of memory access in the worst case scenario

(11/5=2.2 sets of memory access per frame), we will have:

6_.
600x10 (2><2.2><R,,)>R
8x(n, /n,)

\ (5.16)
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For example, for a system receiving 5 2.4-Mbps channels (R, =5x%2.4 =12 Mbps),
we will have:

600x10° —2x2.2%x12x10°

>12x10° (5.17)
8 (n, /n,,)

(n,/n,)=n, =56 , n, =28 (5.18)

i

As a result, this system will be capable of performing 28 iterations for 5 input frames in

each time slot. If 3GPP turbo code is used for this syétem, it will have a FER of 3.2x107

at SNR=1.0 dB (Fig. 4.6).

5.7 Summary

In this chapter, we discussed about the implementation issues of the proposed multi-
channel processing schemes on a Digital Signal Processing (DSP) chip, “TMS320C6416”,
for 3GPP turbo coding standard. This DSP CPU has also two embedded coprocessor;
Viterbi coprocessor anci turbo decoder coprocessor (designed for 3GPP and CDMA2000
coding standards). Then, we introduced a novel and efficient multi-channel processing
implementation algorithm, which can be considered as a combination of those proposed
multi-channel processing schemes, and we also explained that this scheme can be used in

any other hardware implementation of turbo codes.
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Chapter 6

CONCLUSION

In a multi-channel processing turbo coding system, turbo decoder is receiving several input
channels at the same time, and it has to decode all of them simultaneously. In this thesis,
several multi-channel processing schemes were presented including ideal processing
schemes, fixed-iteration scheme, serial processing scheme and paralle] processing scheme
in order to improve the throughput and/or performance of that multi-channel processing
system. The main idea in these schemes is to use the turbo decoder idle gained from easily

corrected input frames, to decode those frames that require more iterations to be corrected.

The proposed multi-channel processing schemes were applied to 3GPP and
DVB/RCS turbo coding standards. Several computer-based simulations for different code

rates and SNRs were performed to compare the performance and throughput of the
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schemes. It was shown that the parallel processing scheme has a better performance than

other schemes and that is also close enough to the ideal processing scheme.

A feasibility study of implementation of all those proposed multi-channel processing
schemes was performed on TMS320C6416 DSP. This Texas Instruments (TI) DSP CPU is
one of the fastest DSP CPUs in the market, which has also two embedded coprocessors:
viterbi coprocessor and turbo decoder coprocessor. Its turbo decoder is capable of
processing any 3GPP or 3GPP2 turbo coding standard. The performance and system
throughput of this DSP CPU using our processing schemes were investigated and discussed

in detail.

It was shown that the implementation of the parallel processing scheme requires too
many memory accesses. In order to solve this problem, a minor hardware modification,

which can easily be implemented based on the current technology, was suggested.

At the end, based on that modified DSP CPU, a new multi-channel processing
implementation scheme was presented. This new scheme is a combination of the parallel
processing scheme and the serial processing scheme. This new scheme has the same
performance as the parallel processing scheme. However, it has the least number of
memory accesses. It was shown that there is only a small loss in throughput because of the

data transferring between DSP core and the embedded turbo decoder.

For the future work, it is possible to implement all of those multi-channel processing

schemes on the real DSP CPU and FPGA chips.
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