METAVIZ - ISSUES IN SOFTWARE VISUALIZING BEYOND 3D

Jian Qun Wang

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2003

©Jianqun Wang, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83920-6
Our file Notre référence
ISBN: 0-612-83920-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

ABSTRACT
Metaviz — Issues in Software Visualization beyond 3D
Jianqun Wang

Software visualization can play a significant role in program comprehension. A
large number of visualization tools have been developed to support program
comprehension. Traditionally, these tools are 2D representations. In recent years, 3D
software visualization techniques have been introduced to support program
comprehension. These techniques provide new approaches to visualizing and
comprehending software system structures and their internal relationships. At the same
time, they introduce new research challenges. The software metaphors, layout algorithms,
and readability criteria generally applicable in 2D software visualization cannot directly
be applied in 3D visualizations. In this thesis, we present our research on the use of a new
metaphor based on energy fields using the Metaballs 3D modeling and visualization
technique. We also present grouping and layout algorithms, specially designed for 3D
Metaballs based software visualization. These are built into Metaviz, a software
visualization tool, which we have designed and implemented as part of our larger
program comprehension environment, CONCEPT. Using Metaviz, we also show
examples that illustrate how these visualization techniques, when combined with program
slicing and metric based analysis, provide guidance during software comprehension

during the testing and maintenance phrase.

III

To my wife Susan, my son Walter, who offer me unconditional love...

v

ACKNOWLEDGEMENT

I wish to express my gratitude to my advisor, Professor Juergen Rilling, for his
supervision. Without his kindness and patience, this work would not have been feasible.

Special thanks go to my co-advisor, Professor Sudhir P. Mudur, for the hours he
dedicated to my training. He was also my dependable guide through the risks of my
graduate studies.

Finally, a sincere thank you to my wife Susan and son Walter, who had been my

motivation to finish my studies.

Jian Qun Wang

TABLE OF CONTENTS

... PAGE
CHAPTER L. INTRODUCTION ..ucciiivriircnisensncsanssicssssassssssnsasssassassassassssssassassassasssassasans 1
1.1 Introduction to Program Comprehension.coccevueerereeerinsiiecineneeceeeneeneereeerenes 1
1.2 Overview Of CONCEPT PIOJECt ..ccvveviirireereirrierireriee e sieeseeesrteeretesieessseesreessneeseens 5
1.3 OVEIVIEW Of MEAVIZ ...eeeeiiiieiieieiieeieeit ettt ettt et e e s e b e ens e saneas 7
1.4 Significant CoNIIDULIONScc.eerererereerierierreneieeeteesteeeeeereneestr e et eeesreesasesetenesesseonsens 9
1.5 Thesis OTZANIZAtIONeccueieeieiieiienieeriierte et eeet e e rrreseee e bt e s bessmee e st e eneeesmeeesbeeeasaessseesnsens 9
CHAPTER I1. RELATED WORKcovveevurvrnnsuncsacosanane stesereneesaressisasisaneantesans 11
2.1. Taxonomies of Software VisualiZation.........c.cccoceeruirirerierieninsennientesecereesenieeseeens 11
2.2. 2D software visualization teChNIGUEScccceererieiiriinienenieicriesereee e s sreesrens 17
2.3 3D software visualization teChNIQUESc.cceceerierienirieiirerteecie et e 22
2.4 Open problems in software VisualiZation..........c.ccooceeveereriieneeneencnneneeneeseesee e 26
CHAPTER II1. THE METABALLS METAPHOR........cccviivinrerrinircncsecssiscsessssasasases 32
3.1 Introduction to Metaballs modeling and visualization............c.ccceeververeenrervesvesennnes 32
3.2 Motivation for using Metaballs in software visualizationc.coeeveeevveevieenneereneenne, 35
3.3 Marching Cubes AlZOTItRIMcocoiiiriiiiiriiiirereeee e 37
3.4 Text mapping for Metaballs........coccviiriirriineniiniiieeiec e 44
CHAPTER IV. LAYOUT AND CLUSTERINGccccocusuissnincsensnisarssnssnssssssssnsssnsssssasss 45
4.1 Review of layout algorithms........c.coveverieinieieniiienesne e 45
4.2 The layout problem - motivation and objectiVe..........ccceverirverrrrerinienenirerersiereneniens 50
4.3 3D grid layout al@Orithmsc.cccviiiiiiiiieiierierieecicet ettt sve et be e e eaeens 50
4.4 Clustering algorithms..........ccoiiiiiiniiiiiri ettt rre st sreestaeesse e sssaessbeasereeea 57
CHAPTER V. DESIGN AND IMPLEMENTATION OF METAVIZ..........cccccoevnuee. 61
5.1 Motivation for using Java 3D platform..........cceecveverieniiiiiiiecece e 61
5.2 Architecture Of MELAVIZccceruieiieiirinienierieeiineeteeet e ete et ve et e ae e sre s 63
5.3 Integration within the CONCEPT Project.......ccccoevveiveeveesieiienieeeesree e eers e eveens 65

VI

5.4 Experimental TESUILS.........eiverieeiiiiiriecicnieirccrc s 65

CHAPTER V1. CONCLUSIONS AND FUTURE EXTENSIONS.......cccceevnrrersvernes 77
BIBLIOGRAPHY ...ccuuiniriinnninrensnnsncssissnnssniisesssssasssesssssssessnsssnssnsessessasessssssssasasanssassssens 79
APPENDIX. CLLASS DIAGRMS FOR METAVIAL........coovivrrrrrnricsrecsssncssecesaecsncessanens 89

VI

LIST OF TABLES

PAGE
Table 1. Actual mapping from Java code to graphics (Yong1998)cccccvrcerrurcsanans 16
Table 2, Mapping table.......ccccccvieisriasirniscnniisccssossrnesssseressssrcsssssssssssscssssssssaseassasssssansasass 35

Table 3. Test results for the Marching Cubes algorithms optimization. (CPU: P4

2.8GHz, 1GB RAM)....cccvrvisininsnsssssnssncssssnssnsene sressessrssssnssnnsasasens 43
Table 4. The complexity of some 3D layout algorithmscccveuese . 50
Table 5. Complexity of the estimation of 3D layout seeessrenesene sessesensesanssunenn 53

Table 6. The branch factors of search trees for placing 27 entities into 27 positions54
Table 7. Test result of competition hill-climber (Test condition: P4 2.8GHz, 1 GB

RAM, Strategy 2 USEd) ...ccovverrccsnressanssessrscssnresersrassssassonsesssssasssasssasassssssssasanass 56

VIII

LIST OF FIGURES

PAGE
Figure 1. A program fragment and its slice.........ccceerueuns creesssressntssnassssanasens 3
Figure 2. Architecture of CONCEPT project............. cresssanssansssnessnnnnsananses 6
Figure 3. Comparison of static and dynamique visualization in Metavizc..cu.e.. 8
Figure 4 - Visual Representation of Mayer's Taxonomy cerssessnsassensaresses 12

Figure 5 Representations of Nodes and Arcs (1) Balloon view (2) H-tree view (3)

Hyperbolic view (4) Radial view.........ccecercceerverrananae . cereessensnseranesasennes 14
Figure 6 CallStar visualizations underneath part of a FileVis display.......cccceessuvicnns 15
Figure 7. A longer range view of part of Software World sresenssssatsssnnises 16
Figure 8. A simple flowchart Vs. Control Structure Diagram . . 18
Figure 9. Call graph a software application Generated by aiCall for C........ccceeuvruns 19
Figure 10. UML Class Diagram..........ccccessrsussaecscsacsseses .- cessnreannsseesane 20
Figure 11 Examples of 2D software visualization (Wesley 1991)cccceevecvuresvrisananas 21
Figure 12. 3D sequence diagram (Gogolla 1999)........ certessensrsssnsessennaranes 23
Figure 13 Variations on tree maps implemented in VRML (Johnson 1991)............. 24
Figure 14. The use of semi-transparencyceeessessensness vesessnsessnsssnassane 25
Figure 15. The Smalltalk class hierarchy by Jun/OpenGL..........c.cccceeeameerecnsrnnnnnn. 27
Figure 16. Call graph in 3D........cccccenneicneicsercsancssaccsansssens cesrscssrsesssnssossanarane 30
Figure 17. A tree layout for a moderately large graph.......cccccovviscrercsnsisscesncscassesones 30

Figure 18. Iso-surface of equal temperature around two head source (Watt2000).. 32

IX

Figure 20. Implicit surface description. (James 1982).........ccccecveesueerercsrnsnccsrcssesssnens 33

Figure 21. (1) Body modeling (Plankers2001) (2) View the formula for propeller... 34

Figure 22, Metaballs vs. sphere-line graph.........cccccccvienrcnsnncssncsssecsssisssssosssossssesasesssans 36
Figure 23. Cube division in Marching Cubes (Bourkel997)......ccceeseiescnnccssenssssonsscsons 37
Figure 24. Triangle Cubes (Lorensen1987) cersesserstsssussessensissasesssanansssas 38
Figure 25, Extra Cubes Combination (Shoeb1998)..... . ceresssnssrsesentreanes 39
Figure 26. A 2D grid graph assembling Marching Cubes resesensssssnsntsssarsserssenasones 41
Figure 27. Computing tree before optimization.. cesesssnesnnessntesaresnssssenne 42
Figure 28. Computing tree after optimization cesresssasnesssnsessnnesssasasasanane 42

Figure 29. The process of magnetic spring algorithm (a) initial placement (b) layout
in no field (c) layout in a strong field (d) layout after two phasesccccecreeuneene 46
Figure 30. Exploring a virtual world containing a random graph with 100 nodes and

250 edges (Churcher 2001).......cccoevrercnnicscanssssansssens cesesessanesisasessenserssnnas 48

Figure 31. A call graph in 3D hyperbolic space (right); Exponential volume of

hyperbolic space (left) cesesesnesanesasesnnsssnsssnness ceresesesssnsssntsssssasensse 48

Figure 32. the SHriMP fisheye view algorithm has different strategies to adjust

graph layouts while preserving the user’s mental map.cccceececreernrccnccnessanenne 49
Figure 33. Visualization criteriaccoceererivccssnencncssecsensane resesensessnenssnsssnnessasnesenes 52
Figure 34. Metric-based grouping csersssnsnessnssssnnsssanane ceeseessnsnssnanenssnnnes 59
Figure 35. Feature-based groupingccceseecsarccanssonss . . . 59
Figure 36. Java 3D architecture (Sun2002) . veesssasesantssanessnesanensnanans 62
Figure 37. Metaviz pipeline.... esseseutessnessessresersassrssesstsesstesestesansasaresestasnsassstenesntsens 63

Figure 38. Hierarchical structure in SunONE (left); same structure using

Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.

Metaviz’s inheritance network (Fight)cccuiecinsicccssrescsnnissssercssssnessssesssssssssones 67
Metaballs visuals of MPC measurements.... 67
1st iteration in 1ayout Process......cucsirccsnccnscsnssnssansncnne 68
60™ iteration in IAYOUE PrOCESS .evuerrerrseesssesssesssssssrssssssesssnsanssssssssssssssssssens 69
90™ iteration in LAYOUL PrOCESS ..c.uecurereersesssesessensssssesssesssessssesssssssssasssssses 69
121 iteration in 1AYOUt PrOCESS .eueerecresrersesssesersessersesssessasenssssssssssssesssseses 70
143rd iteration in 1ayout Process........icieisccssrcsensnssasaseresessnssasssasens 70
Dynamic visualization in Step 6........cccceeveiverenrvennsserirercessnsserssesssnsoncssasssnes 71
Dynamic visualization in Step 31cuviirnvicncisnsisscsnsesssssnssnossesssisascsess 72
Dynamic visualization in step 50c.ccccrensriseccscnnscrnisererssascsasesaaces .72
Dynamic visualization in Step 77c.ccccvierenrsncsssessnsssecssssssssssssanssnsssasssasases 73
Dynamic visualization in step 95........cccccerercrernsensennssrcssssssnssessasesarasene 73
Dynamic visualization in step 104............ccccveverrersrnsncnscrssssssssarssnsnssssonnse 74
The Initial layout.......cocvveviisiesisiisirnsrisnenisesessncssesssessnsssssssassnacsasesesssase 75
The layout after ten minutes adjustmentsccceeereveerecserssescressresssrssncses 75
The layout after two hours adjustments..........ccccoeveecrennsesserccaserescncsenesnncens 76
Metaballs class diagram....cecvrevercsenieessscssenssnssrissssssnsssesossssasesasessssssee 89
Grid layout class diagram........cccvicsecsrcsrisnssnsnssnsssssansasssisssssssssssssssssssssnesas 90
Uitlity class diagram.........ccciicecsnisrnsnsssnsasssnsanssesssessssasssssssosasssssnssasasasanans 91
Dynamic visualization class diagram..........cccecvveiesceccssccsssscsssiosnsssenesanerases 92
Metaviz class diagraml.......ucceciesserssressnisesnsssanssssssssscssasessaessrasasassssassssssssses 93

Figure 58.

X1

CHAPTER 1. INTRODUCTION

1.1 Introduction to Program Comprehension

Program comprehension is the process in which programmers try to understand
what an existing program does and how the program achieves the intended goal. An
existing program may be an incomplete program written by colleagues or in most cases a
program that is undergoing some types of maintenance (Foltz 2001; Rajlich 2001). In
theory, programmers can understand a system by studying its requirement and
specification documentation. However, there are several problems with this approach.
Often documentation might not be available or it may be out of date. The documentation
does not provide enough detail to support the comprehension process for performing a
certain task, e.g. debugging, maintenance tasks, etc. For most of the maintenance tasks, a
programmer needs to have a detailed understanding of the source code and its internal
relationships. More specifically it is necessary to have a real snapshot of the system and
its actual implementation, rather than a specified/design view, which might have never
been implemented in that fashion. Achieving such a detailed level of program
comprehension is much more challenging because the program may be poorly
documented or the documentation may be out of date. Considerable researches has been
done from different perspectives to ease the difficulties of program comprehension

(Sarita 2001; Tip 1995).

Cognitive aspects

From a psychological perspective, researchers have distinguished different
cognitive models that can be applied during the comprehension process (Rilling 2002).
The bottom-up approach reconstructs a high level of abstraction that can be derived
through the reverse engineering of the source code. The top-down approach applies a
goal-oriented method by utilizing domain/application specific knowledge to identify parts
of the program that are necessary for identifying the relevant source code artifacts. This
diversity in cognitive models is required to accommodate different skills of users and
domain levels of the people comprehending a software system, and the different types of
comprehension tasks. For example, during software maintenance, programmers might
prefer an “over view first, zoom and filter, then details on demand” approach (Favre
2001; Harel 1992; Mayrhauser 1998; Rilling 2001; Sanlaville 2001; Storey 1999). On
the other hand, when programmers debug a system, they might be only interested by the
components related to the work.
Program slicing

As Mayhauser (1998) points out, for a typical comprehension task, a
programmer might not be required to comprehend the whole system. Rather a partial
understanding of the system is sufficient in many situations. One approach to support the
creation of such a partial mental model is to focus a programmer’s attention only on those
parts of the system that are relevant with respect to a particular variable or function of
interest. Program slicing (Korel 1998, Rilling 2003), a program reduction technique is
one approach to help programmers to focus on specific parts (¢f Figure 1). Through

program slicing, programmers can concentrate on the relevant parts of a software system,

with respect to a particular slicing criterion. Static slicing is based on the analysis of

source code, while dynamic slicing reduces the program through execution information.

(11 2” .
1 s_c_anf(Yod”,&n); 1 scanf(“%d”,&n);
2 s=0; 2 s=0;
3 p=l; ’
4 whge(n>0) 4 while(n>0)
5 { s=stm 5 { s=stn;
6 p=p*nm; ’
7 n=n-1; =p-1;
8 printf(“%d”, S); 7 n—n-l, }
9 printf(“%d”, p);
Original program fragment Slice whith respect to ({s}, 9)

Figure 1. A program fragment and its slice

Software Visualization

Software visualization is one of the major approaches used in practice to support
program comprehension. Software visualization provides a high-level abstraction of the
detailed information found in the source code. From the perspective of visualization
researchers, the logic of grouping elements should match programmers’ mental grouping,
and the layout algorithm used to display the elements should result in layouts that help
improve readability.

Knight provides the following definition for software visualization:
“Software visualization is a discipline that makes use of various forms of imagery to
provide insight and understanding and to reduce complexity of the existing software
system under consideration (Knight1999).”

Text based software visualization provides detailed information, while graph-
based software visualization provides structural and overall information about the

software system, which can significantly help program comprehension. Graphic

visualization is used in many other disciplines, because people abstract information from
good pictures faster than from texts (Herman 2000).

Clearly, software visualization can play a significant role in the program
comprehension process (Knight2000). Good visuals at different levels of abstraction can
often benefit the comprehension process much more than when one is looking through
just a large textual representation. It is a well-known fact that the difficulty of large
program comprehension forms to a major obstacle during software maintenance. When
programmers have to maintain large legacy software, which may be poorly documented,
they have to rely on the source code to construct a mental model of the system’s structure
and the internal relationships. Visualizations that represent this structure and internal
relationships do greatly help in the task of program comprehension. Therefore, it is
essential to develop tools and techniques that support software visualization at different
levels of abstraction.

Graphic visualization techniques are widely used in program comprehension and
software documentation (Knight 2000). Standard notations for graphic visualization are
developed in documentations. UML is today’s most popular notation and is accepted by
most organizations. Among UML notations, different diagrams are used for different
purposes. Use-case diagrams are for viewing the overall structure of software systems or
of large subsystems; Class-diagrams allow programmers to concentrate on important
concepts by hiding detailed information; collaboration-diagrams reveal internal
relationships of software systems; sequence-diagrams is for dynamic behaviors

visualizations.

Tool support

Several tools have to be developed that address the different program
comprehension issues. One approach is a text-based documentation generator, for
example Java Doc. The text-based documentation generators allow the user to select the
level of documentation detail, while also providing an accurate picture (documentation)
of the system under investigation. Another type of tool, which forms the main focus of
this thesis, is a graphic-based software visualization tool. When the size of software
becomes large, software visualization faces new challenges. Rilling el at (Rilling 2002)
mentions several reasons for these difficulties: “(1) the diagram complexity is increased
because of the large amount of information to be displayed, (2) the awkward layout
techniques provided by the visualization approach, (3) their non-intuitive navigation, and
(4) often their very specialized scope in depicting only certain program artifacts and their

relationships.”

1.2 Overview of CONCEPT project

The CONCEPT project is an software comprehension framework that integrates
program slicing, reverse engineering, and software visualization techniques. Figure 2
shows the CONCEPT environment architecture. The CONCEPT project basically

consists of three parts: the parsers, the program analyzers, and the visualization tools.

Figure 2. Architecture of CONCEPT project

The parser part is responsible for extracting information from programs.
Currently, we use two parsers. Jike, developed by IBM, parses the static source codes and
stores the parsed output into XML files. In order to quickly search the data, we convert
the XML files into MySQL database. Another parser, developed by Yonggun, can extract
execution information from running programs through Java Virtual Machine and generate
an AST, abstract syntactic tree (Yonggun 2003). We also convert the AST tree into a
Postgres database for quick searching.

Once the data is stored in the databases, further analysis can be performed on it.
The analyzer part contains a variety of source code analysis techniques. More specifically
at the current development stage, the CONCEPT project supports static program slicing,
dynamic program slicing, hybrid slicing, feature analysis and software metrics analysis.
The analyzer part has the following functions: software maintenance, testing, and
software architecture recovery. For the analysis results to be useful, the results have to be

further abstracted and visualized to enhance the comprehension process.

The visualization front-end is the top layer of our framework, providing the
necessary visual support for program comprehension, by creating abstract views of the
underlying parsed and analyzed source code. The visualization part contains three
visualization tools, which are under development. 3D UML is an extension of traditional
2D UML visualization techniques, by taking advantages of the third dimension (Xiaohua
2003). The VirtualCity uses a city representation to abstract and visualize software
artifacts (Shenghua 2003). Metaviz, implemented as part of this thesis research, is
another approach to visualize software artifacts. It maps software components to the
properties of Metaballs. The combination of Metaviz with source code analysis allows
programmers to visualize information that is required to perform specific comprehension
tasks. As we shall see later, Metaviz in combination with grouping and layout algorithms

supports an “overview whole structure, zoom in” approach (Rilling 2002).

1.3 Overview of Metaviz

Metaviz was developed using Java 3D, a graphic package, as an independent,
but reusable 3D visualization tool to investigate the various application domains for the
Metaballs metaphor. As part of this research, we integrated Metaviz as a plug-in into our
CONCEPT project to investigate the use of Metaballs for software visualization and
software comprehension. The Metaviz tool provides a programming interface that allows
for an easy extension and further reuse of the tool. Along with Metaviz, two Java API
packages for Metaballs and 3D grid layout are developed as reusable components for

further research.

Depending on the input data, Metaviz can visualize the class level of programs
either statically or dynamically. For static visualization, Metaviz takes input data from
MySql database generated by Jike, and displays the class-level pictures. For dynamic
visualization, the input data is generated from execution trees, and the output pictures
generate animations. We compare the static software visualization and the dynamic

software visualization in Metaviz in Figure 3.

Figure 3. Comparison of static and dynamique visualization in Metaviz

Metaviz is designed from the perspective of graph drawing, instead of the
requirements for program comprehension. In other words, the Metaballs metaphor, and
the clustering and layout algorithms are not developed only for a systematic program
comprehension. Rather they are designed to support different research areas within the

context of program comprehension and the CONCEPT project (e.g. software metrics,

architecture recovery, etc.).

1.4 Significant Contributions

In this research, we have explored the use of a new 3D metaphor, the Metaballs,
which is based on an energy function defined as every point in 3D space, for software
visualization. We developed a 3D visualization tool, Metaviz. The tool has been
integrated into the CONCEPT project. We use the Metaviz tool to investigate the use of
Metaballs metaphor in software visualization (Rilling2002). The motivation was to use
our implementation of Metaviz and the Metaballs, to explore possible application areas
for the Metaballs metaphor, as well as their applicability and usability for different
purposes.

As part of this research, we developed two java packages, which are the
Metaballs package itself and a 3D-grid-layout algorithm package. The Metaballs package
is the first public domain implementation of a Metaball modeling visualization program
written in Java3D. The package can be used to view any model that can be represented by
a formula from a propeller to a horse-seat. The 3D-grid-layout algorithm package can be
used for improving the readability of any 3D graph that represents internal-relationships
as lines between entities. This algorithm is already used by Cubical software visualization

for 3D layout the CONCEPT project (Xiaohua 2003).

1.5 Thesis organization
This thesis consists of six chapters. In this chapter, we briefly discussed the use
of graphical visualization techniques in program comprehension, and introduced both the

CONCEPT project and the Metaviz tool.

In the second chapter, we present an overview of related literature, and compare
software visualization techniques in 2D and 3D. .

In the third chapter, we introduce the Metaballs metaphor in detail and its
visualization. We also discuss the motivation for using Metaballs in software
visualization.

In the fourth chapter, we discuss different algorithms that are implemented to
visualize Metaballs within Metaviz. We also discuss optimization of the Marching-cube
algorithm that improves Metaballs rendering speed. Additionally, we discuss how a 3D-
grid-layout algorithm improves readability of a 3D based visual.

Chapter five explains the design and implementation of Metaviz, including the
architecture of Metaviz, the choice of implementation environment and some
experimental results.

Finally, in chapter six, we provide our conclusions and propose some future

research directions.

10

CHAPTER II. RELATED WORK

2.1. Taxonomies of Software Visualization

“A well founded taxonomy can further serious investigation in any field of
study” (Price1992). Taxonomies of software visualization serve as a common language or
terminology. Taxonomies provide this common language and allow new discoveries to be
identified and catalogued. Software visualization is classified in different ways from
different perspectives. In this section, we discuss Myer’s classification, which is
considered as one of the best known taxonomies (Price, 1992; Knight, 2001). We also

discuss the taxonomy based on representations, which is related to our research.

2.1.1. Myer’s taxonomy
Myer introduced a systemic taxonomy for software visualization in 1986 (Myer

1986), and updated it twice (Myer 1988; Myer 1990). He classified software visualization
in the following six categories (Myer1990).

Static code visualization

Dynamic code visualization

Static data visualization

Dynamic data visualization

Static algorithm visualization

Dynamic algorithm visualization

11

Myer’s taxonomy clearly distinguishes software visualization from visual
programming. He points out that software visualization is concerned with the use of
graphs to visualize some parts of the program after it has been written. Knight
(Knight1998) summarized Myers classification into a two dimensional table as shown in
Figure 4. In our research, we only investigate dynamic and static code visualization,

related to cell 1 and 4 in the table of Figure 4.

Program state during

visualization
A

=]
S

8 1 2 3

B,

(]

w

"5_:: 4] 6 Portion of
& program

. being
Code Data Algorithm visualized

Figure 4 - Visual Representation of Mayer's Taxonomy

2.1.2. Taxonomy by representation

Other taxonomies are produced from different perspectives (Price, 1992; Rom,
1993). Price tries to create a road-map for software visulization, “and provides a common
language and allows new discoveries to be identified and catalogued” (Price, 1992).
Since this thesis is about how to visualize software, discussing all the different
taxonomies is beyond the topic of this thesis. In what follows, we discuss the taxonomy

of software visualization according to the visual representation, which was inspired by

12

Knight (Knight2001). The importance of visual representation of program
comprehension is well documented (Knight, 1999; Price, 1992). Knight C. el at (Knight
2001) distinguish “Nodes and Arcs” as early representations, and three-dimensional

software visualization as newer representations.

2.1.2.1. “Nodes and arcs”

A visualization survey by Ivan (Herman 2000) showed that 90% of the available
software visualization tools are based on “nodes and arcs” or “nodes and edges”, with
nodes typically representing entities and arcs/edges representing the relationships. The
node and arc representation raises some general questions. What kind of entities and
internal relationships should be chosen to be visualized for a specific application? Also,
what type of metaphor can help programmers build the right mental model? How does
one group the entities in order to help software comprehension? Which layout algorithms
are suitable for improving readability in a defined application?

Figure 5 shows the applications that use “nodes and arcs” as representation.
Although (1) balloon view and (Melangon 1998); (2) h-tree view are 2D visualizations
(Eades 1999); (3) hyperbolic view (Munzner 2000); (4) radial view (Sarkar 1992, 1994)

are 3D visualizations, all of them represent software as “nodes and arcs”.

13

b 2P
)=
vz M AN
AT
oA
AN

Figure 5 Representations of Nodes and Arcs (1) Balloon view (2) H-tree view (3)

Hyperbolic view (4) Radial view

2.1.2.2. Other representation approaches
Recent researches in software visualization have advocated the use of 3D
graphic techniques. The artifacts of software are represented by color, shading, and the
extra third dimension. Some of these representations use geometric objects, which is a
kind of extension of “Nodes and Arcs”. Others use virtual reality, in which the artifacts of
software are mapped to the real objects world that humans are already familiar with.
CallStax 1s an example of using geometric objects for nodes, as seen in Figure 6

(Yong1999). The visualization of CallStax attempts to move away from the standard

14

visualizations of call-graph structures, i.e. a network consisting of nodes and arcs in 2D.
“CallStax makes full use of the extra dimension afforded by VR to maximize the amount
of information available and the flexibility for displaying and interacting with that

information” (Young 1997).

Figure 6 CallStar visualizations underneath part of a FileVis display

Others map software systems to the real world objects, such as Software World,
which maps software to buildings in a city (Yong1998). Using virtual reality to visualize
software is quite a different method compared to the conventional representation of
“Nodes and Arcs”. Figure 7 is a visualization of standard Java API. The mapping
between virtual reality and Java APIs is listed in Table 1. The height of buildings

represents the lines of the codes that the corresponding method contains. Mapping

15

software to cities can help people build a mental map and ease the difficulties of

navigation and interaction within such a virtual reality.

Table 1. Actual mapping from Java code to graphics (Yong1998)

Visualization Level

Code Element

World The software system as a whole
Country Directory structure, which maps to the packages in Java
City A file from the software system
o Class (contained within the specific file and hence city in the
District . NN
visualization).
Building Methods

Figure 7. A longer range view of part of Software World

16

2.2. 2D software visualization techniques

2D software diagramming techniques are widely used in the program
development process. They are either used as documentation during the software
specification/ design phase or generated by reverse engineering tools to support the
comprehension process. From flow diagrams used in structured programs to UML used
in Object Oriented Programs, 2D graphic software visualization techniques greatly help
in understanding the complexity of software system, by providing a high-level view of

the underlying system.

2.2.1. Flow chart

Since 1947 Goldstein and von Neumann (Neumann 1947) demonstrated the
usefulness of flowcharts. They are widely used for visualizing data structures and control
flows. Price reviews in (Price 1992) the development of flow charts. The first application
that could automatically generate flowchart from FORTRAN or assembly language
programs was developed in 1959 by Haibt. However, early experiments of flowcharts
were most used for design instead of being used as an aid to comprehension. Scanlan
designed an experiment to find out if real differences in comprehension exist between
structured flowcharts and pseudo code. The results strongly indicate that structured
flowcharts do indeed aid algorithm comprehension. A large difference was found even
for the simplest algorithm (Scanlan 1989).

Figure 8 shows a comparison between a flowchart and control structural

diagram.

17

MessageDigestDigester dataDigest)
throws CertificateException {

Tpriuﬁte void sortlertificates(Certificatel] certs,

—i Fordint 1 = 0; i < certs.length; i++) {
read areay of keys, al0..] / |- Certificate cert = Translator.translateCertifica
—()-E (cert instanczof AuthorizationCertificate) {
j : AuthorizationCertificate auth{ert = (CAuthoriz
ﬁadthemmhed key, k Lty g
: b= String[] tag = (String(]) authCert.getTag(
\L : if ((tag.length » 0) &% tag{0].equals('z12
w ((tag.length == 2) &% tag[l].equals(
low=0 P codeCertificate = authlert;
high=1 : [
T : : (}-Lise i¥ ((tag.length == 2) && tag[l]l.eq
vlr : P datalertificate = authCert;
; [
— : : else if ((tag.length == 33 && tagll].eq
gl_v_t;ll—hf,knl((lml-hlgh)fl) : : 01— serviceCertificates. add(authCert);
= a[pivot] : S

t3
1

c<k l csk I .
— _ B : catch (CertificateException e) {
low = plvot+1 l K high = plvot—1 l : ﬁ
=k :

¢ S5 Ignore

Sy
m —()-li Ccerts{i] != dataCertificate) {

try {
— dataDigest.update(cert. getType().getBytes(
— dataDigest.update(cert.getEncoded()):

[[] catch (UnsupportedEncodingException e) {

44 Lan’t happan
[i] throw new IllegalStateException('UTFS n

Figure 8. A simple flowchart Vs. Control Structure Diagram

L}

2.2.2. Call graph

The pointers to functions can be depicted by call graphs. The call graphs can
help discover the internal relationships of software. A 2D call graph cannot avoid line
crossings, and too many line crossings will result in a massy, unreadable graph. aiCall
(AbsInt 2003) automatically calculates a GDL (graphic description language)
representation of the call graph and the control flow graph of an application code. The
graph can then be visualized, interactively explored and printed with aiSee (AbsInt 2003),

which is included in the aiCall distribution package.

18

Figure 9. Call graph a software application Generated by aiCall for C.

2.2.3. UML diagram and Object Oriented Program

“The Unified Modeling Language (UML) is a visual language for modeling
software designs and is currently the most widely accepted standard for software
diagrams in the software engineering field” (Dwyer 2001). The notations of UML are
mostly tools of design, although these can be generated by reversing engineer source

code for the purpose of supporting program comprehension.

19

S snciniy gor |
: i
S PRwTeN
T ... S o S —
: e | RIS Py TR T TR D
R gemtne PP e A Y ¢ Er s s
aiinndaniond -

: B Wil Son N e Snoion
sopell it gadiets Dertiicslnf ,,..J . oo Ll By
ronica B o Timgmvhel poome: | gVt s Smalal R,
wgtd e $cde Slors Dot | 00 L ePraesi i PR R PN BT W
wiated o Candfieses ot voed gt S wente Pasc biw sargeni Bl

sy ' + g § Baeaon: Diraienn sl Shie el v duah Zaseent
Lok ki E mitl degnn viel \
“ {(5\‘ o
" S, !
s oggstmrhale - w___‘__i_
B e T e
| !
B i
e S L i
st Epaen s dpilee t
* i
H " iy W’Y ; 3
1 | Meeyscentplosnond i PSS — fm

Wraw Fmalplecndstn ety iy Spbesy i

e Frap by Pl ey .| cgtrviottn nbbsrs: S)

aguiPouny Frponlebing Prrastib Los2pd socmn Sreian I

gtk by Pl sey B, Ty o |

sgeriue s b Dane Sopbiveg i Sawg, B, |

wbvens ol e PR s FoEdan)

&
Brumy b = £y
R et 3 b ¢ :‘Wm* o
%ﬁ'lmm&h&; qumgm
e f‘ — LS.
g, g = o™ | N
T vmemelin P
i

Figure 10. UML Class Diagram

2.2.4. Tree map

A graph of nodes and edges can represent the parent-children relationships, but
attributes, such as node size, are ignored in this conventional graphical representation for
tree structures. Shneiderman (Wesley 1991) presents tree maps that fall in the category of

space-filling diagrams, shown in Figure 11. Within the tree maps, each node is depicted

20

as an area proportional to a selected attribute. A rectangle representing the entire tree is
split vertically into rectangles whose areas are proportional to the sizes of the
corresponding sub trees. The algorithm is recursive, splitting rectangles vertically for

even levels and horizontally for odd levels. Shneiderman suggests that appropriate color

coding can be used to identify other properties such as category.

Pi{xl,yl) P2(x3.yl)
+ ¥

e &K v ¥ %
K R W& G b & ow

. F R 2y e oxoer .
. S .
>
>
7S
x
<

PAR A 2 E G v o o e

BN r.y
Tl Xy & X o Xa o,

*.
n2(x1,y2) Q1({x2,y2)

Figure 11 Examples of 2D software visualization (Wesley 1991)

In summary, the collection of UML diagrams is well developed, and is a
dominant tool for software design and visualization of object-oriented programs. Other
2D software visualization techniques are designated for different purposes. ER diagrams

are suitable for visualizing structural aspects of relational database; tree maps can be used

for visualizing the amount of data.

21

2.3 3D software visualization techniques

It is a well-known fact that 3D software visualization has potential advantages
over 2D, not only because the extra dimension provides more space, but also because the
real world is three-dimensional (Knight 2001, 2002). This added realism of the
visualization technique makes 3D representations often more likely to be accepted by
programmers as a mental map. By mapping source code structures and program
executions to 3D space, 3D software visualization techniques are considered as one
approach to reduce the limitations of the visual medium used to visualize the data.
Compared with 2D software visualization, the 3D visualizations are based on
mathematical models that use shading, light, shape, and animation to ease the complexity
of software system. The strength and usefulness of 3D software visualization is already
documented in several different research projects (Knight 2001). Below, we will review
some 3D software visualization techniques to illustrate their advantages over 2D software

visualization techniques.

2.3.1. The extension of 2D software visualization

The current research in 3D software visualization techniques is expected to
provide significant benefits over the widely used 2D software visualization techniques,
by utilizing the extra dimension available. In what follows we investigate some of the

current approaches to 3D visualization, which, as we shall see, are attempts to map

traditional 2D techniques into the 3D space.

22

2.3.1.1 Call graph in three-dimensional space

Gogolla proposes a representation and animation of UML diagrams in a three-
dimensional diagram style (Gogolla 1999). He tries to improve the comprehension of
complex diagrams through three-dimensional diagram layout and animation. Figure 11

shows the comparison between 2D sequence diagram and its counterpart in 3D space.

West Morth Control East South
1) A”\
[yellow red yellow o)
a::kail
ack ack
] ack |
TR 4
red redYellow red redYellow

Figure 12. 3D sequence diagram (Gogolla 1999)

2.3.1.2. 3D tree map

The nested tree map (Figure 13) utilizes the third-dimensional space by
combining “nodes and arcs” with 2D tree maps. Churcher el at (Churcher 1999) shows
that “this combination is particularly useful for situations where a tree map is appropriate

at lower levels and would be too complex for the whole of a large tree.”

23

Figure 13 Variations on tree maps implemented in VRML (Johnson 1991)

2.3.2. Semi-transparency in Information cube and Cone Tree
The uses of transparency and the depth of the third dimension also make 3D

visualization more powerful than traditional 2D visualization approaches. For example,
the information cube, as shown in the left part of Figure 14 (Rekmoto1993) illustrates
how to visualize hierarchical data by using semi-transparency. Similarly, the Cone Tree
(see the right part of Figure 14) (Robertson1993) shows the depth of sub-trees glued by
semi-transparency. Displaying multiple transparent objects is not supported by current
graph renders due to performance issues. The semi-transparency is a practical technique

to avoid the complexity of rendering multiple transparent objects.

24

Figure 14. The use of semi-transparency

2.3.3. Virtual reality

With three-dimensional visualization, it is possible to actually build a VR
(virtual reality) environment that maps program artifacts and their relationships to real
world objects. The static aspects of the virtual environment help represent the structure
and internal relationships of software. In combination with animation, the same virtual
environment can also be used to comprehend behavioral aspects (e.g. program
executions, dynamic binding, etc.). Further, as it has been pointed out by L. Feijs el at.
(Feijs1998), the consistency with objects in a 3D layout along with new options of
multiple viewpoints makes 3D visualization techniques worthwhile to investigate. From
the perspective of program comprehension, the power of 3D software visualization is that
it closes the conceptual gap between 2D representations as mostly used and the real world
objects that are all in 3D space. The human brain is already trained and wired to
comprehend existing 3D real world objects, thus making the mapping of software
artifacts into 3D space a “natural” extension from a human perspective. Knight C. et al.

(Knight2000) define 2D software visualization as merely a representation, while 3D

25

software visualization is considered as a representation plus a metaphor. The metaphor
plays an important role in 3D software visualization because a non-intuitive mapping

from a user perspective might limit the usability of the visualization technique.

2.4 Open problems in software visualization

Knight ef al. (Knight 2001) summarize eight software visualization issues:
“evolution, scalability, navigation and interaction, automation, correlation, visual
complexity, and finally metaphor.” In this section, we discuss some of these issues,

which are also addressed by our research.

2.4.1 Visual complexity

When people use software visualization tools, the comprehension of large and
complex programs is restricted by the resolution limits of the visual medium (2D
computer screen) and the limits of user’s cognitive and perceptual capacities. With 2D
computer monitors, the current available visual equipment, our task is how to reduce the
limitation of visual complexity. In other words, we have to investigate all possible issues

related to visualizing software on computer screens.

2.4.3 Information overload

Information overloading is another problem in software visualization. From the
perspective of psychology, the amount of information that people are able to obtain from
one screen is very limited (Herman 200). When this limitation is exceeded, people cannot

get any more useful information. This situation is also referred to as information

26

overloading. Even, if the visual medium is large enough to display all information, we
may reach the bound of information overloading. In Figure 15 (Lanza 2002) the only
information we can observe is a tree structure. However, we are not able to identify and
comprehend any details from the current view, because of the large amount of

information displayed.

Figure 15. The Smalltalk class hierarchy by Jun/OpenGL

2.4.2 Scalability

Visualizing large software is the main challenge for all software visualization
techniques. Most software visualization tools work well for small software systems, but
encounter difficulties when visualizing larger software systems. Large legacy software

and modern software demand visualization tools to be scalable, thus scalability is

27

becoming one of the most important criteria for testing software visualization tools and

their usability.

2.4.3 Navigation and user interaction

Navigation and user interaction are other aspects that can improve scalability
and usability of software visualization tools and their ability to cope with large amount of
information in an intuitive way. Intuitive navigation and interaction is important. Intuitive
and flexible navigation techniques also enhance the comprehension process and
determine the acceptance of visualization tools (Knight 2001). Young even creates
guidelines for navigation and orientation from city planning textbooks when he

developed his Software World (Yong1999).

2.4.4 Metaphors for software visualization

A metaphor is an expression of the understanding of one concept in terms of
another concept, where there is some similarity or correlation between the two. With the
introduction of 3D software visualization techniques, many new metaphors are being
investigated to help in the understanding of large programs (Knight2000). Mapping
program artifacts into the 3D space allows users to identify common shapes or common
configurations that may become apparent, and which could then be related directly to
design features in the code. Soft City (Knight2001), Cone Tree (Robertson1993),
hyperbolic tree (Munzner 2000), and Information Cube (Rekmoto 1993) are some
examples of software visualization techniques that are based on different 3D metaphors.

Additional examples for 3D metaphors can be found in (Herman2000). Each of these

28

metaphors has its own pros and cons, and is often only suitable for a specific
comprehension purpose. Moreover, a metaphor that is easily understood by one
programmer may be confusing to another programmer. Therefore, one of the challenges

of current research is to investigate and explore new metaphors.

2.4.5 Existing problems in 3D software visualization

“A badly designed three-dimensional visualization is worse than none at all.
The extra dimension can open a whole new world of possibilities but at the same time
also new challenges.”(Knight2000)

While the benefits of adding a third dimension seem to be obvious, these
benefits will become distinct only if the visualization techniques explicitly take the
advantages of the added dimension. However, as we have seen earlier, most of the
current approaches simply transform established 2D visualizing techniques into a 3D
space (Herman2000). Simply extending “nodes and arc” technique into the 3D space
does not necessarily harness the power of 3D software visualization.

Figure 17 (Herman2000) shows an idealized graph with a nearly perfect layout.
Note that the readability of this graph is diminished because the level of abstraction is not
high enough. The visualization has to deal with a large quantity of information, but the
graph does not scale up to effectively visualize this large quantity of data. Scalability is a
well-known barrier that exists both in 2D and 3D software visualization. The large
number of elements and their internal relationships pose several difficult problems.

Figure 16 shows such problems in using Call graph in 3D.

29

Figure 16. Call graph in 3D

Many of these 3D visualization techniques lack a good layout algorithm,
resulting in large number of interference (line crossings) in the visual image. Providing
good layout management is expensive and often very difficult. The interrelationships
among elements are actually multi-dimensional data, which cannot be mapped onto 2D or
3D objects in a natural manner. It has been proven that line crossings are unavoidable in
the 2D graph theory (seven bridges of kénigsberg) (Euler 1736), but a good layout

algorithm can reduce line crossings and improve readabilities tremendously.

i ¢ O ‘l l. H b iy ' PR
15 I SPDATOeSEEN il AN B BN SR ey | N

Figure 17. A tree layout for a moderately large graph

30

Improving and optimizing layout, particularly for large 3D graphs, is expensive
in terms of time and memory requirements. A more detailed discussion of layout
management and its complexity is présented in Section 4. Even if one improves the
layout, readability and usability remain a concern, particularly when the size of system to
be visualized becomes too large. Ivan H. ez al. (Herman2000) mention that “large number
of elements can compromise performance or even reach the limits of the view platform”.

In our research, we have investigated some of these readability issues of visual
representations in 3D space, and present improvements from three different aspects. First,
we will introduce the use of Metaballs as a metaphor to visualize software systems rather
than the more traditional representation of “nodes and arcs". Second, we will use
hierarchic grouping of entities to abstract higher level entities and improve the usability.
This will lead to an “overview first, zoom and filter, then details on demand” approach.
Finally, we will address issues related to gird based 3D layout algorithms as some of the

techniques to improve readability of the 3D visuals created.

31

CHAPTERIII. THE METABALLS METAPHOR

3.1 Introduction to Metaballs modeling and visualization

Metaballs is an implicit surface based on a equation like 1/(x*+y*+z*)=r. The
Metaballs visualization technique models particles in 3D space, which have energy
(strength) and a well defined, parametrically controlled influence over the surrounding
and neighboring particles (Rilling 2003a). The potential or energy function is commonly
used to model the Metaballs iso-surface. Figure 18 is an analogy from physics (the
blending of two light sources) that shows how an iso-surface is formed. Each candle has
several circles representing different level of energy (illumination). When two candles are
close to each other, the energies add up. Points in 3D space with the same value of energy

a smooth surface.

£y
o am——
e .

4
-~
e

————
I o

n
N

L
™,
LY

Figure 18. Iso-surface of equal temperature around two head source (Watt2000)

32

3.1.1. Implicit modeling vs. explicit modeling

The mathematical description of three-dimensional surfaces usually can be
classified as parametric and implicit. An implicit surface is a set of all points which
satisfy some equation F (x, y, z) = 0. Figure 19 is an implicit surface implemented by
James (James 1982). The pixel coordinates can be calculated by first- and second-order
polynomial functions (James 1982), or Marching cubes algorithm. On the other hand, an

explicit surface is all points that satisfy equations with the following form.

x=fi(y)
y=fa1)
z=f3(1)

Figure 19. Implicit surface description. (James 1982)

3.1.2 Applications of visualization using Metaballs
People have used Metaballs to describe a surface that is not easily modeled by

primitive objects such as lines, planes, and boxes. Figure 20 (top) shows an example of

33

using Metaballs to model organic forms like the human body and animal shapes. Figure
20 (bottom) also shows the use of the basic iso-surface rendering technique used to
display algebraic surfaces. This was implemented by us as an applet to view the algebraic

polynomial equation with form like f(x,y,z)=0 in three-dimensional space.

Figure 20. (1) Body modeling (Plankers2001) (2) View the formula for propeller

3.1.3. Metaballs and software visualization

Many applications use Metaballs to represent complex shapes and structural
relationships. In (Rilling2002) we apply Metaballs as a metaphor for visualizing software
structures. A mapping between software artifacts and Metaballs properties was
introduced. The mapping is shown in Table 2. The software classes are directly mapped
to Metaballs, and the couplings between classes are mapped to cylindrical links between
the Metaballs. Furthermore, shading, color and size of Metaballs can be used to represent

different properties of software.

34

Table 2. Mapping table

artifacts of software characters of Metaballs

Class Metaballs

Size of class (lines of code) Diameter of Metaballs

Package Color of Metaballs

Coupling between classes Cylinder between the Metaballs
Strength of coupling Diameter of cylinder
Hierarchical structure of classes Cone tree like Metaballs clusters

3.2 Motivation for using Metaballs in software visualization

As discussed in section 2.4.4 Metaphor, investigating new metaphors is an
important task in the ongoing research of 3D software visualization techniques. The
success of using Metaballs in other areas stimulated us to apply Metaballs as a 3D
software visualization technique. We developed our Metaviz tool as a testing platform to
evaluate and explore the application of Metaballs in software visualization.

The Metaballs metaphor is a 3D object modeling and rendering technique that
blends and transforms an assembly of particles with associated shapes into a more
complex 3D shape whose use is highly suitable for animal and other organic forms.

Compared to the traditional node and arc representations, the Metaballs
visualization technique has a surface representation that can be described by a
mathematical formula. The surface corresponds to a collection of points where their
function is equal to a threshold value, also known as the iso-surface.

Metaballs provide a three dimensional picture with smooth connection between

Metaballs and shading, which could ease the difficulties of building mental model. Figure

35

21 illustrates the advantage of the Meatballs approach over a 3D sphere-line graph. Both
visuals display the same information and use the same layout. One of problems of the
sphere-line graph is that it cannot convey some structural information in the same way as,
for example, the Metaballs. The fusion (the thickness of the connection) among two or
several Metaballs can be used to show clearly structural dependencies. The fusion can
also be used to indicate the relationship among different software artifacts. Shading and
blending are other options that can be applied to convey additional information not

available in most traditional software visualization techniques.

Figure 21. Metaballs vs. sphere-line graph

However, it should be mentioned that the Metaballs has two major
disadvantages. (1) The algorithm for rendering Metaballs is slow; (2) triangulated
representation of the isosuface makes texture mapping difficult. Section 3.1.2
Performance problem of the Marching Cubes and section 3.4 Text mapping for
Metaballs, discuss how we address the rendering and texture problem within our Metaviz

project.

36

3.3 Marching Cubes Algorithm

3.1.1 Introduction to Marching Cubes algorithm

The Marching Cubes algorithm, presented by Lorensen and Cline (1987), uses a
divide-and-conquer approach to generate a triangle mesh that approximates the original
surface (Lorensen1987). In Marching Cubes, the model is contained in a cube, which is
divided into small cubes. Some of the small cubes would intersect with the surface. The
algorithm reconstructs the surface from those small cubes. The size of small cube
determines how close the reconstructed surface to the original one is. This process can be

illustrated in Figure 22, taken from (Bourke1997).

Figure 22. Cube division in Marching Cubes (Bourke1997)

The next step of Marching Cubes algorithm determines if each corner of voxel is

inside the surface or outside. This can be done by taking the coordinators of the corner as

37

input of the function represented the surface, then comparing the output with threshold.
Eight corners of voxel can form 256 combinations. Considering complementary and

rotational symmetry, Lorensen gives 15 combinations, shown in Figure 23, in his original

paper (Bourke1997).

0 1 2

6 7 K 8
<]
AN
10
12 1B 14
Pt

Figure 23. Triangle Cubes (Lorensen1987)

38

Shoeb finds ambiguity among the 15 combinations, and contributes eight more

combinations to solve this problem, shown in Figure 24 (Shoeb1998).

Figure 24. Extra Cubes Combination (Shoeb1998)

Cory Gene (Bourke1997) develops a set of tables, to access the triangles
according to a coding bit pattern of eight corners. The bit pattern represents the corners
inside or outside of the surface. Considering symmetry, these tables already contains
same combinations given by Lorensen in 1987 and Shoeb in1998. The Metaballs package

we have implemented is based on Gene’s tables.

3.1.2 Performance problem of the Marching Cubes

The speed of rendering a graph is one of the main factors that affect usability of
a software visualization technique and the tools implementing these techniques. Nobody
wants to use a slow visualization tool no matter how good the algorithm is. Although the
Marching Cubes algorithm is claimed as a fast approach for rendering implicit surfaces, it
is still slower than parametric rendering, and therefore is less suitable for use in

visualization tools. The performance problem in Metaballs rendering is directly related to

39

the computations carried out by the Marching Cube algorithm that is used to compute the
iso-surface of the Metaballs. In the Marching Cubes algorithm, we have to compute the
required information for every corner of the small cubes. Such a computation usually is
very time consuming, which may includes computations of cube root or even more

complex algebra functions.

3.1.3 Reducing unnecessary computation in the Marching Cubes Algorithm

We use a 2D grid graph shown in Figure 25 to simplify the illustration of the
unnecessary computations in Marching Cubes algorithm. If we divide the cube
recursively, after three iterations, we get 64 cells, as shown in Figure 25. Only 16 of the
cells colored in grey are intersected with the surface coloring (shown by the red wiggly
line). In order to render a surface of reasonable quality, one usually divides a cube about
seven times, and we get 8’ = 2,097,152 smaller cubes. This leads to a very small
proportion of the cells intersecting with the surface. Only those cells that contribute to
parts of the surface need to be fully rendered; other cells that are located either totally

inside the surface or outside the surface do not contribute to the surface construction.

40

Figure 25. A 2D grid graph assembling Marching Cubes

3.1.4 Optimization

One approach to improve the performance of the algorithm is to optimize the
computation complexity, by avoiding any further surface computations in the grid cells
that do not contain any parts of the surface. Using recursive division, we check if the
cube intersects with the surface. If the cube does not intersect with the surface, we stop
any further division and computation for this cube

Figure 26 shows a computation without optimization. Each node in the tree
indicates a length computation for a cube, and the complexity of the computation will
increase in proportion to size of the tree. After the first division, we get four cubes
represented by the second level of the tree. The third level of the tree represents the cubes

generated by second division. The leaves of the tree represent 64 smallest cubes.

41

Figure 26. Computing tree before optimization

Figure 27 shows the pruned computing tree by eleminating unnesseceary
division and computations. The level of optimization is influenced by several factors:
firstly on the iso-surface and the number cells involved in it. Secondly, the number of

divisions used to render the surface. .

Figure 27. Computing tree after optimization

3.1.5 Cube object intersection

Our optimization of Marching Cubes only works if we are able to judge whether
a cube intersects with the surface or not. If the computation of such a judgment costs
more time than the computation for each cube, the optimization work fails. A naive
method to check the intersection is based on the eight corners of cube. If all eight corners
are inside or outside the surface, it is likely that the cube does not intersect with the

surface. However, this judgment does not work on the two circumstances marked (U and

@ in Figure 25. All the corners of the grid (D are outside the surface, but the grid

42

contains part of the surface. By not computing the surface for this grid, will leave a hole
in the final rendering surface. Similarly, a hole will occur for the grid @), with all of its

corners being inside the surface, but part of surface is still in the outside of the grid.

In one implementation, our Metaballs class has an abstract method to judge if
the cube intersects with the surface. Any subclass with different formulas must
implement its own methods that tests if a cube intersects with surface. We have
implemented two concrete methods, the cube-sphere and cube-cylinder, which are both
used within out Metaviz tool. We have to point out that the optimization does not work
when such checking method is more expensive than that of computing corners of cubes.
Also the effectiveness of this optimization will decrease when the proportion of cubes

intersecting with the surface increases.

3.1.6 Experimental results of our optimization

Table 3 shows our test results for 25 Metaballs that were rendered with and
without the presented Marching Cubes optimization. For the experiment, we limited the
recursion level to 9. The recursion level directly corresponds to the rendering quality of
the Metaballs. If the recursion level is less than 5, the Metaballs surface becomes too
coarse (Bourke1997). For a recursion level larger than 9, the rendering time becomes too

long to be of any practical use.

Table 3. Test results for the Marching Cubes algorithms optimization. (CPU: P4

2.8GHz, 1GB RAM)

43

Recursion Non-optimized | Optimized
levels

5 1,093 ms 157 ms

6 7,406 ms 422ms

7 55,469 ms 1,750ms

8 459,609 ms 9,031 ms

9 3,286,978 ms 58,343 ms

3.4 Text mapping for Metaballs

Labeling software entities improves the readability of the visual abstractions
considerably and can be achieved by mapping textual labels (entity name) on the surface
of the Metaballs. The Marching Cubes algorithm generates a large number of small
triangles that are used to render the Metaball. The internal triangle representation makes
the texture mapping for displaying text on the Metaballs a major challenge. We address
this problem by using billboards and orientation objects to display labels on top of the
Metaballs. This technique has another advantage compared to the more traditional texture
mapping. When we navigate or reorient ourselves in the 3D space, the Metaballs labels

always face toward the camera and therefore improve the readability of the text.

44

CHAPTER V. LAYOUT AND CLUSTERING
In the previous chapter we addressed issues with respect to performance
optimization of the rendering algorithm used to create the visuals and supporting text
mapping for the Marching Cubes algorithm. Another major challenge of current
visualization techniques is to make optimum use of the available display space. Layout is
always a problem in software visualization, especially for large software. In the following
section, we present our new layout algorithm. We also discuss clustering algorithms and

how these algorithms can further improve the usability of the layout algorithms

4.1 Review of layout algorithms

Through the use of reverse engineering, one can automatically generate many
different types of visual abstractions from the source code. Examples for these include:
data flow diagrams, subroutine-call graphs, program-nesting trees, object-oriented class
hierarchies, and entity-relationship diagrams (database). For these visuals to be effective
and readable, good layout algorithms have to be an essential part of these tools. However,
at the current state of the art, most of the current reverse engineering tools still lack
support for a good layout algorithms that will improve the readability of the visuals.

The layout problem can, in general, be simply described as: “given a set of
nodes (entities) with a set of edges (relations), calculate the position of the nodes and the

curve to be drawn for each edge” (Herman2000), satisfying some given criteria.

45

4.1.1 2D layout algorithms

The few tools that support layout algorithms use rather simple 2D layout
algorithms. The current research in 2D layout algorithms focuses on the use of
topological graph theory, geometric graph theory, and order theory (Battista 1999). The
planarization based on graph theory is applied to a drawing to reduce as much as possible
its number of crossings (Jiinger 1997). Another approach is to apply physical model to
the layout. Sugiyama layout algorithm is such an approach (Sugiyama 1981). Sugiyama
combines a force directed algorithm (Eades 1984) with a magnetic field model in his
layout algorithm. Figure 28 demonstrates how the magnetic field model can be used to

enhance the layout.

Figure 28. The process of magnetic spring algorithm (a) initial placement (b) layout

in no field (c) layout in a strong field (d) layout after two phases

46

4.1.2 3D layout algorithms

Typically, the viewpoints of 2D drawings are rather limited, because certain
rotations and different angles of the drawing might not be meaningful or useful for the
user (e.g. viewing a 2D drawing from the bottom). In 3D visualization, however, we walk
through the drawing by moving the viewpoint and the view angle. The graph theory
driven 2D layout algorithms are no longer suitable for 3D layout algorithms. 3D layout
algorithms have to adapt to the requirements of animation, navigation, and interaction.
We will discuss two layout algorithms to illustrate the properties of 3D layout algorithms.

The force directed layout algorithm simulates a physical model, which consists
of weights and forces, and tries to minimize the total energies in the model. The resulting
layout usually exhibits a quite well symmetries and clusters in the network, but it may
produce a lot of projection crossing. Therefore, a force-directed layout is suitable for a
first-step processing to identify clusters that can help to reduce the number of crossings.

Figure 29 is an illustration of force directed layout using VRML for display.

'ﬂ. e———

s b : | Hi :
Bk Forward Relosd Hume Sosrch Helzospe Wmager Frint Geeusity St

] :@ ﬁvﬂp:i Suaw cosn panterbury ac nz/aeville/angle /war ls /F3d /Randont. 100250, wr | @"A‘mt s Related z
v Beaiot diveoe Fvelon pugos B bownoat

47

Figure 29. Exploring a virtual world containing a random graph with 100 nodes and

250 edges (Churcher 2001)

3D hyperbolic space is another significant 3D layout research by T. Munzner.
By using hyperbolic geometry, one can allocate the same amount of room for each of the
nodes in a tree while still avoiding collisions because hyperbolic geometry is one of the
non-Euclidean geometries, and there is an exponential amount of room available in
hyperbolic space, shown in Figure 30. “The H3 layout algorithm is linear in the number
of spanning tree edges (Munzner 2000)”. That means the H3 layout is fast enough for

animation and interaction.

Figure 30. A call graph in 3D hyperbolic space (right); Exponential volume of

hyperbolic space (left)

4.1.3 Layout algorithm constrained by program comprehension
Layout can be considered as a multiple-optimization problem. Therefore, any
layout only preserves certain drawing properties, and ignores others. Different layouts

may be needed to preserve prosperities related to a particular application domain. For

48

visualizing a large software, we can use zoom in and zoom out, but one problem with this
is we lose the context. Focus+Context is another way to avoid such problems by using
distortion-based graph drawings.

The SHRIMP (Storey 1997) graph viewer is based on the multiscale Pad++
system. The SHriMP fisheye view algorithm preserves the user’s mental map through

different strategies to adjust graph layouts.

Original Preserving Preserving Hybrid
Layout Orthogonalities Proximities Strategies
Grid
Spring
Tree
Sugiyama

Figure 31. the SHriMP fisheye view algorithm has different strategies to adjust

graph layouts while preserving the user’s mental map.

49

4.2 The layout problem - motivation and objective

The graph layout problem is an ongoing research area within the information
visualization domain for the last decades. One of the reasons is that many layout
algorithms are not scalable. “Few systems can claim to deal effectively with thousands of
nodes, although graphs with this order of magnitude appear in a wide variety of
applications (Herman2000).” A layout algorithm working well for a small system could
become completely useless when the size of the system increases.

Other research topics related to layout algorithms are their time complexity.
Table 4 lists the complexity of some 3D layout algorithms. Many layout algorithms may
take from minutes to hours for computing an optimized layout. The force-direct layout
algorithm and the 3D grid layout, introduced in this section, have a similar magnitude of
time complexity. However, for an interactive software visualization tool to be applicable,

it needs to have fast response time.

Table 4. The complexity of some 3D layout algorithms

Layout algorithm H3 layout | Sugiyama layout | Force directed layout

Complexity O(n) o) o(n’)

4.3 3D grid layout algorithms
For the Metaviz tool, we use a grid layout approach, where the position of each
node corresponds to some integer coordinates. This enables us to reduce the number of

possible configurations to a finite number. It also allows for a space efficient

50

visualization of Metaballs. For example, 1000 entities can be placed within a 10¥10*10
grid using the Metaballs visualization. On the other hand, displaying the same 1000
entities using a cone tree, the size of each entity becomes too small at the lower levels of
the tree, to be readable or useful to the user.

The layout algorithm is reusable. It can be applied for other visualization
approaches that face similar problems with respect to layout and readability. We have
therefore developed the layout programs as a separate Java package plug-in that can be
reused by other visualization approaches within the CONCEPT project (e.g. UML

diagrams, 3D worlds, etc.).

4.3.1 Readability criteria

Since one of the major goals of software visualization is to guide people during
the comprehension of software systems, we use readability as the major criterion to
evaluate the quality of our layout algorithm. Similar readability criterion has already
applied in information visualization can be applied for software visualization. Figure 32
shows the importance of the different criteria for the readability of a visualization
technique in general. In our implementation, we take into account many of these criteria,
but not all. The objective function is a weighted sum of these numbers with line object
crossing having larger weight, projection line crossings less, and length of arcs being

least.

51

Minimize the number of edge crossings
Minimize the “projection crossings”
Minimize the length of edges.
Optimize density distribution

Optimize drawing space (area) Achieved symmetry.

Figure 32. Visualization criteria

Drawing space and density distribution are optimized by choosing the grid size

to be the minimum that can accommodate the given number of Metaballs.

4.3.2 3D grid layout as state searching problem

A node at position (x, y, z) with side s occupies the cubical region grid(v)
defined by the two grid points (x, y, z) and (x + s, y + s, z + 5). An edge e = (v, w) which
is represented by a cylinder cylinder(e, d) defined by the point p! at the beginning if p, €
grid(v), and point py, at the end if py, € rect(w), where p, and p,, are the positions of node
v and w, respectively.

The 3D grid layout problem can be described as follows: How can we place m
entities into n® positions to satisfy certain readability constrains, where m<=n’.

The computationally intensive nature of 3D layouts has already been shown in
some of the existing layout algorithms in other application domains (Munzner 1997,
Churcher 2002). For example, the layout of integrated circuits could take several hours
on high performance computers. Placing m entities into n° positions involves w/m- m)!

cases. In order to use space efficiently, m should be very close to n3; therefore, the

52

complexity is almost O(n’ /). To find the best possible layout based on some given
constraints one would have to evaluate each possible combination within the given search
space. Table 5 illustrates the complexity of the 3D layout problem, depending on » and
m. Rather then evaluating all possible 7’ //(n’- m)! combinations, one will have to limit
the search space that will provide an acceptable layout within given time and space

constraints.

Table 5. Complexity of the estimation of 3D layout

The number of The nur.nber The number of
. of cells in

entities: m grid; n’ cases to evaluate

4 8 1680

8 8 40320

13 27 2.273%10%

27 27 1.089%10%®

32 64 4.822*10%

4.3.3 Building up a searching tree

One way to solve the problem is to use a heuristic search for the 3D layout.
Building up a search tree is the first task in solving a searching problem.

The search tree starts from a root state and moves on to its children. In the case
of a root state, the algorithm randomly places m entities within the given n’ space. The
algorithm swaps some of the entity positions and creates new states for the children. The

number of children corresponds to the “branch factor”, which directly influences the

53

complexity of searching algorithm. We calculate the branch factor for certain operators.

The result is shown in Table 6.

Table 6. The branch factors of search trees for placing 27 entities into 27 positions

Operator n el.lt.l ties into n Branch factor
positions

Switching two entities (n-1)*n/2 351

Switching three entities (n-1)*...*(n-4) 15,600

Switching four entities (n-1)*...*(n-5) 3.6*10°

Switching five entities (n-1)*...*(n-6) 7.9%10°

4.3.4 Using greedy search for grid layout

We used a greedy search as the first searching method for the grid layout, and it
failed practically for any application with more than 27 nodes, because the recursive
function calls used in the greedy search exhaust the memory of any current computer.
This observation provides a good indication about the computation complexity involved

in the computation of grid layout.

4.3.5 Using hill climbing for grid layout

The hill-climbing algorithm is a state searching algorithm, with the goal to
minimize the memory requirements required to perform the search. A detailed analysis of
existing searching algorithms that are studied extensively in the field of Artificial
Intelligence can be found in (Russell 1995). The limitation of the hill climbing algorithm

is that it can only find a local peak. In our research, we try to overcome this limitation to

54

a reasonable extent by modifying the hill-climbing algorithm. The modified algorithm
will not always be able to find the best state (peak), but often a better state than compared
to the traditional hill-climbing algorithm. Additionally, the modified hill-climbing
algorithm finds a predefined search goal in less time.

In strategy 1, we compare all children with each other, to identify the child with

the best estimation value.

CurrentSate = startState;
while(not exceed maximum time){
BestChild = CurrentState.getBestChild();
if(BestChild == null)
Return CurrentState;
else
CurrentState = bestChild, }

return CurrentState;

Strategy 2 is based on strategy 1, except in strategy 2 we only compare the
children with each other until we identify a child that meets the expected estimation

value.

CurrentSate = startState;

While(not exceed maximum time) {

BetterChild = CurrentState.getBetterChild();

55

If (BetterChild == null)
Return CurrentState;

Else
CurrentState = BetterChild;}

return CurrentState;

4.3.6 Competition hill climbing

In both strategies, once we reach a local peak, the search is complete. In our
extended version called the competition hill-climber, we modify the hill-climbing
algorithm by using a more expensive comparison to break away from the local peak and
jump to another hill which has a higher peak than the current hill. For this, we apply a
random positioning of the entities into the grid and use these as random starting states.
These random starting states will then lead to different peaks. In our implementation, we
use ten threads to evaluate ten different starting states using one of the above strategies.
Finally, we compare the ten computed peaks and choose peak with the best result. In our

example (see Table 7), thread number 7 has the best estimation value.

Table 7. Test result of competition hill-climber (Test condition: P4 2.8GHz, 1 GB

RAM, strategy 2 used)
Projection Objective Compute
Thread Je Line object cross | Lines length | Function | . P
crossings value time(sec)
0 22 0 125 279 1284
1 10 1 130 221 1134
2 24 1 149 338 953

56

3 33 0 126 357 1161
4 20 0 126 266 1230
5 17 1 123 263 1353
6 18 0 124 250 1348
7 12 0 114 198 1325
8 16 0 129 241 968

9 11 1 115 213 1329

4.4 Clustering algorithms

We would like to state clearly that layout algorithms on their own often do not
provide enough insights and details to be useful for comprehension tasks. The layout
algorithms are constrained by the amount of information to be displayed and the limited
screen space. Even, if one manages to create a layout, the resulting visual might have far
too much information, causing an information overload. Furthermore, layout algorithms
are in general only concerned with minimizing the crossings among entities. However, it
has to be noted that minimizing the crossings, might not necessarily correspond to the
logical view, a programmer or a designer of the system had during its development.
Therefore, limiting the number of entities to be displayed and their logical organization to
match the user’s mental model of the system is one of the key challenges in software
visualization. For the visualization of large software systems, it is essential to provide
some type of grouping to create a decomposition of the system. The grouping can
improve readability (Mancorids1999), by supporting a representation that is closely

related to the mental model a programmer forms of a system (Dwyer 2001). The

57

grouping should map closely to the mental model users form when performing a certain
task.

Grouping can be applied to generate suitable abstraction levels and therefore
allow for a reduction of the amount of information to be displayed on the screen. Ideally,
grouping will also map closely to the mental model a programmer forms during a
maintenance task. For example, in the case of the cone-tree and information-cube, entities
are grouped into nested semi-transparent containers, while soft-city encapsulates detailed
information into buildings. In this thesis, we present two methods for grouping software

entities: metric-based grouping and feature-based grouping.

4.4.1. Metric-based grouping.

For the metric-based grouping, we create an internal relation table that is used to
access the coupling among different classes. The number of function calls defines the
weight of relationships among the different entities (coupling). Our intention is to create a
nested graph based on grouping. As the first step, we use a small threshold of coupling to
group the top level of graph. In Figure 33, three groups are created in the first step. For a
large number of entities, we can further group each sub-node in the next level. A proper
threshold should be chosen, so that on each level of the nested graph, the maximum

number of entities displayed on the screen will not cause information overload.

58

O
COC O

COQO

QOO00|000l| 556
ojelele 500

Figure 33. Metric-based grouping

4.4.2 Feature-based grouping

There exist several techniques for identifying features in software systems, e.g.
(program slicing (Rilling 2003b), concept analysis (Koschke1999), etc.). For some
applications, such as testing and debugging, programmers might be interested in focusing
on these features instead of the whole software. Hence, grouping software entities based
on their features can help programmers concentrate on the related parts of software and

reduce unnecessary work.

P
Q20 9
ddbb;gya SO0
SO50

débo

Figure 34. Feature-based grouping

59

Figure 34 is an example of such a feature-based grouping. A program might be

represented as a hierarchical structure, with a feature consisting of several other features.

60

CHAPTER V. DESIGN AND IMPLEMENTATION OF METAVIZ

5.1 Motivation for using Java 3D platform

Java 3D is a Java API package developed by Sun (Sun 2002). Java3D is a
powerful and high-level package, which reduces development time by providing high
level functions that allow programmers to focus on software visualization issues, rather
than 3D display implementation issues. In this section, we discuss the advantages of Java

3D by introducing its architecture, and compare it with other graphic APIs.

5.1.1 Introduction to Java 3D

Java 3D is built on top of OpenGL or Direct X graphical engines, and provides a
platform independent environment. The architecture of Java 3D is similar to the one used
in the Virtual Reality Model Language (VRML). All components for rendering form a
tree, called the Virtual Universe. The properties of each node define the appearance of

scene graph and its behaviors.

61

Virtual Universe

View ‘_—:P_ CanvasdD [Secreen3D

View Platform j
Nede Componenis h

Physical Body Physical Environment

Figure 35. Java 3D architecture (Sun2002)

5.1.2 Java 3D vs. other 3D graphic API

Both Java 3D and VRML (Carey 1997) are easy to learn and to program with;
however, Java 3D is more programming oriented, compared to VRML which is a
scripting language and based on data structures. Java 3D allows to write dynamic and
interactive programs; VRML is more suited to support the display of static models with
limited interactions.

OpenGL (Segal 2001) is an industrial standard for computer graphics. It is
written in C, and relies on call back functions and global variables for communication
among functions. OpenGL is not Object Oriented. These features make OpenGL difficult
to be adapted to MFC or OWL. On the other hand, Java 3D encapsulates all global
variables in its Virtual Universe, and supports OO programming. Programmers construct

all components they need, and insert them into the tree with the root of Virtual Universe.

62

The Java Virtual Machine will optimize the tree for rendering. Thus, programmers can
enjoy most GUI components that Java provides.

Where there are many advantages of Java 3D, we have to mentions its
shortcomings as well. Firstly, the Java 3D API is not a standard Java package; computers
without Java 3D installation cannot run Java 3D programs. This limits Java 3D usage on
the Internet. Secondly, Sun does not take responsibility of using Java 3D compiler. This
feature limits the use of Java 3D in critical environments, such as airports or nuclear
power stations. The last drawback of Java 3D is incompatibility with Swing.

In term of its high level functionalities, it is one of the best graphic APIs for

research in software visualization.

5.2 Architecture of Metaviz
The Metaviz tool consists of three major parts: a clustering and grouping

algorithm, the grid-layout, and the Metaballs rendering engine (see Figure 36).

CONCEPT :
Analyzer

Figure 36. Metaviz pipeline

The grouping part preprocesses the data that CONCEPT Analyzer provides, and
makes Metaviz scalable. If the data volume is too large to be visualized on one screen, we

have to apply clustering techniques to split the data into groups with reasonable size that

63

will neither exceed the limit of a computer screen, nor cause information overloading.
The clustering support provided by the CONCEPT framework will enhance the
scalability of Metaviz, and allows Metaviz to visualize large software systems. The
candidates for clustering algorithms have been discussed in section 4.4 Clustering
algorithms. The clustering algorithm to be applied depends on the application domain.
We have not implemented any clustering algorithm in this research. Instead, we provide
this framework that can import and plug-in a third part clustering algorithm, or any
clustering algorithm provided by the CONCEPT project, to allow for a testing in the
context of large systems.

The grid-layout part uses an XML file as an input, which describes the software
artifacts and their internal relationships. Within the Metaviz tool, users can select a layout
algorithm from two available strategies. These different algorithms will be discussed
more in detail in section 4.1 Review of layout algorithms. The Metaviz tool provides
users with continuous feedback about the progress made in the layout optimization by
displaying snapshots of the current layout. Once a certain optimum is reached, the layout
is complete. The resulting layout will be saved in an XML file to allow further
processing.

The rendering engine of the Metaviz tool reads the XML file as an input to
generate and render the Metaballs in the 3D space. The rendering engines maps the
properties of the software entities to the Metaballs properties. After the completion of the
rendering process, the users can navigate through the visuals and apply “an overview,

select and zoom” approach to refine the current view (Rilling 2001).

64

5.3 Integration within the CONCEPT project

For software visualization, Metaviz input the data from CONCEPT Analyzer. We
define an XML file as an interface to the CONCEPT project. The XML file contains both
information about the software entity properties and internal relationships. Since the
XML file is self-explanatory and easy to expand, this interface provides a layer that
separates the software analysis concerns from the software visualization concerns.

Besides its software visualization tool interface, Metaviz also provides a

programming interface at the component level. All the three components, grouping,
layout, and rendering, use XML files as input, and output the results again in XML files
(except the output of the rendering engine). For that reason, these components can be
reused in other programs. For example, Xiao Hua (Xiaohua 2003) in her thesis project, is

applying the grid layout in her visualization tool.

5.4 Experimental results

As part of this research we performed several experiments to explore the
capabilities and limitations of Metaviz and its components. In what follows we discuss
some of the experimental results as well as the different application domains for the

Metaviz tool.

5.4.1 Application example for Metaviz
In this section, we demonstrate how Metaviz can be applied for program
comprehension. For illustration purposes, we use the Metaviz program itself as the

software to be comprehended. Metaviz consists of 64 classes with a total of approximate

65

10,000 LOC. The following illustrations will demonstrate how Metaballs in combination
with different source code analysis techniques can be used to guide programmers during
program comprehension. The examples include: a hierarchical representation, a feature
grouping based on program slicing, the visualization of coupling among different

software entities and the animation of the layout algorithms.

5.4.2 Hierarchical structure of software

Typically, any larger software system is organized in a hierarchical structure and
many software visualization tools are developed for visualizing these hierarchies (e.g.,
tree structures such as cone-tree, cam-tree, and information-cube). Within the Metaviz
tool, we can also visualize such hierarchical structures. Figure 37 shows the structure of
our Metaviz tool in a textual form as presented currently in most IDE (left) and the same

information represented using our Metaballs approach (right).

i

S R SRR

sHabe®
g §§§

£
R RN LR XTI TR L)
%
2

66

Figure 37. Hierarchical structure in SunONE (left); same structure using

Metaviz’s inheritance network (right)

5.4.3 Applying the Metaballs metaphor to visualize coupling measurements

Visualizing the internal relationships of software is an essential part of many
software visualization tools. For this example, we use the coupling between object classes
(CBO) as the weight of coupling among the software artifacts. Figure 38 shows the class
coupling within our Metaviz tool. The diameter of the cylinders connecting two

Metaballs maps directly to the coupling among these two entities.

. - - e * - [e e -

Figure 38. Metaballs visuals of MPC measurements

67

5.4.4 The process of layout management

Within the Metaviz tool we provide an optimized hill-climbing layout
algorithm, the option to visualize the process of layout computation and optimization.
The following five snapshots (Figure 39 to Figure 43) are from our layout computation
process. Such a process can provide users instant visual feedback of the current layout
optimization progress and provides them with the ability to terminate the layout

optimization once it meets the users’ expectations.

sted Layout Algorithm Tesking

Figure 39. 1st iteration in layout process

68

Figure 41. 90" iteration in layout process

69

Figure 42. 121" iteration in layout process

ested Layoul Algorithm Testing
Sy,

5

Figure 43. 143rd iteration in layout process

70

5.4.5 Dynamic software visualization

In the CONCEPT project, an execution trace of a Java program can be recorded.
Metaviz extracts information from the execution trace and provides the ability to animate
the program executions using the Metaballs metaphor. In Figure 44 to Figure 49, each
ball represents a class. The white ball is current execution point. Function-calls from one
class to another class are represented by a cylinder with an arrow. The arrow indicates

calling direction, while the diameter of the cylinder represents the number of calls.

g% Topology Compression Analyzer

Figure 44. Dynamic visualization in step 6

71

Topology Compre

i s

Figure 46. Dynamic visualization in step 50

72

Figure 48. Dynamic visualization in step 95

73

Figure 49. Dynamic visualization in step 104

5.4.6 Applying grid layout to the parser program

The parser program is part of the Concept project. It contains 203 classes and
600 relationships among the classes. Figure 50 is the layout without any adjustment.
After ten minutes adjustments, we get a better layout shown in Figure 51. Figure 52 is
almost the best result we can get through our grid layout algorithm. Although the last
layout is the most readable layout, such large entities and internal relationships still result

in information overload.

74

Topology Compression Analyzer

gg Topology

Figure 51. The layout after ten minutes adjustments

75

%% Topology Comptession Analyzer

Figure 52. The layout after two hours adjustments

76

CHAPTER VI. CONCLUSIONS AND FUTURE EXTENSIONS
We have presented a software visualization tool, Metaviz, in which we address

three important visualization issues: the Metaballs metaphor as a basis for software
visualization, 3D grid based layout, and grouping. We further discussed implementation
issues and the use of Java 3d as the choice of our implementation environment.
Furthermore, we discuss the integration of Metaviz within the CONCEPT project and
illustrate some potential applications for our system. We believe that the Metaballs
metaphor can provide programmers with some guidance in building a suitable mental
model of a software system. Our grid layout technique improves the readability of 3D
visuals on a screen. In particular its ability to dynamically animate the layout
optimization process by showing the current optimization progresses helps the user to be
an active participant in this task (if required). Grouping based on object coupling and
slicing based features are introduced to avoid information overloading. Using the code of
the Metaviz program itself, we have demonstrated how these three key features can ease
the cognitive burden associated with the visualization of large software systems. We have
integrated the Metaviz tool in the CONCEPT program comprehension environment.
Extensive experimentation with very large programs is needed before we can
conclusively claim high effectiveness of this 3D visualization metaphor. Several issues
remain for future work, issues like the scalability of the Metaballs for very large systems,

further improvements to the layout and grouping algorithms. In particular, the area

77

combining domain knowledge representation with the Metaballs visualization might be a

challenging avenue for future research.

78

BIBLIOGRAPHY

(AbsInt 2003) AbsInt © 1998-2003. Last modified on 4 July 2003. URL:
http://www.absint.com/aicall

(Battista 1999) G. di Battista, P. Eades, R. Tamassia, and 1.G. Tollis, “Graph Drawing:
Algorithms for the Visualization of Graphs”. Prentice Hall, 1999.

(Bourke1997) Paul Bourke. “Polygonising a scalar field’. May, 1997. URL:
http://astronomy.swin.edu.au/~pbourke/modelling/polygonise/

(Carey 1997) R. Carey and G. Bell. “The Annotated VRML 2.0 Reference”. URL:
http://www.web3d.org/resources

(Churcher 1999) Neville Churcher, Lachlan Keown,Warwick Irwin. “Virtual Worlds for
Software Visualization”. URL: www.cosc.canterbury.ac.nz/research/
RG/svg/lachlan-msc/thesis.pdf

(Churcher 2001) Neville Churcher and Alan Creek, “Building Virtual Worlds with the
Big-Bang Model”. Australian Symposium on Information Visualization,
(invis.au 2001)

(Dwyer 2001) Tim Dwyer. “Three Dimensional UML using Force Directed Layout.
Australian Symposium on Information Visualisation”. Australian Symposium on
Information Visualisation, (invis.au 2001), Sydney, NSW, Australia, ACS,
2001.

(Eades 1984) P. Eades. “A4 heuristic for graph drawing”. Congressus Numerantium”.

42:149--160, 1984.

79

(Eades 1999) P. Eades, “Drawing Free Trees”, Bulletin of the Institute for Combinatorics
and its Applications, pp. 10— 36, 1992. http://www.dia.uniroma3.it/~gdt/, 1999.

(Euler 1736) Euler. "The Seven Bridges of Konigsberg".
URL:http://mathforum.org/isaac/problems/bridges1.html, 1736

(Favre 2001) Favre J.M., "GSEE: a Generic Software Exploration Environment", 9th
Intenational Workshop on Program Comprehension (IWPC'2001), Toronto,
Canada, May 2001, pp. 233-244.

(Feijs1998) L. Feijs, and R. D. Jong. “3D Visualization of Software Architectures”. Com.
of the ACM, 41(12), Dec. 1998.

(Gogolla 1999) Martin Gogolla, Oliver Radfelder, Mark Richters. “Towards Three-
Dimensional Representation and Animation of UML Diagrams”. UML'99 - The
Unified Modeling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30. 1999, Proceedings.

(Haibt 1959) Haibt, L. M. “4 Program to Draw Multi-Level Flow Charts”. In
Proceedings of The Western Joint Computer Conference, 15 (pp. 131-137). San
Francisco, CA:

(Harel 1992) Harel D, “Biting the Silver Bullet, Toward a Brighter Future for System
Development”, IEEE Computer 25(1), 1992, pp 8-20.

(Hemmje1994) M. Hemmje, C. Kunkel, and A. Willet: “LyberWorld A Visualization
User Interface Supporting Fulltext Retrieval”, Proc. of ACM SIGIR’94, ACM
Press, 1994.

(Hendley 1995) B. Hendley and N. Drew. “Visualization of complex systems”. University

of Birmingham(UK). 1995.

80

(Herman 2000) Ivan Herman, Guy Melancon, and M. Scoot Marshall, “Graph
Visualization and Navigation in Information Visualization: a Survey”, IEEE
Transactions on Visualization and Computer Graphics, Vol6 No 3, 2000
Computer Science, 1995. (Ischia, Italy) IEEE Computer Society Press, 1998.

(James 1982) James F. Blinn. “4 generalization of algebraic surface drawing”. ACM
Transactions on Graphics, 1(3):235--256, July 1982

(Johnson 1991) Brian Johnson and Ben Shneiderman. “Tree-maps: A space-filling
approach to the visualization of hierarchical information structures”. In G.M.
Nielson and L. Rosenblum, editors, proc. Visialization *91, pages 284-291, Los
Alamitos, CA, October 1991. IEEE Computer Society Press.

(Jinger 1997) M. Jiinger, S. Leiper, and P. Mutzel, “Pitfalls of using PQ-trees in
automatic graph drawing”. In G. D1 Battista, editor, Graph Drawing (Proc. GD
’97), vol. 1353 of Lecture Notes in Computer Science, pp. 193-204. Springer-
Verlag, 1997.

(Knight 1998) Knight, C. “Visualization For Program Comprehension: Information And
Issues”. University of Durham, computer Science Technical Report 12/98.

(Knight 1999) C. Knight and M.Munro, “Comprehension with[in] Virtual Environment
Visualisations”, Proceedings of the IEEE 7th International Workshop on
ProgramComprehension, pp4-11, May 5-7, 1999.

(Knight 2001) Knight, C. and Munro, M. “Sofiware Visualization conundrum”,
University of Durham, Department of Computer Science Technical Report

05/01, July 2001.

81

(Knight 2000) Knight, C., and Munro, M. “The Power of (Sofiware) Visualization”,
University of Durham, Department of Computer Science Technical Report
01/00, January 2000.

(Korel 1998) Bogdan Korel, Juergen Rilling. “Program Slicing in Understanding of
Large Programs”. IWPC 1998: 145

(Koschke 1999) Koschke. R., “An Semi-Automatic Method for Component Recovery”,
Proceedings of the Sixth Working Conference on Reverse Engineering, pp.256-
267, Atlanta, October 1999.

(Laguna 1997) M.R. Laguna, R. Marti, and V. Vals, “Arc Crossing minimization in
Hierarchical Digraphs with Tabu Search”, Computers and Operations Research,
Vol. 24, No. 12, pp. 1165-1186, 1997.

(Lanza 2002) Michele Lanza. “Software Visualization Introduction”. University of
Berne, Switzerland. URL:
iamwww.unibe.ch/~scg/Teaching/OORPT/05Visualizing.pdf

(Lorensen 1987) Lorensen, W.E. and Cline, H.E., “Marching Cubes: a high resolution
3D surface reconstruction algorithm”, Computer Graphics, Vol. 21, No. 4, pp
163-169 (Proc. of SIGGRAPH), 1987.

(Mancorids 1999) S. Mancorids. B. S. Mitchell, Y. Chen, E. R. Gansner “Bunch: A
clustering tool for the recovery and maintenance of sofiware structures” In

Proc; IEEE Inter. Conference on Software Maintenance, IEEE Computer

Society Press, 1999, pp 50-59.

82

(Mark 2001) Mark A. Foltz Design Rationale Group, “Graph Exploration for Software
Archeology”. MIT Artificial Intelligence Laboratory, September 2001
URL:http://www.ai.mit.edu/projects/drg/

(Mayrhauser 1998) Mayrhauser, A., A. M. Vans, “Program Understanding Behavior
During Adaptation of Large Scale Software”, Proc. of the 6th Intl. Workshop on
Program Comprehension, pp. 164-172, Italy, 1998.

(Melancon 1998) G. Melangon and I. Herman, “Circular Drawings of Rooted Trees”,
Reports of the Centre for Mathematics and Computer Sciences. Report number
INS-9817, available at: http://www.cwi.nl/InfoVisu/papers/circular.pdf, 1998.

(Munzner 2000) T. Munzner. “Interactive Visualization of Large Graphs and Networks”.
Ph.D. dissertation, Stanford University, June 2000.
URL:http://graphics.stanford.edu/papers/munzner_thesis/

(Myers 1986) Myers, B. A. “Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy”. In M. Mantei & P. Orbeton (Ed.),
Proceedings of Human Factors in Computing Systems (CHI ‘86), (pp. 59-66).
New York: ACM Press.

(Myers 1988) Myers, B. A. “The State of the Art in Visual Programming and Program
Visulization”. (Technical Report No. CMU-CS-88-114). Computer Science
Dept., Carnegie-Mellon University, Pittsburg, PA.

(Myer 1990) B.A. Myers. “Taxonomies of Visual Programming and Program
Visualization”. Journal of Visual languages and Computing, Vol. 1, pp97-123,

1990.

83

(Panagiotis 1990) Panagiotis K. Linos, “Layout Methods for Improving the Readability of
Graphical Reorientations for Programs”, 1990. URL:
http://www.wbmt.tudelft.nl/pto/research/publications/Dissertation_ Willemse/Di
ssertatie.ps.gz

(Plankers 2001) Ralf Plankers and Pascal Fua. “Articulated Soft Objects for Video-based
Body Modeling”. Proc. 8th Int. Conference on Computer Vision, Vancouver,
Canada, July 2001

(Price 1992) B. A. Price, R. M. Baecker, and 1. S. Small, “A Principled Taxonomy of
Software Visualization”, Journal of Visual Languages and Computing, Vol. 4,
No. 3, pp211-266, 1992.

(Rajlich 2001) Véaclav Rajlich, Norman Wilde, Michelle Buckellew, Henry Page
“Software Cultures and Evolution”. Computer,September 2001 (Vol. 34, No. 9)
pp. 24-28

(Rekmoto 1993) Jun Rekimoto, Mark Green, “The Information Cube: Using
Transparency in 3D Information Visualization”. Proc. of the 3rd Workshop on
Infor. Technologies & Systems (WITS'93), pp. 125-132

(Rilling 2001) Rilling J., “Maximizing Functional Cohesion of Comprehension
Environments by Integrating User and Task Knowledge”, 8th IEEE Working
Conference on Reverse Engineering (WCRE 2001), Stuttgart, Germany,
October 2001, pp. 157-165.

(Rilling 2002) Juergen Rilling and S. P. Mudur, “On the Metaballs to Visually Map
Source Code Structures and Analysis Result on 3D Space”, Department of

Computer Science, Concordia University. in Proceedings of Ninth Working

84

Conference on Reverse Engineering, Richmond, VA, October 29-Novemver 1
2002, pp. 11-24.

(Rilling 2003a) Juergen Rilling, Jianqun Wang, S. P. Mudur. “Metaviz - issues in
software visualization beyond 3D”. Department of Computer Science,
Concordia University. VISSOFT 2003 -- 2nd Annual “DESIGNFEST” ON
VISUALIZING SOFTWARE FOR UNDERSTANDING AND ANALYSIS

(Rilling 2003b) Juergen Rilling, Tuomas Klemola: “Identifying Comprehension
Bottlenecks Using Program Slicing and Cognitive Complexity Metric”. IWPC
2003: 115-124

(Robertson 1993) G. G. Robertson, S. K. Card, and J. D. Mackinlay. “Information
visualizing using 3D interactive animations”. Comm. of the ACM, 36(4), 1993.

(Roman 1993) G.C. Roman and K. C. Cox, “4 Taxonomy of Program Visualization
Systems”, IEEE Computer pp11-24, December 1993.

(Russell 1995) S. Russell and P. Norvig, “Artificial Intelligence A modern approach”,
Prentice Hall, 1995.

(Sanlaville 2001) Sanlaville R., Favre J.M., Y. Ledru, "Helping Various Stakeholders to
Understand a Very Large Software Product", European Conference on
Component-Based Software Engineering, Sept. 2001.

(Sarita 2001) Sarita Bassil, Rudolf K. Keller. “Software Visualization Tools: Survey

and Analysis”. Ninth International Workshop on Program Comprehension

(IWPC'01) May 12 - 13, 2001

85

(Sarkar 1992) M. Sarkar and M.H. Brown, “Graphical Fish—eye views of graphs”,
Human Factors in Computing Systems, CHI *92 Conference Proceedings, ACM
Press, pp. 83-91, 1992.

(Sarkar 1994) M. Sarkar and M.H. Brown, “Graphical Fisheye Views”, Communications
of the ACM, Vol. 37 No. 12, pp. 73— 84, 1994.

(Scanlan 1989) Scanlan, D. “4 Structured Flowcharts Outperform Pseudocode: An
Experimental Comparison”. IEEE Software, 6(5): 28-36.

(Segal 2001) Mark Segal, Kurt Akeley. “The OpenGL Graphics System. A Specification”,
Version 1.3. SGI, August 14, 2001.

(Shenghua 2003) Shi Shenghua, Master Thesis to be published. Computer Science
Department, Concordia University. 2003.

(Shoeb 1998) Shoeb. "Improved Marching Cubes",
enuxsa.eas.asu.edu/~shoeb/graphics/improved.html

(Storey 1997) M.-A. D. Storey, K. Wong, F. Fracchia, and H. Muller. “On integrating
visualization techniques for effective software exploration”. In Proceedings of
the IEEE Symposium on Information Visualization, IEEE Visualization, 1997

(Storey 1999) Storey M.-A., Fracchia F. and Miiller H.., “Cognitive Design Elements to
support the Construction of a Mental Model During Software Exploration”,
Journal of Software Systems, special issue on Program Comprehension, v 44,
pp.171-185, 1999.

(Sun 2002) Sun Microsystems. Inc. (2002, June). “The Java 3DTM API Specification™

Version 1.3. Palo Alto. CA. USA

86

(Sugiyama 1981) K. Sugiyama, S. Tagawa, and M. Toda. “Methods for visual
understanding of hierarchical system structures”. IEEE Transactions on
Systems, Man, and Cybernetics, 11(2):109--125, February 1981

(Sugiyama 1995) Kozo Sugiyama, Kazuo Misue: “Graph Drawing by the Magnetic
Spring Model”.. Journal of Visual Languages and Computing 6(3): 217-231
(1995)

(Tip 1995) Tip F., “A survey of program slicing techniques”, Journal of Programming
Languages, 3(3), pp. 121-189, September 1995.

(Wesley 1991) Addison-Wesley, 1997. Brian Johnson and Ben Shneiderman. “Tree-
maps: A space-filling approach to the visualization of hierarchical information
structures”. In G.M. Nielson and L. Rosenblum, editors, proc. Visialization *91,
pages 284-291, Los Alamitos, CA, October 1991. IEEE Computer Society
Press.

(Xiaohua 2003) Xiaohua, Department of Computer Science, Concordia University. “2D
& 3D UML-based Software Sisualization for Object Oriented Progrom”. Master
thesis in 2003.

(Yonggang 2003) Yonggun Department of Computer Science, Concordia University
“Automatic Design Pattern Recovery”. Master thesis in 2003.

(Young 1997) Peter Young and Malcolm Munro. “A New View of Call Graphs for
Visualizing Code Structures”. http://vrg.dur.ac.uk/misc/PeterYoung D

(Yong1998) Young, P., and Munro, M. “Visualizing Software in Virtual Reality”. In
Proceedings of the IEEE 6th International Workshop on Program

Comprehension

87

(Yong1999) P. Young and M. Munro, “Visualizing Software in Cyberspace”, Ph.D.

Thesis, University of Durham, October 1999.

88

APPENDIX. CLASS DIAGRMS FOR METAVIZ

Metaball
(from metaball)
Tefactor : double = 1
Feisolevel : double = 0

Cube

{from ext)

NegativeMetaball

(from ext)

Beseuil : double = 0.9999

Foseuil : double = 0.9999

Roradius : double || %getPostential() YgetPostential()
Roseuil : double = 0.9999 | | %calculateControlRadius()| | “%caiculateControlRadius()
&seuilFactor : double = 1.9, | “¥isintersect() %isintersect()
: || “getSeuil() $getSeuil()
! %Metaball() SsetSeuil() setSeuil()
: “Metaball() Sdistance() %distance()
| %getPostential() getWidth() RgetWidth()
. %setFactor() ‘ : ’
%calculateControlRadius() '~/ oo
‘ ’calculateRadius() “=-1 MetabaliAbstract Propeller
YgetRadius() {from metaball) , {from #x)
i Sisintersect() i N o
! %getSeuil() getPostentiai()
SsetSeuil) L %calculateControlRadius()
| %distance() | Parosute :lsl?éeorsec:g i
' Sgetwidth() ! (from ext) ,zﬁstan';:‘(’) adius()
. i i -
setSeuﬂFac:or() Roseuil : double = 2 Sgetidth()
/ L]
$getPostential() getShape3D()
LabledMetaball $calculateControlRadius()

(from ext) Sisintersect() BisectionAlgorithms
&fontSize : int = 24 :getSeu!I() oo utils)
&fontStyle : int = Font. PLAIN| | gsetSeul)

&width : float ‘dlstar)ce() calculal Root()
&height : float getWidth()
ﬂ:LabIedMetabaII()
initLable() text2d
SsetFont() = (Cf);zx:flg S = i
“%getSimpleLableBG() .
$getBillboardLableBG() PoalculateResidual()
YgetOrientedLableBG()
Cﬁzsopr:i:ﬁgce PolygonizeAigorithm
(from metaball)
$getMaterialName , .
‘getMaten'alld() 0 *marchlngCubeAIgopthm()
‘ ScreateAppearance() acomptheHPostentlal()
1 9getAverageColor() gpo:ygon!se\(l)whco'
| QcreateAppearanceWithTransparency() po nygclan;se ! or()
| ®createAppearance() d‘ive exinterp()])
| createMaterial() marchlngCubeAIgoptthlthCoIor()
| ScreateDiffuseColordf) @hcomputCellPostentialWithColor()

Risolevel :

&recursion: int=5

&pinterpotateColor : boolean = false
&tolerance : double = 0.00001

“MetaballGroup()
“metaballAt()
Sgetisolevel()
%addMetaball()
“compute()
“setRecursion()
QgetVertexArray()
%getMetaballBrangch()
“enablelnterpolateColor()
%isintersect()
%getTolerance()
%setTolerance()

_Hoube
GridCellWithColor

(from metaball)

PointLine
. (fom utils)

(fmﬂmﬂ qtils)

Figure 53. Metaballs class diagram

89

*Box_Sphere_lntersect()J

ey HillClimb ClimbStrategy4 GraphFacto
Cl|r:1bS;(rate?y1 (from Iayout) : (from .awﬁgy (fropm layout)ry
----------------- (fromlayoud . 10 _PEAK - int = Integer MAX VALUE! - — 1 [@plengthOfSide : double
) @EVEREST :int =0 : $ClimbStrategy4() : &numberOfGrid : int = 0
?:ClltmNbSttgtt-ing) -~ _ GpnewChild : boolean = true ie‘getNextStatg)(l) l
,,,,, getNextState() | 7. &iumpState() : @GraphFactory()
,,,,,,, S {HillClimb() Do ! ScreateGrid()
ClimbStrategy2 %getPath() ! - e ScreateEntity()
fromlayouty | PgetFirstStep() ClimbStrategy3 " PcreateBox()
: e -7 PéupdatePathy) - (rom layout) © %getl_engthOfSide()
$ClimbStrategy2() %initPath() b .) . %setLengthOfSide()
F¥getNextState() Sclimb() $ClimbStrategy3()| ' @getNumberOfGrid()
T SlimPelimb() PegetNextState() | %setNumberOfGrid()
ComputeThread | 7 PogetNextState() &jumpState) | | WcreateRelation()
from CompeteL ayout) ;getPeak() otiateqyl] | %createLine()
X setPeak() “oid . T
) Yestimate() §\\' - CometeLaout o
:ComputeThread() -pea‘ll/ _________________ (frupm Iayouyt) Relation
- ComeuieThead) % WrimberOiCompetor n= 1 | (omianw |
Tsce i (from layout) $CompeteLayout() :Relation() '
&projectCross : int = Integer. MAX VALUE| updateDom() getStartEnt!ty()
X 3) - | Sreport() . $setStartEntity()
&lineObjectCross : int P S ;
&linesLength : int report() , ‘getEndEnt!ty()
gcreateGnd() ! %setEndEntity()
G getWinner) T .
‘S(:tg(i)de() | AwriteOutput() \
$setSide() ‘
addEntity() '
%addEntity() Heuristic -ﬁnﬂﬁﬂiny
................. ®addEntity() o omlayouy
Cell celisfj] +¥switchContent() ¢crossMiddleWeight : int=1 | | Entity
(o layout)<<: ~#PswitchContent() opartCoincidentWeight : it =1/ | (rom layout)
SgetCell() &tCrossWeight : int = 1 %,d """" int i
:cloneo oloCrossWeight : int = 3 A .
cellAt) e . SEnti :
“getEntityPosition() ePHeuristic() ! ~§entt||:’)(’)() :
PcomputeLinelList() ~Pestimate() | Wsetid()
$getEntityCoordiantes() PisGoal() | %getRelationList()
getLines() <Pheuristic1() ' %addRelateTo()
:getProjectCross() 3903!1() R
""""""""""""" Evmomtinm setProjectCross() heuristic2()
Layﬁsﬁ):;;p:;uon $getl.ineObjectCross() SprojectCross()
S SsellineOtjectCross) ::getLinedeross()
. getLinesLength() lineObjectCross()
Q‘t:ygztgigngg:g 9setLinesLength() PotallineLength()
,,,,,,,,,,, YOUIEXCEPUONV] agetEstimateValue() Pgoal2()

Figure 54. Grid layout class diagram

90

CFileFilter

(from util)

&useExtensionsinDescription : boolean = true

CXml

(from util)

SCFileFilter()
®CFileFilter()
SCFileFilter()
SCFileFilter()
SCFileFilter()
®accept()
%getExtension()
%addExtension()
%getDescription()
%setDescription()

®setExtensionListinDescription()
%isExtensionListinDescription()

&HCxmi()

%createDocument()
%getChildElementByName()
$getPoint3d()

%getPoint3i()

®getFactor()
$getControlRadius()
®getMaterial()

isVisible()

Point2i
(from geom)
oX int
ov:in GidObjectFile
*Point2i() (from util)
$GidObjectFile()
GClassLoader SwriteGridToFile()
(from util) %readObject()
gPopenOutput()
®GClasslLoader() g‘g{:"g’e'gupt()
¥createObject()

GridTextFile

(from util)

$GridTextFile()

“print()

*printin()

%readLine()
ghopenOutput()
&vopeninput()

%close()

SwriteE stimation()

SwriteEntitiesDescription()

®main()

Figure 55. Uitlity class diagram

91

CFileFilter

& useExtensionsInDescription : boolean = true

Dynamic

SCFileFilter()
$CFileFilter()
SCFileFilter()
SCFileFilter()

&pdataReady : boolean = false
&animation : Animation
&compress : boolean
“Tupointer : int = 0

&SCALE : double = 0.5

®CFileFilter() QDynamic()

accept() . &rinitComponents()

SgetExtension() gPresetButtonActionPerformedy()

:addExten_spn() @pauseCheckBoxActionPerformed()
getDescription() &rplay ToggleButtonActionPerformed()

$setDescription() gPnextFrameButtonActionPerformedy()

%setExtensionListinDescription()

&loadFileButtonActionPerformed()

%isExtensionListinDescription() ehexitForm()
+¥isDataReady()
Animation ®main()
(from Dynamic)
&numberOfFrame : int compets
‘Animation() (from testHiliClimb) Disp]ay']"hread
s¥nextFrame() TnumberOfCompetor : int = 1 {from testHillClimb)
s¥isLastFrame()
PaddEntities() “co'mpete.() *Display Thread()
4¥createEntityBranchGroup() Q‘W”t_eTOF ile() run()
s¥createCylinderBranchGroup() main()
s¥getCenterByld() & getGridtData()
+PgetMaterialByld() ghcreateGrid()
4¥getFrameElement() framy
MainFrame
ComputeThread (from testHillClimb)
DisplayThread (from testHillClimb)
(from Dynamic) &time : long
i ¥ComputeThread()

DisplayThread() p

‘I:run() %ComputeThread()
%run()

Figure 56. Dynamic visualization class diagram

92

(from metaviz)

. %setExtensionListinDescription(
%isExtensionListinDescription()

ClayoutManager MetaData TestAwt -
(f!?m metavnz) VVVVVVVVVVVVV (from dataExchange) (fmm_demonSranon) _
$Modeling() &sideOfCluster : int = 0 ndalone : boolean = true
ginitComponents() | &widthOfCluster : int = 0 “MetaData() | e
SrefreshViewPanel() | &numberOfMball : int = 0 SMetaData() | TestAwt()
"""""""""""""" &numberOfCluster : int = 0 ‘ge.tCenter() STestAwt()
&gridSize : double = 2f Sprint() ‘émltComponentS()
.. &place[] : boolean YcreateMetaVector) | @ TextmappingActionPerformed()
Cluster &cluster(] : Cluster 4isitElement_metaball() élmphcnSurfacesActnonPerformed()
(from Cl.ayoutManager) +HisitElement_size() | @@BlendingActionPerformed()
Tside : int=0 %CLayoutManager() ~uisitElement_x() @vCouplingActionPerformed()
Box : double = 0 Scompile() sHisitElement_y() | @Material ActionPerformed()
Ty : double = 0 ghnumberOfCiuster() ~4hisitElement_z() | éexititemActionPerformed()
Bz : double =0 : +isitElement_relationShips() | @exitForm()
Borid[10[] : int -tayoiifConstrain 1hisitElement_relationShip() | @processExit()
o LayoutConstrain isitElement_coordinator() © Smain()
Juster() youtConstre N
if,ff\go &clusterPadding : int = Layout e :
FisFull) Constrain {from metaviz) CoupleNode |
Awidth() ‘setCIusterPaddmg() \\ Exchange) |
+Pcompute() L,ZQS‘Q!“S‘EKE?EEFEQQ ,,,,,,,,,, | $Layout(tNode : 'ni|
-layoutCopstrair &rinitComponents() odegree double i
e — gclusterPaddingActionPerformed() -
ProjeciName TestAwt gcancelActionPerformed() ‘CoupleNodeO |
(from metaviz) @okActionPerformed()]
&sstandalone : boolean = true &rcloseDialog()
. Sshow()
TestAwt()
D s e
CFileFilter
ginitdc':n:por?n'tfs() o0 (fom dataExchange)
oadActionPerform : -
QjFileChooserActionPe rormed() ‘%useExtensmnsInDescnptlon boolean = true
@LayoutActionPerformed() Y
&OwerallStuctureActionPerformed()| ‘CF!IeF!lter()
N . . ®CFileFiiter()
&pexititemActionPerformed() el
X CFileFilter()
&exitFom() | $CFileFilter() ;
$main() | SGEilE [SlicingResult
| ®CFileFilter() ‘
@refreshMetabaIlVector() - (from dataExchange)’
&processExit() accept() [o
P . | %getExtension()
i | %addExtension() :Se‘()
| %getDescription() Sget()
. %setDescription()

)

Figure 57. Metaviz class diagram

93

