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Abstract

Partial Answers in Information Integration Systems : Their Meaning
and Computation

Victoria Kiricenko

Information integration systems provide uniform interfaces to varieties of hetero-
geneous information sources. Our work focuses on query answering in such system.
The current generation of query answering algorithms in local-as-view (source-centric)
information integration systems all produce what has been thought of as ”the best
obtainable” answer, given the circumstances that the source-centric approach intro-
duces incomplete information into the virtual global relations. However, this ”best
obtainable” answer does not include all information that can be extracted form the
sources because it does not allow partial information.

We define the semantics of partial facts and introduce the notion of exact an-
swer - that is the answer that includes partial facts. We also present two methods
for computing exact answer, in such way that semantics of queries remain composi-
tional. The first method is tableau-based and is a generalization of the ”inverse-rules”
approach. The second, much more efficient method, is a generalization of the rewrit-
ing approach, and is based on partial containment mappings introduced in the thesis.
Furthermore, we provide two query rewriting algorithms that can be used to compute
exact answer. Finally, we present experimental results confirming that computation
of the exact answer can be done efficiently for all practical situations including the

large-scale systems.
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Chapter 1

Introduction

1.1 Information integration

Integrating heterogeneous data sources is a fundamental problem in databases, which
has been studied extensively in the last two decades both from a formal and from a
practical point of view (see e. g. [UI97, Hal01, Len02]). Recently, mostly driven by
the need to integrate data sources on the Web, much of the research on integration
has focused on so called information integration systems. Information integration
systems aim to provide a uniform query interface to multiple heterogeneous sources.
The goal of an information integration system is to free the user from having to locate
the sources relevant to a query, interact with each source in isolation, and manually
combine data from multiple sources.

Examples of information integration applications include enterprise integration,
querying multiple sources on the World Wide Web, and integration of data from
distributed scientific experiments, just to name a few. The information sources in
such an application may be traditional databases, legacy systems, or even structured

files. To deal with the fact that different sources use different data models, schema and
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Figure 1: General architecture of an information integration system.

query interfaces information integration systems use so called mediation architecture.
In this architecture a wrapper is build on the top of each source. The purpose of the
wrapper is to translate the source data model to a universal data model, typically
relational model, so that the system can exchange queries and data with the sources.
The general architecture of an information integration system is illustrated by Figure
1.

To provide a uniform interface, an information integration system present to the
user a global schema. A global schema is a set of virtual relations, virtual in the sense
that they are not actually stored anywhere. Internally an information integration
system keeps information about a set of available data sources, that is a set of relations
which contain the real data. To be able to answer queries the system must also

maintain a set of mappings between the global schema and data sources. Users of



an information integration system pose queries in terms of the global schema and,
therefore, the system should be able to re-express the queries in terms of a suitable
set of queries posed to the sources. The crucial step in this reformulation process is
deciding how to decompose and assemble a query on the global schema into a set of
subqueries on the sources, based on the meaning of the mapping between them. The
computed subqueries are then shipped to the sources, and the results are assembled
into the final answer.

Critical issue in the design of an information integration system is how the global
schema and the source schema are mapped to each other. In particular, two basic
approaches have been proposed: the Global-As-View(GAV) and the Local-As- View
(LAV).

The first one, also known as global-centric approach, requires that the global
schema is expressed in terms of the data sources. More precisely, to every element
of the global schema, a view over the data sources is associated, so that its mean-
ing is specified in terms of the data residing at the sources. The second approach,
also known as source-centric approach, requires the global schema to be specified
independently form the sources. In turn, the sources are defined as views over the
global schema. The relationships between the global schema and the sources are,
thus, established by specifying the information content of each source in terms of a
view over the global schema. Comparisons of the two approaches are reported in
(U197, AGLO01].

It is well known that query processing is much easier in the GAV approach, where
we can take advantage of the fact that the mapping directly specifies which source
queries corresponds to the elements of the global schema and, thus, answering a
query basically means unfolding its atoms according to their definition in terms of

the sources. The reason why unfolding does the job is that the mapping essentially



specifies a single database satisfying the global schema, and evaluating the query
over this unique database is equivalent to evaluating its unfolding over the sources.
However, in the GAV approach the system lacks an essential feature — extensibility.
If a new source is to be added to a GAV information integration system the global
schema needs to be redesigned, which is done by and large manually and, therefore,
is very costly.

It is also an accepted fact that processing queries in the LAV approach is a difficult
task [ALMO02, DG97, GM99, LRO96, MMO01, PL00]. Indeed, in this approach, the
only knowledge we have about the data in the global schema is through the views
representing the sources, and these views provide only partial information about the
data. Since the mapping associates to each source a view over the global schema, it
is not immediate to infer how to use the sources in order to answer queries expressed
over the global schema. Thus, extracting information from the LAV information
integration system is similar to query answering with incomplete information, which is
a complex task [Gra9l, IL84, Men84]. On the other hand, the LAV approach ensures
an easier extensibility of the integration system, and provides a more appropriate
setting for its maintenance. For example, adding a new source to the system requires
only providing the definition of the source and does not generally involve changes to
the global schema.

In this work we focus on LAV information integration system, where query pro-
cessing can, as we already mentioned, be seen as a special case of query answering
with incomplete information. To see that this is indeed the case consider the following

simple example.

Example 1 Suppose we have a global relations Teaches(Prof, Course), and two

sources: Source S; has definition S1(X,Y) « Teaches(X,Y) and contains one fact



S1(Johns, comp248)}. Source Sy has definition S2(X) « Teaches(X,Y) and also one
fact So(Smith)}. Then it is natural to think that any database that contains at least
the facts Teaches(Johns, comp248), and Teaches(Smith, c), for some course number c,
is a possible global database. For example { Teaches(Johns, comp248), Teaches(Smith,
comp335)} and { Teaches(Johns, comp248), Teaches(Smith, comp335), Teaches(Brown,

comp353)} are both examples of such databases.

That is, there might be several (usually infinitely many) global databases that are
consistent with the definition of, and the data in the sources. In other words, the
global database is an incomplete database.

A question of semantics now arises: what is the meaning of a query? As illustrated
by the Figure 2 the user that is presented with the global schema expresses his/her
query in terms of this schema. Since the sources implicitly represent an instance of this
global schema, it would be natural —at least conceptually— to reconstruct the global
database represented by the sources and apply the query to this global database.

However, there are at least two issues that must be resolved for this to work.
First, what database or databases are represented by a given set of sources, how to
identify them, and how to concisely represent this possibly infinite set. Second, since
the global database is a set, each element representing a possible global database, the
natural answer to a query is the set of answers obtained by applying the query on each
possible database. Thus, we need to a way to compute a single compact representation
of these multiple answers or an approximation to them. See [GM99, MM01, GK02]
for the comprehensive treatment of these issues.

From the algorithmical standpoint query answering in LAV information integra-
tion system reduces to view-based query processing.

There are two approaches to view-based query processing, called query rewriting
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Figure 2: Querying an information integration system.

and query answering respectively [CGLV00]. In the former approach, we are given a
query and a set of view definitions, and the goal is to reformulate the query into an
expression, the rewriting, that refers only to the views, and provides the answer to
the query. In the latter approach, besides the query and the view definitions, we are
also given the data stored at the sources. The goal is to compute the answer that is
implied by the sources, i.e., the set of tuples that are in the answer set of the query
in all the databases that are consistent with the sources.

Notice the difference between the two approaches. In query rewriting, query
processing is divided into two steps, first the query is re-expressed in terms of the view
definitions, and then the obtained rewriting is evaluated on the underlying sources.
In query answering, we essentially compute the representation of the entire global
database and then evaluate the query on this representation. While conceptually
clear and, thus, useful for defining semantics of a query in an information integration

system, query answering is not practical. Computing the representation of the entire



global database might involve a large amount of redundant work, since the global
relations that are in the query might be mentioned in only few source definitions.
Moreover, the query might have selections and joins that could be computed directly
at the sources. For these reasons, mainstream of research in information integration

focuses on query rewriting rather then just query answering.

1.2 Problem definition and our contributions

State of the art query processing algorithms in LAV information integration systems
all produce what has been thought of as "the best obtainable” answer, given the
circumstances that the source-centric approach introduces incomplete information
into the virtual global relations. However, perhaps since the relationship between
information integration and incomplete information had not been clearly articulated,
this "best obtainable” answer does not allow partial information. To illustrate the

problem and to make our discussion more concrete let us consider a simple example.
Example 2 Suppose the global schema contains two relations:

Prof(Prof, Email, Office, Area), that is professor’s name, email, office number,

and research area.
Dept(Prof, D), that is professor’s name and department.
The available sources are {S1, Sy,.53, S4}. These sources have the following definitions:
S1(Prof , Email) — Prof (Prof , Email, Office, Area)
Sa(Prof , Office) « Prof (Prof , Email, Office, Area)

S3(Prof , Area) «— Prof (Prof , Email, Office, Area)

7



S4(Prof , D) — Dept(Prof, D)
Suppose the user issues the query
Q(Prof , Email, Office, Area) « Prof (Prof , Email, Office, Area), Dept(Prof , compsci)

That is, the user is interested in obtaining all available information about professors
in the compsci department. Since the information integration system does not have a
way to get tuples for the atom Prof it would produce an empty rewriting and, thus,

an empty answer for the user.

Everybody who has ever queried integrated information, especially in the case of
the World Wide Web, knows this situation very well. The next logical action of the
user, who wants to get at least partial information, is to try to make his(her) query
less restrictive. In our example, to get at least some information about the professors
in the compsci department, the user has to modify the original query by projecting
out some of the attributes of the relation Prof. Since the user in unaware of the
internals or the system, (s)he has to try all possible combinations of the attributes
and then manually assemble the final answer. From the point of view of the user, the
system should take on this burden and compute the answer containing this partial
information. This is feasible, since the query could be rewritten as union of the

following unsafe conjunctive queries.
Q(Prof , Email, X, Y) «— Si(Prof , Email), S4( Prof , compsci)
Q(Prof, X, Office, Y) «— Sa( Prof , Office), Sa( Prof , compsci)
Q(Prof, X, Y, Area) — S3(Prof, Area), S4( Prof , compsci)

The unrestricted variables X and Y represent unknown values. The answer can

then be presented to the user as a table with some values missing, for example as

8



[ Pname [ Email I Office ! Area |

Murphy | murphy@cs.uoft.edu | L A
Murphy | L SF322 | L
Smith 1 1 DB
Jones jones@cs.concordia.ca | L 1
Brown | L L Al

Figure 3: One possible answer to the query in the Example 2.

the table in Figure 3. (The contents of the table will, obviously, depend on the data
provided by the sources.)

However, producing such partial answers is not without its intricacies. In a web
based setting, the number of tuples in the answer is typically is much larger than the
user wants. In such a case the user, to reduce the size of the answer, would most
likely want to make his(her) query more restrictive. Which means that an information
integration system, in order to be of any practical use, has to provide the user with the
ability to search within the answers. This poses the restriction on how the answer to
the original query is to be computed. Semantics of the query should be compositional,
namely, if the second query is applied to the results of the first one the answer should
be the same as if the composition of the two queries were executed on the underlying
data sources.

In this work we solve both problems illustrated by the above example.

We first define the semantics of partial facts and introduce the notion of an exact
answer - that is an answer that includes partial facts. We then provide two meth-
ods for computing the exact answer, in such way that semantics of queries remain

compositional.



The first method is a generalization of the “inverse-rules” approach [DG97, GM99,
MMO1], and involves explicitly computing a syntactic representation of the set of
global databases implicitly defined by the sources. The other method is a gener-
alization of the rewriting technique (see e.g. [LMSS95, Ull97, LRO96, PL00}). In
this method reformulates a query in terms of the source relations, and, thus, avoids
inverting the entire source collection.

Current research in information integration focuses on computation of possible
or, most commonly, the certain answer. Possible answer is an approximation of
the exact answer from above and certain answer is an approximation of the exact
answer from below. The ability to compute exact answer allows us to construct either
approximation easily since the certain answer is the intersection of exact answers, and
the possible answer corresponds to their union.

The outline of the thesis is as follows. In Chapter 2 we begin by introducing some
notions, defining the concepts, and formalizing the model that are used in the thesis.
Chapter 3 deals with the issue of query answering and query rewriting. We first ad-
dress the question of semantics of the query in a LAV information integration system.
Then, Section 3.1 gives the query answering algorithm and Section 3.2 presents two
query rewriting algorithms. Chapter 4 gives the results of experimental evaluation of
the performance of the two proposed rewriting algorithms. Chapter 5 reviews main
contributions of our work, outlines directions for future research, and concludes.

Some of the material presented in this thesis appears in [GK02], [GKO03].

10



Chapter 2

The Model

2.1 Basic definitions

We begin by introducing some notions and defining the concepts that are used
throughout the thesis.

Let rel be a countably infinite set {R,S,..., Ry, S1,...} of relation names, let
dom be a countably infinite set of constants, and let var be a countably infinite set
of variables. Constants will be denoted by lower case letters and variables by upper
case letters. Associated with each relation name R is a positive integer arity(R),
which is the arity of R.

A fact over R is an expression of the form R(ay, ..., ax), where k = arity(R), and
each g; is in dom. Let R = {Ry, Rs, ..., R,} be a set of relation names. A finite set
of relation names will sometimes also be called a schema. A database db over R is a
finite set of facts, each fact being over some R; € R.

As the majority of papers on information integration do, we will focus on the
most practical class of queries, namely the conjunctive queries. To formally define a

conjunctive query we need the concept of an atom, which is generalization of a fact

11



in that it may include variables as well as constants. An atom over a relation name R
is an expression of the form Rfe, ..., e;), where k = arity(R), and each e; is either
a constant in dom or a variable in var,

A conjunctive query ¢ (over R) has the form
head(p) — body(y),

where body(y) is a set of atoms by, by, ..., b,, each over a relation name in R, and
head(p) is an atom over an answer relation name not in R. We assume that all
variables occurring in head(p) also occur in body(), i. e. that the query ¢ is safe.
The variables occurring in head(y) are the distinguished variables of the query, and
all the others are existential variables.

A conjunctive query ¢ can be applied to a database db over R, resulting in a set

of facts
o(db) = {o(head(y)) : o(body(y)) C db for some valuation o}.

A wvaluation o, is formally a finite partial mapping from var Udom to dom that
is the identity on dom. Valuations, like X; — a;, for i € [1,p], we will give in the

form {Xi/ai,...,X,/a,}. The identity on constants is omitted in this notation.

2.2  Source collections and global databases

Let loc be a countably infinite set {V, Vi, Vs, ...} of local relation names. The local
relation names have arities, and atoms over local relation names are defined in the
same way as atoms over relation names in rel. To distinguish between relations
(relation names) in rel and in loc we will henceforth call the former global relations

(relation names).

12



A source S is a pair (¢, v), where ¢ is a conjunctive query and v is a finite set of
facts over head(p). A source collection S is a finite set of sources. The (global) schema
of S, denoted sch(S) is the set consisting of all the global relation names occurring
in the bodies of the defining conjunctive queries of the sources in §. The description
of S, denoted desc(S) is obtained from S by dropping the extension from every pair
in S. In other words, a source collection S has two “schemas,” sch(S) which is the
“global world view” and desc(S), which describes the defining views. The extension
of a source collection S, denoted ezt(S), is the union of all facts in sources in S.

Since the global relations are virtual, in the sense that they don’t contain any
data, we need to answer the question: what is the instance of the global schema that
is implicitly represented by the sources? As we already discussed in the Chapter 1,
the global database is actually incomplete. In other words, there might be several
(usually infinitely many) global databases that are consistent with the definition of,
and the data in the sources (see Example 1).

Formally, a source collection S defines a set of possible databases, denoted poss(S),

as follows:

poss(S) = {db over sch(S) : wv; C ;(db) for all sources

S; = (v, v;) in S}.

Since poss(S) is infinite, we will now consider the problem of finitely representing

an infinite set of databases. For this we invoke the venerable tableau.

Sets of databases and tableaux

Tableaux [Men84] are intended to concisely and finitely represent a large or infinite

set of possible instances.
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Let R ={R;, Ry,..., R,} be a set of relation names. A tableau T" over R is a
finite set of atoms over the R;’s. Note that the same variable might appear in several
atoms in T'.

A tableau T over schema R represents a set of databases over R. This set is

denoted rep(T), and it is defined by
rep(T) = {db : there is a valuation ¢ such that o(T) C db}.

The definition says that a database db is represented by a tableau T, if there is a
valuation o such that when all variables in T' are replaced by their image under o,

the set of facts thus obtained is a subset of db (see Example 3).

Example 3 Let T = {R(a,b), R(c, X)}, db = {R(a,b), R(c,d), R(e, f)}, and db’ =
{R(a,g), R(c,d)}. Then db is in rep(T), but db' is not. R(a,b) in db is a certain
fact because it’s true in all databases in rep(7T’) and R(c, d) is so called possible fact

because it’s true in some databases in rep(T).

Note that o(T') is a subset of db. this is due to the fact that we adopt the Open
World Assumption (OWA) [Rei78]. Usually a database is a complete description
of the state of the world modeled by it. This is actually true only if we adopt the
Closed World Assumption (CWA) according to which facts not explicitly stored in the
database are false. For example, in the database {R;(a1,a3), Ri(as, a3), Rz(as, a4)},
the fact R;(a3,a;) is false. The closed world assumption is convenient since in gen-
eral there is an infinitude of false facts. The CWA is, however, not appropriate for
modeling all situations and information integration is a setting that calls for use of
the OWA. The OWA regards the database as an incomplete description of the world:
All facts stored in the database are true, the truth value of any other fact is unknoum.

Semantically this means that the stored database db actually is a finite description

14



of a set of possible worlds, defined as
{db": db C db'}. (1)

Each db’ represents one possible complete state of affairs (or world). Facts that are
true in some possible worlds are called possible facts, and facts true in all possible
worlds are called certain facts.

In order to reason about tableaux we have to define a few concepts that are
applicable to sets of global databases represented by tableaux.

Let X and Y be two enumerable sets of global databases over R. We say that X
and Y are coinitial if they have the same C-minimal elements. Coinitiality is denoted
X =)

Let Q be the set of all queries expressible in a query language that we by abuse
of notation also call Q. Then X and Y are said to be Q-eguivalent, denoted X =q Y,
if for all queries v € 2 we have

() w(db) = () w(db).
dbeX dbey
The intuition behind 2-equivalence is that X and Y are indistinguishable as far as
the certain information derivable by queries in €2 are concerned. Thus, if a user can
only pose queries in €2, (s)he cannot distinguish between & and Y.

Let db and db’ be two databases over R. A query language 2 is monotone if for

every query ¢ € Q p(db) C p(db’), whenever db C db'.

The following lemma is proved in the seminal paper [IL84].
Lemma 1 Let Q2 be a monotone query language. If X = Y, then X =q V.

Proof. Let X = Y, and let db be an arbitrary element in X. We have two cases to

consider.

15



Case 1: The element db is C-minimal in X. Then there exist db’ € Y such that
db C db'. Now, by the definition of monotonicity, for every query ¢ € Q, we have
@(db) C p(db"). Consequently N{p(db) : db € X} C N{p(db) : db € Y}

Case 2: The element db is not C-minimal in . Then there is a C-minimal
element db’ € X such that db’ C db, and db’ C db”, for some db” € Y. Now we have
that ¢(db) N ¢(db’) C ¢(db"). Hence again we get, N{p(db) : db € X} C N{p(db) :
dbe Y}.

The same reasoning applies for showing that N{y(db) : db € Y} C N{p(db) : db €
X} [ |

Of particular interest to us is of course choosing {2 to be the set of all unions of

conjunctive, which, it goes without saying, is a monotone query language.

2.3 Representing poss(S) by a tableau

Now the set poss(S) can be conveniently represented by a tableau over schema sch(S),
denoted T'(S), such that rep(T) = poss(S). To construct T we shall follow the
approach in [GM99]. We define a function, which, by abuse of notation, we by also
denote 7', from sources with defining view ¢, where the body of ¢ consists of atoms
over relation names in R, to a tableau over R. We also need an auxiliary function
refresh, that, when applied to a set of atoms, replaces all variables with distinct ones.

Given a source S = (¢, v), we set

T(S) = |J{refresh(o(body())) : o(head(y))=u},

uev
for some valuation o.
Example 4 Let S = (V(X, Z) — R(X,Y),S(Y, Z), {V(a,b), V(c,d)}). Then T(S) =
{R(a,Y1),S5(Y1,b), R(c,Y2),S(Ys,d)}, where Y7 and Y; are fresh variables.
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When there are several sources in S we set
T(S) = U T(S).
Ses

The tableau constructed by the function T has the following desirable property.
Theorem 1 rep(T(S)) = poss(S).

Proof.

Let db € rep(T(S)). To prove that db € poss(S) we need to show that for all
sources S; = (i, ;) in S, we have v; C ¢;(db). Since db € rep(T(S)) there is
a valuation ¢ such that o(T(S)) C db. Let S; = (y;,v;) be an arbitrary source
in 8§, and let t be an arbitrary fact in v;. Then there must be a substitution 6,
such that ¢t = 6(head(yp;)) and all facts in 0(body(p;)) are in T(S). It follows that
6(o(body(p:))) C db and, consequently, 8(c(head(yp;))) € db. Since 6(o(head(y;))) =
t, we have v; C ;(db) as desired.

For inclusion in the other direction, let db € poss(S). From construction of T(S)

it immediately follows that there is a valuation ¢ such that o(7(S)) C db and, thus,

that db € rep(T(S)). n

Note that T'(S) can be extended to handle the closed-world assumption and other
kinds of constraints, see [GM99, MMO1].

Now, since we laid out a formal framework for information integration and ex-
pounded the strong connection between information integration and incomplete in-
formation we can address the question of querying in an information integration

system.
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Chapter 3

Query Answering and Query

Rewriting

3.1 Query answering

First we have to address the question of semantics of the query in information inte-
gration system. Since the global database is incomplete, and therefore, represents a
set, of possible databases, it would be natural to expect that the answer to a query
is also a set, of answers, one for each possible database. With this in mind we define
exact answer.

Let S be source collection, and ¢ a conjunctive query, such that the body of ¢
consists of atoms over relation names in sch(S). Now ¢ applied to S defines the ezact

o(S) = {p(db) : db € poss(S)}.

The definition essentially says that since the source collection corresponds to a set
of databases, the answer should also correspond to a set, obtained by evaluating the

query pointwise.
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The problem of computing exact answer to a user query was not addressed in
the literature except for a brief discussion in [GM99] and somewhat more extensive
treatment in [GK02]. Instead, all of the proposed algorithms are aimed at comput-
ing the possible or, most commonly, the certain answer, where the possible answer
is an approximation of the exact answer from above and the certain answer is an
approximation of the exact answer from bellow.

The possible answer can be defined as ¢*(S) = U{p(db) : db € poss(S)}.

The certain answer can be defined as ¢, (S) = N{p(db) : db € poss(S)}.

Essentially, the exact answer is the most general answer, and, as we show in the
following section, given the exact answer we can obtain both possible and certain
answers.

Next we will discuss how to compute the exact answer and to produce a single
compact representation of it, so that semantics of the queries remain compositional,
that is, if we desire to apply a query to the result of an earlier query we obtain an

answer that we expect.

3.1.1 Computing the exact answer from the tableau

Since we are able to construct a tableau T representing all databases in poss(S) it is
natural to extend the standard query evaluation mechanism to operate on tableaux.

Given a conjunctive query ¢ over R, our evaluation @ (which is basically the
“naive evaluation” of [IL84]) is defined next. For this we need the concept of a
substitution. A substitution is a valuation, except that we allow variables to be
mapped into variables, not only constants. Thus, a substitution 8 is a function from

(a subset of) domU var to dom U var, keeping in mind that constants have to be
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mapped to themselves. Then
@(T) = {6(head(p)) : 6(body(y)) C T for some substitution 6}.

Example 5 Let a query be ¢ = Q(X,Y,Z) — R(X,Y),S(Y,Z) and a tableau be
T = {R(a,b), R(d, X), S(b,c), S(X,e), S(Y, f)}. Then §(T) = {Q(a,b,¢),Q(d, X, e)}.

Clearly, if our definition of @ is semantically meaningful, then we should expect
that it approximates the information given by ¢(S) in some natural sense. Indeed,

our extended semantics has the following property:
Theorem 2 rep(@(T)) = p(rep(T)).

Proof.

Let db be a C-minimal element in rep(@(T)). Then there exist a valuation o
such that o(¢(T)) = db. Let t be an arbitrary fact in db. Then there is a fact
u € ¢(T) such that o(u) = ¢, and there is a substitution 8 such that #(body(¢)) € T
and u = §(head(yp)).

Let ¢’ be an extension of o that maps every variable that is in T but not in ¢(T)
to a distinct new constant. Since 6(body(y)) C T, we have o’8(body(p)) C o'(T).
It now follows that ¢t = o'(8(head(y))) € ¢(o'(T)). Note that ¢’(T) is a C-minimal
element in rep(T’). From the monotonicity of ¢ it follows that ¢(o’(T)) is a C-minimal
element in ¢(rep(T)). We have established that db C ¢(o’(T))

That concludes the proof that any C-minimal element db in rep(¢(T)) is also in
p(rep(T)).

For inclusion in the other direction let db be a C-minimal element in ¢(rep(T)).
Then there is a valuation o, such that db = p(o(T)). Let t be an arbitrary tuple in
db. Then there is a valuation p, such that t = p(head(y)) and all facts in p(body(y))

are in o(T'). Now we have two cases to consider.
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Case 1: The valuation ¢ is one-to-one. Then there is an inverse o~!, and hence
o Y (p(body(¢))) C 0=Yo(T)) = T, and consequently o~ 1(t) = o~} (p(head(p))) is in
@(T). Since o(G(T)) € rep(p(T)), it follows that t € o($(T)) € rep(@(T)). Likewise,
if ¢’ is any other tuple in db = p(o(T)), it is generated by some valuation p', and we
have o 1(t') = 07 (p'(head(y))) € @(T). Therefore db C a(H(T)).

Case 2: There is (at least one) pair of distinct variables X and Y in T, such that
o(X)=0(Y). lf o(X) = pU), and o(Y) = p(W), for U # W, then the valuation w,
that is like 07! o p, except w(U) = X, and w(V) =Y, gives us w(body(¢)) C T, and
o~ (t) = w(head(p)) € @(T). Consequently t = o(c71(t)) € o(@(T)).

Suppose then that o(X) = o(Y) = p(W), and that there are (at least) two
occurrences of W in body(yp). Consider now the valuation o', that is exactly like o,
except it maps Y to a fresh constant, say a. Clearly ¢t ¢ ¢(0'(T)), and any fact
in p(co’(T)) is also in ¢(o(T)) (because there is an embedding of ¢'(T) into o(T).)
Therefore we have a contradiction to the assumption that ¢ belonged to a C-minimal

element of p(rep(T)). n
As a consequence we now have a method for computing an ~-approximation of
o(S5)-

Corollary 1 rep(@(T(S))) = ¢(S). [

In other words, first invert the source extensions through their definitions, then
apply the @g-evaluation of the user query ¢ on the resulting tableau. The result of the
evaluation is another tableau, which the user perceives as a relation with nulls. Given

the exact answer that is obviously most informative of all answers, we can obtain the

possible answer and the certain answer as follows.

Lemma 2 ¢.(S) = Nrep(3(T'(S))), and ¢"(S) = Urep(3(T(S))).
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Proof.

To prove the first clam of the lemma, recall that by the definitions of ¢(S) and
V«(S), ©(S) = NY(S). By the Theorem 2 rep(¢(T)) ~ p(rep(T)). Now, since ¢ is
monotone, by the definition of 2-equivalence and Lemma 1 ¢,(S) = Nrep(g(T(S))).

Analogous proof for the second claim is omitted. ]

Note that the above lemma is not surprising, since query plan produced by ”inverse
rules” algorithm of [DG97], at least conceptually, computes T'(S) by inverting entire
source collection and, then, considers only the certain tuples for the answer.

Furthermore, we can prove that ¢ evaluation has compositional semantics.

Lemma 3 rep(@(%(T(S)))) = o(¥(S)).

Proof.
From Theorem 2 follows that rep(B()(T(S)))) = w(rep(¥(T(S)))). By Corollary
1 rep(B(T(S))) ~ $(S). Therefore, rep(Z(BH(T(S)))) ~ ¢ ((S)). "

In essence, as illustrated by Example 6, we can use our extended evaluation to

compute a query on the result of another query.

Example 6 For a simple example, let us consider the following source collection

S = {(Vi(Xy, X5, X4, X5) «— R(X1, X2, X3), R(X4, X2, X5), {Vi(a,b,c,d)})}, the query
Q1(X,Y,Z) «— R(X,Y,Z), and the query Q+(X,W) — R(X,Y,Z)R(W,Y,U). The
exact answer to @ is {Qi(a, X,b), Q1(c, X,d)}. The result of applying Q- on the
exact answer to @ is {Q2(a, ¢)} and it is easy to see that it is the same as if Q, was

evaluated directly.

However, computing ¢(7T(S)) might involve abundance of redundant work, since
it amounts to constructing the tableau corresponding to the entire source collection,

whereas the global relations that are in body(y) might be mentioned in only few
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source definitions. Moreover, the query might have selections and joins that could
be computed directly at the sources. For those reasons, vast majority of research in
information integration focuses on query rewriting rather then just query answering.

We discuss query answering by the means of query rewriting in the next section.

3.1.2 Computing the exact answer directly on the source col-

lection

In an information integration system a query processor is in charge of reformulating
queries written in terms of the global schema to queries on the appropriate sources.
This process is known as query rewriting. To obtain the answer to a given query
the rewriting is then evaluated on the underlying sources. Since the exact answer is
actually a set of answer sets and can be represented by a tableau, any rewriting to
compute the exact answer has to be more general than the usual notion of rewriting.

We now proceed as follows. First we generalize the notion of query contain-
ment, which enables comparisons between different reformulations of queries, to p-
containment. Next we define p-rewriting based on this more general containment.
Then we extend standard query evaluation so that given a p-rewriting it computes
the exact answer. In Section 3.2 we study the problem of finding p-rewriting and its

complexity and give two algorithms that compute a p-rewriting for a given query.

P-containment of conjunctive queries

We can broaden query containment as follows.
Let 7 and ¢ be conjunctive queries. A query ¢ is said to be p-contained in

2, denoted 1 C, 9, if and only if there exists a conjunctive query ¢, where ¢y is
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equivalent to m(¢) (7 is relational projection), for some list L of columns in head(¢)
taken in the original order, such that for all databases db, ¢(db) C ¢2(db). Note that
p-containment is a generalization of query containment since L can be the list of all

columns in s.

Testing p-containment of conjunctive queries

In order to facilitate testing of p-containment, the classical notion of a containment
mapping can be generalized to define p-containment mappings. A p-containment
mapping from a conjunctive query w2 to a conjunctive query ; is a mapping p, from

variables of 5 to variables and constants of ¢, such that

L. p(body(yp2)) C body(e1), and

2. for every variable X in head(y;) there is a variable Y in head(y3), such that
pY) = X.

Example 7 Counsider the following queries
o1 = (X) — R(X,Y),S(Y,Y), T(Y, 2)
2 = Q2(A, B) — R(4, B), S(B,C)
There is a p-containment mapping p = {A/X, B/Y,C/Y} from ¢, to ¢;.

As consequence, we can now use p-containment mappings to test p-containment

of conjunctive queries.

Theorem 3 A query y; is p-contained in o query o if and only if there is a p-

containment mapping from s to yq.
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Proof.

Let ¢ be a p-containment mapping from @, to ¢;, and let db be an arbitrary
database. A fact t; in ¢;(db) is generated by some valuation 0. Then o oy is a
valuation that generates the corresponding fact ¢y in @s(db). To see that this is
indeed so, let b € body(ys). Then o o p(b) = o(c) € db, for some ¢ € body(p;).
Therefore, o o u(b) € db. From requirement 2 of a p-containment mapping it follows
that o o p(head(ypsz)) = 71 (0 o u(head(y,))), where L is a list of variables in head(y2)

in the original order. Thus, ¢; &, .

Let 3 C, o. Let db be the canonical database that is the “frozen” body(y1). By
the definition of p-containment there exist a conjunctive query ¢, such that ¥(db) C
pa(db) and ¢; = 7w () for some ordered list L of columns in head(y)). Obviously,
©1(db) contains a fact ¢;, which is the “frozen” head(p;). Since ¢; = 7 (¢)) there
must be a fact £ in (db), such that 7y (t2) = t;. Since ¥(db) C y(db), we have
ta € po(db).

Let o be a valuation that generates the fact ¢ in @2(db). Let p be the the
“freezing” mapping, which also is a valuation that generates the fact {; in ¢;(db).
Then p~! o ¢ is a p-containment mapping from ¢, to ;.

To see that this is indeed so note two things. First, that each atom b € body(p2) is
mapped by ¢ to some fact in db, which is a frozen version of some atom ¢ € body(y1),
so p~! o 0 maps b to the unfrozen fact, that is to c itself.

Second, note that those variables in head () that are also in head(y;) are mapped
by o to constants in the fact ¢;, which is the frozen head(y;), so that all of the head
variables in ¢; are covered. Thus p~! o ¢ maps corresponding variables in head(p2)
to the unfrozen head(y,). Thus, p~! o o is a p-containment mapping from ¢, to ¢;.
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P-rewriting

Now we can extend the notion of rewriting to p-rewriting. Let a source collection be
S = {S1(¥1,01), ..., Sn(¥n,v,)} and let ¢ be a query over desc(S). The expansion of
v, denoted P, is defined only if, for each v; in the body(y), there is a containment
mapping p from head(v);) to ; in the body(p). In this case ¢**? is obtained from ¢ by
replacing all ¢; in the body(y) with pu(body(v;)). Existential variables in p(body (1))
are replaced by fresh variables in %P,

Let S be a source collection and ¢ be a conjunctive query over sch(S). The query
X is a contained rewriting of ¢ using S if x**? C . The query ¥ is a p-conlained
rewriting of ¢ using S if Y C, .

Let ¢ be a p-contained rewriting of ¢. We define the y-evaluation of ¥, denoted

,, as follows.
Yo (S) = {ou(head(y)) : o(body(v)) C ext(S)},

where p is a p-containment mapping from ¢ to ¥ and o is a valuation. Suppose
head variable X of ¢ is is mapped by p to a variable in the expansion of atom
Vi(X1, ..., Xy), and p(X) is the j:th existential variable in the definition of S;. Then

the extension o, of o, is defined by setting

o(u(X)), if u(X) occurs in head(¥)
fij(0(X1),...,0(Xy)), otherwise.

o, (X) =

In order to define @(S) we also need an auxiliary function replace that when
applied to a set of atoms with function terms, replaces each unique term with unique

variable. Now we set

@(S) = replace (U{wv(S) (PP C, go}) ,
and state the following important result:
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Theorem 4 ¢(S) = §(T(S)) up to renaming of the variables.

Proof.

Let ¢t be an arbitrary atom in @(S). Then there was conjunctive query 1 (over
desc(S)) in the union of maximally-contained p-rewritings of ¢ and a y-evaluation of
4, using a valuation o, such that ¢t = o,(head(y)), and o(body(y)) C ezt(S), where
¢ is a containment mapping from ¢ to Y.

Since o(body(v)) C ext(S), it means that all atoms in o(body(y°*?)) are in
T(S) (with fresh existential variables). Since p is a containment mapping from
¢ to ¥, we have that o(u(body(yp))) C T(S). Thus o(u(head(yp))) € @(T(S)).
Now o(u(head(yp))) is equal to o,(head(y)), except for positions that don’t occur
in head(y), these have been replaced by function terms in o,(head(y)). Now let us
consider the case that a given term appears somewhere else in ¢(S). There are two
cases, either the repeating term appears in the same atom or it appears in a different
atoms. Case 1: (Cf. Example 8.) The repeating term appears in the same atom.
This means that either there were repeating variable in head(y) and it is obvious that
in $(T(S)) there is two occurrences of the same variable. Another possibility is that
in ¥? there were two mentions of the same existential variable. In this situation
in T(S) there would be two occurrences of the same variables and since @ always
substitutes variables of the query for the variables of the tableau they would also
appear in @¢(T(S)). Case 2: (Cf. Example 9.) The repeating term appears in some
atom t' in @(S). In this case there are two possibilities, either ¢’ was produced by
wp-evaluation of 9 or by @-evaluation of some other rewriting +’. In either situation
both terms originated from the same tuple in ezt(S) and, moreover, from the same
existential variable because function terms are subscripted with variable index. It is

obvious that there would be two occurrences of the same variables in T'(S).

27



For the proof of inclusion in the other direction, let { be an arbitrary atom in
@(T(S)). Suppose body(yp) consists of atoms by, ba, ..., b,. Then there is a substitu-
tion 6, such that 6(b;) € T(S), for all ¢ € {1,...,n}. But each atom 6(b;) is in T(S)
which follows from the fact that there is a source S;; = (¢;;, v;;), a valuation oy;, and
afact t;, € v;;, such that t;, = oy, (head(;,)) and 6(b;) € refresh(o;,(body(y;,))). I we
take a query 1 such that body(v) = oy, (head(p1,)), o2,(head(2,)), - - -, on, (head(pn,)),
and head(v)) = (01,U0g,U- - -Uoy,)(head(p)), we have a containment mapping (namely
8), from @ to ¥**?. Consequently ¢ will be an element in the union of queries ¢, and
obviously 1 generates the fact ¢ when applied to S. Now let us consider the case that
a given variable appears somewhere else in $(T(S)). Again there are two cases to
consider, either the repeating variable appears in the same atom or it appears in a
different atom. In both cases, the same variables are in $(T'(S)) because there were
the same variables in T'(S) — remember that @ always substitutes variables from the
query for the variables from the tableau. The same variables could appear in the
tableau only if they come from inversion of the same tuple and, moreover, from the
same existential variable in the query defining view. And since this is the case it is
obvicus that in the corresponding atoms in ¢ there will be the same terms in the

corresponding positions. ]

Example 8 For example, let the source collection be S = {(V;(X,, X3) «— R(X1, X2),
5(X2,X3), {Vila,0)}), (Va(X1) « T(X1,X3), {Va(c)})}, and let the query ¢ be
QIX,Y,Y, Z, W) — R(X,Y), S(Y,Z),T(Z,W). In this case there is one (minimal)
p-contained rewriting of ¢, namely ¥ = Q(X,Y) — Vi(X,Y),Vo(Y). Applying 9,
gives us the atom Q(a, f12(a), fi2(a), ¢, fo2(c)), and applying the replace function
yields the answer {Q(a,Y,Y,c, W)}. Had we used the tableau method instead, we

would have gotten T(S) = {R(a,Y),S(Y,¢), T(c, W)}. Then applying @ to T(S)
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would have given {Q(a,Y,Y,c, W)}.

Example 9 For an additional example, consider the following source collection S =
{(Vi(X1, X3) « R(X1, X2, X3), {Vi(a,0)}), (Va(X1, X3) « S(X1,Xz), {Va(c,a)}),
(Va(Xz) «— S(X1, X2), {Va(a)D)}, and let p be Q(X, Y, Z, W) — S(X,Y), R(Y, Z, W).
The two (minimal) p-contained rewritings of ¢: Q(X,Y, W) « Vo(X,Y), Vi(Y, W)
and Q(Y, W) « V3(Y), Vi(Y, W). Applying 1, gives us two atoms Q(c, a, , f1 2(a, b), b)
and Q(fs1(a),a, fia(a,b),b), and applying the replace function yields the answer
{Q(c,a, Z,b),Q(X,a,Z,b)}. Had we constructed the tableau for this source collection
first, we would have gotten T(S) = {R(a, Z,b), S(c,a), S(X,a)}. Then applying @
to T(S) would have given {Q(c,a, Z,b),Q(X,a,Z,b)}.

Note that since @(S) computes a tableau that is equivalent to @(1'(S)) the result
of this computation can be used for subsequent querying, which was not possible with
the evaluation that we presented in our earlier work [GKO02].

In the next section we give an algorithm that, for a given conjunctive query ¢,
computes a finite union of conjunctive queries equivalent to @, and a modification of

it that encodes into the queries the containment mappings p needed in the evaluation.
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3.2 Query rewriting

Since we generalized the notion of containment mapping to p-containment mapping
it is only natural that any rewriting algorithms (such as the algorithms in [LROY6,
PL00, ALMO02]), which are based on containment mappings, can be extended to
produce the p-rewriting. But first we have to look at complete characterization and
complexity of the problem of finding maximally contained p-rewriting of given query

using views.

3.2.1 Complexity of finding p-rewriting

The issue of complexity of query containment and of finding rewriting of a given query
using views has been extensively studied in the literature [LMSS95, AD98, CGLV00].

Let us first restate some fundamental results shown in [LMSS95]. Note that the
statements were slightly modified in order to retain consistency in the notions used

in this thesis.

Lemma 4 Let ¢ and 3 be conjunctive queries. There is a rewriting of @ using v if
and only if mp(p) C mp(), i.e. , the projection of ¢ onto the empty set of columns is

contained in the projection of ¥ onto the empty set of columns. [ ]

The statement of the above Lemma is equivalent to the following statement: If 9

is empty for a given database, then so is .

Theorem 5 Let S be a source collection and ¢ be a conjunctive query over sch(S).
If ¥ is a contained rewriting of @ using S, then there exist a contained rewriting x
such that v C x and number of atoms in body(x) is not greater than number of atoms

in body(p). [
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Now using the above theorem of [LMSS95] and the definition of p-rewriting we

can easily show the following.

Corollary 2 Let S be a source collection and ¢ be a conjunctive query over sch(S).
If ¢ is a p-contained rewriting of ¢ using S, then there exist a p-contained rewriting

X such that
* Y Cx
e number of atoms in body(x) is not greater than number of atoms in body(yp).

In [LMSS95], using Lemma 4, Theorem 5 and earlier results on the complexity of

the containment [CM77, vdM92|, the authors show the following complexity results.

Theorem 6 Let S be a source collection and ¢ be a conjunctive query over sch(S).
The problem of determining whether there exists a contained rewriting of ¢ using S

is N P-complete. [ ]

Given the fact that a rewriting is a special case of a p-rewriting, we can now show
that shifting from classical rewritings to p-rewritings does not affect the computa-

tional complexity.

Theorem 7 Let S be a source collection and ¢ be a conjunctive query over sch(S).
The problem of determining whether there exist a p-contained rewriting of @ using S

is NP-complete.

Proof.
Given the fact that the problem of existence of a contained rewriting of ¢ using
S is a special case of existence of a p-contained rewriting of ¢ using S, N P-hardness

follows from the Theorem 6.
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The problem is in NP because, by the Corollary 2, we need only consider p-
rewritings with the body that has no more atoms than the body(y). We can guess
such a p-rewriting, guess the containment mapping from ¢ to the p-rewriting, and
verify the correctness of our guesses.

The Theorem 7 suggests an easy algorithm for finding p-rewritings for a given
query . All we need to do is to consider all queries 1 such that body() contains as
many atoms of desc(S) as the number of atoms in ¢ and head(y) = w1 (). And for
each such 1 we need to test whether there is a p-containment mapping from ¢ to ¥**.
Unfortunately, the number of possible p-rewritings is exponential in the size of the
query. In the remainder of this chapter we will give two algorithms that use structure

of the query to reduce the number of query rewritings that need to be considered.

3.2.2 P-bucket and sp-bucket algorithms

The following algorithm is a generalization of the bucket algorithm [LRO96] and,
therefore, we call it the p-bucket algorithm. The main idea underlying the bucket
algorithm is that the number of query rewritings that need to be considered can be
reduced if we first examine each atom in the query in isolation, and determine which
view may be relevant to this atom.

In order to formalize the p-bucket algorithm we need a few concepts. A unifier
for two atoms a and b is a substitution # such that #(a) = #(b). A substitution 6 is
more general than a substitution ¢ if for some substitution ¢, { = 6 o '. A most
general unifier for a and b is a unifier € such that, for each unifier ¢ of a and b, 0 is
more general than (.

Given a query ¢ the p-bucket algorithm proceeds in two steps.

32



In the first step, the algorithm creates a bucket for each atom in . Then the
buckets are populated by source atoms that are relevant to answering the particular
atom. More specifically, consider a bucket for an atom b, of ¢, and a source S; =
(i, ;). If body(yp) contains an atom by, such that there is a (most general) unifier 4
for b, and by, then O(head(y;)) is put in the bucket of atom b,. In case the atom b,
unifies with more than one atom in a source .S; the bucket of b, will contain multiple
occurrences of unified head(y;).

In the second step, the algorithm considers query rewritings that are conjunctive
queries, each consisting of one conjunct from every bucket. The head of each rewriting
is the projection of variables that are in the body of this rewriting. For each rewriting,
the algorithm checks whether it’s expansion is p-contained in the query. If so, the
rewriting is added to the answer. Though not required, a check can be added to
determine that the resulting rewriting is not redundant. Hence, the result of algorithm

is & union of conjunctive rewritings.

Theorem 8 The union of all rewritings produced by the p-bucket algorithm relative

to a query @ is equivalent to the union of all p-contained rewritings of .

Proof.

The p-bucket algorithm produces only semantically correct rewritings since it tests
for p-containment of each of candidate solutions.

For the proof that the output of the algorithm contains all semantically correct
rewritings we have to prove that if there exists a p-rewriting v of a given conjunctive
query ¢ then there will be a p-rewriting x in the output of the p-bucket algorithm,
such that v C,, x.

It has been known since Chandra and Merlin’s paper [CM77] that every conjunc-

tive query has a unique (up to renaming of variables) minimal equivalent query that

33



can be obtained by deletion of zero or more atoms. Let us call the minimal equiva-
lent of ¥ 1,,;, and the minimal equivalent of x Xmin. Since ¢ is a p-rewriting of ¢
PP C, ¢ and consequently (¢m:, )" C, . It is easy to see that 9., cannot have
more atoms than ¢ because each atom of ¥,,,;,, covers at least one atom of ¢. We now
have two cases: either 1,,;, has the same number of atoms as ¢, or ¥, has fewer
atoms then .

If ,,,;,, has the same number of atoms as ¢ then each atom of ,,;, would be placed
in the corresponding bucket by the first phase of p-bucket algorithm. In the second
phase the algorithm produces cross-product of the contents of all buckets and, thus, it
would produce x that has all of 1,,,;, atoms. Then the algorithm would compute the
head(x) that would be the longest possible list of variables of the head(y). Therefore,
the p-bucket algorithm would produce x such that ¥ S, X.

If Y has fewer atoms than ¢ then each atom of ¥,,;, would be placed in the
corresponding bucket by the first phase of p-bucket algorithm. In the second phase
the algorithm produces cross-product of the contents of all buckets and, thus, it would
produce x that has all of ¥,,,;, atoms plus some redundant atoms. Then the algorithm
would compute the head(x) that would be the longest possible list of variables of the
head(y¢). Therefore, the p-bucket algorithm would produce x such that ¥min Sp Xemin-

In [SY80] authors show that to test the containment of unions of conjunctive
queries U; C U, is sufficient to show that for each query ¢, € U; there exists a query
o € Uy such that ¢; C w,. Thus, the equivalence of the claim of the theorem follows.

Example 10 We illustrate the algorithm with the Example 2 given in the introduc-
tion. The first step of the algorithm will construct and populate two buckets, one for

each of the atoms in the query. The contents of the buckets are shown in Figure 4.
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S1(Pname, Email)
Sz (Pname, Office)
S3(Pname, Area) Sa(Pname, Dname)

Figure 4: Contents of the buckets in the first step of the p-bucket algorithm for the
query in the Example 2.

The second step of the algorithm produces the following p-rewritings:

Q(Prof , Email) «— Sy(Prof, Email), S4( Prof , compsci)
Q(Prof, Office) « Sa(Prof, Office), S4( Prof , compsci)

Q(Prof, Area) — S3(Prof, Area), S4( Prof, compsci)

Obviously it might be desirable to compute the rewriting that encodes the con-
tainment mappings p needed in the @ evaluation in the rewriting directly, rather than
recompute them at the evaluation time.

To do that we can modify our p-bucket algorithm as follows. First step of the
algorithm remains unchanged. In the second step if expansion of the proposed rewrit-
ing is p-contained in the query the algorithm outputs one rewriting with skolemized
head for each p-containment mapping from the query to the rewriting. We call this
modified algorithm the sp-bucket algorithm.

The union of all rewritings produced by sp-bucket algorithm can then be evaluated
on the source collection in the usual manner and replace function can be applied to
the resulting set.

The following lemma directly follows from Theorem 8 and the construction of

skolemized rewriting by sp-bucket algorithm.

35



Lemma 5 The resull of the evaluation of the union of all rewritings produced by the
sp-bucket algorithm relative to a query ¢ on any source collection is equivalent to ¢

evaluation of .

Proof.

It is obvious that the union of all rewritings produced by sp-bucket algorithm
contains one skolemized rewriting for each p-contained rewriting produced by p-bucket
algorithm. The claim follows from the Theorem 8 and the fact that function terms

are inserted by sp-bucket algorithm in the same way as by ¢. |

Example 11 For the previous example sp-bucket algorithm produces the following

skolemized p-rewritings:

Q(Prof , Email, fi 3(Prof , Email), fi 4(Prof , Email)) <« S1(Prof, Email), Sy( Prof , compsct)

Q(Prof, fa2(Prof, Office), Office, f24(Prof, Office)) — Sa(Prof, Office), Sq(Prof , compsci)

Q(Prof, fs2(Prof , Area), f53(Prof, Area), Area) «— Ss(Prof, Area), Sa( Prof , compsci)

Assume that the source collection § has the following extension.

ext(S) = { Si(Murphy, murphy@cs.uoft.edu), Si(Jones, jonesQcs.concordia.ca),
Sa(Murphy, SF322), S3(Smith, DB), S3(Brown, AI), S4( Murphy, compsci),
Sa(Jones, compsci), Sq(Black, elec), Sy(Smith, compsci), Sq( Brown, compsci)}.

The result of the @ evaluation of rewritings produced by sp-bucket algorithm on &
corresponds to the table with nulls that is given in the introduction and reproduced

in the Figure 5.
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| Pname | Email Dffice | Area |
Murphy | murphy@cs.uoft.edu | L L
Murphy | L SF322 | L
Smith 4 1 DB
Jones jones@cs.concordia.ca | L 4
Brown | L s Al

Figure 5: Table with nulls corresponding to the ¢ evaluation of the rewritings in the
Example 11.

3.2.3 P-MiniCon and sp-MiniCon algorithms

In the previous section we have used a generalization of the bucket algorithm for
computation of the p-contained rewriting because of it simplicity, however, the com-
bination step of bucket algorithm has several deficiencies and does not scale up well.
The main inefficiency of the algorithm is that it misses some important interactions
between view atoms by considering each atom in isolation. As a result, the buckets
contain irrelevant views, and hence the second step of the algorithm becomes very ex-
pensive. The much more efficient unification based method was proposed by Grahne
and Mendelzon in [GM99] and Pottinger and Halevy in [PL0OO] presented detailed and
practical implementation of a unification based algorithm - the MiniCon algorithm.
The MiniCon begins like the bucket algorithm, considering which views contain
atoms that correspond to atoms in the query. However, once the algorithm finds a
partial mapping from a atom in the query to a atom in a view, it changes perspective
and looks at the variables in the query. The MiniCon algorithm considers the joins
in the query and finds the minimal additional set of atoms that need to be mapped
to atoms in this view, preserving already discovered mappings. This set of atoms and
mappings is called a MiniCon Description (MCD), and can be viewed as generalization

of buckets. In the second phase the algorithm combines the MCDs to produce the
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rewriting, however, because of the way MCDs are constructed, containment checks
are not needed in the second phase, giving MiniCon considerable speedup compared
to the bucket algorithm.

Given that the MiniCon algorithm is based on the containment mappings, in the
following we present a modification of the algorithm, which we call p-MiniCon, that
produces p-contained rewriting. It should be noted that we also extended the original
algorithm to allow a query to contain constants.

In what follows, given a query ¢, we will denote variables of the query by var(y)
and constants of the query by dom(yp).

Formally, given a query ¢ and a source S; = (3, v) a MiniCon description (MCD)

C is a tuple (n¢, ¥e, 00, Ge), where:

e 7 is the least restrictive head homomorphism on a query 9 defined as a mapping
from var(y) U dom(y) to var(y) U dom(v) U dom(yp) that is the identity on
the constants and existential variables but it may equate distinguished variables
and/or map distinguished variable to a constant in either dom(v') or dom(¢p),
i.e., for every distinguished variable X, n(X) is distinguished, and n(X) =
n(n(X)). nc is least restrictive in that it only equates the distinguished variables
or maps them to constants if it is necessary in order to unify atoms of ¢ with

atoms of 1.

o Y is head(nc(v)). Note that 1 is uniquely defined by the other components

of C and, thus, is included only for convenience.

e fc is an extended partial mapping from var(p) U dom(y) to ne(y). that is

identity on the constants and on variables it is defined as follows. Given a
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| e | ne | 6c Gc |
S1(Prof , Emal) Prof | Prof, Email/Email | Prof / Prof,
Email /| Email 1
Office/ X1,
Area/ X,
Sa(Prof , Office) Prof / Prof , Office/Office | Prof / Prof, 1
Email/ X3,
Office/ Office,
Area/ X,
S3(Prof, Area) Prof / Prof, Area/Area Prof | Prof 1
Email /X5,
Office/ Xs,
Area/Area
Ss(Prof , compsei) | Prof [ Prof, Dept/compci | Prof | Prof, 2
compci /compei,

Figure 6: MCDs formed by the p-MiniCon algorithm for the Example 2.

variable X of ¢ the f¢ is set as

Oc(X) = ne(X), if ne(X) occurs in head(1))

distinct fresh variable, otherwise.

Moreover, 6 has to satisfy the following properties. Covering property. Vari-
able X is in the domain of f., if there is a subgoal GG that includes X and all
variables in G are in the domain of f5. Join property: if there is more than one
atom in ¢ that includes X either 8c(X) maps X to a distinguished variable in
ne (), or for every atom G’ in ¢ that includes X, all variables in G are in the

domain of 6¢.
e (G is a minimal subset of the atoms in , for which ¢ satisfies the join property.
The MCDs constructed by p-MiniCon algorithm for our running example (Exam-

ple 2) are given in the Figure 6.
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 ve | nc | 6c | Ge ]
V2(C,D) | C/C, D/D | X/C, Y/D | 3
Vo(F,F) | F/F, H/F | X/FY/F | 1,2 3

Figure 7. MCDs formed by the p-MiniCon algorithm for the Example 12.

For an additional case of the construction of MCDs consider Example 12. In this
example, no fresh variables are generated by 6, but it demonstrates importance of

the join property of 6.

Example 12 Let the source collection be S = {(V1(A) «— R(A, B), R(B, A),{...}),
(Va(C, D) — S(C, D), {...}), (Va(F,H) « R(F,G),R(G,H),S(F,G){...})}, and let
the query be Q(X) « R(X,Y),R(Y, X),S(X,Y). The MCDs formed for @ by p-
MiniCon algorithm are shown in Figure 7 Note that no MCD is created for V; because
doing so would violate join property of 8. This is due to the fact that B is existential

variable in V; but S is not in sch(V}).

In the second phase p-MiniCon algorithm considers combinations of MCDs and
for each valid combination creates a rewriting of the query. Given the method for
constructing MCDs, the only valid combinations the algorithm needs to consider are
those, where G¢, U...UGg, = body(p), and for every i # j, Gg, N Gg, = 0. For
every such combination of the MCDs Cy, ..., C,,, the algorithm produces a rewriting
X, where body(x) = ¢, U... U, and for every variable Y in 9, if Y = 6¢,(X),
Y is replaced by X, otherwise Y is replaced by a fresh variable; dom(head(x)) =
dom(head(yp)) and var(head(x)) = var(head(p))Nvar (body(x)). In other words, the
algorithm replaces variables in the atoms of the body of the rewriting by variables
of the query where possible, and head of the rewriting is the projection of those

attributes of the query that are present in the body of the rewriting.
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Example 13 Consider the MCDs constructed for our main example that are given
in the Figure 6. The second step of the p-MiniCon algorithm produces the following

p-rewritings:
Q(Prof , Email) «— Si(Prof, Email), S4(Prof , compsci)
Q(Prof, Office) « Sy(Prof, Office), S4( Prof , compsci)

Q(Prof, Area) — S3(Prof, Area), Ss( Prof , compsci)

Example 14 For the MCDs constructed for Example 12 that are given in the Figure

7 the p-MiniCon algorithm outputs only one p-rewriting: Q(X) « V3(X, X).

It should be noted that after the combination step the rewriting may still contain
redundant atoms. Removing them involves several tests for query containment and, as
in case of p-bucket algorithm, is not essential for neither correctness nor completeness

of the algorithm.

Theorem 9 The union of all rewritings produced by the p-MiniCon algorithm relative

to a query @ s equivalent to the union of all p-contained rewritings of .

Proof.

Let ¢ be a query and let S = {S1(¥1,v1), ..., Su(¥n,v,)} be a source collection.

To prove that p-MiniCon outputs only semantically correct rewritings we need to
show that there is a p-containment mapping from a query ¢ to the expansion of the
p-rewriting x, (x°*?), produced by the p-MiniCon algorithm.

First, let us note how x“*P is obtained from x. For every atom H; in x there is
an MCD C; and G, is the set of atoms of ¢ such that all variables of G, are in the

domain of 0;,. Now, for every atom G of ¢, which is in G¢, there will be an atom
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7(G) in x°*P, where, 7 is identity on constants and, for a variable X, 7(X) = X if X
is in H, otherwise 7(X) =Y, where Y is a fresh distinct variable.

Now we claim that 7 is a p-containment mapping from ¢ to x**P.

To be a p-containment mapping 7 has to satisfy two properties: (1) 7(body(y)) C
body(x®P), and (2) for every variable X in head(x**?) there is a variable Y in head(y),
such that 7(Y) = X.

To see that (1) holds note the following. Every atom of body(y) is in some G,
because second step of p-MiniCon to produce a rewriting used MCDs Cf,...,C,,
such that Gg, U...UGg¢, = body(y). Every X € var(body(y)) is in the domain of 7
because in the second step of the algorithm replaced variables x by the variables of
of ¢ and because of covering property of 6, enforced by the algorithm. 7 is a one
to one mapping because of the join property of f¢, enforced by the algorithm and,
because at the combination step the algorithm used MCDs Cy, . .., C,, such that for
every i # j, Go, N Gg, = 0.

It is also easy to see that (2) is satisfied by 7, since x was constructed so that
dom(head(x)) = dom(head(yp)) and var(head(x)) = var(head(p)) N var(body(x)).

To prove that output of the algorithm contains all semantically correct rewritings
we have we have to prove that if there exists a p-rewriting x of a given conjunctive
query ¢ then there will be a p-rewriting x’ in the output of the p-MiniCon algorithm,
such that x C, x’. The claim of the theorem will then follow from the characterization
of containment of unions of conjunctive queries given in [SY80].

From [CM77] follows that every conjunctive query has a unique (up to renaming
of variables) minimal equivalent query that can be obtained by deletion of zero or
more atoms. Without the loss of generality let x be such a minimal query. Since x
is a p-rewriting of ¢ x**? C, ¢ and, consequently, there is a containment mapping u

from ¢ to x°*P. We will use p to show that there exists a set of MCDs that are created
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by p-MiniCon algorithm such that when the MCDs are combined by the algorithm,
we obtain a p-rewriting x’ such that x C, x'.

For each atom H; of x, we define G; to be the set of atoms G € ¢, such that u(G)
is in expansion of H;, i.e., G; includes the set of atoms in ¢ that are mapped by u to
the expansion of G; in x**?. Note that for ¢ # j, the sets G; and G, are disjoined.

We denote by p; the restriction of containment mapping g to the variables and
constants appearing in G;. That means y; is the mapping form var(G;) U dom(G;)
to var(H;*") U dom(H;**?). However, p; can be rewritten as a composition of two
mappings, one from var(G;) U dom(G;) to n;(var(y;) U dom(v);)) (where n; is head
homomorphism on %;), and another from 7;(var(y;) U dom(t;)) to var(H;**%) U
dom(H;**?). Formally, there exist a mapping from var(G;)Udom(G;) to n;{var(¢;)U
dom(v);)) and a renaming 7 of the variables in 7(1;), such that, for every variable X €
Gy, (X)) = 7(6;(m:(X)). We choose n; to be the least restrictive head homomorphism
on var(v;) U dom(t;) for which 6; and 7 exist.

We know have all the components of a MCD, which we denote by C;:

® 7, is the least restrictive head homomorphism on ;.

. 1/)01' is head("lci W))

e f¢, is an extended partial mapping from var(y)Udom(yp) to n¢, (). Note that,
since y; is the restriction of a containment mapping, 6, satisfies covering and

join properties.

e G,, however, is not guaranteed to be minimal. If it is the case that G¢, is not
minimal, we can fix it by decomposing C; into a set of MCDs such that each of

them covers exactly minimal set of atoms that satisfy the join property.
Now we have a set of MCDs C,...Cy and it should be noted that it satisfies
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the following properties. First of all, because p is a containment mapping from ¢ to
(Xmin )P G, U ... U Gg, = body(p). Secondly, because of the way we constructed
G;, for every 1 # j, G¢, N Ge; = . As the consequence, at the combination step
MiniCon algorithm will produce a rewriting x’ by combining MCDs C; ... C}, with
dom(head(x)) = dom(head(y)) and var(head(x)') = var(head(y)) N var(body(x’)).
Furthermore, since the renaming at this step is done consistently for all occurrences of
the variables, there will be a containment mapping form x’ to x, and, thus, x €, x".

As it was the case with p-bucket algorithm we can modify our p-MiniCon al-
gorithm to encode in the rewriting the containment mappings p needed in the @
evaluation. We call the modified algorithm sp-MiniCon and the modifications are as
follows. In the first step of the algorithm, given a query ¢ and a source S; = (¢, v)
a MiniCon description (MCD) C is a tuple (n¢, ¥¢,0c, Ge), where ¢, ¥¢, and Ge
remain unchanged, but 6c is an extended partial mapping from var(y) U dom(yp)
to (1) that is identity on the constants and on variables it is defined as follows.
Suppose a variable X of ¢ is is mapped by ¢ to a variable in an atom in body(v),
6c(X) is the j:th distinguished variable in the body(1), and existential variables in 1

are Xq,...,Xy. Then the 6¢ is set as

ne(X), if ne(X) occurs in head(v)

Jii(me(Xa1), .., ne(Xy)), otherwise.

Oc(X) =

The covering and join properties of 8¢ remain unchanged.
Second step of the algorithm does not change except that, care has to be taken
to preserve function terms and to propagate them into corresponding positions in the

head of the rewriting.
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| vc

| nc

| Oc

| Cc |

S1(Prof , Email)

Prof | Prof , Email / Email

Prof | Prof ,

Email/ Email,
Office/ f1 3(Prof , Email),
Area/ f1 4(Prof , Email)

Sa( Prof , Office)

Prof | Prof , Office/Office

Prof | Prof ,

Email/ f1,3(Prof , Office),
Office/ Office,
Area/ f2 4(Prof , Office)

S3(Prof , Area)

Prof [ Prof , Area/Area

Prof [ Prof ,
Email/ f32(Prof , Area),

Office/ f3 3(Prof , Area),
Area/Area

S4(Prof , compsci)

Prof / Prof , Dept/compci

Prof | Prof ,

compci [compci,

Figure 8: MCDs formed by the sp-MiniCon algorithm for the Example 15.

Example 15 The MCDs constructed by sp-MiniCon for our main example (Example

2) are given in the Figure 8. Output of the second step of the algorithm is, indeed,

the same as that of the sp-bucket (See Example 11):

Q(Prof, Email, f1 3(Prof, Email), fi 4( Prof , Email)) « S1(Prof, Email), S4( Prof , compsci)
Q(Prof, fop(Prof, Office), Office, faa(Prof, Office)) < Sy(Prof , Office), Sa( Prof , compsci)

Q(Prof, fs2(Prof, Area), f33(Prof, Area), Area) «— S3(Prof, Area), Sy(Prof , compsci)

Lemma 6 The result of the evaluation of the union of all rewritings produced by the

sp-MiniCon algorithm relative to a query ¢ on any source collection is equivalent to

@ evaluation of .

Proof.
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It is obvious that the union of all rewritings produced by sp-MiniCon algorithm
contains one skolemized rewriting for each p-contained rewriting produced by p-
MiniCon algorithm. The claim follows from the Theorem 9 and the fact that function

terms are inserted by sp-MiniCon algorithm in the same way as by ¢. ]

In the next chapter we give the pseudo-code of both sp-bucket and sp-MiniCon
algorithms as implemented in our experimental system.

It should be noted that the asymptotic worst-case running time of the sp-MiniCon
algorithm is the same as that of the sp-bucket algorithm. However, as can be seen
form the results of experiments, that are presented in the next chapter, sp-MiniCon
performs better in the average-case and scales up to a large number of views much

better than sp-bucket algorithm.
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Chapter 4

Experimental Results

4.1 Overview of the experiments

The goal of our experiments was twofold. The first goal was to compare the perfor-
mance of the two proposed algorithms the sp-bucket and the sp-MiniCon in different
circumstances. To do that we, first, fixed the number of sources and studied the
effect of increasing the number of atoms in the body of the query and the arity of the
output. Then, we fixed the arity of the output and number of atoms in the body of
the query and measured performance of the algorithms as the number of sources in
the source collection grew.

Secondly, we sought to validate the fact that our modifications to the original
bucket and the MiniCon algorithms did not affect their performance. Therefore, we
created test runs that simulated the experiments presented in [PL00] and considered
two classes of queries and sources: chain and star. A chain query is a query where
first atom is joined (has common variable(s)) with second, second with third, and so
on. In star queries, there exists a unique atom in the query that is joined with every

other atom and there are no joins between the other atoms.
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To facilitate the experiments, we implemented the following modules in C++:

o Sp-bucket algorithm.

The pseudo code of the algorithm is given in the Figure 4.1.

o Sp-MiniCon algorithm.

The pseudo code of the algorithm is given in the Figure 4.1.

e Random query generator.

The random query generator allows us to control the following parameters:

— Number of atoms in the body of the query.
— Arity of the query.

— Shape of the query — chain, star, or random.

o Random source collection generator.

The random source collection allows us to control the following parameters:

— Number of sources in the collection.
— Properties of the queries defining the sources:

* Number of atoms in the body of the query.
* Arity of the query.

* Shape of the query — chain, star, or random.

Our experiments were all run on a computer with 450MHz Intel Pentium II pro-

cessor and 512MB RAM running Windows 2000.
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/* ¢ is a query and S = {S1(¥1,v1),...,5u(¥n,v,)} is a source collection */

For each atom g; €
Create a new bucket b;
For each 1;
For each atom hy € 1
If ¢g; unifies with h;
Then
Find MGU 4 for g¢; and h;
Put 6(%;) in b;

Create empty union of sp-rewritings &

If by #ON...Ab, #0
Compute cross-product of buckets X =b; x ..
For each X € X

It () C (X))
for some substitution v and some mapping u
Create empty sp-rewriting x;
Set body(x;) = v(X)
Set head(x;) as:
For every constant a € head(yp)
Put a in head(x;)
For every variable Y € head(y)
[a(Y) € (v(0)))=P AO(W;) € X
[Z1,...Zy are distinguished in 6(y;)]
[Wi,...W,, are existential in 6(v;)]
If p(Y)=2;
Put v(Z;) in head(x:)
Else p(Y) =W,

Put fj,i(V(Zl),...,I/(Zk)) in head(xl)
Add x; to d

. X by,

® is union of sp-rewritings of ¢

Figure 9: Pseudo-code of the sp-bucket algorithm.
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/* ¢ is a query and S = {S1{¢1,v1),.-.,5(¥n,v,)} is a source collection */
Create empty set of MCDs C

For each v;

For each atom hj; € 1); and each atom g; € ¢
If 6(gx) = n(hy)
for some substitution ¢ and

(least restrictive) head homomorphism 7
For each extension #;, of # and
each extension 7¢, of 7

Create MCD Cj,
Cx = (e, Y, 9y, Gey,) as:
nc, is (least restrictive) head homomorphism
Yo, is head(nc, (i)
8¢, (from var(y)Udom(y) to nc(v;:))
fc, is identity on the constants and

Oc

. 18 defined on variables as
[Variable X € ]

(8¢, (X) is j:th distinguished variable in body(t;)]
{Xy,..., Xy are existential variables in ;]
9C(X)={ ne(X), if nc(X) occurs in head ()

Jii(nc(X1),. .., nc(Xy)), otherwise.
G¢, is minimal subset of atoms of ¢, for which

Oc, satisfies covering and join properties
Add Cy to C

Create empty sp-rewriting @

For every subset Ci,...,C, of C
If Gg U...UGg, = body(p) and, for every i# j, Gg,NGe, =0
Create empty p-rewriting x;
Set body(xi) = vc, V... Uyc,
Set head(x;) = U 8¢, (head(p))
1€41,...n}

For every variable Y in y

If ¥V =0¢,(X)

Replace Y by X
Else

Replace Y by fresh variable
Add x; to @

® is union of sp-rewritings of ¢

Figure 10: Pseudo-code of the sp-MiniCon algorithm.
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4.2 Summary of the results and discussion

For the first type of the experiments, where we sought to compare the performance
of the two proposed algorithms, the sp-bucket and the sp-MiniCon, in different cir-
cumstances we have considered several different test runs.

First, we fixed the number of sources and studied the effect of increasing the
number of atoms in the body of the query and the arity of the output. We created
the test runs were the number of sources was fixed (10, 25, and 50) and considered
cases where size of the body of the query ranged from 1 to 10 atoms, and arity of the
query ranged from 1 to 10.

The increase in the number of atoms in the body of the query had a rather pre-
dictable effect on the running time of the algorithms. In case of the sp-bucket algo-
rithm the time was rapidly growing as the number of atoms in the body of the query
was growing, because the number of buckets was increasing and, most importantly,
the number of expensive containment mapping checks done in the second step of the
algorithm was increasing. In case of the sp-MiniCon algorithm the running time was
also growing but at the different rate. The increase here is due to the increased time
taken to construct MCDs but since there is no containment mapping involved at the
combination step the growth rate was almost linear. In the Figure 11 we present the
average results for 10 test runs with 10 sources in the source collection, queries of
arity 2 and the number of atoms in the body of the query ranging form 1 to 10.

The variations in arity of the output had almost no impact on the running time
of the algorithms and, thus, we omit the results of these experiments. This is due to
the fact that, in case of the computation of the exact answer, number of rewritings
in the output of any algorithm does not depend on the availability of the attributes

in the body of the rewritings.
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—&— Sp-Bucket Algorithm i~ Sp-MiniCon Algorithm ]
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2.5

Time (sec)

t 2 3 4 5 6 7 8 9 10

Number of atoms in the body of the query
Figure 11: Average results of the test runs for the queries with number of atoms in
the body of the query ranging from 1 to 10.

Second, we fixed the arity of the output (between 2 and 4) and number of atoms in
the body of the query (between 3 and 5) and measured performance of the algorithms
as the number of sources in the source collection grew. The source collection contained
sources with randomly generated definitions with the number of atoms between 2 and
5. In the Figure 12 we present the average results for 10 test runs with number of
sources ranging form 5 to 100. It can be seen that the sp-MiniCon outperforms the
sp-bucket algorithm by the order of magnitude.

The other important factor affecting the running time of both algorithms was
the arity of the queries defining the sources. In case where everything in the body
of the source definition is accessible through the head of the source practically all
combinations of sources produce a rewriting. Hence, any complete algorithm is forced
to form a possibly exponential number of rewritings and demonstrates its worst-case

performance. Since, the running time of the sp-MiniCon algorithm gets closer to
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Figure 12: Average results of the test runs for the number of source ranging from 5
to 100.

the running time of the bucket algorithm. We omit the details of these experiments
due to the fact that the experiment presented in Figure 13, which considered chain
queries and source definitions with 5 atoms in the body and all variables distinguished
demonstrate the point.

Secondly, we wanted to validate the fact that our modifications to the original
bucket and the MiniCon algorithms did not affect their performance. For this reason
we we created test runs that simulated the experiments presented in [PL00]. There
are two experiments that report running times for both, the bucket and the MiniCon
algorithms and in both of them the queries and the source definitions have the same
shape and size. The first experiment considered chain queries and source definitions
with 5 atoms in the body and all variables distinguished. The second experiment
considered star queries and source definitions with 10 atoms in the body of the query

with distinguished non-joined variables. The average results of 40 test runs of our
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Figure 13: Average results of the test runs for the chain queries and source definitions.

experiments are presented in Figures 13 and 14, and it could be seen from that our
results are comparable to the results of corresponding experiments in [PLO0O].

There is a difference in the runtime of the algorithms in our experiments of about
10 percent in the favor of the sp-bucket algorithm but this is reasonable given the
different implementation. Nevertheless, Pottinger and Halevy also report the liner
scalability of the MiniCon algorithm in the average case, and demonstrate the both
algorithms perform the same in the worst case.

It sould be noted that the worst-case asymptotic running time of both the sp-
bucket and the sp-MiniCon algorithms is O(nmS)™, where n is the number of atoms
in the query, m is the maximal number of atoms in a source, and S is the number of
sources.

In summary, our experiments showed the following points. First, we have estab-
lished that computation of the exact answer can be done efficiently for all practical

situations including the large-scale systems. The sp-MiniCon algorithm scales up
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Figure 14: Average results of the test runs for the star queries and source definitions.

to large number of sources, significantly outperforms the sp-bucket algorithm in all
considered average cases, and both algorithms demonstrate the same worst-case per-
formance. Finally, we have confirmed that shifting from the computation of the
certain answer to the computation of the exact answer does not change the average

running time of query rewriting algorithms.
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Chapter 5

Conclusions and Future Directions

5.1 Contributions

In the context of local-as-view information integration system a source collection
defines a set of possible databases, therefore, querying a source collection, at least
conceptually, means applying the query to each possible database, obtaining a set of
possible answers. With this in mind we introduced the notion of exact answer, which
can be represented as a relation containing null values, and we gave two methods for
computing the exact answer as illustrated by the Figure 5.1.

The figure illustrates the fact that the path labeled ¢ o poss commutes with the
path labeled rep o and the path labeled repo@p. Note that commutativity is with
respect to coinitiality (see Theorems 2 and 4).

The first method involves explicitly computing T(S) — a syntactic representation
of the set of global databases implicitly defined by the sources. The ¢ evaluation is
then used to compute the exact answer. However, computing ¢(7'(S)) might involve a
lot of redundant work, since it amounts to constructing the tableau corresponding to

the entire ext(S), whereas the global relations that are in body() might be mentioned
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Figure 15: Semantics of a query in an information integration system.

in only few source definitions. Furthermore, the query might have selections and joins
that could be computed directly at the sources.

The other method reformulates a query in terms of the source relations, and, thus,
avoids inverting the entire source collection. In order to achieve this we generalized
classical notion of query containment to p-containment and used this notion to re-
formulate the query as a union of p-contained conjunctive queries. Then we defined
@p~evaluation that uses p-contained rewritings to compute the exact answer on the
source collection.

We have also shown that shifting from classical rewritings to p-rewritings does not
affect the computational complexity. Given the fact that a rewriting is a special case
of a p-rewriting, the NP-hardness of testing whether a non-empty rewriting exists
still holds. Likewise, our modification to the bucket-algorithm obviously doesn’t
increase its complexity; it remains computable in non-deterministic polynomial time.
Computing the exact answer, either through the tableau or using a rewriting, remains
in polynomial time.

As the result of our experiments we have established that computation of the
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exact answer can be done efficiently for all practical situations including the large-
scale systems. Finally, we have confirmed that shifting from the computation of the
certain answer to the computation of the exact answer does not change the average

running time of query rewriting algorithms.

5.2 Future research directions

Query processing in information integration systems is significantly different than
query processing in a traditional or a distributed database. The sources typically pro-
vide limited interfaces, partial but potentially overlapi)ing data, they export semistruc-
tured data, and redundant and conflicting data are commonplace. Query optimization
in the context of integrating heterogeneous data sources has lately received significant
attention of the database community.

The notion of exact answer gives rise to many different optimizations. Even
though rewriting, in general, outperforms tableau based query evaluation, tableau
based techniques allows to use constraint information about the sources to minimize
data transfer between the sources and information integration system, which could
make this approach to work better in some situations. Other optimizations that we are
considering include ordering of answers based on the number of values computed for
the attributes in the tuples and allowing the user to specify that certain attributes are
a must in the answer. These variations not only improve the usability of the system
but also have significant impact on the performance. Furthermore, if we cache exact
answers to some queries we can use them in subsequent query answering in order
to reduce data transfer between the sources and the information integration system,
which was not possible without the semantics of the exact answer. These and other

optimization issues are currently under investigation.
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