Bluenome: A Novel Developmental Model

for the Evolution of Artificial Agents.

Taras Kowaliw

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

August 2003

© Taras Kowaliw, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83907-9
Our file Notre référence
ISBN: 0-612-83907-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

ABSTRACT

Bluenome: A Novel Developmental

Model for the Evolution of Artificial Agents.

Taras Kowaliw

The Bluenome Model of Development is introduced. The Bluenome model is a
developmental model of Artificial Morphogenesis, inspired by biological development,
instantiating a subset of two-dimensional Cellular Automata. The Bluenome model is cast as a
general model, one which generates organizational topologies for finite sets of component types,
assuming local interactions between components. Its key feature is that there exists no relation
between genotopic complexity and phenotopic complexity, implying its potential application in
high-dimensional evolutionary problems. The Bluenome model is first applied to a series of
application-neutral experiments, in which it is shown experimentally that it is capable of
producing robust agents in a reasonable amount of computation. Next, it is applied to an
application involving the design of embedded agents. This second series of experiments contrasts
the Bluenome model against a model in which there exists a bijective relation between genotype
and phenotype, showing that the Bluenome model is capable of performing as well or better in
cases of high phenotopic complexity. Additionally, genomes from the Bluenome Model are
shown to be capable of re-development in differing environments, retaining many relevant

phenotopic properties.

iii

Acknowledgements

I would like to thank the University of Toronto, specifically the department of Mathematics and
the Adaptive Technology Resource Centre, for their training and support. Without either of these
resources, I would not be where I am today. Additionally, I am indebted to Concordia University,
specifically the departments of Computer Science and Computer & Electrical Engineering for

allowing me access to their excellent program and resources.

1 would also like to thank Nawwaf Kharma. My work on his projects have provided me with
much experience in dealing with evolutionary computation, and with conducting research in

general. His advice and support are much appreciated.

Finally, I would like to thank Peter Grogono. This project was born out of my conversations with
him regarding his ambitious “Laws and Life” project; Indeed, it would be difficult to distinguish
where his ideas end and mine begin, and equally difficult to imagine this project’s completion
without his advice and support. It is my sincere hope that this work will provide motivation and

insight into his larger project.

This thesis is dedicated to Kara-Anne Fraser.

iv

Table of Contents

1. — Introduction
2. —Review
2.1 - Cell Differentiation
2.2 — Evolutionary Computation & Genetic Algorithms
2.3 — Artificial Morphogenesis
2.4 — Cellular Automata
3. — The Bluenome Developmental Model
4. - Phase One: Application-Neutral Experiments
4.1 — Introduction
4.2 - The Model
4.3 - Selection for Complexity
4.4 - Selection for Size
4.5 - Selection for Entropy
4.6 — Processing Techniques
4.7 - Selection for Maximal Connected Thin Coverage
4.8 - Selection for Disconnected Similar Regions
4.9 - Selection for Disconnected Distinct Regions
4.10 - Resistance to Pertubations in Environment
5. - Phase Two: Application
5.1 - Introduction
5.2 - The Worlds
5.3 - Tarasanoids
5.4 - A Tarasanoid in the World
5.5 - Development
5.6 - Fitness
5.7 - Experiments
5.8 - Initial Development and General Principles in Bluenome Runs
5.9 — Data and Analysis
5.10 — Re-Growth of Agents under Different Values of numTel
5.11 — Tarasanoid Strategies
6. — Conclusions
7. — Future Directions
8. — References
Appendix A: Additional Images from Phase One
Appendix B: Precise Algorithms for Cell Behavior
Appendix C: Glossary of Terms Used

O QN O\ =

18
21
28
28
29
30
32
34
36
37
39
41
43
45
45
47
49
52
57
58
60
61
64
70
71
75
79
82
86
89
91

List Of Tables

Table 3.3 — Relationship between numTel and Phenotopic Size

Table 3.4 — Relationship between <numColours, numRules> and genotopic complexity
Table 5.5.1 — Genotopic complexities per values of numTel (Bijective)

Table 5.6.1 — Minimum-bonus and Maximum fitness values

Table 5.7.1 — Parameters for the Bluenome Runs

Table 5.7.2 — Parameters for the Bijective Runs

Table 5.8.1 - Proportion of “trivial” Tarasanoids

Table 5.8.2 — Proportion of agents with less than 3 cells

Table 5.8.3 — Proportion of agents with numClasses =1

Table 5.10.1 — Maximum and Mean fitness values from re-grown agents

27
27
57
60
60
61
61
62
62
70

vi

List of Figures

Figure 3.1 — Development of an uninteresting agent.

Figure 3.2 — Development of a more interesting agent.

Figure 4.3.1 — Fitness plot over 100 generations

Figure 4.3.2 - Exemplar members of the population

Figure 4.3.3 - 4 population members from the 100™ generation
Figure 4.4.1 — Fitness Plot over 300 generations

Figure 4.4.2 — Some successful population members

Figure 4.5.1 — Fitness plot over 300 generations

Figure 4.5.2 - Some successful population members

Figure 4.6.1 —Pattern Flattening.

Figure 4.6.2 — Threshholding

Figure 4.7.1 — Fitness Plot over 100 generations

Figure 4.7.2 - Exemplar Population Members

Figure 4.8.1 — Fitness Plot over 100 generations

Figure 4.8.2 — Examplar members

Figure 4.9.1 — Fitness Plot over 100 generations

Figure 4.9.2 - Exemplar Population Members

Figure 4.10.1 — A genotype subjected to various perturbations.
Figure 5.1.1 — Screen shot of the Phase Two GUI

Figure 5.3.1 — Illustration of an eye cell with associated field of vision
Figure 5.4.1 — Illustration of Nerve connections between Eye Cell and Foot Cell

Figure 5.4.2 — One of the simplest Tarasanoids capable of finding and absorbing food.

Figure 5.4.3 — An immobile agent

Figure 5.4.4 — Screen shot of a Tarasanoid in a type 0 World

Figure 5.8.4 — Proportions of population by value of numClasses in run bn.6
Figure 5.8.5 — Proportions of population by value of numClasses in run bn.20.1
Figure 5.8.6 — Fitness plot of initial generations of run bn.6

Figure 5.8.7 — Fitness plot of initial generations of run bj.6

Figure 5.9.1: Comparison of the bn.6 and bj.6 runs, fitness plot

Figure 5.9.2: Comparison of the bn.6 and bj.6 runs, maximum time plot

Figure 5.9.3: Comparison of the bn.8 and bj.8 runs, fitness plot

Figure 5.9.3: Comparison of the bn.8 and bj.8 runs, fitness / time plot

Figure 5.9.5: Comparison of the bn.20 and bj.20 runs, maximum fitness plot
Figure 5.9.6: Plots of (fitness / time) of maximum-fitness agent, bn20 and bj20 runs
Figure 5.10.2 — An agent from run bn.20.2, generation 180 (left), re-grown
Figure 5.11.1 — Tarasanoid which implements the Blind Back-and-Forth Strategy
Figure 5.11.2 — Tarasanoid which implements the Larger-Circles Strategy
Figure 5.11.3 — Tarasanoid which implements the Rotate-then-Forward Strategy
Figure 5.11.4 — Agent which implements the Position-then-Rotate strategy
Figure 5.11.5 - The maximum fitness agent from the bj.6 run

Figure 5.11.6 - An agent from run bn6

Figure A.1 — Examples of agents with highly differentiated distinct regions
Figure A.2 — Examples of agents with similar but distinct regions

Figure A.3 — Examples of agents with highly non-symmetrical growth

Figure A.4 — Agent with growth resembling a biological transport system
Figure A.5 — Agent which partially recovers the Sierpinski Pyramid

Figure A.6 — Examples of agents which communicate information over distance
Figure C.1: Neighbourhoods about a Grid Cell ¢

26
26
30
30
31
32
33
35
35
36
36
38
39
40
41
42
42
44
46
50
54
55
56
56
63
63
64
64
65
65
65
66
68
69
71
72
72
73
74
74
75
86
86
87
87
88
88
94

vii

1. - Introduction

The issue of representation in evolutionary computation has long been recognized as a
key component, and the best choice of a representation for any particular problem has
long since been identified as a key component in the design of Genetic Algorithms. The
typical application of a Genetic Algorithm focuses on simple solutions, with as little
dimensionality as possible, typically bijective between genotype and phenotype. In these
models, virtually no information results from the translation between genotype and
phenotype ~ essentially, values from the genotype are simply slotted into some evaluating

function.

However, in the past twenty years, many other key approaches for mapping between
genotype and phenotype have emerged — methods in which the genome is interpreted as a
program or scheme for constructing a phenotype. In these models, some degree of the
information in the phenotype is a result of not only the genome, but also of the

mechanism from which it is spawned.

An emerging trend in evolutionary computation lately has been for the other extreme —
situations in which the genome is a (relatively) small and simple entity, while the

developmental process increases drastically in complexity.

In a field inspired by biological processes, it is often beneficial to examine the natural

analogue. Consider that the number of cells within the human body is estimated to be

between 75 and 100 trillion, while human DNA consists only of an estimated 3 billion
chemical base pairs. Consider also that there exists no intuitive relation between the
complexity of an animal genome and its phenotopic size; For example, the onion genome
is ten times the length of that of a human. It is quite obvious in this context that there is a
great deal occurring in the developmental process which compresses the developed
complexity, and exploits the complexity inherent in the developmental process to

generate the robust patterns found in nature.

Regarding biology, arguments involving the nature of the developmental process often
involve its necessity for complex design. Most notably, Wolfram has recently taken this
viewpoint, heralding Cellular Automata (CA) as a means for modeling these processes
[Wolfram; 2002]. He argues that the typical view of natural selection as a mechanism of
increasing the complexity of agents is flawed; Instead, complexity is an inherent
component of the developmental process, while natural selection serves to limit its
unwieldy nature. The inherent assumption here is that many of the adaptations which are
commonly present amongst unrelated species are the result not of an adapted genome, but
instead the result of their ease of generation under the associated developmental process.
In defense of his claim that complexity is omnipresent in the development of an
organism, Wolfram presents a wealth of visually appealing evidence (photographs of
claborate skin pigmentations, shell growths, plant structures, etc.), some of which are
drawn from fossils remaining from early periods in evolutionary history, which resemble

very closely easily generated CAs.

If the above viewpoint is correct, the implication for Evolutionary Computation is that the
typical approach does not utilize the mechanisms of selection to their fullest potential.
That is, if the sorts of robust complexity we see in natural organisms is largely the result
of a refinement of a computationally complete process, mimicry of natural selection
ought to follow this lead. If the sorts of robust organization present in natural organisms
are encoded for largely by the developmental process, there is little reason to believe that

another process is easily capable of developing them.

Indeed, the detractor might point out that the developmental process in natural organisms
follows the course that it does out of necessities inflicted by the natural world — that the
exclusive use of local cell-based information is the norm for the sole reason that this is
the only tool presented to nature. This being said, it is possible that a system involving a
global overlord might prove a better choice than a local information-based model. Such a
system, however, would still need to deal with the problems of large-scale complexity in
the genome — the size of many design tasks is daunting, while the limits of the potential
for a search mechanism to operate in a high-dimensional space are well known. It is
reasonable to assume that any system capable of developing large organisms must be
computationally complete. If this is the case, our best course of action is to select one
based on the natural developmental process, as, to the best of my knowledge, it is the only

known working example.

With this in mind, my aim in this thesis is to present a model for mapping between
genotype and phenotype inspired by biological cell differentiation. The Bluenome' Model
of Development is both a simplified model of two-dimensional CAs, and a simplified
model of natural development. In the Bluenome model, an agent’s genome consists of a
series of rules fired by matching patterns modeling a component’s local neighbourhood.
An agent undergoes a development phase prior to evaluation; In this development phase,
it begins as a single neutral cell, with a copy of the agent’s genome. Through successive
time steps in the developmental process, the cell will collect information from its local
neighbourhood, and use its genome to determine its next action. If the genome so dictates,
the cell will divide, producing an exact copy of itself, including an identical genome. The
process continues producing new cells, until a specially included internal counter, the
number of telomeres, is exhausted. Hence, phenotopic complexity is controlled by a
system parameter, rather than by the complexity of the genome (Or, the growth of the

agent may be limited instead by the size of the environment, again a system parameter).

It is not obvious, given a developmental model, that it is useful for the generation of
agents — questions involving the robustness of the phenotopic space of possible agents
and the feasibility of search through the genotopic space abound. In Phase One of this
project, this technique is used to generate images, where components are simply blocks of
colours — this approach was chosen in the attempt to demonstrate principles regarding the

Bluenome technique in an application-neutral context. In Phase One, the attempt is made

! The genome as a blueprint for development.

to demonstrate that the Bluenome technique is both robust enough to generate interesting

agents, but also capable of evolution under phenotopic pressures.

If the theories presented above are true, one would expect that there exists a level of
phenotopic complexity at which a developmental process exceeds the abilities of a more
typical approach; Phase Two of this paper aims to demonstrate precisely that. In Phase
Two an application inspired by biology (but limited for computational concerns) is
presented. An artificial organism, the Tarasanoid, is presented, along with an
environment. The goal is to develop a Tarasanoid capable of surviving for the longest
possible period of time, utilizing a set of pre-defined components. Doing so implies the
development of mechanisms for interpreting sensory input and transforming that input
into action, as well as the development of a transportation network for distributing found
food throughout the agent’s body; This is by no means a trivial problem. In Phase Two,
two methodologies for translating between genotype and phenotype are explored: the
Bluenome Model, and a bijective model, in which there exists a one-to-one

correspondence between genes and components.

The intention of this project was not to provide proof of the above theories (although
success might be interpreted as positive evidence). Also, it is not to create a model of
biological development — several models exist at present, all of which explore the
phenomena to a far greater level of detail than the Bluenome model. Instead, Bluenome is
presented as a tool for the development of large and complex agents, utilizing natural

selection to its fullest potential.

2. - Review

2.1 - Embryology®

Morphogenesis describes the process by which a zygote grows into an (at least partially)
mature organism. Morphogenesis, (a.k.a. Embryogenesis), is sometimes taken to also
describe development outside an organism’s developmental environment; However, here
we consider it to mean solely the initial development which occurs within an organisms
uterine environment. Described below is the developmental process for vertebrates,

although we note that the process is similar for invertebrates and plants.

The process begins with a fertilized egg (a zygote), typically spherical and about 0.15 mm
in diameter. Following this is a string of stages of growth; The underlying mechanism
behind all is the synthesis of new protoplasm through previously existing protoplasm,

realized through successive cell divisions.

Initially, the zygote grows through a series of uniform and unorganized cell divisions, in a
process known as cleavage. Cleavage divisions continue for a short period, resulting in a
solid ball of uniform cells (morula). Following this, the ball becomes filled with intra-
uterine fluid, forming a sphere of uniform cells (blastocyst), enclosing a central cavity

(although in some species several distinct blastomere may be distinguished nearly

2 Information for the review of Embryology is drawn largely from [Karp; 2001] and [Patten; 1964].

immediately). There is often a point of asymmetry in the blastocyst, which will be the

focal point for the further development of the embryonic bodies.

In the blastula stage, cells begin to arrange themselves along three layers, known as the
primary germ layers (the ectoderm, the entoderm and the mesoderm). Once separated,
these cells become determined, meaning that following these divisions, only subsets of all
possible specializations may be expected within the layers. This process is mediated
through gene control, operating in the immediate environment furnished by the growing
body of the embryo, although it has been demonstrated that these conditions are further

mediated by the intra-uterine environment.

An initial and important mechanism in this development is that of cell migration - cells
become determined in the germ layers following a series of cell migrations which
distinguish them. Both cell migration and specialization are mediated via inter-cell

communications.

Inter-cell communications occur via two primary mechanisms (reviewed in [Fagotto,
Gumbiner, 1996]): The first involves directly connected cells, known as contact-
dependant signaling. Contact-dependant signaling typically involve transmembrane
protein, connecting via cell surface receptors; The best known examples are
communications through cell adhesion molecules, although also of importance are
juxtacrine signals, in which both ligands and receptors are membrane-anchored proteins,

and communication is accomplished through direct control of the adjacent cells ligands,

or through directly regulating cytoplasmic signaling proteins; The second method of
communication involves signaling over a diffusible intermediate (paracrine
communications), through diffusible microhormones, excreted by cells in the
extracellular medium. Microhormone communication is known to have a reach of several

cell perimeters.

While morphogenesis refers to the entire process, different stages are labeled otherwise:
Successive differentiations within the determined regions are known as organogenesis,
and later (as in the case of specific tissues), as histogenesis. During these stages, cells

continue divisions, also begining phases of recognizable specialization.

An important phenomenon during growth phases is that of the molding of structures via
cell death - for example, the disappearance of cartilage cells during endochrondral bone

formation is regarded as key in the creation of this unique and important structure.

Following various stages of organogenesis and histogenesis is the integration phase, in
which various specialized regions interconnect, largely via cell migration, but in some

cases through continued growth.

Both heredity and environment play significant roles in this process. While the primary
means of specifying differentiation within a cell is communication from neighbouring

cells, also of importance is the prenatal environment furnished during intra-uterine life.

2.2 - Evolutionary Computation & Genetic Algorithms’

Evolutionary Computation is a blanket term for several probabilistic approaches
involving finding minima. The roots of Evolutionary Computation may be traced back to
two early algorithms: Evolutionary Strategies (ES) and Genetic Algorithms (GA); ESs
originates from [Rechenberg; 1973], initially consisting of a form of Random Heuristic
Search, where a single agent is optimized through a successive series of mutations. ESs
were later adapted to a more modern form by [Schwefel; 1981], who made the addition of
multi-agent population sizes, and a re-combination operator (crossover). GAs originate
from [Holland; 1975], who posited a multi-agent population which goes through
successive generations of re-combination; The modern versions of both ESs and GAs
resemble each other quite closely, with most differences consisting of varying

representations and models for recombination.

The following is a simple view of the Genetic Algorithm; The essential problem to be

solved is the problem of finding an optimum for a given function /' : G -> R. Initially, a

representation for the domain G is chosen, traditionally a binary string, where Gc N

Any g G is termed a "genome". A collection of genomes are chosen randomly, forming

the initial population Py. Following, a loop is undertaken:
1. evaluate(P;);

2. selectParents(P;);

3 Information and notation for the Evolutionary Computation & Genetic Algorithms review was largely

3. crossover(P;);
4. mutation(P);
5. it++;
6. goto 1
Evaluate ranks all population members according to the function f. SelectParents chooses
from the previous population a selection of the best genomes as parents for the next
generation. Crossover is an operator which accepts two (or more) genomes and performs
re-combination to produce two (or more) child genomes. Mutation changes bits at

random within the genomes. Hence, through this algorithm, populations evolve over time,

tending toward populations of higher fitness (returning higher values of f).

There are many alternative implementations of the function described above, as well as
alternatives to the algorithm itself; Listing them is beyond the scope of this thesis.
Instead, I describe some typical choices (Fitness-Proportional Selection, Single-Point
Crossover, Elitism) in the Glossary. These particular strategies are perhaps the most
common, being recommended as defaults in some introductory texts ([Haupt, Haupt;

1997] and [Mitchell; 1998]).

The phrasing of the GA makes it a very general framework; Once the extension is made
to include variable-length genomes (the domain G = N), it is difficult to imagine an
optimization problem that does not fit into this paradigm; However, for reasons of clarity,

several interpetive extensions may be added.

drawn from [Hart, Kammeyer, Belew; 1994] and [Spears, De Jong, Baeck, Fogel, Garis; 1993].

10

One such extension is Genetic Programming; The primary algorithm behind Genetic
Programming (GP) is equivalent to the GA, save the requirement that a genome specify a
program. Rather than simply map f{g) in R, g is interpreted as a program, executed, with
fitness assigned on the basis of its performance. Early examples of these sorts of systems
include: Lisp expressions used to solve variants of the Prisoners Dilemma.; Mathematical
expressions as trees, used to match polynomial expressions; and Neural Networks used to

model complex behavior [Spears, De Jong, Baeck, Fogel, Garis; 1993].

A generalization of the GP extension might be a more specific and recent extension.
Many GA researchers are now exploring the addition of the concept of Development,

consisting of a "maturation" and a "learning" phase.

Maturation refers to a intermittent period between the genome and the evaluation in
which a phenotype emerges. Hence, we posit a function

0 : G -> Ph; where Ph is the space of phenotypes
and modify the fitness function such that

f:Ph->R
The function J might map from the space of bit string to the space of programs, trees, etc.
(See section 2.3 for examples). Maturation is also commonly used in many very simple
forms; For example, the widespread use of Gray codes, in which binary numbers are
mapped to an alternative notation where any two successive numbers differ by at most

one bit.

11

Learning is an extension which operates at a later date; Essentially, learning is a process
by which a phenotype may be mapped to another,

A : Ph-> Ph,
This typically involves the collection of information from the agent’s environment (or,
occasionally from other agents, or from the parent agents) which cause a change in the
agent’s phenotype. Examples of this include Lamarkian Evolution, where an agent is
given all learned knowledge from its parents, or in cases where environmental changes

promote changes in an agents phenotype.

Although the Bluenome model presented in this paper might be said to implement a
Learning strategy (specifically in its resistance to environmental perturbations, c.f
Section 4.10) I will not concentrate on the matter further. Instead, I will focus on the
maturation process, with respect to a sub-field of Evolutionary Computation, Artificial

Morphogenesis.

2.3 - Artificial Morphogenesis

There is a great deal of interest regarding the relationship between genotype and
phenotype in artificial agents, and a variety of approaches towards Artificial
Morphogenesis (a.k.a. Artificial Embryogenesis, ak.a. Artificial Ontogenesis). These

examples involve a trade-off between the amount of information explicitly encoded in the

12

genome, versus the amount of information implicitly encoded in the maturation

(developmental) process, and examples exist ranging this gradient.

There are several models in which the genome is interpreted as a program, typicaily
utilizing modular designs of repeated structures. This approach may be said to begin with
GP, as described above, but becomes more interesting in systems which interpret the
genome recursively. Many such systems involve the use of Grammars, serving as
programs which develop a phenotype. These systems bave enjoyed much success, for
example: in [Horby, Pollack; 2002] where L-systems were used as a genotype for
generating phenotype, applied to a locomotive task; or in [Kvasnicka, Pospicijal; 2002]
where a binary genotype was mapped to a set of phenotype characters, for the purpose of

studying modular forms.

Grammatical approaches may be said to be inspired by biology, but exist in a form so
high-level and abstract that there exists little of the original metaphor. Occassionally,
there are examples which challenge this statement, such as the use of a differentiation
model as in [Hotz, Gomez, Pfiefer; 2003] who used the model to develop a neural
network to control a foveating retina. However, the use of L-systems and Grammatical
development in general is a highly abstract domain, where particular instances are often
more like short-cuts and heuristics to more expansive relations between genotype and

phenotype, rather than as full developmental models.

13

On another extreme, there is substantial work being undertaken in the modeling of actual
biological development. This includes work undertaken in the simulation of internal cell
dynamics, modeling the process of specialization within individual cells. A crucial factor
in these experiments is the development of several high-level hierarchical principles,
believed to be key factors in the development of an embryo. These principles involve the
inheritance of specialization, and spontaneous symmetry-breaking [Furusawa, Kaneko;
1998]; Both these principles are fundamental aspects of the Bluenome Model. Also, there
is work being undertaken in which the above principles, somewhat simplified, are applied
to the task of the simulation of conglomerates of cells, modeling the development of
embryos. A very successful example of this can be found in [Hamahashi,, Kitano; 1998],

in a simulation of the development of a drosophilae.

The above (simulations of actual biological development) are fascinating endevours, but
are typically very complex computationally. The approach undertaken in this paper is
significantly simpler, and aimed not at modeling biology, but instead at the development

of a tool for the generation of artificial agents.

In contrast to the pure simulations of biology above, there have been several attempts to
utilize various abstractions of the developmental process in the evolution of agents
designed to solve particular problems, more directly related to biological systems than the

grammatical approaches listed above.

14

Perhaps the most similar experiment to the one presented in this paper was undertaken by
[Dellaert, Beer; 1996]. This experiment aimed at the creation of a computationally-
tractable but biologically-defensible model of development, aimed towards the evolution
of agents capable of a locomotive task. Dellaert and Beer's model consists of a
conglomerate of cellular material, which undergoes a series of differentiations.
Differentiations begin as a single symmetry-breaking division, followed by divisions
controlled by a series of Genetic Regulatory Networks. The Genetic Regulatory Networks
are networks of interactions which accept information from an agent's genome and
environment and lead to a series of state-changes within a cell. The Genetic Regulatory
Networks were implemented via a series of Boolean function, labelled operons,
modelling the conditional production of protein - hence, this approach may be viewed as

a discrete approximation to the modelling of diffusion through differential equations.

Drawbacks to the model proposed by Dellaert and Beer resulted chiefly from the size of
the search space associated with their system. For example, they were unable to evolve fit
agents from scratch and hence began their experiments with a hand-coded agent, from
there obtaining results. Following this, Dellaert and Beer simplified their model, using
Random Boolean Networks (introduced by [Kauffman; 1993]), which are a simpler
version of the original Genetic Regulatory Netwroks. As is noted by [Stanley,
Miikulainen; 2003], simpler solutions may outperform biologically plausible ones, and a
need exists for abstraction. A second draw-back might be the use of an initial symmetry-

breaking condition in the development of an agent - while the biological motivation for

15

such a mechanism is clear, the particular implementation is not, potentially leading to a

programmer's bias in agent development.

Another similar system is proposed by [Eggenberger; 1997], applied to a simpler task.
Rather tha focus on Neural Networks, Eggenberger evolved bilaterally symmetric shapes,
to show that symmetry was an emergent property. Eggenberger's experiments focused on
the evolution of simple three-dimensional morphologies, and demonstrated that the
development of symmetry is a natural consequence. Although Eggenberger's approach
was simple and aimed at a very high-level of abstraction, the demonstration that bilateral
symmetry is a viable strategy demonstrates properties about the developmental approach
that applications do not; That is, given a successful experiment utilizing a developmental
technique to solve a problem, there is little reason to accept that other non-developmental
techniques would not achieve the same results [Stanley, Miikulainen; 2003]. Another
such experiment was undertaken by [Bentley, Kumar; 1999], who employed a simple
grid-based model of coloured cells to evolve tessellating tiles, showing that indirect
encodings can do so more reliably than several encodings which did not employ recursive

interpretations of the genome.

The experiments described above contain techniques and goals similar to those found in
this thesis. The primary differences between the Bluenome Model and those described
above may be summarized as:

1. A higher level of abstraction in terms of differentiation - the Bluenome Model

utilizes a Cellular Automata, whereas many approaches utilize more complex

16

models of Cell Differentiation. As can be seen in the early attempts of [Dellaert,
Beer; 1996], such models introduce much complexity into the system, often to the
point of making such systems computationally infeasible.

2. A more physically-minded topology, where physical mechanisms and logical
control mechanisms are situated in the same space, unlike many experiments in
which logical control is a second layer of morphology.

3. A rich collection of materials as initial conditions of a developing agent - in the
Bluenome Model, an agent begins as a single cell, while in other models, the
initial development begins as a blastocyst (a larger collection of unspecialized
components). While this starting point is probably an efficient choice (given the
prevalence of this process in nature), in my opinion, it is behaviour which ought
exist as an emergent property of the system, rather than as a pre-condition.

4. Although in Phase Two Bluenome is a specific application, the casting of the
Bluenome Model is general enough that nearly no assumptions are made
regarding the application to which the system is applied. The same cannot be said
for systems which specifically promote the creation of distinct constructs, such as

high-level neural networks which ride atop a body.

2.4 — The Evolution of Cellular Automata

Cellular Automata (CAs) first appeared in the 1940’s, created by von Neumann and
Stanislaw Ulam (von Neumann; 1966) as an alternative to continuous dynamical systems.

Although similar systems existed prior to this, the distinguishing feature of Ulam and von

17

Neumann’s systems is that they considered discrete dynamical systems as a field of study
in its own right, rather than as an approximation to the continuous counterpart. Discrete
dynamical systems were popularized in the late 1960’s by John Conway, specifically in

the creation of a simple one-person game, the Game of Life (Gardner; 1970).

CAs are a model of computation which operate using only local-based information and a
series of universal rules. They have been studied extensively in a wide variety of roles:
firstly, as a model for computation and mathematical exploration, and secondly as a
means of simulating complex systems, including swarm intelligence, colony and
population dynamics, and models of economic and urban behavior, to name a few
(reviewed in [Wolfram; 2002]). As a model of computation, the array of uses for CA are
as wide as that of the Turing Machine, although it is still poorly understood how CAs can

calculate the simplest of procedural programs.

A CA consists of a series of rules, and an infinite lattice of cells; Rules are a collection of
patterns which match the state of any particular cell based on the state of its neighbours,
determining a new state for the cell in the next time step. For example, in a one-
dimensional CA using two colours and a neighbour radius of one (r=1, c=2), there exists
a series of eight (¢ " I' = 8) rules: one for each possible combination of states of a cell
and its immediate neighbours. At every time step, the successive state of a cell is

determined by the matching rule.

18

For example, the following illustrates a one-dimensional cellular automata with two
colours and a radius of one; The series of rules are represented as a series of bits,
characterizing all possible combinations of a cell’s state and its neighbours, along with a

new state:

pattern | 111 | 110 101 100 | 011 010 | 001 | 000
new state | 1 0 1 1 0 1 1 0
Additionally, initial conditions are specified for the infinite lattice of cells:

[Tolol1 JiJo]u1[..]

A Cellular Automata proceeds through time steps, in which every cell in the lattice is

updated, using the rule set above. The new state for location j is determined by matching

the states of locations j-1, j and j+1 to a pattern in the rule set, updating the state of cell j

in time t+1:
location}{ ... {2 |-1 {0 1 2 3
time
0 ... 10 0 1 1 0 1
1 NA |1 0 0 1 NA|.

In this manner, a CA proceeds indefinitely. There are many variations on this basic
algorithm, in which additional dimensions, more colours, larger radii, alternate topologies
are added. CAs are quickly shown to exhibit emergent and chaotic behavior, leading to

their wide-spread study in the field of complexity.

Some work has been undertaken involving the evolution of CAs, for example, as
reviewed in [Mitchell; 1996]; This work involved the evolution of one-dimensional CAs
for the solution of two problems, density classification and synchronization, using
stochastic fitness functions. Success was achieved at both tasks, but results were at a high

computational cost, solving problems which, while daunting using only local-based

19

information, are simple to solve in a typical computational approach (More interesting in
these approaches was the method of analysis suggested, based on particle interactions).

Evolved CAs are obviously in an early stage of development.

These experiments aside, search through a space of possible CAs is a daunting task.
Indeed, Wolfram writes, regarding finding a method to automatically find CAs with
particular properties, “I have tried hard to do this. But even using a whole range of tricks
suggested by biology — as well as quite a number that are not — I have never been
successful” [Wolfram; 2002]. Indeed, it is for this reason, as well as reasons of borrowing
process from biology, that the Bluenome Model, a much simpler model than the general

CA, has been adopted.

20

3. - The Bluenome Developmental Model

The Bluenome Developmental Model is a highly simplified version of biological
embryogenesis. It involves the inclusion of a single component (Cell) into an array of
spaces (Grid Cells), and a methodology for that cell to grow into an agent, utilizing only
local information. The Cell contains a single piece of DNA, which it interprets to decide
its next action - the complexity of a piece of DNA is governed by a system parameter,
numRules, which limits its precision. The number of possible cells is governed by a
system parameter, numColours, which limits the number of types of components which
might be included in an agent — they are referred to as colours as the development model
is application-independent, meaning that any components might be used, while it is
convenient to represent classes of components as coloured squares in a GUL. This process
is limited by a system parameter numTel (number of telomeres) which acts as a counter in

each cell, decrementing with each action that a cell undertakes.

In brief, given a genome, development of a phenotype proceeds as follows:
1. A single neutral cell (gray) is placed in the centre of an environment (a matrix of
Grid Cells)
2 For each cell in the environment, hormones are collected. That is; each cell creates
a count of cell types in the twelve-neighbourhood, storing the information.
3. Each cell finds the closest matching rule in the genome, relative to the amounts of

hormones collected.

21

4. Assuming a cell’s internal numTel counter is non-zero, the action associated with
that rule is fired; Actions are one of {divide, die, move, specialize(colour)}
5. Every cell which executes an action decrements its numTel counter

6. If the process is not complete, goto 2.

Hence, Bluenome is a model for developing agents from a structured genome of
complexity proportional to numRules, resulting in an agent consisting of a topology of
cells selected from numColours types, with a phenotopic size proportional to numTel. The

algorithm for doing so is made precise below.

An agent’s genome is comprised of a series of numRules rules, numRules € N'. Each rule

is (numColours+2) integers long, leading to a total genome length of

(numColours+2)*numRules. Each rule is structured as:

[colour | hormone; | ... | hormoneumcoeus | action |
where colour € {1, ..., numColours}, hormone; €[1, 12], and action € [1, 20].

Initially, an agent begins as a single cell of type 1 (1 is considered a Structural cell,
coloured gray), centred in an environment (a square matrix of Grid Cells). Development

proceeds through the following algorithm:

When activated, a cell (currCell) in the environment will collect hormones from all

neighbouring cells.

22

integer t,=0

integer thumcoiours = 0
Foreach Grid Cell g in the eight-neighbourhood {

if (g contains a cell of type K) lx ++

}

Foreach Grid Cell g in the twelve-neighbourhood which was not
previously considered {
if (there exists no cell in the Grid cell between g and currCell

&& g contains a cell of type K) tx ++
}

Hence, it will collect a count of all neighbouring cell types, except those on the periphery
of the twelve-neighbourhood which are blocked by an intermediate cell. Hormones for

each cell in the environment are collected before proceeding to the next step”.

Once any particular cell has collected information regarding its neighbours, it searches the
genome to find the closest matching rule, using Euclidean distance:

min_distance = infinity

theRule = null

Foreach rule r = <reiour, Thomonet; - --; IhormonenumColours; I acﬁon>{
if (reoiour == currCell.colour) {
= 2 2
Tdistance = (t1 =T honnone1) +..+ (tnumCoIours =1 hormonenumCoIours)

if (Fistance < Min_distance) {

4 Note that the collected hormones constitute a count of neighbouring cell types, but does not include any notion of the
direction from whence the hormone came.

23

min_distance = Iyistance

theRule =r

}
if (theRule '= null) execute action theRuleaction

else take no action

With this in hand, a cell may execute its next action. This involves first decrementing the
cell’s internal telomere counter (hence a cell may execute only numTel actions), then
executing the action corresponding to theRule 4.4i0n . Possible actions include:

1. Die: the cell is removed from the environment, leaving an empty Grid Cell

2. Specialize(colour): The cell’s type is changed to type colour, where colour is any
cell type save the Structural type.

3. Divide: An exact copy of the cell is made and placed in the best free location in
the four-neighbourhood. The best free location is defined as a free location located
furthest from the centre of mass in the original cell’s eight-neighbourhood (cf.
Appendix B). If no free location is available, no action is taken.

4. Move: The cell is moved from its current location to the best free location. If no

free location is available, no action is taken.

In this manner, a “good” genome will allow a single initial cell to grow to a robust agent.

The process terminates when all telomeres are expended, or when there is no change from

24

one developmental time step to the next. No other mechanisms are included — there are no

special parameters for symmetry breaking.

One view of this process is as a subset of all 2-dimentional Cellular Automata with radius
3. The key differences between CAs and Bluenome are:

1. Bluenome begins with a single cell in the centre of a finite grid. Empty (white)
cells cannot change their colour without a non-white neighbour’.

2. As the hormone collection process does not note direction, the rules instantiated
by the Bluenome genome map to symmetrical patterns in a CA rule — hence, only
rules of a symmetrical form in CA space are used by Bluenome.

3. Bluenome utilizes a measure to compute distance to a rule, unlike CAs, which are
precise. This may be viewed as a partition on the space of CA rules, collapsing
several similar rules into a single outcome.

4. The lack of consideration of peripheral cells in the twelve-neighbourhood may be
viewed as a further grouping of CA rules.

Hence, the space of all Bluenome genotypes is significantly smaller than that of two-
dimensional CAs. Phase One aims to demonstrate that these simplifications do not limit
the robustness of the possible phenotypes, but, due to the decreased dimensionality of the
genotopic space, does allow the space of all Bluenome genotypes to be more readily

pressured by selection.

5 Similar to a Totalistic CA [Wolfram; 2003].

25

Figures 3.1 and 3.2 show the development of agents taken from Phase One, shown at
various times in the development. The parameter numTel has been set to infinity, hence
the agents grow to fit the allotted size in the environment. Figure 3.1 shows an
uninteresting agent, the likes of which unfortunately abound from random genomes.
Figure 3.2 shows the development of a more interesting agent, one which demonstrates

some of the robustness characterized by CAs.

—
—

\ 4

[Dovelpment Scrven CHE| [Bbewormeton CEE [Development sorven
(. e~

(5 Derstapmnt Sroen ‘ LT

Figure 3.2 — Development of a more interesting agent.

An important question to ask regarding this method of growth is how likely a random
genome is to produce a non-trivial agent. The answer is unfortunately quite dismal: A

random genome with 50 rules and an unlimited number of telomeres is approximately

26

85% likely to generate a “trivial” pattern®. However, it is shown in section 4.4, and
explored in more detail in section 5.8, that evolutionary pressures will quickly lower this

proportion significantly.

We can now make some estimates involving size:
Firstly, we note that the maximum size of an agent with numTel telomeres will be
2*(mumTel+1)? — this is the size of a diamond with sides of length (numTel+1). Hence,
the following relation between numTel and maximum phenotopic size may be made,
independent of other system parameters, summarized in Table 3.3.

Table 3.3 — Relationship between numTel and Phenotopic Size

numTel | 1 6 8 10 12 20 100
maximum phenotopic size | 6 98 | 162 | 242 | 288 | 882 | 20402

Also, as is the case in Phase One and Phase Two, the following relations hold between
<numColours, numRules> and genotopic complexity, shown in Table 3.4.

Table 3.4 — Relationship between <numColours, numRules> and genotopic complexity
numColours 6 9 10

numRules | 30 50 30
genome size | 240 550 360

The complexity of the developmental process is O(numT el’ *numRules).

¢ By trivial, I mean a phenotype consisting of less than 3 cells, or one which contains only one cell type, as shown, for
example, in Figure 3.1

27

4. - Phase One: Application-Neutral Experiments

4.1 - Introduction

The evolution of cellular automata is a notoriously difficult problem: the highly non-
linear nature of the space of CAs, as well as their unpredictability [Wolfram; 1994]
makes the prospect of the evolution of complex patterns using Genetic Algorithms seem
grim. As we have recognized the Bluenome model as a subset of the space of two-
dimensional CAs, it is not obvious that evolution is possible in any reasonable measure of
time. Yet, intrinsic to the success of the Bluenome project is the assumption that a wide
range of properties may be evolved. Phase One of this project involves a demonstration of
precisely that; Given an application-neutral interpretation of developed agents, a variety
of fitness functions are defined in which several properties are shown to evolve in a
reasonable number of generations. In Phase One, agents are treated as images of a fixed
number of colours (RGB codes) — fitness functions are designed drawing inspiration from

Image Processing.

4.2 - The Model

In Phase One, agents are simply images — there is no additional interpretation. An
environment is created, consisting of an array of 100 x 100 Grid Cells (unless otherwise
noted). A single structural cell is placed in the centre, and development takes place as

described in section 3. In Phase One, numTel is set to infinity; That is, agents are allowed

28

to grow until their environment is filled. The parameter numRules is set to 30, and

numColours to 6 (unless otherwise noted).

The grown agents are evaluated through a fitness function, then subjected to a Genetic
Algorithm. The GA is a Standard GA [Mitchell; 1998], utilizing fitness-proportional

(a.k.a. roulette-wheel) selection, with the following parameters:

Population Size: 50
Initial Population Size: 100
Proportion of Elites: 0.0
Probability of Crossover: 0.8
Probability of Mutation: 0.01

Runs are distinguished by the fitness function chosen, which are described in parts 4.3 to
4.9 of this section. These fitness functions are all defined on images, hence do not make
any assumptions regarding the nature of the coloured cells, nor the development model
(with the exception of sections 4.3 and 4.4, where the number of rules used in the

generation of the image were included as a component of the fitness function).

The runs show exemplar members — members whose fitness most closely matches that of

the mean. Appendix A contains images of highly fit members.

4.3 - Selection for Complexity

In this first example run, it is demonstrated that evolution can take place within the
Bluenome system. This run utilizes 10 colours, and the simple fitness function:

= 30*numColours + 5*numRulesUsed + 20*(1- numEmptyCells)
environmentArea

29

where numColours is the number of cell types present in the agent, numRulesUsed was
the number of rules fired in the generation of the agent, numEmptyCells is the number of
empty Grid Cells in the environment, and environmentArea was the number of Grid Cells

in the environment.

Selective pressures proved quite effective in this example, as the population average
increased quickly, while population members approaching the optimal fitness were found
within the first 40 generations — Figure 4.3.1 illustrates the growth in fitness over 100

generations, while Figure 4.3.2 shows several exemplar members of the population.

200
150

100

Average Fitness I

50
0

0 10 20 30 40 50 60 70 80 90 100
Figure 4.3.1 — Fitness plot over 100 generations

Generation 10: Gene‘rationjwoo:

73 Orgintsm Yiow @@_&g

R) 5‘-".#'"';'
L3 b

Additionally, as generations increased (i.c. population converged toward some optima),
an increased visual similarity between population members was noted — this implies

significant regions in which small variations in genotype produced small variation in

30

Sl

phenotype. Figure 4.3.3 shows several population members from generation 100, where

several visual similarities may be seen.

4.4 - Selection for Size

In this run we attempt to evolve organisms in a manner similar to the last, save that we
select for organisms which grow to only half the size of the environment. The goal is to
create organisms which themselves decide when to stop growing, rather than being
limited by their environment. Several fitness functions were attempted, but to no effect.
Below, is one such fitness function:
f=30*numColours + 5*numRulesUsed
+ 20%(1-2*1 numEmptyCells - 0.5*environmentArea 1)

environmentArea
where numColours is the number of cell types present in the agent, numRulesUsed was

the number of rules fired in the generation of the agent, numEmptyCells is the number of
empty Grid Cells in the environment, and environmentArea was the number of Grid Cells

in the environment

31

Results for this run were unsuccessful — the average fitness over a 300-generation run did
not yield an increase in average fitness, save for immediately following the initial
generations. Furthermore, rather than find organisms which would stop growing after a
time period, organisms were found in which a large portion of the internal cells chose to
die. Figure 4.4.1 shows the fitness plot for the fitness function, and figure 4.4.2 show

some members which performed well under that function.

Negative results for this run are perhaps not surprising — in natural biological
development, it is largely unknown how a foetus is declared “complete”. The reason is
suspected to be a combination of pressures from the mother’, the foetus itself, and a
specialized area of the DNA (telomeres) which control the number of cell divisions in a
manner similar to that of a decreasing counter. It is for this reason that the numTel

parameter was included in the Bluenome Model.

300
250
200 4
150 4 Average

100 - Fitness
50
0 T T L | ¥ T L] T 1 ¥ ¥ T T

0 25 50 75 100 125 150 175 200 225 250 275 300

Figure 4.4.1 — Fitness Plot over 300 generations

7 One theorized method of pressure is the amount of available resources — leading to the alternative tactic
for growth limitations, simply providing a finite amount of food to the agent initially. This case provides an
interesting alternative, unexplored in this paper.

32

g Organism View) ‘ Q »

Al

-
1

Figure 4.4.2 — Some successful pc;pulation members

4.5 - Selection for Entropy

An important question for the Bluenome system is one of breadth: given that the space of
phenotypes is so much smaller than the space of all possible environment-sized images, is
the Bluenome system capable of creating phenotypes which are not trivial? To answer
this question, a run of the system was arranged in which the selective pressure was
information theoretic entropy. The goal was to attempt to generate “pure noise” —

phenotypes with as little relation between cells as possible.

The assumption made in this run was that a specialized cell is more likely to occur as a
neighbour of a specialized cell of the same type. From this assumption, the following
uncertainties, based on an implicit pseudo—probabilitys, were defined:

P(X0=i|X1 =5, X, =kX, =)= -09*log0.9;i=j=k=1

-0.8 *log 0.8 ; i equal totwo of { j, k, 1 }
0.6 *log0.6;ie{j kl}

% Note that this could be made into a proper probability through padding values and additional definitions to cover all
permutations. Since other values are plentiful and irrelevant, and since the information estimates are monotone
increasing, doing so provides no advantage.

33

-0.5 *log 0.5 ; otherwise
Next, an information function was defined:

I(xo X1, X3 %)= -P(Xo=x0 | X1 =x1, X2 =x3, X, =x,)* log P(Xo=x0 | X1 =x1, X2 =x2 X, =Xy)
Finally, we obtain our fitness function:

f=2wlxo, x1, %2 %) - Enin
where Epin = X xo I(xo, Xo, X0, Xo) = -2 x00.9 *log 0.9 = 929
Note: Maximum occurs at Epge = 2 x0 -0.5 *log 0.5 — 929 = 2663.2
X, is the cell in question, X; the cell immediately below it, X; the cell immediately to
the right. The fourth term, X,, is a cell from a random location in the environment. This

parameter was included to penalize tessellating patterns.

The actual maximal value for this fitness function, En., is an overestimate of the
valuation of pure noise. Since there are only 6 colours in our palette, we should only
expect the least probable value (0.5 log 0.5) to be instantiated for 5/6 of the cells in the
dish. Hence, we may expect the valuation which corresponds to pure noise to be:
Eop max= 3 *2yx0-05% log0.5+ 1 *X4-0.6*log0.6 = 2493.5

Results for this run wefe not positive with respect6to evolution — after an initial jump in
fitness following the first generation, the system oscillated randomly within a large range.
Particular individuals were found which achieved fitness values which approached the
maximal expected entropy, but it is unlikely that these were found for reasons other than

random chance. Figure 4.5.1 shows a fitness plot for the above fitness function, and

Figure 4.5.2 shows some successful agents.

34

2500

2000 -
1500
1000 - Average
500 - Fitness
0 L] T T ¥ L) T L] L] L) Ll T T

0 25 50 75 100 125 150 175 200 225 250 275 300

Figure 4.5.1 — Fitness plot over 300 generations

.-
cagat

Ll

Figure 4.5.2 - Some successful population members.
Negative results for this run are not at all surprising — the generative process in Bluenome
was chosen precisely to facilitate the creation of hierarchical structure, and is a
deterministic process (with respect to a particular genotype). That individual members
which approached pure noise were found is sufficient to achieve the goals of this run,

whether or not evolution could occur for this run is secondary.

Indeed, the inability of the system to evolve potentially indicates a lack of continuous
regions in the genotopic space which are inherently random — this may be viewed as an
indication that the hierarchical organization resulting from inherited specialization
(typically stressed by researchers modeling cell differentiation) permeates the entire

space, rather than only subsets, as is the case with two-dimensional CAs.

35

4.6 - Processing Techniques

Pattern Flattening: Introduced here is a new technique for image processing; One issue
with the Bluenome generated images is that an “organ” might be more than simply a
region of specialized cells. We wish to allow for a repeating pattern of specialized cells in
addition. Pattern Flattening is a technique in which dominant patterns are detected, and
replaced in the phenotype with a new colour. In essence, pattern flattening allows small
neighbourhoods of cells to be processed as though they were regions of identical

specialized cells. Illustrated in Figure 4.6.1.

L SRR

Figure 4.6.1 Z Origial image (Ieft and image under Pattern Flattening.

Boundary Detection: A process used after thresholding which extracts only the
boundary. This is done by cycling through all black cells, deleting those which have four

adjacent black neighbours.

Closed Thresholding: A process intended to threshold, keeping only points which lie
within a closed boundary. All points within a regular threshold are considered — for each
point, a walk is taken in four directions. If, in any of the directions, no white cell is found

before the edge of the environment, the point is deleted.

36

This technique is not guaranteed to succeed — only to provide an approximation to
success. When this technique fails, it provides an over-estimate. For computational
reasons, this approximation is necessary, as computation of boundaries based on

connectivity is far too complex for repeated application. Illustrated in Figure 4.6.2.

Syt e T - N0 Fitness View: Closed Theashhod — (J0E3

Figure 4.6.2 — Left: original image (drawn from the run in Section 4.9),
Centre: Threshholded image, Right: Closed Threshholded Image

Closed Boundary: The boundary of a closed threshold, again computed by deleting all
black squares with four adjacent black neighbours. This process also falls victim to the

approximation of the Closed Threshholding.

4.7 - Selection for Maximal Connected Thin Coverage

In this run, we attempt to select for a thin coverage; That is, we choose the
dominant colour or pattern and define a valuation of the organism on the basis of how
well it reaches all cells in the organism, with regularization on the basis of how connected
the dominant colour or pattern is. The goal of this endevour is to show that Bluenome is

capable of generating a “transport system” — that is, a structure which might be used to

37

transport materials to as many cells in the environment as possible, while taking the

smallest amount of space.

The fitness function:

f=2a0:1 0(x0)

o(xg) = 10; xo = black, numBlackNeighbours = 2
3: xp = black, numBlackNeighbours = 1, 3
-2: xp = black, numBlackNeighbours = 8
-28; xp = black, numBlackNeighbours = 0
-1; xo = black, otherwise
3: xo = white, numBlackNeighbours = 1, 2, 3
-2 xp = white, numBlackNeighbours = 0
-1, otherwise

where numBlackNeighbours is the number of neighbours of Grid Cell (xy) coloured black.

The above valuation works on a point basis — points are allotted when a particular cell is
in contact with a few “covering cells”, and removed if there are too many covering cells
or none at all. Valuation at a covering cell is designed to reward connectivity, but
penalize large continuous regions of covering cells. The results are quite good — after only
a hundred generations an organism was found which covered over 95% of the surface of
the environment in only a few disconnected “trails”, with virtually no contiguous regions

of covering cells.

80000

60000 -

40000 Average

20000 - Fitness
0

0 10 20 30 40 50 60 70 80 90 100

Figure 4.7.1 — Fitness Plot over 100 generations

38

eneration 40: Generation 100:

L Y W T e
A

S S
e S
BEn L
; “:h‘"“:‘l.}'l'l 0 =
T

-

4.8 - Selection for Disconnected Similar Regions

In this run we attempt to select for disconnected regions of similarity. This is a key
feature in complex designs, as a large organization will typically re-use specialized

components in several different components.

There is a difficulty in measuring disconnectivity similar to the difficulty to measuring
connectivity — it is computationally cumbersome. Instead of dividing the environment
into connected regions, the system provides a measure of disconnectivity by attempting to

draw lines between threshholded regions. All possible horizontal, vertical and

39

increasing/decreasing lines are attempted, where fitness is rewarded for every line which

consists entirely of white cells, with black cells existing on either side.

Our process is:
a. pattern flattening
b. closed threshholding
c. attempt at fitting straight lines
The valuation function is:
f=100*numLines + numCells jpsearnreshhold

10
where numLines is the number of straight lines successfully fit between regions of the

dominant pattern, and numCellsciosedrhreshhold_1S the number of cells within the closed
threshold. Results in terms of evolvability were quite promising — the system showed
marked improvement in terms of fitness very quickly. The members of the final
population proved quite sparse, however — given further valuation and less weight to the

numlLines component in the fitness function, this would probably correct itself.

20000

15000 - |

10000 4 Q};:’:g’
5000 4

0 10 20 30 40 50 60 70 80 90 100

Figure 4.8.1 — Fitness Plot over 100 generations

40

n ﬁﬂ"ll "

4.9 - Selection for Disconnected Distinct Regions

Figure 4.8.2 — Examplar members

In this run we attempt to select for disconnected regions of distinction. This

feature is important is demonstrating the ability of the Bluenome system in generating

fields of specialization. The metaphor for this would be the development of distinct

organs in a biological organism.

Our process is:

1. double pattern flattening (same as pattern flattening, save that two patterns are

chosen)

2. double thresholding (shown as black and cyan)

3. attempt at fitting straight lines between areas of black and cyan

41

The valuation function is:

f=100*numLines + numCells iosedrhreshhold
10
where numLines is the number of straight lines successfully fit between the dominant

patterns, and numCells iosedrhreshhold 15 the number of cells within the closed threshold for

both dominant patterns.

500 ;
400 i
300 Average
200 - Fitness
100 -
0 T T 1] 1 L| ¥ 1 i § 4 L] T T :
0 10 20 30 40 50 60 70 8 90 100
Figure 4.9.1 — Fitness Plot over 100 generations
Generation 0: Generation 40: Generation 80:
iz ot & Organisny yjew 3 Organism

! 'lrr-- e, el
[y Bt Iy L N PN

42

4.10 - Resistance to Pertubations in Environment

An important feature in the generation of a phenotype from a genotype is a resistance to
perturbations. A pertubation assumes one of two forms: a subtle variation in the genotype,

or a variation in the environment in which the phenotype will express itself.

Subtle variations in genotype are demonstrated at length in the preceding sections. That
evolution occurs at all in the Bluenome runs demonstrates that there are many axis along
which there exists a continuity between genotype and phenotype. The existence of trivial
and empty phenotypes in virtually all generations of all runs, however, demonstrates that
this continuity is routinely broken. The obvious suspect points in the genotype are the
first and last bits in a “rule” (c.f. Section 3) — those which specify the colour which
dominates the rule, and those which specify which action the rule will execute. It is
possible to modify the crossover and mutation processes to add “protection” to these
sites, in the form of a decreased probability of destruction. In the interest of simplicity of

developmental process, however, this has not been done.

Variations in the environment are also an interesting matter — indeed, this is an area in
which a generative process between genotype and phenotype bears its most distinct
advantage relative to a more bijective relation. Figure 4.10.1 shows the result of
application of perturbations to the environment. The results are very promising, both in
terms of preservation of visual features, and in terms of constancy of fitness evaluation

(using the function defined in section 4.3).

43

Original Phenotype The same genotzpe (200x200) (FltneSS' 230)

(1 00x1 00) (Fltness 230)

Phenotype with “foreign” cells

(black): Fitness: 260

Figure 4 10.1-A genotype extracted from 4.3 generation 100,
subjected to various perturbations.

Uuu

44

5. - Phase Two: Application

5.1 - Introduction

Phase Two of this thesis presents the application of the Bluenome Model of Development
to a non-trivial evolutionary task. The task chosen is new, consisting of a situation
inspired by biology. The goal of the experiments in Phase Two is the evolution of multi-

cellular agents, capable of surviving as long as possible in an artificial world.

An artificial agent, the Tarasanoid, is presented; A Tarasanoid is a collection of cells, of
type chosen from the set { Eye, Nerve, Foot, Transport, Structural}. These cells are laid
out (connected) in a matrix of Grid Cells, with a defined set of interactions between them.
Each cell is provided with an amount of food initially, a cell using one unit per discrete
time step. Also in this environment are laid out patches of food, which transport cells may
absorb and distribute. To survive longer, a Tarasanoid must detect this food, move over
top of it, absorb it, and distribute it to the remainder of cells in its body. All cells are
capable of local interactions only — a cell communicates or passes food only in its local
neighbourhood. The measure of a fit Tarasanoid is a measure of the amount of time it

survives, and the number of cells surviving at any given time step. Figure 5.1.1 shows a

snap shot of the GUI for Phase Two.

45

% Biuenoms Yisual Display =&
Agent 4, time: 32, finess: 4405

* Fitness Test 0, full vworkd vieve

Figure 5.1.1 — Screen shot of the Phase Two GUI.
The panel on the far left shows initially the Tarasanoid’s development, and later the fully
developed Tarasanoid independent of the current fitness evaluation (The thin gray lines
are for reference only). The two panels on the right show the Tarasanoid in the world, at
different levels of zoom. Food patches are coloured dark green, agent cells vary in
colour, indicating cell type.

The task presented was chosen for several reasons:
It is a highly complicated task, one for which a human designer would experience
difficulty.
1. TItis a task which easily lends itself to any phenotopic complexity.
2. Its solution may potentially involve mechanisms found in nature.
3. It combines the need for an internal agent logic embedded as a physical

component in the agent.

The combination of these criteria form a robust platform in which the Bluenome system

may be tested.

46

Additionally, Bluenome is not the only mode of development which is applied to this task
— a second method is presented, one in which the relation between genotype and
phenotype is bijective. The purpose of this inclusion is to evaluate the claims made
regarding the developmental process in agent design (cf. Section 1) — to attempt to
demonstrate that a developmental model may outperform a bijective model. This is not a
claim that the Bluenome method is the best available, however, rather that it is simply a

viable option for high-dimensional design problems.

5.2 — The Worlds

A world is an infinite two-dimensional matrix of Grid Cells. Each world contains one
Tarasanoid at the centre, and a distribution of food. The centre of the world is defined to
be the centre of the Tarasanoid, with a Tarasanoid's movement rotating or translating the
world as required. There are no collisions - instead, a Tarasanoid will pass directly over

top of food in the world, possibly absorbing it.

Food is parceled in food pieces, each occupying one Grid Cell, having a value of
2*(mumTel+1)? food units. Each world contains precisely 80 such parcels, the distribution
depending on world type. Hence, each world contains precisely 160*(mumTel+1) units of

food.

Type 0 Worlds: Type 0 worlds contain eight batches of food, each consisting of a square

of 10 food parcels. The parcels are centred at the Grid Cell locations: <0,50>, <30,30>,

47

<50,0>, <30,-30>, <0,-50>, <-50,0>, <-30,-30>, <-30,30>. This is an “easy” world, in
that random motion will typically find some food. In the numTel = 20 runs, these values
were increased to: <0,70>, <40,40>, <70,0>, <40,-40>, <0,-70>, <-70,0>, <-40,-40>, <-

40,40>.

Type 1 Worlds: Type 1 worlds consist of a line of four batches of food, each of
increasing distance. A direction is chosen at random and food is placed in a line, in
batches of 20 parcels, at distances of 40, 80, 120 and 180 units (60, 120, 180 and 240
units in the numTel = 20 runs). These worlds test the ability of an agent to see food and

move towards it in an arbitrary direction.

Type 2 Worlds: Type 2 worlds consist of four batches of 50 parcels of food, each placed
at a random location at a distance of 80 units (120 units for the numTel = 20 runs) from
the agent’s start position. These worlds test the agent’s ability to search for food when

none is within immediate visual range.

Type 3 Worlds: Type 3 worlds consist of 40 batches of 2 parcels of food, distributed
randomly at a distance of between 40 and 140 (between 60 and 180 units for the numTel
= 20 runs) units from the Tarasanoid’s start position. These worlds test the agent’s ability

to quickly move about gathering food.

48

5.3 — Tarasanoids

A Tarasanoid is a collection of one or more cells, assumed to be connected, located in a
two-dimensional grid. Each cell occupies one grid location. Tarasanoids behave as the
sum of the behaviours of their cells. So long as one cell is declared "active", a Tarasanoid

is declared "active" - otherwise "inactive".

The size of a Tarasanoid is determined largely by the system parameter, numTel.
Tarasanoid size (in either mode of development) is bounded above by 2*(numTel+])

(the size of a diamond with sides numTel + I) and typically approaches that number.

Cells may be viewed as independent agents of their own right - each maintains a food
supply, and executes a particular program based on input and internal variables. Cells
may communicate and pass food between adjacent cells (four or eight-neighbourhoods).
A cell is "active" (coloured) if its food supply is greater than zero, otherwise "inactive”
(black). An inactive cell will continue to occupy physical space, but will no longer be

capable of processing input or output.

All cells belong to one of the following classes: Eyes (Green), Nerves (Orange), Feet
(Blue), Transports (Red) and Structure Cells (Gray), with some subclasses existing

between those categories.

49

Eyes: Eye cells can sense their external environment, and return a boolean value on the

basis of the existence of food. An eye cell sees in a radius about it, accepting a value of 1

if food exists in that radius, 0 otherwise. Amount of food is irrelevant. However, the

presence of other cells within its field of vision will block its ability to sense — hence, an

eye cell must be located on the periphery of a Tarasanoid in order to be capable of

functioning.

The question of whether or not a piece of food can be
seen is calculated as follows (assuming the distance
befween the food and the eye cell is less than the radius
of the eye cell type):
1. A linear function between the cell and the food is
computed
2. That function is discretized as a series <X,y>
locations in the Grid at intervals of less than one

unit

Flekd of ison |

ove

Figure 5.3.1 — lllustration of
an eye cell with associated
field of vision.

If there exists a cell in any of those locations, the food cannot be seen. Note that this leads

to a slightly non-intuitive cone shape, due to the rounding involved in discretization. This

is illustrated in figure 5.3.1.

Eye cells come in two types: “long” (radius of 100 units) and “short” (radius of 50 units).

50

Nerves: Nerves are cells which accept information from neighbouring eye or nerve cells,
and output information to neighbouring nerve or foot cells. Each nerve can have up to
four inputs, four outputs, or any combination thereof, corresponding to the four sides of
the cell. Whether a side is an input or an output is determined by its layout in a particular

Tarasanoid.

Nerves collect all input from activated nerves and eyes, and store the sum of those inputs.
When called upon for output, a nerve will output the value:

2 input in im; for “identity” nerves

- 2 input im in; for “inversion” nerves

(Z input in in) + r; for “random” nerves, where r is a random value in {-1,0,1}

Feet: Foot cells accept input from all neighbouring nerve cells, and store it as a sum. At
the end of a time step, all foot cells contribute that sum to a total, which defines the
movement of a Tarasanoid relative to its centre of mass. Foot cells come in two sub-
classes: “forward” and “turn” — forward cells contribute to forward movement (left, in the
GUI), and turn cells contribute to a counter-clockwise turn. Note that a foot cell can

receive a negative value, causing backward or clockwise motion.

Movement of a Tarasanoid is weighted by the number of cells in that Tarasanoid. For
example, if the total of forward feet contributions is 100, a Tarasanoid will move forward
by 100*(1-0.002*Tarasanoid_size) units, where Tarasanoid_size is the number of cells

in the Tarasanoid. If the total of turn feet contributions is 100, a Tarasanoid will turn by

51

100*(1 — 0.002* Tarasanoid_size) degrees.

Transports: Transport cells manage the collection and distribution of food. At each time
step, a transport cell will:

1. Collect any food from its environment (four-neighbourhood plus the Grid Cell
which the transport occupies)

2. Distribute food to its neighbouring non-transport cells (eight-neighbourhood)

3. Normalize the amount of food which it contains relative to its neighbour transport
cells. i.e. if it contains more food than an adjacent transport, the difference will be
computed, and half that difference passed to the neighbour.

In this manner, a transport cell may absorb food from the environment and gradually pass

that food to all cells in an area connected by other transport cells.

Structure Cells: Structure cells serve no purpose in the functioning of a Tarasanoid.

They exist as a starting point for the Bluenome development model, but may remain as

part of a Tarasanoid following its development. As such, they have been included as a

possibility in the bijective model as well.

5.4 - A Tarasanoid in the World

A Tarasanoid is initialized in the centre of a world, each cell containing 200 units of

52

food, with time defined as zero®. The Tarasanoid next executes the following process at
every time step:
foreach cell c
c eats one unit of food from its supply
ifc r;as no food left, it is declared "inactive”
if there are no active cells, the Tarasanoid is declared "inactive”,

program termination

/I any cells referenced later than this point are assumed to be

active.

foreach transport t
foreach GridCell g which t occupies, or which exists in the four-
neighbourhood
t eats food at g
foreach non-transport cell ¢ in the adjacent eight-
neighbourhood
if (t.foodSupply > c.foodSupply + 8)
pass 2 units of food to ¢
foreach transport cell in the adjacent eight-neighbourhood t2
diff = the difference between t.foodSupply and
t2.foodSupply / 2

pass diff between t and t2

° Hence, if a Tarasanoid does not find food, all cells will die at time 200; Typically, most cells do. as most Tarasanoids
have imperfect methods for food distribution.

53

foreach eye
if there exists a piece of food within the field of vision, set output

value as 1

otherwise, set output value as 0

compute the depth of each cell. Eyes have a depth of zero, for all other

cells depth is equal to the Manhattan metric from the closest eye.

for k from 1 to MAX_DEPTH
foreach nerve of depth k
collect input from adjacent nerves of depth k-1 (or eyes, if
k=1)
sum the input

prepare output on the basis of nerve type

foreach foot f
collect input from adjacent nerve cells
if (f of type “forward”)
forward_sum += f.output * (1 — 0.002* Tarasanoid_size)
if (f of type “turn”)

rotation_sum += f.output* (1 0.002*Tarasanoid_size)

move the Tarasanoid, first rotating by rotation_sum, then translating

forward by forward_sum

54

Note 1: in a system in which a
random nerve cell is not connected

to an eye, it will still output a

Figure 5.4.1 — lllustration of Nerve connections
between Eye Cell and Foot Cell.

random value in {-1,0,1}.

Note 2: in the above system, all nerve cells activate prior to feet accepting input. Hence,

in the situation illustrated in Figure 5.4.1, the input to the foot cell would be 2, rather than

1 (assuming the eye has output a value of 1).

Examples:

Figure 5.4.2 is an illustration of one of the simplest Tarasanoids capable of finding and

absorbing food. The process at its current location in the world is:

1.

The Transport cell does not absorb any food, since there is none in its four-
neighbourhood. If there is an abundance of food in its store (relative to
neighbouring cells), it will distribute food to its eight-neighbourhood.

The Eye cell accepts a value of 1, since the food is within its field of vision

The Nerve cell accepts as input of 1, prepares an output value of 1

The Foot cell accepts a value of 1

The sum of all Foot cells values is one, hence the Tarasanoid moves forward one

unit. (Normally this would be penalized on the basis of the size of the agent)

55

Figure 5.4.2 — One of the simplest Tarasanoids
capable of finding and absorbing food.

As a curiosity, consider Figure 5.4.3, an agent in a similar situation; This agent’s actions

would cancel each other out, leading to an immobile agent.'

Figure 5.4.3 — An immobile agent

Agent 4, time: 225, fitness: 30752

* Fitness Test: 0, full workd view

Figure 5.4.4 — Screen shot of a Tarasanoid in a type 0 World.
This shot is taken at time 225 from run bn8, generation 30. The majority of cells in the
Tarasanoid have been declared “inactive” (coloured black), but some have survived.

19 gchopenhauer, eat your heart out.

56

5.5 - Development

The reader will note that the above definition of a Tarasanoid makes no assumption
regarding its representation or development. In Phase Two, two methods are used: the

Bluenome method, and a Bijective method.

The Bluenome Method: The method of growth for a Tarasanoid in a Bluenome run
corresponds to the description provided in section 3. Unlike the implementation in Phase
One, the growth of a Tarasanoid is controlled through the numTel parameter, implying a

maximum size of 2*(numTel+1).

The Bijective Method: The bijective method of Tarasanoid development is a simple
model, in which there exists a one-to-one correspondence between elements in the
genome, and cells present in the agent. The genome for an agent consists of an array of
integer values, all between 0 and 9, inclusively. A Bijective Tarasanoid is developed by
laying out the values of those integers, one by one, in a spiral pattern, eventually forming
a diamond of area 2*(numTel+1). The genome values are mapped to cell types, where
the 0 value is mapped to the empty cell. The spiral layout begins with the central point,
and proceeds biased downwards and clock-wise (see Appendix B for details). Figure
5.5.1 shows some genotopic complexities for values of numTel. It is evident that these
values quickly become too difficult for a standard GA.

Table 5.5.1 — Genotopic complexities per values of
numTel in the Bijective model of development
numTel [1 6 8 12 20
Genotopic Complexity | 8 98 182 288 882

57

5.6 - Fitness

The fitness of a Tarasanoid in the world is a measure of its size and length of life''.
Additionally, to help guide the evolution of the Bluenome version, a bonus has been
added. This bonus is meant to artificially inflate the fitness of partially developed agents
in the initial generations — this was included after initial tests showed early stagnation.
That is, agents which showed some non-trivial development were awarded the same rank
as trivial agents by the bonus-free fitness function. The bonus rewards agents which
grows to maximal size and utilize several classes of cells, since these agents are the most

likely to breed successful agents in future generations.

Base fitness is the sum of the number of living cells in the lifespan of an agent, in a world
W.

fitnesspase(a) "=z, numCells(a,t)
where numCells(a,?) is the number of living cells in agent a at time #. Note that since the
amount of food in a world is finite, so is fitnesssas. Also note that this fitness function

implicitly rewards agents of larger size.

From the discussion of a Tarasanoid above, it is obvious that any successful Tarasanoid
will need to contain cells from a variety of classes. Hence, a Tarasanoid containing cells

of many types should be considered more fit than a Tarasanoid containing only one or

1 An attractive initial hypothesis for a fitness function might be simply the length of time that a Tarasanoid survives in
the world. However, this does not consider the possibility that a Tarasanoid with a partiaily developed transport system
might collect some initial food, hoarding it in a single cell. In this case, the single cell will survive for a large amount of

58

two. We define numClasses as the number of classes of cell types found in a Tarasanoid;
Hence, numClasses € [4] is the number of those classes for which at least one cell exists
in the fully developed Tarasanoid.

numClasses(a) =2 ciuss e feye, nerve, foot, transporyy €Xists(class, a)
where exists(class,a) returns 1 if agent a contains at least one cell of type class, 0
otherwise

fitnessponus(@) = numClasses (@)’ *20*(numTel+1)

where numTel is the number of telomeres.

Indeed, the fitness bonus is nearly always maximized for bijective agents. However, it
was retained for both Bluenome and Bijective runs of the system, for reasons of avoiding
bias and easy comparison between the two. It implies, however, a large increase in fitness

in the early generations of the Bijective runs, relative to the Bluenome runs.

Finally, our fitness function is:

fitness(a) W = fitnessyase(a) W + fitnessponus (@)
In any particular generation, an agent a will be subjected to two worlds, w, and w.
Hence, at any generation, the fitness returned to the GA is:

fitness(a) = fitness(a) "1+ fitness(a) w2

time, while the majority of the agent will die. The base fitness function defined above removes any bonus for such
behavior.

59

Note that fitness is relative to the worlds provided, as well as to the behavior of random
elements in an agent. Although elitism is present in Phase Two, this does not imply that

fitness between generations will be monotone increasing.

Figure 5.6.1 shows the minimum-bonus fitness (the fitness of an agent which has
maximized its size and fitnessponus, but which does not collect any food) and the
maximum fitness of agents relative to the parameter numTel.

Table 5.6.1 — Minimum-bonus and Maximum
fitness values for numTel € {6, 8, 20}
numTel 6 8 20
Minimum-bonus Fitness | 70 560 116 600 645 040
Maximum Fitness | 101920 | 168 440 | 927 280

5.7 — Experiments

A series of eleven experiments were executed: six utilizing the Bluenome model of
development (the Bluenome runs), and five utilizing the Bijective model of development
(the Bijective runs). The Genetic Algorithm used corresponds to the Standard Genetic
Algorithm, utilizing elitism and fitness-proportional (a.k.a. roulette-wheel) selection

[Mitchell; 1998]. All experiments in Phase Two used the following GA parameters:

Proportion of Elites: 0.1
Probability of Crossover: 0.9
Probability of Mutation: 0.01
Number of Rules (Bluenome runs): 50

The runs are distinguished by the numTel parameter. Bluenome runs are labeled “bn”,

followed by the value of numTel, shown in Table 5.7.1.

60

Table 5.7.1 — Parameters for the Bluenome Runs.

run bn.6 bn.8 bn.12 | bn.20.1 | bn.20.2 | bn.20.3
numTel 6 8 12 20 20 20
population 200 200 200 50 50 50
initial population 400 400 400 100 100 100
maximum generation 100 100 100 200 200 200

Bijective runs are labeled “bj”, followed by the value of numTel, described in Table 5.7.2.
Note that in all runs in which rumTel = 20, the distance to food locations from the centre

of the world was increased (c.f. section 5.2).

Table 5.7.2 — Parameters for the Bijective Runs.

run| bj.6 bj.8 bj.12 | bj.20.1 | bj.20.2 | bj.20.3
numTel 6 8 12 20 20 20
population | 200 200 200 50 50 50
initial population [400 400 400 100 100 100
maximum generation | 100 100 100 200 200 200

5.8 - Initial Development and General Principles in Bluenome Runs

It has been noted earlier that a significant proportion of agents developed through the
Bluenome Model of Development can be considered trivial; That is, they consist of a
single cell, or they instantiate exceedingly simple configurations of cells. The proportions
of agents which are trivial is an important question, as it is a measure of the wasted
computational time associated with the use of the Bluenome system. Figure 5.8.1 shows
the proportions of such trivial agents in the initial populations (and hence, as expected in
a set of randomly generated agents)

Table 5.8.1: Proportion of “trivial” Tarasanoids in the
initial generations of the various Bluenome runs.

Run|bn6 |bn8 [bn12 |bn20.1 |[bn.20.2 | bn.20.3 [mean
Proportion with less | 0.85 | 0.85 | 0.84 0.85 0.84 0.85 0.85
than 3 cells
Proportion with [0.98 [0.99 | 0.98 0.98 0.97 0.98 0.98
numClasses < 2

61

These rather dismal figures are quickly weeded out in the initial generations, due largely
to the fitnesssom,s measure (cf. section 5.6). Figure 5.8.2 and 5.8.3 shows the proportions
in the first 20 generations for the same runs:

Table 5.8.2 — Proportion of agents with less than 3 cells after development

Run
Generation bn.6 bn.8 bn.12 | bn.20.1 | bn.20.2 | bn.20.3 | mean
0| 0.85 0.85 0.84 0.85 0.84 0.85 0.85

5[0.51 0.31 0.55 0.66 0.54 0.76 0.56

10| 0.42 0.54 0.53 0.57 0.41 0.33 0.47

15| 0.47 0.45 0.52 0.51 0.46 0.38 0.47

20| 0.30 0.40 0.45 0.63 0.32 0.29 0.40

Table 5.8.3 — Proportion of agents with numClasses =1 after development

Run
Generation bn.6 bn.8 bn.12 | bn.20.1 | bn.20.2 bn.20.3 mean
0 0.44 0.45 0.48 0.47 0.44 0.44 0.45
5 0.56 0.61 0.61 0.59 0.52 0.48 0.56
10 0.40 0.53 0.45 0.33 0.32 0.56 0.43
15 0.39 0.50 0.47 0.38 0.32 0.38 0.41
20 0.25 0.48 0.50 0.47 0.26 0.31 0.38

Above, one might note a change in proportional values relative to the size of the
parameter numTel. Indeed, it appears that larger values of numTel will skew the
population towards more diversity within an agent. This is not surprising, as a larger
value of numTel will allow for more computation within the Bluenome Cellular
Automata. Figure 5.8.4 and Figure 5.8.5 shows the proportions of agents partitioned by

the value of numClasses.

62

Proportions of poulation by numClasses

1

0.9 A

0.8
5 0.7- MnC=4
£ 06 -
% 05 finc=3
2 04 BnC=2
° 0
5 031 OnC=1

0.2 anC=0

0.1

0 IIIIIIII I EREBAAREEREN T T T TT TTTTTETTET LI 0 3 T 0 0 O B O B

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
generation

Figure 5.8.4 — Proportions of population by value of numClasses in run bn.6

Proportions of population by numClasses
1_
O.g-
s 031 Wnc=4
£ 0.6 - Enc=3
2 337 BnC=2
2 03| OnC=1
* 021 OnC =0
0.6—
v o o0 r 5 Q86T LB 88 REK
generation

Figure 5.8.5 — Proportions of population by value of numClasses in run bn.20.1

Between runs, the proportion of agents with numClasses < 3 appears to settle at 0.4.

In the Bluenome model, it takes several generations for a population to evolve to the
stage where any of the agents are capable of finding food — this point may be observed by
contrasting with the maximum-bonus fitness, calculated in section 5.7 (Figure 5.8.6
illustrates the initial fitness values for run bn.6.1). The initial generations of the Bijective
runs immediately surpass the maximum-bonus fitness level, as shown in Figure 5.8.7.
The advantage seen in the initial generations of the Bijective run are not surprising, as the
Worlds were specifically designed to show some meager results for random agents — but
these Figures do demonstrate the existence of an initial start-up cost for the use of the

Bluenome model.

63

Fitness Plot - bn.6
100000 -
90000 -
80000 | Mean
70000 | Fitness
& 60000 -
t Max.
50000 - .
£ Fitness
&= 40000
W | N~ Y T T e Maximum-
20000 4 bonus
10000 -
0 A S S o e e T I I S ae e e e a aat
123458678 9101 12131415161718192021_22232425202728293031 32 33 34 35 38 37 38 39
generation
Figure 5.8.6 — Fitness plot of initial generations of run bn.6
Fitness Plot - bj.6
100000 -
90000
80000 | Mean
\/—M Fltness
70000 | = = e oo o sl e s am e om v m o mm gm e me e e e e ke e e e e e o
o 60000
R Max.
£ Fitness
& 40000
30000 N
----- Maximum-
200004 bonus
10000 4
123 456 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
generation

Figure 5.8.7 — Fitness plot of initial generations of run bj.6

5.9 — Data and Analysis

Comparison of the Bluenome and Bijective Runs: In the low phenotopic complexity
runs, the bijective runs outperform substantially, as illustrated in Figures 5.9.1, 5.9.3 and
5.9.4. Also, Figure 5.9.2 shows a comparison between maximum time for the numTel = 6
runs — the Bijective version typically outperforms the Bluenome version. Contrary to
initial expectations, this is not a boon, but instead a draw-back. The primary failing of the

Bijective method is its inability to generate an adequate transport system for distributing

64

food throughout its body. The successes of the Bijective model typically involve small

groups of cells hoarding food, while no new food is found following time step 200.

maximum fitness plot, bn.6 versus bj.6 bné ——bj.6
170000
160000 A) \ \ ‘
150000 ’ / ! \ ‘ / ’
'
@ 140000
[]
[
& 130000
120000
110000 -
B0 000 I R o s o o o T O LA 1 o o e e 0 I 0 B 0 B
TYr2 P02 88535999288 IBRRERYEBBBBEIH S
generation
Figure 5.9.1: Comparison of the bn.6 and bj.6 runs, fitness plot
maximum time plot, bn.6 versus bj.6 bn.6 ——Dbj.6
3500
3000
E
3 == 2500
Es
z 22000
E %1500~
S c
g E 1000
= 500
e et i an o a0 20 o, o o o o e
- e e o 5 8 Q85 F 2 285 358 38R2Ks58885 5
generation
Figure 5.9.2: Comparison of the bn.6 and bj.6 runs, maximum time plot
maximum fitness, bn.8 versus bj.8 bn.8 -——bj.8
170000
160000 -
150000
§ 140000
£ 130000
L~
120000
110000 -
0L 0 I e o o o o o B B o o I B o L0 I I o o e o O 0 e
TYN2 002 dRRFIBSYYIUBBTILRRERYBBESISS
generation

65

Figure 5.9.3: Comparison of the bn.8 and bj.8 runs, fitness plot
To reinforce the claims regarding the differences between the amount of food found by an
agent and the time which the agent survived, a better measure than fitness might be that
of fitness divided by time. Below (Figure 5.9.4) is plotted the fitness divided by time of
the maximum-fitness agent between generations of the bn8 and bj8 runs. The Bluenome

version clearly shows an advantage.

fitness / time, bn.8 versus bj.8 ——bn8 ——bj8
250
200
Qo
-E 150
P
[/}
@ 100
£
L=
50
L s o o . . A Bt A S o e o o o B o o o o o e e e e o e e e e e e e e e T e M at a a a
-+~ o2 2o 2948 85 35 2 2% 23835 3I5RRrRILYE IS
generation

Figure 5.9.3: Comparison of the bn.8 and bj.8 runs, fitness / time plot
Data from the runs of the numTel = 12 trials followed a similar course; That is, the
bijective (bj.12) version began with a high fitness value, showing evolution and
performance which exceeded that of the Bluenome version (bn.12). Informally, additional
experiments were conducted including values of numTel between 12 and 19, with similar

results.

Figure 5.9.5 show the fitness plots of the numTel = 20 runs. In these runs, a different
trend is seen; Here, the bijective runs all follow a similar course. They begin with some
visible evolution, until they reach maximum fitness values in a range of about 720 000 to

850 000 (in all cases prior to generation 100), where they appear to oscillate between

66

values randomly; It appears that the complexity of the space involved exceeds the GAs
ability to improve. The bn.20.2 shows a similar course to the Bijective runs, with some
initial evolution and a seemingly random cycling of values following. However, the
bn.20.1 and bn.20.3 plots show a continuous evolution proceeding up to generation 200,
potentially continuing beyond this point. Additionally, the bn.20.3 run quickly shows
consistent maximum fitness values which exceed the maximum found in any of the bj.20
runs. Figure 5.9.6 clearly shows the continuation of the fitness / time trend — the

Bluenome models clearly distribute food between body components more evenly.

67

fitness

maximum fitness plot, bn.20 and bj.20 runs

900000
850000] il
I {
800000 J i
i i i
it I
750000 |- i f ‘
i ‘ ¥$ 4
i
i { \ X
it ! '
700000 |-LifHH 4 i
1L , {

650000 -+ i i ‘
600000 JA_IIN: —bn.20.1 —>bn.20.2 —>bn.20.3

~-bj.20.1 —Dbj.20.2 —bj.20.3

550000 Hrrrro e T T T T T T T T T T T T T I T T T T T T T T T T T T O O T T T T T T T T T T T T
~ M O W - B~ M W e MO N e N W e M~ [} =G 3 [B> ~ M
- 228 55 22 BT HERLESHEB8 8 LIP3 L¢Lsrs 8858 8
e eI 22eETeEETeEL

generation

Figure 5.9.5: Comparison of the bn.20 and bj.20 runs, maximum fitness plot

68

time / fitness plots, bn.20 and bj.20 runs

800.00 —bj.20.1 - bj.20.2 —bj.20.3
—bn.20.1 —bn.20.3 —bn.20.2

Figure 5.9.6: Plots of (fitness / time) of maximum-fitness agent, bn20 and bj20 runs

69

5.10 — Re-Growth of Agents under Different Values of numTel

An interesting and important property determined from Phase One was that of the
Bluenome Model’s resistance to changes in environment with respect to agent growth
(c.f. Section 4.10). In this section, an experiment was undertaken which tested a similar
situation — that of the re-use of an agent’s genome in a differing setting. A population of
genomes were selected from a high-phenotopic complexity run (bn.20.2) at a period late
in evolution (generation 180). These genomes were re-developed, this time using a value
of numTel = 8, rather than 20. The developed agents were evaluated as normal in the
numTel = 8 context (that is, using the lower distances for food locations in the worlds
(c.f. Section 5.2). The values obtained are comparable to the bn.8 run. In Figure 5.10.1,
maximum and mean fitness values are compared between the re-grown agents and a
population from bn.8. Generation 94 of bn.8 was chosen as it was this generation which
showed the highest mean fitness through the entire run. While the bn8 population
outperforms the re-grown agents slightly, the mean and maximum fitnesses of the re-
grown agents are comparable to those found in the later stages of bn.8. Figure 5.10.2
shows the first agent of bn.20.2 grown with numTel = 8, 20; Visual similarities between
the two are immediately visible, and both agents are members of the “Position-then-

Rotate Strategy” family of agents (c.f. Section 5.11).

Table 5.10.1 — Maximum and Mean fitness values from re-grown agents

mean fitness max. fithess
bn.8, generation 94 75 252.67 126 364
re-grown agents, bn.20.2, generation 180, numTel=8
evaluation 1 73 558.64 118 912
evaluation 2 73111.52 120 856
evaluation 3 72 963.56 118 264
mean 73 211.06 119 344

70

Figure 5.10.2 — An agent from run
bn.20.2, generation 180 (left), re-
grown having changed the value of
numTel to 8 (below).

5.11 — Tarasanoid Strategies

In the evolution of Tarasanoids, many interesting strategies have been uncovered. This
following section describes some which have been found, although, undoubtedly, many

others exist which have escaped notice.

Blind Back-and-Forth Strategy: This strategy may be interpreted as a local optima
which often dominates early generations — instances have been found in nearly every run,
Bijective and Bluenome. Tarasanoids do not rely on input from Eye cells (often failing to
include any in their make-up), instead relying solely on Forward Foot cells and Random
Nerve Cells. The result is a Tarasanoid which slides back and forth randomly, never
rotating. This strategy will find a measure of food in worlds of Type 0 and 3 with near

certainty, occasionally finding some measure of food in worlds of Type 1 and 2,

71

depending on the random distribution of food. The youngest'? such agent was discovered
in generation 30 of run bn.8, and is illustrated below, in Figure 5.11.1.

Figure 5.11.1 — Tarasanoid which
implements the Blind Back-and-Forth
Strategy.

The dark blue cells are Forward Foot cells,
the mid-orange cells Random Nerve cells.
The agent contains no Eye of Rotating Foot
cells whatsoever, save a single Eye cell near
the centre (its location guarantees it will
never fire). The single Eye cell is included
probably for the sole reason of maximizing
fitnesSponus

Larger-Circles Strategy: Another local optima occurring with high frequency in both
Bluenome and Bijective runs, the Larger-Circle Strategy utilizes and agent which
executes a spiral motion, moving in successively larger circles. Due to the construction of
the worlds, this process will often find food, and will find it with near certainty in worlds
0 and 3, although it will typically fail in world 1. Figure 5.11.2 illustrates one such agent,
discovered in generation 80 of bn.12.

Figure 5.11.2 — Tarasanoid which implements the
Larger-Circles Strategy.

A wide array of Rotation Foot cells, connected both
to Eye cells and Random Nerve Cells guarantees a
contstant rotation. The presence of Forward foot
cells but no Inverse Nerve cells guarantees a
constant forward motion. The net result is a
gradually increasing spiral motion.

12 youngest :- the first discovered Tarasanoid in any run, with respect to the number of generations executed in the GA.

72

Rotate-then-Forward Strategy: This strategy is perhaps the most continuous and the
most successful found. It consists of an agent with relatively few focused Eye cells,
looking forward and / or backward. These Eyes are connected through a series of Identity
or Inverse Nerve cells connected to Forward Foot cells, which drive the agent forward or
backward when food is within visual range. It is augmented with a set of Random Nerve
cells, connected to Rotation Foot cells, which rotate the Tarasanoid randomly. The base
strategy is that the agent rotates until food is in view along the x-axis, then moves forward
to retrieve it. Perhaps the youngest agent of this sort is pictured in Figure 5.11.3,
discovered in generation 30 of run bn.8.

Figure 5.11.3 — Tarasanoid which implements the
Rotate-then-Forward Strategy.

There are two Eye cells on the periphery of the
Tarasanoid — centre left and upper right. These cells
are somewhat buried, guaranteeing a narrow focus,
and are connected through a large series of Identity
Nerve cells to Forward Foot cells. In the centre of the
agent are many Random Nerve cells, connected to
Rotation Foot cells, providing the random rotation.

Position-then-Rotate Strategy: The Position-then-Rotate strategy is a local optima
which occurs with far less regularity, but occurs all the same. The agent has eyes biased
in a particular direction, initially moving in that direction on feedback from Eye cells.
Once food is out of visual range (since the food is directly adjacent), the agent moves in a
circular path of constant radius. This strategy is particularily useful in World 0, but nearly
useless in all others. Figure 5.11.4 illustrates perhaps the youngest such agent, found in

generation 40 of run bn.12. Of the exposited strategies, this one may be the most

73

interesting, as it represents what is very likely an optimal strategy for world 0 —no other
agents have been found which can consistently eat all food in this type of world.

Figure 5.11.4 — Agent which implements the Position-
then-Rotate strategy.

The agent has Eye cells connected to Forward Foot
cells on both the left and right hand side, with more
Forward foot cells on the left. Towards the centre of the
agent, a series of Random Nerves connect to Rotation
Foot cells.

Development of a Transport System: As was evident from the fitness / time plots of
section 5.9, one key advantage of the Bluenome-generated Tarasanoids was the quick
development of agents with robust transport systems.

Figure 5.11.5 - The maximum fitness agent
from the bj.6 run, generation 60, around time
step 210. This agent successfully implements
the Rotate-then-Forward strategy, having
collected most of the food in the environment.
Unfortunately, most of the food if hoarded in
a small number of cells, hence the agent is
incapable of finding more after time step 200. =
This is the common failing for an agent
developed through the Bijective method.

wd BE...
I;II
o

Figure 5.11.6

An agent from run bn6 (obviously a member
of the Blind-Back-and-Forth family) with a
well-developed transport system. Shown on
the right is the agent after 200 time steps —
the majority of cells are still active, and the
agent is capable of finding additional food.

74

6. - Conclusions

The purpose of Phase One was the demonstration of the evolvability of the genomes in a
Bluenome system; the shown experiments demonstrate this along several interesting axis.
These experiments demonstrate that the Bluenome Model of Development is potentially a
viable system for representation and maturation of an artificial agent within an
evolutionary experiment. While Section 4 details the evolution along the axis of the
fitness functions, the reader might draw more inspiration from images included in
Appendix A; These images hint at many interesting and complex biological forms which

are not easily quantified.

The purpose of Phase Two was the demonstration of a practical application of the
Bluenome Model of development to a non-trivial application. The development of
Tarasanoids was a highly difficult task, involving the simultaneous evolution of several
complex systems connected in a non-linear fashion. The difficulty of this task can perhaps
be seen best in viewing the relatively poor performance of the Bijective models on high

phenotopic complexities (the numTel = 20 runs).

There is good reason to believe that the extent of a GAs abilities with a bijective
representation has been reached — This is because the three bijective runs of the system
show relatively little variance. All three oscillate between the same range of values, all
three show little signs of improvement beyond generation 100. It appears that in these

high phenotopic complexity cases, the GA has achieved it’s limits in this high-

75

dimensional space. Although further improvements would no doubt occur in time, there
is little reason to believe that these further improvements would occur with any more

efficiency than random search.

However, one of the three Bluenome runs (bn.20.3) outperforms all three of the bijective
runs, with a second (bn.20.2) showing promise with more computation. These runs
demonstrate a performance that continues to improve between generations after the
bijective runs have bogged down in a space too large. The limited size of the genotype

appears to be a significant boon in the evolution of the larger types of Tarasanoids.

A second and perhaps more interesting point is the ability of the Bluenome-developed
Tarasanoids to develop better systems for distributing food between body components.
This characteristic is most likely due to the hierarchical organisation promoted by
developmental models; These results may be viewed as providing supporting evidence to
claims involving the importance of inherited-specialization development (as exposited in
Section 2.3) outside of the field of simulated biology. It is also a parallel claim to the
phenotopic-complexity-free explanation of why the Bluenome models continue to evolve

after the bijective model has stagnated.

For both these reasons, it is expected that utilizing larger population sizes and more

running time, consistent results could be obtained in which the Bluenome Model

outperforms the Bijective model.

76

This, of course, is a meagre first statement — this does not imply that Bluenome is
superior to other models of Artificial Morphogenesis, and although the Tarasanoids task
appears quite general, does not necessarily imply that the Bluenome model will work for

any task. These questions require a great deal more research to answer.

However, the implication made by the above experiments is that the Bluenome model is a
powerful and robust model, which may operate in spaces whose size causes other
" methods to be infeasible. Also, for the reasons outlined in the review of Artificial
Morphogenesis (Section 2.3), existing models do not readily lend themselves to
application in as general a setting, or prove computationally intractable as well. Hence,
Bluenome serves as an important and successful first step into finding an appropriate
high-level approximation to biological development, which might utilize the strengths of

the developmental process in human design.

The additional benefit to the Bluenome Model discovered in the above experiments was
the resistance to environmental and global changes, as evident in sections 4.9 and 5.10.
These characteristics are no doubt properties of the hierarchical computational process
introduced in the review of Artificial Morphogenesis (Section 2.3). It is difficult to
quantify how successful these resistances are outside of any particular domain of
application, but informally, the existence of visible similarities in both Phase One and

Two conveys that many distinct properties of growth are preserved.

77

A continuing problem, however, is the dismal proportion of agents which fail to develop.
Contrasting the mean fitness between the Bluenome and the Bijective runs might
demonstrate a preference for the Bijective, but for the maximum fitness measure. Indeed,
the prevalence for agents in all generations which do not develop (a proportion of
approximately 0.4 in smaller runs, 0.3 in larger ones) seems to indicate a constant waste
of computation in the Bluenome method. It is easy to envision methods by which this
might be limited; For example, one might ensure that each genome in the algorithm
contains a rule which would cause the initial structural cell to divide®; Or, one might
declare the initial integer in a genome to be a protected site (i.e. less likely to be affected
by crossover or mutation), as these are most likely the points of highest discontinuity in
the space. However successful these techniques might be, however, the potential for a
complete solution to this problem is most likely intractable, given Bluenome’s similarity
to the CA, and the uncomputability of the forecasting problem in that context [Olivera,
Olivera, Omar; 2001]. It is an interesting but unanswered question: Is the Bluenome CA
also a model for computation? Images from Phase One suggest that the answer is yes, but

the failure of the evolution of the Entropy run (Section 4.5) might suggest otherwise.

1 This particular strategy is interesting as it resembles biological development, in which initially a zygote
develops into a blastion, a collection of unspecialized cells prior to differentiation [Karp; 2001].

78

7. - Future Directions

There are many means by which the Bluenome method might be further evaluated or
extended. Limitations of the Bluenome method at present are largely expressions of
simplifications which have been adopted in an effort to decrease computational
complexity, especially with regards to the evaluation of fitness. Additionally, the method
of evaluation is somewhat limited, in that from the current context of the experiments, it

is difficult to make predictions on how the system will scale up.

The choice of the Tarasanoid-World model for evaluation was an attempt to elicit the
advantages of the Bluenome model’s intrinsic hierarchy. A more interesting question
might be to ask; In which situations will a Bluenome model of development provide an
advantage to alternative representations? To approach this question, a far more general
environment in which to evaluate agents is required. It seems a logical step to construct
an environment in which agents are interpreted as programs or mathematical routines,

where a particular problem may be posed to the system.

A second necessary condition of the environment is that of more efficient evaluation of
an agent, which was the computational hurdle primarily holding back experimentation. In
a field in which one attempts to find an appropriate high-level functional behavior, the
need for experimentation is paramount. In creating the Bluenome system, many

simplifying assumptions were made regarding the nature of an agent. These include:

79

1.

That connectivity between cells and neighbours is simple and grid-based: In
biological situations cells may deform, and the movement of a cell does not
necessarily disrupt its connectivity. This allows for the easy creation of
membranes, which may serve to easily divide an agent into regions.14

That the universe in two-dimensional; Three-dimensional structures contain many
possibilities which simply cannot be explored in two-dimensional space, which
undoubtedly limit the functionality of the Tarasanoid experiment.

The functionality of the cell types involve many simplifying assumptions relative
to the actual cells they were modeled from. Issues such as: what to do with the
material which comprised an inactive cell, or, the near-magic by which cells in the
developmental phase divide and specialize might be re-visited, attempting several

alternative behaviours to determine the difference to overall performance.

These are questions unlikely to be answered through any means save experimentation — a

mechanism for agent evaluation must be fast and general enough to support them.

A final possibility presents itself at this point. Wolfram’s earlier point is summarized in

this passage below:
I have come to believe that many of the most obvious examples of
complexity in biological systems actually have very little to do with
adaptation or natural selection... my strong suspicion is that in fact the

main effect of natural selection is almost exactly the opposite: it tends to

' An example of paramount importance in the development of vertebrates is the determination of the
blastocyst into the three germ layers, with analogous developments for plants and invertebrates. The
universality of this occurrence suggests its value.

80

make biological systems avoid complexity, and be more like systems in
engineering.
Indeed, this is an intriguing hypothesis, but begs an obvious question: If so, how? If the
function of natural selection is to limit the wildness of the developmental process, how
does it do so? Answering this question might normally be a task for biologists; However,
this might not necessarily be the case, if the Bluenome system models the correct
functional aspect of development. It is my hope that systems of the sort of processing

which Bluenome undertakes might some day yield an answer to this question.

81

References

Bentley, P., Kumar, S., The Ways to Grow Designs: A Comparison of Embryogenies for
an Evolutionary Design Problem, in Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO-1999

Dellaert, F., Beer, R., 4 Developmental Model for the Evolution of Complete Autonomous
Agents, in From Animals to Animats 4: Proceedings of the Fourth International

Conference on Simulation of Adaptive Behavior, pp. 393-401, (1996)

Eggenberger, P., Evolving Morphologies of Simulated 3D Organisms Based on

Differential Gene Expression., in Husbands, P., Harvey, 1. (editors) Proceedings of the

Fourth European Conference on Artificial Life (1997)

Fagotto, F., Gumbiner, B., Cell contact-dependent signaling, in Developmental Biology

180, pp. 445 — 454, (1996)

Furusawa, C., Kaneko, K., Emergence of Rules in Cell Society: Differentiation,

Hierarchy, and Stability, in the Bulletin of Mathematical Biology, pp. 79 — 93, (1998)

Hamabhashi, S., Kitano, H. Simulation of Drosophilae Embryogenesis, in the Proceedings

of the Sixth International Conference on Artificial Life (1998)

82

Hart, W., Kammeyer, T., Belew, R., The Role of Development in Genetic Algorithms, in
D. Whitley, M. Vose, editors, Foundations of Genetic Algorithms III. (Morgan Kauffman;

1994)

Haupt, R., Haupt, S., Practical Genetic Algorithms, (John Wiley and Sons; 1997)

Holland, H., Adaptation in Natural and Artificial Systems, (University of Michigan Press;

1975)
Homby, G., Pollack, J., Creating High-Level Components with Generative
Representation for Body-Brain Evolution, in Artificial Life v. 8, no. 3, pp. 223 - 246
(2002)
Hotz, P., Gomez, G., Pfiefer, R., Evolving the morphology of a neural network for
controlling a foveating retina - and its test on a real robot, in Artificial Life VIII: The 8th
International Conference on the Simulation and Synthesis of Living Systems , p. 243,
(2003)

Karp, G., Cell and Molecular Biology, 3 Ed., (John Wiley & Sons, Inc.; 2001)

Kauffman, S., The Origins of Order, (Oxford University Press; 1993)

83

Kvasnicka, V., Pospicjal, J., Emergence of Modularity in Genotype-Phenotype Mappings,

in Artificial Life, v. 8, no. 4, pp. 295 - 310 (2002)

Mitchell, M., An Introduction to Genetic Algorithms, (MIT Press; 1998)

Mitchell, M., Crutchfield, J., Das, R., Evolving Cellular Automata with Genetic
Algorithms: A Review of Recent Work, in Proceedings of the First International

Conference on Evolutionary Computation and Its Applications (1996)

Olivera, G., Olivera, P. Omar, N. Definition and Application of a Five Parameter
Characterization of One-Dimensional Cellular Automata Rule Space, in Artificial Life,

Volume 7 Number 3, pp. 277 — 302, 2001

Patten, B., Foundations of Embryology, 2" Ed., (McGraw-Hill; 1964)

Rechenberg, 1., Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien

der Biologischen Evolution, (Frommann-Holzboog; 1973)

Schwefel, H., Numerical Optimization of Computer Models, (John Wiley and Sons; 1981)

Spears, W., De Jong, K., Baeck, T., Fogel, D., de Garis, H., 4n Overview of Evolutionary
Computation, in the Proceedings of the European Conference on Machine Learning, pp.

442 — 459, (1993)

84

Stanley, K., Miikkulainen, R., 4 Taxonomy for Artificial Embryogeny, in Artificial Life,

v. 9, no. 2, pp. 93 — 130, (2003)

von Neumann, J., Theory of Self~-Reproducing Automata, (University of Illoinoise Press;

1966)

Wolfram, S., Universality and Complexity in Cellular Automata, reprinted in Cellular

Automata and Complexity: Collected Papers, pp. 115 — 158, (Westview Press; 1994)

Wolfram, S., 4 New Kind of Science, (Wolfram Media Inc.; 2002)

85

Appendix A: Additional Images from Phase One

The following are a set of images found during Phase One. They are included here as they
demonstrate principles which I have not been able to quantify, principles demonstrating
the robustness of the Bluenome Model of Development in relation to two-dimensional
CAs, or simply because they are aesthetically pleasing. Figures A.6 is relevant to
demonstrating the breadth of the Bluenome system with respect to that of two-
dimensional CAs — communication of information [Mitchell; 1998] is an important
component is demonstrating the universality of CA computation. Figure A.5 is interesting
as it demonstrates Bluenome’s ability to produce fractals (given infinite resources,

naturally).

I R B -

Figure A.1 — Examples of agents with highly differentiated distinct regions

Examples of agents with similar but distinct regions

Figure A.2 -

86

Tavie void pesecen;

- Ii"igure A.3 — Examples of agents with highly non-symmetrical growth
The left and centre images are from the same genotype,
in different stages of growth.

Figure A.4 — Agent with
growth resembling a
biological transport system,
half-way through the
developmental process.

87

Figure A.5 — Agent which [organism View V aE=)

partially recovers the | ——
Sierpinski Pyramid

Figure A.6 — Examples of agents which communicate information
over distance; The interactions between the “branches” in these
agents recover the particle-interactions discussed in [Mitchell; 1996].

88

Appendix B: Precise Algorithms for Development

Bijective Spiral Development: The bijective model of agent development accepts an
array of cell types, and constructs an agent by laying out those cells in a spiral, beginning

with the centre, biased down and clockwise.

The spiral layout is generated through the following algorithm:

Initially, the first element of the genome is mapped to a cell and placed in

the centre of the development grid. That cell is labeled currCell.

For any ‘ce||, currCell, enumerate its neighbours from 0 to 7, where 0 is
the cell directly to the left,1 the next cell clockwise. A neighbourhood can
then be characterized by an 8-tuple of values from {0, 1, *}, where 0
means that the neighbouring cell is empty, 1 means that it is full, *
matching either case. Hence, the pattern <0,* ***** 1> is a template for
any neighbourhood in which the cell directly left is empty, and the cell in

the bottom left is full.

for k =1 ... genome_size
consider the neighbourhood N surrounding currCell
if N is characterized by <0,**,*,0,0,0,0>
place cell k in location 0, label it currCell
else if N is characterized by <*,0,1,*,*,*,0,*>

place cell k in location 1, label it currCell

89

else if N is characterized by <0,*,*,0,1,*,*,*>
place cell k in location 3, label it currCell

else if N is characterized by <*,*,0,*,*,*,1,0>
place cell k in location 5, label it currCell

else if N is characterized by <1,*,*,*,0,*,*,0>

place cell k in location 7, label it currCell

Best Free Location: — During the developmental process, a cell will select the “best free

location” from its four-neighbourhood in deciding the location of a cell division or

movement. Loosely, the “best free location” is the empty cell farthest away from the

centre of mass of cells surrounding the current.

Let the the neighbours of the current cell be labeled 0 — 7, where 0is the

cell directly to the left, 1 the next cell clockwise.

Let d(x) = 1 if there exists a cell in location x, 0 otherwise
Let the mass of a side,
mass(x) = infinity; if d(i) = 1

d(x — 1) + d(x) + d(x+1 mod 7); otherwise
Let minSide = min { mass(0), mass(2), mass(4), mass(6) }

If minSide is finite, return it. Otherwise, return null.

90

Appendix C: Glossary of Terms Used

Bluenome: A novel model of translating genotype to phenotype, inspired by biological
Cell Differentiation. Bluenome Model of Development refers to the use of Bluenome for
development, and Bluenome system refers to a Genetic Algorithm which utilizes the

Bluenome model of development to generate agents.

Bluenome Cellular Automata: An alternative view of Bluenome Development, where

growth is seen as computation in the instantiated two-dimensional CA.

Bijective Development: A bijective translation between genotype and phenotype. In
Phase Two, this is implemented as mapping a list of cell types to a diamond of cells, via a

spiral layout (See Appendix B)

Cell: A single component which comprises part of an agent. In Phase One, a cell is
simply a block of colour in an image. In Phase Two, it is one of 9 types of cells, each of

which plays an autonomous role in an agent.

Crossover: A Genetic Operator, as used in Evolutionary Computation. Crossover accepts
two genomes (as used here, two lists of integers). A single cross-point is chosen, and the
latter parts of the strings are swapped, creating two new strings of integers. Note that the

selection of the cross-point 0 returns the two original strings. Crossing two agents over

91

means that their respective genomes where crossed, producing two new agents from the

resulting genomes.

Elitism: A Genetic Operator which selects the most fit agents in a population, and places
them directly into the next population. Therefore, specifying a rate of elitism of 0.1
implies that the top 10% of any given population will appear in the following generation
without modifications. Typically, elitism is used to ensure that fitness never decreases
between generations. The probabilistic nature of fitness evaluations in the Bluenome
experiments, however, make this impossible. In Bluenome Phase Two, elitism is used

simply to limit the destructive qualities of the Crossover and Mutation operators.

Environment: A rectangular matrix of Grid Cells, or atomic units of space. An agent

develops and lives in this matrix.

Eye: A cell type, utilized in Phase Two. An eye cell detects food within its field of vision,
returning 1 or 0. Note that an eye’s field of vision will be disrupted by another cell. Eyes

may be short-range or long-range.

Fitness-Proportional Selection (ak.a. Roulette-Wheel Selection): The following
algorithm selects an agent from the population. Let our population be p ¢ P, and let fbe
our fitness function. Let each agent in P be assigned a proportion of the total sum of

fitness:

fitmessSum =2, . p f(p)

92

proportion(p) = f(p) / fitnessSum
Partition the space [0, fitnessSum] into |P| parts:
wheely = [0, f{po)], wheel; = [f(po), fip1) + flpd)], ete.
Let r be a random value, 7 ¢ [0, fitnessSum]; then r falls in interval wheel; for some j.

Return agent p;.

Foot: A cell type, utilized in Phase Two. A Foot cell accepts input from neighbouring
Nerve cells, causing the overall agent (Tarasanoid) to either move forward, or rotate. Foot

cells may be of type forward or rotate.

Grid Cell: A unit of space in an agent’s environment. A Grid Cell in Phase Two may
contain a single cell and / or a single patch of food. An agent’s environment is a

rectangular matrix of Grid Cells.

Mutation: A Genetic Operator used in Evolutionary Computation in the preparation of a
new generation. The mutation operator, given a genome (2) and a probability of mutation
(p), changes each bit in g (from 1 to 0, or from 0 to 1) with probability p. In the case of a
genome as used in the experiments described in this paper (either Bijective or Bluenome),

an integer in the genome g is replaced with a new random integer, with probability p.

Neighbourhood: Given a Grid Cell in a matrix, a neighbourhood is the collection of cells
of specified size which surround it. Figure C.1 shows neighbourhoods of size four, eight

and twelve, along with numbering as is used in the pseudo-code in this paper.

93

Four-Neighbourhood Eight-Neighbourhood Twelve-Neighbourhood

1 123 .9
0 c 2| 0c4 1213
3 765 80c 410
S 7.6/5
11

Figure C.1: Neighbourhoods about a Grid Cell ¢, and Their Associated Numbering.

Nerve: A cell type, utilized in Phase Two. A Nerve cell accepts input from an Eye cell or
another Nerve, outputting a transformed value to another Nerve cell, or a Foot cell.

Nerves may be of type Identity, Inversion or Random.

Pattern Flattening: A technique by which additional colours are added to an image, by
finding the most common pattern within an image and redeclaring them a different

colour. A pattern in an image is a matrix of 2x2 or 3x3 cells.

Telomere: A telomere (in Biology) is a specialized section of a cell’s DNA — between
replications, this section is cloned, leading to an increasing number of appearances in
cells spawned later in development. It is suspected that telomeres play a role in limiting
initial development, as well as in mediating later mature-organism growth. In the
Bluenome system, each cell in the developmental phase of an agent contains a telomere
variable — each successive action causes the telomere to decrement. Once a telomere
reaches zero, a cell may make no more actions. Hence, an agent developed via the
Bluenome model may reach a size of at most 2¥(numTel + 1)%, where numTel is the

number of telomeres.

94

Transport: A cell type, utilized in Phase Two. Transport cells play two roles: The first is
to absorb food from the environment, if food occupies the same Grid Cell, or any in its
four-neighbourhood; The second role is the distribution of food between itself and its

neighbours. There is only one kind of Transport cell.

Structural: A cell type, utilized in Phase Two. Structurals are “neutral” cell types, in that

they undertake no action in the behavior of a Tarasanoid, save to absorb food. Every

Tarasanoid begins its development as a single Structural cell.

95

