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Abstract
Static Analyzer — A Design Tool for TROM

Hongjing Tao

Real-Time Reactive Systems are large complex systems. Many reserchers have
been studying this field and have developed specification methods to reason about
the behavior and attributes of real time reactive systems from different perspectives.
This thesis contributes to the development of one part of a tool that will provide
an environment to specify, design, debug and simulate real-time reactive systems
built on TROMSs, Timed Reactive Object Models. The tool consists of three major
parts: Editor, Interpreter(including Axiom Generator) and Simulator. The Inter-
preter which is fundamental to the tool is the subject of study in this thesis. The
Interpreter will do syntax and semantic analysis for user specification and generate
internal data representation to perform the simulation. The Axiom Generator will
generate axioms for each particular TROM to be used by formal verification during

system simulation.
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Chapter 1

Introduction

According to Parnas[12], a system can be considered complex if its shortest useful
description is relatively long. The length of the shortest description indicates the
amount of information required to understand the product. As systems become more
and more sophisticated in the different domains of applications, a clean and com-
prehensive specification of overall system organization and behavior become critical
aspects of system design. Many reserchers in this field are developing tools to deal
with system complexity in different perspectives. Because the complexity in modern
systems is due to software construction, it follows that we need to distinguish those
attributes of software that contributes to the complexity from the physical system
that they govern. Since we have to work with very complex systems in the real world,
we must understand the sources of complexity and the method with which we can

fight complexity.

1.1 Large Complex System

According to general system theory, an entity called “system™ is a complex or-
ganization of elements or parts “in interaction”{2]. In other words, a large and
complex software system contains a variety of entities(objects) and a complex sys-
tem(transformation function) controlling the interaction of objects[16]. There are two
tvpes of complexities in designing a large system: compler requirements, and com-

plerity due to bad design. In general, there are three important factors contributing



to those two types of complexities[2].

e “Largencss™ in numbers: such as size(lines of code). control and distribution of
operations, long life cycles and evolutionary changes. persistance of information
and protection of long-term investments make the system large in space and in

time.

e Heterogeneity of concepts and procedures: such as heterogeneity of equipment,
operating systems heterogeneity, heterogeneity of authority, applications het-
erogeneity, where it is desired to integrate otherwise separate applications to

perform a single task.

e Complex organization and scalability: focus on examining the relationships
between the components constituting the system and identifying types of system

organizations.

We should keep in mind that although the world is not simple and the system re-
quirements become very complicated, our goal must focus on building simple systems
that perform complex tasks rather than developing large complex computer systems.
Since the system requirements can not be changed, the complex requirements must
be understood through the use of browser, cross-references and other computerized
support. The significant challenge lies in designing a system which reduces, if not

totally eliminates, complexity.

There are several ways to deal with complexity. An important design principle is
to reduce the complexity of interconnectedness of system components. By applying
the principles of abstraction, information hiding, separation of concerns and object-
orientation, system design can be simplified. For example, by structuring the system
hierachy and by providing abstract interfaces, we can enhance the understandability
and usability of the system. In order to achieve this goal, a modular and hierarchical
design is highly recommended since it is suitable to use above mentioned method to

reduce system complexity.

[8V)



Recently, an Object-Oreinted methodology combining real time has been put forth
to formally develop large reactive systems. The formal Object Oriented methodology
introduced by Achuthan{1] includes the principles of abstraction. object orientation.
separation of concerns. hierarchical design and moduler composition. The basic build-
ing block in this method is a TROM, Timed Reactive Object Modecl. Consequently,
this methodology is excellent in reducing design complexity. This work provides for-
mal foundation and rigorous methodology enabling formal verification and validation.
However, in order to apply this methodology in practice, we need an environment for
easy user interaction towards a better understanding of the system features, system
interaction and system behavior. Our task is to build an environment for a reactive
system development so that user can create a correct system specification and sim-
ulate the system behaviour. The animation tool consists of three major parts — an
User Interface, an Interpreter and a Simulator. This thesis is a contribution to the

development of the interpreter.

1.2 Scope of the thesis

The goal of the thesis is to develop an interpreter for syntatic and semantic checking
of user defined TROMSs and subsystems modeling a reactive system. After defin-
ing a grammar for TROM, we explain how it is used for syntax checking of user
defined TROMs. Simple semantic analysis such as the correctness of event name
and port-type name can be done during syntax analysis. However, issues ralated to
system behavior are to be dealt with during semantic analysis. An abstract internal
representation called AST, Abstract Syntax Tree, is generated for syntacticly and

semanticly correct TROMSs and Subsystems.

In Achuthan][l}, an axiomatization of TROM is given. Based on this set of axioms,
we can develop an axiom generator and provide a methodology for generating axioms
for specific TROM models. Those axioms are exported to, a verification system, for

formal verification of system properties.



1.3 Thesis Outline

A brief outline of the thesis is as follows: Chapter 2 gives a brief discussion on reactive
system design: Chapter 3 discusses the architecture of the Interpreter: Chapter 4 gives
grammars for TROMSs and Subsystems. It also gives the definition of well-formed
TROMs and subsystems and explains the syntactic analysis of user input system
components; The structure of abstract syntax tree is explained and is illustrated for
train-gate-controller example in Chapter 5. Chapter 6 discusses the semantic analysis
and Larch/C++ specifications; axiom generator is discussed in Chapter 7. This thesis
concludes in Chapter 8 with discussion on how this work fits with the overall goal of
building an environment in which reactive systems based upon TROMs Achuthan(1]

can be developed.



Chapter 2

Reactive System Design - A brief
Outline

2.1 Modular Design

Real-time reactive systems are large and complex systems. Some aspects of such
a system are fundamental, while others are arbitrary and are likely to change. By
decomposing system functionalities into self-contained and independent modules, we
can tackle the complexity arising due to system changes. Some of the advantages are

the following:
e Data and functionalities can be encapsulated.
e Abstract interfaces can be provided.

e It can reduce the strength of inter-module connections. Strength of connection

is consistent with an information theoretic point of view.

e Each module can be documented independent of other modules. This allows

the user to focus on the small components of the system.
e Modules can be tested independently for correctness and completeness.

e Modular verification reduces the complexity of the system verification.

ot



Hierarchical Design is another modular design concept which restructures the sys-
tem and simplifies the description and analysis of the system. AModule containment
hierachy. program uses hierarchy. resource control hierarchies and process work alloca-
tion hierarchies are used in designing system hierarchies. Due to hierarchical design,
the overall system architecture becomes easy to comprehend, thus reducing the com-
plexity arising in the description of systems. The OO methodology introduced by
Achuthan(l] includes these principles and in addition deals with real-time reactive

objects.

2.2 TROM Methodology

Reactive systems[4] are systems that continually interact with their environment.
Typical requirements of such systems are that they satisfy certain timing constraints
and avoid unsafe execution paths during their interaction with the environment. The
methodology introduced by Achuthan{l] provides a formal Object-Oriented frame-
work for the specification and reasoning of reactive systems. In this methodology, a
system requirement is specified in temporal logic[11] and a system design is modeled
as a collection of synchronously communicating objects using a 3-tiered design lan-

guage. See Figure 1

The middle tier gives the detailed specification of the objects used in the upper
tier by means of class definitions described in TROM terminology. In other words,
each reactive object is formally modeled using a TROM. A TROM is a finite state
machine augmented with ports, attributes, timing constraints and logical assertions.
The state can be hierarchical in nature. The transitions are labled by events, which
describe interactions of the object with its environment. The attributes in each state,
defined by the attribute function, model the computations on data associated with
transitions. The behaviors of attributes are abstractly specified in the LSL traits
included in lower tier. With each transition, three assertions are associated: 1) pre-
condition, stating the conditions to be satisfied for enabling the transition; 2) post-

condition, specifying the status of the attributes due to data computations associated
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Figure 1: An overview of the methodology.

with the transition; and 3) port-condition, specifying the port at which an interaction

happens.

2.2.1 Tier 1 — Data Abstraction

This level specifies the data abstraction used in the class definition of the middle
tier by means of one of the languages of Larch, the Larch Shared Language(LSL)[10].
Larch languages are formal specification languages geared towards the specification
of the observable effects of program modules, particularly modules which implement

abstract data types. Larch provides a two-tiered approach to specification:

e In one tier, a Larch Interface language(LIL) is used to describe the semantics of
a program module written in a particular programming language. LIL specifica-
tions provide the information needed to understand and use a module interface.
LIL doesn’t refer to a single specification language but to a family of specifica-

tion languages. Each specification language in the LIL family is designed for a

7



specific programming language. The LIL for C++ is called Larch/C++.
LIL specifications are used to specify the abstract state transformations result-
ing from the invocation of the operations of a module. These specification are

written in a predicative language using pre- and post-conditions.

e In the other tier, the Larch Shared Language(LSL) is used to specify state-
independent, mathematical abstractions which can be referred to in LIL speci-
fications. These underlying abstractions, called Traits, are written in the style
of an equational algebraic specification.

LSL is programming language independent and is shared by all LILs.

The unit of encapsulation in LSL is the trait. Figure 2 shows an LSL trait which
specifies the properties of a set. This example is similar to a conventional algebraic
specification in the style of [10]. A trait contains a set of operator declarations, or
signatures, which follows the keyword introduces. A set of equational axioms follows
the keyword assert. A signature consists of the sorts and the domain and range of
an operator. The equational axioms specifies the behavior and constraints on the
defined operators.

There are a few notable differences between Larch traits and conventional algebraic

specifications:

O The name of a trait (e.g. SetTrait) is distinct from the name of all sort and

operator identifiers defined in the trait (e.g. Set).

O The names of sorts are not explicitly declared. They are implicitly declared

by appearing in a signature.

O Larch makes use of the clauses partitioned by and generated by to increase the

expressive power of traits.

O The semantics of = and == are exactly the same in LSL; only their syntactic
precedence differs to ensure that expressions parse in an expected manner
without having to use parentheses. The operator = binds more tightly than

the operator ==.



Set(IZ,C) : trait

includes /nteger

introduces
{}=C
insert : I',C —- C
member : I.,C — DBool
delete : £, C = C
size : C — Int
islimpty : C' — Bool

asserts
C generated by {}, insert
C partitioned by member
Vs:C,eenex: I}

—(member(e, {}))

member(ey, insert(e,;,s)) == e; = e, V member(ey, s)

size({}) ==0

size(insert(e,s)) == if member(e, s) then size(s) else size(s) + 1
delete(eq, insert(ez,s)) == if e; = e; then s else insert(e;, delete(e,,s))
isEmpty({})

islompty(s) == size(s) =0
—islCmpty(insert(e, s))
implies

Vee.er:F,s:C
insert(e,s) # {}
insert(e. insert(e,s)) == insert(e,s)
insert(e,, insert(ey, s)) ==

insert(e,, insert(e;, s))

converts delete, member, size, isl-mpty
exempting

Ve: I
delete(e,{})

Figure 2: LSL Trait - Set



O Equations of the form term == true can be abbreviated to tcrm; thus the first
equation in Figure 2 is an abbreviation for = (¢ € {}) == true and the third

equation is an abbreviation for isEmpty({}) == truc.

O The semantics of Larch traits is based on multisorted first order logic with
equality rather than on an initial, final or loose algebra semantics used by other
algebraic specification languages . Each trait denotes a theory! in multisorted
first-order logic with equality. The theory contains each of the trait’s equations,
the conventional axioms of first order logic with equality, everything which
follows from them, and nothing else. This means that the formulas in the
theory follow only from the presence of assertions in the trait - never from
their absence. The theory of a trait can also be strengthened by adding a

generated by or a partitioned by clause.

O A trait definition need not correspond to an abstract data type (ADT) defini-
tion since an LSL trait can define any arbitrary theory of multisorted first-order
equational logic. For example, a trait can be used to define the first order the-
ory of mathematical abstractions such as equivalence relations which do not

correspond to abstract data types.

O LSL traits can be augmented with checkable redundancies in order to verify
whether intended consequences actually follow from the axioms of a trait.
These checkable redundancies are specified in the form of assertions which are

included in the implies clause of a trait and can be verified using Larch Prover.

In the trait of Figure 2, the generated by clause states that all values of the sort
Set can be represented by terms composed solely of the two operator symblos {} and
insert. In other words, saying that sort C is generated by a set of operators, Ops,
asserts that each term of sort C is equal to a term whose outermost operators is in
Ops. The operators in the set Ops are referred to as the generators of the sort C. A
generated by clause strengthens the theory of a trait by adding an inductive rule of

inference which can be used to prove properties which hold for all Set values.

1A theory is a set of logic formulas having no free variables.

10



For LSL traits which define an ADT. there is a sort referred to as the distinguished
sort. sometimes also called the principal sort or data sort. For example, for the trait
of Figure 2 the distinguished sort is Set, which is the sort corresponding to the sct
ADT.

The partitioned by clause provides additional equivalences between terms. Intutively,
it states that two terms are equal if they cannot be distinguished by any of the func-
tions listed in the clause. For the Set example, this property could be used to show
that order of insertion in the set is commutative. That is. it could be shown that the
terms insert(el, insert(e2,s)) and insert(e2, insert(el,s)) are equal for all values of
el. e2: Int and s: int.

The exempting clause documents the absence of right-hand sides of equations for
delete(e, {}); this incompleteness is dealt with in the interface specification. The
converts and exempting clauses together provide a way to state that this algebraic
specification is sufficiently complete. Intutively, what the converts and exempting
clauses are saying is the following: the specification of the operators delete, isEmpty
is complete in the sense that any term involving these operators can be reduced to
terms not involving these operators. The only exception to this rule is for terms which
involve a subterm of the form delete(e, {}).

LSL also provides a way of putting traits together, one of which is through an includes
clause. A trait that includes another trait is textually expanded to contain all opera-
tor declarations, constraints clauses, generated by clauses, and axioms of the included
trait. The meaning of the including trait is the meaning of the textually expanded
trait. In the Set example, the signature and meaning of the ‘+’ operator comes from
the Integer trait. Boolean operators (true, false, — (not), A, V, —, and «) as well as
some heavily overloaded opeartors (if-then-else, =) are built into the language; that

is, traits defining these operators are implicitly included in every trait.

We discuss Larch/C++ in Chapter 5, in the content of specifying Abstract Syntax

Tree structures.

11



2.2.2 Tier 2 - TROM Methodology

In this level. reactive objects are modeled using TROMs. Communications between
TROMSs occur at the ports linking the TROMSs. A port has an unique port type.
which dictates the set of messages and the message sequences allowed at that port.
A TROM can have ports of different types and several ports of one type. When
an event E occurs at a port P at time T, an activity is initiated which may take a
finite amount of time to complete. Due to the occurence of an event at the port,
the TROM may undergo a state change, triggers or outputs several time-constraint
events.

A formal definition of TROM, as given by [1], is the following:

Definition 2.2.2.1 A TROM is an 8-tuple (P, £ ,0, X , L, ®, A, T) such that:

e P is a finite set of port-types with a finite set of ports associated with each port-
type. A distinguished port-type is the null-type Py whose only port is the null

port o.

o £ is a finite set of events and includes the silent-event tick. The set E-tick is
partitioned into three disjoint subsets: &;, is the set of input events, £, is the
set of output events, &, is the set of internal events. Each e € (E; U Eoue), s

associated with a unique port-type P € P-F,.
e O is a finite set of states. 8o € O, is the initial state.

o X is a finite set of typed attributes. The attributes can be of one of the following

two types: i) an abstract data type supporting a data model; ii) a port reference

type.
o L is a finite set of LSL traits introducing the abstract data types used in X.
o & is a function-vector (P,, ®.¢) where,

- ®,: O — 29 associates with each state 6 a set of states, possibly empty, called
substates. A state 0 is called atomic, if ®,(0) = &. By definition, the
initial state Gy is atomic. For each non-atomic state 8, there ezxists a

unique atomic state 8= € ®,(8), called the entry-state.
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- ®.: © = 2V associates with each state 6 a set of atiributes, possibly empty.
called active attribute set. At each state 0. the set ®,,(0) = X - ®,(0)is
called the dormant attribute sel of 0.

e A is a finite set of transition specifications including A, ;. A transition spec-

tfication A € A - A is represented as A : (0,0); e(Pport); Pen = Ppost;

inst’
where:

- (0,0°),where 0, 0’ € © are the source and destination states of the transition,

respectively.

- e(@port) where e € £ lables the transition; @0 is an assertion on the attributes
in X and a reserved variable pid. pid signifies the identifier of the port at
which an interaction associated with the transition can occur. If e € &y
U tick, then the assertion @por is absent and e is assumed to occur at the

null-port o.

- Pen == Ppost;Where ey is the enabling condition and @y, ts the post-condition
of the transition. Y., is an assertion on the attributes in X, primed at-
tributes in ®,,(0’)and the variable pid specifying the data computation as-

soctated with the transition.

For each 6 € O, the silent-transition A,, € A is such that,
A,z (8,8); tick; true => Vx € ®,,(0): x=x7;
The initial-transition A, is such that A_,: (0); Create(); @it where @i s

an assertion on active-atiributes of 6,.

e T is a finite set of time-constraints. A timing constraint v; € T is a tuple (X;,

el, [1,u], ©;) where,

A; # A, is a transition specification.

e! € (Eint U Eout) is the constrainted event.

[l,u] defines the minimum and mazimum response times.

- O; C O is the set of states where in the timing constraint v; will be ignored.
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Class < classname > < [@port-types] >

Events : < event list >

State: < initial-state, list-of-states >

Attributes : list of < {att : att-1ype} >

Traits :  list of < {iraitname [port-type, att-type|} >

Attribyte-function :  list of < {set of states -> set of atis} >

Transition Spec : < inir-lable: <init-state>; Create(); >
list of < trans-lable: <source, destination>:
event(assertion), assertion -> assertion, >
Time-Constraints :
list of < lable: (trans-lable, event,[min, max], set of state) >

end

Figure 3: The Well-formed TROM Class Definition.

The grammar given in Chapter 4 is based on this formal definition.

To apply this formalism in defining a TROM class. We give a template, shown

in Figure 3. A user will write a TROM class specification based on this grammar.

2.2.3 Tier 3 — Subsystem Specification

This level is the topmost tier which constitutes subsystem configuration specifica-
tions(SCS), describing the system architecture by succinctly specifying the interac-
tion relationship that can exist between the objects in a system. It also defines the
inheritance and subtyping by aggregating instantiated objects to form subsystems
and systems. Subystems are components in a system architecture. Each subsystem
encapsulates the association, interaction, and concurrent evolution of a collection of
TROMs. Hence a subsystem specification includes one or more SCS definitions.

The template for a subsystem configuration specification is shown below.
SCS: < name >
Include: list of < other_SCS_name>

Instantiate: list of < object_instantiation>
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Configure: list of < object_port_aggregation>

This 3-tiered design specification forms the main component in the framework.
Due to this approach. the desigu specification framework not only provides an ar-
chitectural specification of a system, but also forms a means for formally specifying
detailed design of the system component. One of the main advantages of this method-
ology is the conciseness in specification when object-oriented structuring principles
such as instantiation, inheritance and subtyping are used as part of the design.
Through a case study, we illustrate the specification in the second and the third tiers.

We also use the example to bring out the features of our tool.

2.3 Train-Gate-Controller Example

Consider a generalized version of a railroad crossing system introduced in [5]. We
emphasize on its real-time reactive behavior and generalized version of the object-

oriented design point of view. We will use this case study throughout the thesis.

2.3.1 An Informal Description

A railroad crossing system consists of a collection of frains and gates servicing the
roads crossing the train tracks. The gate should remain closed whenever a train goes
past the crossing. In order to control the gates there exists a collection of controllers
such that one controller controls each gate. A controller closes its associaed gate
when it gets a “nearing signal” from a train and opens the gate once all the trains
crossing the gate have left. A controller does this by receiving signals from the trains
and transmitting necessary control signals to its associated gate. Thus the problem
is more general than the one studied before in the following sense: more than one
train can cross a gate simultaneously, probably through multiple parallel tracks; a
train can independently choose the gate it is going to cross, probably based on its
direction and zone of travel. A safety requirement for the system is that whenever a
train is inside a gate, the gate should remain closed.

When a train is approaching a gate. the train starts sending a Near message to the
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controller associated with the gate. While leaving the gate. the train informs the
controller by an Erit message. A typical time constraint on the train is that there is
a minimum delay of at least 2 units of time before the train gets into the gate after it
sends the message Near. Furthermore, after the message Near, there is a maximum
delay of 5 units before which the train should exit the crossing.

A controller, upon receiving a Near message from a train, sends the signal Lowerto its
associated gate to lower the gate. Similarly, following the receipt of an Ezit message
from the last train to leave the gate, the controller sends a Raise message to the
gate. There are two time constraints associated with the controller. The controller
should respond by sending: i) a Lower message to the gate within 1 unit of time after
receiving the Near message; ii) a Raise message to the gate within 1 unit of time after
receiving the Erit message from the last train to leave the gate.

A gate responds to a Lower message and a Raise message by closing and opening the
gate, respectively. There is a minimum delay constraint of 1 unit for closing the gate
and a minimum of 1 unit and maximum delay constraint of 2 units, for opening the
gate.

We discuss a formal specification of the system using our model in the following

paragraphs.

2.3.2 A Formal Model

There are three types of interacting components: Train, Gate and Controller. The
instantiation relationship in object-orientation helps to specify the system using three
class specifications one for each of the above component types. The class interaction
diagram for the system is shown in Figure 4.

The class specifications of the three components together with their state diagrams
are shown in Figures 5 and 6.

Each class specification describes the behavior of a component individually. The
RailRoad system is modeled as a SCS by instantiating the objects from the three

classes and linking them.
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Train Controller Gate

{Near.Exit} {Lower,Raise}
S ——a S
m m 1 1

Figure 4: Class interaction diagram - RailRoad system

The train class supports a port-type, @P. A train starts in state S1. The port con-
dition of the Near event in a train specifies that the train can non-deterministically
select one of its ports of type @P for an interaction. A train class object models its
intention to cross a specific gate(i.e., the gate associated with the controller which
may be linked to the port selected). The attribute cr of states S2, S3 and S4 denotes
that the further interaction of the train should be at the port it chose, until it exits
the gate. The internal events In and Out signifies the start and end, respectively of
the action of crossing a gate by the train. The two time constraints associated with a
train are specified by the two tuples. The trigger event for both the time constraints
is the event Near.

Initially the controller is in state C1. A controller supports ports of two types, @Q
and @R. Implicitly, the ports of type @Q are used for interactions with train class
objects and the ports of type @R are used for interactions with gate class objects.
When in state C1, the controller responds to the input event Near at a port of type
@Q by sending the event Lower at a port of type @R, within 1 unit of time. This
corresponds to the signal from the first approaching train to enter the crossing after
the gate was last opened. Subsequent Near events at other ports of type @Q mark
the approaching signal from other trains, probably in parallel tracks. The attribute
inSet associated with the states C2 and C3 denotes the set of ports at which an
interaction involving Near has occured, and implicitly underscores those train class
objects crossing the gate at that instant. It is obvious from the post conditions that,

an insertion into the inSet and a deletion from it is done by the transitions Near
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Class train [@P]

Events: Near!P, Ezxit!P, In, Out

State: *S1.52.53.54

Attnbutes: cr :QP

Attribute-function: S1 — > {}, S3 — >
{}.S3—>{}.S1—>cr
Transition-Spec:

Rinie: (S1); Create();

R1: (51,52); Near; true; true => cr’ =
pid:

R2: (§2,83); In; true => true;

R3: (83,54); Out; true => true;

R4: (54,51); Ezit; cr = pid; true =>
true;

Time-constraints:

TCI1: Rl1,In,[2.4],{};

TC2 R1.Fzit,[0,6],{};

end

Class Gate [QS]

Events: Lower?S, Raise?S, Down, Up
State: *G1.G2.G3,G4

Transition-Spec:

Rizii: (G1): Create():

R1: (G1.G2); Lower; true; true => true;
R2: (G2.G3); Down; true => true;

R3: (G3.G4); Raise; true; true => true;
R4: (G4.G1); Up; true => true;
Time-constraints:

TCI: R1,Down,[0,1],{};

TC2: R3.Up,[1.2].{}:

end

[ Train | (@P]

.

Near! [cT]
S1* x:=0
. In

Exit!

[x<6] [x8>£2]
[x<4]

Out
o« S3
J

)

S1: idle S$2: toCross
S$3: cross S4: leave

[ Gate | Port @S

Up |[v>1] &
[v<2]

L v:=0

Raise? /\J@

Lower?
y:=0 @

Down
[y<1]

w

G1: opened G2: toClose
G3: closed G4: toOpen

Port: @S --> Controller

Figure 5: Class specifications for Train, Gate



(Controlle [@Q@R]  Near? )
Near?
Clx z:=0
[inSet]
Raisd![u<l] Lower!
Exit? ear?
o Exit?
LS C4 u:=0 [inSet )
Ci: idle C2: activate
C3: monitor C4: deactivate

Class Controller [@Q, QR]

Events: Near?Q, Ezit?Q, Lower!R, Raise!R

State: *C1,C2,C3,C4

Attributes: inSet : TSet

Traits: Set{@Q, TSet]

Attribute-function: CI — > {}; C2 — > inSet; C3 — > inSet; C§{ — > inSet
Transition-Spec:

Rinie: (C1); Create();

RI: (C1,C2); Near; true; true => inSet’ = insert(pid, inSet);

R2: (C2,C2), (C3.C3); Near; NOT( member(pid, inSet)); true => inSet’ = tnsert(pid,
inSet);

R3: (C2.C3); Lower; true; true => true;

R4: (C3,C3); Exit; member(pid, inSet); size(inSet) > 1 => inSet = delete(pid, in-
Set);

R3: (C3,C4); Erit; member(pid, inSet); size(inSet) = 1 => inSet’ = delete(pid, in-
Set);

R6: (C4,C1); Raise; true; true => true;

Time-constraints:

TCI: R1,Lower,[0,1].{};

TC2: R5,Raise[0,1].{};

end

Figure 6: Class specifications for Controller
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SCS RailRoadSystem

Instantiate:

t!:: Train[@P: 2);
t2:: Train[@P : 2];
t3:: Train[@P: 2):

t4 == Train[QP : 2};
cl :: Controller{@Q : 4, @R :1;
c2:: Controller{@Q : 4,@R : 1];
gl :: Gate[@S:1];
g2 :: Gate[@S:1];
Configure:

t1.@P1 < — > cl.@QQI;
t2.@P1 < — > cl.QQ%;
t3.QP1 < — > ¢c1.QQ3;
t{.QP1 < — > cl1.QQ4;
t1.OP2 < — > c2.QQ1;
t2.QP2 < — > c2.@Q2
t3.@P2 < — > c2.9Q3
t{AQP2 < — > c2@Q4:
cl.@RI < — > ¢g1.@S];
2.QR1 < — > ¢g2.QSJ;
end

Contrfaller

Figure 7: Subsystem specifications for RailRoadSystem



and Eril. respectively. Once the controller receives the event Erit at all the ports
in the inSet (i.e., implicitly from all the trains which were crossing). the controller
will send the event Raise at a port of type @R within 1 time unit as specified by the
time-constraint. The port specification for the events Near and Erit, indicates that
for each train instance any Erit event should be preceded by a Near event and every
consecutive Near event should be interleaved by an E'rit event.

The gate supports a port-type @S. A gate is open in start state G1 and closed in state
G3. Interaction of the gate with its controllers is through its port involving events
Lower and Raise. The events Down and Up are internal events and denote the end
of the action, closing and opening, of the gate respectively. The reactions associated
with the two time constraints of the gate are triggered by the events Lower and Raise,
respectively.

The RailRoad subsystem is formed by composing objects instantiated from the above
classes. A subsystem configuration specification is shown in Figure 7. The ability
to specify objects independently and to configure a system/subsystem independently

using the instantiated objects makes TROM suitable for specifying large systems.
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Chapter 3

Architecture Design for

Interpreter

To apply TROM methodology in practice, we need to develop a system enviornment
- a tool, for user to write the TROM classes and Subsystem specifications and to be
able to trace the interactive object behavior at run time. This tool consists of three
major parts: User Interface, Interpreter and Simulator. The overall structure of the
tool is shown in Figure 8.

This thesis focuses on developing an Interpreter which takes user’'s TROM class
and Subsystem specifications and generates an internal representation (i.e., AST -
abstract syntax tree) to be used by the Simulation Tool. It also focuses on designing
an Axiom Generator which is used by the verification system and it is discussed in
Chapter 7.

The architecture design for the Interpreter is shown in Figure 9.

The Interpreter will take the user input file and generate an internal data repre-
sentation which is used during simulation. It also generates axioms which are used

to verify system properties. The components of the Interpreter are the following:

® Scanner - used to identify input file and to generate tokens. It also does basic

lexical analysis using Flex.

e Parser - clarifies tokens from scanner in order to check syntactic correctness by

using Bison.

ty
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Figure 9: The Architecture for Abstract Syntax Tree



o Syntar Analyzer - uses a pre-defined grammar for TROM and SCS in order to
validate syntactically correct tokens. Any error will terminate the program and

is directly reported to the user by Bison.

e Abstract Syntar Tree - a data structure to represent the useful information from
user input file( the de=tailed structure of the AST will be discussed in Chapter
5).

e Semantic Analyzer - a program written in C++ and used to do semantic check-

ing. There are two types of semantic checking.

i) On the fly validation - does simple semantic check at the same time with
syntax checking. For example, duplicate names can be checked during on

fly validation.

ii) AST validation - does complex semantic checking after building up an AST.
For example, type checking, linking to LSL traits,.., must be done at this

stage.

e Error Message - generated by semantic analyzer in order to help user correct
the input file. Every detected error will be kept in a file until the end of the

analysis.



Chapter 4

Syntax Analysis for TROM class

and Subsystems

The templates for TROM and Subsystem are given in Chapter 2. In this chapter,
we focus only on the syntax and discuss the grammar for well-defined TROM classes

and Subsystems.

4.1 A Formal Grammar for TROM class

The TROM class is composed of several members, shown in Table 1.

We will give a grammar for each of the TROM class member. Words shown in
“sans senf type” font are keywords and case sensitive. CHAR(10) in the grammar
means that at most 10 characters are allowed.

The specification of Train-TROM, Gate-TROM and Controller-TROM as given
in Chapter 1 are consistant with the grammar given bellow. From Definition 2.2.2.1

and class specifications shown in Figure 3, we abstract a formal grammar for TROM:

TROM := <class> <events> <states> <altributes> <traits> <att funcs>
<tran_specs> <time_constraints> end

Table 1: TROM class Description

(]
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class := Class <class_name> [<port_types>] NL

port_types n= a<port_typc_name> | GC<port_type_name>, <pori_types>
class_name = CHAR(10)

port_type_name := CHAR(10)

Table 2: A grammar for TROM class member - Class

4.1.1 TROM class member — Class

Class is a header which describes the name and the port types of a TROM. The

format is:

e The keyword Class followed by class name and Port types.

e Port types are preceded by the symbol @, within square brackets, and separated

by commas.

The grammar for class is shown in Table 2.

4.1.2 TROM class member — Fvent
Fvent enumerates the set of events associated with the class. The format is:
e The keyword Events followed by a colon and list of events.

e Events are separated by commas and must belong to one of the three types:

- Input event: an event name followed by the symbol ? and a port type for the

event.

- Output event: an event name followed by the symbol ! and a port type for

the event.

- Internal event is not marked.

The grammar for Event is shown in Table 3.
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events . Events: <event_list> NL

event_list = <evenl> | <cvent>. <cvent_list>
event = <inputevent> | <outputerent> | <interevent>
inputevent = <evenf_name> ? <port_type_name>
oulputevent = <event_name> ! <port_type_name>
interevent = <event_name>
event_name := CHAR(10)
port_type_name := CHAR(10)

Table 3: A grammar for TROM class member -~ Events
states := States: <state_set> NL
state_set = *<Zstate>, <state_list>
state_list = <state> | <state>, <state_list>
state = <state_name> | <state.name> (<state_set>)
state_.name := CHAR(10)

Table 4: A grammar for TROM class member - States

4.1.3 TROM class member — State
State enumerates the abstract states of the class. The format is:
e The keyword State followed by a colon and a list of states.
e States are separated by commas and contains three special types:

- Initial state: state name preceded by the symbol *.

- Substates: list of state lables separated by commas within parentheses. The

states should follow their parent state.

- Initial substate: substate name preceded by the symbol *.

The grammar for State is shown in Table 4.

4.1.4 TROM class member — Attribute
Attribute describes the set of attributes belonging to the class together with their
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attributes = Attributes: <att_list> NL | ¢

alt_list = <allribute> | <altribute>: <ati_list>

attributc = <all_name> : 9<port_type_name> | <all_name> :
<trait_type_name>

att_name == CHAR(10)

trait_typc_name == CHAR(10)

port_type_name := CHAR(10)

Table 5: A grammar for TROM class member — Attributes

types. The format is:

o The keyword Attributes followed by a colon and a list of attributes.
e Attributes are separated by semi-colon.

¢ An attribute is represented by its name, followed by a colon and a type of the

attribute.

¢ The type of an attribute is either a port type or an abstract data type associated
with a LSL trait.

o The Attribute description is optional.

The grammar for Attribute is shown in Table 5.

4.1.5 TROM class member — Trait

Trait imports the behavior of a specified data model which belongs to the correspond-
ing trait defined in the LSL tier. Any trait reference type specified in Attribute section
must match one of the parameters listed in a trait in this section. This defines the
link between two tiers i.e., the data abstraction and the class definition. The format

is:

 The keyword Traits followed by colon and list of traits together with their pa-

rameters.

Iw
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traits = Traits: <frait_list> NL | ¢

trait_list n= <trail> | <trail > 3 <trad_list >

trait n= <trail_name> [<arg.list>, <trail_typc_name>]
arg_list = <ary> | <arg>.<arglist>

arg n= <trai_typc_name> | @Q<port_type_name >
trait_name ::= CHAR(10)

trait_type_name := CHAR(10)

port_type_name := CHAR(10)

Table 6: A grammar for TROM class member -Traits

e Traits are separated by commas.

A trait is represented by its name followed by its parameters.

e The parameters for a trait are enumerated within square brackets and are sep-

arated by commas.

e The Trait section is optional.

The grammar for Trait is shown in the Table 6.

4.1.6 TROM class member — Attribute-function

Attribute-function defines the association of attributes to states, thus partitioning the

domain of attributes into active and dormant parts at each state. The format is:

e The keyword Attribute-function followed by colon and list of attribute-functions.
e Attribute-functions are separated by semi-colons.
e An attribute-function is presented as follows:

- A state name followed by the symbol — >

- One or more names of attributes separated by commas and enumerated within

brackets (the symbol {} representing an empty set).



att_funcs = Attribute_function: <att func list> |

all_func_list == <all_fune>: | <att_fune>; <ati_func_list>
alt_func n= <stale_name> — > {<all_list>} NL
att_list u=  <allname> | <att_name>, <alt_list> | e
att_name = CHAR(10)

state_name := CHAR(10)

Table 7: A grammar for TROM class member — Attribute-functions

e The Attribute-function section is optional.

The grammar for Attribute-functions is shown in Table 7.

4.1.7 TROM class member — Transition-Spec

Transition-Spec describes the transition specification for each transition in the state

machine. The format is:

e The keyword Transition Spec is followed by a colon and the list of transitions

which start with initial transition followed by other transitions.
e Each transition starts at a new line with its name and finishes with a semi-colon.

e An initial transition is specified as follows:

- The initial transition name followed by a colon

- The symbol < followed by a name of starting state, the symbol > followed

by a semi-colon
- Create();

- One or more assertions separated by AND or OR within parentheses. An

assertion which is an expression in one of the following format:

+ The constant true.
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* An attribute name defined in the At{ribules section plus a superscript’
which mecans the post condition of the attribute followed by the op-
erater = and either a function as defined in the LSL trait with the
corresponding arguments enclosed within parentheses, the reserved pid

or the same attribute name without superscript’ .
- A semi-colon.

- The initial transition specification is optional

Other transitions have the following format:

The transition name followed by a colon

List of state pairs are separated by commas. Each state pair is specified as

(S1, S2), where S1, S2 are state names.

A semi-colon followed by an event name

A semi-colon followed by a port condition

The port condition syntax is: One or more assertions separated by AND or

OR within parantheses. An assertion is a Boolean expression which is in

one of the following formats:

* The constant true.

* A Boolean function as defined in LSL traits with the corresponding
arguments enclosed within parenthesis. An argument can be an at-
tribute defined in Attributes section or the reserved pid. The Boolean
function can be preceded by the keyword NOT.

* An Integer expression followed by a Boolean operator and another Inte-
ger expression. An Integer expression can be an Integer or a function
returning an Integer as defined in the LSL trait with the correspond-
ing arguments enclosed within parentheses. Boolean operators are =,

I'=, <, >, <=, >=.

- A semi-colon followed by an enabling condition which has the same syntax as

port condition described above.
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- The symbol=> followed by a post condition.

- The post condition syntax is: One or more assertions separated by AND or
OR within parantheses. An assertion is a Boolean expression which is in

one of the following format:

» The constant true.

* An attribute name defined in the At¢fributes section plus a superscript’
which means the post condition of the attribute followed by the oper-
ater = and either a function as defined in the LSL trait with the cor-
responding arguments enclosed within parentheses, the reserved pid

or an attribute name without superscript’.

- A semi-colon.

The grammar for Transition Specification is shown in Table 8.

4.1.8 TROM class member — Time-Constraint

Time-constraints describe the timing constraints associated with the transitions. The
timing constraints ensure that the class will not keep the resource unallocated indef-

initely. The syntax is according to the following format.

e The keyword Time-Constraints followed by a colon and a list of Time-constraints

which are separated by semi-colons.

¢ Each specific Time-constraint starts at a new line, and has the following format:

A Time-constraint name followed by a colon

A transition specification name followed by a comma

- An event name followed by a comma

A left square bracket

An integer for the minimum response time followed by a comma

An integer for the maximum response time
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tran_specs
tran_spec_init

tran_spec_list
tran_spec

state_pairs
state_pair
trig_event
assertion
b_op
stmple_exp
term
factor

LSL_term
arg._list

arg
att_name’
att_name
state_namse
evenl_name

LSL_func_name

Transition  Spec: NL <tran_spec_init> NL
<tran_spec_list> NL
<tran_spec_name>: <state_name>; Create();

<assertion_op>; | €

<tran_spec> NL | <tran_spec> NL <tran_spec_list>
<tran_spec_name>: <state_pairs> <trig_event>
<assertion> => <assertion>;

<state_pair>; | <state_pair>; <state_pairs>;
{<state_name>,<state_name>)

<event_name> (<assertion>) | <event_name>
<simple_exp> | <simple_ezp> <b_op> <simple_ezp>
=|<>|<]|<=]>]>=

<term> | <term> OR <term>

<factor> | <factor> AND <factor>

NOT <factor> | pid | <att_name’> | <att_name> | true
| false | <LSL term> | (<assertion>)
<LSL_func_name> (<arg.list>)

<arg> | <arg>, <arg_list>

pid | <att_name> | <LSL_term>

CHAR(10)

CHAR(10)

CHAR(10)

CHAR(10)

CHAR(10)

Table 8: A grammar for TROM class member - Transition Specifications
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Time_Constriants
conslrian!s
constriant

states
slate_name
time_cons_name
tran_spec_name
event_name

min

maz

i

Time_Constraints: NL <constriants>

<constriant> NL | <conslriant> NI. <constriants>
<tume_cons_namce>: (<tran_spce_name>.
<evenf_name>, [<min>, <mar>]. {<states>})
<state_name> | <state_namc>, <stales> | ¢
CHAR(10)

CHAR(10)

CHAR(10)

CHAR(10)

NAT

NAT

Table 9: A grammar for TROM class member - Time-Constraints

SCS := <ses> <include> <instantiate> <configure> end

Table 10: SCS Description

- A right square bracket followed by a comma

- Ignoring-states: list of states separated by commas and enumerated within

brackets. The symbol {} representing an empty set.

The grammar for Time-Constraint is defined in the Table 9.

4.2 A Formal Grammar for Subsystem

A Subsystem Configuration Specification(SCS) is used to specify a system/subsystem

by aggregating instantiated objects. It can also be used to build large systems by

composing subsystems. The syntax for a SCS is given in Table 10.

As shown in Table 10, a SCS is composed of several members. We will give a

grammar for each of the SCS member.

The subsystem configuration specification for Train, Gate and Contorller as given

in chapter 1 is consistant with the grammar given bellow.
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scs = SCS <scs_name> NL
scs_namec = CHAR(10)

Table 11: A grammar for SCS member - SCS-name

include := Include: <scs_name_list> NL | ¢
scs_name_list = <scs_name>; | <scs_name_list>
scs_name := CHAR(10)

Table 12: A grammar for SCS member - Include

4.2.1 Subsystem member — SCS-name
SCS-name is a header which describes the name of the SCS. The format is:
e The keyword SCS followed by scs name

The grammar for SCS-name is shown in Table 11.

4.2.2 Subsystem member — Include

Include is used for importing subsystem definitions from other subsystem configura-
tion specification. This provides modularity and makes it easier to reuse pieces of

specification. The format is:

e The keyword Include followed by a colon and a list of other SCS names which

are separated by commas.
e The Include is optional.

The grammar for Include is shown in Table 12.

4.2.3 Subsystem member — Instantiate

Instantiate is used to define instantiation relationship between objects and their

classes. The format is:



instantiates ::= Instantiate: <inst_list> NL | €

inst_list <instantiale> | <instanlialc>: <insi_list>
<obj_name> :: <trom_name> [<port_card list>]
<port_card> | <port_card>. <pori_card_list>
<port_type_name> : <cardinality>

instantiale

Il

port_card_list ::
port_card

obj_name = CIHAR(10)
port_type_name := CHAR(10)
trom_name = CHAR(10)
cardinality = NAT

Table 13: A grammar for SCS member — Instantiate

e The keyword Instantiate followed by a colon and list of instantiated objects

which are separated by semi-colon.
e object name followed by the symbol ::

A TROM class name followed by a left square bracket.

A port type, followed by a colon, and the cardinality of ports for that port type.

If there are more than one port type, a comma separates the tuples of port type

and cardinality.

A right square bracket, followed by a point.

The Instantiate is optional.

The grammar for Instantiate is shown in Table 13.

4.2.4 Subsystem member — Configure

Configure is used to define a system/subsystem using objects specified in the Instan-
tiate clause and subsystem specifications imported through the Include clause. It
also links the ports of various interacting objects/subsystems using compositions.The

format is:

e The keyword Configure followed by a colon and list of object-port links which

are separated by semi-colon. Object-port link has the following syntax:
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Configure: <objport.list>
<obj_pork_link> ; | <obipork_link>; <obji_port_list>;

configure
obj_pori_list

objporklink = <obi_name>. C<porl_name> < — > <obj_namc>. W<pori_name>
obj namc = CHAR(10)
port_name = CHAR(10)

Table 14: A grammar for SCS member - Configure

- A pair of an instantiated object name followed by a symbol . and a symbol

@ followed by a port name associated with the object.
- The symbol < — >

- Another pair of an instantiated object name followed by a symbol . and a

symbol @ followed by a port name associated with the object.

The grammar for Configure is shown in Table 14.

4.3 A Formal Grammar for Simulation Event

sel = SEL: <s_event_list>

s_event_list = <s_event> | <s_event>; <s_event_ list>

s.event = <event_name>, <obj_name>, <port_name> <occur_time>
event_name := CHAR(10)

obj_name := CHAR(10)

port_name := CHAR(10) | NULL

occur-time = NAT

Table 15: A grammar for Simulation Event List

A Simulation Fvent is used to stimulate the user defined system and to trace the
system behaviour. The Simulation Events are accepted as tuples, each appearing on

a line. The format is:

e The keyword SEL followed by a colon and a list of simulation events which are

separated by semi-colons. Each simulation event has the following syntax:
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An event name. followed by a comma.

A TROM class object name. followed by a comma.

A port name. followed by a comma. If the event is an internal event. the null

port is specified by the reserved word NULL.

A natural number specifying the time at which the event occurs, relative to

the start time.

The grammar for Simulation Event List is shown in Table 15.



Chapter 5

Internal Representation —
Abstract Syntax Tree

The Abstract Syntax Tree is an object-based data structure which contains objects
that can be accessed during simulation. The animation system has four kinds of
input: LSL traits, TROM, SCS, and Simulation Event List. Therefore, four kinds
of Abstract Syntax Trees are constructed. The data structure of each AST might
be different, depending on its usage. This section will focus on the detailed data
structure design for each AST and also discuss the formal software specification using

Larch/C++ specification language.

5.1 The TROM Abstract Syntax Tree Data Struc-

ture

As we mentioned in the previous chapter, a TROM input may contain one or several
TROM classes. We should construct an AST for each TROM class.

The TROM AST data structure is shown in Figure 10.

As shown in Figure 10, the TROM AST is a data construct which is a collection
of TROM class member objects. There is a container for each type of class member
object which can be implemented by a linked list. The TROM AST is unique and

it can be identified by its class-name attribute. Some of the TROM class members

39



TROM

.

[ Class-name J

Port-typel }—-[ Port-type2

,
s o
—

e =\ ™)
Statel ——{ State2
J J
4 ™ ' ™)
Attributel Attribute2 ‘
. J \ J
(" ™ ' ™\
Traitl Trait2
. J \_ J
4 Ty N
Attribute- ‘ Attribute- ‘
__ functionl function2 |
(~ ™ 'Y
Transition- Transition-
__ Specl ) _ Spec2 )
[ Time- ) [ Time- )
Constraintl ) Constraint2 J

Trait-list

Attribute-Function-list

Transition-Spec-list

coocnm- -

Figure 10: TROM Abstract Syntax Tree Structure.

40




o (owns ]
cungeme | [roe (S8 s

-
(1mputoutputintemat | event_type stste_name

" e || o (Srmeornt) aanym

T

(o) sewnn
- - (o )

(pot_syperirait_ype | am_type

p—

Ev

- / sL. [ String ] trait_name
e Coome Jomsem | | () e
,, -

(" Anribute ) svee_se ( cargust | ergehst

J — S

Figure 11: Data Structure of TROM class members.

such as class-name, port-type list, event list are mandatory. So, their corresponding
containers must contain at least one element. Others such as traits, attribute-function
are optional. So, their containers can be empty.

The data structure of TROM class members are described in detail in the fol-
lowing subsections (see Figure 11, Figure 12 and Figure 13).

5.1.1 General Description for TROM AST class member

containers

Except the Class_name. all the TROM AST class members are represented by a

container data type, which we said can be implemented by a linked-list. We named
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them following the convention: N list is a container of elements of type X. It can be
implemented by a list (linked-list) of X-type data.

For example, Event_list is a container of elements of type Event. To apply
the Object-Oriented system design principles. the container is an abstract data type
which encapsulates the implementation details. We design the container class which

supports the following standard access functions:
e create: Create an empty data container
e isEmpty: Return a boolean value to assert if the container is empty
e remove: Remove a specific element from the container
o insert: Insert an element into the container at a specific location
e append: Add an element into the container at the end
e find: Find out a specific element from the container
o getFirst: Retrieve the first element from the container
e getNext: Retrieve an element from the container next to the current location
o destroy: Destroy the container and all its elements

The set of container management and navigational functions allow the fellow re-
searchers to use the TROM AST without knowing the implementation details of

their data structures.

5.1.2 Class name

The class name is represented by a string variable which contains an unique TROM
class identifier. The class name is mandatory in TROM class AST.

5.1.3 Port-type-name

The port-type-name is represented by a string variable which is not duplicable in the

port-type_list. The port-type_list is mandatory in TROM class AST.
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5.1.4 Event

The evcnt is represented by a data structure in the event_list. The data structure

contains the following data menmbers:

e event_name: a string variable which is not duplicable in the event_list.
e event_type: an enumerated variable with the values input, output, internal.

e port_type_name: a reference to the existing port_type_name in the port-type_list

or null if the event_fype is internal.

The Event_list is mandatory in TROM class AST.

5.1.5 State

The State is represented by a data structure in the State_list. The data structure

contains the following data members:

® state_name: a string variable which is not duplicable in the State_list.

e slate_type: an enumerated variable with the values simple, complex. The com-

plex state type means the state has a set of substates.
e if initialstate: a boolean variable to indicate if it is the initial state.

e Substate_list: a container of substates of the State_list type. It must be empty
for simple state type and it must contain at least two different states for complex

state types.

The State_list is mandatory in TROM class AST.

5.1.6 Attribute

The Attribute is represented by a data structure in the Attribute_list. The data

structure contains the following data members:

e ati_name: represents an attribute name and is a string variable, which is not

duplicable in the Attribute_list.
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e al!l_type: represents an attribute type and is an enumecrated variable with the
values { port_type}. or { trait_type}. The trait_type is defined in the Trait_list
and port_type is defined in Port-type_list

e all_type_name: represents an attribute type name and is a reference to an ex-

isting Port-type-list or Trait-list.

The Attribute_list is mandatory in TROM class AST.

5.1.7 Trait

The Trait is represented by a data structure in the Trait_list. The data structure

contains the following data members:

® ftrait name: represents a trait name and is a string variable, which is not dupli-

cable in the Trait_list.

® frail_type_name: represents a trait type name and is a string variable, which is

not duplicable in the Trait_list.

® arg list: a container of arguments set associated with the trait. It can be a
reference to an existing port_type_name or trait_type_name and at least contains

one argument.

The Trait_list is optional in TROM class AST.

5.1.8 Attribute-function

The Attribute-function is represented by a data structure in the Attribute-function_list.

The data structure contains the following information:

® state_name: a reference to an existing state in State_list.

e altribute_name_list: a reference container to the existing Attribute_list asso-

ciated with the state. attribute_name_list associated with a state can be empty.

The Attribute-function_list is optional in TROM class AST.
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5.1.9 Assertion Tree Data Structure

We have scen that in the grammar for Transition Specification. the port_conditions.
enabling conditions and post_conditions are all instances of a generic type, an as-
sertion expression. The assertion expression can be represented by and stored in a
specific container type ~ a binary tree. It can be evaluated by traversing the binary

tree in inorder.

We can name the various Transition_Spec assertions by the following convention:

X_tree is a binary tree container of elementary assertions for representing the
conditions of type X.

For example, port_conditions_tree is a container of elementary assertions for rep-
resenting the assertion of the type port_condition.

An assertion expression represented by a binary tree is illustrated in F igure 12.

As shown in Figure 12, each node in the assertion expression tree is a data type
of either an operator or an operand. The root node of the tree or any of its branches
are always of type operator. Only the leaves of the assertion expression tree can be
and must be of type operand. If the node is not a leaf, it may have a left or a right
child subtree. The leaf node has nil values for its left and right child.

In the Object-Oriented system design, the binary tree container is an abstract
data type which encapsulates the implementation details. We design the binary tree

container class which supports the following standard access functions:
e create: Create an empty binary tree data container
e isEmpty: Return a boolean value to assert if the binary tree container is empty

o addLeft: Add an element into the binary tree container as the left child of the

current element

¢ addRight: Add an element into the binary tree container as the right child of

the current element
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Figure 12: Data Structure of an Assertion tree.
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e remove: Remove a specific subtree rooted by the current element from the

binary tree container

e inscrl: Iusert an element into the binary tree container before the leftmost

element

e append: Add an element into the binary tree container after the rightmost

element
e find: Find out a specific element from the binary tree container

e getFirst: Retrieve the first element from the binary tree container following the

leftmost deepest first traversing rule

e getNezt: Retrieve an element from the binary tree container next to the current

location following the leftmost deepest first traversing rule
e destroy: Destroy the binary tree container and all its elements

The set of container management and navigational functions allow the fellow re-
searchers to use the TROM AST without knowing the implementation details of

their data structures.

5.1.10 Transition-Spec

The Transition-Spec is represented by a record data structure in the Transition-

Spec_list. The data structure contains the following data members:

e transition_lable: a string variable which is not duplicable in the transition-

Spec_list.

e if initial tran: a boolean variable to indicate if it is the initial transition speci-

fication.

e source.state: represents a starting state of this transition and is a reference to

the existing state in the State_list.
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o dcstinalion_state: represents a destination state of this transition and is a ref-

erence to the existing state in the State_list.
o crenl: a reference to the existing event in the Event_list.

® port_condition: is an assertion tree corresponding to the event. If the event
is an internal event, port_condition is always set to True. The assertion tree
is a binary tree and each Assertion Ezpression element has the following data

members:

- Erpression-type: a boolean variable to denote if the element is an operand or

an operator.

Operator-type: an enumerated variable denoting the operator in this node. It

is null if the Ezpression-type is operand.

- Operand-data: an enumerated variable with the values of pid, integer, boolean,

attribute-name, LSL-func-call. It is null if the Ezpression-type is operator.

Operand-data-type: an enumerated variable which indicates the data-type of
the operand. It can be integer, boolean,port_type name, trait_type name

string. It is null if the Ezpression-type is operator.

o enabling_condition: an assertion tree, whose structure is defined earlier.

® post_condition: an operation assertion which has same data structure as an

assertion tree.

The Transition-Spec_list is mandatory in TROM class AST.

5.1.11 Time-Constraint

The Time-Constraint is represented by a record data structure in the Time-Constraint_list.

The data structure contains the following data members:

® {ime-constraint_name: a string variable which is not duplicable in the Time-

Constraint_list.
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® transition_name: a reference to the existing transition-spec in the Transition-

Spec_list.

o constrainted_event: areference to the existing event in the Event_list. constrainted_e vent

must be an output event or internal event.
o lower_bound: an integer variable which is the lower bound of time period.

e upper_bound: an integer variable which is the upper bound of time period and

must be greater than or equal to the value of lower bound.

state_list: a reference to the existing State_list and can be empty.

The Transition-Spec_list is mandatory in TROM class AST.

5.2 The SCS Abstract Syntax Tree Data Struc-

ture

The System Configuation Specification input text specifies the instantiation relation-
ship between objects and their classes. It also specifies the aggregation of objects
from subsystems. The SCS AST data structure is illustrated in Figure 14.

As shown in Figure 14, the SCS AST is a data construct which is a collection of
SCS class member objects. There is a container for each type of class member objects
which can be implemented by a linked list. The SCS AST is unique and it can be
identified by its SCS-name attribute. Some of the SCS class members such as SCS-
name, Port-Link list are mandatory, so their corresponding containers must contain
at least one element. Others such as Include list are optional, so their containers can

be empty.

5.2.1 General Description for SCS AST class member con-

tainers

Except the SCS_name, all the SCS AST class members are represented by a container

data type, which can be implemented by a linked-list. To apply the Object-Oriented
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system design principles, the container is an abstract data type which encapsulates
the implementation details. We design the container class which supports the stan-
dard access functions as illustrated in TROM AST description and also includes
the specific function getPair, which retrieves an object-port pair from an Object-Port

Link container.

5.2.2 SCS name

The SCS-name is represented by a string variable which contains an unique SCS
identifier. The SCS-name is mandatory in SCS AST.

5.2.3 Include

The Include is a reference to other existed SCSs which names are not duplicable in
the Include_list. The Include_list is optional in SCS AST.

5.2.4 Instantiate

The Instantiate is represented by a data structure in the Instantiate_list. The data

structure contains the following data members:
® object_name: a string variable which is not duplicable in the Instantiate_list.
o TROAM class_name: a reference to an existing TROM class_name.

e port_cardinality list: a data structure contains the following data members:
- port_type_name: a reference to an existing TROM port_type_.name in the
Port-type_list.
- Cardinality: an integer variable to denote the number of ports associated with

this port-type.

o Attribute_Initialization: a data structure containing the following data mem-
bers:
- attribute_name: a reference to an existing TROM attribute_name in the

Attribute_list.

(4]
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- Assertion-op: an operation assertion which has the same data structure as an

assertion tree.

The Instantiate_List 1is optional in SCS AST.

5.2.5 Configure

The Configure is represented by a record data structure in the Configure_List. The

data structure contains the following information:

® object_namel: a reference to the existing Instantiate object name, says objectl,
in the Instantiate_List from either this SCS AST or other Included SCS
ASTs.

e port-namel : a string variable representing a specific port associated with ob-

jectl. This port-name should be defined the same way as objectl.

e object_name?: a reference to the existing Instantiate object name, says object2
in the Instantiate _List from either this SCS AST or other Included SCS
ASTs.

e port-name? : a string variable representing a specific port associated with ob-

ject2. This port-name should be defined the same way as object2.

The Configure_List is mandatory in SCS AST.

5.3 The Simulation Event List Abstract Syntax

Tree Data Structure

The Simulation Event List AST data structure is illustrated in Figure 15.
As shown in Figure 15, the Simulation Event List AST contains one class member
object from its class. The list is unique for each simulation at run time. This list

contains references to all objects which are to be simulated.
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5.3.1 Simulation-Event

The Simulation-Event is represented by a record data structure in the Simulation-

Event_List. The record structure contains the following data members:

¢ Event name: a reference to an existing Event_name in the Event_List from a
TROM in a specified SCS.

® TROM-object-name : a reference to an existing object_name in the Instantiate_List
from a SCS.

® port_name: a string variable to indicate the specific port which the event will

occur. It should be defined in the Instantiate_List from a SCS.

® occur_time: an integer variable representing the specific time at which the event

will occur.
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5.4 The LSL Trait Abstract Syntax Tree Data

Structure

The LSL Trait input text file could either come from an LSL library or user’s written
trait. The LSL Trait AST should be established before other ASTs and their data

structures are constructured.

As shown in Figure 16, the LSL Trait AST is a data construct which is a collection

of its functions. There is a container for each function which can be implemented by

a linked list. The LSL Trait AST is unique and it can be identified by its Trait-name

attribute.



5.4.1 General Description for LSL Trait AST class member

containers

All members of the LSL Trait AST are represcnted by a container data type, which
can be implemented by a linked-list. The LSL Trait AST is only used for semantic

analysis for TROM and is not accessed during simulation.

5.4.2 Trait name
The data structure of Traif-name contains the following data members:
o Trait-name: a string variable which contains an unique LSL Trait identifier.

e Element list: a container of string variables which represents the parameters

associtated with the trait name.

The Trait-name is mandatory in LSL Trait AST.

5.4.3 Func-Decs

The Func-Decs is represented by a data structure in the Fune_List. The data struc-

ture contains the following data members:

e Func-name: a string variable which is a unique identifier to the function in the

trait.
e Return_type: a string variable indicates the return type of the function.

e Arg.list: a container of string variables which represents the arguments associ-

tated with this function.

The Func-Decs is mandatory in LSL Trait AST.



5.5 Larch/C++ specification

\We use Larch/C++ to specify the bag(container) and binary trec operations on the
AST structure. We first introduce Larch/C++ through the Set example. Figure 17
shows a Larch/C++ interface specification for IntSet, a class which implements set
of intergers{10]. For each IntSet operation, the specification consists of a header and
a body. The header specifies the name of the operation, the names and types of the
parameters, as well as the return type, and uses exactly the same notation as in C++.
The body of the specification consists of an ensure clause as will as optional requires

and modifies clauses.

For each IntSet operation, the requires and ensures clauses specify the pre- and
post-conditions respectively. The identifier self in the pre- and post-condition asser-
tions denotes the object which receives the message corresponding to the specified
method. The modifies clause lists those objects whose value may change as the result
of executing the operation. Hence, for example, add and remove are allowed to change
the state of an IntSet object but size and isln are not. An omitted requires clause is
interpreted to mean “requires true” and an omitted modifies clause is interpreted to
mean that no object is modified by the corresponding method(neither self, nor any
parameter objects). The link between the IntSet interface specification and the Set-
Trait LSL specification is indicated by the clause uses SetTrait (IntSet for Set, int for
E). The used trait IntSet provides the names and meaning of the operators {}, insert,
delete, member, size, and isEmpty as well as the meaning of the equality symbol, =,
which are referred to in the pre- and post-conditions of IntSet’s method specifications.
The uses clause also specifies the type to sort mapping which indicates which abstract
values the objects involved in the specification(e.g. self and parameter objects) can
range over. For example, the abstract values of IntStack objects are represented by

terms of the sort Set.

Associated with each member function specification is the predicate over two

states,

(1]
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class IntSet

{

uses IntSetTrait(IntSet for S):

public:
IntSet()
{
modifies self;
ensures self' = {};

}
~IntSet()

{

modifies self;
ensures irashed(self);

}

int size()

{

ensures result = size(sel f°);

}
void add(int i)

{
modifies self;

ensures self' = insert(i, self");

}

void remove(int i)

{

requires —~isEmpty(self°);
modifies self;
ensures self’' = delete(i, sel f°);

}

bool isIn (int x)

{

ensures result = member(z, self7);

}

bool isEmpty(int x)
{
ensures result = isEmpty(self’);

}
}

Figure 17: Larch/C++ Specification for for Set.



Pre — (Modifies A Post)

where Pre and Post are the assertions in the requires and ensures clauses, respectively,
and Modifies is the implicit assertion associated with the modifies clause. The clause
modifies z,....,r, implicitly asserts that the method changes the value of no object

in the environment of the caller except possibly some subset of [zi,.. ., z,].

It is important to note the following points about a Larch/C++ class interface

specification:

O self is an abbreviation for (“this). In C++, this represents a pointer to the
receiving object so that self = (*this) is a name representing the receiving

object itself.

O A distinction is made between an object and its value by using a plain object
identifier(e.g. s) to denote an object, and a superscripted object identifier(e.g.

s’ or s”) to denote its value in a state.

8 The operators ~ and ’ are used to extract values from objects. An object
identifier superscripted by ~ denotes an object’s initial value and an object
superscripted by s’ denotes its final value. This is similar to the use of super-
scripts and decorations in VDM and Z. Thus, the assertion self’ = self” says

that the value of the object self is left unchanged.

O The header of a Larch/C++ member function specification is deliberately

chosen to be exactly the same as C++ member function prototypes.

O The modifies clause is an assertion whose meaning is given by considering it
to be conjoined to the postcondition. It is syntactically separated from the
postcondition to highlight a procedure’s potential side effect on the values of
objects. It is an example of a special assertion. Each Larch interface lan-
guage comes equipped with its own set of special assertions. For example, in

Larch/C and Larch/C++, there is a keyword trashed which is used to indicate
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dcallocation of component objects in the destructor of a class. These special
assertions can be regarded as syntactic sugar for first-order assertions about

state.

Below are given the interface specifications for Bag(container class) Bag Iterator,
Binary Tree and Binary Tree Iterator figures. We refer the reader to the reports(3] for
the specifications of LSL traits used in these specifications and other included interface
specifications. Note that any means both pre and post states. The specifications

capture the operations in the AST structure explained in Section 5.1.
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imports HashDictionary, Collectablelnt;
class Bag : virtual public Collection
{
uses Bag_hashdict(Collectable for E, Bag for HT):
public:
Bag(unsigned N = DefaultCapacity )
{
contructs self;
ensures self’ = create(N);

virtual Collectable* find(const Collectable* el) const
{
ensures V! : item(ifi € self\any A ((i.key'any) = ((*el)\ary))
then *result = i.key else result = NULL);

virtual Collectable* insert(Collectable™ c)
{
modifies self;
ensures Vi : item(ifi € self" A ((i.key'pre) = (*c)")
then *result = i.key A (valueatkey(:.key, sel f")!post) =
(valueatkey(t.key,self ) pre) + 1
else result = c A self' = insert(givesitem(c, 1), self));

}

virtual Boolean isEmpty() const

{

ensures (s Empty(sel f\any);

}

virtual Collectable™ remove(const Collectable* a)
{
modifies self;
ensures Vi : item(ift € self” A ((i.keylany) = (*a)\any)
then remove(i, self") = sel f’' A *result = i.key else result = NULL);

}

virtual void removeAndDestroy(const Collectable* target)

{

modifies self;
ensures Vi : item((i € self~ A ((i.keylany) = (targetx)\any)) =
(if valueatkey(i.key,self) =1
then self’ = remove(i,self") A trashed(i.key) A trashed(i.value)
else (valueatkey(i.key, sel f')! post) = (valueatkey(i.key, self*)pre) —1));
}
b

Figure 18: Larch/C++ Specification for Bag.
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imports Iterator, Bag;
class Baglterator : public Iterator
{
uses BaglterObj(Baglterator for BaglterObj, Bag for HT, Collectable for E);
public:
Baglterator(const Bagé& h)
{
contructs self;
ensures self'.Iterator = create(map(h\any.0))A
Vi : item(3il : item(i € h\any =
FindOnList(map(h\any.0),t1) A1 =il)) A self'.count = 0;

virtual Collectable* operator()()
{
modifies self;
ensures self’ = MoveBaglterator(self,1,any)A
(if ItemAt(self'.Iterator)= UNDEFINED
then result = NULL
else (*result) = ItemAt(self'.Iterator).key);

}

virtual Collectable™ findNext(const Collectable* target)
{
requires not Null(target);
modifies self;
ensures self' = NextllemInBag(sel f°, (*target),any)A
(if ItemAt(self'.Iterator)= UNDEFINED
then result = NULL
else (xresult) = ItemAt(self'.Iterator).key);
}
};

Figure 19: Larch/C++ Specification for Baglterator.



imports C'ollection;
class BinaryTree : virtual public Collection
{
uses BinaryTree(BinaryTree for Bin[Obj{E]]. Collectable for E).ClassID:
public:
BinaryTree()

{

contructs self;
ensures self' = Empty;

- BinaryTree()
{
modifies self;
ensures trashed(sel f’);

}

virtual Collectable™ find(const Collectable™ target) const
{
requires not Null(target);

ensures Ve : Obj[Collectale]
(if FindOnTree(self\any,e) A e\any = (*target)\any
then (xresult) =e
else result = NULL);

}

virtual Collectable™ insert(Collectable™ c)
{
requires not Null(c);
modifies self;
ensures self' = (AddNodeV alue(self°, (xc)) A result = c);
}

virtual Boolean isEmpty() const

{

ensures result = IsEmpty(self\any);

}

virtual Collectable™ remove(const Collectable* target

{

requires not Null(target);

modifies self;

ensures Vi : Obj[Collectable]
(if FindOnTree(self i) A i\any = (starget)\any
then self’ = Delete Node(self",i) A (¥result) =1
else unchanged(self) Aresult = NULL);

}
}:

Figure 20: Larch/C++ Specification for BinaryTree.
63



imports BinaryTree, Iterator;
class BinaryTreelterator : public Iterator
{
uses BinlteratorObj(BinaryTreelterator for BinIter[Obj[E]],
BinaryTree for Bin[Obj[E]], Collectable for E);
public:
BinaryTreelterator(const BinaryTree& b)
{
contructs self;
ensures sel f' = create(map(b\any)) A Ve : Obj[Collectable]
(FindOnTree(b\any, e) = el : Obj[Collectable]
(FindOnList(map(b\any),el)));
}

virtual Collectable* operator()()
{
modifies self;
ensures (self’ = Movelterator(self”,1))A
(if ItemAt(selfy=UNDEFINED
then result = NULL
else (*result) = Item At(self"));

}

virtual Collectable™ findnext(const Collectable™ target)
{

requires not Null(target);

modifies self;

ensures sel f' = Next Equalltem(self", (xtarget)\any, pre)A
(if ItemAt(self'y=UNDEFINED
then result = NULL
else (xresult) = ItemAt(self"));

}
b

Figure 21: Larch/C++ Specification for BinaryTreelterator.
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Figure 22: AST for Subsystem - Trait-Gate-Controller System.

5.6 Abstract Syntax Tree for Train-Gate-Controller

Example

The ASTs for the TROM class in Train-Gate-Controller Example are shown in Fig-
ure 23 and 24. Figure 22 gives the Subsystem AST for Train-Gate-Controller
Example. These representations are constructed by the interpreter after the input

specifications are found to be syntactically correct.
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Figure 23: Abstract Syntax Tree for TROM class - Train, Gate.
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Chapter 6

Semantic Analysis for TROM and

Subsystems

In order to use this simulation tool to actually simulate a given system, users must in-

put syntactically and semantically correct TROM classis and Subsystems. In Chap-

ter 4, we discussed a syntax analyses for them. This chapter will focus on semantic

analysis. We identify the properties to be checked and explain how AST is to be used

in this analysis. We also give the result of inputting to the semantic analyzer an ex-

ample which is syntactically correct, but semantically incorrect. The errors generated

by the semantic analyzer help user locate the errors in input specifications.

6.1 What properties need to be checked?

6.1.1 TROM class semantic analysis

1.

(S

Each TROM class has its unique name. That means if there are two TROM
classes with the same name, an error message “ Duplicate TROM class name!”

will be given.

. Port_types listed in TROM class header should not be duplicated.

. The input. output and internal events should be disjoint. Any port_type as-

sociated to an input or output event must be pre-defined within this TROM

class header. Otherwise, the error message “ Event referred to an undefined
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port type!” will be given. The internal events are not associated with any

port_type.

A TROM has at least two states. If a state is compler. there should be exactly
one starting state and at least one other state in the decompositions of a state.

That means one state alone is not allowed in the decompositions of a state.

An attribute can be only one of the following two types:

i) an abstract data type supporting a data model.

it) a port reference type.

The port_type used with each attribute must be pre-defined in the TROM class.
The trait_type is a type of an attribute which is an abstract data type used in
the LSL trait.

. Each trait_name used in a TROM class must exist in LSL traits library( in-

cluding the input file) and its arguments can only be port_type or trait_type
which must be pre-defined within this TROM class.

For example, if a TROM class uses one Set trait which is not included in the
input file, the error message “Trait is not defined!” will show up. Also, if the
Set exists but the arguments are not either defined in port_type list in the class
or trait_type in attribute, error messages “... refer to an undefined port_type”
or * ... refer to an undefined trait_type” will be given. That is, the name of
the trait, and its arguments( the number of arguments and their types) should

match.

It is noticeable that our system is case sensetive. It means that if an LSL trait

name is set and a trait name within a TROM is Set, an error message is given.

. In Aftribute-function, states must belong to state set in this TROM class. At-

tributes must belong to attribute set in this TROM class. The set of attributes

can be empty.
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8. In Transition-Spec, the name must be unique within one TROM class.

o If there is an initial transition specification, it has only source state and
no event associated with it. The initial transition is optional and only one

is allowed within a TROM class.

o The state_pair can be different states and can also be same state. States
in transition specification should belong to the state set in this TROM

class.

e Every attribute in transition specification should belong to the attribute

set in this TROM class.

e Port-condition is an assertion, which only associates with external event.
That means internal event doesn’t have port_condition. Any port-type
used in the port condition should be a valid port.type as defined in the

class header.

e Functions invioved in the port_condition, enab_condition and post_condition
must be defined in the corresponding LSL trait which is linked by the
trait_name in this TROM class.

9. In Time-constraint, only output and internal events can have time constraints

associated with them.

The value of mar must be greater than or equal to the value of min. Any
tran_spec_lable, event_name and state_name used here must be pre-defined within

this TROM class.

6.1.2 Subsystem semantic analysis

1. SCS name should be unique in a system . The error message will show up when

there are identical SCS names.

2. Each SCS name listed in the includes clause should be defined in the system

and their associated TROMs should also be defined within the system.



3. There exists multiple inheritance in the Include clause. For example, SCS sys-
teml may include system2 and system2 may include system3 and so on. This
should not cause a deadlock. For example, in the above example, if systeml
appears in the Include list of system2, it will cause deadlock. Our interpreter

can detect such definitions and give an error message to the user.

4. In the Instantiate clause, all names of instantiated objects in the system must
be unique. Each object can be instantiated from this SCS subsystem or from

other included subsystem TROM class.

e The TROM class which instantiates an object must be defined previously

in the system otherwise an error message will show up.

e The port_type associated with the instantiated object should be valid in
that specific TROM class.

5. In the Configure clause, every pair of object and port should be valid in the

system:

e Each object_name in a pair should exist from the Instantiate clause either

within this subsystem or the Include subsystems.

e The port-type of a port_name following each object name must be defined
within the same Instantiate clause as the object and the number of a port
should be valid in the sense of not exceeding the port cardinality of the
corresponding Instantiate clause for this object. An error message will be

given if this does not hold.

6.2 Implementation of the Interpreter

We have chosen C++ as the language of implementation for the Interpreter. It is cho-
sen because our design is based on object-oriented methodology and C++ can fully
support it. The parsing is done using Flex and Bison, provided by UNIX system.
The parse program which is using Flex and Bison|7] is listed in Appendix A.
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The parse generated by Bison calls the lexer( using Flex) yylcr()- which is the
main function in the lexer—whenever it needs a token from the input file. Bison also
generates a file called y.tab.cc which is the ('++4 language parser that can be linked

with other C'++ programs.

The advantage of using Flex and Bison is that it can generate tokens automati-
cally against the predefined grammar and reduce a lot of workload of hand writting
parse program. The disadvantage of Flex and Bison is that the program will stop
at any time if there is a parse error and the programmer does not have any control

on it.

If the input specification is parsed correctly, then the AST as described in Chapter
5 corresponding to the specification is built. However, semantic analysis, as explained
in this section must be done to ensure the correctness of the internal representation
of TROMs. Since the programmer has full control during semantic analysis, an error

file may be generated for debugging the design.

The Interpreter is running under UNIX system.

6.3 How AST is used in Semantic Analysis?

As we explained the AST structure in Chapter 5, there are only two types of data
structures used in the implementation: Linked list and Binary tree. After building
an AST, all information are stored in different linked lists and the container is the
base to hold all pointers for these lists.

The C++ definition of the AST is listed in Appendix B.

Several semantic routines are used by the Interpreter and we can’t explain all their

algorithms. We chose some typical ones follow:

1. Check duplicate names
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It can be doune on the fly during parsing before the token gets inserted into
an AST. For example. TROM class name can’t be duplicated. Let P be the
pointer to all-TROM list. \When parser gets a TROM class name T1. it will

do the following:

for each P # NULL
get 2 TROM class name T2 from all-TROM list
if T1 = T2 then
an error message is given
break
else move P to the next
endif
endfor

insert T1 into the all-TROM 1list

2. Check Trait in TROM class specification

This analysis has two purposes: one is to check whether or not there is the
same name LSL trait in this input specification and the other is to ensure con-
sistency arguments. For example, if there is a trait named Set in a TROM
class specification but the LSL trait Set cannot be found in library in the input
file, an error message will be given. That means. user cannot use an undefined
LSL trait to specify his system behavior.

Another purpose is to build up a symbol table to acctually give the type of
arguments for this particular TROM class in the sense of doing type checking
for Transition specification assertions later on. For example, we have Set(e, S)
trait in LSL Library. In Controller TROM class specification, we use Set([@Q,
TSet]) trait to describe the object behavior. The Interpreter will link this two
tiers and generate a symbol table which for each e in LSL trait Set, will be
substituted by @@, and each S will be substituted by inSet which is the name
of an attribute corresponding to TSet.

This is essentially linking the two tiers — Lower tier(LSL) and Middle tier( TROM).
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Let P be the pointer to all-LSL list. For each trait name T1 in a TROM. the

method is the following:

for each P # NULL
get the LSL trait name T2 from all-LSL list
if T1 = T2 then
if number of arguments of T1 = number of arguments of T2
then build up a symbol table
else an error message is given
break
endif
else move P to the next
endif
endfor

an error message is given

. Check LSL function in Transition Specification

The LSL functions can only exist in port-condition, pre-condition and post-
condition assertions. For example, a function member{pid, inSet) may occur as
part of an enabling condition of a transition. For semantic analysis, we take
the argument inSet, which is an attribute name, and go to the attribute list to
find out the type of this attribute. Then, from the type of the attribute, which
is T'Set, we can find out the trait name which is Set. After that, we can access
the symbol table for Set to find out whether member is the valid function in it.
The number of arguments and their type for member should match. Otherwise,
the interpreter will give error messages. Note that pid is a legal argument for

any port-type. For each LSL function L,The method is the following:

get the last argument Al of a function
for each attribute type A2 in attribute list do
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if Al = A2 then
for each trait T2 in trait list do
if the last argument of T2 = A1 Then
goto symbol table of T2 serching L
if L is found then
check the consistency of arguments of L in the table
if match then
break
else give error message
endif
else give error message
endif
else give error message
endif
give error message
endfor
endif

endfor

. Check instantiated object from Instantiate clause in Subsystem Specification

An object from a TROM is instantiated in subsystem specification.

For example, t! :: Train[@P : 2j;

means that ¢! is an object from Train class and it has two ports which are P1
and P2 of port-type @P. First, the object name has to be legal(no duplicate)
which could be checked during syntax analysis. Then we check whether Train
is an existing class in the AST. If Train exists, then we check whether port-type
@P is valid in the Train class. Otherwise, an error message will be given. Hav-
ing done this, the instantiated object is ensured to be correct. Then, we will
build a template for each object according to its ports such as: t1. Pl and t1.P2.

It will be used when we check the object-port configuration later on.
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Note that this stage is essentially linking the two tiers - Top tier(Subsystem)
and Middle tier(TROM). Obrviously, higher tier uses lower tier definition so
that there exists multi-dependencies in the design specification.

The method to check an instantiated object is the following:

for each object in Instantiat list do
get a TROM class name T from the object
if T is found in all-TROM 1list then
get a port-type QP from the object
if @P is found in T then
build template for links
else give error message
endif
else give error message
endif

endfor

. Check object-ports link from Configure clause in Subsystem Specification

The Configure clause defines system/subsystem by aggregating objects specified
in the Instantiate clause and other subsystem specifications imported through
the Include clause.

For example, t1.@P1 < — > ¢l1.@Q! simply means that port PI of object
t1(from Train class) is linked with port QI of object cI(from Controller class).
In fact, it defines the interaction between two objects and the way it links. To
check the correctness of the linking, we take the first object name ¢1 to go to the
Instantiate clause and check whether it exists. If it is not found in this Instan-
tiate clause, we check other SCS Instantiate clause through the Include clause.
Having found tI, we then check whether or not the port PI is valid [that is P
should be pre-defined within the object and I should be the valid number(not

to exceed the number within the instantiated object)]. Same procedure checks
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the second objcct and its port. Error messages will be given if any mismatch is
detected.

Having done this. we only ensure that these two pairs of objects and ports are
valid. Next, we need to check whether or not the link between those two objects
is valid. That is, one port for an object can be linked only once with a port of
another object. That means the template for an object can only be assigned
once. Otherwise, there will be a collision and an error message will be given.

For example, consider the following configure specification:

t1.@P1 < — > cl1.@QI;
t1.@P1 < — > c2.QQI;
The Interpreter will detect the wrong link between ¢/ and ¢2. The method to

check the linking is the following:

for each object 0 in Configure list do
if 0 is found in this SCS Instantiat list then
A: get the port P, of object O
if P is also found in this SCS Instantiat list within O then

if n <= the number in the SCS Instantiat list within O then

check template for collision of link
if no collision then break
else give error message
endif
else give error message
endif
else give error message
endif
else get Instantiate list from other included SCS
repeat checking from A
endif

give error message



endfor

6.4 Semantic Analysis Report Example

To illustrate the error detection capabilities of the semantic analyzer, we give an

example below.

Trait: Set(e, S)

Includes: Integer, Boolean
Introduce:

creat: ->S;

insert: e,S ->S;

delete: e,S ->S;

size: S ->Int;

member: e, S ->Bool;
isEmpty: S ->Bool;
belongto: e, S ->Bool;

end

Class Train [@P, @P]
Events: Near!0, Exit!P, In, Out
States: *S1, S2, S3, S4
Attributes: cr:QP
Attribute-function:S1 -> {}; S5 -> {}; 83 -> {}; s2 -> {tr};
Transition-Spec:
Rinit: <S1>;Create();
R1: <S1,S2>; Near(true); true => cr’ = pid;
R2: <S2, S3> ; In; true => true;
R3: <53, S4> ; Out; true => true;

R4: <S4,S1>; Lower(cr=pid); true => true;
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Time-Constraints:
TCi: (RS, In, [2,4], {});
TC1: (Rly EXit’ [036]: {});

end

Class Gate [0S]
Events: Lower?S, Raise?S, Down, Up
States: *G1, G2, G3, G4
Transition-Spec:
Rinit: <G1>;Create();
Ri: <G1,G2>; Lower(true); true => true;
R2: <G2, G3> ; Down; true => true;
R3: <G3, G4> ; Raise(true); true => true;
R4: <G4,G1>; Up; true => true;
Time-Constraints:
TC1: (R1i, Down, [0,1], {});
TC2: (R3, Lower, [1,2], {});

end

Class Controller [@Q, ©OR]
Events: Near?Q, Exit?Q, Lover!R, Raise!R
States: *C1, C2, C3, C4
Attributes: inSet:TSet
Traits: Set[@Q, TSet]
Attribute-function: C1 -> {}; C2 -> {inSet}; C3 -> {inSet}; C4 -> {inSet};
Transition-Spec:
Rinit: <Ci>;Create();
R1: <C1,C2>; Near(true); true => inSet’ = insert(inSet, pid);
R1: <C2, C2>,<C3, C3> ; Near(NOT(belong(pid, inSet)));
true => inSet’ = insert(pid, insert(pid,inSet)) ;

R3: <C2, C3> ; Lower(true); true => true;
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R4: <C3, C3> ; Exit(belongto(pid, inSet)); (size(inSet)>1) =>
inSet’ = delete(pid, inSet) ;

R5: <C3, C4> ; Exit(belongto(pid, inSet)); (size(inSet)=1) =>
inSet’ = delet(pid, inSet) ;

R6: <C4,C1>; Raise(true); true => true;

Time-Constraints:
TC1: (R1, Lower, [0,1], {});
TC2: (RS, Raise, [0,1], {});

end

SCS RailRoadSystem

Instantiate:
t1:: Trail[QP: 2];
t2:: Train[@Q: 2];
t3:: Train[QP: 2];
t4:: Train[QP: 2];
cl:: Controller([®Q: 4, ©R:1];
c2:: Controller[@Q: 4, ©OR:1];
gl:: Gate[®s:1];
g2:: Gate[@S:1];

Configure:
t1.0P1 <-> c1.0Q1; t1.0P2 <~> c2.0Q1;
t2.0P1 <-> c1.0Q2; t2.0P2 <-> c2.0Q2;
t3.0P4 <-> ¢c1.0Q3; t3.€QP2 <-> c2.0Q3;
t4.0P1 <-> ¢c1.0Q4; t4.0P2 <-> c2.0Q4;
cl1.0R1 <-> g4.0S1; c2.0R1 <-> g2.051;

end

SEL: Near,t1,P2,2;
Ext,c1,Q1,4;
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This example is syntactically correct but has a number of semantic inconsistencies.
Our analyzer detects these inconsistencies and gives the following error messages to

uscr.

Duplicated port type: P at line no. 14
Duplicated time-constraint: TC1 at line no. 28

Duplicated Transition-spec: R1 at line no. 58

Semantic Checking for TROM Class: Train

Event ’Near’ referred to an undefined port type ‘0’
Undefined state ’S5’ in Attribute-function

Undefined attribute ’tr’ in Attribute-~function
Undefined trigger event ’Lower’ in Transaction-spec ’'R4’

Time-constraint ’TC1’ refers to an undefined transition ’RS5’

Semantic Checking for TROM Class: Gate
Time-constraint ’TC2’ refers to an input event ’Lower’
Semantic Checking for TROM Class: Controller

Invalid arguments for LSL function ’insert’

Invalid post-condition in Transaction-spec ’R1’
Undefined LSL function ’delet’

Invalid post-condition in Transaction-spec ’RS’

Semantic Checking for SCS: RailRoadSystem
Object ’t1’ is instantiated from undefined TROM class ’Trai’
SCS instance ’t2’ refers to an undefined port_type ’Q’
(in TROM class ’Train’)
Undefined port type ’'P’ of port ’P1’ in Configure:
t2.QP1<->c1.0Q2
Undefined port type 'P’ of port ’P2’ in Configure:
t2.QP2<~->c2.0Q2
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Invalid port# ’'4’ of the port ’P4’ in Configure:
t3.QP4<->c1.0Q3
Undefined object instance ’g4’ in Configure:

c1.@R1<->g4.0S1

Undefined TROM class ’Trai’ in Simulation Event ’Near’

Invalid Simulation Event ’Ext’

o
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Chapter 7
Axiom Generator

In [1] the semantics of TROM is expressed through a set of axioms in a first order
temporal logic. The axioms provide a framework within which the requirements
properties of a reactive system can be verified against the system design described by
the TROMs. The goal of this Chapter is to describe the Axiom Generator module,
which prepares the axioms of TROMs in a system design for use by the verifier in

the animator.

7.1 TROM Axiom System

The first order temporal logic uses the three syntactically higher-order predicates
Hold, HoldFor, and Occur and the temporal relationships among time intervals ex-
pressed by the predicates shown in Figure 25.

In addition, the two other predicates used for expressiveness are

Meet(T1,T2,T3) = Meet(T1,T2) A Meet(T2,T3)
In(T1,T2) = During(T1,T2) v Starts(T1,T2) V Finishes(T1,T2)

The predicate Hold is used to express properties that can hold or not hold during
a finite interval. For example. Hold(A.0,T) asserts that TROM A is in state 6 in
the interval of time T and in every subinterval of T. The predicate HoldFor(A.0,T)

is true when T is the maximal interval for which Hold(A.8,T) is true.



Before(T.T") - L — T —
Mee(T.T") F r + r —
—
Overlaps(T.T") T |
—
Equal(T.T") T
p——
l';l
During(T\T") !._1_‘___1
—
Starts(T,T") T
_
—
Finishes(T.T") T
| e

Figure 25: The predicates defining temporal relationship between intervals

The Occur predicate is used to express event occurrences in the system. For exam-
ple, the predicate Occur{A.e,p;,t) states that the event e occurs at port p; in TROM
A during an elementary interval of time. The interval t is to regarded as “very small”
compared to T, so that during the occurrence of an event A TROM is in the source
state of the transition involving the event. Whenever the context is clear we omit the

reference to TROM in the predicates.

The axiomatization consists of two kinds of axioms: general axioms, which are
shared with any first order theory with equality and temporal TROM axioms and

several temporal constraints. For example, the following axioms are general axioms.
Vxe(pg—a) — (Vxg — Vxa)
=5 — (p — ¢')
Hold(- 6, T) « V t [In(t, T) — - Hold(4, t)]

There are eleven axioms of temporal constraints associated with a TROM. In-

formally, these axioms assert the total behavior of a TROM. For example, TROMs
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must respect atomic-event property, which can be stated as “at any time t, there can
be at most onc event occurring in a TROM and moreover an event can occur only
at one port”. Clearly. this property is enforced during the semantic analysis stage.
However, for formal verification purposes it is essential to state this property in the
following logical axioms:

Atomic-event axiom: ... (AE)
(a) Occur{er, pi, t) A (e, # e2) — = Occur(e, pj, t)
(b) OCCHT(C, Di. t) A (pl # IJJ) - OCC‘!H‘(C, pj9t)

For the sake of clarity and immediate reference to later sections of this Chapter the

other axioms from [1] are reproduced below:
1. Silent-event aziom ... (SE)

Occur(tick,0,t) — V e, p; ® = Occur(e, P;, t)

2. State-hierarchy azioms ... (SH)
(a) Hold(6;, T) N 0; € ®,(0;) — Hold(0;, T)
(b) Hold(6;, T) — ¥ red,(6,) Hold(8; ', T)

3. State-uniqueness axiom ... (SU)
Hold( 0, TYAN(O@#6')N (0 & P, (6"))N(0' & D (0)) — — Hold(8 ', ¢t)

4. Initial-state aziom .. (IS)
Hold(8o, tinit)

5. Initial-attribute axiom .. (IA)
@(tinit) — @(tinit)

6. Dormant-attribute axiom ... (DA)



Vi € Pe(0) @ Hold(0.t') A Meel(t. 1"y — z:(t) = x:(t)

7. Occurrencc ariom L. (0C)

( Hold(6,,t) A @}, () A @hor(t)pid — pi] )
A

Occur(e,p;, t) —
A
\ Hold(0:,t) A o%.(t) A @pon(t)[pid — pi] )

8. Transition aziom ... (TR)

Hold(6,t) A Occur{e, pi.t) N Meet(t,t')

— Hold(6', t') A @pose(t,t’)[pid — p;]

9. Persistence aziom ... (PS)
Hold(0,,t) A Meet. (T, t, t') A
(= Occur(ey, P1,t) V ...V = Occur(e,, P, t))

. Hold(6,t') A
(Vz; € Bar(6) @ z(t) = (1))

10. Time-constraint azioms ... (TC)

(a) Activation ariom: ... (ac)
Trigger(e,t.) A — Disable(e, t) A Meet(t,,t) — Emnable(e, t,,t)

(b) Constraint-event axriom: ... (ce)
Occur(e,p;,t) — Occur(f, pj, t.) A Within(t,,l,u,t)

(c) Enabling ariom: ... (en)

Enable(e,t,, t) A = Occur(e,pi. t) A Meet(t, t') A
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= Disable(e,t’) — Enablc(e.t,.t')
(d) Disabling axiom ... (dds)
Enable(e, t,,t) A Meet(t,t') A Disable(e,t’) — — Enable(e.t,, t')
(e) Firing aziom: ... (fr)
Enable(e, t,, t) A Occur(e, p;,t) A Within(t,,0, u,t)
A Meel(t, ') — — Enable(e.t,,t')
(f) Prohibition axriom: ... (ph)
Enable(e,t,,t) N Within(t,,0,l,t) — — Occur(e, p;, t)
(g) Obligation aziom: ... (ob)
Enable(e,t,, t) AV t'[ Within(t,,0,u,t') — — Disable( e, t')]
— QOccur(e, pi, t') A Within(t,,1, u, t')
(h) Validity aziom: ... (va)
Enable(e,t,, t) — Trigger(f,t,) A Within(t,.0,u,t’)

The axioms ensure sufficient completeness of the logical behavior of a TROM with
respect to a set of signals, in the sense that, for each predicate of the form Hold(), Oc-
cur(), Enable(), Disable(), Trigger and for each state, event, and port, we can derive
whether or not the predicates are true at each time instant. Moreover, only Occur
predicate can be derived as a logical consequence. That is, only constrained and not
input events can be derived from the axioms. Consequently, during the simulation
process of a TROM when an event is scheduled at a port at a certain time, from
the current state of the TROM the axioms will generate the successive state and
the constrained events, if any. That is, all future states and events that are likely

outcomes of a single step computation are derivable by the above axioms.



A subsystem is composed of a finite number of objects 0;,09,...,0;. If the port
p; of object o; is linked to the port g, of the object o;. then it is required that the
occurrence of an event o;.e at the port p; should synchronize with the occurrence of
the event o.e in the port q,. This constraint is captured by the synchrony axiom

Synchrony ariom: ... (SE)
For each link 0;.Qq; « 0;.@q; in the SCS of the subsystem, a synchronous axiom is

defined as follow:
Ve € £? @ Occur(o;.€, p;, t) «— Occur(ok.€, q, t)

The TROM axioms and synchronization axioms taken together describe the log-
ical behavior of a system. If a property, as stated in the requirement, is to be verified
against the system design, then the property must be stated as a temporal formula
using the above mentioned predicates and then must be proved to be a consequence
of TROM and synchronization axioms. This is indeed one of the goals of the verifier

within the animation tool.

The Axiom Generator module prepares the axioms for the specific TROM models
constituting a system design. This is achieved by textually storing the TROM and
synchrony axioms and then generating axioms for the TROM s in the system using the
Abstract Syntax Trees, the internal TROM representations. The generated axioms
are stored in a linked list for efficient retrieval and usage during the verification stages

of the animator.

7.2 Axiom Generation

The architecture design for the Axiom Generator is shown in Figure 27.

There are two phases to generating the axioms. During the first phase the axioms
stated in the previous section are read from a file, parsed using the grammar shown
in Table 16 for syntactic correctness, and values for as many arguments as possible

are substituted from the AST. Not every argument’s value is known at this stage. So,

(v
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Figure 26: The Architecture for Axiom Generator

a second stage is necessary to instantiate the axioms and this is described in Section 4.

The states, events, transition specifications, the attributes, and the time con-
straints are known for a TROM from its specification and hence known from AST.
However, the actual times of occurrences of events, the number of ports, and the
ports at which events occur are not known from AST. Rather, we know them at the
instance of instantiating object configurations.

The parsing phase is rather straightforward: an axiom is read, and parsed using
the grammer in Table 16. Because we deal with a fixed number of predicate names,
we have built a table driven parser(see Table 17). Based on the predicate name, the
parser will know from the table the exact number and type of arguments to expect.

A token can be a predicate expression (not involving predefined predicate names)
or a predicate name. In the former case, the grammer for a predicate expression as
shown in Table 8§(Chapter 4) will be used. Since every axiom is of the form LHS —
RHS, the parser ignores — after a succesful parse and stores only LHS and RHS

predicate formulas.
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Axioms
ariom_list
ariom
LHS
tterms
lterm

arg_list
predicates

RHS
rterm_list
rterm

aztom_id
arg
enab_cond
port_cond
post_cond

i

‘e

([

[ R T

e

ve

[T

<artom_list>
<ariom> | <ariom>: <ariom_list>
<ariom_id> : <LHS> § <RHS>

<lterms>

<lterm> | <lterm> AND <lterms>

<predicates>(<arglist>) | <arg> <predicates> <arg> |
<arg>(<arg>)

<arg> | <arg>, <arg.list>

Occur | Hold | Meet | <> | member | = | Not Occur Enable | Disable |

Trigger | Within | Not member

<rterm_list> | <rterm_list> OR <rterm_list> | ¢

<rterm> | <rterms> AND <rterm>

<predicates>(<arg.list>) | NOT<predicates>(<arg.list>) | <arg>
<predicates> <arg> | <enab_cond> | <port_cond> | <post_cond> |
{forall < arg_list >} | {forall < arg > € < arg >}

CHAR(10)

CHAR(10)

CHAR(50)

CHAR(50)

CHAR(30)

Table 16: A grammar for Axiom Generator

Predicate Name | Number of Arguments

Occur
Not Occur
Hold
Meet
Meet*"
Enable
Disable
Trigger
Within

<>
belongto
Not belongto

NN NN WWININWW

Table 17: Predicates for Axiom Generator

90



For each TROM in the design, we generate axioms corresponding to the eleven

TROM temporal axioms. The generation procedure is based on the following rules:

1. Axioms with Occur Predicate.
For each event in a TROM specification the port type at which it occurs is
known, but not the actual port is known at this time. Similarly, the time of
occurrence is still not known. So, an event name from the TROM specification
is substituted in Occur predicate, leaving the other two parameters as variables;
however, from AST, the port type should be added on to the port argument. For
example, the generation procedure for Atomic-event arioms of Train TROM

is as follows:

for each event e € £ do
generate LHS axiom as
Occur(e,p.t)
for each event £ € £ do
if e # £ then
generate the RHS axiom
Occur(f,q,t)
endif
endfor

endfor

In the above algorithm, p is the port type at which e occurs and q is the port
type at which £ occurs. Note that this information is available in the AST
corresponding to the TROM.

2. Axioms with Hold Predicate.
For each state in a TROM specification the Hold and HoldFor predicates can be

generated. Many of the axioms can be simplified due to value substitution. For
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example. il 4, and 8, are two distinct simple states in the TROM specification,

the State-Uniqueness ariom becomes

Hold(0,.T) — Ilold(0,.T)

However, if 0, is a superstate of ¢, in the TROMI. the axiom will become

Hold(6,,T) — Hold(6,,T)

In fact, the above axiom will be written for each state 6, having 6, as a su-
perstate. The AST for the TROM includes the information on the nature of
state (simple or complex) and the substates, if admissible. Consequently, the

generation algorithm is straightforward:

for each state 6; € S do
generate LHS axiom as
Hold(6,,T)
for each state 6, € S do
if 6, #£ 0, then
if 0, € ®,(6,) then

generate RHS axiom as

Hold(62,T)
endif
endif
endfor
endfor

. Tansition Axioms.

For each transition specification, we generate one transition axiom. The dual of
this axiom is the persistent axiom, and there is one such axiom corresponding to
each transition axiom. These axioms involve both Occur and Hold predicates.
The pre- and post- states corresponding to a state transition, and the transition
specification causing the state transition give the names of states, and event for
value substitution. For example, the algorithm that generates a Transition

axiom follows:



for each transition specification ts do
generate LHS as the conjunction of the predicates
Hold(6,T), Occur(e,p,T), Meet(T,T’), where
0 is the pre-state, and e is the event in ts
generate the RHS as the conjunction of the predicates
Hold(#',T), post-condition in ts

endfor

4. Time Constraint Axioms.

The time constraint axiom consists of eight axioms and are the most important
to assert the reactive behavior of a TROM. The arguments in the temporal
predicates on intervals need no substitution. In all other predicates only the
event name need to be substituted. Hence the axiom generation follows the
rule for the Occur predicate. For example, the algorithm for generating the

Constrained-event axiom follows:

for each time constraint v €' do

if e is the event in the transition specification of v
and f is the constrained event in v then
LHS is Occur(e,p,t)
RHS is the conjunction of the predicates
Occur(f,q,ta), Within({,,a,b,t)
vhere [a,b] € v and {, is the activation instant of e

endif

endfor

Notice that t, will be known only at system execution stages and hence can
not be substituted with any value at this stage. For those events e that are not
constrained by any time-constraint there does not exist any activation instant

t.. That is, the above axioms exist only due to time-constrained specifications.
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Axiom Label Header pointer

\ [ lefthand pointer _next pointer right hand pointer
\ 1 £ / yA—
AM | HP LH.P| RHP|NPT—t LILP| RHP|NP]— ~~~"""""
SE | HP LH.P| RHP|NPT 1 LH.P| RHP|NP[— ~~~"""""
SH | HP LH.P| RHP|NPT—t LH.P| RHP|NPT—™ "=~~~

|

L}

|

1

!
ob | H.P LH.P|RHP |N.P LHP|RH.P [NP[ = ~~"""7°"
va | HP LH.P|RH.P NP1 LH.F RH.P|NP]— ~~=="=--

Figure 27: The Top Level Representation of TROM Axioms

7.3 Internal Representation for Axioms

Every axiom is of the form LHS — RHS, where LHS and RHS are first order
formulas. We represent this internally by a linked list with one header node describing
the axiom name (eg; TR to denote Transition Axiom) and with a pointer to a node
having three fields: LH_Pointer and RH_Pointer, which in turn reference the linked
list representations for LHS and RHS respectively, and Next is the reference to the
next axiom in this category. In fact, the header nodes of all axioms are modeled as
a two-dimensional array structure of records, with first field labeled by Axiom_Label
and the second field labeled by H_pointer. If the array name is Axioms and Axioms(1].
Axiom Label is “AE” (denoting Atomic-event axiom), then Axioms[1].H_pointer will
be a pointer to the header list representing the LHS and RHS of one Atomic-event
axiom for a TROM. All other Atomic-event axioms of this TROM are linked through
the Next field of this node. There will be one such structure for each TROM. See
Figure 27 for this top level representation.

The LHS and RHS parts of an axiom are first order formulas involving named
predicates and predicate expression. A predicate expression is represented by a binary

tree, as has been explained previously in Chapter 5. An expression involving named
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Node Structure 1:

"ﬁ“% lemm onmaf.m pointer I}wlim indicater pointer

AY 7/ 7 14
Name |Argt | Typet --J = | Argn Typen or.l{ and.P|imp.P
1 X
/ |
argument type argument list AND indicster poirter

Node Structure 2:
predicaie expression tres pointer
-\

X
PEB.F or.l1 and.P|imp.P

Qe

Figure 28: The LHS and RHS nodes structure

predicates is represented by a linked list of nodes, where each node has the structure
shown in Figure 28.

The name field stores the predicate name ( Hold, for example), the arg_list field
stores the arguments of the predicate with their names and types, and the three
fields orp, andp, impp are respective pointers to the nodes of named predicates or
predicate expressions connected by or, and, imp to the predicate stored in this node.
See Figure 29, which shows the representation for the Transition axiom for the Train
TROM of the case study.

Axioms for a specific TROM are generated only when a request for it is received
from the animator and the pointer to the structure is returned to the animator.
Axioms that are no longer necessary for verification will be deleted by the animator.
That is, the axiom generator only generates and represents axioms internally; their

consumption and destruction is left for the animator.

7.4 How the axioms are used for verification

A full description of TROM based system verification is outside the scope of this
thesis. In this section a brief account of the justification of the axiom generator

design in the context of the verification is given.
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Figure 29: Transition Axiom for Train TROM.

Formal verification of real-time reactive systems is a complex task. Theoretically,
such a process may not terminate, even for the verification of very simple properties.
To reduce this complexity and at the same time deal effectively with non-trivial
verification of system properties the verifier must be integrated with the simulator.
During the simulation the values for timing parameters, the actual ports at which
events occur and history of computation (which constitutes the knowledge of system
activity) become known. This information when substituted for the parameters in
the axioms that have been generated and stored makes the predicates as propositions,
and inferring properties from a propositional system is guaranteed to terminate. It
is towards this goal that we have implemented the axiom generator.

In order to prove properties, the verifier should generate proof tactics and identify
the nature of axioms that might be useful. For example, to verify that an outcome is
possible given the current configuration, one might try to use the time-constraint ax-
ioms, transition axioms and persistent axioms. Upon deciding, the verifier can invoke
the axiom generator with the key TC (for Time-constraint axiom) and retrieve all

axioms from the internal representation. Converting the axioms to propositions, and
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conducting verification based on logical inference principle are part of the verification
svstem.
When the system evolves due to the introduction of new TROMs, their axioms

are generated from their ASTs incrementally.

7.5 Case Study — Axioms for Train-Gate-Controller

Example

By using the algorithms given in section 2 and the AST of the Train, Gate and
Controller TROMS, we obtain all axioms necessary for verification proterties. These
specific axioms are enumerated below; see Figure 24 for the internal representation

constructed during the derivation of transition axioms for Train TROM.

7.5.1 Axioms for Train TROM

1. Atomic-event axriom

Occur(Near, p;, t) — = Occur(Ezit, P;, t) A
= Occur(In, NULL, t) A = Occur(Out, NULL, t)
Occur(Ezit. p;, t) — = Occur(Near, P;, t) A

= Occur(In, NULL, t) A = Occur(Out, NULL, t)
Occur(In, NULL, t) — = Occur(Near, P;, t) A = Occur(Ezit, P;, t) A
- Occur(Out, NULL, t)
Occur(Out, NULL, t) — = Occur(Near, P;, t) A — Occur(Exit, P;, t) A
= Occur(In, NULL, t)

2. Initial-state ariom
[ ] Hold(ulle, t,'m'g)

3. Occurrence ariom
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Occur(Ncar, p;, t) —  Hold(idle, t)
Occur(In. NULL. t) —  Ilold(toCross. t)
Occur(Out. NULL, t) — Hold(cross. t]

Occur(Exit, p;. t) — (Hold(leave, t) N\ cr = pid)

4. Transition ariom

Hold(idle, t) A Occur(Near, p;,

Meet(t, t)

t) A

Hold(toCross, t) A Occur(In, NULL, t} A

Meet(t, ¥)

Hold(cross, t) A Occur(Out, NULL, t) A

Meet(t, t')

Hold(leave, t) A Occur(Ezit, p;, t)

Meet(t, t)

5. Persistence axiom

Hold(idle, t) A Meet*(T, t,
= Occur(Near, p;, t)

t)

Hold(toCross, t) A Meet"(T, i,

= Occur(In, NULL, t)
Hold(cross, t) AN Meet (T, t,
= Occur(Out, NULL, t)
Hold(leave, t) A Meet (T, t,
— Occur(Ezit, p;, t)

6. Time-constraint arioms

e Activation axiom:

t)

t)

t)

A}

Hold(toCross, ') A ¢ = pid
Hold(cross, t')
Hold(leave, t)

Hold(idle, t)

Hold(idle, t')
Hold(toCross, ') A cr = ¢
Hold(cross, ')

Hold(leave, t)

Trigger(In. t,) A = Disable(In, t) A Meet(t,, t) — Enable(In, t,, t)



Trigger(Eril, t,) A —~ Disable(Eril. t) A Meel(t,. t)
— Enable(Erit. t,, t)
e (‘onstraint-event axiom:
Occur(ln, NULL, t) — Occur(Near, p;, t,) A Within(t,, 2. §. t)
Occur(Ezit, p;, t) — QOccur(Near, p;, t.) N Within(t,, 0, 6, t)
¢ Enabling axiom:
Enable(In, t,, t) A = Occur(In, NULL, t) A Meet(t, t') A
— Disable(In, ¥) — Enable(In, t,, t')

Enable(Exit, t,, t) A = Occur(Exit, p;, t) A Meet(t, ') A
— Disable(Exit, ¥ ) — FEnable(Ezit, t,, ')

Disabling axiom:
Enable(In, t,, t) A Meet(t, ') A Disable(In, t')
—+ = FEnable(In, t,, t)
Enable(Ezit, t,, t) A Meet(t, ) A Disable(Exzit, t')
— — FEnable(Exit, t,, t')
e Firing axiom:
Enable(In, t,, t) A Occur(In, NULL, t) A Within(t,, 0, 4, t) A
Meet(t, ¥) — — Enable(In, t,, t')
Enable(Ezit, t,, t) A Occur(Ezit, p;, t) A Within(t,, 0, 6, t) A
Meet(t, ¥) — — Enable(Fzit, t,, t')

Prohibition axiom:

Enable(In, t,, t} N Within(t,, 0, 2, t} — = Occur(In, NULL, t)
Enable(Exit, t,, t) A Within(t,, 0, 0, t) — — Occur(Fxzit, p;, t)

Obligation axiom:
Enable(In, t,, t} AV t'[ Within(t,, 0, 4§, ) — — Disable(In, t)]
— Occur(In, NULL, t') A Within(t,, 2. 4, t')
Enable(Erit. t,, t) AN t'[ Within(t,, 0, 6, ) — — Disable(Erit, t')
— Occur(Erit, p;, Y) A Within(t,, 0, 6, )
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e \alidity axiom:

Enablc(In. t,, t) — Trigger(Near. t,) A Within(t,, 0. 4. ¥')

Enable(Erxit, t,, t) — Trigger(Near, t.) A Within(l,. 0. 6. ')

7.5.2 Axioms for Gate TROM

1. Atomic-event ariom

Occur(Lower, s;, t) —_

Occur(Raise, s;, t) —_—

Occur(Down, NULL, t) —

Occur(Up, NULL, t) —

2. Initial-state axiom
e Hold(opened, ti;)

3. Occurrence ariom

Occur(Lower, s;, t) —_—
Occur(Down, NULL, t) —
Occur(Raise, s;, t) —_

Occur(Up, NULL, t) —_—

4. Transition ariom

= Occur(Raise, S;,t}) A = Occur(Up, NULL, t) A

= Qccur(Down, NULL, t)

= Occur(Lower, S;, t) A =~ Occur(Up, NULL, t)

A = Qccur(Down, NULL, t)

= Occur(Lower, S;, t) A = Occur(Raise, S;, t) A

= Occur(Up, NULL, t)

= Occur(Lower, S;, t) A = Occur(Raise, S;, t) A

= Occur(Doun, NULL, t)

Hold(opened, t)
Hold(tcClose, t)
Hold(closed, t)

Hold(toOpen, t)

Hold(opened. t) A Occur(Lower, si, t) A Meet(t, t)
Hold(toClose, t) A Occur(Down, NULL, t) A Meet(t, t)
Hold(closed, t) A Occur(Raise, s;, t) A Meet(t, t)
Hold(toOpen, t) A Occur(Up, NULL, t}) A Meet(t, t')
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5. Persistence ariom

Hold(opened. t) N Mect™(T. t. ¥) A = Occur(Louwer, s;, t) —  llold(opencd. t')
Hold(toClose. t) A Mcet™ (T, t. ¥) A = Occur(Down. NULL, t) — Ilold(toClosc, ¥)
Hold(closed, t) N Mcet (T, t, ¥) A = Occur(Raise, s;, t) —+ Hold(closed. t)

Hold(toOpen, t) A Meet* (T, t. ) A -~ Occur(Up, NULL, t) — Hold(toOpen, t)

6. Time-constraint arioms

e Activation axiom:
Trigger(Down, t,) A —~ Disable(Down, t) A Meet(t,, t)
— FEnable(Down, t,, t)
Trigger(Up, t.) A = Disable(Up, t) A Meet(t,, t) — Enable(Up, t,, t)

Constraint-event axiom:

Occur(Down, NULL, t) — Occur(Lower, s;, t,) A Within(t,, 0, 1, t)
Occur(Up, NULL, t) — Occur(Raise, s;, t,) A Within(t,, 1, 2, t)

Enabling axiom:
Enable(Doun, t,, t) A = Occur(Douwn, NULL, t)
A Meet(t, '} A = Disable(Down, t) — Enable(Down, t,, t)
Enable(Up, t,, t) A = Occur(Up, p;, t) N Meet(t, ') A
- Disable(Up, t') — Enable(Up, t,, t)

Disabling axiom:
Enable(Douwn, t,, t) A\ Meet(t, ¥) A Disable(Down, t)
— = Enable(Down, t,, t)
Enable(Up, t,, t) A Meet(t, ¥) A Disable(Up, ') — = Enable(Up, t,, t')

Firing axiom:
Enable(Down, t,, t) A Occur(Down, NULL, t) A
Within(t,. 0. 1. t) A Meet(t, ) — — Enable(Down, t,, )
Enable(Up, t,, t) A Occur(Up. p;. t) A Within(t,, 0, 2, t) A
Meet(t, t') — — Enable(Up, t,, t')
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e Prohibition axiom:

Enable(Down. t.. t) A Within(t,. 0. 0. t) — = Occur(Doun. NULL, t)
Enable (Up. t,. t) A Within(l,, 0. 1, {} — = Occur(Up, NULL, t)
e Obligation axiom:
Enable(Down, t., t) AV t'[ Within(t,, 0, 1, ¥) — - Disable(Down, t )]
~— Occur(Down, NULL, ) A Within(t,, 0, 1, ¥')
Enable(Up, t,, t) AV t'[ Within(t,, 0, 2, ) — — Disable(Up, t)]
— Occur(Up, NULL, ¥} A Within(t,, 1, 2, ¥)
e Validity axiom:
Enable(Down, t,, t) — Trigger(Lower, t,) A Within(t,, 0, 1, ¢)
Enable(Up, t., t}) — Trigger(Raise, t,) A Within(t,, 0, 2, t)

7.5.3 Axioms for Controller TROM

1. Atomic-event aziom

Occur(Near, i, t) — = Occur(Ezit, Q;, t) A = Occur(Lower, R;, t) A
- Occur(Raise, R;, t)
Occur(Ezit, g;, t) — — Occur(Near, @Q;, t) A =~ Occur(Lower, R;, t) A
= Occur(Raise, R;, t)
Occur(Lower, r;, t) — - Occur(Near, Q;, t) A ~ Occur(Raise, R;, t) A
= Occur(Ezit, Q;, t)
Occur(Raise, r;, t) — - Occur(Near, Q;, t) A = Occur(Lower, R;, t) A
: - Occur(Ezit, Q;, t)

2. Initial-state axiom
e Hold(idle, t;;)

3. Occurrence ariom



Occur(Ncar, ¢;, t) — (Hold(idle,

t) Vv (Hold(active. t) A

= member(pid. inSel)) V (Illold(monitor.
t) A - member(pid. inSet)) )

Occur(Lower. r;, t) — Hold(active. t)

Occur(Erxit, q;. t) — ((Hold(monitor, t) A size(inSet) > I A
member(pid, inSet)) v (Hold(monitor, t)
A size(inSet) = I N\ member(pid, inSet)))
Occur(Raise, r;, t) — Hold(deactive, t)

4. Transition ariom

Hold(idle, t) A Occur(Near, ¢;, t) A
Meet(t, t)

Hold(active, t) A Occur(Near, g¢;, t)
A Meet(t, t')

Hold(monitor, t) A Occur(Near, g;,

Hold(active, ) A inSet = in-
sert(pid, inSet)
Hold(active, ¥) A inSet = in-
sert(pid, inSet)
Hold(monitor, ¢) A inSet = in-

t) A Meet(t, t) sert(pid, inSet)

Hold(active, t) A Occur(Lower, r;, — Hold(monitor, ')

t) N Meet(t, t')

Hold(monitor, t) A Occur(Ezit, g, — Hold(monitor, ¢) A inSel =
t) A Meet(t, t) delete(pid, inSet)

Hold(monitor, t) A Occur(Erit, ¢, — Hold(deactive, ¢) A inSet =
t) N Meet(t, t') delete(pid, inSet)

Hold(deactive, t) A Occur(Raise, r;, — Hold(idle, t')

t) A Meet(t, t')

5. Persistence azxiom

103



Hold(idle. t) A Aleet~(T, t, ¥} AN — Hold(idle, ¥) A inSet = inScl'

= Ocecur(Ncar, g;. t)

Hold(active, t) A Mct*(T. t. ) AN — Hold(active. ¥) A inSct = inScl
= Occur(Lower, r;, t)

Hold(monitor, t) A Meet"(T, t, ') AN — Hold(monitor, ¥) A inSet = inSet’
= Occur(Erit, g;, t)

Hold(deactive, t) A Meet(T, t, ¥) N — Hold(deactive, ¥) A\ inSet = inSet

- Occur(Raise, r;, t)

6. Time-constraint arioms

e Activation axiom:
Trigger(Lower, t,) A — Disable(Lower, t) A Meet(t,, t)
— FE'nable(Lower, t,, t)
Trigger(Raise, t,) A =~ Disable(Raise, t) A Meet(t,, t)
—— FEnable(Raise, t,, t)
e Constraint-event axiom:
Occur(Lower, r;, t) — Occur(Near, g¢;, t.) N Within(t,, 0, 1, t)
Occur(Raise, r;, t}) — Occur(Ezit, ¢, t.) N Within(t,, 0, 1, t)
e Enabling axiom:
Enable(Lower, t,, t) A = Occur(Lower, r;, t) A Meet(t, ) A
- Disable(Lower, ) — Enable(Lower, t,, )
Enable(Raise, t,, t) A = Occur(Raise, i, t) A Meet(t, t') A
— Disable(Raise, ¥ ) — Enable(Raise, t,, t')
e Disabling axiom:
Enable(Lower, t,, t) A Meet(t, ') A Disable(Lower, t)
— = Enable(Lower, t,, V')

Enable(Raise, t,. t) A Meet(t, ') A Disable(Raise, t')
— - Enable(Raise, t,, V')
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e Firing axiom:
Lnable(Lower. t,. t) A Occur(Lower, r;. t) A Within(t,. 0. 1. t) A
Meel(t. ) — — Enable(Lower, t,, )
Enable(Raise. t,, t}) A Occur(Raise, r;, t} A Within(t,, 0, 1, t) A
Meet(t, ¥ ) — — Enable(Raise, t,, t')

Prohibition axiom:

Enable(Lower, t,, t) A Within(t,, 0, 0, t) — - Occur(Lower, r;, t)
Enable(Raise. t,, t) A Within(t,, 0, 0, t}) — — Occur(Raise, r;, t)

Obligation axiom:
Enable(Lower, t,, t) AV t'[ Within(t,, 0, 1, ) — — Disable(Lower, t )
— Occur(Lower, r;, ') A Within(t,, 0, 1, t)
Enable(Raise, t,, t}) AV t'[ Within(t,, 0, 1, ¥) — — Disable(Raise, t')]
— Occur(Raise, i, ¥) A Within(t,, 0, 1, ¥)

Validity axiom:
Enable(Lower, t,, t) — Trigger(Near, t,) A Within(t,, 0, 1, ¥)
Enable(Raise, t,, t) — Trigger(Exit, t,) A Within(t,, 0, 1, t)



Chapter 8
Conclusion

This thesis is a contribution to the development of one component of a tool that pro-
vides the environment for creating, editing, combining and animating TROMs, the
building blocks of real-time reactive systems. The interpreter developed in this thesis
is the front end to the animator, which is being built by Dharmalingam Muthiayen.

An overall user interface design is being planned by Jaya Konnankotil.

Formal approaches to software development of complex computer systems can be
beneficial only when they are supported by tools. With this in mind our research
originated to provide the tool support for the TROM based methodology [1]. The
research reported in this thesis has led to the development of an interpreter, which

includes a syntax checker, a semantic analyzer and axiom generator.

The grammar for TROM can be modified to accommodate parametrized event
specifications or continuous time constraints. The syntactic and semantic analyzers
for an inherited TROM need to compile the inherited TROM specification; that is,
the compilation process in not incremental over the inheritance hierarchy. In partic-
ular, if a state refinement is done, the refined TROM must be recompiled. An useful
future work would be to make the compilation process incremental, although it seems
difficult to perform. During the debugging stages of the animator, a TROM defini-

tion may have to be changed. These require recompilation of redefiened TROM:s.
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The axiom generator can work incrementally over TROM inheritance hierarchies.
When a new state is added to a TROM. this state, the transitions incident at this
state. the assignment vector at this state. and the time constraints. if any. on the
event labelling the transitions affecting the state can be dealt with separately to cre-

ate the additional axioms.

When a new transition is added between two existing states, the additional axioms
once again can be created with the added specifications, without changing the set of
accumulated axioms. The axiom generator will be invoked by the animator during

the verification stages.

One of the essential future research objective should be to link the interpreter with
a more primitive front end module implementing OMT like tool, in which it would
be easier for a less sophisticated user to state the requirements of an object and get

a TROM specification generated automatically.
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Appendix A

Syntax Grammar implementation

using Flex and Bison

4
/* simple TROM lexer 001 =/
#include <stdio.h>
#include <string.h>
#include "cont.h"
#include “"1lsldef.h"
#include "tromdef.h"
#include "scsdef.h"
#include "compdef.h"
#include "tromO1.h"

int lookupKeywords(btree<btname_t> *kwds, char =*id);
btree<btname_t> *buildKeywords( );
extern int lineno;

btree<btname_t> *keywords = buildKeywords( );
%}

iden [a-zA-Z]+[a-2A-20-9] =
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LE [\t ]+
intnum -?[0-9]+
nl \n

WA

{ws} ;
{n1} {lineno++;}

i¢->"  {return AGGREGATE;}

oy {return IMPLY;}
{return RELATE;}

n=>u {return INVOKE;}

PRI

ne=w |

e |

= {yylval.id = strdup(yytext); return COMPARE_OP;}
"> {return GT;}
" {return LT;}
Attribute[ \t]l*-[ \tl*function {return ATT_FUNC;}
Transition[ \t]=*-[ \t]=*Spec {return TRANS_SPECS;}
Time[ \t]#*-[ \t]l=*Constraints {return TIME_CONSTRAINTS;}
{iden} { yylval.id = strdup(yytext); return lookupKeywords(keywords, yytext); }
{intnum} {yylval.num = atoi(yytext); return NUM;}
{return yytext[0];}

W

btree<btname_t> *buildKeywords( )
{

btree<btname_t> *tree = new btree<btname_t>;
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// Trom class keywords
enter(tree, strdup("Class"), CLASS);
enter(tree, strdup("end"), END);
enter(tree, strdup(”Events"), EVENTS);
enter(tree, strdup(“"States"), STATES);
enter(tree, strdup("Attributes"), ATTRIBUTES );
enter(tree, strdup("Traits"), TRAITS);
enter(tree, strdup(“"Create"), CREATE);
enter(tree, strdup("Includes"), INCLUDES);
enter(tree, strdup("Introduce"), INTRODUCES) ;
enter(tree, strdup("SCS"), SCS_TOK);
enter(tree, strdup("Include"), INCLUDE);
enter(tree, strdup("Instantiate"), INSTANTIATE);
enter(tree, strdup("Configure"), CONFIGURE);
enter(tree, strdup("Trait"), TRAIT);
enter(tree, strdup("OR"), OR);
enter(tree, strdup(“AND"), AND);
enter(tree, strdup("NOT"), NOT);
enter(tree, strdup("pid"), PID);
enter(tree, strdup("true"), LOGIC);
enter(tree, strdup('"false"), LOGIC);
enter(tree, strdup("Int"), INT_T);
enter(tree, strdup(“"Bool"), BOOL_T);
enter(tree, strdup("SEL"), SEL);
btname_t *p = tree->getroot();
return tree;

+

int lookupKeywords(btree<btname_t> *kwds, char *id)

{
btname_t *kwd;
if (kwd=find( kwds, id))



return kwd->gettype();
}

return ID;

W
/* simple TROM parser 001 */

#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "cont.h"
#include "1lsldef.h"
#include "tromdef.h"
#include "compdef.h'
#include "scsdef.h"

#include "tromaux.h"

extern int yylex();

int yyerror(char =*s);

extern int warning(char *, char =*);
extern char *progname;

extern int lineno;

extern 1ist<TROM> *All_TROMs;
extern 1ist<SCS> *Al1l_SCSs;

extern list<LSL> *All_Traits;

extern list<SimEvent> *Al1_SimEvents;
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extern fstream ferr; // Attach out file to Stream

3s

%union{
char *id;
int num;
list<LSL> *LSL_1st;
list<lsl_func> =*1sl_func_lst;
1ist<TROM> *«TROM_1st;
list<event> *event_lst;
list<state> *state_lst;

list<attribute> *attribute_lst;
list<trait> *trait_1lst;
list<att_func> =attfunc_1lst;
list<name_t> xname_1lst;
btree<expr_elmt> *expr_tr;
list<expr_elmt> *expr_el_lst;
list<trans_spec> *trans_spec_lst;
list<state_pair> *state_pair_lst;
list<time_constraint> *time_constraint_lst;
1list<SCS> *SCS_1st;
list<instance> =instance_lst;
list<port> *port_lst;
list<configure> *configure_lst;
list<SimEvent> =*SE_lst;

LSL =LSL_ptr;
1sl_func *x1sl_func_ptr;
TROM *TROM_ptr;
event *event_ptr;
state *xstate_ptr;
attribute *attribute_ptr;
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trait *trait_ptr;

att_func *attfunc_ptr;
expr_elmt *expr_el_ptr;
trans_spec *trans_spec_ptr;
state_pair *state_pair_ptr;

trigger_event *trigger_event_ptr;

time_constraint *time_constraint_ptr;

SCs *5CS_ptr;
instance *instance_ptr;
port *port_ptr;
name_t *name_ptr;
configure *configure_ptr;
SimEvent *SE_ptr;

}

%token TRAIT

%token CLASS END EVENTS STATES ATTRIBUTES
%token TRAITS CREATE INVOKE

%token ATT_FUNC PID IMPLY AND NOT OR TRANS_SPECS
%token TIME_CONSTRAINTS

%token LOGIC COMPARE_OP LT GT INT_T BOOL_T
%token SCS_TOK AGGREGATE INCLUDES INTRODUCES
%token INSTANTIATE INCLUDE CONFIGURE RELATE
%token SEL

%token <id> 1ID

%token <num> NUM

%type <id> anld

%token <id> LOGIC

%token <id> COMPARE_OP

%type <LSL_lst> trait_classes

%type <LSL_ptr> trait_cls
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“type
htype
Atype
“type
Atype
Atype
%type
“type
%type

input_

htype
%type
%type
“type
htype
htype
“Atype
Atype
“type
htype
Atype
htype
%type

<name_lst> lsl_args, 1slf_params, arg_list
<name_lst> incl_traits, incl_ts
<name_ptr> arg

<1lsl_func_1lst> lslfuncs, lsl_fs
<1sl_func_ptr> 1lsl_f

<TROM_1st> trom_classes

<TROM_ptr> trom_class

<event_lst> evts, Yevents

<event_ptr> Yevent, internal_event,
event, output_event

<state_lst> sts, state_set, state_list
<state_ptr> Ystate

<name_lst> Yport_ts

<name_ptr> Yport_type, 1lslf_ret
<attribute_lst> atts, Yatt_list
<attribute_ptr> Yatt

<trait_1lst> trts, Ytrait_list
<trait_ptr> Ytrait

<attfunc_lst> attfs, attf_list
<attfunc_ptr> attf

<name_1lst> att_name_list

<expr_tr> expr_tr

<expr_el_ptr> expr, simple_expr, ternm,

factor, lsl_term, func_arg

“type
htype
htype
%type
Atype
Atype
%type

<expr_el_lst> func_args
<id> b_op
<trans_spec_ptr> tr_spec, tr_spec_ini

<trans_spec_lst> tr_spec_list, tr_specs
<state_pair_lst> ini_stat, stat_prs
<state_pair_ptr> stat_pr

<trigger_event_ptr> trig_ev
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%type
%type
%type
%type
%type
%type
%type
%type
%type
%type
%type
%type
%type
%type
Atype
%type
W

start:

<time_constraint_ptr> constrt

<time_constraint_lst> constrts, time_constrts
<name_lst> tc_sts
<SCS_1st> scs_classes
<SCS_ptr> scs_cls
<name_lst> incls, incl_list
<name_ptr> incl
<instance_lst> insts, inst_list
<instance_ptr> inst
<name_ptr> aTrom
<port_lst> port_list
<port_ptr> port_card
<configure_ptr> conf
<configure_lst> conf_list, confs
<SE_lst> sev_1lst, sevs
<SE_ptr> sev
trait_classes trom_classes scs_classes sev_1st
{
All_Traits=$1;
All1_TROMs = $2;
All_sCSs = $3;
All_SimEvents=$4;
ValidateAllLSLs( ferr, 0, All_Traits);
ValidateAllTROMs( ferr, O, A11_TROMs, All_Traits);
ValidateAllSCSs( ferr, O, Al1_SCSs, A11_TROMs);
ValidateAllSimEvents( ferr, 0, All_SimEvents,
All1_TROMs, Al1_SCSs);
};

sev_1st: SEL ’:’ sevs END {$%$=$3;}
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sevs:

sev:

trait_classes:

trait_cls:

| /* empty */{$$=NULL;};

sevs ’;’ sev {$$=$1; $$->add($3);}

| sev {$$=new list<SimEvent>; $$->add($1);};

anld ’,’ anld ’,’ anld ’,’ NUM
{$$=nev SimEvent($1, $3, $5, $7); };

trait_classes trait_cls{$$=$1; $$->add($2);}

| trait_cls{$$=new list<LSL>; $$->add($1);};

TRAIT ’:’ anId ’(’ 1sl_args ’)’ incl_ts 1lslfuncs END
{$$=newv LSL($3); $$->setArgs($5);

$$->setIncludes($7); $$->setlsl_funcs($8);}

1sl_args:

incl_ts:

incl_traits:

lslfuncs:

1sl_fs:

1s1_f:

| /* empty */{$$=NULL;};
1sl_args ’,’ anld {$$=$1; $$->add(new name_t($3));}
| anId {$$=new list<name_t>; $$->add(new name_t($1));};
INCLUDES ’:’ incl_traits{$$=$3;}
| INCLUDES ’:’ {$$=NULL;};
incl_traits ’,’ anld {$$=$1; $$->add(new name_t($3));}
| anlId {$$=new list<name_t>; $$->add(new name_t($1));};
INTRODUCES ’:’ 1sl_fs {$$=$3;};
1sl_fs ’;’ 1sl_f {$$=%1; $$->add($3);}
| 1s1_f {$$=new list<lsl_func>; $$->add($1);};
anld ’:’ 1lslf_params IMPLY 1lslf_ret
{$$=new 1lsl_func($1); $$->setArgs($3);

$$->setRet_type($5);};

1slf_ret:

1slf_params:

trom_classes:

anId {$$=new name_t($1, LITERAL_TYPE);}

| INT_T {$$=new name_t("Int", INT_TYPE);}

| BOOL_T {$$=nev name_t("Bool", BOOL_TYPE);};
1slf_params ’,’ anId {$$=$1; $$->add(new name_t($3));}
| anId {$$=new list<name_t>; $$->add(new name_t($1));}
| /* empty */{$$=NULL;};

trom_classes trom_class
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{ $3$=%1;
if (!'findByName( (Tlist_ptr)$$,
$2->getname())) $$->add( $2);
else ferr<<"Semantic Error:
Duplicated TROM Class Name: "
<<$2->getname()<<endl; }
| trom_class

{ $$ = new list<TROM>; $$->add( $1);};

trom_class: CLASS anld ’[’ Yport_ts ’]’ evts sts atts trts
attfs tr_specs time_constrts END
{
$$= newv TROM($2);
$$->setPort_types($4);
$$->setEvents($6) ;
$$->setStates(87);
if($8 != NULL) $$->setAttributes( $8);
if($9 '= NULL) $$->setTraits( $9);
if($10 != NULL) $$->setAtt_funcs( $10);
if($11 !'= NULL) $$->setTrans_specs( $11);
if($12 1=NULL) $$->setTime_constraints( $12);
};
Yport_ts: Yport_ts ’,’ Yport_type
{ $3$=%1;

if('findSame( (Tlist_ptr)$$, $3)) $$->add( $3);
else{ ferr<<"Duplicated port type: ";
ferr<<$3->getname()<<" at line no. "
<<lineno<<endl;} }
| Yport_type
{ $$ = new list<name_t>; $$->add( $1);};
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Yport_type: '@’ anld {$$=newv name_t($2);};

evts: EVENTS ’:’ Yevents {$3$=%$3;);
Yevents: Yevents ’,’ Yevent
{ $3$=9%1;

if(1findSame( (Tlist_ptr)$$, $3)) $$->add( $3);
else{ ferr<<"Duplicated event name: ";
ferr<<$3->getname()<<" at line no. "

<<lineno<<endl;} }

| Yevent
{ $$ = newv list<event>; $$->add( $1);};
Yevent: internal_event {$$=%1}
| input_event {$$=81)

| output_event {$$=81};
internal_event: anld {$%=new event($1, INTERNAL_EVENT)};
input_event: anId ’?’ anld {$$=nev event($1, INPUT_EVENT, $3)};
output_event: anId ’!’ anId {$$=nev event($1, OUTPUT_EVENT, $3)};
anld: ID {$$=81};

sts: STATES ’:’ state_set {$$=$31;
state_set: '*’ Ystate ’,’ state_list { $$=$4; $2->setInit(TRUE);
if(!findSame( (Tlist_ptr)$$, $2)) $$->insert( $2);
else{ ferr<<" Duplicated sate name: ";
ferr<<$2->getname()<<" at line no. "
<<lineno<<endl;}};
state_list: state_list ’,’ Ystate
{ $8$=%1;
if(!findSame( (Tlist_ptr)$$, $3)) $$->add( $3);
else{ ferr<<"Duplicated sate name: ";
ferr<<$3->getname()<<" at line no.

<<lineno<<endl;} }



| Ystate
{ $% = new list<state>; $$->add( $1);};

Ystate: anId ’(’ state_set ’)’
{$$=new state($1, COMPLEX_STATE);
$$->setSub_States($3);}
| anId
{$$=new state($1)};

atts: ATTRIBUTES ’:’ Yatt_list
{$$=$3})
| /* empty=*/
{$$=NULL;} ;
Yatt_list: Yatt_list ’;’ Yatt
{ $$=%1;
if(!findSame( (Tlist_ptr)$$, $3)) $$->add( $3);
else{

ferr<<" Duplicated attribute name: “;
ferr<<$3->getname()<<" at line no. "

<<lineno<<endl;

}
| Yatt
{ $$ = new list<attribute>; $$->add( $1);};

Yatt: anld ’:’ '@’ anld
{$$=new attribute($i, $4, PORT_TYPE)}
| anId ’:’ anId
{$$=new attribute($1, $3, TRAIT_TYPE)};

trts: TRAITS ’:’ Ytrait_list
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{$$=$3}
| /* empty=*/
{$$=NULL;} ;
Ytrait_list: Ytrait_list ’,’ Ytrait
{ $$=$1; $$->add( $3);}
| Ytrait
{ $% = new list<trait>; $$->add( $1);};
Ytrait: anld ’[’ arg_list ’,’ anld ’]’
{$$=nev trait($1);
$3->add(new name_t($5, TRAIT_TYPE));
$$->setType_args($3);};

arg_list: arg_list ’,’ arg
{ $$=%1; $$->add( $3);}
| arg

{ $$ = new list<name_t>; $$->add( $1);};
arg: anId
{$$=nev name_t($1, TRAIT_TYPE);}
| ’0’ anld
{$$=nev name_t ($2, PORT_TYPE);};

attfs: ATT_FUNC ’:’ attf_list
{$$=83}
| /* empty=/
{$$=NULL;};
attf_list: attf_list attf
{ $$=%1; $8$->add( $2);}
| attf
{ $$ = new list<att_func>; $$->add( $1);};
attf: anId IMPLY ’{’ att_name_list ’}' ’;’
{$$=new att_func($1); $$->setAtt_names($4);}
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| anId IMPLY ’*{* 2}’ ;>
{$$=new att_func($1);};
att_name_list: att_name_list ’,’ anId
{ $$=$1; ¢$$->add( new name_t( $3));}
| anId
{ $$ = new list<name_t>; $$->add(new name_t( $1));};

tr_specs : TRANS_SPECS ’:’ tr_spec_ini
tr_spec_list {$$=$4; $$->insert($3);}

| TRANS_SPECS ’:’ tr_spec_list {$$=$3;};
tr_spec_ini: anld ’:’ ini_stat CREATE '(’ *)’ ?;°

{$$=new trans_spec($1, TRUE);
$$->setState_pairs($3);};
ini_stat: LT anId GT ’;’ {$$=new list<state_pair>;
$$->add(new state_pair($2, NULL));};
tr_spec_list: tr_spec {$$=new list<trans_spec>; $$->add( $1);}
| tr_spec_list tr_spec
{$$=91;

if (!findByName( (Tlist_ptr)$$,

$2->getname())) $$->add( $2);

else{ ferr<<"Semantic Error:

Duplicated Transition-spec: ";
ferr <<$2->getname()<<endl;}};
tr_spec: anld ’:’ stat_prs ’;’ trig_ev ’;’
expr_tr INVOKE expr_tr ’;’

{$$=new trans_spec($1, FALSE);
$$->setState_pairs($3);
$$->setTriggerEvent ($5);
$$->setCondition($7, PRECONDITION);
$$->setCondition($9, POSTCONDITION);};

stat_prs: stat_pr
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{ $$ = nev list<state_pair>; $$->add($1);};
| stat_prs ’,’ stat_pr
{ $3$=%1; $$->add( $3);};
stat_pr: LT anId ’,’ anld GT {$$=new state_pair($2, $4);};
trig_ev: anId ’(’ expr_tr ’)’ {$$=newv trigger_event($1, $3);}
| anId {$$=nev trigger_event($1);};

time_constrts: TIME_CONSTRAINTS ’:’ constrts {$$=$3;}
| /= empty ---- for test only =/ {$$=NULL;} ;

constrts: constrt { $$=new list<time_constraint>; $$->add($1);}
| constrts ’;’ constrt {$$=91;
if('findSame((Tlist_ptr)$$, $3)) $$->add($3);
else{ ferr<<"Semantic Error:
Duplicated time-constraint name: ";
ferr<<$3->getname()<<" at line no. "

<<lineno<<endl;}};

constrt: anId ’:’ ’(’ anld ’,’ anId ’,’ ’'[’ NUM
) NUM 010 0,0 {0 te_sts '} 0)
{$$=new time_constraint($1, $4, $6,$9,$11);
$$->setState_names($15);};

tc_sts: anId {$$=new list<name_t>; $$->add(new name_t($1));}
| tc_sts ’,’ anld {$$=$1; $$->add(nev name_t($3));}
| /* empty */ {$$=NULL;};

expr_tr: expr {$$=new btree<expr_elmt>; $$->setroot($1);};
expr: simple_expr {$$=$1;}
| simple_expr b_op simple_expr

{$$=nev expr_elmt($2, OPERATOR_TYPE, BOOL_TYPE);
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$$->addleft($1); $$->addright($3); };

b_op: COMPARE_OP {$$=$1;}
| LT {$$="<"}
| GT {$$=">"};
simple_expr: term
{$8=%1;}

| term OR term
{$¢=new expr_elmt ("OR", OPERATOR_TYPE, BOOL_TYPE);
$$->addleft($1) ;$$->addright($3); };

term: factor
{$$=%1;}
| factor AND factor
{$$=nev expr_elmt("AND", OPERATOR_TYPE, BOOL_TYPE);
$$->addleft($1) ;$$->addright($3); };

factor: PID {¢$$=nev expr_elmt("pid", PID_TYPE);}
| anId {$$=newv expr_elmt($1, LITERAL_TYPE);}
| anId ’’’ {$$=new expr_elmt

($1, LITERAL_TYPE_PRIME);}
| LOGIC {$$=new expr_elmt

($1, BOOL_TYPE, BOOL_TYPE);}
| NUM {char s[10]; sprintf(s, "%d", $1);

$$=nev expr_elmt
(strdup(s), INT_TYPE, INT_TYPE, $1);}
| 1sl_term {$$=$1;}
| NOT factor {$$=new expr_elimt
("NOT", OPERATOR_TYPE, BOOL_TYPE);
$$->addleft($2);}
| (" expr ’)’ {$$=$2;};



1sl_term: anId ’(’ func_args ’)’
{ $$%$=new expr_elmt($1, FUNC_TYPE);
$$->setFunc_args( $3);
};

func_args: func_args ’,’ func_arg {$$=$1; $$->add($3);}
| func_arg {$$=new list<expr_elmt>; $$->add($1);};

func_arg: PID {$$=newv expr_elmt(“"pid", PID_TYPE);}
| anId {$$=new expr_elmt($1, LITERAL_TYPE);}
| 1sl_term{$$=%1;}
| /*empty=/ {$$=NULL;};

scs_classes: scs_classes scs_cls{$$=%1;
if (!findByName( (Tlist_ptr)$$, $2->getname()))
{ $$->add( $2);
ferr<<"Added new SCS "<< $2->getname()<<endl;}
else ferr<<"Semantic Error: Duplicated SCS Name: "
<<$2->getname()<<endl;
| scs_cls{$$=new 1ist<SCS>; $$->add($1);};
scs_cls: SCS_TOK ID incls insts confs END
{$%$=new SCS($2); $$->setIncludes($3);
$$->setInstances($4); $$->setConfigures($5);
ferr <<"Compiler Info: SCS "<<$2 <<
" syntax check passed." << endl;
ferr <<"Compiler Error: SCS "«<<$2 <<
" has semantic errors!" << endl;
else
ferr <<"Compiler Info: SCS "<<$2 <<
" semantic check passed." << endl; */};

incls: INCLUDE ’:’ incl_list{$$=$3;}
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incl_list:

incl:

insts:

inst_list:

| /* empty */ {$$=NULL;};
incl_list ’;’ incl{$$=$1; $$->add($3);}
| incl{$$=new list<name_t>; $$->add($1);};

ID{$$=nev name_t($1);};

INSTANTIATE ’:’ inst_list{$$=$3;}

| /* empty *=/{$$=NULL;} ;

inst_list ’;’ inst {$$=%1;
if(‘findSame( (Tlist_ptr)$$, $3)) $$->add( $3);
else{ ferr<<"Duplicated Object name: “;

ferr<<$3->getname()<<" at line no.

"¢<lineno<<endl;} }

inst:

port_list:
port_card:
aTrom:
confs:

conf_list:

conf:

| inst {$$=new list<instance>; $$->add($1);};

anId RELATE aTrom ’[’ port_list ’]’{$$=new instance($1);
$$->setTrom($3);
$$->setPorts($5);};
port_list ’,’ port_card {$$=$1; $$->add($3);}
| port_card{$$=new list<port>; $$->add($1);};
’Q’ anId ’:’ NUM{$$=new port($2,$4);};
anId{$$=new name_t($1);};
CONFIGURE ’:’ conf_list{$$=$3;}
| /* empty *=/{$$=NULL;} ;
conf_list ’;’ conf {$$=$1; $$->add($3);}
| conf {$$=new list<configure>; $$->add($1);};
anlId ’.’ '@’ anId AGGREGATE anId .’ '@’

anId {$$=new configure($1,$4,$6,$9);};

W

int warning(char *s, char *t) /# print warning message */
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cerr << progname<< ": " << s;
if (t) cerr << t;

cerr << " line #" << lineno << endl;

int yyerror(char *s)
{

cerr << s << endl;



Appendix B

Abstract Syntax Tree Definition

//cont.h Containers definition header
#ifndef __CONT_H

#define __CONT_H

struct slink{

slink *next;

slink() {next=0;}
slink(slink *p)<{next=p;}
};

class btreenode: public slink

{

public:

btreenode *next;

btreenode *left;

btreenode *right;
btreenode () {next=left=right=0;}
addnext (btreenode *p){next=p;}
addleft (btreenode *p){left=p;}
btreenode *getleft(){return left;}
btreenode *getright(){return right;}
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addright (btreenode *p){right=p;}
virtual bool operator=(btreenode &btn)=0;

virtual bool operator>(btreenode &btn)=0;

};

class slist_base{

slink *head;

slink *cursor;

int size;

public:

slist_base(){ cursor = head = NULL; size=0;}
“slist_base(){ head = NULL;}

int insert(slink *p);

int append(slink *p);

slink *get(){cursor=head; return head;}
int getSize(){ return size;}

slink *next(){ cursor=cursor->next; return cursor;}

};

class btree_base{

btreenode *root;

btreenode *cursor;

int size;

public:

btree_base(){ cursor = root = NULL; size=0;}
“btree_base(){ root = NULL;}

int setroot(btreenode *p){ root = p;};
btreenode *getroot(){return root;}
int insert(btreenode *p);

int addnext(btreenode *p);

int addleft(btreenode *p);
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int addright(btreenode #*p);
btreenode *get(){cursor=root; return root;}
int getSize(){ return size;}
btreenode *next()

{ cursor=cursor->next; return cursor;}
btreenode *left()

{ cursor=cursor->left; return cursor;}
btreenode *right()

{ cursor=cursor->right; return cursor;}

};

template <class T> class btree:private btree_base
{

public:

btree () :btree_base(){};

“btree();

void insert(T #*pE){btree_base::insert(pE);}
void setroot(T *pE){btree_base::setroot(pE);}

T *getroot(){return (T *)btree_base::getroot();}
T* get(){ return (T *) btree_base::get();}

T *next(){ return (T *) btree_base::next();}

T *left(){ return (T *) btree_base::left();}

T *right(){ return (T *) btree_base::right();}
int getSize(){ return btree_base::getSize();}
};

template <class T> class list:private slist_base
{

public:

list ():slist_base(){};

~1list();
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void insert(T *pE){slist_base::insert(pE);}
void add(T *pE){slist_base::append(pE);}

T+ get(){ return (T #*) slist_base::get();}

T *next(){ return (T *) slist_base::next();}
int getSize(){ return slist_base::getSize();}

};

class name_t:public slink
1
char *name;
int <type;
public:
name_t (char *n=NULL){ name = n;}
name_t(name_t *nt=NULL){ if(!nt)name=NULL;
else { name = strdup(nt->getname());
type=nt->gettype();}}
name_t(char *n=NULL, int t){ name = n; type = t;}
void setname(char *n=NULL){ name = n;}
char *getname(){ return name;}
void settype(int t){ type = t;}
int gettype(){ return type;}
name_t *find(char #*n)
{ if (strcmp(name, n)==0) return this;
else return NULL;}
“name_t () {if(name) delete name;}

};
typedef list<name_t> *Tlist_ptr;

#endif//CompDef.h Compiler definition header file
#ifndef __COMPDEF_H



#define __COMPDEF_H

#include <stream.h>
#include <iostream.h>
#include<string.h>
#include<malloc.h>
#include<bool.h>

#include*cont.h"

const NONE_TYPE = 0;

const BOOL_TYPE = 1;

const INT_TYPE = 2;

const REAL_TYPE = 3;

const PID_TYPE = 4;

const LITERAL_TYPE = §5;

const LITERAL_TYPE_PRIME = 6;
const OPERATOR_TYPE = 7;
const FUNC_TYPE = 8;

class btname_t : public btreenode
{
char *name;

int  type;

public:
btname_t (char *n=NULL) :btreenode(){name = n;}
btname_t (char *n=NULL, int t):

btreenode() {name = n; type=t;}
“btname_t () {if (name) delete name;}
void print(ostream &sout, int mode);

char *getname(){ return name;}
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void setname(char *n)

{ if(name) delete name; name = n;}
int gettype(){ return type;}
void settype(int t){ type =t;}
virtual bool operator=(btreenode &btn);
virtual bool operator>(btreenode &btn);
int compare(char *n);

};

class expr_elmt: public btname_t
{
int value;
name_t *value_t;
list<expr_elmt> *func_args;
public:
expr_elmt(char *#n=NULL, int t = NONE_TYPE,
int val_t = NONE_TYPE)
:btname_t(n,t) {func_args=NULL;
value_t = new name_t(NULL, val_t);}
expr_elmt(char *n=NULL, int t, int val_t, int val)
:btname_t(n,t) {func_args=NULL;
value_t = new name_t(NULL, val_t);}
“expr_elmt(){};
void printO(ostream &sout, int mode);
void print(ostream &sout, int mode);
int getvalue(){ return value;}
void setvalue(int val){ value =val;}
int getvalue_type(){ return value_t->gettype();}
void setvalue_type(int val_t){ value_t->settype(val_t);}
name_t *getvalue_t(){ return value_t;}

void setvalue_t(char *vn, int val_t)
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{ value_t =nev name_t(vn, val_t);}

void setvalue_t(name_t *v_t)
{ if( v_t) value_t =newv name_t(v_t->getname(),
v_t->gettype());
else value_t=NULL;}

list<expr_elmt> *getFunc_args(){return func_args;};
void setFunc_args(list<expr_elmt> *fas){func_args=fas;};
bool validate(ostream &fserr, int mode);
bool checkOperator(ostream &fserr, int mode);

bool checkFunction(ostream &fserr, int mode);

};

btname_t *enter(btree<btname_t> *nametree, char *tbf, int t);

btname_t *find(btree<btname_t> *nametree, char *tbf);

#endif // __COMPDEF_H

//LSLDef.h LSL_Trait definition header file
#ifndef __LSLDEF_H

#define __LSLDEF_H

#include <stream.h>
#include <iostream.h>
#include<string.h>
#include<malloc.h>
#include<bool.h>

#include''cont.h"

[/~===mmmmmme -—- =LSL_Trait definitions =<==---=---cececce---

class 1sl_func:public name_t

{



list<name_t> *args;

name_t *ret_type;

public:

1sl_func(char *n):name_t(n){args=NULL;ret_type=NULL;};
“1sl_func(Q){};

void setArgs(list<name_t> *as){args=as;};

list<name_t> *getArgs(){return args;};

void setRet_type(char *rt){ret_type=new name_t(rt);};
void setRet_type(name_t *rt){ret_type=rt;};

name_t *getRet_type(){return ret_type;};

void print(ostream &sout, int mode);

};

class LSL:public name_t

{

list<name_t> *args;

list<name_t> *includes;

list<1lsl_func> *1sl_funcs;

public:

LSL(char #*n=NULL) :name_t(n)
{args=NULL;includes=NULL;1sl_funcs=NULL;};

void setIncludes(list<name_t> *inc){includes=inc ;};

list<name_t> *getIncludes(){return includes;};

void setArgs(list<name_t> *as){args=as ;};

list<name_t> *getArgs(){return args;};

void setlsl_funcs(list<lsl_func> *1fs)
{1s1_funcs=1fs ;};

list<1lsl_func> *getLsl_funcs() {return 1lsl_funcs;};

void print(ostream &sout, int mode);

"LsLO{;}
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};

#endif // __LSLDEF_H

//TROMDef .h TROM definition header file
#ifndef __TROMDEF_H

#define __TROMDEF_H

#include <stream.h>
#include <iostream.h>
#include<string.h>
#include<malloc.h>
#include<bool.h>
#include"cont.h"
#include"compdef .h"
#include"lsldef.h"

const INTERNAL_EVENT = O;
const INPUT_EVENT =1,
const OUTPUT_EVENT =2;
const SIMPLE_STATE = 0;
const  COMPLEX_STATE = 1;
const PORT_TYPE = 10;
const TRAIT_TYPE = 11;
const  PRECONDITION = O;
const POSTCONDITION = 1;

class event:public name_t
{

name_t *port_t;

public:

event(char *en, int et, char *ptn=NULL);
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void setPort_type_name(char *ptn)

{ port_t->setname(ptn);}
char *getPort_type_name()

{ return port_t->getname();}
“event O{ ;}
};

class state:public name_t

{

bool init;

list<state> *sub_states;

public:

state(char *n, int t=SIMPLE_STATE, bool isInit=FALSE);
void print(ostream &sout, int mode);

void setInit(bool isInit){ init = isInit;}

bool getInit(){ return init;}

list<state> *getSub_States(){ return sub_states;}
void setSub_States(list<state> *sts){sub_states = sts;}
“state(){; /* sub_states */ }

};

class TROM;

class attribute:public name_t

{

name_t *att_type;

public:

attribute(char *n, char *att_tn, int att_tt);

void print(ostream &sout, int mode);

void setAtt_type_t(int at_t){ att_type->settype(at_t);}
int getAtt_type_t(){ return att_type->gettype();}
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void setAtt_type(name_t *at_t){att_type=at_t;}
name_t *getAtt_type(){ return att_type;}
void setAtt_typename(char *n){ att_type->setname(n);}
char *getAtt_typename(){ return att_type->getname();}
bool validate(ostream &fserr, int mode, TROM *trom);
~attribute() {;}
};

class att_func:public slink

{

name_t *state;

list<name_t> #*attributes;

public:

att_func(char *sn=NULL){ state = new name_t(sn);
attributes=NULL;}

void print(ostream &sout, int mode);

void setState_name(char *sn=NULL){ state->setname(sn);}
char *getState_name(){ return state->getname();}

name_t *getstate(){ return state;}

void setAtt_names(list<name_t> *ans){ attributes = ans;}
list<name_t> *getAtt_names(){ return attributes;}
“att_func(){if(state) delete state;}

};

class trait:public name_t

{

list<name_t> *type_args;

public:

trait(char #*n):name_t(n) {}

void print(ostream &sout, int mode);

void setType_args(list<name_t> *tas){ type_args = tas;}
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list<name_t> *getType_args(){ return type_args;}

bool validate(ostream &fserr, int mode, TROM *trom);
“trait(O{;}
};

class state_pair:public slink
{
name_t *state_name[2];
public:
state_pair(char *n1, char *n2=NULL){
state_name([0] =new name_t(n1);
state_name([1]=new name_t(n2); }
void setname(char *n=NULL, int indx)
{state_name[indx]->setname(n);}
char *getname(int indx)
{ return state_name[indx]->getname();}
“state_pair(){int i; for( i=0; i<2; i++)
if(state_name[i]) delete state_name[i];}

};

class trigger_event:public name_t

{

btree<expr_elmt> *condition;

public:

trigger_event(char *n, btree<expr_elmt>
*expr=NULL) :name_t (n)

{condition=expr;}

void setCondition(btree<expr_elmt> *cond)

{ condition = cond;}

btree<expr_elmt> *getCondition()

{ return condition;}
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};

class trans_spec:public name_t
{
bool isImit; //if it is init; init has one state
// and it has no trigger event
list<state_pair> *state_pairs;
trigger_event *trigger;
btree<expr_elmt> *conditions([2];
public:
trans_spec(char *n, bool bIni):name_t(n)
{ isInit =bIni; trigger = NULL;
state_pairs = NULL;
conditions [PRECONDITION] =
conditions [POSTCONDITION] = NULL;
}
void print(ostream &sout, int mode);
void setState_pairs(list<state_pair> *sts)
{ state_pairs = sts;}
list<state_pair> *getState_pairs()
{ return state_pairs;}
btree<expr_elmt> *getCondition(int which)
{ return conditions[which];}
void setCondition(btree<expr_elmt> *pre_cs, int which)
{ conditions[which] = pre_cs;}
void setTriggerEvent( trigger_event *te)
{trigger=te;}
trigger_event *getTriggerEvent()
{return trigger;}
bool checkPostCond(ostream &fserr, int mode,

btree<expr_elmt> *post_cond, TROM *trom);

141



bool validate(ostream &fserr, int mode, TROM *trom);

~trans_spec(){ }
};

class time_constraint:public name_t
{
int min, max;
name_t *trans_name;
name_t *ev_name;
list<name_t> *state_names;
public:
time_constraint(char *n, char »tn,
char *en, int mi, int ma);

void print(ostream &sout, int mode);
void setTrans_name(char *n=NULL){trans_name->setname(n);}
char *getTrans_name(){return trans_name->getname();}
name_t *getTrans_spec(){return trans_name;}
void setEv_name(char *n=NULL){ev_name->setname(n);}
char *getEv_name(){return ev_name->getname();}
name_t *getEvent(){return ev_name;}
int getmin(){ return min;}
int getmax(){ return max;}
list<name_t> *getState_names(){ return state_names;}
void setState_names(list<name_t> *sts)

{state_names = sts;}

“time_constraint(){delete trans_name, delete ev_name;}

};

class TROM:public name_t
{

list<name_t> *port_types;
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list<event> *events;
list<state> *states;
list<attribute> *attributes;
list<trait> *traits;
list<att_func> *att_funcs;
list<1lsl_func> *1sl_funcs;
list<trans_spec> *trans_specs;
list<time_constraint> *time_constraints;
public:
TROM(char *name);
“TROMQ) ;
void print(ostream &sout, int mode);
bool validate(ostream &fserr, int mode,
1ist<LSL> *1sl_1st);
char *getName(){return getname();}
list<name_t> *getPort_types(){ return port_types;}
void setPort_types(list<name_t> *pt){port_types = pt;}
list<event> *getEvents(){ return events;}
void setEvents(list<event> *ev){events = ev;}
list<state> *getStates(){ return states;}
void setStates(list<state> *sts){states = sts;}
list<attribute> #getAttributes(){ return attributes;}
void setAttributes(list<attribute> *atts){attributes = atts;}
list<trait> *getTraits(){ return traits;}
void setTraits(list<trait> *trts){traits = trts;}
list<att_func> *getAtt_funcs(){ return att_funcs;}
void setAtt_funcs(list<att_func> *afs){att_funcs = afs;}
list<lsl_func> *getLsl_funcs(){ return 1lsl_funcs;}
void setLsl_funcs(list<lsl_func> *1fs){lsl_funcs = 1lfs;}
list<trans_spec> *getTrans_specs(){ return trans_specs;}

void setTrans_specs(list<trans_spec> *tss){trans_specs = tss;}
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void setTime_constraints( list<time_constraint> *tts)
{time_constraints=tts;}
list<time_constraint> *getTime_constraints()
{return time_constraints;}

};

#endif// tromaux.h

//Printing mode constants

const STD_OUTPUT = 0;
const VERBOSE = 1;

//=-====== - --Expression tree utilities bttt
int isOperatorOfBools(char *op);
int isOperatorOfNoBools(char *op);
int isOperatorBeBoth(char *op) ;
bool isUnaryOperator(char *op);
void printExprTree(btree<expr_elmt> *expr_tree,
ostream &sout, int mod);
bool setLsl_funcsType(btree<expr_elmt> *expr_tree,
list<LSL> *1sls, ostream &fserr, int mode);
bool validateTROMCondition(ostream &sout, int mode,
btree<expr_elmt> *cond, TROM *trom, bool isPostCond);
bool validateTROMExpr_elmt(ostream &fserr, int mode,
expr_elmt *ee, TROM *trom, bool isPostCond);
bool checkTROMFunction(ostream &fserr, int mode,

expr_elmt *ee, TROM *trom, bool isPostCond);

/[-=—=---= General utilities------ - ---
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name_t *findByName( list<name_t> *alist, char *n);
name_t *findSame( list<name_t> *alist, name_t #*n);
name_t *getNameByOrder( Tlist_ptr alist, int no);
int findNameLstOrder( Tlist_ptr alist, name_t *n);

bool getPort(char *port, char *xport_t, int *port_no);

bool getFuncDesc(char *funcname, char *attname,
TROM *trom, l1ist<LSL> =*1lsls);
trait *findTraitByAtt_Typename(list<trait> »*trts,

char *type_n);

//----- TROM utilities---- -

bool validateStates(list<state> #*states);
attribute *findTraitInAtts(list<attribute> *atts, char *name) ;
state *findStateByName(list<state> *states, char *name);
event *findEventInPort(list<event> *evs,

char *evname, char *port_t);
name_t *getTROMAttType(TROM *trom, char *instname);
name_t *getLslTraitType(name_t *1sl_t, Tlist_ptr lslArgs,

Tlist_ptr traitArgs);
list<lsl_func> *createlLslFuncLst(ostream &sout,

int mode, TROM *trom, list<LSL> *1sl_1st);

1sl_func *findLslFuncInTrom( TROM *trom, lsl_func *1sl_f);
bool isLslFuncAndArgsMatch(lsl_func *f1, 1sl_func *£2);

bool validateScsIncls(ostream &fserr,

1ist<SCS> *scs_list, SCS *pscs);

[[/-====mmmmrreeee System-wide General Validation utilities- -
bool ValidateAllLSLs( ostream &sout, int mode,
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list<LSL> *1sl_1st);

bool ValidateAllTROMs( ostream &sout, int mode,

1ist<TROM> *trom_lst, list<LSL> #*1sl_1lst);
bool ValidateAllSCSs( ostream &sout, int mode,

1ist<SCS> *scs_lst, list<TROM> *trom_1st);
bool ValidateAllSimEvents( ostream &sout, int mode,

list<SimEvent> *simev_lst,

1ist<TROM> *trom_lst, 1ist<SCS> #*scs_1lst);
void PrintAl1LSLs( ostream &sout, int mode, list<LSL> *1sl_1st);
void PrintA11TROMs( ostream &sout, int mode, list<TROM> *trom_lst);
void PrintAl11SCSs( ostream &sout, int mode, 1ist<SCS> #*scs_1lst);
void PrintAllSimEvents( ostream &sout, int mode,

list<SimEvent> *simev_1st);

typedef struct _node{
void *data;

struct _node *next;} node_t, *node_ptr;

typedef struct _tromast{

char *class_name;

node_t *port_types;

node_t *events;} TROM_AST_t, *TROM_AST_ptr;

typedef struct _port_type{
char *name;} port_type_t, *port_type_ptr;

typedef struct _event{
char *name;
port_type_ptr port_type;

int type;} event_t, *event_ptr;

//SCSDef.h SCS & LSL_Trait definition header file
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#ifndef __SCSDEF_H

#define SCSDEF_H

#include <stream.h>
#include <iostream.h>
#include<string.h>
#include<malloc.h>
#include<bool.h>
#include"cont.h"
#include'compdef.h"

#include'tromdef.h"

const VALID = 0;
const INVALID =-1;
const NOTFOUND =-2;

]/ - SCS definitions
class port:public name_t

{

int cardinality;

public:

port(char *n=NULL, int c):name_t(n){cardinality=c;};
void setCardinal(int c){cardinality=c;}

int getCardinal(){return cardinality;}

“port O {;}

};

class instance:public name_t
{

name_t *trom;

list<port> *ports;

public:
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instance(char *objname=NULL) :name_t

(objname) {trom=NULL; ports=NULL;};
void setTrom(name_t *tr){trom=tr;}
name_t *getTrom() {return trom;}
void setPorts(list<port> *pp){ports=pp;}
list<port> #getPorts(){return ports;}
void print(ostream &sout, int mode);
bool validate(ostream &fserr,

int mode, 1ist<TROM> *troms);

~instance(){;}

};

class SCS;

class configure:public slink
{
name_t *objname(2];
name_t *portnamel[2];
int validatel(ostream &fserr, int mode, int indx,
char *port_t, int port_no, SCS *pscs,
list<name_t> *scs_lst);
public:
configure(char *on1, char *pni, char *on2, char *pn2):slink()
{objname{0]=new name_t(on1); objname[1]=new name_t(on2);
portname[0]=new name_t(pn1); portname([i]=new name_t(pn2);};
void setObjectname(char *n=NULL, int indx)
{objname[indx]->setname(n) ;}
char *getObjectname(int indx)
{ return objname[indx]->getname();}
void setPortname(char *n=NULL, int indx)

{portname[indx]->setname(n);}
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char *getPortname(int indx)
{ return portname[indx]->getname();}
void print(ostream &sout, int mode);
bool validate(ostream &fserr, int mode,
SCS *pscs, list<name_t> *scs_lst);
“configure(){;}
};

class SCS:public name_t
{
int mark;
list<name_t> *includes;
list<instance> *instances;
list<configure> *configures;
public:
SCS(char *n=NULL) :name_t(n)
{mark=0; includes=NULL;instances=NULL;
configures=NULL;};
void setmark(int m){ mark=m;}
int getmark(){return mark;}
void setIncludes(list<name_t> *inc){includes=inc ;};
list<name_t> *getIncludes() {return includes;};
void setInstances(list<instance> *ins){instances=ins ;};
list<instance> *getInstances(){return instances;};
void setConfigures(list<configure> *confs)
{configures=confs ;};
list<configure> *getConfigures(){return configures;};
void print(ostream &sout, int mode);
bool validate(ostream &fserr, int mode,
1ist<TROM> *troms, 1ist<SCS> *scs_lst);
“scsO{:}
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};

[/—==emmm e e SimEvent definitions -----------
class SimEvent:public name_t

{

name_t *instname;

name_t *portname;

int time;

public:
SimEvent(char *n, char *instn, char *portn, int t):name_t(n)
{instname=new name_t(instn); portname = new name_t(portn);
time = t;};
“SimEvent () {};
void setInstname(char *instn){instname->setname(instn);};
char *getInstname(){return instname->getname();};
void setPortname(char *portn){portname->setname(portn);};
char *getPortname() {return portname->getname();};
void setEv_time(int t){ time = t;}
int getEv_time(){ return time;}
bool validate( ostream &sout, int mode,

1list<SCS> *scs_lst, list<TROM> *trom_lst);

void print(ostream &sout, int mode);

};

#endif
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