2D & 3D UML-Based Software Visualization

for Object-Oriented Programs

Xiaohua Xian

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

August 2003

© Xiaohua Xian, 2003



National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83923-0
Our file  Notre référence
ISBN: 0-612-83923-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



ABSTRACT
2D & 3D UML-Based Software Visualization for Object-Oriented Programs

Xiaohua Xian

UML (Unified Modeling Language) is a successful example of two-dimensional software
visualization that is widely used in both academic and enterprise environments for object-
oriented software development. The presented work (UML3D), which is included in the
CONCEPT (Comprehension Of Net-CEntered Programs and Techniques) framework,
applies 3D visualization techniques to UML to take advantages of 3D space and the
additional features that can be applied in the 3D space. The UML3D project also
integrates a self-organizing layout algorithm for both traditional 2D UML and 3D UML
diagrams. The use of layout algorithms can reduce the complexity of a graph and
facilitate the task of program comprehension. Moreover, UML3D addresses some other
shortcomings of UML by providing intuitive navigation and interactions with the
diagrams. We also discuss the use of source code analysis like program slicing and
coupling to improve the scalability, usability and navigability of the visual
representations. An initial usability study of UML3D based on the SUMI (Software
Usability Measurement Inventory) questionnaire was performed to study the ease of use

and to identify future research directions.

il



ACKNOWLEDGEMENTS

I would like to thank sincerely my supervisor Dr. Juergen Rilling for his encouragement,

for his guidance and support, which have made the completion of my thesis possible.

Also, I would like to thank my husband and my parents for their encouragement and

support. I would like to dedicate this work to them with great love and gratefulness.

iv



Table of Contents

LISt OFf TADIES ...vvicvveeieeeieeerieeee sttt sr e et e st e st et e et e e resvesssbesbessansesrssenaasenbaerbnneenres vi
LSt OFf FLGUIES ..vveveeeiieteteiit ettt ss e csa st ss st b s as bbb bbb e b vii
Chapter 1  INrOQUCHION ......coerveireircrierenieieirtc ettt 1
L1 REVIEW ottt ettt et e e e bt e s et e e e e e saeesaeesab e st et e s s bn s s sanssmanssanessbenssarnens 1
1.2 Thesis CONIIDULION.......cciiriiiiieiieeteeieetteee et eser e srt s sre e a s erts s enre e 2
1.3 Organization Of TheSiS......c.cvvevieiiriieriiiiiniiiiii e 4
Chapter 2 Background ..........cccceuinriieiiininiiiiniininiecsietesenie e 5
2.1 Software change and MAaINtENANCE.........coccevriiviiiiiinniiiriee e 5
2.2 Program Comprehension ..........cccoceiiercriieniiniiniiniiiiionicsie e eneesnseearaas 7
2.3 Software ViSualiZation..........cccerveeeieienienieenennie et snesnnesaee s snaes 10
2.3.1  ViSUIIZALION ...eoueeieiieieiieietete et ser e esesne e e 10
2.3.2  Software ViSualiZation..........cocceereiemerieirrreniesenreeenreneeeeeresneecenesesssseees 12
2.3.3  TerminOlOZIES ...cveeeevirrrerieereeeieeeeetee et esere s e et ee e e eeesnbesbeesvessasesanesanneas 15
2.3.4  TaXONOIMY .oereiureirrrenrierenieeeenteeeetesetteseirtesberesreee s atessabs s s sbasssabaessnsee s nrnnees 16
2.3.5 Navigation STYIES....cccueveriieririiinieie ettt bt s sas b 17
2.3.6 Challenges in Software Visualization...........ccccevvvvviviininniinniinninniicninnne, 19

2.4 UML and Reverse Engineering ToOOIS ......cccccevvverieeinerneenneene e, 20
2.4.1 UML OVEIVIEW ...ceuiiiiiiiieriieite sttt et sre s e e b sasesaessbessabessnass e 21
2.4.2 UML in Reverse Engineering ToOIS........c.coceevevenininniniininininiiienicns 26
Chapter 3 Software Visualization 2D versus 3D .......c.cocviviiiiiiininniiiens 28
3.1 2D Software VisualiZation..........c.ccevereeniiericeieieriienienneienrcnieresesnenesesnnsenes 29
3.2 3D Software VIisualiZation..........ccccevuereeriienienienieneieeceeenresetesecoeesisesaeessecneenes 32
32,1 WHRY 3D7 ettt sttt n e 32
3.2.2 3D TECRNIGUES ...coverveiireriireieisieeieeieeereeneee s et e seesereesreeeneeeneesneresmnesasnnenns 34
3.2.3 VR and 3D Visualization..........ccceeveervierieinieeneenieeneenieeeeeeseesseessneesaenens 37
3.2.4 3D Software Visualization SYStemS. .........ceevvvererereeniennienieecieeseeneennieenne 38

3.3 Challenges of 3D Versus 2D ........cociiriiiiiiiietieeeeee e 41
Chapter 4  CONtIIDULIONS ...covvveiiiriienieiieestesteete et sre et e e bt ae s saessnae s snnes 44
4.1 MOUIVALIONS ..veivveeieiirerieeieesireeie st eete et e seeebeesetesseeesabesemeeebeesseeesanesasesansesennees 44
4.2 Design and Implementation ...........ccceveeeiireiiiniieniieiieeeeee et e 45
4.2.1 System ArChitECIUIE. .....ccouirtirieierieiereertetee et e eee e 45
4.2.2  SyStemM DESIZM ...vevvviereiririieiesieeiere et et sttt ste et e st seeeste st e se e bt e s e e re e 48
4.2.3 Developing TOOl .....cc.oouieiirieeieiirieneeeteeceessieere st sere e 51
4.2.4 Implementation ISSUES ........ccereeriierriierierrienneenieesee e e sresereeera e sreas 54
4.2.5 UML3D — visualization environment..........ccceevereererreesuereenreriesrerieessereeseenes 65
Chapter 5 Initial Usability StUAY ....ccceeiviriviriienienrieeierieesieece ettt sre e e 73
Chapter 6 Conclusions and Future Research..........ccccooeviiriniiiiiiiiiiiiiininnniinniccenenn. 78
6.1  CONCIUSIONS...euveruteetierieeteententeete e st e st e et e e sttt et e sreseneeebeeeseresseeenneesreeaseeesarens 78
6.2 Future RESArch .......c.coiiiiiiieiiiiieeiienteee ettt e 80

23 10) V1T =4 =1 ] 1 70 PRSPPI 83
Appendix A: Example of Data in XML Format for Static Diagrams of UML3D............ 88
Appendix B: Example of Execution Trace for Dynamic Diagrams of User ................... 90
Appendix C: Software Usability Measurement Inventory (SUMI).........ccceevvevvecveennne. 92

\%



List of Tables

Table 1 Mapping of the five software visualization systems along the five dimensions . 14
Table 2 Mapping Metaphor for UML3D ..........cccccoiviiiniiiininiiniiieesnsiene s 50
Table 3 Making a “Tool” ChOICE ........courivuiiiiiiititirce e 52

vi



Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37

List of Figures

Food Chain: A Food Pyramid .........cccccceeveevieninnienieeienieneeieneeneeneeeneeeneeens 11
ElectrocardiO@ramm ........cccoccveeeieereieernieenieeeesreeesnteeesresesreesssaesesenesenseesesnnnes 11
The Information FOOd Chain ............ccoocveriiiiiieciineniieee e eseeeseeesenens 12
Visual Representation of Myers’ TaXonomy .......ccccoceecevveeniereecerecrcnieeneennens 16
Price et al. Software Visualization TaXON0OmMYy .........cccccovueerienennerruennienenenenns 17
Example of UML Class Diagram for Elevator Button Control ...................... 23
Example of UML Sequence Diagram for Serving Elevator Button ............... 24
Example of UML Collaboration Diagram for Serving Door Button ............. 25
The famous elevator example in FUTABA .......cccovviiriiiiienieciecreceecniiens 27
TTEEIMAPS ....eeiiiiiiiiiiieitee ettt e e e et s nee e s ne s e sbe e e sabea e snnnas 29
SEESOTT . n e e ereeen 30
SHIIMP VIEW 11 RIZL .veooviiiiiiiiieeiieiie et sie e ereeeveesaneseanesesane e 31
Heapsort IN SWAN ...c..cociiiiiiiiiiieteeecienieseeeteet et et sree e sreseeereesreenaeesnens 32
Call graph from a medium SiZe SYSteM ......ccccevvererrienreerivenienniensienrenereieeesrenns 33
FiSN-€YE VIEWS ..c.uiiiiiiiiiiiiiiciirie sttt sres e s s sa e sbaesareseseasbae e ersnas 35
Perspective WallS .....cc.ccveviiieriiniirieiieeceect ettt 36
Cone trees and CAM tIEES .......cccueeveerreesreriierieeniieiverieereerrreeesseesseesseeeessesssesnns 36
INfOrmMation CUDES ......cceeieviiriiiirientiiecte sttt snaens 37
Hyperbolic tree ....c.ooviieriiiiceeeee et 38
SOftWare World ......cccovvivirieeriicrecerc et e 39
COME TEE ...ttt ettt st sa e et e s ste e s ae et e sbeeesbasabaeanaeanassenns 39
The SGI File System Navigator ........cccccoevierinieniienieniinieneerceienieneseseeesaesnens 40
MELAVIS ..eiriieieieiieeterieet sttt ettt e e be st e st e s bt e ba st e ssaestee s e anteenresneaneeassaens 41
Requirements fOr 3D ......ccocviiriiirieieese ettt 42
ATChitecture fOr UML3D .......c.oocuivoiicriecierieiieeiiiseesesniesnsesaesessseessesssessessenns 46
The Primary Class Model for UML3D ........cccccocvvvevininiveciaienreneneneseneseeesnen, 49
Java3D Application Scene Graph ..........cccceeeeeveecririenieesieeseseeseeeeecreeie e 53
Image Plate and Eye Position in a Virtual Universe ..........ccccccevvevvevercreennnns 54
UML3D Scene GIaph .........cocveeiivienieniirionieneneneeisensessessesessesssssesssssessessssesens 55
Rotation of the ATTOW Cap ...c..cccvievieiiiieeieeircie e v v e eee s ereeas 57
Overview of graph layout algorithms .........c.ccceeeeeciiiiiinniiieennciee e 59
Graph Layout EXamples ........cccoceeveriiniiniiniiieeceseeseesreeveenesees e eneeenesereens 60
GIId LAYOUL .oueiiiiiiiiieinerieiseetescnicr et stes et s e es e s stasae st enasbesneneenesanenens 61
Class diagram for Swingset before slicing .........ccccovvevveveereneeenieeciecrerieerienn, 64
Menu selections for abstractions at different level..........c.ccoeevivveeeiiniineinnnn. 65
2D System and Class Diagrams in UML3D ........c.ccoeeovevieeceeieeveeeenrreneeeniens 66
Details 0f @ ClasS ....cccoereveriirierireriniserieirn et sresse et sa s eeess s ereresseenes 67



Figure 38 3D Static and Dynamic Diagrams in UML3D..........c.ccovuvviiiiniiinnisiininnns 68

Figure 39 Zoom in/out of @ diagraml........ccooeeiiiiiniinieinineneii e 69
Figure 40 Move and rotation of @ diagram .............ccceviininnenncin 70
Figure 41 3D System and Specific Class Diagrams in UML3D .....c.cccccoevvrriviniiiiinninnns 71
Figure 42 System diagram for SWINGSet........ccvviiriieiriinninninnnni 71
Figure 43 Class diagram before filtering .........ccooveveiininiieiininiincc 72
Figure 44 Class diagram after filfering .........ccooeeveiiniiniiinininis 72
Figure 45 Initial Usability Study RESUILS.........ccoviviiiiiiiiienciecnne 75

viil



Chapter 1 Introduction

1.1 Review

Software maintenance is an important phase in software engineering life cycle. After the
first delivery of the software, there are many tasks such as error correction, environment
adaptation, software evolution, etc, that need to be achieved by software maintenance. It
accompanies software until the end of the use of the software. According to the statistics,
over 70% of the total expenditure for software is spent on software maintenance. While
in software maintenance, about 60-70% of the total effort is directed towards the
comprehension of software [3]. Program comprehension is crucial to software
maintenance. Effective and accurate program comprehension can save money and time
for software maintainers to get into the software and achieve the tasks. There are many
CASE (Computer Aided Software Engineering) tools provided to aid software engineers

to understand the programs under study, e.g. software visualization tools.

Software visualization plays a significant role in program comprehension. There is an old
saying: “A picture is better than 1000 words.” Software visualization uses the graphical
or textural representations to make it easier for users to understand the programs. The
goal of software visualization is to reduce the complexity of the programs under

consideration in order to gain insight and understanding. It helps to reduce the time

1



and energy for software maintainers to form the mental model by representing the
architecture of a given software system and the relationships among the entities. Research
in software visualization has flourished in the past decade. A large number of software

visualization tools, techniques, and methods were proposed to deal with various problems.

1.2 Thesis Contribution

In this thesis, a new software visualization tool, UML3D, is proposed and included in

CONCEPT (Comprehension Of Net-CEntered Programs and Techniques) framework.

UML (Unified Modeling Language), which is widely used in both academic and
enterprise environments for software development, is a successful example of two-
dimensional software visualization. It has class diagrams, sequence diagrams,

collaboration diagrams, and so on.

However, it has drawbacks. First of all, it only has 2D versions of the diagrams, which
don’t make full use of the space. With the growing scale of large software systems and
the study of cognitive issues of program comprehension, three-dimensional techniques
are needed in software visualization tools to reduce the cognition overload as well as the
limitation of the space usage. Secondly, it has no self-organizing layout algorithms and
therefore, the representations for very large systems are a mess. Thirdly, it doesn’t
support intuitive navigation and interactions, which are useful for making the
representations more comprehensible. Fourthly, the details of source code are lost when

the diagrams are formed. The users cannot relate the software models to their



corresponding source code. Lastly, the dynamic diagrams in UML — sequence diagram —

cannot show the runtime behaviors of systems step by step.

In this research, we address some of the shortcomings of UML by applying three-
dimensional techniques and integrating layout algorithm to it. There are four types of
diagrams presented in this project. They are, all in 3D and 2D, system diagrams, class
diagrams, sequence diagrams, and collaboration diagrams. System diagrams and class
diagrams illustrate software in a static way, while sequence diagrams and collaboration
diagrams prescribe the dynamic behavior of the system step by step. The former is based
on source code while the latter is obtained from execution trace. Moreover, UML3D
addressed some other shortcomings of UML by providing intuitive navigation and
interactions with the diagrams, utilizing the techniques of filtering and clustering for
information hiding and graph simplification to improve the scalability, usability and
navigability. It also supports program comprehension at different levels of abstraction
and allows for context switching among these different views. In addition, source code
analysis, like programming slicing and coupling, which helps the maintainers to find the
routines to change and reduce the entities to be presented, is also combined in the
visualization. Finally, an initial usability study based on the questionnaires in SUMI
(Software Usability Measurement Inventory) is performed for the evaluation of the

presented work.



1.3 Organization of Thesis

The thesis is organized as follows.

In chapter 2, the overview of software maintenance, program comprehension, and

software visualization is presented. UML and its diagrams are illustrated as well.

In chapter 3, a survey of 2D software visualization and 3D software visualization is given.

Their comparisons are presented.

In chapter 4, the motivations of the presented work as well as the design and
implementation of this project are enclosed. In chapter 5, usability study of UML3D
based on the questionnaires of SUMI and evaluation criteria for software visualization
tools is offered. The analysis result of the collected data is also given. Chapter 6 presents

the conclusions and includes the discussion about future research.



Chapter 2 Background

Software maintenance plays a significant role in software engineering and the key to
software maintenance is program comprehension. Software visualization techniques and
their applications in reverse engineering tools are proposed to support software
maintenance and program comprehension tasks [2]. In this chapter, after the introduction
of software maintenance and program comprehension, the review of software
visualization will be presented. The graph-based modeling language, UML, and several
reverse engineering tools for visualizing software will be illustrated at the end of this

section.

2.1 Software change and maintenance

Software requirements or the environment may change during the software process. In
order to make the software keep up with the changes, software maintenance is employed.

Software change is unavoidable. As a result, software maintenance is inevitable.
e Legacy systems

Legacy systems are “older software systems that remain vital to an organization” [3].
There are risks in scrapping a legacy system and replacing it with a new system.

Legacy systems are difficult and expensive to understand and maintain because the



program language that was used to develop the systems may be dated, the system
documentation is often old, the system structure may be corrupted by previous
maintenance, etc. Current systems can become legacy systems in the future. They

need improvements to keep their performance [3].

Software change impact analysis

Software change may cause side effects. A side effect is “an error or other
undesirable behavior that occurs as the result of a change” [34]. To avoid the side
effects, software change impact analysis is employed. Software change impact
analysis estimates what will be affected in software and related documentation if a
proposed change is made. The situation is even worse when software changes cause
ripple effects. Ripple effect is the phenomenon where small change to a system
affects many other parts of it. Ripple effect analysis is the iterative process of
analyzing and eliminating side effects due to changes. Program slicing, both forward

and backward, will help in ripple effect analysis (REA) [4].

Software maintenance

Software maintenance is “the modification of a software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the product to a
changed environment” [4]. According to the definition, there are three types of
software maintenance: corrective maintenance, perfective maintenance, and adaptive
maintenance. The process of software maintenance is affected by the maintainer

characteristics, program characteristics, and task characteristics.



Software maintenance has challenges. Firstly, the easiest way to add a feature is to
add new code. After many changes, the software is more difficult to understand and
to make further changes. There are more codes to change and it is more difficult to
find the routines that must be changed. Moreover, inconsistent, inaccurate and
unmatchable documentation makes the situation even worse. Documentation is
crucial in the development of any large, long-lived software system. The
documentation includes system architecture description, program design
documentation, source code listings, test plans, validation reports and a system
maintenance guide. Good documentation makes programs easier to understand.
Unfortunately, documentation is always missing or out of date; the situation is even

worse in legacy systems [3][4].

2.2 Program Comprehension

Program comprehension plays a significant role in software maintenance and evolution.
A significant proportion of the time required for maintaining, debugging, and reusing
existing code is spent in understanding existing programs. Program comprehension is “a
process that uses existing knowledge to acquire new knowledge” [10]. There are various
sources of information that can be used to support program comprehension: source code,
documentation, reverse engineering and program analysis results, user-generated
information, and maintainer’s knowledge [5]. Questions listed below are concerned

within program comprehension tools selection and development [6]:



1. How do programmers understand programs?
2. What tools do they need to understand programs?

3. What cognitive framework of design elements is needed to guide tool design?

Program comprehension is a time consuming activity, especially when dealing with
large-scale software systems [7]. E.g. Netscape Communicator project development
slowed down because of the fact that “it takes a long time for a new developer to dive in
and start contributing” [2]. Thus, program comprehension is the key to effective

maintenance and is the most skilled and labor-intensive part in software maintenance.

Cognitive model is useful for the construction of mental model, which refers to the
maintainers’ mental representation of the programs formed during program

comprehension.

o Mental model

A mental model describes the maintainer’s mental representation of the program in
question [8]. During program comprehension, the software engineer will form the
mental model of a software system. This model constitutes the maintainers’
understanding of the software. The mental model has the microstructure of individual
program statements and the macrostructure of higher level. These constructs include

text structures, chunks, plans, hypotheses, beacons, and rules of discourse.

o Cognitive model

A cognitive model describes “the processes and information structures used to form



the mental model” [8]. It is used for the construction of mental model during
program comprehension. There are three kinds of strategies: bottom-up, top-down,

and opportunistic approach.

Bottom-up comprehension

Bottom-up comprehension is built from the bottom up by reading source code and
then mentally chunking or grouping these statements into higher-level abstractions.
Shneiderman and Mayer’s cognitive framework differentiates between syntactic and
semantic knowledge. Syntactic knowledge is language dependent while semantic
knowledge is language independent. Pennington’s model also understands a program
in a bottom-up manner. It has a program model and situation model. The program
model is a control-flow abstraction, which illustrates the sequence of operations in the
program that built through the chunking of microstructures into macrostructures and
cross-referencing, while situation model contains data-flow abstractions and

functional abstractions of a software system [8].

Top-down comprehension

Brooks understand a program in a top-down way. The process starts with a hypothesis
concerning the global nature of the program. The hypotheses are generated through
beacon recognition. A beacon is a set of features that indicates the existence of
hypothesized structures or operations. These hypotheses are verified by searching
external representations for evidence. Soloway and Ehrlich use rules of discourse and

beacons help to decompose goals and plans into lower-level plans [8].



Opportunistic model

Letovsky views programmers as opportunistic processors exploiting either bottom-up
or top-down cues, which are required in large-scale maintenance activities. The three
components in the model are the knowledge base, the mental model, and the
assimilation process. The knowledge base indicates the programmer’s expertise and
background knowledge. The assimilation process either bottom-up or top-down
describes how the mental model evolves using the programmer’s knowledge base,
program source code and documentation. The central activity in the process is inquiry
episodes that consist of a programmer asking a question, conjecturing and answering,
and then searching through the code and documentation to support or refute the

answer [8].

2.3 Software Visualization

2.3.1 Visualization

Visual is from the Late Latin word “visualis”, from the Latin “visus”. Visualization is the
transformation of data or information into pictures. More precisely, the dictionary
definition of Visualization is “the power or process of forming a mental picture or vision
of something not actually present to the sight”. Visualization is classified as science
visualization and information visualization. Science visualization has inherent forms like
the automobile industry, flow-dynamics of airplanes, chemical experiments, galaxy

simulations, and many more, while information visualization usually doesn’t [10].

10



Information visualization has many areas of application. In biology and chemistry, it
includes an organizational chart and taxonomies that portray the relations between
species, evolutionary trees, phylogenetic trees, food chains of creatures (see Figure 1),
molecular maps, genetic maps, biochemical pathways, protein functions, DNA structure,
etc [11]. It is also applied in medical areas like electrocardiograms (see Figure 2),

physical areas like diagrams of optics, and so on.

Top camivore

Terliary consumer

Producer

Figure 2 Electrocardiogram [13]

11



2.3.2 Software Visualization

“Software visualization is a discipline that makes use of various forms of imagery to
provide insight and understanding and to reduce complexity of the existing software
system under consideration” [7]. The goal of software visualization is to gain insight and
understanding by reducing the complexity of the programs under consideration. “The
purpose of visualization is insight, not virtual realities or pictures” [7]. Software
visualization can be seen as a specialized subset of information visualization [10]. There
are many software visualization applications, such as: web browsing, data structure,
object-oriented systems’ class browsers, real-time systems’ state-transition diagrams, data
flow diagrams, control flow diagrams, subroutine-call graphs, entity relationship
diagrams, semantic networks and knowledge-representation diagrams, project

management (PERT diagrams), and document management systems.

Ahoyl
MetaCrawler Personal
Assistants
Alta Vista ]
Yahoo
Masgs
Services

Figure 3 The Information Food Chain [15]

Some of those diagrams and presentations are converted from the traditional ones. For

example, Stefan Decker et al. developed information food chains for agents that enables

12



advanced applications on the WWW (see Figure 3) [14]. Besides that, a lot of new

technologies are invented for software visualization.

The history of pictorial representations for computer programs dates back to the use of
flow charts to describe control flows proposed by Goldstein and von Neumann in 1947,
In 1966, Knowlton presented dynamic techniques and the visualization of data structure.
Baecker, in 1968, proposed an on-line graphical debugger. Brow and Sedgewick
proposed interactive algorithm animation in 1984. Research of software visualization
flourished in the past decade. A large number of tools, techniques, and methods were

proposed to address various problems [56].

There are five dimensions of software visualization. They are [17]:

1. Why is the visualization needed? — Tasks

2. Who will use the visualization? — Audience
3. What is the data source to represent? — Target
4. How to represent it? — Representation

5. Where to represent the visualization? — Medium

Table 1 shows the mapping of five software visualization systems along the five

dimensions.

13



imension Task Audience Target Representation Medivm
SV System
SHriMP Reverse Expert Source code, 2D graphs, interactive, Color
engineering, | developer | documentation, drill-down monitor
maintenance static design-level
information,
mediom Java
systems
Tarantula Testing, Expert Source code, test | Line oriented Color
defect developer | suite data, ecror | representation, color, monitor
lacation focation interactive, filtering,
_ selection
IMSOvison Development, | Bxpent Source code, Specialized visual Immersive
reverse developer, | static design language, 3D color virtual
engineering, | team information, objects, spatial environment
management | manager | mefrics, large OO0 | relationships, drill-down,
systems interactive, abstraction
mechznism
SeeSoft Fault location, | Expen Source code, Line griented Color
maintenance, | developer | execution data, representation, color, monitor
reengineering historical data interactive, filtering,
selection
Jingight Optimization | Bxpent Program bursts, | Color coded line Color
developer | Java, dynamically | oriented, text, monitor
collected interactive, filtering,
queries

Table 1 Mapping of the five software visualization systems along the five dimensions [17]

Early software visualization tools like algorithm animation were aimed at supporting

understanding for education purposes. Visual programming systems support domain

specific programming that is especially useful in interface designing. Many of today’s

software visualization tools support software engineering tasks for large software systems.

These tasks include development activities (e.g. programming, debugging, testing, etc.),

maintenance (e.g. fault detection, re-engineering, and reverse engineering), software

process management, and marketing. To summarize, software maintenance and

development includes many application tasks that range from coding and debugging, to

design and re-engineering. The task oriented software visualization should address

different software engineering tasks by different visual representations [16][17].

14




Why software visualization? Software maintainers don’t have enough funds, energy, and

time for software maintenance. So any tools that help with maintenance should be of

interest. Software visualization is important for both the writer and the reader. It is useful

for debugging, testing, reusing, etc. It aids the user in constructing the mental model of

the programs under study using hypertext, focus + context, shading/color/texture,

dimension 2D/3D, animation, navigation, interaction, etc.

2.3.3 Terminologies

IAvs. Al

Intelligence Amplification (IA) is the use of computers to aid and enhance human
intelligence. Machines are more skilled at data mining and processing while human
beings are more skilled at pattern recognition [10]. Software visualization benefits the
users in program comprehension due to human brain’s limitations and the fact that
human visual system is optimized for multi-dimensional data. Artificial Intelligence
(AD) aims at trying to replace humans with machines. Software visualization is IA,

not AL

Program Visualization vs. Visual Programming

Visual programming is design-time visualization [7]. It is extremely useful in
designing user interfaces. Visual programming can be seen as part of program
visualization. However, when people mention program visualization, they mean

visualizing existing software systems that have been delivered.

15



2.3.4 Taxonomy

There are several classifications for Software Visualization.

e Classification proposed by Myers

Myers’ classification of software visualization can be described in a two-dimensional
chart (see Figure 4). Software visualization is divided into 6 groups. They are
dynamic code visualization, dynamic data visualization, dynamic algorithm
visualization, static code visualization, static data visualization, and static algorithm

visualization [10].

Program State
During Visualisation
Dynamic 1 2 3
Static 4 5 & Portion of
Program
. Being
Code Data  Algorithm Visualised

Figure 4 Visual Representation of Myers’ Taxonomy [10]

o Classification proposed by Price et al.

The taxonomy of software visualization given by Price et al. is a complete and
detailed one and is used in the evaluation of software visualization tools for assessing

and improving the design of large software visualization tools. Price et al classified

16



software visualization into 6 subgroups (see Figure 5) [7] [18]. They are:

1. Scope: general characteristics of the visualization.
2. Content: what gets visualized?
3. Form/Method/Interaction: how is it visualized?

4. Effectiveness: how accurate and effective is the visualization?

A Scope

B: Content

C: Fowmn

Sofeware

Visualization

D Method

E: Interaction

F: Effectiveness

Figure 5 Price et al. Software Visualization Taxonomy [7]

2.3.5 Navigation styles

Information spaces can be databases, document repositories, the World Wide Web, or a
software system. There are two navigation styles for investigating an information space:
browsing and searching [19]. It follows Shneiderman’s point of view for visual

information seeking: “Overview first, zoom and filter, then details on demand” [37].

17



Browsing

Browsing is used to investigate the hierarchical composition of the software system
by moving from subsystem to subsystem. A software architecture diagram is a high-
level view of a software system. They are structural abstractions of the underlying
software. Browsing is an unstructured exploratory strategy, with no fixed endpoint.
There are a number of tools for browsing software architectures, such as Rigi, and the

Software Bookshelf [19].

Searching

The visualization is generated by abstracting details from the source code to show a
conceptual representation of the system. If a software maintainer wants to learn about
the source code, he or she would need to access the facts underlying the abstraction.
This process is called reverse abstraction. It is easier to reverse abstraction using
searching. Searching is a planned activity with a specific goal, such as finding a

particular fact. Searching is a powerful information seeking strategy [19].

Browsing is useful for newcomers to get familiar with the documented software system
to join the maintenance team. It is also useful for other team members to understand un
unfamiliar part of the system and the relations between subsystems. Searching is used for
actual maintenance tasks, such as error corrections or feature addition. Browsing is used
to understand the concepts, while searching is needed to reveal the facts that were used to
build the concepts. Browsing uses a top-down comprehension strategy, while searching

employs a bottom-up comprehension strategy [19].

18



2.3.6 Challenges in Software Visualization

There are several important issues concerned with software visualization.

Mapping metaphor

Metaphor creates mapping from software entities to visual representations. Good and
meaningful metaphors ease the complexity of the system and quicken the process of
building mental model. Shapes, colors, shading, lightning, brightness, shininess, etc.
can be used to represent some features of the software entities. Positions can be used
to indicate the relationships between them. Transparency of objects reveals the notion
of “inside”. However, to seek suitable mapping from the intangible software artifacts

to tangible graphical elements is somehow difficult [3].

MacKinlay defined two criteria to evaluate the mapping of data to a visual metaphor:
expressiveness and effectiveness. Expressiveness refers to the capability of the
metaphor to visually represent all the information we desire to visualize. The
mapping from data values to visual parameters must be univocal. Effectiveness
indicates the efficacy of the metaphor for representing the information. Besides,

aesthetic concerns, optimization, etc. should also be regarded [17].

Scalability

The size of the graph is a major problem in visualization applications. Large software
systems generate large graphs. For the large-scale systems, it is very difficult to

handle the full graph at one time. Software visualization systems suffer from poor

19



visibility, readability and usability when visualizing large, complex software system.
However, there is no need for presenting the entire graph at a time. The techniques of
filtering can decrease the number of entities to be presented at a time. For example,
program slicing results that are based on source code analysis only show the software

artifacts of interest.

Clustering techniques group elements into subsets, called clusters, based on similarity
between pairs of elements. Elements have much higher similarities to the ones in the
same subset than to those in different clusters. Thus, filtering and clustering are used

for information hiding and graph simplification [20].

Layout algorithm

Layout is a big problem in visualization. Good layout algorithms can make the
representations easier understood. There are many 2D and 3D layout techniques.
However, none of them is perfect with respect to the memory and speed requirements,
aesthetic issues, meaningfulness, etc. This is an ongoing research. Progress has been

made and we expect to see overwhelming improvements in this field [33].

2.4 UML and Reverse Engineering Tools

UML is a graphical language for visualizing, specifying, constructing, and documenting

the artifacts of a software intensive system [21]. It is integrated in a number of reverse

engineering tools for the purpose of facilitating program comprehension and code reusing,.

UML is widely used in both academic and enterprise environments for software

20



development. However, it has drawbacks. In the presented research, we address some of
the shortcomings of it and make improvements on its class diagrams, sequence diagrams,

and collaboration diagrams.

2.4.1 UML Overview

Object-oriented modeling languages appeared sometime between the mid 1970s and the
1980s. Structure, which frequently referred to as their architecture, is defined clearly in
UML. There are basically three different types of building blocks in UML. They are

Things, Relationships, and Diagrams [30].

o Things

Things are the basic entities in the model. There are four kinds of things in the UML.

Structural things: the nouns of UML models, the mostly static parts of a model,
representing elements that are either conceptual or physical. They are class, interface,

collaboration, use case, active class, component, and node.

Behavioral things: dynamic parts of UML models, the verbs of a model, representing

behavior over time and space. They are interaction and state machine.

Grouping things: the organizational parts of UML models. There is one primary

kind of grouping thing, namely, packages.

Annotational things: the explanatory parts of UML models. There is one primary

kind of annotational thing, called a note.

21



Relationships

Relationships tie things together. There are four types of relationships: dependency,

association, generalization and realization.

Dependency: a semantic relationship between two things in which a change to one
thing (the independent thing) may affect the semantics of the other thing (the

dependent thing).

Association: a structural relationship that describes a set of links, a link being a
connection among objects. Aggregation is a special kind of association, representing

a structural relationship between a whole and its parts.

Generalization: a specialization/generalization relationship in which objects of the
specialized element (the child) are substitutable for objects of the generalized element

(the parent).

Realization: a semantic relationship between classifiers, wherein one classifier

specifies a contract that another classifier guarantees to carry out.

Diagrams

Diagram is a graph of things and their relationships. There are 9 types of diagrams in
UML. They are use case diagram, class diagram, sequence diagram, collaboration
diagram, activity diagram, component diagram, deployment diagram, statement

diagram, and object diagram.

22



Class diagrams

A class diagram shows a set of classes, interfaces, and collaborations and their
relationships. It describes the static structure of a program system, consisting of a
number of classes and their relationships. It illustrates meaningful concepts (classes)
in a problem domain and identifies the relationships among them. Problem space is
identified as and decomposed into the comprehensible concepts (classes). These
concepts together clarify the vocabulary of the domain. The problem domain diagram
provides a logical view of the system. Class diagrams are the most common diagram
found in modeling object-oriented systems. They are important for constructing

executable systems through forward and reverse engineering [30].

Elevator Elevator_Controller | Door
(<—control — —control—
1
communicate with
*
Button
Elevator_Button Floor_Button

Figure 6 Example of UML Class Diagram for Elevator Button Control [9]

A class is a description of a group of objects with common properties (attributes),
common behavior (operations), common relationships or other objects, and common
semantics.

A package in the logical view of the model is a collection of related packages and/or

23



classes. By grouping classes into packages, we can look at the “higher” level view of

the model. In the UML, packages are represented as folders.

Sequence diagrams

Passenger Elevator ElevatorOContral Elevator Door
Button leg |
] pressed 5 | update . | | |
=
| |
illuminate | I
< move
N |
floor_reach |
Y

- stop j |

< cancel illuminate .--LI |

open |

| >
close ‘ITI
| | b

T | | |

| | |

I | I

Figure 7 Example of UML Sequence Diagram for Serving Elevator Button [9]

A sequence diagram is an interaction diagram that emphasizes the time ordering of
messages. In the UML, an object in a sequence diagram is drawn as a rectangle
containing the name of the object underlined. An object can be named in one of three
ways: the object name, the object name and its class, or just the class name
(anonymous object). Each object also has its timeline represented by a dashed line
below the object. Messages between objects are represented as arrows pointing from

the client (sender of the message) to the supplier (receiver of the message).

24



Collaboration diagrams

Collaboration diagram is an interaction diagram that emphasizes the structural
organization of the objects that send and receive messages. A collaboration diagram
shows a set of objects, links among those objects, and messages sent and received by
those objects. The objects are typically named or anonymous instances of classed, but
may also represent instances of other things, such as collaborations, components, and

nodes. You use collaboration diagrams to illustrate the dynamic view of a system.

:passenger

1: press
2: update request
—

| il

:ElevatorController

3: illuminate /
4: move a: open

- / 6: st \
7: cancel illuminate : stap
A
: close

: reach floor

Figure 8 Example of UML Collaboration Diagram for Serving Door Button [9]

:Floor Button

Sequence diagrams and collaboration diagrams—both of which are called interaction
diagrams—are two of the five diagrams used in the UML for modeling the dynamic

aspects of systems.

The presented research focuses on the diagrams illustrated above. The improvements

can be applied to the other diagrams in UML as well.

25



2.4.2 UML in Reverse Engineering Tools

Reverse engineering is “the process of extracting and synthesizing high-level design
information from source code” [22]. A reverse engineer analyzes the source code in order
to identify system components and their inter-relationships and creates representations of

the system in another form, usually at a higher-level of abstraction.

There are three basic activity sets in reverse engineering. They are data gathering through
static analysis of the code or through dynamic analysis of the executing program,
knowledge organization by organizing the raw data by creating abstractions for efficient
storage and retrieval, and information exploration through navigation, analysis and

presentation [3].

There are many reverse engineering tools, for example: FUJABA, Rational ... FUJABA
combines UML class diagrams, UML behavior diagrams, SDM story diagrams, and
design patterns to a powerful, easy to use, yet formal system design and specification
language. Figure 9 is the reverse engineered UML class diagram for the famous elevator

example in FUJAVA [23].

26



E}Fujaba [The famous elevator example

C|a§smqvi¢§”grams
Activity diagrams
@ & Elevator

©- [ internal

- qg allPersonsLeaveElevator
1 @ Thmove
10 Y House

@ (7] internal

© T createObjects
© &3 Level

® {3 internal

Lg "h aliPersansEnterElevator
10 & Person
@ (7 internal

@ T enterElevator

© T gotoElevator

© T (eaveElevator

© Fa pressButton
@ 4 Place
o 1 internal
@ T removeAllPersons

Person
# activity. String="waiting"
@ name:String B
® enterElevator ( ) : Void
@ gotoElevator ( ) : Void , Place
@ leaveElevator { ) : Void isAt

wantsTo

& removeAllPersons ( ) : Void

*
-
14
o
@
@
221
<
=
g
]
-
—
<
=3
=
1]
F)
o
L

n

Elevator

@ direction:integer=1
persons % allPersonsLeaveElevator ( ) : Void
® move () :Void =
0.1 0.1

Level

House levels 9 number.integer =

@ createObjects ( ) : Void & g1 | ® allPersonsEnterElevator ( ) : Vold |

Figure 9 The famous elevator example in FUJABA [23]

The goal of reverse engineering is to extract information from the exiting software
systems to better understand them [24]. The information includes the underlying features
of a system, such as system structure — its components and their interrelationships, as
expressed by their interface, functionality — what operations are performed on what
components, dynamic behavior — system understanding about how input is transformed to
output, rationale — design involves decision making between a number of alternative at

each design step, and construction — modules, documentation, test suites etc [43].

27



Chapter 3 Software Visualization 2D versus 3D

There exist a variety of software visualization tools that are developed to facilitate the
task of program comprehension, e.g. algorithm animations, visual debuggers, dynamic

visualizations, pretty printers, and exploring static software structures.

There are textual representations and graphical representations that are all useful for

program comprehension.
o Textual Visualization

Textural visualization is the traditional source code listing which is familiar to
developers as well as compilers. Program understanding is encouraged using
Indentation, Hypertext, Coloring key words, Comments, etc. XML Pretty printing is

an example of textural visualization [7].
o Graphical Visualization

There is a saying that “A picture is better than 1000 words”. Graphical visualization
resembles the cognitive model of the program [3]. It is a natural way to represent
relations between program elements, for example: class inheritance, call graphs, data
flow, cross-reference, etc. It visualizes shapeless software information by the use of

graphics. There are two-dimensional and three-dimensional graphical visualization

28



representations.

3.1 2D Software Visualization

Two-dimensional graphical representation is a traditional and natural way for
visualization. It is presented as simple xy plots. Systems supporting program
visualization, animations of algorithms, computations, etc, have focused primarily on

two-dimensional graphics.

There are many 2D visualization systems available. The following are some examples.

e Treemaps

Figure 10 Treemaps [26]

The Treemaps (see Figure 10) visualization technique is a method for the
visualization of hierarchically structured information [26]. It makes 100% use of the
available display space, mapping the full hierarchy onto a rectangular region in a
space-filling manner. This efficient use of space allows very large hierarchies to be
displayed in their entirety and facilitates the presentation of semantic information.

29



The children of a rectangle are represented as embedded boxes laying out vertically
or horizontally alternated at each level. The size of each box can be made
proportional to some property, such as node size. Colors are also used to map some
important features, such as the type of the files, etc. However, the rectangles are often

given thin, elongated. As a result, it is difficult to compare and to select [27].

Seesoft

Figure 11 Seesoft [28]

Seesoft was written at AT&T Bell laboratories to be used for visualizing code for
large systems. It also has been used to analyze version control data, feature location
in source code, etc. Users could browse code in different levels of abstraction in
Seesoft and thus obtain overview and detailed information of source code (see Figure
11). The color is used to represent the age of the code, e.g. blue represents old codes
and red represents the new. Potential applications for Seesoft include project

management, discovery, code tuning, and analysis of development methodology [28].

SHriMP view in Rigi

SHriMP (Simple Hierarchical Multi-Perspective) was designed for visualizing and

30



exploring software architecture. SHriMP combines hypertext metaphor with animated
panning and zooming motions over the nested graph. It provides continuous
orientation and contextual cues for the user that allows browsing source code while

knowing the location in the software hierarchy [22].

Figure 12 SHriMP view in Rigi [22]

The Swan System

Swan is a data structure visualization system for computer science education. It
allows users to visualize data structure and the basic execution process of a C or C++
program. Figure 13 shows views of the heapsort algorithm. The view on the bottom
left is the physical array storing the values to be sorted. The view on the top left is the
logical heap structure. It allows users to control the speed of algorithm execution by

providing “Next” and “Back” buttons to continue or revert to steps [29].

31



R iisap aar..

UM BRI COFOE N A CWOT LMD
rdar.

1 sm g

SAUGK AT N FUN DEA 0P CINCT NAND IS, Pres s T
e nkme whws artarine awsh sumbar. Prase et
rhee dora,

1 I mprared

[r T

Rack gous to FrRvisuUR 550R iN the Jlgeriskm
Curs EEIHEEE A 0 SN
Bauhiannue Ao us Kiauwril
MU DCIEINGT 3re SO0 aFS o o ot

U gy e 8 i 13
ERGIAREEG DONCS & aX0 §i

Figure 13 Heapsort in Swan [30]

3.2 3D Software Visualization

Today’s software systems are increasingly large and complex. This makes the tasks of
programming, understanding, and modifying the software more and more difficult [18].
Because of the limitations of 2D representations, 3D computer graphics were introduced

to software visualization.

3.2.1 Why 3D?

3D techniques are initially applied in game design. It has many advantages in contrast to
2D. Firstly, 3D makes efficient use of space compared to 2D [11]. One of the major
problems addressed in graph visualization is the size of the graph. The size of a graph can
make a normally good layout algorithm completely unusable. There are few systems that

can deal effectively with thousands of nodes. When the scale of software increases, the

32



visibility, usability, and discernibility of the graph visualization accordingly experience
dramatic drops. Also, the high density of the layout makes the interaction, navigation,
and query about particular nodes very difficult and even impossible (see figure 14). 3D
has one more extra dimension that can be used to encode some knowledge compared to
2D [10]. It works better for high dimensional data than 2D views. 3D has much greater
working volume and has more flexibility to represent and organize the information. The
efficient use of a 3D space for visualization is proposed as a solution to overcome the
limitation of available exploration space and the problem of link crossing. Thus, the use

of 3D is proposed to alleviate these problems.

Figure 14 Call graph from a medium size system

Secondly, according to cognitive science and human perceptual system, 3D graphical
representations give less cognitive strain because of familiarity and realism. “Three-
dimensional displays help shift the viewing process from being a cognitive task to being a
perceptual task. This transfer helps to enable humans' pattern matching skills” [7]. 3D
software visualizations provide intuitive navigation and interactions. The human’s
perceptual, cognitive and institutive skills can be used in a 3D environment [31]. Thirdly,

the error rate in identifying routes in 3D graphs is much smaller than 2D graphs

33



[32]. Lastly, PC infrastructure has rapidly improved over the last 3 years. It is now
feasible to shift to 3D because of the current hardware and technology advances and the

dramatically falling cost.

3.2.2 3D Techniques

To exploit the full range of the 3D possibilities, a lot of advanced 3D techniques are
applied in 3D representations. The raw classifications of 3D techniques are given below

[33].

e Mapping from the data domain to the visualization space

Surface Plots: It is also extended from 2D and is used to identify features such as

patterns or irregularities.

Cityscapes: It is an extension of 3D bar charts and a variation to surface plots. It aids

simple comparison of results.

Benediktine space: It maps the objects to extrinsic dimensions, which specify a point
within space and the intrinsic dimensions which specify object attributes such as color,

shape, etc.

Spatial arrangement of data: The techniques require that the user can interpret the
properties of data items from their position and presentation within the virtual

environment.

34



e Dynamic Information Visualization Techniques

Fish-eye views: Fish-eye views enlarge the focus node with other nodes in lesser
detail without losing the whole context when visualizing large graphs. In the limited
computer screen, focus + context techniques make it possible to display much

information and details which overwhelm the user.

Figure 15 Fish-eye views [33]

Emotional icons: Emotional icons help to provide a living data environment. It
responds to the users’ activity, hence making the data world more interactive and

dynamic.

Self-organizing graphs: It refers to the techniques used in automatically laying out
graphs. The system arranges the graphs from unstable to stable according to

efficiency, speed, accuracy and aesthetics.

e Information representation techniques

Perspective walls: It is used to view and navigate large linearly structured

information. It employs the space strategy aiming at presenting as much information

35



as possible, and the time strategy that breaks the information structure into several

separate views with a switch between the views.

Figure 16 Perspective walls [33}

Cone trees and cam trees: Cone tree is one of the best-known 3D graph layout
techniques in visualization [33]. It is a way of displaying hierarchical data (such as
org charts or directory structures) in three dimensions. Nodes are placed at the apex
of a cone with its children placed evenly along its base. This allows a denser layout
than traditional 2-dimensional diagrams. Cam trees are identical to cone trees except

they grow horizontally.

Figure 17 Cone trees and cam trees [33]

3D-Rooms: 3D-Rooms allow the user to structure and organize their work by
allocating certain tasks to certain rooms with doors connecting them and floor plans

available in another window.

36



Information cubes: Information cubes are nested translucent cubes that can be used
to denote hierarchical information like packaging. It partitions the available display
space into rectangles according to the tree structure. The subdivision represents the

relationship of parent and children.

Figure 18 Information cubes {33]

3.2.3 VR and 3D Visualization

Virtual reality (VR) is the simulation of a real or imagined environment that can be
visually experienced in 3D and provides a visually interactive experience in full real-time
motion with sound, tactile, and so on. VR can produce objects not only from the real
world but also that do not exist in the real world. The simplest form of virtual reality is a
3-D image that can be explored interactively at a personal computer, usually by
manipulating keys or the mouse so that the content of the image moves in some direction
or zooms in or out. Both representations offer the perception of depth. The goals of
Virtual Reality are that of creating the illusion of submersion in a computer generated
environment. Virtual reality and 3D graphical environment has become commonplace

nowadays. The use of it in computer games is a successful example. The human’s

37



perceptual, cognitive and institutive skills can be used in VR. The success of 3D
techniques in Virtual Reality gave a new life to software visualization. However, VR is

not a cure-all. We should not misconceive and exaggerate its power [7].

3.2.4 3D Software Visualization Systems

e Hyperbolic tree

Hyperbolic browser is a focus + context technique for visualizing and manipulating
large hierarchies [35]. The components in the representation diminish in size as they
move outwards. The hyperbolic browser initially displays a tree with its root at the
center and then smoothly transforms to bring other nodes chosen by the users into
focus. The context always includes several generations of parents, siblings, and

children, making it easier for the user to explore the hierarchy without getting lost.

Figure 19 Hyperbolic tree [33]

38



Software World

The software world is targeted at the visualization of Java code. It mapped the
software world as the whole software system where countries stand for the packages
in Java, a city represents a file from the software system, a district symbolizes a class,
a building portrays a method, and a monument depicts a class variable. The streets,

which connect the districts, illustrate the relationships between classes [2].

Figure 20 Software World [2]

Cone tree

Figure 21 Cone tree [33]

The cone tree is an animated 3D Visualization of Hierarchical Information. Users can

interact with the representation by moving around within the scene, rotating

39



cone trees, zooming into packages, or fading out some details of a lower degree of

interest [36].

e SGI File System Navigator

dmo Hme Tyr > Tyr

Figure 22 The SGI File System Navigator [52]

SGI file system navigator lays out the directories in a hierarchy with each directory
represented by a pedestal. The height of the pedestal is proportional to the size of the
files in the directory. The directories are connected by wires, on which it is possible

to travel. On top of each directory are boxes representing individual files. The height

40



of the box represents the size of the file, while the color represents the age [52].

o MetaVis

MetaVis (Metaball Visualization) is a new software visualization system [37]. It uses
metaballs, a 3D modeling technique that has already found extensive use representing
complex organic shapes and structural relationships in biology and chemistry, to
provide suitable 3D visual representations for software systems. CBO (Coupling
Between Objects) is the measurement of internal relationships among software
artifacts. It is used to measure design and code quality by investigating the coupling

among classes. MetaVis is useful for showing the couplings of software artifacts.

Figure 23 MetaVis [40]

3.3 Challenges of 3D versus 2D

As mentioned in the previous section 3D visualization techniques have often significant
advantages over 2D visualization techniques,; however it confronts also many new

challenges as well.

41



Requirements

,I Memory 1 Displays
128MB+ A 1600x1200+

J

Effective 3D CPUs 500MHz

3D APIs -
D3D/OpenGL P Graphics Pentium LI+
erformance )
Buses 1 3D Chips
AGP 4X A 200M+
1 texels/sect+ )

Figure 24 Requirements for 3D [38]

Three-dimensional visualization has much higher hardware requirements than two-
dimensional visualization, such as memory size, CPU speed and graphic adapters,
which should support natively 3D. Thus, 3D needs more hardware and software

supports than 2D (see Figure 24).

Ease of use

Three-dimensional visualization has more complex interfaces and interactions than
two-dimensional visualization. Multiple windows are confusing and difficult to

manage [33]. There is a learning curve for users to get into the use of the 3D systems.

Navigation Orientation

Moving in 3D is complicated. Objects in 3D can obscure one another and it is also

difficult to choose the best view in space. Changing the user’s viewpoint may cause

42



disorientation [39]. Navigating without being lost, you need to know “Where am 1?”
“Where is the target I am looking for?” [7] Thus, orientation cues are needed for

navigation.

Computational complexity

3D visualization usually has heavy demand on computation and thus makes it
difficult for run-time visualization. Some proposed layout algorithms need a lot of
computations. Time complexity of an algorithm indicates the need for near real-time
interaction. The interactions with the graph are even more difficult if the algorithm
has high time complexity. This makes the task of keeping the effective performance

of the 3D world even more difficult.

Layout

Layout is an important issue in visualization. Good layout can ease the complexity of
the graph and can thus make the comprehension task easier. There are many layout
algorithms available; however, none of them are perfect. Especially for 3D layouts,
there are more issues to be taken into consideration like obscurity, orientation, etc.

These make it even more challenging for achieving the goal of 3D layouts.

Cost

As we mentioned above, 3D has much higher requirements than 2D. The design and
implementation of 3D is not straightforward. As a result, the 3D world is more

expensive and more complicated to build.

43



Chapter 4 Contributions

4.1 Motivations

The graph-based modeling language — UML — is a successful example for two-
dimensional software representations. Its notations and diagrams are well known to
software engineers. As we discussed before in chapter 3, three-dimensional software
visualization has many advantages in contrast to 2D software visualization, like more
efficient use of space, less cognitive strain, smaller error rate in identifying routes. Thus,

the motive for applying 3D techniques to UML is obvious.

Moreover, there is no self-organizing layout algorithm in traditional 2D UML. Without
good layout algorithms, the representations are becoming less readable and therefore less
usable. Users cannot identify clearly the relationships among the different artifacts and
therefore the comprehension task is unnecessarily complicated. In this project, an
improved grid layout proposed by J. Wang [40] with the goal to minimize the edge

crossings is employed for both 2D and 3D UML visualizations.

In addition, especially for very large software systems, the visualization techniques have
to deal with a large amount of information. Even 3D techniques and good layout cannot
resolve the problems like poor visibility, usability, discernibility, etc. According to the

studies performed investigating human cognition and perceptual nature, there is no

44



necessity for representing all the data at one time. Clustering and filtering can be
employed to alleviate the situation by only presenting the information of interest while

hiding other information.

Lastly, traditional UML is based only on the structural representation of the underlying
system and does not require any type of source code analysis to refine the visualized
information. Source code analysis can play an important role in guiding programmers
during the comprehension process of larger software systems. As part of this project, we
utilize program slicing to refine our presented visualization techniques to further enhance
their applicability. In particular, we are using program slicing and coupling

measurements to provide additional guidance to the users.

4.2 Design and Implementation

In this section, we first introduce the CONCEPT project and the system architecture for
UML3D, and then provide design and implementation details of our 3D UML approach.

Some of the major features of the system will be presented at the end the section.

4.2.1 System Architecture

The CONCEPT (Comprehension Of Net-CEntered Programs and Techniques) project
addresses important software comprehension and maintenance issues such as the
development of new comprehension techniques and their integration in the CONCEPT

framework, etc. The project is a continuation of the previous MOOSE (Montreal Object

45



Oriented Slicing Environment) project [41].

The system architecture for UML3D is illustrated in Figure 25. The process can be

divided into three phases: Source Code Parsing phase, Analysis phase, and Design

Recovering phase [43].
GUI
. — " <
g < k- Z
Source g | oo |8 XML 5
L), Database < :
Code 5 ’: 5"-’ g Documents | E
@ ! ®
S B g
RHNRITE S a g
= Static  Structure el
Recovery a Represen
AST . . e tation
Abstract Dynamic Behavior @
(Abstrac Recovery E
Syntax Tree) 5
Slicing
//\\
| Lﬁ;; ...............................
2D/3D:Layout Engine
Filtering
Visualization

Figure 25 Architecture for UML3D

Source Code Parsing Phase

In this phase, an intermediate representation — AST (Abstract Syntax Tree) — is

created by Javac, which can be accepted as input of the next phase. The AST is

obtained by analyzing source code and extracting information from the source code

and stored in PostgreSQL database. It includes all the information for the program,

such as class information, variable information, etc.

46



Analysis Phase

The component’s artifacts are revealed from this phase such as static structure
information recovered from AST, dynamic behavior information extracted from
execution trace, slicing & coupling results obtained from analysis, etc. The data
obtained by this analysis process is stored as XML files. An example of the XML file
that is used to store data for the static diagrams (system diagrams and class diagrams)

in UML3D is shown in appendix A.

The extensible markup language (XML) has been applied successfully in a lot of
application domains and is found useful for data exchange in visualization [44]. The
need to exchange data and metadata between incompatible Computer Aided Software
Engineering (CASE) tools leads to development of standards such as the CASE Data

Interchange Format (CDIF).

Design Recovering Phase

In the last phase, the layout machine computes the layout data of the visualization and

stores the results as XML files that will be accessed by the visualization procedure.

The design model generated in this phase offers not only functionality and system
behavior, but also high-level views of the underlying software architecture. It can be

used to illustrate both dynamic and static information of a software system.

47



4.2.2 System Design

Class model

The UML3D system is an UML-based software visualization tool for visualizing
object-oriented software programs such as JAVA. The tool includes a self-organizing
layout algorithm to minimize the crossings in an existing layout. The UML3D tool
supports views at different levels of abstractions, allowing users to switch among
these abstraction levels, depending on the particular comprehension task. The
abstraction levels supported by the system are on the package level, class level and
statement level. All of these levels represent important information about object-
oriented programs and their structures. Besides the static information, UML3D also
provides visualization support to represent the dynamic behaviors of a software
system. Within the UML3D environment, we utilize sequence and collaboration
diagrams to illustrate the execution sequence and call relations of a program. Program
slicing is applied to improve the scalability and performance for very large software
systems to reduce the amount of information to be displayed and to reduce the
complexity of the representations. Moreover, the UML3D supports both key
navigation and mouse interactions. Figure 26 shows the high-level class model for

UML3D.

48



CFilgFilter
(from ClassDiagram)
SourceElement &useExtensi...
"""f m,') pcCbj o
Bolocation: 1... Giom obi UML3D SCFileFitter)
. ety AN
Roop +int &Packaged il (trom main) SCFileFifterQ
&ClaselD : in light - int = 0 SCFileFitter()
*SouiceEle... Bodiagram :int ., ..
$gstline() *c0ig8 & steraoscopic ...
QuetOfsetg hc08i0 . CreateTG
’g:m:gm 0 %P agelD() !JMLBDO from appearanocs)|
& obi, ¥setPagiageNam:. g'"“cmpme'"
gy v *sa1ClgssiD) SCroate TG0
pa&__.. b ScroateTG(
writeDataToXml P Z [ ArrowBehavior
(from writeDateToXpMLFile) TextSgurce from arow)
rom behavion) displayPanel w—
SwiiteDataTo..., f &canvasiD . .
! h rrowCrite
updateDom() STeautSourcag) @entityBranchGroup gN,wEvlen?:n
:wrgteOutputo gmnoampnnantso €\\ BogridBranchGroup & ArowMovs
. oxitFormg str::re u - %_difaigram
- index
Source Btransz2 RtargetTG
frarf. behavior) K .
: createMatAppear / SuisplayPanel) SArowBehavi
(from ppearance) *createEntityBranc. .. ArowBehavior(
$Sourcel) . Sinitialize()
- T —— ®processStimulus()
readXML_rel ‘creataMatA'ppaaro \l
(from xmily ArrowHighlight
: Asrow mR‘:Iealgerg
Sinainf) PickDoubleClick pickDoubleClickSys | [ArrawHighlightBsh (rom xmi)
Behaviof __Behavior . avior McTeateArow()
&callback & cailback arrowBG ®ArrowHig...
read¥ML. pos ScurrentTG BcunentTG 2‘(’“’9’( / ®readHighli...
trom xmly rarislate gﬁf We??zﬁp'c arget™ Arrowtighiignt
icikli Writer
) pickDouble... Bvectar SarowHighlig... [l
Sraaini() ‘“‘Ic Pauble RviswPanel :initializa() (om xmi)
SpigkDBuBleGHe. . | SAowHighi...
.. SriteHighlig...

Mapping

Figure 26 The Primary Class Model for UML3D

49

The goal of mapping is to find a meaningful and intuitive correspondence between
the visualization techniques and the software artifacts displayed. The mapping
metaphor in UML3D is based on traditional UML notation, however we introduce
some additional extensions. We use shape for different category of data, while size is
useful for quantitative data. In UML3D, classes and objects are mapped to boxes
while packages are mapped as spheres. The text attached on the surfaces of the
entities corresponds to the names of the packages, classes, or objects. Color is used to
show the relationships between software systems elements. For instance, in UML3D’s

class diagrams, classes within the same package are in the same color. The collection




of materials used in UML3D is referenced from CUGL (Concordia University
Graphics Library) provided by Prof. Grogono [42]. Table 2 shows the mapping

applied in the current implementation of UML3D.

Package Sphere, Color
Class Box
Relationship Arrow
Time-Line Cylinder
Current Call Highlighting

Table 2 Mapping Metaphor for UML3D

e Data format

The UML3D plugin is based on a layered system architecture and is independent from
the other parts of the analysis tools. The UML3D tool accepts a simple and flexible
XML as an input. The output of the numerous analysis tools can be easily translated
into the appropriate XML format used by UML3D via XSLT, which is a language for
transforming XML documents into other XML documents [53]. Details of the XML

file format in UML3D visualization pipeline can be found in appendix A.

e FExtensible design and implementation

Compatibility and extension are good qualities of any software system. One of the
major design issues for the UML3D was to make both its design and its

implementation extensible. At the current development stage, the tool supports four

50



types of diagrams. However, further functions and other types of diagrams can be
added easily to allow for extendibility and customization of the tool, supporting
future evolution of the tool. This is achieved by utilizing a layered architecture
approach with most of the classes corresponding to a design based on low coupling

and high cohesion.
Integration with MetaVis, Software city

The UML3D tool will be integrated with both MetaVis and Software city. Data can be
simultaneously displayed using either of these visualization techniques. This provides
the user with the ability to switch among different views and context. It is anticipated
that it may lead to the development of new or the extension of existing visualization
techniques by comparing and evaluating the current implementation of the

visualization techniques.

4.2.3 Developing Tool

One of the major advantages of 3D visualization techniques is their ability to provide
more flexibility in presenting and navigating large amount of information. The
development of 3D visualization techniques benefits from the availability of libraries and

tools supporting directly the 3D development (e.g. Java 3D, DirectX, etc).

Comparison among 3D tools

The following is the table of comparison among several tools such as OpenGL, VTK
(Visualization Toolkit), Java3D, etc. As we can see from Table 3, Java3D has high

51



platform flexibility, high visualization flexibility, is easy to use, has moderate
learning curve, and no cost. Consequently, Java3D was chosen as the ideal tool

development environment for this project.

Item Platform Visualization | Implementation Ease of Learning Cost
Flexibility | Flexibility Use Curve
eBizinsights | High Lo Needs server/DB Easy Low
aiSee High Lo Fairly Fairly Low | $355 - $455
easy
Inxight High Medium J2EE Servers and Moderate Mm
Java/Windows
Environment
SHriMP Medium UNIX oniyie Fairly Faily Low | SHriMP is
some pre- easy free—
processing of code commercial
implementati
ons will cost.
CodeTest Medium Platform flexible, Easy Low Vendor did
Suite must purchase not reply code developmen
additional IDE
xSUDS High Windows and Unix, | Moderate | High Vendor did Oriented towards
not reply code developmen
OpenDx High M 3D graphics card Free Good 3" party
modular support
JavalJava3 | High High 3D graphics card Easy Free
D
VTK High High 3D graphics card ] Free
)
OpenGL High High 3D graphics card Moderate Free
_ﬁ) High High 3D graphics card Easy Very Low Commercial | Well documented,
$1500; integrates easily with
otherwise OpenGL
free.

Table 3 Making a “Tool” choice [57]

e Java3D application scene graph

Java3D is an extension of Java for displaying three-dimensional graphics, which is
built on top of OpenGL. The programmer works with high-level constructs for
creating and manipulating 3D geometric objects. The geometric objects reside in a
virtual universe, which is then rendered. A Java 3D program creates instances of Java
3D objects and places them into a scene graph data structure. The scene graph (see
Figure 27) is an arrangement of 3D objects in a tree structure that completely

specifies the content of a virtual universe, and how it is to be rendered [46].

52



VirtualUniverse Object

Locale Object

Behavior Node A
el GoRR

Other Objects

Figure 27 Java3D Application Scene Graph [46]

Below the VirtualUniverse object is a Locale object. A scene graph is formed from
the trees rooted at the Locale objects. The Locale object defines the origin of its
attached branch graphs. The scene graph itself starts with the BranchGroup nodes. A
BranchGroup serves as the root of a subgraph, called a branch graph of the scene
graph. Only BranchGroup objects can attach to Locale objects. One subgraph in this
example consists of a user-extended Behavior leaf node. The Behavior node contains
Java code for manipulating the transformation matrix associated with the object’s
geometry. The other subgraph in this BranchGroup consists of a TransformGroup
node that specifies the position (relative to the Locale), orientation, and scale of the
geometric objects in the virtual universe. A single child, a Shape3D leaf node, refers
to two component objects: a Geometry object and an Appearance object. The
Geometry object describes the geometric shape of a 3D object while the Appearance
object describes the appearance of the geometry such as color, texture, material

reflection characteristics, and so on [45].

53



rojectors

‘L visual

object

eye position image plate

Figure 28 Image Plate and Eye Position in a Virtual Universe [47]

The TransformGroup on the right specifies the position (relative to the Locale),
orientation, and scale of the ViewPlatform. This transformed ViewPlatform object
defines the end user’s view within the virtual universe. The ViewPlatform is
referenced by a View object that specifies all of the parameters needed to render the
scene from the point of view of the ViewPlatform. Also referenced by the View
object are other objects that contain information, such as the drawing canvas into
which Java 3D renders, the screen that contains the canvas, and information about the
physical environment. Figure 28 shows the conceptual drawing of image plate and

eye position in a virtual universe.

4.2.4 Implementation Issues

The UML3D tool has been implemented in Java3D, using the JFC/Swing components.
The primary design of the UML3D classes is shown in Figure 26. In what follows, we

describe some of the basic classes and their implementation in more detail.

54



o UML3D scene graph

In this project, the application scene graph can be drawn as below (see Figure 29).

Virtual Universe

oh jRoot

e"“’

Figure 29 UML3D Scene Graph

In this scene graph, objRoot is the branch group, which is the root of graph. Under
objRoot, there are a number of TGs. TG corresponds to the transform group that
decides the position, scale, and orientation of its children nodes in the scene. The TGs
values are obtained from the underlying layout algorithm within the CONCEPT
project. The layout algorithm optimizes the layout for the minimum number of edge
crossings. Under each TG, its children are added such as a sphere representing a
package in a system diagram and a box portraying a class in a class diagram. The text
on the surface of a graphical entity describes the name of a package or a class. The

data are retrieved from XML files where the results of structural information of a

55



software system are stored. The relationships among the software components, such
as call, coupling, etc, are displayed as the arrows pointing from the client class to the

server class.

Arrow implementation

The Java3D library provides already many primitive drawing entities such as sphere,
box, cylinder, etc. However, the library lacks some more specific and refined entities,
for example the implementation of an arrow. As part of this research, the Java3D

library was extended to provide the missing functionality.

Arrow Creation

The arrows are used to represent relationships between packages, classes, and objects.
The arrow is composed of two components: Cone and LineArray. The line is drawn
between the two points. The pattern of the line such as dash, dot, solid, etc. can be
used to indicate the different relationships among the software artifacts. The arrow
cap — Cone — is centered at the origin with the given radius and height. To draw a
correct arrow, we should first rotate the straight upward cone to point from one point
to the other. The code used to rotate the cone is followed and the variables are shown

in Figure 30.

56



Vectordd v3darrow = new Vector3d(arrow3d);

Vector3d v3dcone = new Vector3d(0,1,0);

double v3dangle = v3dcone.angle(v3darrow);

Vector3d v3daxis = new Vector3d();
v3daxis.cross(v3dcone,v3darrow);

AxisAngle4d rot = new AxisAngle4d(v3daxis,v3dangle);
Transform3D tgr = new Transform3D();

tgr.setRotation(rot);

Figure 30 Rotation of the Arrow Cap

Next, the cone should be translated to the proper position. If the cone is positioned on
the other end point, it may be obscured and thus invisible. So it should be positioned
before the intersection of the line and surface of the Shape3D. To find the intersection,

the binary search method is employed.

Arrow Behavior

After the scene is drawn, a user can navigate and interact with the scene. These

functions are implemented by Java3D Behavior object. PickTranslateBehavior,

57



PickRotateBehavior, and PickZoomBehavior facilitate the interaction with the scene
graphical entities while KeyNavigatorBehavior carries out the navigation within the
scene. In order to make the arrows follow the movements of the entities, which they
are pointing from and to, when a user moves, zooms, or rotates the entities,
ArrowBehavior was implemented. Each time a graphical artifact is moved, the arrows
that are attached to it will first be detached, and then new arrows according to the
change will be attached to replace the old ones. WakeupOnTransformChange class
specifies a wakeup whenever the transform within a specified TransformGroup
changes. PickDoubleClickBehavior is designed for the class diagram to detect the
operation of double-click. A user can get the detailed information of a class such as
its attributes, methods, coupled classes, etc. by double-clicking on the selected class.
PickDoubleSysBehavior is implemented for the system diagram to provide the user
with the ability to view only the sub class diagram that only contains the classes

within one package in the system diagram.

Graph drawing layout algorithms [11]

There exist many constraints for layout algorithms, such as the nodes and edges must
be evenly distributed, edge-crossing should be kept to a minimum, nodes with equal
depth should be placed on the same horizontal line, the distance between sibling
nodes is usually fixed, etc. Aesthetic rules are also imposed on the graph drawing
layout. Usability studies conducted in order to evaluate the relevance of these
aesthetics for the end-user show that reducing the crossings is by far the most

important aesthetic than others such as maximizing symmetry, etc [11].

58



There are two other important issues related to layout algorithms. One is
predictability, the other one is time complexity. Predictability is also referred to as
preserving the mental map of the user. That is to say two different runs of the
algorithm should lead to the same visual representations. Time complexity of a layout
algorithm indicates the time required to compute the optimized layout. For the layout
algorithm to be applicable, the time required to compute a layout should be bound,
preferable it should be as close as possible to real-time. However, depending on the
number of entities, the given screen space and the number of edges, that have to be

optimized, the computation time and therefore the time complexity might be unbound.

[11].

Compaction

—Augment.

Hierarchy Layout
| & \

Figure 31 Overview of graph layout algorithms [11]

59



In Figure 31, an overview of the graph layout algorithm is presented. The tree layout
contains a variety of layouts. Classical tree layout algorithms produce top-down or
left-to-right tree layouts. H-tree layout, as shown in Figure 32A, is adapted to
balanced binary trees. The radial view layout (see Figure 32B) positions nodes on
concentric circles according to their depth in the tree. The balloon view (see Figure

32C) uses a cone tree algorithm and projects it onto the plane [11].

B: Radial view D: Forth-directed layout

Figure 32 Graph Layout Examples [11]

Force-directed algorithms, which are also termed as spring layout (see Figure 32D),
use a physical analogy to draw graphs which make it easier to understand and
relatively simple to code. Edges are modeled as springs, and vertices are equally

charged particles which repel each other.

60



Figure 33 Grid Layout [40]
Within the CONCEPT project, a grid layout was implemented and further improved

using hill-climbing algorithm to minimize the edge-crossings. The grid layout
algorithm positions nodes of a graph at points with integer coordinates (see Figure
33). State-space searching begins from the initial-states until it reaches a predefined
goal-state [37]. The goal here is edge-crossing minimization. There are two basic
searching methods: blind search and heuristic search. A heuristic search is used when
the problem has ambiguities or no exact solution. In these cases, the heuristic search
can provide an acceptable solution. Among the heuristic searches, the hill-climbing
algorithm was implemented within the CONCEPT project. The hill-climbing
algorithm 1is very good in exploiting their neighborhood. Relationships between
entities are most important concerns for hierarchical data structure. The improved

grid layout employed here aims at generate the graphical representations of minimum

edge crossings [40].

61



Program slicing [54]

Large systems provide major challenges to the visualization techniques and their
scalability as well as their usability [5]. Slicing is one method to reduce the visual
overhead by allowing for a reduction in the number of entities to be displayed. The
combination of visualization and program slicing can help the maintainers focus on
the interested items [48]. The information reduction reduces a programmer’s
cognitive load during the program comprehension process. Program slicing is a
valuable method to restrict the focus of a task to specific sub-components of a

program.

The notion of static program slicing originated in the seminal paper by Weiser [54],
who defined a slice S as a reduced, executable program obtained from a program P by
removing statements such that S replicates parts of the behavior of P. In Weiser’s
approach, which is based on program dependencies, slices are consecutive sets of
indirectly relevant statements. A static program slice consists of these parts of a
program P that potentially could affect the value of a variable v at a point of interest.
The static algorithm uses only statically available information for the slice
computation; hence this type of program slicing is referred to as a static slice.
Another major extension of program slicing was introduced by Korel and Laski [54]
called dynamic slicing. For the dynamic slicing approach, not only static information
is available, but also dynamic information regarding the program execution on some
program input. The dynamic slicing approach emphasizes its dependence on program

execution. The dynamic slice preserves the program behavior for a specific input, in

62



contrast to the static approach, which preserves the program behavior for the set of all
inputs for which the program terminates. The reason for this diversity of slicing
types and methods is the fact that different applications require different properties of
slices. Slicing has been shown to be useful in program debugging, testing, program

comprehension, and software maintenance [54].

There are three phases in CONCEPT architecture as discussed above. Program slicing
is part of the second, the analysis phase. The slicing result can be used to reduce the
number of entities to be displayed at a time. For example, the Swingset library used
for the UML3D tools contains 204 classes in 10 packages and 597 relations between
them presented in the class diagram in UML3D for Swingset system (see Figure 34).
Even for such a relative small software system, some of the entities shrink to pixel
size and some of the important information might be obscured by the unconcerned
entities and cannot be easily grasped from the presentation at once. In these situations,
program slicing might be applied to reduce the complexity of the graph by reducing
the number of entities to be displayed (depending on the slicing criterion). Typical
reduction achieved by program slicing is somewhere between 50-80%. The
advantage of the slicing based filtering of the information is that the slice contains
only information relevant with respect to the particular slicing criterion. Program

slicing can also be applied for the other diagrams supported by UML3D, e.g. system

diagrams, collaboration diagrams, etc.

63



Figure 34 Class diagram for Swingset before slicing

UML3D GUI

The Abstract Window Toolkit (AWT) provides the user interface for Java program.
AWT relies on “peer-based” rendering to achieve platform independence. But subtle
difference in platforms resulted in inconsistent look-and-feel, and platform-dependent
bugs. Swing avoids the problems by using a non-peer-based approach; with the result
it may be slower than AWT. “Swing” refers to the new library of GUI controls
(buttons, sliders, checkboxes, etc.) that replaces the somewhat weak and inflexible

AWT controls.

Lightweight popup windows are more efficient than heavyweight (native peer)
windows, but lightweight and heavyweight components do not mix well in a GUI. If
an application mixes lightweight and heavyweight components, lightweight popup
should be disabled by adding code in the program like:

JPopupMenu.setDefaultLightWeightPopupEnabled(false). Some look and feels might

64



always use heavyweight popup, no matter what the value of this property.

4.2.5 UML3D - visualization environment

The UML3D framework implements both 2D and 3D metaphors for software
visualization. Texture, abstraction mechanism, and user interfaces are employed in the
representation. The form of representation needs to be best conveying the target
information to the user which depending on the goals and target of the software

visualization systems, the type of the users, and available medium [36].

o Abstraction at different levels and context switch

UML3D supports program comprehension at different levels of abstraction and allows for
context switching among these different views. Figure 35 shows the menu associated

with the different diagram types.

Figure 35 Menu selections for abstractions at different level

The system diagrams show the higher level abstraction — in the form of packages. The

class diagrams show complete system on the class level. Classes in the same package

65



are kept in the same color. The different relationship types among classes can be
identified by the different arrow styles. In each diagram, the names of the package,
the class, and the object are mapped as text attached on the surface of the graphical

entities.

Fi Tlxgam 9 Tk Oman Mo Kol

Linelaballext

xxxxx

Figure 36 2D System and Class Diagrams in UML3D

Through selecting and double clicking a graphical entity one can access the specific
information of it (details-on-demand). When double-click on a graphical entity in the
class diagrams, the detailed information of that class such as package name, attributes

and methods will be shown in another popup window.

66



Figure 37 Details of a Class

Static and dynamic information

UML3D provides both static and dynamic information of a software system. Within
the CONCEPT project, dynamic program execution is recorded in the form of
execution trace. The execution trace is generated by INSTR and stored in PostgreSQL
database. INSTR is a Java package used for instrumenting Java source code. For
example, it can be used for tracing of individual source lines. INSTR accomplishes the
task by means of six steps: 1) parse the source code into a tree, 2) annotate the parse
tree with instrumentation, 3) write the annotated tree to a file, which will contain Java
source code with some additions, 4) compile the annotated source, 5) execute the
program and collect instrumentation data, and 6) remove the annotations from the
source code [55]. This recorded information can be used to visualize the run-time
behavior of the system. It has been shown that during the coding phase a programmer
is actually thinking not of the code itself, but of its execution behavior [49]. When a

programmer is debugging, the programmer is first trying to get the reverse mapping:

67



from undesired behavior to the portion of code that causes it and what the code must
look like to evoke the desired behavior. Sometimes coders will have to make small
changes to the behavior without having any knowledge of which part of the code does
what. Note that the programmer only needs to know which part of the code
implements the portion of behavior that needs to be changed. For the visualization of
dynamic program behavior, UML3D introduces the notion of dynamic sequence and
collaboration diagrams. Both of these diagrams are extension of the traditional
counterparts in UML. Rather than conveying static (structural) information in the
UML versions, these dynamic versions utilize additionally the recorded execution
information to show the program behavior. In UML3D, the sequence diagram shows
the runtime behavior, by not only visualizing the timely sequence of the executions,

but also the interaction among the different entities.

F: Pempam Wi Do Tethrr Whadie  Hidn [oibe ey Oyuoe VaERRE e

Figure 38 3D Static and Dynamic Diagrams in UML3D

68



Navigation and interactions

In UML3D, intuitive navigation and interactions are added. One of the key
requirements for a successful adoption of a tool is not only its ability to provide an
intuitive navigation trough the diagrams and their information, but also to provide an
intuitive way of interaction with the views. In UML3D the user can use either the
keyboard to navigate or move within/among the views. Additionally to the keyboard,
the users also can use mouse to move, rotate, and zoom in/out either the whole view

or selected graphical entity.

Figure 39 Zoom in/out of a diagram

69



Figure 40 Move and rotation of a diagram

o Filtering

When double-click on a graphical entity in the system diagrams, which represents a

package, the classes only in that package will be represented (See Figure34).

70



Bl i
FE Liyn

n o

Fiv Eupam Wem Inedin Cpioe weplew Hdp

ik Qman Wiiae ek

plnelaball exl

eptmetabe

Figure 41 3D System and Specific Class Diagrams in UML3D

Figure 42 System diagram for Swingset

71



Figure 44 Class diagram after filtering

e History record

The provision of a history options, provides support for undo, replay, saving and
review of previously performed action, providing the user with additional options of

maintaining a consistent and repeatable view of the system.

72



Chapter 5 Initial Usability Study

A large number of software visualization tools have been proposed to address different
problems in comprehension and visualization of software systems [22]. However, far less
effort has been devoted to evaluating existing software visualization tools. As a result, it
is unclear how effective these tools are and how they benefit the user of these tools
during a particular comprehension task. Lessons learnt in successive designs of software
visualization tools can be used in motivating future designs which in turn could be
compared and improved. Empirical evaluations are needed to improve the design and

implementation for existing and new software visualization tools development [18].
e FEvaluation criteria
The evaluation can be done according to the following issues [18]:

Usefulness: The goal of software visualization is to make it easier for the users to
understand the programs under study using graphical representations. So whether the
visualization really facilitates maintenance and aids the maintainers form mental

models about the systems must be taken into consideration.

Intuitiveness: Is the visualization easy to understand? Cognitive issues have been
receiving increased attention by people who study the program comprehension

process. The software visualization tools are used to reduce the cognitive load for the

73



users. Thus, the intuitiveness of the visualization tools should be an important issue
when evaluating the software visualization tools. Both the mapping from the software
artifacts to graphical entities and the manipulation of the representation should be

intuitive,

Scalability: As the scale of software systems increases, the handling of large software
systems is important to the software visualization tools. Currently, few software
visualization tools, both academic and enterprise, can handle large, real-world
systems. Does the visualization work well for these systems? To make the tools more
useful and widely accepted, the scalability of the tools cannot be ignored. E.g. the
complexity of the improved grid layout algorithm used in this project is O (n’) [40].
The layout algorithm works well for small systems like elevator program, etc.
However, when it deals with very large systems like Swingset with hundreds of

classes, its performance is reduced greatly.

Except for the criteria mentioned above, there are many other issues that cannot be

ignored, for example, if the speed of the software is fast enough, etc.
Questionnaire design

SUMI (Software Usability Measurement Inventory), which has a list of 50 questions,
is used for general software usability evaluation [51]. Based on the evaluation criteria
for software visualization tools discussed above such as usefulness, intuitiveness, and
scalability, ten questions are selected from SUMI (see Appendix B) and the

preliminary test of the system is performed by seven people in CONCEPT Research

74



Group.

e Data collection

Data collection can be done through electronic mailing lists, newsgroups, or known
users of specific software visualization tools. As this project is in the process of
developing and fulfillment, the preliminary evaluation task is done in the research
group of CONCEPT. Seven people tested the visualization tool and answered the

selected questions referenced from SUMI [22].

e Data analysis

Usability Study Statistics for UML3D

8
7
6
@ o B agree
?, 4 m don't care
5- 3 O disagree
2
1
0

2 5 9 10 12 13 17 26 29 42

Qestion number

Figure 45 Initial Usability Study Results

Data analysis is done based on the collected data. The results (see Figure 45) of our
initial usability study show that all the seven people who tested the software agree

that the system has a very attractive presentation (question 42). About 60% of them

75



feel that working with this software is mentally stimulating and satisfactory that they
would recommend this software to their colleagues (question 2, 12, and 17). More
than 70% people think that this software is easy to use and the information is

presented in a clear and understandable way (question 5, 9, 10, 13, 26, and 29).

Besides the positive feedback of UML3D, there are some other criticisms for the
system. Some of the negative feedbacks are about the navigation disorientation,
which are mentioned in the challenges of 3D. Some other criticisms are related to the
interface of the framework, such as the lack of progress bar, wizard window, shortcut,
etc. The refinement of the interface is not much considered in current stage because
the project is in the procedure of functionality fulfillment and there will be identical
interface for all software visualization tools in CONCEPT. The speed of the
visualization system for larger software is also complained by some of the users.
Layout is a bottleneck for the visualization pipeline. This issue should be taken into
consideration for future improvement of the system to enhance the system’s
performance and make it more acceptable. Last, the 3D UML’ visibility is challenged
by the overwhelming amount data to be presented at a time. Some of the users
suggest that there should be a strategy for information query, which will simplify the
graph by only showing the software artifacts that have connection with the interested
entity. This issue has already been pointed out in the future research like customized

query.

The results of our initial usability study show that UML3D can improve on UML and

provide software engineers with additional guidance and intuitive visualization

76



approaches that support the software comprehension process. The results of the study will
be an important factor for the future evolution of UML3D and its integration with other

software visualization tools, such as MetaVis and JVC, in CONCEPT.

77



Chapter 6 Conclusions and Future Research

Following the conclusions, this chapter will include the discussion on the future research.

6.1 Conclusions

One of the major motivations of this research was to improve on traditional 2D UML
techniques to improve the scalability, usability and navigability. The presented work
(UML3D) applied 3D techniques to UML to take advantages of 3D space and the
additional features that can be applied in the 3D space. UML3D addressed some other
shortcomings of UML by providing intuitive navigation and interactions with the
diagrams, combining source code analysis like program slicing, etc. The main

contribution of the presented research can be found in the following areas:
e Applying and mapping traditional 2D UML notation to the 3D space.

e Investigation and implementation of different mapping approaches between software

artifacts and their possible representations in the 3D space.

e Combining structural information of the traditional UML diagrams with filtering
techniques (e.g. program slicing, selective zoom, etc) to reduce the complexity of the

diagrams and to improve the scalability of the visualization techniques.

78



The diagrams not only provide the static structural visualization (based on the source
code), but also include dynamic/behavioral information (based on the execution trace),

provided by the CONCEPT database.

Integration of a self-organizing layout algorithm that can be applied to both

traditional 2D and the presented 3D representation.

Extension to the Java 3D library, supporting additional drawing objects, like arrows.

Allowing for easy context switching among different visualization techniques and

views.

Provided a complete implementation of UML3D and its integration to the CONCEPT

framework in Java 3D.

Performed an initial usability study to gain some feedback with respect to the

applicability.

However, it should also be noted, that the current implementation of the UML3D tool has

still several limitations. One drawback in UML3D is that the layout algorithm, which

works well for small systems, cannot handle large systems efficiently. For larger number

of entities the layout optimization might cause a significant performance bottleneck. For

larger systems, we have currently imposed maximum time limit of 120 minutes before

the layout optimization will be terminated. This significant computation overhead also

makes a real-time layout optimization impossible. Furthermore, scalability issues, in

particular for the behavior (sequence and collaboration) diagrams remain unsolved and

79



these challenges will have to be addressed in future work.

6.2 Future Research

According to the evaluation results of the existing software visualization tools and

lessons learned from it, further research and improvements in the domain can be done in

the following aspects:

Customized query

Few of the efforts to enhance and facilitate software understanding have been really
successful and helped develop tools in active use today. The software visualization
systems, which intuitively seemed so obviously useful, were not being used [25].
Why are experts often resistant to other people’s visualization? The reasons are: 1)
the failure to address the actual issues that arise in software understanding, 2) the
difficulty in such systems when setting up the data for them, and 3) when
understanding how to get the desired information out of the overwhelming amount of
information [6]. The problem can be solved by providing visual query language for
specifying what information should be visualized [25]. User-centered approaches
should be employed. As an example, BLOOM is a system providing static/ dynamic
and 2D/3D software visualization with a visual query language. It is based on an
object-oriented view with an entity-relationship based query language. The system

provides facilities for saving useful queries so they can be reused.

80



Searching

Searching is one of the two navigation styles that has long been available on program
code, but is largely absent in architecture visualization tools. Searching employs a
bottom-up comprehension strategy and is needed to reveal the facts that were used to
build the concepts [19]. Moreover, semantic searches, which are more useful, are

seldom supported by the software visualization tools [19].

Automation

The degree of automation is also very important for a software visualization tool. An
effort should be made to increase degree of automation and decrease as much as

possible user involvement in comprehending, maintaining and dealing with the source

code itself [39].

Language independent

The software visualization tools available always have language constraints. The
ideal software visualization tools should be language independent and flexible at the

data format.

Integration

All visualization tools must have separate key parts such as parser, layout engine and
interface. The integration with other tools can make the software visualization tools

more acceptable and gain more feedback.

81



Evaluation

Empirical evaluation can be gained through users’ feedback and experts’ study. Many
software visualization tools are only developed and used in academia [18]; however,

few of these are evaluated and little is learned about their worth.

Software visualization is a rapidly developing field. Efforts made in this field have
shown promising results. The application of 3D and virtual reality techniques gives a
new life to software visualization. However, 3D is not a cure-all and encounters many

challenges as well. There is still a long way for future research in this field.

82



Bibliography

[1] Mary Ellen Foster, “Automatically generating text to accompany information
graphics”, Master Thesis, Department of Computer Science, University of Toronto, July
1999.

[2] C. Knight, "Virtual Software in Reality", PhD Thesis, Department of Computer
Science, University of Durham, June 2000.

[3] Juergen Rilling, “Lecture Notes: Reverse Engineering”, Internet Document,
http://www.cs.concordia.ca/~teaching/comp6911/html/lecture notes.html, August 2003.

[4] Ramage, M., and Bennett, K. H. “Maintaining Maintainability,” Proceedings of the
International Conference on Software Maintenance, Washington, 16-20 November
1998.

[5] K. B. Gallagher and L. O'Brie, “Reducing visualization complexity using
decomposition slices”, in SoftVis’97, The 1997 Software Visualization Workshop,
Adelaide, Australia, Dec 1997.

[6] Margaret-Anne Storey, “Software Visualization”, http://www.cs.uvic.ca/~mstorey/
teaching/infovis/course_notes/softviz.pdf, August 2003.

[7] S. Robitaille, R. Schauer, and R.K. Keller, “Bridging Program Comprehension Tools
by Design Navigation”, Proc. of the Intnl. Conf. on Software Maintenance: 22-32,
October 2000.

[8] M. -A.D. Storey, F.D. Fracchia, and H.A. Muller, “Cognitive Design Elements to
Support the Construction of a Mental Model during Software Exploration”, Journal of
Software Systems, 44: 171-185, 1999.

[9] Anuar Musa, “UML By Examples”, http://www.geocities.com/SiliconValley/
Network/1582/uml-example.htm, August 2003.

[10] C. Knight, “Visualisation for program comprehension: information and issues”,
Technical Report, Department of Computer Science, University of Durham, 1998.

[11] L. Herman, G. Melancon, and M. Marshall, “Graph visualization and navigation in
information visualisation: a survey”, IEEE Transactions on Visualization and Computer

83



Graphics, 6(1):24-43, 2000.

[12] Guardian Education Interactive Ltd., “Pyramids of numbers”, http://www.learn.co.
uk/default.asp? WCI=Unit& WCU=2400, August 2003.

[13] Nurse Bob, “Cardiology In Critical Care”, http://mbob.tripod.com/electroc.htm,
August 2003.

[14] S. Decker, J. Jannick, S. Melnik, P. Mitra, S. Staab, R. Studer, and G. Wiederhold,
“An Information Food Chain for Advanced Application on the WWW?”, Proc. 4th
European Conf. on Research and Advanced Technology for Digital Libraries (ECDL'00),
LNCS 1923, p. 490 ff., 2000.

[15] Oren Etzioni, “Moving Up the Information Food Chain: Deploying Softbots on the
World Wide Web”, Proceedings of the 13™ National Conference on Artificial Intelligence
and the 8™ Innovative Applications of Artificial Intelligence Conference , Al Magazine,
18(2): pp.11-18, Intelligent Systems on the Internet, 1997.

[16] Juergen Rilling and Ahmed Seffah, “A Task-Driven Program Comprehension
Environment”, COMPSAC 2001: 77, 2001.

[17] Jonathan 1. Maletic, Andrian Marcus, and Michael L. Collard, “A Task Oriented
View of Software Visualization”, Department of Computer Science, Kent State
University, http:/citeseer.nj.nec.com/correct/547223, August 2003.

[18] Sarita Bassil and Rudolf K. Keller, “A Qualitative and Quantitative Evaluation of
Software Visualization Tools”, In Proceedings of the Workshop on Software
Visualization, pp. 33-37, Toronto, ON, May 2001.

[19] Susan Elliott Sim, Charles L.A. Clarke, Richard C. Holt, Anthony M. Cox,
“Browsing and Searching Software Architectures”, Proceedings of the International
Conference on Software Maintenance, pp. 381-390, Oxford, England, September 1999.

[20] Erez Hartuv, Ron Shamir, “A Clustering Algorithm based on Graph Connectivity”,
Technical report, Department of Computer Science, Tel Aviv University, 1999.

[21] S.S. Alhir, “Extending the Unified Modeling Language (UML)”, Internet Document,
http://home.earthlink.net/~salhir/ExtendingTheUML.PDF, 1999.

[22] Margaret-Anne D. Storey, “A Cognitive Framework for Describing and Evaluating
Software Exploration Tools”, PH. D. Thesis, School of Computing Science, University of
Victoria, 1998.

[23] Software Engineering Group, “The FUJABA Environment”, Department of

Mathematics and Computer Science, University of Paderborn, http://www.uni-
paderborn.de/cs/fujaba/main.html , August 2003.

84



[24] Hausi A. Miiller, Jens H. Jahnke, Dennis B. Smith, et al., “Reverse Engineering: A
Roadmap”, In A. Finkelstein, editor, The Future of Software Engineering, ACM Press,
2000.

[25] Steven P. Reiss, “An Overview of BLOOM”, ACM SIGPLAN-SIGSOFT, pp. 2-5,
ACM Press, New York, USA, 2001.

[26] Brian Johnson and Ben Shneiderman, “Treemaps: a space-filling approach to the
visualization of hierarchical information structures”, IEEE Visualization '91, pp. 284-291,
IEEE CS, 1991.

[27] Mark Bruls, Kees Huizing and Jarke J. van Wijk, “Squarified Treemaps”, Joint
Eurographics and IEEE TCVG Symp. on Visualization (TCVG 2000), pp. 33-42. IEEE
Press, 2000.

[28] Sarita Bassil and Rudolf K. Keller, “Software Visualization Tools: Survey and
Analysis”, 9" International Workshop on Program Comprehension, IEEE, Toronto,
Ontario, Canada, May 2001.

[29] Shaffer, C.A., Heath, L.S., and Yang, J.,, “Using the Swan Data Structure
Visualization System for Computer Science Education”, Proc. SIGSCE '96, Philadelphia
PA, February 1996.

[30] Terry Quatrani and Grady Booch, “The Modeling with Rational Rose 2000 and
UML”, Addison Wesley Professional, 1998.

[31] Maletic, J.I, Leigh, J., and Marcus, A., “Visualizing Software in an Immersive
Virtual Reality Environment”, ICSE’01 Workshop on Software Visualization, pp.49-54,
Toronto, CA, May 13-14, 2001.

[32] Klaus Alfert and Alexander Fronk, “Manipulation of 3-dimensional Visualizations
of Java Class Relations”, Proceedings of the 2002 IDPT Conference - The Sixth World
Conference on Integrated Design & Process Technology, Pasadena, CA, June 2002.

[33] Peter Young, “Software Visualization”,
http://vrg.dur.ac.uk/misc/PeterY oung/pages/work/documents/index.html, August 2003.

[34] Yamin Wang, Wei-Tek Tsai, Xiaoping Chen, and Sanjai Rayadurgam, “The Role of
Program Slicing in Ripple Effect Analysis”, WWW-
users.cs.umn.edu/~wangy/./paper/psinrea.ps, August 2003.

[35] John Lamping, Ramana Rao, and Peter Pirolli, “A Focus+Context Technique Based
on Hyperbolic Geometry for Visualization Large Hierarchies”, Proceedings of ACM
CHI'9S Conference on Human Factors in Computing Systems, pp. 401--408, ACM Press,
1995.

[36] Andrian Marcus, Louis Feng, and Jonathan 1. Maletic, “3D Representations for
Software Visualization”, Proceedings ACM 2003 Symposium on Software Visualization,
85



pp- 27-36, 207-208, San Diego, California, USA, June 11-13, 2003.

[37] Juergen Rilling and Sudhir P. Mudu, “On the Use of Metaballs to Visually Map
Source Code Structures and Analysis Results onto 3D Space”, 9th Working Conference
on Reverse Engineering (WCRE'02), pp.209-308, Richmond, Virginia, USA, October 29
- November 01, 2002.

[38] Neil Trevett ,“Challenges and Opportunities for 3D Graphics on the PC”,
Presentation for SIGGRAPH Eurographics Hardware Workshop in Computer Graphics,
http://www.ibiblio.org/hwws/previous/www_1999/presentations/keynote/sld001.htm,
August 2003.

[39] P. Mulholland, “Using a Fine-grained Comparative Evaluation Technique to
Understand and Design Software Visualization Tools”, 7th Workshop on Empirical
Studies of Programmers, Alexandria, VA, USA, October 24- 26, 1997.

[40] J. Wang, “MetaViz — Issues in Software Visualizing Beyond 3D”, Master Thesis,
Department of Computer Science, Concordia University, August 2003.

[41] Juergen Rilling, “CONCEPT”, http://www.cs.concordia.ca/CONCEPT/index.shtml,
August 2003.

[42] Peter Grogono, “Concordia University Graphics Library”,
http://www.cs.concordia.ca/~faculty/grogono/CUGL/cugl.html, 2002.

[43] J. Conklin, “Hypertext: An Introduction And Survey”, IEEE Computer, 20(9): 17-41,
1987.

[44] Warwick Irwin and Neville Churcher, “XML in the Visualization Pipeline”,
Research and Practice in Information Technology, Sydney, Australia, 2001.

[45] Mao Lin Huang, Peter Eades, and Junhu Wang, “Online Animated Graph Drawing
Using a Modified Spring Algorithm”, Australian Computer Science Comm.: Proc. 21st
Australasian Computer Science Conf., 1998.

[46] Sun Microsystems Java 3D Engineering Team, “The Java 3D™ API Specification”,
http://java.sun.com/products/java-media/3D/forDevelopers/J3D 1 2 API/j3dguide/,
August 2003.

[47] Sun Microsystems Java 3D Engineering Team, “Getting Started with the Java 3D™
APT”, http://developer.java.sun.com/developer/onlineTraining/java3d/, August 2003.

[48] Andrea de Lucia, “Program Slicing: Methods and Applications”, 1** IEEE
International Workshop on Source Code Analysis and Manipulation (Florence, Italy,
2001), pp. 142-149, IEEE Computer Society Press, Los Alamitos, California, USA, 2001.

[49] Manos Renieris and Steven P. Reiss, “Almost: Exploring Program Traces”, NPIVM'

86



99 Workshop, pp. 70—77, Kansas City, MO, November 6, 1999.

[50] J. Stasko et al, “Software Visualization: Program as a Multi-Media Experience”,
MIT Press, 1998.

[51] Human Factors Research Group, “SUMI”, http://www.ucc.ie/hfrg/questionnaires
/sumi/index.html, August 2003.

[52] SGI, “3D File System Navigator for IRIX 4.0.1+”, http://www.sgi.com/fun/
freeware/3d_navigator.html, August 2003.

[53] W3C, “XSL Transformations (XSLT)”, Internet Document, http://www.w3.org/TR/
xslt, August 2003.

[54] Juergen Rilling, “Investigation of Program Slicing and its Applications in Program
Comprehension of Large Software Systems”, PhD Thesis, Department of Computer
Science, Illinois Institute of Technology, July 1998.

[55] Glen McCluskey & Associates LLC, “ Java(tm) Source Code

Instrumentation ”, Internet Document, http://www.glenmccl.com/instr/instr.htm, August
2003.

[56] Arthur Tateishi, “Filtering Run-Time Artifacts Using Software Landscapes”, Master
Thesis, Department of Computer Science, University of Toronto, 1994.

[57] Michael Fotta, Ben DeLong, Matt McMahon, and Phillip Merritt, “Software

Visualization for IV&V”, Software Assurance Symposium (SAS) 2002, September 6,
2002.

87



Appendix A: Example of Data in XML Format for Static

Diagrams of UML3D

<?xml version="1.0" encoding="UTF-8"7?>
<!-- Created by gary on April 26, 2003, 1:10 PM --><entity relations
<entitiess>
<entity id="0" name="GridCell" color="METAL" package="concept.javad">
<gize factor="1" controlRadius="1"/>
<coordinator x="1" y="3" z="2"/>
</entity>
<entity id="1" name="LabledMetaball" color="PEWTER" package="concept.java">
<gsize factor="1" controlRadius="1"/>
<coordinator x="2" y="3" z="1"/>
</entity>
<entity id="2" name="Cylinder" color="PEWTER" package="concept.java'"s
<size factor="1" controlRadius="1"/>
<coordinator x="1" y="2" z="1"/>
</entity>
<entity id="3" name="StripCylinder" color="PEWTER" package="concept.java">
<size factor="1" controlRadius="1"/>
<coordinator x="1" y="1" z="1"/>
</entitys
<entity id="4" name="Propeller" color="PEWTER" package="concept.java"s>
<size factor="1" controlRadius="1"/>
<coordinator x="1" y="3" z="1"/>
</entitys>
<entity id="5" name="CText2D" color="GOLD" package="concept.java.tree">
<gize factor="1" controlRadius="1"/>
<coordinator x="0" y="1" z="1"/>
</entity>
<entity id="6" name="BoxSphere" color="GOLD" package=" concept.java.tree"s>
<gize factor="1" controlRadius="1"/>
<coordinator x="1" y="1" z="0"/>
</entity>
<entity id="7" name="Metaball" color="METAL" package="concept.idp">
<size factor="1" controlRadius="1"/>
<coordinator x="0" y="1" z="0"/>
</entitys>
<entity id="8" name="GridCellWithColor" color="METAL" package="sun.asm">
<size factor="1" controlRadius="1"/>
<coordinator x="1" y="3" z="0"/>
</entity>
</entities>
<!--below is the relationships among metaballs-->
<relationshipss>
<relationship from="0" to="1" weight="1"/>
<relationship from="0" to="2" weight="0.5"/>
<relationship from="0" to="3" weight="1"/>
<relationship from="0" to="4" weight="0.5"/>
<relationship from="0" to="8" weight="0.5"/>
<relationship from="1" to="5" weight="0.25"/>

88



<relationship from="1" to="6" weight="0.5"/>
<relationship from="6" to="7" weight="0.25"/>

</relationships>

<layout estimationValue="32" lineCrossing="0" lineObjectCrossing="0"
totalLength="32"/>

</entity relations>

89



Appendix B: Example of Execution Trace for Dynamic

Diagrams of User

Execution Class Line Execution Class Line
Number Number Number Number Number Number
1 Elevator 110 61 Elevator 116
2 Elevator 111 62 Elevator 117
3 Elevator 112 63 Elevator 118
4 Elevator 17 64 Elevator 70
5 Elevator 18 65 Elevator 71
6 Elevator 19 66 Elevator 72
7 Panel 9 67 Elevator 74
8 Panel 10 68 Elevator 75
9 Panel 11 69 Elevator 77
10 Panel 12 70 Elevator 78
11 Panel 13 71 Elevator 80
12 Button 14 72 Elevator 83
13 Button 15 73 Elevator 87
14 Panel 13 74 Elevator 88
15 Button 14 75 Panel 38
16 Button 15 76 Panel 39
17 Panel 13 77 Button 18
18 Button 14 78 Button 19
19 Button 15 79 Elevator 103
20 Panel 13 80 Elevator 78
21 Button 14 81 Elevator 30
22 Button 15 82 Elevator 83
23 Panel 13 83 Elevator 87
24 Button 14 84 Elevator 90
25 Button 15 85 Elevator 91
26 Panel 13 86 Panel 21
27 Button 14 87 Panel 22
28 Button 15 88 Panel 23
29 Panel 13 89 Panel 24
30 Button 14 90 Button 22
31 Button 15 91 Button 23
32 Panel 13 92 Button 26
33 Button 14 93 Panel 24
34 Button 15 94 Button 22
35 Panel 13 95 Button 23
36 Button 14 96 Button 26
37 Button 15 97 Panel 24
38 Panel 13 98 Button 22
39 Button 14 99 Button 23
40 Button 15 100 Button 26
41 Panel 13 101 Panel 24
42 Button 14 102 Button 22
43 Button 15 103 Button 23
44 Panel 13 104 Button 26
45 Button 14 105 Panel 24
46 Button 15 106 Button 22
47 Panel 13 107 Button 23

90



48 Button 14 108 Button 26
49 Button 15 109 Panel 24
50 Panel 13 110 Button 22
51 Button 14 111 Button 23
52 Button 15 112 Button 26
53 Panel 13 113 Panel 24
54 Button 14 114 Button 22
55 Button 15 115 Button 23
56 Elevator 20 116 Button 26
57 Elevator 21 117 Panel 24
58 Elevator 22 118 Button 22
59 Elevator 114 119 Button 23
60 Elevator 115 120 Button 26

91




Appendix C: Software Usability Measurement Inventory

(SUMI)

Your name
Name of software

Date

NB the information you provide is kept completely
confidential, and no information is stored on computer

media that could identify you as a person.

This questionnaire has fifty statements. Please answer them all. After each statement there

are three boxes.

You should check the first box if you generally AGREE with the statement. Check the middle
box if you are UNDECIDED, or if the statement has no relevance to your software or to your

situation. Check the right box if you generally DISAGREE with the statement.

In checking the left or right box you are not necessarily indicating strong agreement or

disagreement but just your general feeling most of the time.
AGREE UNDECIDED DISAGREE

Put a x in the box of your choice

92



© 1993, 1994 Human Factors Research Group, Ireland. HFRG - SUMI - Q - 3.2.US

10
11
12
13
14
15
16
17
18

19

This software responds too slowly to input.

I would recommend this software to my colleagues.

The instructions and prompts are helpful.

The software has stopped unexpectedly sometimes.

Learning to use this software is difficult to start with.

Sometimes, I don't know what I should do next with this software.
I enjoy the time I spend using this software,

I find the help information given by this software is not very useful.
If this software stops, it is not easy to restart.

It takes too long to learn what to do with this software.

I sometimes wonder if I'm using the right command.

Working with this software is satisfying.

System information is presented in a clear and understandable way.
I feel safer if I use only a few familiar commands or operations.
The software documentation is very informative.

This software disrupts the way I normally like to arrange my work.
Working with this software is mentally stimulating.

There is never enough information on the screen when I need it.

I feel in control of this software when I am using it.

93

Disagree
Undecided

Agree

Don
000
HEEEN
00O
OO0
OO
oog
0o
OO O
00U
0O oo
HEEEN
HEEEN
EENEN
ooo
Oo0n
0O
oo
oo



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

1 prefer to stick to the functions that I know best.

This software is inconsistent.

I wouldn't like to use this software every day.

I can understand and act on the information provided by this software.
It's hard to do non-standard things with this software.

There is too much to read before you can start using the software.
Getting your tasks done with this software is easy.

Using this software is frustrating.

0og
OO0
0og
01O
HEEEN
HEEEN
OO0
oogd

The software has helped me overcome any problems I've had in using it. [ ] [] []

The speed of this software is about right.
I often have to go back and look at the user manuals.
It's clear that user needs have been taken into consideration.

Using this software sometimes makes me feel tense.

O oo
0ot
Ooog
04

The organisation of the menus or information lists seems fairly logical. [ ] [] []

You don’t have to do much typing with this software.

It’s hard to learn new functions.

You have to go through too many steps to get something to work.
Sometimes, this software gives me a headache!

Error prevention messages are inadequate.

It's easy to make the software do exactly what you want.

I'll never learn all the functions in this software product.
Sometimes the software doesn't do what I expect it to do.

The software has a very attractive presentation.

The amount or quality of the help information varies across the system.

It's relatively easy to move from one part of a task to another.

94

O on
0od
00U
HEEEN
00O
L og
HEEEN
Oood
0ano
04O
HENEN



45

46

47

48

49

50

It's easy to forget how to do things with this software.

Sometimes this software behaves in a way I don't understand.

This software is very awkward to use.
You can see at a glance what the options are at each stage.
Getting data files in and out of the system is not easy.

I have to seek assistance when I use this software.

Please be sure to check each item.

Thank you. [51]

95

0 OO
0 og
0o
OO
0O
0 OO



