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Abstract

Percentile Pension Cost Methods

with Random Retirement Age

Cristian Torres Jiménez

A new family of methods for pension valuation is studied; Ramsay (1993) who
originally proposed them called them percentile cost methods. These are compared to
traditional cost methods and their differences are discussed. A numerical illustration
is presented.

In addition, this thesis models the retirement age as a random variable. The
traditional and percentile cost methods are redefined under this more general random

context.
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Special Symbols

In percentile methods, the asterisk in some symbols must be replaced by «, the

confidence level.

Symbol Description
v zVy = max{z,y}
Q confidence level, 0 < a <1
Jo] function that measures the portion of future normal costs

to be paid at the beginning of year ¢ (aggregate methods)

o index of skewness of Y™

) = In(1 + 7) force of interest

Fm kurtosis of Y

a0§§" ) balancing item

e coefficient of variation of Y™

L a—confidence function

k3o 12 = Pk, €02 deferred percentile function
& standard deviation of Y™

Oty Vi standard deviation and skewness of X;

(0a);, (va); | standard deviation and skewness of (Xa),
standard deviation and skewness of (Xa)]
standard deviation and skewness of (Xr),
(X7)

)t
or)l, (yr)! | standard deviation and skewness of (Xr g

oWt proportional adjustment coefficient

JAW IR is the change in 4, during year ¢

W first age at which (z) can not survive

1 PVFB, subindexes and superscripts are appended to it
L1 PVFB for the entire group at time ¢

«(Ila); PVFB for A; at time ¢
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Special Symbols (Continuation...)

Symbol Description
,(Ta)! PVFB for j € A; at time ¢
(([a)] 41 | expected PVFB for j at ¢ calculated based on the salary—scale
LWy PVFB calculated at age of hire a
d distribution function of the N(0, 1) distribution
a earliest possible age in the active population
—E[¥]
a& = E[YV,"]
o = E[Y5], temporary life annuity
g salary-based temporary life annuity
y—a|l deferred annuity y_xp;%y—xdg”)
A active population at instant ¢
Ay = E[Z], whole life insurance
Al = A, payable at the end of the m—th of the year of death
ng(m = A™ calculated at a the force of interest nd
+AAN abbreviation for Attained-Age Normal cost method
AL abbreviation of Actuarial Liability
ALy AL for the entire group at time ¢
(ALa)y AL for A; at time ¢
(ALa)! | AL for j € A, at time ¢
«(ALr); AL for Py at time ¢
JALr)Y | AL for j € P; at time ¢
*(ﬂa){ 41 | expected AL for j € A; at time ¢ calculated

by assuming salaries increase according to the salary-scale function

(ALr)] 41 | expected AL for j € P, at time ¢ calculated assuming no benefit changes
by, b{ benefit function. If 7 € Py, then it is the amount of pension
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Special Symbols (Continuation...)

Symbol Description

B, pension payments paid to members of set R, U P; during year {

Cy collected contributions during year ¢

d = 1 — v rate of interest in advance

dtm nominal annual rate compounded m times a year

D, subset of A, who die during year ¢. The same symbol is used for P,
& subset of A; who leave by any cause during year ¢

AN | abbreviation for Entry—-Age Normal cost method

F observed fund balance of year ¢ for the entire plan, Fy = (Fa); + (Fr),
(Fa) observed fund balance of year ¢ for the active group
(F'r)y observed fund balance of year ¢ for the retired group
FIL abbreviation for Frozen Initial Liability cost method
JFNC; | future normal cost at instant ¢

FNC! | future normal cost at instant ¢ of employee j € A,
F'S; present value of future salaries at ¢

FSW, | F'S; calculated at age of hire a

G abbreviation for Gain

Gl gain for the entire plan observed during year ¢
.(Ga); | gain for A; observed at ¢

+(Gr); | gain for R, observed at ¢

,GY interest gain for A4; and/or R;.

LG unexpected decrements gain in A;

GO =69+ .6+ .6+ 6

*GES) unexpected salary changes gain in A4,

*ng) unexpected pension payment changes gain

*Gﬁf’ ) gain due to unexpected pension payments to members of set P;
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Special Symbols (Continuation...)

Symbol Description

*Gﬁw) unexpected mortality gain in P;

B mass function of ¥,

i distribution function of Y,

Hs subset of A; who get disabled during year ¢

i (expected) interest rate

i (observed) interest rate

3m) nominal annual rate compounded m times a year

I; observed interest returns during year ¢t for A; U Py, (Ia)e + (I1);
(Ia); observed interest returns during year ¢ for the active group

(Ir) observed interest returns during year ¢ for the retired group

I expected interest returns earned on C;

Ifai observed interest returns earned on Cy, calculated at the rate '
Ire expected interest earned on PP,

kL observed interest earned on PP, calculated at the rate 4’

I interest earned on B; at the rate 7'

INB interest earned on N B, at the rate 4’

IPB interest earned on OP; at the rate ¢

K = |T], is the discrete random variable of the curtate lifetime of (z)
Ko, = |mT|/m

m mass accrual function, is the percentage of PVFB allocated to age z
M accrual function, M, is the percentage of PVFB accrued to age z
N; set of new entrants during year ¢

NB, pension payments paid to members of set R; during year ¢

INCy normal cost at instant ¢

Xiv



Special Symbols (Continuation...)

Symbol Description

«N C{ normal cost at instant ¢ of employee j € A;

NET | abbreviation for Net or Global cost method

OB, pension payments paid to members of set P; during year ¢

De =1 — g, probability for (z) to survive to age z + ¢

tpgr) probability for (z) to remain in the active population for the next ¢ years
Py retired population at instant ¢

PP amount to “purchase” annuities to members of set R;

transferred from (Fa); to (Fr),

LPUC | abbreviation for Projected Unit Credit cost method
PVFB | abbreviation for Present Value of Future Benefits
Gz probability for (z) to die in the next ¢ years

tqg(gj ) probability for (z) to leave the active population in the next ¢ years due

to cause j = d death, w withdrawal, h disability and r retirement
()

+Qz probability for (z) to leave the active group within the next ¢ years
r, T carliest and latest possible retirement ages (e.g., r = 60, 7 = 70)
R discrete random variable representing retirement age
Ry discrete random variable of age at retirement given that
the decrement is due to retirement, mass function p(k) = Pr[R; = k|
Ry subset of 4; who retire during year ¢
S salary-scale function, usually an increasing function of age
S salary of employee j € A,
Si total of salaries at instant ¢
T continuous random variable of the remaining lifetime of (z)
T: subset of A; who withdraw during year ¢
Ui unit normal cost percentage at ¢, depends on the aggregate method
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Special Symbols (Continuation...)

Symbol Description
UL abbreviation for Unfunded Liability
ULy UL for the entire plan at instant ¢
AULa), | UL of A at t
JULr)y |ULof P,UR, at t
v = (1 +4)~" discount factor
(z) member with of exact age =
X X; = (Xa); + (Xr), random variable of the PVEDB for the entire plan
(Xa); | continuous random variable representing the PVFB of A,
(Xr) continuous random variable representing the PVEB of P,
Y; discrete random variable of the present value of a whole life
annuity of 1 payable at the beginning of each year while (z) survives
Y, discrete r. v. of the present value of an n—year temporary life
annuity of 1 payable at the beginning of each year while (z) survives
i discrete random variable of the present value of
a life annuity due of 1 payable m times per annum issued to x
Zy 100a-th percentile of the N(0,1) distribution
Z = vK+1 discrete r. v. of the present value of a whole life insurance

issued to (z) of 1 payable at the end of the year of death
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Introduction

Traditional cost methods are based on the present value of future benefits (PVFB).
This PVFB is the discounted amount of a whole life annuity, times a certain amount
defined through a benefit function. This annuity is actually the expected value of Y™,
the random variable representing a whole life annuity payable m—thly. Such random
variables, however, are negatively skewed for most ages, which in turn implies that
their mean underestimates the risk associated to not receiving pension benefits in full.

On the other hand, under current methods, it is not possible to provide answers to
certain questions. For instance, the actuary may want to know How much to charge
in order to pay retirement benefits with a specified probability o?

These facts motivated Ramsay [6] to introduce the a—-confidence function or the

percentile function as a substitute for the whole life annuity term that appears in the

calculation of PVFB. Thus, the focus is on percentiles of Y, rather that on mean

values.

Besides the introduction of a new family of cost methods, called percentile cost
methods, an important assumption is taken into account here, namely, that the
retirement age is a random variable rather than a fixed value. Traditionally, the
possibility of multiple retirement ages is treated as an ancillary benefit. Since formulas
become more complicated, it creates communication problems between the plan
sponsor and individuals.

Chapter 1 reviews the notation that will be used throughout this work. The

random variable Y, is studied in some detail and the problem mentioned above is



stated.

Chapter 2 studies the traditional cost methods. The so—called, individual and
aggregate methods are dealt with separately. For mathematical convenience, the
active and the retired populations are assumed to be separate. For individual cost
methods, the use of an accrual function will play a key role.

Chapter 3 deals with percentile cost methods. The ideas of Chapter 2 remain
the same, except for the change outlined above. For aggregate methods, however,
the difference is more obvious, when the analogue to the concept of the PVFB is
calculated by approximating the distribution of a certain random variable.

Chapter 4 presents a detailed example to see the effect of the desired confidence
level on the valuation methods. The thesis ends with some conclusions, and suggests

further developments.



Chapter 1

Preliminaries

1.1 Assumptions and Notation

This section describes some assumptions and the notation that will be used throughout

this work (see Bowers et al. [2]).

(a) The symbol (z) denotes a person of exact age z. The first age at which (z)

cannot survive is denoted by w (e.g. w = 110).

(b) The probability for (z) to die in the next ¢ years is denoted :g, and the
probability for (z) to survive to age x + 1 15 sy = 1 —4q,. I 1 = 1 we
write g, and p, instead. The continuous random variable T' = T'(x) denotes the

remaining lifetime of (x) and its distribution function is

¢

0 ifit<0,
FT(t):qu fo<t<w—ax- (1.1)

1 ift>w—=z

\
Additionally, the discrete random variable K := |T'|, where |-| is the integer
part function, represents the curtate remaining future lifetime of (z). Its mass

function is Pr[K = k] = kps @usi, for k=0,1,2,... ,w—z — 1.



(c)

(d)

(e)

The rate of interest is ¢, while ¢ := In(1 + ) denotes the force of interest,
v := 1/(1+1) the discount factor and d := 1 — v the rate of interest in advance.
When financial operations are made m—thly then we need d™ := m(1 — v'/™)
and i := m(e?/™ — 1), which are nominal annual rates compounded m times

a year.

In relation to a pension plan, we have the following assumptions:

Consider an active population of employees, whose earliest possible age is denoted
by a (e.g. a = 25). This group is assumed to be immersed in a multiple
decrement environment, which is to say that, an active member can leave his/her
status due to several (independent) causes. Here we assume the existence of
four causes of decrement, namely, death (d), withdrawal (w), disability (h)
and retirement (r). If stress on a particular cause of decrement is required,

we will adopt the following notation: 10t is the probability for (z) to leave

the active status in the next ¢ years due to cause (¢). The sum tqg(f) =

0D gt 4 gl + gl represents the probability for () to leave the active
status within the next ¢ years due to any cause, while tpg) =1~ tqg) is the
probability for (z) to reach age z +t within the active group. As usual, ift =1,

that subindex is dropped.

We assume the existence of a retired group. The retirement age is denoted R; it
is a discrete random variable whose domain is the set {z V r,...,T, 00}, where

z Vy = max{z,y}. Its mass function is

kﬁng)q,(;), itke{zvr,...,7};

(r) (r)

Pr[R=k] = T _
1= heavp kP @, if k= oo

(1.2)

When the pension plan allows for retirement at other dates than birthdays, the
age last birthday is used for R. The age r is known as the earliest retirement age

possible and 7 as the latest retirement age. Unlike an active employee, a retired



person faces only one cause of decrement (single decrement environment ), namely,

death.

(f) Salaries are determined by a salary-scale function {s; : = a,a+1,...}. Thus,
a person now age z will have a (projected) salary to age =+ k, equals to his/her

current salary times the ratio syix/Sz-

Some random variables related with life annuities and life insurance will be used.

We summarize those useful for our purposes.

Definition 1.1 Life annuities

(a) A whole life annuity of 1 payable at the beginning of each year while (z) survives
has a present value defined as:

1 — K+l
d 7

Yl::dK+1‘: k:071,...,W"$“1.

Its expected value is denoted d, and it is given by:

w1 w—zx—1

Qg = E[Yl] = Z aﬁﬂ EPzqa+k = Z 'Ukkpm .
k=0

k=0
Notice that d, is calculated based on the life table, rather than on the service

table.

(b) An n—year temporary life annuity of 1 payable at the beginning of each year
while (r) survives, calculated by using a service table (multiple decrement
environment), has a present value given by:

grem| ifK=0,...,n—1
YQZ:

i fK=n,...,w—z—1.



The expected value (sometimes called the net single premium) of this random

variable, denoted dg.m, is given by:

n—1 n—1
G = E[Ya] = > _ i) 60 Gusk + im npl = > 0Fepl
k=0 k=0

(c) There exists a variation of the n—year temporary annuity defined above, that

takes into account the progression of salaries as follows:

n-1

S

g i z-+k k T

Qg 2= E . v kpgc) .
k=0 %

Finally, some life insurance functions will be used.

Definition 1.2 Life insurance

(a) The present value of a whole life insurance issued to (x) of 1 payable at the end

of the year of death is:

Z =K K=01,..., w—z-1,

while its expected value, denoted A, is given by:

w-zr—1

Ay = E[Z] = Z vk+1kpac dz+k -

k=0
(b) If the above whole life insurance is paid at the end of the m~th of the year
of death, rather than at year—ends, then we write A Based on a uniform
distribution of deaths over integer ages (in short, the UDD assumption), we

obtain the approximation (see Bowers et. al.[2, (4.4.6), p. 121], ):

fﬁﬂﬁﬁg _£_f1
v N e

(c) An additional variation arises when the values are calculated with a force of
interest n times the original one, this is, at nd instead of 5. We use the notation

n4(™ for that purpose.

Of special interest is a particular life annuity, that we study in the next section.



1.2 A Problem in the Traditional Cost Methods

Definition 1.3 If K, := |[mT|/m, then the random variable representing the present

value of a life annuity due of 1 payable m times per annum issued to (z) is defined as

1 — UKm+1/m

m) L ) —

To compute the distribution function of Vi we apply the distribution function
technique to the sequence of random variables T — K, »— Vi as follows. The

distribution function of K, is
Fx, (u) = Pr[K,, < u]
= Pr{[mT| < um]
= Pr[mT < |um| + 1], since [z| <yez<|y/+1,

-pifr< i

= Fj(w%_ﬂ> _

Then, by (1.1) we have:

;

0 if Ll < g
1 iflﬂ;{—ﬂzw-—x.

\

This implies that the distribution function of Y denoted by Hg(ﬂm), can be obtained

as follows:

H™ (u) = Pr[Va™ < 4

T

_pe[ L
=Pr [Km < —215—111(1 - ud(m)) — %1—]
= Fy., (——%ln(l — ud™) — ‘lrﬁ)

= FKm (V)



where v 1= —%— ln(l — ud(m)) - % Note that:

(a) The term E—"%—ﬂ in (1.4), with v instead of u, turns to be

Ky = }— L—%—ln(l - ud(m))J .

m
(b) k<0 u<0 and

(€) 0<kn<(w—12)0<u< (1 - e—é/m~6/mtm<w—x>i) Jd™
Thus, the cdf of Y& can be written as:

)

0 ifu<0,

HMw) =14, ¢ if0<u< (1 _ e-é/m—é/mtm(wmn) /d™ | (1.5)

1 ifu> (1 _ e~5/m~5/mtm<w—x>J) Jdm

\
where k,, = £ | -2 In(1 — ud™)]. Figure 1.1 presents the mass functions hg?) and
héf), based on the GAM 1983 male mortality table and ¢ = 5% as interest rate.
Notice the negative skewness of both distributions.

The expected value of Y™ is denoted by d&”. Again, under the UDD assumption,
(see Bowers et. al. [2, (5.4.11) to (5.4.13), pp. 151-152]) we get the approximation:

. ” (m)
o id ) Lo =1
iz (Z(m) dmy ) 4 T Smygim) (1.6)

It is possible to express the standard deviation and the index of skewness of v

in terms of life insurance functions.

Proposition 1.1 The standard deviation 55” and the index of skewness & of v

are given, respectively, by:

53 = 1 \/ %™ (m) and (1.7)
%45;"’ -3 %4;”) AEJ” +2(A0)?
P 3 () + 247 s

[l — (a0)]?
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Figure 1.1: Mass functions A:> and h{y at i = 5%

Proof. Expression (1.7) can be found in Bowers et al. [2, (5.4.4), p. 149]. The proof
of (1.8) is straightforward. O

Tables 1.1 and 1.2 display values for the coefficient of variation #¢? = 55? /dS?
and the skewness, respectively. The calculations use the GAM 1983 male mortality
table and the UDD assumption.

Note that if ‘X is a random variable whose skewness is small, then, by using the
normal approximation, Pr[X < E[X]] ~ 50%, with equality if the skewness of X is
zero. On the other hand, if the distribution of X is negatively skewed, then the above
probability will be less than 50%. This tells us something about the random variable
V™. if its index of skewness is negative, then the chance of paying pension benefits
in full is less than 50%. As a matter of fact, Table 1.3 presents Pr[Y!? < &$”] for
ages between 50 and 75, for distinct interest rates, based on the GAM 1983 mortality
table for males. Note that all the values are less than 50%, as is expected, since the

distribution of Y has a negative skewness over this range of ages.



Table 1.1: Coefficient of variation

ig”

at different ages and interest rates

Agez |i=5%|i=6%|i=T%|1=8% |i=9% |i=10%
50 0.2315 | 0.2145 | 0.1998 | 0.1871 | 0.1761 | 0.1665
95 0.2692 | 0.2515 | 0.2360 | 0.2224 | 0.2105 | 0.1999
60 0.3154 | 0.2971 | 0.2809 | 0.2664 | 0.2534 | 0.2418
65 0.3745 | 0.3561 | 0.3395 | 0.3245 | 0.3109 | 0.2986
70 0.4384 | 0.4202 | 0.4035 | 0.3883 | 0.3744 | 0.3617
75 0.5064 | 0.4883 | 0.4717 | 0.4565 | 0.4423 | 0.4292

(1)

Table 1.2: Skewness 7~ at different ages and interest rates
Agez | 1=5% | i=6% | i=7% | 1=8% | i=9% |i=10%
50 | —1.7227 | —1.9909 | —2.2566 | —2.5183 | —2.7748 | ~3.0249
55 | —1.3489 | —1.5647 | —1.7774 | —1.9865 | —2.1915 | —2.3918
60 | —0.9882 | —1.1585 | —1.3248 | —1.4870 | —1.6452 | —1.7995
65 | —0.6648 | —0.8011 | —0.9321 | —1.0584 | —1.1803 | —1.2981
70 | —0.3633 | —0.4768 | —0.5850 | —0.6885 | —0.7876 | —0.8827
75 | —0.0609 | —0.1570 | —0.2482 | —0.3348 | —0.4175 | —0.4965

10



Table 1.3: H,(a$?) = Pr[¥? < d$?] at different ages and interest rates

z |i=5%|i=6%|i="T%|i=8%|i=9%|i=10%
50 | 0.3580 | 0.3401 | 0.3225 | 0.3035 | 0.2872 | 0.2716

55 | 0.3784 | 0.3616 | 0.3452 | 0.3319 | 0.3164 | 0.3012
60 | 0.4011 | 0.3886 | 0.3734 | 0.3585 | 0.3466 | 0.3324
65 | 0.4271 | 0.4133 | 0.4030 | 0.3893 | 0.3759 | 0.3660
70 | 0.4569 | 0.4450 | 0.4330 | 0.4211 | 0.4131 | 0.4014

75| 0.4881 | 0.4788 | 0.4694 | 0.4550 | 0.4505 | 0.4410

At younger ages, the mean value @$” underestimates the risk associated with the
payment of the retirees’ lifetime annuities. This fact pushed Ramsay [6] to ask the

two following questions:

1. Should the degree of assurance be included in the actuarial cost methods?

2. Is the traditional actuarial liability o good measure of the plan’s cost?

It is worth mentioning that, in practice, pension actuaries have compensated
the inadequacies in estimated actuarial liabilities (based on a mean value), by using
“conservative” assumptions. These implicitly build safety margins (thus, loading the
mean). Amortizing any resulting losses (or gains), serves as a sponge that absorbs
the deviations of the expected from the actual experience.

The next section addresses a possible answer to the above questions, by defining

a new cost function that incorporates a level of confidence.
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1.3 Percentile Cost Methods: A Possible Solution

The main idea behind the percentile cost method is to fix a desired level of confidence
o that the random variable V3™ will ultimately cover pension benefits. For this, we

define the a—confidence function, denoted 4&5.

Definition 1.4 Given a confidence level o, age z and frequency of payments m, 4 e
is defined as the amount needed to ensure that a whole life annuity due of 1 per annum

(payable m times per annum) to (z) is paid in its entirety with probability , that is:
Pr[i < o] =a.
From this definition and the distribution function (1.5) we have:

Proposition 1.2 The a—confidence function satisfies

. i if @ =gy and k= 1/m,2/m, ...,
o= (L9)

undefined otherwise .

Proof. Asa = Pr[Vd” < .&0] = Hy™ (u€f”) then, from (1.5):

2

0 if LE8 <0,

=14, g0 if0< P < (1 e-d/m=dimime=al) /gtm)

Ll ifa a(vM) 2 (1 —5/m ~§/m|m(w—2x) )/d(m

where ky, = =| -2 In(1 — o8 d™) | = L =k for some integer j € N. In particular,

if o = g, then, ¢z = ¢z and ky, = k, which in turn implies that

-2 (1 - ofPd™) | =

= < ng In(1 - o€d™) < j+1

1 — ok . 1 — gkt1l/m
I e e o
= gy Sebel < Ty
T a@,") ,



with the convention that the percentile is the smallest possible value. a

o)

is discrete, the percentile ,&7° is not uniquely

Since the random variable Y™
defined in some parts of its domain, where a conventional definition can be given, as

long as it is consistent. Note that

cm) _ slm)

ST —aa“'

1—1}’“_ § /1—o* B 6 _
40m) *d<m)( 5 )“d<m)“ﬂ'

o

This fact suggests to redefine ,£;° as follows:

Definition 1.5 Given the confidence level 0 < o < 1. Then

4

oy
= Sy A

ST

for ¢ > 0 such that g, = o (1.10)

Note that Definition 1.5 coincides with (1.9) when o = xg,, for some k = 1/m,2/m, .. ..
To compare the a—confidence function and the whole life annuity, Table 1.4 shows
their ratios at i = 5%, for distinct levels of confidence. For instance, that with i = 5%,

€09 §s “more expensive” than ds” for z < 75. At age 65 in particular, the percentile

function ¢5€%2 is about 7% more expensive than the mean dg; -

Table 1.4: 4% and ,&5? = (§/de?)az with i = 5%

o£87 [35?

Age | a$ a=50% | a=60%|a="70%|a=280%|«a=90%
50 | 14.82592 | 1.06872 | 1.10654 | 1.14023 | 1.17302 | 1.20934
55 | 13.62833 | 1.07415 | 1.12460 | 1.16999 | 1.21450 | 1.26413
60 | 12.24298 | 1.07618 | 1.14371 | 1.20533 | 1.26652 | 1.33536
65 | 10.67885 | 1.07196 | 1.16253 | 1.24719 | 1.33211 | 1.42884
70 | 9.06222 | 1.05333 | 1.17170 | 1.28576 | 1.40309 | 1.53950
75 | 7.46558 | 1.01729 | 1.16678 | 1.31634 | 1.47500 | 1.66456
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We close this chapter with a recursive relation satisfied by o£%, which will be
helpful in the analysis of gains (a mechanism to measure the deviation of our prior
actuarial assumptions) for the retired population under the percentile approach.

Recall that the equation (see Bowers et. al.[2, (5.3.4), p. 144])
g = 1 + UPalips1 , (1.11)

forms the basis for analysis of gains for the retired population in the classical valuation
methods. Let

1 if (z) survives to age z + 1
I, =

0 otherwise.

Then,

a = Pr¥i” < &7
= qur[i'@(m) < aggn)ljcc = 0] + pxPr[}'}w(m) < ag:(;n)llx - 1]
= g+ p.Pr[af + WY < W8],

since PrVi™ < o€\, = 0] = 1 and [Yi|I, = 1] = 4% + vV, %,. Then

T

=PI < (0 ) aE )],
T

which yields the recursion,
ob” = G5 + vy (1.12)
where
Q — (g
oo
Fm)

However, the above recursion does not involve ,& and ,£77;. Based on (1.11), a

B:=

recursive relation for ,& will be of the form:
ofF = G5+ vps Wbl + ot (1.13)

where 0% is a balancing item required to ensure that the right-hand sides of (1.12)

and (1.13) are equal. Therefore,

N e
bz = vpE5 — UPs ol -
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Table 1.5 give values of 4057 for i = 5%, and for various values of z and c.

Table 1.5: Balancing item, o052, with i = 5%

Level of confidence «
Age | 50% 60% 70% 80% 90%
50 | 0.0463 | 0.0522 | 0.0566 | 0.0603 | 0.0638

55 | 0.0611 { 0.0723 | 0.0808 | 0.0880 | 0.0949
60 | 0.0719 | 0.0910 | 0.1058 | 0.1194 | 0.1321
65 | 0.0848 | 0.1212 | 0.1513 | 0.1770 | 0.2053
70 | 0.0875 | 0.1534 | 0.2096 | 0.2654 | 0.3176

75 | 0.0561 | 0.1561 | 0.2488 | 0.3438 | 0.4343
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Chapter 2

Traditional Cost Methods

In this chapter we review the concepts related with the valuation of pension plans. The
active and retired populations are dealt with separately. When studying the active
population, a small dilemma is faced: there are several ways to classify actuarial cost
methods. A very comprehensive presentation on this subject can be found in McGill
[4]. We will divide the cost methods in two groups. By individual cost methods, we
mean those in which the calculations of the normal cost and the actuarial liability
(concepts defined in Section 2.1) are made on an individual basis, the aggregate
cost being just the summation of the individual components. We call aggregate cost
methods, on the other hand, those that look at the group as a whole.

For mathematical convenience, we keep separately the active and the retired pop-
ulations. As we will notice, a central concept in pension valuation is the present value
of future benefits, which will appear repeatedly throughout this work. To ease the
presentation, hereon we abbreviate to PVFB, and denoted with the greek letter IL

In the sequel, time t is assumed discrete.
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2.1 Individual Cost Methods

Bowers et. al [2] suggest a unified approach, where the concept of accrual function
plays a key role. Within this approach, the philosophy behind a particular cost
method is hidden. A second methodology can be found in Anderson [1], where a cost
method is defined in terms of some premises. Our presentation adopts a combination
of both approaches.

The difference between two cost methods lies in the way the pension liabilities are
recognized by the plan sponsor, during the employees’ service time. In other words, to
each individual cost method, we can associate an accrual function M : [a, 00) — [0,1].
M, := M (x) represents that fraction of the actuarial present value of future benefits
accrued at age . The reader may want to take a glance at Figure 2.1, page 32. We

will assume that:

(a) M, =0, that is, a newly hired (age a) employee has no accrued liability;
(b) M is nondecreasing and right-continuous; and

(c) M, =1 for z > r, that is, full benefits are given to those who reach retirement

age.

The resemblance between the concepts of accrual function and cumulative distribution
funection suggests to consider also the analogue to the probability mass function. As

a matter of fact, a cost method can also be defined by means of its accrued mass

function, denoted m and linked to the accrued function by M, = Z;;i my. In
particular, m, = 0 for z > r.
Assume a benefit function b;, updated to year ¢ = 0,1,2,..., with b{ being the

benefit function at ¢ of member j. Consider the following division of active pension
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plan members A; at time t =0,1,2,.. .

7, := the subset of A4; who withdraw in [¢,t+ 1),

H, := the subset of .4; who become disable in [t,t+ 1),

D, := the subset of A; who diein [t,t +1),

R, := the subset of members of A; who retire in [t,t + 1),

& = T, UH, UD; UR, is the subset of members of A; who leave by any cause in [t,t+ 1),

N, := the set of new entrants into the plan during the year ¢ .
Symbolically the set of active members at ¢t + 1 is given by:
At+1:At—gt+-/\/;t7 t:0,1,2,... . (21)

In what follows, some functions for the active population will be introduced.

Present Value of Future Benefits (Ila);

If the plan is such that it is mandatory to retire when the person is exact age (in
other words, the random variable R takes only two values, r and oco), as in Ramsay

(6], then the present value of future benefits for employee now age = z; is given by
Wt pD e, t=0,1,2,...,

which is interpreted as:

whole life annuity
benefit discount probability for ()

X X X{ payable monthly
amount factor to reach age r

issued to (r)

The above expression can be written shorter, by introducing the (k—xz)-year deferred

annuity:

=03 ,__ k-2 - (12)
k—-z)0z =V k—xp;(zr)ak ) k>x.
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The deferred annuity is based on the service table for active members, while the
annuity on the right-hand side is based on the life table for retired members. When
the sum over all the active participants is taken, the PVFB is obtained. A more
general approach is obtained when considering various possible retirement ages. Recall

that the retirement age random variable R has mass function

(r) (r) . _
k—aDx Qg s ifke{zvVvr,...,T},
PE=H=EY M0 g g =

Definition 2.1 The present value of future benefits for the active group, denoted
(ITa)y, is given by
(la); := z (Ila)] = Z Z I ais2q teN. (2.2)
JEA: JEAL k=aVr

The quantity
(Ma)! = Z . m;agz)qk

k=xVT

is interpreted as the PVFB for employee j € A;.

Actuarial Liability (ALa),

The actuarial liability for an individual j € A; is defined as the portion of the PVFB

allocated to date, in other words, as the product

cumulative present value of

percentage future benefits

Definition 2.2 The actuarial liability of the active population at instant ¢, denoted

(ALa)y, is given by:

(ALa), = Y (ALa)] = > M, (la)]

jeAL jEAL
=¥ Z M b _ids®ql,  teN. (2.3)
jeA k=zVr
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The amount (ALa)] can be interpreted as the actuarial liability of employee j € A,
currently age z. Overall, (ALa); is interpreted as the ideal fund balance, or desired
amount of assets to have at hand to face future liabilities.

The following identity, which is easily proved, (see Anderson [1, Exercise 2.2.1,
p. 14]) will be useful:

beetifings = kais” (1 +8) + ¢ ksdgh - (2.4)

It is interesting to see the evolution of (ALa); between instants ¢ and £+ 1:

(ALa)iyn = z (ALG/){—H
J€AL+1
= Z (ALa){le + Z (ALa)l,, , since Ag 1 — Ny = A1 N A,
jEArp1NAL JEN:
= Z (ALCL){H + Z [(ALCL){-H (ALa)t+1 ]+ Z(ALa)gH
jE.At+1ﬂAt JE€EA 1NAs JEN:

= Z Z My btkm 1|%+1 Z(ﬂa)iﬂ

JEAL k=(2+1)Vr Use (2 4) JEE:
+ Z [(ALa)l,., (ALG){—H] + Z(AL“){H
JEA41NA; JEN:
= [(aza)+ Y ma (Ma)i] (1 +0) - [ (AL}l - Y (AL,
JEA: JEE: JEA:
+ > [(ALa)l, ~ (ALa)l, )+ > (ALa),, (2.5)
JEALL1NAL JEN:

where

7
(ALa)] = Z Moy U] jepenjS? q,(f)

k=zVr

is the expected actuarial liability, calculated by assuming that salaries increase according

to the salary-scale function. Notice that (ALa),; has the form

, . other terms that are zero
(ALa)ssr = {(ALa)t +( 5 e g, ma(lla)] )] (1-+4)+

in normal circumstances

This analysis motivates the introduction of the next function.
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Normal Cost NC;

If all the actuarial assumptions hold exactly in practice, the second term in (2.5) will
be zero, assuming the service table is correct. Also, the third term is zero, if salaries

increase according to the salary-scale, in other words, if v = bl

Definition 2.3 The normal cost of the plan, denoted NC%, is given by:

NC =) NC/=> m,(a)}, teN. (2.6)

jeAL jEAL

Thus, in normal circumstances, the quantity NC; is required to keep the fund at its
proper level. The term N Ctj is interpreted as the normal cost for employee j € A,
aged z at instant t. This normal cost is obtained once the actuarial liability in (2.3)
has been established. However, it is also possible to first define the normal cost and
then to obtain the resulting actuarial liability. Historically the choice of a particular
cost method has usually been the result of premises, either on the accrued liability

(ALa); or on the normal cost NC}.

Future Normal Cost FNC,

Definition 2.4 The present value of future normal costs for the active population,

denoted FFINC,, is given by:
FNCt = (Ha)t - (ALCI,)t y te N. (27)
From the definitions of (Ila); and (ALa); we have that

FNCy =Y FNC] =) (1-M,)(Ta)] .

jEA: JEAL

The quantity F'N C’tj can be interpreted as the amount to be allocated from the current

age = to retirement age for employee j € A,.
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From (2.7) we can also write
(ALCl)t = (Ha)t - FNCt , teN 3 (28)
which is sometimes taken as the definition of the actuarial liability.

Example 2.1 In order to illustrate the ideas so far presented, consider the following

pension plan:

The plan:
Starting date of operation: January 1%, 2002.

Date of evaluation (t = 0): January 1°*, 2002.
Retirement age: r = 65 (This means that R takes two values: 7 = 65 and r = c0).
Actual fund balance or assets: (F'a)p = 30,000.

Benefit formula: 2% of the sum of all salaries at retirement, that is:

b; = 0.02 [past+projected salaries] .

Assume the plan has only one active member:

Birth date: January 1%, 1957.

Date of entry: January 1%, 1997.

Age at entry: a = 40.

Past salaries: 1997 = 65,000; 1998 = 70,000; 1999 = 74,000; 2000 = 78,000; 2001 = 85,000.

The actuarial assumptions are:

Interest rate: 7 = 0.08.

Salary increase rate: 0.07.

No death or withdrawal before retirement.
dgs = 12.

Assume the actuary has chosen the cost method given by:

1 1 rz—a x-—40
— —_ d fnnd = :4 e .
My =3 an M, p— 55 T 0,41,...,65
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The functions above satisfy the definitions of accrual functions. This cost method is
in fact referred to as the projected unit credit cost method, as we will see later.
At time ¢t = 0 the member is aged z = 45. Total past salaries is 372,000, while

future salaries are estimated as follows:

projected salaries = 85,000 (1.07 + 1.07% + ... + 1.07%)
= 85,0003'2’6"007

= 3,728,540.03 .

Thus, the annual pension benefit turns to be: by = 0.02 [372,000 + 3,728,540.03] =
82,010.80, while the PVFB is:

(Ha)o = b() 20‘('1.,252) = 211,14324 .
The actuarial liability and the normal cost are, respectively:

(ALQ)O = M45 (Ha)() = 42,22865 5

NCy = mys (Ila)y = 8,445.73 .

Finally, note that the difference between the actuarial liability and the fund balance

is (ALa)g — (Fa)p = 12,228.65, that can be interpreted as the deficit of the plan.

The Fund Balance F;

Before continuing with the basic functions, it is worth mentioning how the fund works.
If actuarial assumptions were met, the actuarial liability would be exactly the amount
of money needed to face all future pension payments. Abandoning this ideal context,
let F, be the actual fund balance of the entire fund. During year ¢, this fund will be
increased by investment returns Iy, by contributions C; and will be diminished by the

payment of pension benefits B; for members in R, U P;, that is

Ft+1:Ft+It+Ct—Bt,
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where P, is the set of members already retired by time t. To simplify the analysis of

the evolution of quantities such as actuarial liabilities, the fund is divided as
Ft = (Fa)t ~+ (FT‘)t y

where (Fa); and (Fr); are the funds for the active and retired populations, respectively.

Furthermore, these funds present the following evolution:

(FCL)H.l = (Fa)t+(Ia)t+Ct—PPt

(FT)H—l = (Fr)t‘*‘(IT)t‘l‘PPt—Bt,

where PP, represents that amount of money withdrawn from the active fund and
transferred to the retired fund to “purchase” pensions benefits of members of set R;

(new retirees). The investment return for actives is given by

(Ia), =i (Fa); + Ifay — ItP@f, , (2.9)

IPP

_ is the interest earned on the contributions and I/ is the same for annuity

C
where I,

purchases. These quantities are calculated using i', the actual interest rate observed
during year t.

Unfunded Liability (ULa),

The normal costs were defined as the cost of the plan (to the contributor) in normal
circumstances, in the sense that our actuarial assumptions reflect reality, something
that does not occur exactly in practice. Winklevoss [9, p. 96] and Dufresne [3, pp. 68-
74] give reasons why plan assets will not be equal to actuarial liabilities: experience

variations, assumptions changes, benefit changes or past service accrual.
Definition 2.5 The deviation of the accrued liability from the real fund level:

(ULa); = (ALa), — (Fa); teN, (2.10)
is known as the unfunded liability of the active population.
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If (ULa); < 0, it is called a surplus and a deficit if (ULa); > 0. However, the
term unfunded is used, regardless of its sign. If actuarial assumptions were met then
(Fa); = (ALa); and there would not be a need for an unfunded liability.

It is worth studying the evolution of (U La); in a particular year. From our analysis
about the evolution of the actuarial liability and Definition 2.3 of normal cost, we

have:

(ULa)iy1 = (ALa)eys — (Fa)en

= [(ALo)+ NCJ(1+9)+ > [(ALa)y, - (ALa)i,,]

jEA+1NAs

[Z(ALG t+1 qu AL@)HJ Z(ALG){—H

JEE JEA: JEN:
—[(Fa,)t—l— (Ia)t + Ct - P]Dt}

= (ULa)y(1+1i) — [Ci + I} — NC¢(1 +3)]

~[(Ta)e —i(Fa) = I+ 1P+ Y [(ALa)L, — (ALa)l., |

JEAL1N A
[Z(ALCL 101 Z N ALa)t_H}
JEE: J€AL
+ Y (ALa)l,, + PP+ I[7], (2.11)
JEM

where If is the expected interest earned on the contributions C; between years ¢ and
t+ 1 and I]'F is the same for annuity purchases. The later have been introduced

motivated by (2.9) (see Anderson (1, p. 12].

Actuarial Gain (Ga);.

If the assumed interest rate equals the actual interest rate, that is, if 4 = ¢/, then

(Ia); —i(Fa), — If + IFT = 0 [see (2.9)]. On the other hand

Z [(ALG,)%+1 (ALCL t+1] = Z Z Mx—t—l t+17 ) k- x]agZ)QI(g )(1+7’) =0 3

FEAs41NAL JEAL1 AL k=zVT
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since b{ 1= b! if no unexpected changes are experienced in the benefit amount during
year t. With regard to the fifth term in (2.11), recall that & = T, UH; UD; U Ry, in
consequence, if our service table is correct, all the components in

[Z("ﬁa)g«!—l - Z qg) (ﬂa){ﬂ]

JE&t JEAL
will be zero. That is, the expected release of liability on account of termination
(by any cause) of employment before getting retired will exactly offset the actual
amount of accrued liability released on account of employees who actually did leave A;
(members of set &). Finally, the liability produced by new entrants > JeN: (ALa)i41,
will represent another source of deviation.

To sum up, if all our actuarial assumptions are met, then the third, fourth and

fifth terms in (2.11) measures the deviation of (ALa)y from the ideal fund balance
(Fa);41 due to deviations from actual to expected ezperience. The sum of these terms

is called the actuarial gain.

Remark 2.1 One could be tempted to say that C;+If—NCy(1+4) = 0 if contributions
are collected as expected. Notice that the unfunded actuarial liability can shrink
only if collected contributions are larger than the normal costs. That excess is called

supplemental cost, and then, we say that

normal costs supplemental costs
Ct — -+ s
to fund AL, to fund UL,
where AL, and UL, are the actuarial liability and the unfunded for the entire plan.
Therefore, if there exists an unfunded liability, the difference between the contributions
and the normal costs can not be considered as a component of the gain: by definition,
a “gain component” must come from the difference between the expected and observed

experiences. Such difference will diminish the unfunded liability. There exists,

however, a cost method where such difference is in fact a gain component. In that

26



method, called Net Cost Method (abbreviated NET), the unfunded liability is forced
to be zero at all times. Supplemental costs are not treated in this thesis; the reader

is referred to Winklevoss [9, p. 96].
Definition 2.6 The actuarial gaz’n' of the active population is given by

Usually, if the actuarial gain is negative, it is called an actuarial loss. The term
actuarial gain is used, regardless if its sign. Likewise, we could define (Ga); as the
summation of individual components (analysis of gain by source). This approach
splits the actuarial gain in its components due to interest (Ggi)), termination by any

reason (G\"), benefit changes (G{*), and new entrants (G\™), as follows:

where fort =0,1,2,...:
GY = (Ia),—i(Fa),— If + IFF
Ggﬂ = Z(ALG){-H - Z q:S:T) (ALG){+1 J
jEE: jEAt

GES) = - Z [(ALCL){H - (ALQ)Z%—l} )
JEALL1NA:

Gﬁ") = = Z(ALG)IZH :
JENM:

As & = D+ Ti+ Hi + Ry, the gain source GET) can be broken down in its components
due to mortality (G\?), withdrawal (Gﬁw)), disability (Ggh)) and retirement (Gg”).
The latter is of particular importance. For a member j € Ry, M1 = 1. Also, in the
sum that defines the individual actuarial liability [see (2.3)], all the terms are zero,

except when k = z + 1. In particular, the expected actuarial liability turns to be
(ALQ)‘ZH = bid:(;j)-l .
In other words, the retirement component can be written as

G =y Mg — Y dDblad (2.14)

JER: JEA:
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Example 2.2 Revisiting Example 2.1, assume that one year has passed since the

first evaluation.

New information:

Date of evaluation (¢ = 1): January 1%, 2003.
Salary in 2002: 92,046 (instead of the 90,950 projected).

The evolution of the fund through 2002 was:

Fund balance of last year: (Fa)y = 30,000.
Collected contributions: Co = 10,000.
Interest returns: (Ia)g = 2,500.
Actual fund balance: (Fa);, = 42,500.

Similarly as before, total past salaries is 464,046, while future salaries are re~estimated
as follows:

projected salaries = 92,046 51g)0.97 = 3,681,425.09 .

The annual pension benefit becomes b; = 0.02 [464,046 + 3,681,425] = 82,909.42. In
particular, the (unexpected) increase in benefit is b — by = 898.62. The PVFB is:

(Tla); = by 19,d5¢ = 230,533.36 .
The actuarial liability and the normal cost are, respectively:

(AL(I)1 - M46(H0,)1 = 55,32801

NCl = m46(Ha)1 = 9,22133 .

The unfunded liability is (ULa); = (ALa); — (Fla); = 12,828.01. In particular, the

gain for the first year of operation, (Ga)p, can be obtained from (2.12):
(Ga)o = (ULa)o(1+14) — [Co + I§ = NCo(1 + )] — (ULa), = —1,299.68 .

Consider the gain by components. There are two sources of deviation from our

prior assumptions: the unexpected increase in salary and interest returns less than
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expected. All the remaining terms in (2.13) are zero.

G = —[Mug (b1 — bo) 20la$? (1 +1)] = —599.68 ,

GV = (Ia)e—i(Fa)y— IS = =700 .
Taking the sum, (Ga)y = —1,299.68, as before.

The negative gain is interpreted as an actuarial loss. Historically salary gains have
been high compared with the other gain components. Pension actuaries have defined
a cost method, for which the normal cost absorbs the salary gain component. This

method is called Individual Level Premium [see Anderson [1, p. 25].

Comparison of Methods

Given two individual cost methods, it is interesting to determine which one will
produce larger actuarial liabilities. The problem is reduced to a comparison of their

respective accrual functions, as in the next lemma.

Lemma 2.1 Let M; and M, be two distinct accrual functions and D : [a,00) —
(~1,1] be defined as D(z) = My, — My,. If D'(a) > 0 and D'(z) = 0 has a unique
solution in (a,r), then ALy > ALg.

Proof. D(a) = D(r) = 0 since M; and M, coincides at these two points. It is clear
that D(z) > 0 if z € (a,r). Then:

(ALa')lt"‘ ALCL 2t - Z Z Ml:c tlc x[ag2)%(cr z Z MZ:B k— zlagmq](gr)

FEAL k=zVr JEA: k=avr
7
= Z Z D) b g >0
jEAL k=zVr

Examples of Individual Methods

Any function M satisfying the definition of an accrual function characterizes a cost

method. However, only a few are used in practice. These can divided in two families:
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the benefit allocation methods, and the cost allocation methods.

Projected Unit Credit (PUC) and the Benefit Allocation Methods
The accrual portion M, is directly related to the accrued benefit that a participant
has acquired at age z under provisions of the plan. From this family we choose the

method defined by

1 T —
and M, = r-a , z € la,7] . (2.15)
r—a r—a

my =

This method is called projected unit credit with a constant dollar benefit allocation.
Hereon, we will refer to it simply as the projected unit credit method and abbreviated
as PUC.

Another member is given by:
me=— and  M,=—, z € [a,r],

called accrued benefit or unprojected unit credit. Here b, is the benefit amount at age
z and B, := Z:;}L b,. Finally, the method given by:

mxz—g—i— and Mx::q—;, z € [a,r],

is called projected unit credit with a constant percent of salary benefit allocation, where

z—1

s, refers to the salary scale, and S, == .,

Sy-

Entry-age Normal (EAN) and the Cost Allocation Methods
In the family of cost allocation methods, the projected benefit is funded by a level
contribution, from entry age to retirement. If the increase in salaries is not taken into

account, then

(T}, z—a Q...
my = eala YV and M, = Jazal , z € [a,7], (2.16)
Qg7 0] Qg.7—a)

where the temporary annuity was defined in Section 1.1. This cost method is known

entry—age with constant dollar cost allocation method.
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If a salary increase is assumed, then:

(1), z—a

- sda' —a
My = froabe U and M, = =24 z € la, 7], (2.17)
Sa  Qg7a) Py

where the salary-based temporary annuity was defined in Section 1.1, as well. This
method is known as the entry—age with constant percent of salary assumption cost
allocation method. This method will be referred as the EAN method.

For a newly hired employee age 30, Figure 2.1 presents the graph of m,, the
percentage of projected retirement benefits allocated to each age under various indi-
vidual cost methods. Figure 2.2 shows the correspondent cumulative accrual functions.
Notice that the entry—age methods yield larger cumulative benefit allocations than
those of unit credit methods. For instance, 50% of the projected benefit is allocated
at age 40 (just 10 years later) under the EAN method (constant percent version).
This is in contrast to the accrued benefit method, which allocates that quantity by

age 57. In both figures, the notation is as follows:

EAN1 Entry-age, constant dollar method ,

EAN2 Entry-age, constant percent method EAN |

PUC1 Projected unit credit, constant dollar method PUC |
PUC?2 Projected unit credit, constant percent method ,

AB  Accrued benefit or unprojected unit credit .

From Figure 2.2, the following inequalities hold:

o _
o<l oS BT lemma Qe g g cpoq (2.18)
B, = S T r—a” fdgrma T Guia)

where ¢ = 30 and r = 65. If salaries are assumed to increase, Lemma 3.2 can be used

to prove (2.18).
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Poreent

PUCL

Figure 2.1: Mass accrual function for a newly hired person age 30

[Source: Winklevoss [9, p. 92, Figure 6-2].]
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70 -

Percent

Ape

Figure 2.2: Cumulative accrual function for a newly hired person age 30

[Source: Winklevoss [9, p. 93, Figure 6-3]].
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2.2 The Retired Population

This section reviews the mathematics that describes the retired population.
From year t to t + 1, the set of pensioners P; will experience an increase due to
the new retirees R; coming from the active population, and decreases by those who

die during the year D;. Symbolically:
Pr1=Pi+Ry — D .

Notice that the set D, in the retired population is different from the one in the active
population, though the same symbol is used. For the retired population, by benefit
function we mean the amount of the pension payment. The amount of money needed
to face future pension payments is called the actuarial liability or present value of

future benefits.

The Actuarial Liability (ALr),

As mentioned in Chapter 1, a pensioner faces only one cause of decrement, namely
death, which is the only uncertain event. In particular, the calculations use a mor-

tality table (through the functions g, and p,) instead of the service table.

Definition 2.7 The actuarial liability for the retired group, denoted (ALr)y, is given
by:
(ALr), =Y bl ag” . (2.19)

JEP:
The term bZ a%” is interpreted as the actuarial liability of the retired member j € P;.
Compared with the active group, the study of the retired population is simpler, since
no additional functions are required.

The backward equation [see (1.11)]:

d = (G — (1+i) TE|rw—=x
aw—H—‘(w 1) Do ) E[? ]a (2'20)
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forms the basis of the study of gains for the retired population. Also, from (1.6) we

have:

.. 7 — 109 740202
Qp = (agz + T ) ( ¥ ) , T e [r,w - :v] . (2.21)

Putting together (2.20) and (2.21), it easily follows that:

R )

.(12) .12 N _
Qoo =z (141) (-——d(lz) e

qz) + g 457 - (2.22)

Equation (2.22) does not coincide with that of Anderson [1, (2.10.4), p. 48]. Anderson’s
equation is based on the approximation d3” = i, —11/24 (see Bowers et al.[2, p. 151],
for its derivation and comments), while (2.21) is based on the UDD assumption

instead. Furthermore, note that

7 13 . 7 — 402 11
14 —1 and g—-————z N —, (2.23)
da? 24 109 {02 24
which are the approximations used by Anderson.
We are now in position to study the evolution of (ALr), over time:
_ .12
(ALT)tH = _S_ , bt+1 Azt
J€PL+1
- j - (12) -(12) : _
= E bl g E , 1o1 Ggry, since Pry — R =P NP
FEP+1MP JER
_ (12) 03 542
= E Tt E:Ab]a1+§:t+lz+l
jEPt.HﬂPt FEP41NPy JER:
_ Yoo j 2 7 . 12) a2
= E t z-l—l Eb Qg1+ E Ab; x+1+§:t—|—1a’m+1
JEP: Use (2. 22) 7j€D: FEP410P: JER:
i — i02)
:ALTli—Ebj( -—g———~)
( )t( + ) t daa 169 da2) e
JEP:
) @ 12 -(19)
|:§:bjaz+1 E me?%ﬂ} E Ab]a 1“'5: t+1ax+17
FEDy JEP: FEP41NPy JER:

where A := b{ = b% is the change in benefit amount. In analogy with the active
population, the term bl agﬁl is interpreted as the ezpected actuarial liability for retiree
j € Py

Recall that

(FT)H—I = (FT)t'J}‘(IT')t“{’"PPt‘—Bt,
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describes the evolution of the fund balance for retirees. Further, the amount B, is
divided as
Bt b= NBt + OBt y

where N B, denotes the total of pension payments to members of set R, who in general
will have retired sometime during the year and received a few pension payments before
the end of the year ¢. Similarly, OB; is the total of pension payments paid to members

of set P; during year t.

The Unfunded Liability (ULr),

The difference between the actuarial liability and the real fund balance is also known

as the unfunded liability:
(ULr); := (ALr)y — (F'r): .

In ideal conditions, (ALr); = (F'r)s, and there is no unfunded liability. Its evolution

between instants ¢t and ¢ + 1 is as follows:

ULy = (ALr)(1+1) =Y bg(az_z) _iz) qm>

1a2 dqa2
JEP:
. (1 2 7 o2 J (12 - (12)
E b g, - E 4z b Gy E oAb A2+ E by, d5T,
JE€ED: JEP: JEP41NP: JERL

—KFT)t + (I’f‘)t + PP — NB; — OBt]

= (ULr) (1 +i) — ((Ir)e —i(Fr)e = ITF + IF)

Y A - [ alh - Y e |

FEPe1MVPy JED, JEP:

=[PP+ IFPY = 3 W 2~ (VB + )|
J€Ry

= (b (=) o5
Lz bt (d(lZ) 103 da2 qw) (OBt + It )

cP:

If all actuarial assumptions are met, all the terms above are zero. Therefore, it

makes sense to define the actuarial gain for the retired population as:

(Gr)y = (ULr)(1 +14) — (ULT) 441, teN. (2.24)
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By components, the gain is written as
Gr) =GP+ G + 6™ + G+ 6

standing for the gains due to interest, benefit changes, retiree mortality, newly retirees

and old pensioners (members in P;), defined, respectively, by:

GY = (Ir),—i(Fr), - IFP + IE
USRS SRV TN
JEP1NP
G = [ - Y e ],
JED; FEP:
G\ = (PP+IFF) - (z bl i@t + (NB, + INB)> ,
JER:

and

® . T (1 — i) OB
Gy o= l;z bg(zlg;; T eadin %) - (OB, +177)| .

1 €Pt
In practice, the benefit changes rarely, so the gain due to this source, ng), is
usually zero.
It is worth mentioning that Anderson’s expression for G§p )
N IE z' ] (0B, — I9%) ,
24
JjeP:

since he uses a different approximation for a5, [see (2.23)].

2.3 Aggregate Cost Methods

In the above sections the basic functions for the individual cost methods were studied.
The normal cost, in particular, was calculated as the sum of individual normal costs
[see (2.3)]. In aggregate cost methods, on the other hand, the normal cost is defined
for the entire group, that is, we do not produce individual normal costs. A unified

approach is presented, which follows the ideas of Taylor [8].
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Definition 2.8 Under the aggregate cost method, the normal cost, denoted NCy, is
given by:

where the parameter S(f) measures the portion of future normal costs to be paid at
the beginning of year ¢, and II; denotes the present value of future benefits for the
entire group. It is given by
F - .
=Y Y b pgidf?ay) + ) bl aS? . (2.26)
JjEAs k=avr JEPy
Finally, AL, is the parameter that represents the actuarial liability. The choice of

these two parameters determine particular aggregate methods.

Before giving some possible choices for function S, a new random variable is
needed. Let Ry be the discrete random variable representing the retirement age given

that the person does retire. The difference between Ry and R is the fact that Iy has

a conditional distribution, with support on {z V r,...,7}, and given by
(), (r)
el e ifk=zVr,...,T
p(k) :=Pr[Ry = k] = Lk=avr k-aPs 4 (2.27)
0, elsewhere.

In particular, if the plan is such that it is mandatory to retire at only one age, say r,
then p(k) =1 if k = r and zero otherwise.
In practice, two possible choices for the parameter § in (2.25) are considered. If

no salary increase is taken into account, then:

. ng . number of employees in A;
N Ej A, ZZ::,: [ p(k) ~ present value over future working years -

B(t) (2.28)

Notice that, if there is only one possible age of retirement r, then:

PO A
Z;;Z Ly a:cr_:E[

B(t) = ., teN,

which can be interpreted as the reciprocal of an average temporary annuity, weighted

by £,. The second version assumes an increase of salaries, and it is of particular
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importance. The function f is given by:

_ St _ > e S
FSt ZjEAt Z;:z S% séx:m p(k) ’

and is the ratio of the sum of all the salaries and the present value of future salaries.

B(t)

teN, (2.29)

If the plan allows to retire at only one age 7, then (2.29) becomes:

r—1
Zm:a, ﬁ’ﬂ Sﬂf
r—1 -
Zag;—_a Ez’ Sz sa:r,:r—:c

p(t) =

3

which can be interpreted as the reciprocal of an average salary-based temporary
annuity weighted by £,s,.

It is not straightforward to obtain a general expression for the gain, unless the
parameter A is known in advance. Hereon, we will take g as given by (2.29), since
(2.28) can be seen as a special case, where S7 =1 for all j € A;.

A very common but erroneous assertion in the pension literature, is that for
aggregate cost methods, the gain is zero (see Anderson [1, p. 34]). Another example
can be found in Ramsay [6, p. 376]: “.. assuming the gain is always zero, ...”.
However, he continues to define the formula [see (55)] to calculate the gain! Certainly
any cost method has to have a mechanism to measure the deviations between expected

and real experience, the aggregate family being no exception. The confusion can be

clarified with the following assumption.

Assumption 2.1 In aggregate cost methods, the gain for year t (if any), is spread

into future normal costs.

In terms of the normal cost, Assumption 2.1 means that NC; already includes G;.
This gives us the framework to define NC} in aggregate methods, and the relationship

between its analogue in individual methods:

normal cost gains and losses
normal cost in
= in the sense of + in the sense of
aggregate methods
individual methods individual methods
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Recall that for the individual cost methods, the unfunded of year ¢ + 1 satisfies the

recursive relation [see (2.12)]
(ULa)iy1 = (ULa)(1 + i) = [Cy + I = NCy(1 +1)] — (Ga); - (2.30)
In aggregate methods (2.30) takes the form
(ULa)ii1 = (ULa)y(1 + 1) — [Co+ If = NCi(1 +14)] ,

which can be rewritten as

(ALa)p1 = (ALa)(1+14) — [(Ia)y — i(Fa), — If + I]T]

+ (PP, + IFP) = NCy(1 +4) . (2.31)
An additional function is required to define G;.

Definition 2.9 The unit normal cost percentage at instant ¢, is given by

I, - AL

U, :
i FSt ’

teN. (2.32)

In particular the normal cost satisfies NC; = U,S;. Since the concepts of the PVFB
for the retired group and the actuarial liability for the retired population coincides,
symbolically, (IIr); = (ALr);, an equivalent definition of U; would be

(Ila); — (ALa);

U= FS,

(2.33)

The idea is to study the evolution of the unit normal cost percentage. In doing

so, the components in (2.33) are analysed separately. Firstly,

(Ma)s1 = Z (Ha’)g—{—l

JEA+1

= Z (Ia),, + Z (Ila)],,, since Ay — Ny = A NA
JEA1NAL JENY

= Z (Ha)t—H + z Ha Jis1 — Ha){—}—l] + Z (Ha)g+1
FEA 1 NAs jEALL1NAL FEN:
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= Z Z bg k—p— 1]”’221 q;(:) Z(ﬁa){%—l

JEAL k=(z+1)Vr Use (2.4) Jj€é&t
+ Z [(Ta)l,, — ()] + Z (M),
JEAp1NAL JEN
'E& JEA;
+ Y [@afy, — (Ta)iy] + > (el (2.34)
JEAp1NA: JEN:

where the tildes denote values calculated using the expected benefit at ¢ + 1, that is,
they are computed as thought the increase in the benefit Ab =] 1 bl is zero.

The present value of future salaries on the other hand satisfies

PSS = Z (FS){+1
JEAL
= Z (FS)%+1 + Z(FS)@_H y since At—H - M = At-{—l N At y
JEA1NAe JEN:
= Y (FL+ Y. (FS - (FOLL)+ ) (FL,
JEAs L 1NAL JEALL1INAg JEN:
= Z(FS){H - Z(Fs)t-}-l + Z [(FSY.: - (FSYL.] + Z(FS){#J
JEA: FEE: JEA1NAL JEN:
. o Sy S e g
= Z Z S ‘;jﬂ Opp1:k—2—1] p(k) “Z(FS)1J:+1
jeAr k=z+1 L jEE
+ Y (FSy - (FSYal+ Y (FS)n
FEAL1NAL FEN:
= FS, (1+1) ~ S(1+4) ~ | D (FS) — > (F9)i,,
jEe& jEA:
+ > ((FS)yy — (FS ]+ > (FS),, (2.35)
FEA1NAe JEN:

In the above, identity

s&af:+1:‘I-s——_—-s's‘:lﬂl = (sa’azk_—_ﬂ - 1)(1 + 7’) + q( ;s x+1

Sz+1
was used, while (FS)] .1 is the ezpected present value of future salaries of j € Ay,

calculated by assuming that salaries increase according to the salary—scale function,
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that is,

T r . Sp g
(FS)i = z S "‘Sj‘l Ggq1:k—z—1] p(k) .

k=z+1 z
Let

N = ((Ta)— (ALa))(1+3),

AN = —[Zﬂat+1 Zq”ﬂa ] 2:(1—Ia){+1

JjEE: ]EAt JEN:
+ Y [(Ma)y, — [Ma)y,) - [(Ia)s — i(Fa), — I + "]
JEAL1NAL

+[PP,+ IFP] = NC,(1 +1)
D = FSt(1+Z),
AD = —&Uﬁw%—D:F€M4 §:¢ﬂFSHJ > (FS) -

JEE FEA JEM;
Putting together (2.31), (2.34) and (2.35), and the facts that N/D = U; and D+AD =

FS,,1, the unit normal cost percentage at instant ¢ 4+ 1 can be expressed as

o _ NtAN
“1 T D+AD
N 1 N
B 5*D+AD&AN+EAm
1
= U — —AN AD
tT P, (AN UAD)
1
_ _ T —i(F __J¢ rp
U Fom {l(Ia); —i(Fa), — I} + I "]
+ [Z (Ta)l,, - (FS) )i41] Z ¢ (e}, — U, (FS)t+1]]
JEE: JEA
— > [(Ta)ly, — U (FS)p) = [([a)sy — Ui (FS)]p]
JEAL1NAL
- S ((Ma)lyy — U (FS)l - PR+ IF71} (2.36)
JEN:

since U, S, = NC,. There is something interesting about (2.36) that suggests the

definition of the “individual actuarial liability” in aggregate methods. Let

(ALa>t+1 = (Ha){ﬂ - U (FS)1+1

(ALa)l,, = (Ha)l, —U, (FS)i,; .
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These definitions are consistent with (2.33) and the fact that the actuarial liability for
the entire group is the sum of a lot of actuarial liabilities. As a consequence, (2.36)

can be rewritten as

1 .
Ugr = U— {{Ua), = i(Fa)e ~ If + I['T]
FSen
[Z(AL@ t+1 Z e ALG’)H-l:{
jE€E jEAL
- Z [(ALa)j,y — (ALa)iy]
JEA1NA:
-5 (ALa),, ~ PR+JPﬂ} (2.37)
]ENt

Once again, under normal circumstances all the items within braces in (2.37),

except —[PP; + IFP] will be zero. Thus, it makes sense to define the gain as follows.

Definition 2.10 At instant ¢, the actuarial gain for the active population, denoted

(Ga)y, is given by:
(G(l)t = (Ut - Ut—H) FSH—I s t e N. (238)

The gain components are (definition of the gain by source):

(Ga)y =GP + G + G + g™ | (2.39)
where fort =0,1,2,...:
GY = (Ia),—i(Fa), — It + 1T,
Ggﬂ = Z AL“ Ji+1 Z 4z ALG Jis1 s
jeét JjeA
GY = = Y [(ALa)ly, - (ALa)l.],
JEA1NAs
ng) = ‘"Z(ALCL)"ZH-
JEN:

Notice that both, aggregate and individual cost methods have the same expression
of the gain by components, [compare (2.39) and (2.13)]. Again, writing down & =

T, +H:+D;+ R, the gain due to departures from the active status can be decomposed
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into the sum of four components. ‘Expressions for these four components are all
similar.

Certainly, the parameters § and ALg in the aggregate methods can be chosen
arbitrarily, though only a few choices are recognized in practice. In this work, we
assume the parameter § given by (2.29), that is, salaries are assumed to vary with

time. Thus it all reduces to assigning the value for ALy.

Examples of Aggregate Cost Methods

Three methods are considered.
Frozen Initial Liability (FIL) The actuarial liability is given recursively by (2.31),
where the initial liability ALy (starting value) is computed by using the so-called

aggregate entry—age cost method (see Anderson [1, p. 41]), where

I,
ALy =TIy — FTS"V’I%FS” : (2.40)

and ITW, is the present value of future benefits calculated at age of hire a, while
LI
FSW, := ];lt kz:: s -S-— Yty P(E)
is the present value of future salaries discounted to age at hire. Finally, F'Sy is
the present value of future salaries discounted at valuation date. Formula (2.40) is
not used by Ramsay, since it leads to a contradiction; see Anderson [1, p. 41] for

comments.

Attained Age Normal (AAN) The starting value in (2.31) is the actuarial liability

of the projected unit credit method computed at instant ¢ = 0 [see (2.15)], that is:

A=Y 3 (e )b eesalifta + (ALr)o,

jE€AQ k=zoVr

where z; is the age of member j € A,.
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Net Method (NET) Here, for any time ¢t € N,
ALt = F1t )

which implies that there is no unfunded liability, and it is the only method with such
characteristic. This fact introduces an important difference with the other aggregate

methods. Furthermore, the evolution of U, between ¢ and ¢+ 1 turns to be

1 ) .
Ut—H = Ut'— FS {[(Ia)t—z(Fa)t—It +ItPP]
t+1
[Z AL“ Ji+1 Z Q(T) AL“ t+1]
JEE: JEA:L
- Z [(ALa)t+1 (ALa)t-I-l]
JEAL L 1NAL
-3 (ALa)l,, — [PP+ IFF) - m+y—N@u+m} (2.41)
JEN:

In comparing with (2.37), an extra term appears in the decomposition of the gain,

namely,

G = G+ If — NC,(1 +1),

due to excess in contributions.

Recall Remark 2.1 about the above term. We argued why such term can not be
considered as a gain component, since the difference goes to amortize any unfunded
liability. But NET there is no unfunded liability, and therefore, no supplemental
costs. In other words, the normal cost is an estimate value of what we think the fotal
contribution should be. Any variation (contributions less than expected) should be
considered as a gain (or loss) component.

It is worth mentioning, that traditionally this method is referred to as the Aggregate
or Global cost method. But this can be confusing, since the Frozen Initial Liability
and Attained Age Normal are also aggregate methods. The choice of the name comes
from the fact that the normal cost not only will absorb unexpected deviations (gains
and losses), but also the unfunded is forced to be included. In other words, there
is zero unfunded liability, since the actuarial liability is defined to be the real fund

balance.
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Chapter 3

Percentile Cost Methods

The primary objective of any pension plan is to ensure the financial stability of current
employees after retirement, by means of funding of deferred annuities throughout their
working life. In particular, it is desirable to maintain a high likelihood of receiving
such benefits.

In Chapter 2 the basic valuation functions were defined. These are based on the
present value of future benefits, which contains a$?, a mean value term. Despite the
wide use of this approach, it is natural to ask if this mean value is an appropriate
estimator of the amount needed to pay future pensions, specifically when dealing with
small plans with large experience variabilities. Percentile cost methods may provide
the answer to this problem, replacing the mean value term dé? with a percentile 457
value. Reconsider the formulas of Chapter 2 integrating this change. To distinguish
them, append the subscript « before any particular function; e.g. the normal cost for

a percentile method is denoted ,NCs.

We formalize the ideas discussed above as follows.

Definition 3.1 An a—percentile cost method is an actuarial cost method that funds
promised benefits so that the ideal fund balance for retirees is the lump-sum amount
such that there is a 100a% chance of paying the promised lifetime benefits if no

further contributions are paid into the fund.
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3.1 Individual Percentile Cost Methods

In percentile cost methods, the annuity factor d%? is replaced by the confidence

function ,&%?. All the formulas of Chapter 2 remain the same, except for this change.
However the interpretation of the formulas shifts to a percentile approach, instead of
mean values.

An analogue to the deferred annuity is introduced in order to reduce notation.

Let

cay k~z 02
k—a:|a€z = k——xpg;T)'U ma k> k > T,

be the deferred percentile function. The analogue to (2.4) then becomes
k—z—1|agg(;1-2£1 = k-—aclaga(cw)(]- + 'L) + Qg) bZH k—z—1la 221 .

Definition 3.2 At instant ¢t € N, the formulas for the plan’s valuation are defined

as:

JMa)y = > oMa) = > 3 b iegaél?e”

JEAL jEAL k=xVr
a(ALa) = > a(ALa)] = > M, o(lla)],
jEAL jEAL
aNCt = Z athj = Z My a(Ha)g ’
jeAL FEA:
«FNC;, = o(la) ~ a(ALa), = > (1— M,) o(Tla)]  and
JEAL

a(ULa)t = a(AL(l)t - (Fa)t .
The quantities with the superscript j are interpreted as related to employee j € A,.

Definition 3.3 The a—actuarial gain is given by
o(Ga); = (ULa)y(1 +i) — [Co + I} = o NCy(1 4+ 9)] — o(ULa)ey1 (3.1)
and can be decomposed as:
a(Ga) = Gl + Gl + oG + G (3.2)
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where for ¢t € N,

aGii) = (Ia)y —i(Fa)s — I} + ItPP J
aGgT) = Z (ALCL b1 Z g (ALCL b1
jESt jEAt
aGg‘”) = = Z I:a (ALa)¥+1 (ALa)tH] ’
JEeA41NAg
ang) = - Z o(ALa)yy -
JEN

Again, as & = D, + T; + H: + R, the gain source afo) can be broken down in
their components due to mortality (ang)), withdrawal (aGiw)), disability (aGﬁh)) and

retirement (,G\"). In particular, since

(ALa)t+1 =0 ags(:lil )

for a member on set R;, the retirement component can be written as

aGgr) = Z g—?l Z er) b% @ 511 .

JER: JEA:

Examples of Individual Percentile Cost Methods

In the traditional approach, individual cost methods were divided in two classes: the
benefit and the cost allocation methods. An individual percentile cost method is still
defined through the choice of an accrual function. Two individual percentile cost

methods can be distinguished:

Percentile projected unit credit (¢PUC): given by

1 _
and M, = z—a ) z € [a,r] . (3.3)
r—a r—a

m, —

Percentile entry-age normal (oEAN): defined by
( ) T—a

a Sda:w—a
my=2eePe U and M, = == 7 € [a,7] . (3.4)
Sa  *0a774) *q:7=a]

47



3.2 The Retired Population: Individual Approach

The development of the formulas are quite similar to the analogue of the traditional

approach.

Definition 3.4 The a-actuarial liability for the retired group, denoted o(ALr),, is
given by:
o(ALT); = Z b o E87 (3.5)

JEP:
As before, the term b o&3? can be interpreted as the a—actuarial liability of the
retired member j € P;.

For the percentile cost methods, the analogue of formula (2.20) is

B2 = b = (357 +af87(14+0) + a0 ol (36)

which follows directly from (1.13). Thus, the evolution is found in a way similar to

the traditional approach:

o(ALr)epr = o(ALT)(148)+ D (AF) o&

JEP1NPy
i #09 2 j F12) ;12 j12)
~L§ﬁbiaz+1 E,Qm ta§m+l}+§:bg+lax+l Zb] ( + ob3 (1‘*"@))-
€Dy jEP: JER: JEPL

The evolution of the a~unfunded liability o(ULr), = 4(ALr); — (F'r), between

instants ¢ and ¢ + 1 is as follows:
(ULr)ip1 = oULr)e(1+4) = [(Ir)e — i(Fr), — IFT + IF]

S AN - [ e - 0t afl]

JEPL NP jEDs J€Pt
- [(Ppt + ItPP) - Z t+1 afg-?l (NB; + ItNB)]
JER:
B {Z bﬂ( (“1]2) 9(12)(1 + z)) — (OB, + ItOB)} i
JEP

Therefore, the gain can be defined as

a(Gr)e = o(ULr) (1 +14) = o(ULT)e11
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or by components:
o(Gr)y = oGP + 4GP + .G 1+ ,GU + .G

where for t € N:

aGﬁ” = (Ir), —i(Fr),— I +IE
oG = = Y AGE
JEPs10VP
j€D: JEP:

G = (PP +IPP) - (Z bl alth + (NBthNB)) )

JER:

&Pt

3.3 Aggregate Percentile Cost Methods

In traditional cost methods (individual and aggregate versions), as well as in the
individual percentile cost methods, the PVFB is defined as the sum of individual
PVEFB’s [see (2.2), (2.26) and Definition 3.2]. In aggregate percentile cost methods,
however, we do not produce individual PVFB’s. Instead, the PVFDB is defined as the
amount required to fund the projected retirement annuities for all participants with

a specified overall probability c.

Definition 3.5 Given a level of confidence 0 < a < 1, the a~PVFB for the entire

group at instant ¢, is the quantity ,II; such that:
PriX, <, I]=«a, teN, (3.7)
where X; := (Xa); + (X7); is the random variable of the PVFB for the entire group,

D icd bl v Y2 if R # oo;

(Xa); := : (3.8)
0, otherwise
(Xr)e = > WV, (3.9)
JEP:
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are the random variables of the PVFB for the active and retired populations, respectively.

Note that E[(Xa),] = (Tla); and E[(Xr),] = (ALr); are the traditional measures
of the PVFB’s for the active population and retired populations, respectively.

In order to evaluate the probability in (3.7), the distribution of X, which is a
sum of independent (though not necessarily identically distributed) random variables,

must be approximated. The well-known normal approximation is our first step.

Approximation 1: Normal. If X is a random variable with mean ¢ and standard

deviation o, then:

Pr[ng]z@(x;'u), zeR, (3.10)

where

T e~y2
P(x) = / mdy :

is the standard normal distribution function. In particular, the (approximated)
solution of the equation

PriX <z]=a
is

TR P+ 2,0, (3.11)
where z, is the 100" percentile point of the N(0, 1) distribution. The accuracy of
the normal approximation depends upon the skewness of X, which in turn depends,
in our particular case, on the number of active participants. Then, when the skewness

is not close to zero (usually in small plans with large experience variations), a more

accurate approximation is required.

Proposition 3.1 Haldane’s Type A Approximation. If X is a random variable

with mean u, standard deviation ¢ and index of skewness v, then

sz)t — $
Pr[ng]%@<(1+ (p)(h,g;/}(h’ )> , reR, (3.12)
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where @ is the standard normal distribution function and
2= (zx—p)lo, s:=alu, hi=1-37,
P(h,s):=1—1h(1—h)[1—1(2—h)(1 -3h)s’]s*  and

p(h,8) = hsy/1— §(1 ~ h)(1 - 3h)s?

Proof. Can be found in Pentikéinen [5]. ‘ O
Notice that if the skewness is zero, Haldane’s approximation becomes the normal
approximation.

In this case, the solution of the equation
PriX <z]=a
is approximated by

TR+ g—[(w(h, s) + zap(h, 5))1/h~1] . (3.13)

To apply Haldane’s approximation, the condition 1—£(1—h)(1-3h)s* > 0 is required.

In terms of the central moments, that means

-2 <6

7
Remark 3.1 There exist others possible approximations. For instance, the so—called
Haldane Type B approximation, requires the computation of the kurtosis. In this case,
the kurtosis of Y3 is easily obtained:
4A§gm) —4 BAg;m) Agm) +6 QA:(Em) (A(zm))Q _ 3(A§:m))4
P
A — (4

Fm)
z

)

that would be used to compute the kurtosis of (Xa),.
Still another one is the Wilson—Hilferty approximation, that requires the first three

central moments. The approximation can be written in operative way as follows:
%
PriX <z]= & (q +cz(z+03) ) ,

ol



where

C1 =

(2R B
=2l

In this case,

e\ 3
S pto [(zacg 61) _03} _

Haldane type—A is chosen, because it seems to be the most accurate, according to
Pentikiinen’s results (see [5]).

The following property will be useful.

Proposition 3.2 If X, Xs,..., X, are n independent random variables, while 092.
and vy; are, respectively, the variance and the index of skewness of X, j =1,2,...,n,

then the index of skewness of X = 2?21 X is given by

1 n
YX] = = E ol where o} = E ol .
g% “
J=1

Proof. By induction over n; the result is trivial for n = 1. Assume that it also

holds true for arbitrary n and let ¥ = Z?;l X; =X + Xp41. Since X and X, are

independent, then:

1 1
Y] = SE(Y B0 = S E((X + Xa) ~ B + X))
Y v
1
= L BIOC  B(X))] 4 Bl ~ E(Xs1)))
Y
1
= "3‘(02( Y[ XT] + 0'24-1 Vo+1)
Oy
1 n 1 n+1
= 3 (Z 0? v + 02+1 ’Yn+1) =3 ZO?,Yj )
Y \j=1 Y j=1
and 02 = Z:;”ll o3, by independence. O

To calculate the variance and index of skewness of X, first we work with its

compounents, (Xa), and (X7);.
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Proposition 3.3 The variance (0a)? := Var[(Xa);] and index of skewness (ya); =

v[(Xa)¢] of (Xa), are given by

o = S [lowl] = {3 (6 oF I+ o)~ (1]}

jeAs jeAL k=zVr
(3.14)

and

(ya): = E Z aa)J (va)] , (3.15)

tjed

where
7

(e’ ()i = 3 (0 v*=2)[582 (607 + (a5”)® + 8L (647)?] kaplVgl

k=xVr

-3 [(0a)]” [(Ta)]] - [(Ma)]]" , (3.16)
that is, (va)! = v[(Xa)!] denotes the index of skewness of (Xa)].

Proof. Expressions (3.14) and (3.15) follow from independence of the (Xa)]’s
and Lemma 3.2. In (3.16) we use the fact that the index of skewness of a random

variable X can be expressed as

() = EO0) = NCOBL0) - DX

To obtain E[((X a)] )3], the third raw moment of the random variable representing
the PVFB for the active employee j € A, (Xa)?, notice that

(B850 = BV — af°)°) = BT - @7)° - 367 (61"

which in turn implies that E[(Y“Z)) ] = (527)%582 + (a8?)? + 332 (507)2.
Therefore,
E[((XG)QB] - E [(bg ,UR—x) [( (12)) 7%2) +( (12)) +3a(12)(a§122)) ”

= > B TEIGE) + (@2)° + 3" (607 k-apar”

k=zVr
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O
A particular case arises when the retirement age is assumed to be the same for all

active members.

Corollary 3.1 If r = r and q,(g) = 1 if k¥ = r and zero elsewhere, the variance

and index of skewness of (Xa); are, respectively:

il

o) = 3 [oaf)" =S { (ol o160 + (@877 rap?) — [(a)]]}

AEAt JEA:

(va) = > [(ea)i](va)i

3
(Ua JEAL

[(ea)]]*(va)] = (0] o™= [582(58%)% + (a7)° + 38 (582)%] —ap(?

-3 [(aa) ] (Ila)] — [(Ha)g]g

Proof. Immediate. a

Remark 3.2 Expressions given in Corollary 3.1 do not coincide with Ramsay’s formulas.
If the random variable of the present value of future benefits for the active employee

j € A, (Xa)] were defined as
(Xa)] = b] roapDv" = V2 (3.17)

expressions for the variance and index of skewness of (Xa), would be

o0 = 3 (o varr " 5877,
JEAL
2

3 : 3
(Fya)t = ’:5’1("12) (g_r_> Z (bg T~ :cpg(pT) ) ’
O .
jEAL
which are the formulas given in Ramsay[6]. Definition (3.17) is not good, in the sense

that the term ,_ ps )

should not appear in a random variable representing a present
value. Assume for a moment, that the benefit function equals to one. Further, that

the pension benefit is a lump—sum of one unit payable at retirement age, instead of

04



a whole annuity payable monthly. Following the development of Bowers et al.[2], the
proper definition for (Xa)! is (Xa)! = v®%, where R — z is the future “life” within

the active group. The term ,_ mp( ¢

appears when expectation is taken.
The second step is to work with (Xr); from the retired population.

Proposition 3.4 The variance and skewness of (X7); are given, respectively, by

(or)? = > (4] 58)7, (3.18)
j€7’t
(e = }: 587)%4557 (3.19)
tjep
Proof. It follows by independence and Lemma 3.1. O

Finally, assuming that (Xa); and (Xr); are mutually independent, it is easy to

obtain expressions for the variance and skewness of X.
Corollary 3.2 The variance and skewness of X; are given, respectively, by

ol (ca)? + (or)?  and (3.20)

1

v = ;}tg[(oa) (a)e + (or)? (77)d (3.21)

If the skewness of X; is small (say, less than 0.01 in absolute value), then the
Normal Approximation can be used to define the percentile version of the PVFB.
That is (3.11) implies that:

olly = Il + 24 0y, (3.22)

where z, is the 100a!" percentile of the standard normal distribution. Using Haldane’s

approximation, o(Ila); is given as follows:

Definition 3.6 Under percentile aggregate cost methods, the a-present value of

future benefits of the entire plan at instant ¢ is given by:
=10, + %W(h, $)+zaplh,8)] " =1, teN, (3.23)

where o, and ; are given by (3.14) and (3.15), respectively, and the functions ¢(h, s)

and ¢(h, s) are defined in Proposition 3.1.
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In particular, if the confidence level is chosen to be o = 0.50 (the median), then
JIL, =10, + 98-5 [w(h, )Vt 1] .
With I, already defined, proceed as in the traditional aggregate method.

Definition 3.7 Under the aggregate percentile cost method, the normal cost, denoted
«INCy, is given by:
oNCy = B(t) (oIl — o ALy) . (3.24)

As before, 8 measures the portion of future costs to be paid at the beginning of year

t and AL, is the parameter that stands for the a—actuarial liability.

Of particular importance is the parameter 3 given by

St
t) = —=, 3.2
pO) = 75 (3.25)
where S; is the sum of all salaries (or covered payroll) and
FSi=Y > S i, 5nk)
j€AL k=avr
is the present value of future salaries at instant ¢.
Definition 3.8 The a-unit normal cost percentage at instant ¢, is given by:
aHt - aALt
Uy 1= ———r | teN. 3.26
t FSt ( )

In particular, the a—normal cost satisfies , NC; = Uy 5.

In the traditional aggregate approach, the evolution of the unit normal cost
percentage was found by studying the evolution of (Ila); during the year ¢, since
the difference (IT — AL) is the same as (IIa) — (ALa). On the other hand, a basic
idea is that the PVFB for the entire plan is just the summation of their components
of the active and the retired populations. In percentile aggregate methods, on the

contrary, things work in the other way round: the first value we obtain is the PVFB
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for the entire plan, and then split it in two parts. The first part is related with the
active population and the other part with the retired population.

Certainly, we can calculate both ,(Ila); and ,(ALr); by using Haldane’s approxi-
mation. Unfortunately, when these approximations are summed, the result is not
exactly ,II; obtained when using (3.23). A nice way out of this dilemma is given by
Ramsay, who define a proportional adjustment factor, denoted ,v. The idea is to
assume that the proportion between ,(Ila), and (Ila); is the same as the proportion

between ,II; and II;. In other words, let
o=, tEN. (3.27)
Notice that, 4 — 1 as v — 0, for a fixed t.

Definition 3.9 For percentile aggregate cost methods, the a—present value of future
benefits of the active population, and for employee j € Ay, denoted 4(I1a)e, and ,(ITa)],

respectively, at instant ¢ are given by

o(a)y = ot (Ia),,

o(Tla)] = ot (Ma)],
for t € N. Expected quantities are defined similarly.
Furthermore, “individual” a—actuarial liabilities can consistently be defined as follows:

J(ALa)] = oty (1)) — U, (FS), 1, and

(ALaY = oty o(la)! — U, (Hg)gﬂ :

The formulas for the gain components studied in the traditional aggregate methods

can now be used.

Definition 3.10 At instant ¢, the a~actuarial gain, denoted ,(Ga);, is given by:

a(Ga)t - (aUt - aUt+1>(FSt+1) 5 te N. (328)
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By using a similar technique as in the traditional aggregate cost methods, it is

easy to obtain the analogue of (2.37), namely,

1
FSiq
X el Y aa(ALa),

jEE: JEA:

~ Y [a(ALa)l; — o(ALa)lyy] - D a(ALa)ly,

FEAsr1NAL JEN:

~PRAI Y (D) (o), }

jEArr1NAs

Jipr = Ui — {{a); —i(Fa); — If + 177

where in the last term, A o¥; = oW1 — ot is the change in the proportional
adjustment factor. In consequence, an additional gain component arises.

By components, G; turns to be:
a(Ga)t - aGgi) + aGET) + aG§S) + ang) + aGgw) )

where, for t =0,1,2,..;

WG = () —i(Fa) — I+ I

oG = D a(ALa)y — Yol (ALa)is
jEEt JEAt

G =~ Y [a(ALa)ly, — o(ALa)l,],
JEA1NAe

G = - Z o(ALa),y
anNt

LW = - Z (A o%1) o(la)iy, -
JEA1NAL

Finally, as in traditional aggregate cost methods [see (2.31)], the actuarial liability

satisfies the recursion formula

o(ALa)i11 = o(ALa)y(1 +4) — [(Ia); — i(Fa), — If + I]T]

+ (PP, + IFP) — A NCy(1 +14) . (3.29)

Therefore, it all reduces to calculate the starting value ,(ALa).
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Examples of Aggregate Percentile Cost Methods

Percentile Frozen Initial Liability («FIL)
As its traditional counterpart, [see (2.40)] the starting value in (3.29) is

aHWO

Lo = oIl — Smrr
aA 0 HO FSWO

Sy, (3.30)

where oITW, is calculated in (3.23) with z replaced by the age at hire a, and F.SW)
is the present value of future salaries discounted to age a:

FSWo =" 3 S1=% taia p(h) -

JEAs k=t
Percentile Attained Age Normal (¢AAN)
Here, the starting value o ALg in (3.29) is calculated by using (3.13), where the benefit
function b/ is replaced by the accrual function of the projected unit credit method:

Ig —aQ
M, = ,

r—a

where z is the age of member j at instant ¢ = 0. In other words,
WALy = ALy + 2 [[(h, 5) + zap(h )" - 1]

and ALy = (ALa)g + (ALr), is the starting value in the traditional attained-age cost
method.

Percentile Net Method («NET)
As its traditional relative, the a—actuarial liability is defined to be exactly the actual
fund balance:

aALt:FtJ

which in particular implies that, any gain (or loss) is included in the normal cost of

the following year. An extra gain component must be included:
oGP = Cy+ If = NC,(1+1)

due to excess in contributions.
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3.4 The Retired Population: Aggregate Approach

For traditional methods, the cost of the retired population is obtained in an individual
basis. Section 3.2 studied the analogue of the traditional valuation method of this
population, namely, the individual approach. This section describes the aggregate
approach.

For percentile methods two ways of looking at the calculation of the cost arise.
To define the a—actuarial liability o(ALr);, for the retired population (note that
we deliberately use the same symbol as the individual percentile approach), two
possibilities should be considered. If the plan assumes that the active and retired

populations are separate, then ,(ALr); is the quantity such that
Pr|(Xr); < o(ALr)] = (3.31)

where

(Xr), = Z b V2
JEP:
is the random variable representing the present value of future pension payments,

discussed earlier in this chapter. In this case, using Haldane’s approximation [see

Proposition 3.4 and (3.13)]:

(ALr), = (ALr), + (o7)

- t W(h, $) + zap(h, )] " = 1] , (3.32)

where

(or); = D (W &),

j€77t

(’Y'r)t = 3 Z (12) (12) )

JGPt

while the quantities s, h and the functions ¥(h, s) and @(h,s) are defined in Propo-
sition 3.1.
In practice however, the plan is usually considered as a whole. Under this approach,

the a—actuarial liability for the retired population is not the one calculated by (3.32).
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Recall that in aggregate percentile methods, the PVFB for the entire plan is given
in Definition 3.6. In addition, the proportional adjustment factor .1 is the ratio of
oI; and II;. It was used to define the term ,(Ila); for the active population.

Under this approach, we also have
a(ALT)t = awt (ALT)t . (333)

Notice that the less skewed the distribution of X is, the closer the values of ,(ALr);
given by (3.32) and (3.33). Furthermore, “individual actuarial liabilities” can be

consistently defined by
a(ALr){H = o b§+1 agj)—l
a(ﬁr}g—%—l = ot b 231 )
Using the same technique as the traditional approach, the gain is found to be
o(G)t = o(ULT)(1 +14) — o(ULr)e11
or by components:

(Gr) = oGP 4 oGP 4+ oG + G + WGP + G

where
GO = (Ir), —i(Fr), —IPP + IF
ang) = — Z Ab] othe1 8571,
JEPe10VP
e [Z (ALY =" ¢z o ALr) ]
JEDy FEP:

(ry . PPy J NB
oGy’ = (PR+1L7) (Za(ALT)t+1+(NBt+It ))v
JER:

LGP = L b{(:é%2>+aé§”(1+i))—(OBt+I?B)} and

Py
GG = = D (At b S
JEPi1NPy

It is worth mentioning that Ramsay’s expression for the component QGEP ) ([6], formula

(110), p. 394) is misprinted.
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Chapter 4

Numerical Application

This chapter compares both, the traditional and the percentile cost methods by means
of an example. The data is of an initial population of 360 actives and 12 retired

members, and is the same as in Ramsay [6, p. 399].

4.1 Comparison of Methods

The Plan
e Plan effective date: January 1, 2002 (t = 0).
e Retirement age: 65 (R is degenerate at r = 65).

e Benefit formula: b/ = 0.015(z¢ — a)S} + 0.015[ P STl S) s, /s,|. In
other words, the benefit is 1.5% of salary at plan inception times past service

plus 1.5% of total future salary.

e Fund balance: Fy = 2,950,000.

Actuarial assumptions
e Interest rate: 8%.

e Confidence level: a = 50%, the median.
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e Salary scale s,: Table A.1.
e Service table: Table A.1.

e Mortality table: Table A.2.

Table 4.1: Employee data

Active population at instant ¢ = 0 | Active population at instant ¢ =1
a | z | #ee’s S] a | x | #ee’s S)
25127 90 20,000 25125 20 20,000
25139 40 30,000 25128 89 24,000
25151 50 35,000 25140 40 33,000
2564 10 40,000 25 52| 49 36,000
35139 60 25,000 35140 59 30,000

35| 51| 80 30,000 35152 80 34,000
45151 | 30 25,000 45152 | 30 28,000

Table 4.2: Retiree data

Retiree population at instant ¢ = 0 | Retiree population at instant ¢ =1
x | ftee’s A z | #ee’s v

67 7 12,000 65 9 24,000

70 5 10,000 68 6 12,000

- - - 71 5 10,000

Valuation at t =0

Recall that for aggregate percentile methods, the PVFB is calculated by using Haldane’s

approximation to the distribution function of X, = (Xa)o + (X7)o. The following
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table presents the moments of (Xa)o, (X7)o and Xp.

Table 4.3: Moments to compute o511

Ttem (Xa)o (X7)o Xo
o | 10,827,521.23 | 1,066,954.79 | 11,894,476.02
o) 443,239.02 112,344.43 457,254.96
Yo —0.055504 —0.244681 -0.054184

Haldane’s approximation gives ¢ 51Tg = 11,898,607.74. The proportionality adjustment

coeflicient is

O.SH

0.5%0 =

0

= 1.000347364 .

Once 0,5¢0 is obtained, the percentile aggregate versions of the PVFB for the active

and retired populations can be computed:

0.5(HCL)0 =

05(Ilr)o =

0.5%0 %X (Ia)e = 10,831, 282.33 ,

050 x (TIr)y = 1,067, 325.41 .

The quantities for the PVFB are summarized as follows.

Table 4.4: PVFEB at instant t = 0

Ttem

Traditional

Percentile

Individual

Aggregate

(Ha)()
(HT)O

10,827,521.23
1,066,954.79

11,894,476.02

11,821,678.09
1,160,654.36
12,982,332.45

10,831,282.33
1,067,325.41

11,898,607.74
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Table 4.5: Individual cost methods

Variable PUC EAN

NC, 320,900.91 | 283,786.70
(ALa)o | 5,985,141.57 | 7,471,216.56
(ALT)o | 1,066,954.79 | 1,066,954.79
AL 7,052,096.36 | 8,538,171.35
05NCo 350,365.26 |  309,843.31
os(ALa)o | 6,534,682.82 | 8,157,205.63
0s(ALr)o | 1,160,654.36 | 1,160,654.36
0sALy | 7,695,337.18 | 9,317,859.99

Recall that in the Frozen Initial Liability (FIL) and Attained Age Normal (AAN),
the actuarial liability is calculated recursively. In the traditional FIL method uses

the formula
ITW,
FSW,

The AAN method uses the actuarial liability calculated at ¢ = 0 using the projected

ALy =11, —

ISy .

unit credit cost method. On the other hand, percentile aggregate methods require
the quantities ¢s5IIWy and g5ALg, to get the starting values in percentile FIL and

AAN, respectively. Haldane’s approximation is used.

Table 4.6: Information for aggregate methods

Item | ITW (for FIL) | ALy (for AAN)
to | 2,059,402.60 | 7,052,096.36
ofs 39,600.39 244,307.98
Yo —0.073918 —(.187849
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By using Haldane’s approximation, the following value is obtained:
0s1IWy = 2,059, 890.32 .
Now it is possible to obtain the starting value ¢5ALy for the FIL as follows:

FSWy =74,020,162.92,

FSy = 123,845,273.07,

0511
FSW,

05ALo = o511 — FSy = 8,452,145.74 ,

where F'SWj is the present value of future salaries discounted at hire age and F'S; is

the present value of future salaries [see (3.30)].

Table 4.7: Frozen Initial Liability (FIL)

Item Traditional Percentile

Tl 11,804,476.02 | 11,898,607.74
ALy | —8,448,830.03 | —8,452, 145.74

FNC, 3,445,645.99 3,446,462.00
FSy 123,845,273.07 | 123,845,273.07

Us 2.782218% 2.782877%
So 9,800,000.00 9,800,000.00
NCy 272,657.40 272,721.98

Using Table 4.6, Haldane’s approximation gives the starting value ¢5ALg for the
AAN method as
05 ALy = 7,059, 723.97 .

Finally, under the aggregate net method (NET) (traditional and percentile), the
actuarial liability at any instant equals the fund balance, ALy = ¢sALy = Fy. In

other words, the unfunded liability is always zero.
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Table 4.8: Attained Age Normal (AAN)

Item Traditional Percentile
I, 11,894,476.02 | 11,898,607.74
—~ALg | —7,052,096.36 | —7,059,723.97
FNCy 4,842,379.66 4,838,883.77
FSy 123,845,273.07 | 123,845,273.07
Up 3.910024% 3.907201%
So 9,800,000.00 9,800,000.00
NGy 383,182.33 382,905.70

Table 4.9: Net Method (NET)

Item Traditional Percentile
I, 11,894,476.02 | 11,898,607.74
—ALj —2,950,000.00 | —2,950,000.00
PVFENC, 8,944,476.02 8,948,607.74
FS 123,845,273.07 | 123,845,273.07
Uy 7.222299% 7.225635%
So 9,800,000.00 9,800,000.00
NGy 707,785.31 708,112.26
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Valuation at t =1

The plan at instant ¢ = 1 is as follows.

e Plan effective date: January 1, 2003 (¢ = 1).

e Contributions to the fund: Cy = 290, 000.

e Interest earned over Cy: I€ = 11,376.84.

e Fund balance: Fi = 3,350, 000.

e Pension payments during year 2002: By = 34, 000.

During year ¢ = 0, the plan showed the following evolution.

Table 4.10: Summary of first-year activity

Event

25|25
25128
25 | 92
25| 65
25 | 65
35 | 40

20 new hires (Np)

1 termination (7q)

1 death (Dy)
1 death (Do)

9 retirements (Ro)

1 termination (7o)

Table 4.11: Moments to compute ¢5I1;

(Xa), (Xr) X
py | 10,324,962.81 | 2,807,363.31 | 13,132,326.12
o1 430,206.32 228,711.68 487,223.27
7! -0.026828 —0.266540 —-0.046039
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The H-approximation gives ¢5I1; = 13,136,066.88, which implies that the pro-

portional adjustment coefficient is g5t = 1.000285. In particular,

o5(lla), =

os(Ilr); =

For the FIL and AAN methods, the actuarial liability is calculated recursively by

051 X (Ia), = 10, 327,903.89 ,

051 % (IIr); = 2,808,162.99 .

Table 4.12: PVFB at instant ¢t = 1

Ttem

Traditional

Percentile

Individual

Grouped

(ITa),
(H’l")l

10,324,962.81
2,807,363.31
13,132,326.12

11,272,975.96
3,058,498.88
14,331,474.84

10,327,903.89
2.808,162.99
13,136,066.88

Table 4.13: Individual cost methods

Variable

PUC

EAN

NGy
(ALa),
(ALT)l
ALy

316,663.18
4,952,382.38
2,807,363.31
7,759,745.69

303,049.61
6,595,569.80
2,807,363.31
9,402,933.11

05V Ch
0.5(ALa)
05(ALr)y
0sAL

345,738.43
5,407,098.17
3,058,498.88
8,465,597.05

330,874.90
7,201,159.09
3,058,498.88

10,259,657.97

ALy = (ALy — Fp)(1 +14) — [Co + [§ — NCo(1 +4)] + Fy
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where the subindex o = 0.5 should be appended in case of percentile quantities.

Finally, the NET method defines AL; = Fj. In particular, an additional gain com-

ponent arises, namely, the excess in contributions ch).

Table 4.14: Frozen Initial Liability (FIL)

Item Traditional Percentile
I, 13,132,326.12 | 13,136,066.88
—-AL; | —9,281,829.59 | -9,285,480.29
FNC,y 3,850,496.53 3,850,586.59
FS; 142,702,092.32 | 142,702,092.32
Uy 2.698276% 2.698339%
S1 10,950,000.00 | 10,950,000.00
NCy 295,461.24 295,468.15

Table 4.15: Attained Age Normal (AAN)

Item Traditional Percentile
L 13,132,326.12 | 13,136,066.88
~AL; | —7,802,724.15 | -7,900,663.20
FNCy 5,239,601.97 5,235,403.68
FS 142,702,092.32 | 142,702,092.32
U 3.671706% 3.668764%
S 10,950,000.00 | 10,950,000.00
NCy 402,051.86 401,729.71
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Table 4.16: Net Method (NET)

Item Traditional Percentile
L 13,132,326.12 | 13,136,066.88
—AL, | —3,350,000.00 | —3,350,000.00
FNC, 9,782,326.12 9,786,066.88
FS 142,702,092.32 | 142,702,092.32
Uy 6.855068% 6.857690%
Sy 10,950,000.00 | 10,950,000.00
NCy 750,630.00 750,917.04

Analysis of Gains

For individual cost methods, the gain for the first year of operation is calculated as

G

ULo(1+ 1) — [Co + I§ — NCy(1 +14)] — ULy. For aggregate methods, on the
other hand, the gain is Gy = (Uy — U;)F'S;. Table 4.17 presents the gain for year
t = 0 for all cost methods. Finally, Tables 4.18 through 4.22 give the detail of the

gain by components for every method.

Table 4.17: Gains for individual and aggregate methods

Method | Traditional | Percentile
PUC 65,714.52 | 86,384.75
EAN —-12,595.25 884.76
FIL 119,787.35 | 170,277.20
AAN 340,083.81 | 418,770.74
NET 524,045.78 | 587,935.66
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Table 4.18: Analysis of gains. Projected Unit Credit method

Source Traditional | Percentile
Interest 2,361.56 2,361.56
Pension payments -1,432.83 13,401.72
Retiree mortality 72,512.76 79,059.42
Active mortality 202,020.27 | 220,569.28
Terminations -113,381.29 | -123,791.69
Salary changes -96,365.95 | -105,214.03
Explained 65,714.52 86,386.26
TotalV) 65,714.52 | 86,384.75
Error - ~1.51

() From Table 4.17

Table 4.19: Analysis of gains. Entry—Age method

Source Traditional | Percentile
Interest 2,361.56 2,361.56
Pension payments -1,432.83 13,401.72
Retiree mortality 72,512.76 79,059.42
Active mortality 207,762.17 | 226,838.40
Terminations -155,249.20 | -169,503.81
Salary changes ~138,549.72 | -151,271.02
Explained -12,595.25 886.27
Total -12,595.25 884.76
Error - -1.51
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Table 4.20: Analysis of gains. Frozen Initial Liability

Source Traditional | Percentile
Interest 2,361.56 2,361.56
Pension payments -1,432.83 —1,432.83
Retiree mortality 72,512.76 72,537.95
Active mortality 205,470.08 | 205,477.85
Terminations -133,160.31 | -133,204.57
Salary changes -99,636.51 | —99,675.38
New entrants 73,672.60 73,684.19
Prop. Adj. Coefl. - 11.52
Explained 119,787.36 | 119,760.29
Unexplained 0.01 877.25
Total 119,787.35 | 120,637.55
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Table 4.21: Analysis of gains. Attained Age Normal

Source Traditional | Percentile
Interest 2,361.56 2,361.56
Pension payments -1,432.83 | -1,432.83
Retiree mortality 72,512.76 | 72,537.95
Active mortality 204,557.64 | 204,568.23
Terminations -79,693.61 | -79,902.93
Salary changes -11,159.57 | —11,471.57
New entrants 152,937.80 | 152,704.70
Prop. Adj. Coeft. 0 11.52
Explained 340,083.75 | 339,376.63
Unexplained 0.05 877.27
Total 340,083.80 | 340,253.90
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Table 4.22: Analysis of gains. Net Method

Source Traditional | Percentile
Interest 2,361.56 2,361.56
Pension payments -1,432.83 -1,432.83
Retiree mortality 72,512.76 72,537.95
Active mortality 201,877.86 | 201,883.47
Terminations 77,333.89 77,416.56
Salary changes 248,690.20 | 248,861.40
New entrants 385,733.60 | 385,933.40
Excess in C} -463,031.30 | —463,384.40
Prop. Adj. Coeft. - 11.52
Explained 524,045.75 | 524,188.63
Unexplained 0.04 877.21
Total 524,045.78 | 525,065.84
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4.2 Comments

As the distribution of Y2 is negatively skewed, the percentile 5£52 is greater than

the mean 4%?. Furthermore, i) = 8.64, while {5 = 9.43, an increase of 9.18%.

At t = 0 such difference implies an increase on PVFB of about 9.15% for individual
percentile methods, and just 0.03% for aggregate percentile methods. In particular,
no significative differences between traditional and percentile aggregate methods, are
expected.

The normal cost in PUC and EAN increases by 9.18% for both. For aggregate
methods, that increase is 0.05%. At t = 1, such differences remain very similar.

At this point, something interesting can be noticed. At least for individual
methods, the increase in costs seems to be determined solely by the increase of 0.5{;&1;)
with respect to aS? .

The summation of the gain components is sometimes called the ezplained gain.
The difference between the explained and the total gain (calculated by other means
rather than by components) is called the unezplained gain. From a theoretical point of
view, the unexplained gain should be zero. However, the numerical application shows
this is not the case for aggregate percentile methods. Fortunately, the unexplained
gain represents just 0.73% for FIL, 0.26% for AAN and 0.17% for NET, of the total
gain. For traditional and individual percentile methods, the unexplained gain comes
from rounding errors, while for aggregate percentile methods, it may be due to the
proportional assumption when defining the “individual” actuarial liability.

Finally, the gain resulted to be the most sensitive variable. For instance, in the
PUC method the gain increased by 31%. For the FIL method, the increase is 42%. It
appropriate steps are taken, percentile methods will annihilate the unfunded liability
faster than traditional methods do, since contribution premiums will be raised by a

greater amount.
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Conclusions

This thesis compares the traditional and the percentile cost methods, as suggested by

Ramsay. The latter approach replaces the factor 3> (a mean value) by the 1000~

percentile L8 where « is a level of confidence. In addition, aggregate percentile
methods require the approximation of a the random variable representing the present
value of future benefits. This was accomplished by using the Haldane type A approxi-
mation.

Of particular importance is the analysis of gains and losses by source. In both in-
dividual and aggregate methods, we obtain the same expressions for them. Certainly,
this fact coincides with Small 7], who suggests a unified approach. Since both
approaches are set on different basis, a separate derivation is better understood.

An important assumption that was relaxed in this work, is the fact that the
retirement age is a random variable, rather than a fixed value, as in most of the
literature about pension mathematics. As expected, this fact makes formulas a bit
more complicated to read. Thus, any expression involving the retirement age R
actually requires an expectation over R (introducing a second summation). The
numerical application however, uses the data in Ramsay[6], where the retirement
age is assumed to be 65. The implementation of multiple retirement ages should be
straightforward.

As the distribution of Yi£” is negatively skewed, for most ages, the value of , 02

is greater than the mean 452 . As a consequence, percentile cost methods will result

in larger costs. Such differences are expected to decrease as the number of members
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in the active population increases. In particular, for large public pension schemes,
percentile cost methods are expected to produce results quite similar to those of the
classical approach. In small plans, on the contrary, the percentile approach produce
much higher contributions than the traditional one.

Finally, this work must be extended to the stochastic interest case. Also, disability
pension benefits, vested terminations and survivor benefits should be considered.

These extensions follow the same reasoning of retirement benefits.
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Appendix A

Table A.1: Service Table

&

g

Sg

o

g

Sz

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

0.000464
0.000488
0.000513
0.000542
0.000572
0.000607
0.000645
0.000687
0.000734
0.000785
0.000860
0.000907
0.000966
0.001039
0.001128
0.001238
0.001370
0.001527
0.001715
0.001932

0.0835
0.0800
0.0770
0.0740
0.0710
0.0680
0.0650
0.0615
0.0590
0.0565
0.0530
0.0500
0.0470
0.0445
0.0420
0.0395
0.0370
0.0345
0.0325
0.0300

0.0673
0.0756
0.0848
0.0945
0.1048
0.1159
0.1274
0.1396
0.1523
0.1657
0.1798
0.1945
0.2099
0.2259
0.2425
0.2600
0.2782
0.2971
0.3166
0.3370

45
46
47
48
49
50
51
92
93
o4
99
36

58
39
60
61
62
63
64

0.002183
0.002471
0.002790
0.003138
0.003513
0.003909
0.004324
0.004755
0.005200
0.005660
0.006131
0.006618
0.007139
0.007719
0.008384
0.009158
0.010064
0.011133
0.012391

0.0285
0.0270
0.0255
0.0240
0.0230
0.0215
0.0210
0.0200
0.0195
0.0185
0.0175

0.3579
0.3793
0.4017
0.4251
0.4492
0.4740
0.5005
0.5276
0.5555
0.5844
0.6141
0.6449
0.6771
0.7109
0.7466
0.7838
0.8230
0.8641
0.9074
0.9528
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Table A.2: Life Table

x qg(ﬁd) x g? T qfvd) z qéd)
20 | 0.000377 |} 43 | 0.001715 || 66 | 0.017579 || 89 | 0.154859
21 ] 0.000392 || 44 | 0.001932 || 67 | 0.019804 || 90 | 0.166307
22 | 0.000408 || 45 | 0.002183 || 68 | 0.022229 || 91 | 0.178214
23 | 0.000424 || 46 | 0.002471 || 69 | 0.024817 || 92 | 0.190460
24 | 0.000444 | 47 | 0.002790 || 70 | 0.027530 || 93 | 0.203007
25 | 0.000464 | 48 | 0.003138 || 71 | 0.030354 || 94 | 0.217904
26 | 0.000488 || 49 | 0.003513 || 72 | 0.033370 || 95 | 0.234086
27 1 0.000513 | 50 | 0.003909 || 73 | 0.036680 || 96 | 0.248436
28 1 0.000542 || 51 | 0.004324 || 74 | 0.040388 || 97 | 0.263954
29 | 0.000572 || 52 | 0.004755 || 75 | 0.044597 || 98 | 0.280803
30 | 0.000607 || 53 | 0.005200 || 76 | 0.049388 || 99 | 0.299154
31 | 0.000645 || 54 | 0.005660 || 77 | 0.054758 || 100 | 0.319185
32 | 0.000687 || 55 | 0.006131 || 78 | 0.060678 || 101 | 0.341086
33 10.000734 || 56 | 0.006618 || 79 | 0.067125 || 102 | 0.365052
34 | 0.000785 || 57 | 0.007139 || 80 | 0.074070 || 103 | 0.393102
35 1 0.000860 || 58 | 0.007719 || 81 | 0.081484 || 104 | 0.427255
36 | 0.000907 || 59 | 0.008384 || 82 | 0.089320 | 105 | 0.469531
37 | 0.000966 || 60 | 0.009158 || 83 | 0.097525 || 106 | 0.521945
38 | 0.001039 || 61 | 0.010064 || 84 | 0.106047 || 107 | 0.586518
39 1 0.001128 || 62 | 0.011133 || 85 | 0.114836 || 108 | 0.665268
40 | 0.001238 || 63 | 0.012391 || 86 | 0.124170 || 109 | 0.760215
41 | 0.001370 || 64 | 0.013868 || 87 | 0.133870 || 110 | 1.00000
42 1 0.001527 || 65 | 0.015592 || 88 | 0.144073 || - -
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