Design and Implementation

of FtpServlet package and a Container

Xueqing Han

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 2003

© Xueqing Han, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83901-X
Our file Notre référence
ISBN: 0-612-83901-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Design and Implementation of FtpServlet package and a Container

Xueqing Han

Servlet technology is initially intended to provide the Web developers with a simple,
consistent mechanism for extending the functionality of a Web server, which is built on
top of Hypertext Transfer Protocol. This report extends the idea of servlet to another
popular communication protocol in the Internet community, File Transfer Protocol. A
FtpServlet API package, which is similar to the well-known HttpServlet package, is
defined. A container that is able to accommodate FtpServlets is implemented to
demonstrate the feasibility of FtpServlet package. Several samples of FtpServlets are
provided to show how to use the package and its flexibility. Future improvement plans
to consolidate the FtpServlet package are also discussed in order to make full use of the

package.

i

Acknowledgements

I would like to express my thanks to my supervisor, Professor Jaroslav Opatrny for his

guidance and invaluable comments throughout this work.

Many thanks also to all people with whom I exchanged opinions and ideas on related

matters.

w

Dedication

To my mother and father

Table of Contents

INTRODUCTION...... cerrerssesanesstisas st asss s ase st sesssansesass et tasonsse 1
Basics about Web SeIVer ..o s 1
Basics about HT TP ..o ettt et 2
INtroduction Of SETVIEt.ot 3
ServIet CONTAMET. ... iiiiiiiiee ettt et s e e e e e e sbe e e e saeermeneeeseeeneneennee 4
WeEb APPHCALIONS ...ttt ettt e e s st e e s es s eeeen 5

FEATURES OF SERVLET CONTAINER....cuciieinerensencccscsesenns 6
Maintaining the Life Cycle of a Serviet ..., 6
Loading and InStantiation........occoooiiiiii it e ettt 6
Wrapping up of the Client REQUESES ..ottt e 7
Delivery of the Server ReSpOnSesoooiiiiiiiiiec et 7

JAVA SERVLET FRAMEWORK . w8
Interaction between Servlet and Serviet Container..........cocoocooiv i 8
Construction of Servlet Framework..........c.coo e 9

HTTP REGUESL.........ccieiieiiiiieai ettt ettt 10

HTTP RESPOMSE ...t a e st a st e e e e ate e e e s s e se e e e aasaansesnnenee 10

Application Logic and Content GEREFQLIONcocevuesoeeieaeieieeieeeeesee e 11
Session Tracking and State Managementcooov it ceeas 12

JAVA SERVLET API 14
Class HISTATCRY ..ottt ettt ceeae 14

Vi

NYS 172 (1 A 1111 o 22 e <IN TUO S U SU U SO OUEESU SO O RS PSU S O URURUURTRPURN 16

GenNETICSEIVICT. oottt e e e et 17
HEt D S v et et e e 17
JETTY, AN EXAMPLE OF THE SERVLET CONTAINER.. 19
General components 1ayout..... ..o 19
JEttY ATCRITECTUIE ...ttt et et ene e e s 20
EXTENDING THE SERVLET CONCEPT TO FTP. 22
Basics @bOUt FTP ...ttt et e e eenn e 22
AnonymouS FTP .ot ee e 24
USING FTP ettt ettt et b e s e eeeeearemeamasnnea 24
Request and response paradigimi.........cocoiiiiriiei ettt 25
Connections I FTP ..ottt 25
DESIGN OF FTPSERVLET CONTAINER 26
A container to support FTP connection ... 26
General consideration of the FtpServiet Container.........ocovoviveirieicenier e 28
Wrapping up the Ftp request and reSpomnseoovevereiiviiiiiiiieere e 30
CIaSS 10BART. ..ot ettt ettt s et a et en e 32
Event sequence of FtpServlet Engine ... 33
IMPLEMENTATION OF FTPSERVLET 35
Reference to Sun’s serviet packageocooovveveiiociiee et 35
FpServIEtREGUESEoooiii e e 36
FPSerVIEtRESPOMSE. .. ettt ettt e s n e et e enes 37

Vil

DAL COMMECEION. - oo oot e e e et e et a e e aeea e aae e 38

Q7 N7 a0 (1 A SOOI UUSNUSUUSRURSRRRURIN 40
SAMPLES OF FTPSERVET sersereneesessassnssssessssensassnasantesane 43
ACCOUNE CRECKIME. ..ottt et e et e e et emeeaamenaesnsa e 43
FItering the 18SPOMNSE ... o oottt ettt e te et e e e e e e e e e ams et ense senennnas 44
Database COMMECTIONoooioiiiiiei ettt seeean e eecann e 46
FURTHER IMPROVEMENT.....cvevevrcnenneenns 47
Refine the FtpServiet packageoooviiii e 47
Possible WeDIDAV SUPPOTToiiiiiiiiiie ettt s nes 48
Introduction t0 WebDAVYc.ooccoiviiiieieee ettt 48
XML, TransmiSSiOn FOFMAQE ..o et 50
WebDAV layer built for FIpServietcooviiiiiiiiiiiieiiie e 51
General Serviet CoOntaMET oottt s 52
BIBLIOGRAPHY 54
APPENDIX 56
Table A2 FTP commandscocooiiiiiiiiiiiec ettt e e 56
GLOSSARY 58

Viil

List of Figures

Figure 3 The request-response sequence among web server, servlet engine, and servlet. 11

Figure 4 Class Diagram for Jetty servlet enginecoooeiveiiiiiiiiiiiiicenee e 21
Figure 5 The relation between ftp server and its components.............c.ocooiiriiieiieninnaes 27
Figure 6 The Ftp Request is wrapped up by the servlet enginecoccoeoveiiiiinininnnne. 30
Figure 7 The hierarchy for the construction of request object.................ccccn 31
Figure 8 The Ftp Response is wrapped up by the serviet engine.........cccooocveieriieninnnnnn. 31
Figure 9 The sequence diagram of the interaction among objects of ftp serverlets.......... 33
Figure 10 An additional layer could make Ftp Server support WebDAV.................... 52
Figure 11 Possible extension plan for generic servlet engineccccoeee. s 53

ix

List of Tables

Table Al Java servlet APL summary. ... e 35

Table A2 FTP commands.. ..o eeeeieeeeee e, R 56

Introduction

The servlet technology !'! was introduced by Sun MicroSystems Inc. for web servers.
Serviets are the Java platform technology of choice for extending and enhancing Web
servers. When we mention web, we usually refer to World Wide Web (WWW), which is

built up on top of the Hypertext Transfer Protocol (HTTP)12.

Basics about Web Server

A Server is usually a computer that can provide content services to client requests. Those
services can be also extended to include computing request, querying requests, and so on.
When a server is talked about, usually its counterpart, a client should also be introduced.
The client of a web server, which can send requests for web content, is generally called
web browser. There are several popular products in the market, i.e. Microsoft Internet
Explorer (IE), Netscape Navigator, and Opera. The following figure shows the basic

layout of client-server paradigm.

Client Request Server

Internet

Response

Figure 1 The client and server in the request-response paradigm

Web servers are to serve content over the Internet using the fypertext Markup Language
(HTML)!. The Web server accepts requests from browsers like Netscape and Internet
Explorer and then returns the appropriate HTML documents. The developers of web
servers usually organize the server content in the HTML format under local file system.
When a client request comes, the web server locates the content in quest and sends it
back to the client application. Along with the popularity of web servers and their
applications, there is huge demand for web servers to delivery dynamic content based on
the user request. In order to meet the demand, a web server has to be able to compute its
response using some extensible components on the server-side. (Meanwhile client-side
technologies, such as JavaScript!!, Visual Basic Script!’!, were also introduced to face the
challenge on the client side). A number of server-side technologies can be used to
increase the power of the server beyond its ability to deliver standard HTML pages.
These include Common Gateway Interface (CGI) scripts 1, server-side includes (SSI!"),

and Active Server Pages (ASPs)[®! from Microsoft.

Basics about HTTP

Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems, which is used by a WWW client (e.g. a
web browser) to send a request to a web server. HTTP is a request-response-oriented
protocol. An HTTP request is a packet consisting of a request method, a universal
resource identifier (URI), header fields and a body (which can be empty). An HTTP

response is a packet containing a result code and again header fields and a body.

When you request a Uniform Resource Locator (URL) in a web browser, the GET
method is used for the request. A GET request does not have a body (1.e. the body is
empty). The response should contain a body with the response data and header fields that
describe the body (especially content -Type and Content-Encoding). When you send a
Hypertext Markup Language (HTML) form, either GET or POST can be used. With a
GET request the parameters are encoded in the URL, with a POST request they are
transmitted in the body. HTML editors and upload tools use PUT requests to upload

resources to a web server and DELETE requests to delete resources.

Introduction of Servlet

Servlets are Java technology's answer to CGI programming. A servlet is a Java
technology based web component, managed by a container, which generates dynamic
content. A servlet can almost be thought of as an applet that runs on the server side --
without a face. Java Servilets are server-side programs that give Java-enabled servers
additional functionality. Actually, servlet was first introduced as a key server-side Java
solution, which has generated enthusiasm among developers because it allows sever-side
Java programs to run with any major web server. Therefore, it provides a standard
alternative to CGI programming that enhances performance and security and is easier to

administer.

Unlike CGI scripts, serviets involve no platform-specific consideration or modifications.
They are Java application components, which can be downloaded on demand to be part

of the system that needs them.

The Java servlet APl provides a simple framework for building applications on web
servers. This API is described in the Java Serviet API Specification (currently version
2.4) by the Java Software Division of Sun Microsystems Inc. The serviet technology
virtually consists of two parts. One is the serviet implementation; another is the servlet

container (it is also called servlet engine).

Servlet Container

As we mentioned above, Servilets just are server-side components, which need to be
running within a container, sometimes called servlet engine. Servlets interact with a
serviet engine (an implementation of the Java Servlet API specification) in terms of
requests and responses. The servlet engine in-turn interacts with the web server by
delegating requests to servlets and transmitting responses to the web server. Usually, the
servlet container can be implemented as a part of a web server or application server that
provides the network services over which requests and responses are sent, decodes
MIME based requests, and formats MIME based responses. Servlets interact with web

clients via a request/response paradigm implemented by the servlet container.

Required by Java™ Servlet API specification, all serviet containers must support HTTP

as a protocol for requests and responses, but additional request/response based protocols

such as HTTPS (HTTP over SSL) may be supported.

Web Applications

Along with the popular success of servlet technology, the concept of Web Application 1)
was introduced, which is strictly defined as a collection of web components. A web
application is a collection of servlets, HTML pages, classes, and other resources that

make up a complete application on a web server.

As we discussed above, the “Web Application” is confined within the HTTP community.
Probably one reason for this trend is that the Internet Browsers simplify the development
of the graphic user interface (GUI) part when the user wants the content shown in a
friendly way. However, for many applications that do not need graphic user interface
(GUI), the HTTP channel between the browser and a web server becomes a pure

communicating means to carry on the requests and responses streams.

Features of Serviet Container

A server container provides a home for servlets. Any servlet has to be running within a
container. It’s the container’s responsibility to decide when to instantiate a servlet, how to

communicate with it, and when to terminate it.

Maintaining the Life Cycle of a Servlet

A servlet is managed through a well-defined life cycle that defines how it is loaded,
instantiated and initialized, handles requests from clients, and how it is taken out of
service. It is the responsibility of the servlet engine to maintain a servlet’s life cycle. This
life cycle is expressed in the API by the init, service, and destroy methods of
the javax.servlet.Servlet interface that all servlets must, directly or indirectly

through the GenericServlet orHttpServlet abstract classes, implement.

Loading and Instantiation

The servlet container is responsible for loading and instantiating a serviet. The
instantiation and loading can occur when the engine is started or it can be delayed until

the container determines that it needs the servlet to service a request.

After the servlet object is loaded and instantiated, the container must initialize the servlet

before it can handle requests from clients. Initialization is provided so that a servlet can

read any persistent configuration data, initialize costly resources, and perform any other
one-time activities. The container initializes the serviet by calling the init method of
the Servlet interface with a unique (per servlet definition) object implementing the
ServletConfig interface. This configuration object allows the serviet to access
name-value initialization parameters from the servlet container’s configuration
information. The configuration object also gives the servlet access to an object

implementing the ServletContext interface that describes the runtime environment

that the servlet is running within.

Wrapping up of the Client Requests

The request object is defined to encapsulate all information from the client request. In the
HTTP protocol, this information is transmitted from the client to the server by the HTTP
headers and the message body of the request. The servlet engine is responsible to collect,
parse, and encode the client requests to construct a request object so that the servlet could

retrieve these requests through serviet APIs.

Delivery of the Server Responses

A response object is defined to encapsulate all information to be returned from the server
to the client. In the HTTP protocol, this information is transmitted from the server to the
client either by HTTP headers or the message body of the request. The servlet engine is

responsible for delivery all the response to the clients.

Java Servlet Framework

In the HTTP based request-response paradigm, a client user agent (a web browser or any
such application that can make HTTP requests and receive HTTP responses) establishes a
comnection with a web server and sends a request to the server. If the web server has a
mapping to a servlet for the specified URL in the request, the web server delegates the
request to the specified servlet. The serviet in turn processes the request and generates an

HTTP response.

Interaction between Serviet and Serviet Container

The following Figure 2 shows the relationship between servlets and the container, and
how the client interacts with the server. Here is a description of a typical sequence of

events among them.

A client program, such as a web browser, accesses a web server and makes an HTTP
request.

This request is processed by the web server and is handed off to the servlet container.

The servlet container determines which serviet to invoke based on its internal
configuration and calls it with objects representing the request and response. The servlet
container can run in the same process as the host web server, in a different process on the

same host, or on a different host from the web server for which it processes requests.

The servlet uses the request object to find out who the remote user is, and what HTML
form parameters may have been sent as part of this request, and other relevant data. The
serviet can then perform whatever logic it was programmed with and can generate data to
send back to the client. It sends this data back to the client via the response object.

In many similar systems, the servlet will communicate with back-end database system. It
usually involves retrieving information from the database system, saving information into
it, and so on. This part is within the application domain of the serviet.

Once the servlet is done with the request, the servlet container ensures that the response is
properly flushed and returns control back to the host web server.

The web server will return the response to the client so that the user can get the result of

the request.

@ Web Server

Client | Client Requests @

>\ Serviet @ /“\

Container _/

< Database
Server Response @
Server
@ @ Java Servlets <

1

N~

Figure 2 The interaction among servlet container, servlet, and web server

Construction of Servilet Framework

In order to fulfill the requirement of web application development, the serviet API

provides three primary abstractions: HTTP requests, request processing based on some

application logic, and HTTP responses. These abstractions simplify the application
development as far as the requests and responses are concerned. In addition, the serviet
API also provides a mechanism for session tracking and state management. These are

described below.

HTTP Request

The interface HttpsServlietRequest is the first abstraction provided by the servlet APL
This interface encapsulates HTTP requests from a user agent. When the servlet engine
receives a request, an object implementing this interface is constructed and passed on to a
servlet. This object provides methods for accessing parameter names and values of the
request, other attributes of the request, and an input stream containing the body of the

request.

HTTP Response

The HttpServietResponse interface of the servlet API provides an encapsulation of the
HTTP response generated by a servlet. This interface defines an object created by the
servlet engine that lets a servlet generate content in response to a user agent's request.
This object provides methods to set type and length of the content, character encoding,
cookies, response status including errors, and an output stream into which binary
response data may be written. Alternatively, this object also provides a print writer object

for writing formatted text responses.

10

Application Logic and Content Generation

The Httpserviet interface specifies methods for implementing the application logic and
generating content in response to an HTTP request. These methods handle the GET,
POST, HEAD, DELETE, OPTIONS, PUT and TRACE requests of HTTP. These
methods are invoked by the servlet engine and act as placeholders for implementing
application logic. The servlet engine also supplies HttpServletRequest and

HttpServletResponse objects to these methods.

Web Servlet HttpServlet
Server N Engine
Hitp Request > Http Request X HttpServletRequest > égg&lcatmn

Content

A] Generation
Hitp Response K. Http Response HttpServletResponse

Figure 3 The request-response sequence among web server, servlet engine, and serviet

As depicted in Figure 3, the request first coming from the user client is in the format of
HTTP request, which is defined by HTTP. The web server will dispatch the request to its
handler, either a static resource, or a servlet based on the incoming URL. If the request is
for a servlet, the web server will redirect it to the servilet engine. This is shown in Step 2.
The request should be maintained by the web server and passed to the servlet engine.
Once the servlet engine got the request, it will decide which serviet is targeted and load

that servlet and its resources. After the servlet is instantiated, the servlet engine will wrap

up the request to form a HttpServletRequest object and pass it to the serviet. After the

11

serviet finishes its logic and comes up with the response, it will send back the response in
an object, HttpServletResponse. Actually, this object is also provided by the serviet
engine so that the servlet can easily communicate with the system. Once the serviet
obtains the object HttpsServletResponse, it will pass it back to the web server in the
format of HTTP response. In turn, the web server will retum the response to the client,
which could be a web browser or other client application. The response is then shown by

the client application to the user as the result of the initial request.

These interfaces are shown in the above diagram in the context of a request and a
response. In this diagram, the service method of the Httpserviet is shown to implement
the application logic and content generation, although one of the doget, doPost, doHead,

doDelete, doOptions, doPut Of doTrace methods can handle HTTP requests.

Session Tracking and State Management

HTTP, which is the underlying protocol for web applications, is stateless. This protocol
covers only a single request (with the connection initiated by the user agent) and a
response. In this protocol, irrespective of the status of the protocol, the connection may

be closed by either of the transacting parties. This has the following ramifications:

The protocol has no mechanism by which a series of unique requests from a user agent
may be identified as being from the same user agent. Consequently, in a transaction

spanning multiple requests and responses, the web server can not uniquely determine that

12

all the requests are from the same user agent. A user, therefore, can not establish a dialog

with the web server to perform a business transaction.

Since connections are not maintained by either of the transacting parties, the state of the

transaction (and the application) can not be preserved across multiple requests.

The Java servlet API provides the Hrtpsession interface for session tracking and state
management in a session. A servlet obtains a HttpSession object from the associated
HetpServlietRequest object. Serviets track sessions by URL rewriting or by cookies.
Objects of type HttpSession can be set or obtained for new and existing sessions

respectively from HttpServlietRequest objects. Session specific data can be stored into

these objects.

13

Java Servlet API

Sun Microsystems, Inc. has released several versions of the serviet specification and its
implementation samples U In this section we will explore the detailed structure of a

servlet and its related design issues.

Generally, two packages, javax.servlet and javax.servlet.http are provided. The
javax.servlet package contains a number of classes and interfaces that describe and
define the contracts between a servlet class and the runtime environment provided for an
mstance of such a class by a conforming servlet container. The javax.servlet.http
package contains a number of classes and interfaces that describe and define the contracts
between a servlet class running under the HTTP protocol and the runtime environment

provided for an instance of such a class by a conforming servlet container.

Class Hierarchy

Here is the class hierarchy defined in servlet package

Class Hierarch; |
e class java.lang.Object
e class javax.servlet.http.Cookie (implements java.lang.Cloneable)
o class java.util. EventObject (implements java.io.Serializable)

e class javax.serviet.http. HttpSessionBindingEvent

14

class javax.servlet. GenericServiet (implements javax.servlet.Serviet,
javax.servlet.ServietConfig, java.io.Serializable)
class javax.servlet.http. HupServiet (implements java.io.Serializable)

interface javax.serviet.http. HttpServietRequest (extends

javax.serviet.ServletRequest)

interface javax.servlet.http. HttpServletResponse (extends

javax.serviet.ServletResponse)

mterface javax.servlet.http. HttpSession

interface javax.servlet.http. HitpSessionBindingl istener (extends

java.util. EventListener)

interface javax.servlet.http. HttpSessionContext

class javax.servlet.http. HitpUtils
class java.io.InputStream

e class javax.servlet.ServietInputStream

class java.io.OutputStream

e class javax.servlet.ServietQutputStream

interface javax.servlet.Serviet
interface javax.serviet.ServietConfig
interface javax.servlet.ServietContext
interface javax.servlet.ServietRequest

interface javax.servlet.ServietResponse

interface javax.servlet.SingleThreadMode!

class java.lang. Throwable (implements java.io.Serializable)

15

e class java.lang.Exception

e class javax.serviet.ServictException

e class javax.servlet. UnavailableException

Servlet interface

The servlet interface is the central abstraction of the Servlet APL All serviets
implement this interface either directly, or more commonly, by extending a class that

implements the interface. The two classes in the API that implement the Servlet interface

are GenericServlet and HttpServiet.

Actually, the interface defines several methods for the servlet container to make the
management of a servlet’s life cycle easy and consistent. They are known as life-cycle

methods, and are called in the following sequence:

The servlet is constructed, then initialized with the init () method.
Any calls from clients to the service () method are handled.

The servlet is taken out of service, then destroyed with the destroy() method, then

garbage collected and finalized.

In addition to the life-cycle methods, this interface provides the getservletconfig

method, which the serviet can use to get any startup information, and the

16

getServletinfo method, which allows the servlet to return basic information about

itself, such as author, version, and copyright.

GenericServlet

GenericServlet 1§ a generic, protocol-independent servlet. It implements the serviet
and servletConfig interfaces. Genericservlet may be directly extended by a servlet,
although it is more common to extend a protocol-specific subclass such as Httpserviet.
GenericServliet makes writing servlets easier. It provides simple versions of the
lifecycle methods init and destroy and of the methods in the servietconfig interface.
GenericServlet also implements the 1og method, declared in the servietcontext

interface. To write a generic servlet, you need only override the abstract service

method.

HttpServlet

The class Httpserviet implements the servliet interface and provides a base that
developers will extend to implement serviets for implementing web applications

employing the HTTP protocol. In addition to generic Servlet interface methods, the class

HttpServlet implements interfaces providing HTTP functionality.

17

HttpServiet provides an abstract class to be subclassed to create an HTTP servlet suitable
for a Web site. A subclass of Httpserviet must override at least one method, usually
one of these:

doGet, if the servlet supports HTTP GET requests

dopost, for HTTP POST requests

doput, for HTTP PUT requests

dobelete, for HTTP DELETE requests

init and destroy, to manage resources that are held for the life of the serviet

getServletInfo, which the serviet uses to provide information about itself
There's almost no reason to override the service method. service handles standard

HTTP requests by dispatching them to the handler methods for each HTTP request type

(the Ao XXX methods listed above).

For most purposes, developers will typically extend HttpSexrvlet to implement their

serviets.

18

Jetty, an example of the Servlet container

Jetty is an Open Source HTTP/Servlet/JSP engine. The full version of Jetty is available

from http://www.mortbay.com, which includes downloads of the full source package.

General components layout
The Jetty servlet engine consists of following main components:

e The org.mortbay.http.HttpServer class implements the core HTTP server.

e The org.mortbay.jetty.Server class extends org.mortbay.http.HttpServer

with XML configuration and servlet support.

e sSocketListner 15 the basic implementation of HttpListner that accepts HTTP

connections on a normal socket.

e HttpListner implementations create HttpConnection Instances.

e A HttpConnection Instance manages one or more requests received over a
connection.

e A HttpContext has atiributes for class path, class loader and resource base, which
apply to all the HttpHandlers it contains.

e AHttpContext 1s registered in the Httpserver at one and only one context pattern

(eg. /context/*) and for zero or more virtual hosts.

e A HttpContext contains one or more implementation of HttpHandler, in the order

they are added.

19

® ResoueceHandler is an implementation of HttpHandler that serves static content

from the resource base of the HttpContext.

® ServletHandler 1S an implementation of HttpHandler that serves Serviets by
mapping a path spec within the context (eg *.xxx, / or /XX/*) to a Servlet instance.
Dynamic servlets include the class name in the URL, configured servlets have

explicit path to class mappings.

Jetty Architecture

The class diagram in Figure 4 shows the relationship among the key Jetty classes.

20

HttpServer

host, pathmap

HandlerContext

HttpHandler

+service(req:, res:)

Ty

+handle(req:, res:)

+handle(ctx:, req:, res:)

VAN

JAN

]
§
i
HitpList !
pener ResoueceHandler | |
1
T HttpMessage 7:
i i
Socketlistener - '
SecurityHandler ;
: -
<<creates>>1 s
t
]
H ¥
HtipConnection NotFoundHander | |
L]
+handle() "E
T 6
?
S — S R — . :
<<creates>>1 | 9
y s
HttpRequest HttpResponse !
i
1
1
1
]
i I H
ServietRequest ServietResponse !
i
i
) ServietHandler
t t <<creates>>
| J U, PR R S SR
XmiConfiguration ServietHandlerContext Context

com.mortbay jetty.Server

WebApplicationContext

Serviet

Figure 4 Class Diagram for Jetty serviet engine

21

Extending the Servlet Concept to F'TP

From downloading the newest software to transferring corporate documents, a significant
percentage of Internet traffic consists of file transfers. Files can be transferred via HTTP,
but the page orientation of the Web protocol has disadvantages, especially for
performance and control. That's where one of the oldest of the Internet services steps in:
File Transfer Protocol (FTP)“O]‘ Essentially, FTP makes it possible to move one or more

files between computers with security and data integrity controls appropriate for the

Internet.

Due to the flexibility of the servlet package, servlet technology has been widely used
within HTTP server and its extensions. The usage of the technology has provided the
developer of HTTP servers the subtle and complete control on what content could be
provided to the clients. Since the servlet API package assumes nothing about the server's
environment or protocol, the structure of servlets could also be embedded in many other
servers, which would not rely on HTTP. That gives us the possibility to extend the servlet

technology to another very popular used protocol, FTP, the File Transfer Protocol.

Basics about FTP

FTP is one of the oldest and still most popular protocols on the Internet. While some

protocols, like Gopher has lost general interest, FTP is used more than ever before.

22

Hundreds of thousands of FTP servers are running, and millions of people use FTP every

day to send or receive files.

FTP is simply a service that allows two Internet hosts to transfer files back and forth. In

this way, it is really a large part of the structure of how the Internet works.

FTP works in a client-server fashion where the local host (either your computer or a
service provider’s computer) initiates the client program, FTP, and connects to the remote
system, in this case representing the server. The user initiates commands with the client

application and the server responds.

To utilize FTP, in addition to having access to your computer, you need to know three
things:

e The name of the machine that the file is kept on, and

o Where the file is on that machine, and

e What the file is called.

Typically a user enters commands to FTP to browse the remote local file system to

retrieve files from the remote system.

23

Anonymous FTP

When copying files from one computer to another, one must have the permission to
access another computer system, typically that means having a valid account and
password. Anonymous FTP is a special use of FIP in which a site makes its files
available to users who do not have accounts on that host. The anonymous FTP facility
lets you use a special login name of anonymous and a special password, usually your
email address, to let you have limited access to the remote host for the purpose of
retrieving files that have been approved for public access. Usually with an Anonymous
FTP site, there will be certain directories that are designated as public directories. Most
sites will also allow you to download files from it, but not copy any files up to the

anonymous host site.

Using FTP

To start an FTP session, One must establish a network connection from your local host to
the remote host. On many Internet hosts, One types FTP at the command prompt and the
host name of the machine to which you want to connect. Many of the Internet software
packages one will be using under Microsoft Windows will have a GUI, graphical user
interface that will ask for these and have GUI-based FTP tools that allow for easy
browsing of directories and hosts. Macintosh users begin their sessions by clicking on the

Fetch icon. When you are at the remote host, it will prompt you for your username and a

24

password. Again, when using anonymous FTP, you enter anonymous as your user name

and your email address as the password.

Request and response paradigm

Similar to HTTP, FTIP is also a protocol based on request and response logic. FTP
requires two programs, a server program, and a client program. Normally the server
program offers files to the client program. But in some cases, the server will also allow
the client to upload files. The client program connects to an FTP sever on the Internet.
Once connected, the FTP server sends a welcome message to the client over the open

socket (network) connection.

Connections in FTP

Unlike HTTP where all the connections are the same, FTP connections are categorized as
two types, 1.e. control connection and data connection. Actually, data connection is only
temporary. The creation and termination of a data connection are controlled by the
control connection. Control connection is used for the client to send commands, and for
the server to response in plain text, which is a bi-directional communication channel. The

data connection is just for data transfer, with one connection for each data transfer.

25

Design of FtpServlet Container

As we discussed above, the servlet container is playing an important role in the servlet
technology. It must receive the client request, and construct the context object and
request object for the serviet to retrieve all the request information. Meanwhile, the

servlet engine also needs to pass back any response to the client.

When extending the servlet technology to FTP applications, it is an intuitive approach to
implement a container that can accommodate this specific servlets. Similar to the
HttpServlet package, the definition of FtpServiet package would provide the interface
between a Servlet instance and the servlet container. In order to work out a feasible
definition for the FtpServiet package, the possible implementation for a serviet container

will be examined in this section.

A container to support FTP connection

The ultimate purpose would be to implement an FTP server to handle all the requests
from the clients. Once we introduce the idea of FTP Serviet container, we would have an
equation shown in Figure 5. We would like to allocate the assignment among those

components left to the equation.

26

An FtpServiet . Ftp
Servlet

FtpServiet + package + Eneine Server

instance ©

Figure 5 The relation between fip server and its components

As shown in Figure 5, the application logic is implemented by an FtpServiet instance. It
will decide how to response to the request from the user based on the nature of the
application. The servlet engine would provide an environment for the FtpServlet instance
to fulfill its actions. More specifically, the servlet engine would be responsible for
connecting to the Ftp Server, establishing the link between the client and the server, and
tearing down the link. When it comes to the communication protocol between the
FtpServlet and the servlet engine, it is the purpose of this FtpServlet package, which will
define the necessary interface to guide how the FtpServlet instance communicates with

the servlet container.

All the FTP details should be taken care of by the FtpServiet package and the serviet
engine. As the user of FtpServiet, who has also to be the developer of the FTP server, the
work is just to implement an FtpServiet instance, just as simple as finishing a

HttppServiet.

27

General consideration of the FtpServilet Container

Based on the implementation of Jetty servlet engine, the Servlet Container would be

implemented in the following aspects:

Socketlistener would play a much important role. As we know, Ftp request is coming
though the port 21. The Listener would listen to this port and once a request is coming, an
FtpConnection would be created, which is then to maintain the ftp connection.

Following the same logic, the FtpConnection would rely on both request and response
objects. Without exception, they would be named as FtpRequest and FtpResponse.
However, the two objects are not part of the FtpServiet package. They belong to the
container implementation. The two objects reflect the container’s knowledge about the

FTP process.

The Ftp protocol has two kinds of connections, which are control connection and data
connection. Therefore, the FtpConnection would have two descendents,
FtpCtriConnection and FtpDataConnection, to accommodate the complexity.

Definitely, an FtpServer class is needed to manage all the controlling features. Actually,
the type of servers, either HttpServer or FtpServer, may be decided by the port number,
through which the client request is coming. For Fip connection, the port number is
predefined and well known. For the HttpServer in the Jetty package, the port number is

configurable. We may define a port usage table to pre-assign these resources. For a

28

request coming from the port number within the range allocated for Ftp Server,
FtpServer will be initialized and used to handle the services. If a request is knocking on
the ports defined for Http services, the HttpServer will be created and the classical

application server is instantiated.

Similarly, the context object is needed, which is responsible for maintaining the
communication between the servlet and its environment, 1.e. the servlet container and the
operating system. Some system information should be resolved by querying the context

object.

29

Wrapping up the Ftp request and response

The servlet container needs to read in the request coming from the FTP client and process
it to create an FtpServietRequest object to contain all the request intention from the

original client. The following diagram shows the relationship between these components.

Servlet

Ftp Engine FtpServiet

Client

Ftp Request — MyFtpServietRequest | | FipServletRequest

Figure 6 The Ftp Request is wrapped up by the servlet engine

However, in the implementation of Servlet engine, it could not just convert Ftp request to
FtpServietRequest, because it will be defined as an interface in the FtpServiet package.
A “real” object that implements the FtpServietRequest mterface must be created by the

servlet container to wrap up all the request information.

30

The Figure 7 shows how the MyFtpServietRequest is to be constructed.

Where FtpServietRequest belongs to the FtpServiet package we are going to define

ServletRequest

N

FtpServietRequest

<

MyFpServietRequest

Figure 7 The hierarchy for the construction of request object

later, while ServietRequest is defined by the Sun Serviet APL

Following the same deduction for FTP request, the FTP response is to be wrapped up by

the container using an object, MyFtpServietResponse.

Ftp
Client

i/ Ftp Response

The response defined by the application’s nature will be written back to the Serviet

Engine through the interface, FtpServietResponse, which in turn is implemented by the

Servlet
Engine

i

MyFtpServietResponse

FtpServietResponse

FtpServiet

Figure 8 The Ftp Response is wrapped up by the servlet engine

31

engine as an object, MyFtpServietResponse. The Serviet Engine is taking care of sending
back the response to the FTP client, where it 1s merely finishing a conversion from the

internal representation of the response to its formal counterpart, i.e. Ftp Response.

Class loader

Some of Java features really stand out to make Java a good choice to implement system

software, such as dynamic loading, Network-centric Programming, and security.

Java is both dynamic and extensible. Java code is organized into modular object-oriented
units called classes. Classes are stored in separate files and are loaded into the Java
interpreter only when needed. This means that an application can decide, as it is running,
what classes it needs, and can load them when it needs them. In also means that a

program can dynamically extend itself by loading the classes it needs to expand its

functionality.

A classloader is a Java class that locates and loads a requested class into the Java virtual
machine (JVM). A classloader resolves references by searching for files in the directories
or JAR files listed in its classpath. Most Java programs have a single classloader, the
default system classloader created when the JVM starts up. Classloaders are hierarchical.
A classloader always asks its parent for a class before it searches its own classpath. But a
parent classloader does not consult its children. The implementation of a servlet engine

also relies on the mechanism to dynamically find the target servlet and initiate it.

32

Event sequence of FtpServiet Engine

Figure 9 shows the message sequence among several engine objects.

FtpServer SocketListener FtpContext FtpHandler

Create @

P FtpConnection

©

Handle Create

FtpRequest

©

}__---___-__--___-___--__-__-__

}-_-_--__-__-

PRSI S SRR T
v o e o b n s o oo o 0 w2 e e mm o L e o o

t
1
]
)
]
]
i
i
' Create
3
S Service @ FtpRestonse
< :
@:
Handl !
andle : Handle @
! P' getCommand()
! b
1
i
1
i @
! getResource()
i
| oG
! getWriter()
‘ (1
| ! i ! '
1 i
i - ; >:< X X
: : e :
]

Figure 9 The sequence diagram of the interaction among objects of fip serverlets

As shown in the above diagram, the SocketListener first detects there is a connecting
request from a client, it will then create a connection object, FtpConnection, to handle the

request. As shown in the step 2, the handle method of FtpConnection is called by

33

SocketListener, where the FtpRequest and FtpResponce objects will be created during
Step 3 and 4. When the request and response objects are ready, the FtpConnection object
in Step 5 will call the service method of FtpServer to ask the request to be served. The
FtpServer object maintains all the context information for the server, it then passes the
request to FtpContext to resolve which servlet should answer the request. After the
context object figures out which handler should be invoked, it calls the hander method of
FtpHandler in Step 7 to take over the responsibility. The FtpHandler object then uses the
FtpRequest object to decide what the client request is and what resource it has provided
through calling getCommand() and getReouce() in Step 8 and 9. All the information will
be passed to the FtpServiet and used to generate proper response, which in turn will be

returned to the client through FtpResponce object by calling getWriter() in Step 10.

34

Implementation of FtpServlet

Actually, FTP is a smaller protocol comparing with HTTP. In contrast to that HTTP is
using Hypertext Markup Language (HTML) as underlying format, the transmission
format that FTP relies on is much simpler. Because of the simplicity of FTP format, there

is not much room for apphcations to extend from it.

Reference to Sun’s servilet package

Sun Microsystems, Inc. has released several versions of the servlet Specification. The
serviet specification defines two packages, 1.e. javax.servlet and javax.serviet.http.

Table ! gives the summary of servlet API package.

Table Al Java serviet APl summary

Package javax.serviet Package javax.serivet.hitp
ReguestDispatcher HttpServletRequest
Servlet HttpServletResponse
ServletConfig HttpSession
ServletContext HttpSessionBindingListener
ServletRequest HttpSessionContext
ServletResponse Cookie
SingleThreadModel HttpServlet
GenericServlet HttpSessionBindingEvent
ServletInputStream HttpUtils
ServletOutputStream

35

ServletException

UnavailableException

From last section where the implementation of Generic Servlet Engine was discussed, we
know that the definition of FtpServiet will hugely affect the implementation. Since the
HttpServiet package has been proved to be a successful example, the design and
implementation of FtpServiet could borrow some ideas from the implementation of

HttpServiet. Here some preliminary ideas will be discussed.

FtpServletRequest

Besides all the methods defined in SevietRequest, which should be implemented in this

mnterface, another two important methods are defined in it.

public String getCommand();

public String getResource();

getCommand() method will return the command the client has requested. The command
is in the format of string and in its upper case (Please refer to the appendix for all the FTP

commands.).

getResource() methods returns the parameter(s) for a command if applicable. For
example, if the user issues a USER command, the user name will be the command
resource. When a PASS command is issued, the parameter will be retrieved using

getResource() (i,e, joe@nowhere.com in the following sample).

36

Server: 220 Sample FTP server ready. Please give user-name
Client: USER anonymous

Server: 331 User name OK. Please give your email address as
password

Ciient: PASS joe@nowhere.com

Server: 230 User logged in

FtpServietResponse

As we discussed it before, there 1s a control connection and a data connection in FTP
services. Since the data connection is temporary, it is not suitable to be provided m the
response object. However, all the control data flow is transmitted through this object.
Another point worth to mention is that the control data flow is actually in the format of
ACSII text. All the responses (called replies in the FTP RFC !'%) are sent back using the

text channel.

String command = req.getCommand();
String reply = ",
try {
if(command.equals(METHOD_USER)) {
m_user = reg.getResource();

reply = handleUSER({ m_user);

} else if(command.equals(METHOD_PASS)) {

reply = handlePASS(reqg.getResource());

37

¥ catch(NoSuchMethodException e) {

b

// send back the response

resp.getWriter().printin(reply);

As the above sample code shows, the handling of each command will return a string
response (the reply in the sample). The FtpServietResponse implements the getWriter()
method from ServietResponse, which is used to get a print writer for sending back the

text response.

Data Connection

A data connection is needed for some FTP requests, such as LIST, RETR, and STOR.
Actually, these requests are always paired with a PORT command, which is used to ask
the server to prepare a data connection. The resources of a PORT command contains the
host IP address and port number that the client is asking the server to listen to. When the
second command comes, the server will use the host and port info to make a temporary

data connection.

protected InetAddress m_dataHost; // host for the data connection
protected int m_dataPort; // port number for the data connection

private String handiePORT(String address) throws UnknownHostException
{

int il = address.lastIndexOf('," };
if(i1 < 0) return "500 '"PORT " + address + "': command not understood.”;
int i2 = address.lastIndexOf(',*, i1-1);

if(i2 < 0) return "500 'PORT " + address + "': command not understood.”;

try {

38

m_dataHost = InetAddress.getByName(address.substring(0, i2).replace(',
BRDF

m_dataPort = Integer.parselnt(address.substring(i2+1, i1)) * 256 +

Integer.parselnt(address.substring(i1+1));

} catch({ NumberFormatException e) {

return "500 'PORT " + address + "': command not understood."”;

¥

return "200 PORT command successful.”;

The above code sample is used to handle the PORT request. Actually, it just parses the

PORT resource and saves into local variables for later user.

private Socket buildDataConnection(String name, String dataType, long bytes)
throws Exception

{
Socket sock;
if(passive != null)
{
sock = passive.getConnection();
passive = null;
}
else if(m_dataHost == null)
{
throw new Exception(
“Cannot build data connection: use PORT or PASV first.");
+
else
{
sock = new Socket(m_dataHost, m_dataPort);
m_dataHost = nuli;
b
return sock;
)

The above sample code is used to create data connection. Once the data connection

finishes the data transmission, it is closed by the control connection.

39

FtpServiet

Since FtpServiet is derived from GenericServlet (that is the whole idea of this project),
which defines a generic, protocol-independent servlet, it could make use of the weli-

designed life cycle control for servlet. In order to implement a protocol-specified servlet,

the abstract service method of GenericServiet should be extended.

protected void service(FtpServietRequest req, FtpServietResponse resp)
throws ServietException, 10Exception

{

String command = req.getCommand();
String reply = ",
try {
try {
if(command.equals(METHOD_USER)) {
m_user = req.getResource();
reply = handleUSER(m_user);

} else if(command.equals(METHOD_PASS)) {
reply = handlePASS(req.getResource());

} else if(command.equals(METHOD_PORT)) {
reply = handlePORT(req.getResource());

} else if(command.equals(METHOD_LIST)) {
reply = handleLIST(resp, req.getResource());

¥ else if(command.equals(METHOD_CWD)) {
reply = handleCWD(req.getRescurce());

} else if{(command.equals(METHOD_CDUP)) {
reply = handieCDUP(req.getResource()});

} else if(command.equals(METHOD_PWD)) {
reply = handlePWD(reqg.getResource());

} else if(command.equals(METHOD_XPWD)) {

40

reply = handleXPWD(reqg.getResource());

} else if(command.equals(METHOD_TYPE)) {
reply = handleTYPE(req.getResource());

} else if(command.equals(METHOD_PASV)) {
reply = handlePASV(req.getResource());

} else if(command.equals(METHOD_RETR)) {
reply = handleRETR(resp, reg.getResource(});

} else if(command.equals(METHOD_REST)) {
reply = handleREST(reg.getRescurce());

} eise if(command.equals(METHOD_STOR)) {
reply = handleSTOR(resp, req.getResource());

} else if(command.equals(METHOD_APPE)) {
reply = handleAPPE(resp, reqg.getResource());

} else if(command.equals(METHOD_SIZE)) {
reply = handleSIZE(req.getResource());

} else if(command.equals(METHOD_SYST)) {
reply = handleSYST(req.getResource());

} else if(command.equals(METHOD_RNFR)) {
reply = handleRNFR(reg.getResource());

} else if(command.equals(METHOD_RNTO)) {
reply = handleRNTO(req.getResource());

} else if(command.equals(METHOD_MKD)) {
reply = handleMKD{req.getResource());

} else if(command.equals(METHOD_XMKD)) {
reply = handleXMKD(reqg.getResource());

41

} else if(command.equals(METHOD_DELE)) {
reply = handleDELE(req.getResource());

¥ else if(command.equals(METHOD_RMD)) {
reply = handleRMD(reqg.getResource());

} else if(command.equals(METHOD_NOOP)) {
reply = handleNOOP{reqg.getResource(});

} else if(command.equals(METHOD_QUIT)) {
reply = handieQUIT(req.getResource());
} else {

reply = "502 Command " + command + "' not
implemented.”;

throw new NoSuchMethodException();

b
} catch(NoSuchMethodException e) {

b
// send back the response
resp.getWriter().printin(reply);
} catch(Exception e) {
try
{
Throwable p = e;
while(p instanceof InvocationTargetException)
p = ({(InvocationTargetException)p).getTargetException();
p.printStackTrace();
reply = "555 Error: " + p.toString().replace('\n',' ") ;
} catch(Exception el) {
el.printStackTrace();

This method just parses the client’s command and redirects it to its corresponding
handler. Since this method can be overridden, the developer can implement almost every

requirement needed.

42

Samples of FtpServet
In order to verify the idea of FtpServlet and its container, several sample servlets are
implemented.

Account Checking

As in normal scenarios of FTP services, user permission is a very important process so
that no security risks are introduced. With the usage of FtpServlet, the developer of an
FTP server can easily add a new layer to achieve security checking. Here is an extraction

from the FtpServiet sample.

protected boolean doPass(String user, String pass)

{
if(user.equalsIignoreCase("johndoe")) return false;
if(pass.equaisignoreCase("guest")) return false;
return true;

3

The servlet would just reject the user ‘johndoe” and anyone who tries to login to the
system using “guest” as password. Actually, in real life, the user/password information
may be maintained in a secured place and retrieved on the fly. The roles of uses may also

be stored to check if the user is allowed to access some sensitive information.

43

Filtering the response

Sometimes the Ftp Server may add more control over which kind of content should be
sent back to the client. Two types of filters are provided in the FtpServiet package. One
is just to check if the Iisted file name contains the required string. Another is to employ

regular expressions for the filtering. Here are two samples.

public class NameAlikeFilterFtp extends FtpServlet

{
protected String setListRegExpPattern()
{
return “.cpp";
by
b

This FtpServiet would just list all the files that contain string “.cpp”.

public class NameRegExpFiiter extends FtpServiet

{
protected String setlistRegExpPattern()
{
return "[abcl”™;
¥
b

44

[T 3]

This one will just list all the files that contain any character, “a”, “b”, or “c”.

45

Database connection

In the nature of FTP service, the client actually does not know if the server really has that
folder or file. The fact would give us the chance to let the FTP server provide the client
whatever information the server believes proper. Actually, the FtpServiet can retrieve
information from a predefined database system and convert it into the format that client
could accept. Thus, we can add another application layer to extend the FtpServlet to

provide proper information to the clients.

46

Further Improvement

Although the basic idea of FtpServiet was shown in different perspectives in this project,
there is still some room to refine the interface definition so that more flexibility can be

delivered to the developer of FTP server.

Refine the FtpServiet package

As we mentioned above, the developer can directly override the service() method to
extend the FTP definition. Actually, all the handleXXX() functions can also be exposed
to the developer so that the FTP service can be well adjusted according to the nature of

the application.

As requested by the Java™ Servlet API specification, servlet is running above the HTTP
(or HTTPS) communication channel. That is why there is so much footprint of HTTP on
the definition of Java Servlet API package. Even we demonstrated the idea of FtpServiet
by deriving it from GenericServiet for Sun Serviet APIL, actually, we can redefine
everything from scratch, so that many FTP-related features can be much smoothly
incorporated into the FtpServiet package. That would produce much flexibility for the

user of FtpServiet package.

47

Possible WebDAYV support

This section discusses the possibility to extend FtpServiet to support Web Distributed
Authoring and Versioning (WebDAVY'™, which has become an important
communication protocol for the Web as an extension to HTTP 1.1. It describes what
WebDAYV is and how the FtpServiet structure could be extended to support the feature of
WebDAV. Actually this subject would be worthy a whole chapter to cover. Here we just

give out some preliminary considerations about the topic.

Introduction to WebDAYVY

With increased focus on Internet standards and network interoperability, Web Distributed

Authoring and Versioning (WebDAV) has become an important communication protocol

for the Web as an extension to HTTP 1.1

HTTP 1.1 (Hypertext Transfer Protocol) has proven itself as a flexible, universal protocol
for transferring data by virtue of the fact that the Web has become the bastion of the
Internet. However, HTTP has some obvious shortcomings that have limited its adoption
as a comprehensive Internet communication protocol. It works well for static documents
intended for viewing, but does not provide the means to handle documents in a manner

sophisticated enough to provide clients with rich authoring capabilities.

The current WebDAV specification tackles three major concerns of collaborative

authoring tools:

48

Overwrite Protection.

HTTP 1.1 has no method of ensuring that clients can protect resources and make changes
without fear of another client simultaneously editing them. With WebDAYV, you can lock
resources in a variety of ways to let other clients know you have an interest in the

resource in question, or to prevent other clients from being able to access the resource.

Resource Management

HTTP deals only with direct access to an individual resource. WebDAV provides a
means of organizing data more efficiently. WebDAV introduces the notion of the
collection (analogous to a file system folder), that can contain resources. Resource
management via WebDAV includes the ability to create, move, copy, and delete

collections, as well as the ability to do the same things to the resources or files within a

collection.

Document Properties

Different types of data have unique properties that help describe the data. For example, in
an e-mail message, these properties might be the sender's name and time received. In a
collaborative document, these properties might be the original author's name and the
name of the last editor of the document. As the types of documents that people use
diversify, the list of possible property types becomes very large. XML is the type of

extensible communication vehicle required by WebDAV.

49

HTTP provides a set of methods that clients can use to communicate with servers and
specifies the format of responses from servers back to the clients that have issued
requests. WebDAV fully adopts all of the methods of this specification, extends some of

these methods, and introduces additional methods to provide the functionality described.

XML, Transmission Format

WebDAV was designed to provide more methods for handling resources on a server.
These additional methods generally require a great deal of information to be associated
with both requests and responses to explicitly define the intention of the client or server.
The method of communicating all of this information in HTTP was solely the
responsibility of the headers in requests and responses. This imposes some limitations on
transfers. It is very difficult to apply header information to multiple resources in a request
and to fully represent the information due to the nature of its hierarchic structure.
Because of its inherent extensibility, XML was chosen to describe how these instructions
are communicated. XML is crucial to the operation of WebDAYV because it provides:

e A method of formatting instructions describing how data is to be handled.

e A method of formatting complex responses from the server.

e A method of communicating customized information about the collections and

resources handled.

e A flexible vehicle for the data itself.

50

At a high level, a WebDAV instruction processor is really a set of logic that interprets

WebDAV methods, followed by an XML parser that interprets the majority of the

mformation communicated.

WebDAYV layer built for FtpServlet

From the introduction to FTP, we have known that FTP also provides approaches to
manage resources on the server-side, either uploading files to the server, or downloading
files from server to the clients. Similar to what HTTP has experienced with the “lost
update” limitation, as a server resource management tool, FTP also needs improvements
regarding this limitation.

As we introduced in last section, webDAV provides a promising way to extend HITP to
make it suitable for server resource management. The idea of extending to webDAV can
also apply to FTP. Since we have demonstrated the feasibility of FtpServlet, the addition
layer of extending FTP can be implemented on top of the FtpServlet.

As shown in the figure, a WebDAV layer could be introduced between the
communication channel of the web Server and the FtpServlet Engine. The additional
layer is responsible for converting the request, which is in the format of a Http Request
with a webDAV extension, to Ftp Request that can be understood by the FtpServlet
container. On the other hand, the response from the Ftp Server will be processed by the
layer to send back to the client in the format of Http Response, which is the language that

a webDAYV client can understand.

51

Web Server

FepServlet
\ Container
< WebDAV
Server Response layer

WebDAV | Client Requests
Client P

Ftp Servlets

Figure 10 An additional layer could make Ftp Server support WebDAV

General Servlet Container

From the previous discussion, we know the current servlet / container paradigm strictly
relies on HTTP as a protocol for requests and responses. That would impose a limitation
to the applications of Serviet technology. This project has already shown the possibility

to extend the servlet concept to other popular protocols.

Actually, there would be the possibility to implement a generic servlet engine, which can
contain any type of servlets, such as FtpServlet, TelnetServiet, and so on. The author
believes that the generic servlet container would not only give much convenience for the
server development, but also provide a new mechanism for the development of other

application services.

52

Client

Generic Servlet Engine

Generic Servlet

.

.

¥

5

HittpServlet

FtpServlet

TelnetServlet]

xxxServlet

Client Requests

As depicted in the above diagram, we’d like to have a generic servlet engine to hold all
kinds of servlets, and then serve any request coming from the clients. For now the client
of Servlet engine always means the Internet browsers, i.e. Internet Explorer or NetScape
Navigator, since all the current Servlets can only understand the requests in the format of
HTTP. For any other request, the service provider must implement the server to fulfill
their special requirement. For example, an FTP server must be implemented to fulfill the

requirement of FTP protocol. Since now all the information is digitized and saved into a
Database system, sometimes the ftp server must be acting as middle ware to serve the

entire information system. The existence of a generic servlet engine and an ftp servlet

Server Response

would definitely simplify the development for such systems.

53

Figure 11 Possible extension plan for generic servlet engine

Bibliography

(1]

(2]

B3]

(4]

R
(6]

(7

(81

191

[10]

(1]

Coward, D. “Java'™ Servlet Specification” (version 2.3), September 2001

hitp://icp.org/aboutlava/conununityprocess/ first/isr05 3/index html

Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., and
Bemers-Lee, T. “Hypertext Transfer Protocol — HTTP/1.1”7, RFC2616, June 1999.
Berners-Lee, T. and D. Connolly, "Hypertext Markup Language - 2.0", RFC
1866, November 1995.

Netscape Communications Corporation, "Core JavaScript Guide", v1.4, October
1998.

Lomax, P. "Leamning VBScript", O’Reilly & Associates, July 1997.

Coar, K.A.L,. Robinson, T. "The WWW Common Gateway Interface", Version
1.1(draft 03), June 1999.

"Apache Tutorial: Introduction to Server Side Includes”,

http://httpd.apache .org/docs/howto/ssihtml

Weissinger, A. K. "ASP in a nutshell”, 2 Edition, O’Reilly & Associates, July
2000.
The Java™ Web Services Tutorial

htty://1ava.sun.com/webservices/docs/1 . 2/utorial/doc/index.html

Postel, J. and Reynolds, J. “File Transfer Protocol (FTP)”, RFC959, October

1985.
Wilkins, G., What is the Jetty Architecture?

http://ietty.mortbay.org/jetty/doc/Jetty Architecture.html

54

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

Chang, P. 1, Inside The Java Web Server, April 2003.

hitp:/java.sun.comfeatures/ 1997/ aug/1ws 1 himl

Allamaraju, S. Java Servlets: Design Issues, March 2002.

http:/www.subrahmanvam.com/articles/serviets/Servietissues.him]

C & K Management Limited, An Overview of Servlets

http//www.themanagementor.com/enlichtenmentorareas/WEL AnQOverview . htm

Ipswitch, Inc., FTP Technical Guide

httn//www.fipplanet. conyftpresources/fiptech.him

An Overview of the File Transfer Protocol

hitp://www .nctfipd.com/libneftp/doc/fip_overview. html

Peterson, B. “Understanding J2EE Application Server Class
Architectures”, May 2002.

http://www theserverside.com//resources/article.isp?1=Classloading

Fangagan, D., An Overview of the Java 2 Platform, December 1998.

http://www.oreillynet.com/pub/a/oreilly/iava/news/java2_0299 himl

Loading

Goland, Y., Whitehead, E., Faizi, A., Carter, S. and Jensen, D. “HTTP Extensions

for Distributed Authoring -- WEBDAV”, RFC2518, Feburary 1999.

55

Appendix

Table A2 FTP commands

FTP command Description
CDUP Change to parent directory
CwD Change working directory or library
DELE Delete file or document
LIST File list
MKD Make directory
MODE Set transfer mode
NLST Name list
NOQOP Obtain server response
PASS Password
PASV Use passive data connection
PORT Data port
PWD Print working directory
QUIT End an FTP server system
RETR Retrieve file
RMD Remove directory
RNFR Rename from
RNTO Rename to
STOR Store file
STRU Specify file structure

56

SYST

Identify the name of the operating system

TYPE Specify representation type

USER Send a user logon ID to the server
XCWD Change working directory or library
XMKD Make directory

XPWD Display working directory or library
XRMD Remove directory

57

Glossary

access controls
Access controls define users' access privileges to the use of a system, and to the
files in that system. Access controls are necessary to prevent unauthorized or
accidental use of files. It is the prerogative of a server-FTP process to invoke
access controls.

client
A program that establishes connections for the purpose of sending requests.

connection
A transport layer virtual circuit established between two programs for the purpose
of communication.

FTP commands
A set of commands that comprise the control information flowing from the user-
FTP to the server-FTP process.

server
An application program that accepts connections in order to service requests by
sending back responses. Any given program may be capable of being both a client
and a server; our use of these terms refers only to the role being performed by the
program for a particular connection, rather than to the program's capabilities in

general.

58

uniform resource locator (URL)
A compact string representation of resources available via the network. Once the
resource represented by a URL has been accessed, various operations may be
performed on that resource. A URL 1s a type of uniform resource identifier (URI).
URLs are typically of the form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTTP-based
URLSs which are of the form:

http{sl://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/serviet/index.html
https://javashop.sun.com/purchase

In HTTP-based URLs, the /* character is reserved to separate a hierarchical path
structure in the URL-path portion of the URL. The server is responsible for
determining the meaning of the hierarchical structure. There is no correspondence
between an URL-path and a given file system path.
web application

A collection of servlets, JSP pages, HTML documents, and other web resources
that might include image files, compressed archives, and other data. A web
application may be packaged into an archive or exist in an open directory

structure.

59

