Reliability Measurement Based on the Markov Models
for Real-time Reactive Systems: Design and

Implementation

Fong-An Lee

A Major Report
In
Department
Of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University

Montreal, Quebec, Canada

August 2003

© Fong-An Lee, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83909-5
Our file Notre référence
ISBN: 0-612-83909-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Reliability Measurement Based on the Markov Models for Real-time

Reactive Systems: Design and Implementation

Fong-An Lee

This major report describes the design and implementation of the TROM-SRMS:
software reliability measurement system for real-time reactive system in the TROMLAB
environment. The TROM-SRMS is responsible for the reliability computation of each
individual sub-system in a real-time reactive system. In order to achieve cross-platform
capability, Java has been chosen as the implementation tool. A GUI interface is added on
top of the real computation unit to facilitate the use of the software. Finally, the key
algorithms used in the design and implementations are presented in detail as well as the

interactions among the underlying objects.

i

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Olga
Ormandjieva. She gave me helpful guidance and advices all along the way.

My sincere thanks to Dr. Alagar for being the examiner of this project, his advises
and comments were very helpful.

Also, I would like to thank my family for the support during the years of my

graduate studies.

iv

Table of Contents

List of Figures vii
List of Tables viii
Chapter 1. INtroduction......ccccecrceeecercsrncssisssiscasssassssssssnssossssnsssasasasssnsesansas 1
1.1 The importance of software qUAalityc.ccoovieiiiiiiiiiinie e 1
1.2 Purpose and Problem Statementcccociiiiiiniiiiniiiie e 2
1.3 REPOIT OULHNEttt ettt ettt e e sa s ea et s essesesnas 3
Chapter 2. Background - — ssssssassensesnsses cevesaresnese .4
2.1 Real-time Reactive SYSIEIMScuoiuiiviiiririeieeieieientecterceieesiena et ssete v s 4
2.2 TROM FOrmaliSIm.......c.cciiiiiiiiiiiiiiiiiitieierie et ese et te v et et e saeesanneas 4
23 TROMLAB ...ttt eer et sne e 10
Chapter 3. Overview of Reliability Measurementc..cceeverereceeseernnae 13
3.1 Reliability Module in TROMLABccccoooiiiiiiiiiiceeeee e, 13
3.2 Markov MOdelc.cooiiiiiiiiiie et 13
3.3 Reliability MOElccooiiiiiiiriiiiii sttt 14
Chapter 4. TROM-SRIMS.....ccuiiierircrresseerareseessesssessesssssassansosessesssesassens 17
4.1 Description of the System Functionalitiesc.ooovovioiiieiieeieeeeeee e 17
4.2 Description of the System COomPONeNts.........cc.ocveeivuieeieiiieieeiceeeeieee s 18
4.3 Architecture DIagramccoooiiiiioiiiinieiei e 21
4.4 Data FIow DIagram.......cc.coiiiiiiiiiiieieieii et eeeanaas 21
4.5 Class DIAZTAMc.cc.eiiiiiiiiieieieiee ettt ettt e e neeneeans 22
4.6 Sequence DIAGIAMccoiiiiiiieeee ettt 23
Chapter 5. Key Algorithms in TROM-SRMS.......ccocverevurerrrcrervecesesssannas 25

\%

5.1 Algorithm for Transition Matrix Computation of a single GRC................c..c........ 25
5.1.1 PSEUAO COUR.....coniiiiiiiiceieee et 27

5.2 Algorithm for Transition Matrix Computation of Synchronous Product Machine 29

5.2.1 PSEUAO COAE ...ttt 33
5.3 Algorithm for Reliability COMPULAtIONcc.oocoiiiiiiiiiiiiecrce e 38
5.3.1 PSEUdO COAC ... 39
Chapter 6. Gate-Train-Controller Case Study cesssssentssentssesnesnnassane 42
6.1 Description of the Problemc.c.cccocviviiiniiiiccceee e 42
6.2 GRC related COMPULALIONSc.eiieuieieiiieieeiarenteestietes s ete s e se e e s s eeeceeenans 47
6.2.1 Gate.....oooeiiieiiiceccce e ettt et et senseaenas 47
6.2.2 PSEUAO COUL ...t e 50
6.2.3 Controller.........coooiiiiiiiii e 52
6.3 Synchronous Product Machine related computations...............cocoeeevvvevievevenenan... 55
6.3.1 Transition MAtriXc.occoiiiiiiiirieeeeete e 55
6.3.2 Steady VECIOT.......viiimiiiiiiieieie ettt ettt e e e e eees 71
6.4 Reliability COMPUIAtION........cocooiiiiiiiiireieiieiet et 74
6.5 Conclusion of the TESULLS...........ccoriiiiiiiiieeiie ettt 74
Chapter 7. Conclusion & Future Work................. cernessessstnsaseesstesanssarassaras 76
References........ censessnneseneene ceesssnressstesanseseanessatasses cesressenene ceressnesnnece cereessntcanee 77
Appendix Results of running Gate-Train-Controller on TROM-SRMS
... .80

Vi

List of Figures

Figure 1 LSL trait for Birthday Book ... 7
Figure 2 Reactive ODJECTcociiiiiiiiiiieieee ettt e e s e nee 8
Figure 3. Template for GRC Classooiiiiiiiiiiiiiieiiiietec ettt e 10
Figure 4. Template for System Configuration Specificationc.ccocccevviiviiiinieniinennennns 10
Figure 5. Synchronous Product Machine for GRC Train and Controller......................... 15
Figure 6 Snapshot of TROM-SRMS GUI Front pagecccovveeiiniieinenieeiecieereeenennns 20
Figure 7 Snapshot of TROM-SRMS GUI File Chooser Menu.............ccoccvveviviiiiencieeennnas 20
Figure 8 Snapshot of TROM-SRMS Status Windowcceevieeiievinecieeieeeceeeeeeeee 20
Figure 9 The Architecture Diagram of the TROM-SRMSccoeiiiiiiiiiiiiiiiieeeeee, 21
Figure 10 The Data Flow Diagram of TROM-SRMSccoiiiiiimiiiiiniinniene e, 22
Figure 11: The Class Diagram of the TROM-SRMSccoooiiiiiiiiieceeeeeeeeeeeee 23
Figure 12: The Sequence Diagram for TROM-SRMS Reliability Computation 24
Figure 13: Formal Specification of Class Trail..........ccoovievevreveeieeeeieeeeceerce e eeeeanens 43
Figure 14: State Chart of Class TTaincccoovivieriiiiiiiccieeeee e 43
Figure 15: Formal Specification of Class Controller..............ccoeoeeieeiioricierineieeceeeeenen.. 44
Figure 16: State Chart of Class Controller...............ocoooiiiiviiiiicecieeeeeeeeeeeeee e 44
Figure 17: Formal Specification of Class Gate...........cccviveeuereereiecieciieieeeeee e 45
Figure 18: State Chart of Class Gate..........coceieeviouieuieieiee e e 45
Figure 19: Formal Specification for Synchronous Product Machine of Gate-Train-
COMEIOIIET ...ttt sttt et ene et et e e et e esaeseaeenean 47

Figure 20: Formal Specification for one train — one gate — one controller subsystem (SCS)
... 47

vil

List of Tables

Table 1: Transition Matrix of Gate Classcccccociarriiiiiiiiiiiiic e e 48
Table 2. Probability of each transition in Gate Class.......c..eevieveriiiiniiiniincineennee s 48
Table 3: Transition Matrix of Train Classccccvriiiiiiiiiiiieer e 50
Table 4: Probability of each transition in Train Classc..cccceevivieiiniininnniinnneen. 51
Table 5. Transition Matrix of Controller Class.........cccovoviiiiiiiiniiniieirire et 53
Table 6. Probability of each transition in Controller Class..........cccceeverrinrenrineesieesieennas 53
Table 7. Transition Matrix of Synchronous Product Machine Gate-Train-Controller 70

Viii

Chapter 1. Introduction

1.1 The importance of software quality

Software Engineering is a discipline for the systematic construction and
support of software products so they can safely fill the uses to which they may be
subjected. As any engineering approach, software engineering requires a quality
control mechanism to provide a feedback and assist the software development,
testing and maintenance. In the context of real-time systems, which are mostly
safety-critical, the main motivation for quality control comes from the
requirements for a reliable implementation of safety and time-dependent
behavior. Examples of software systems that are safety critical are air traffic
control systems, process control systems in chemical, pharmaceutical plants and
nuclear reactor systems [SOM95]. The malfunctioning of these software systems
poses a potential threat to the human life and the living environment. Since the
software cannot be certified as 100% safe, in order to avoid the potential dangers
related to software in these safety critical systems, an attempt to largely use
hardware instead of software is made. Safety-validation and assurance
techniques have been developed for hardware [SOM95). As an example of
hardware safety control, a switch that is made of metallic strip that bends under
high temperature has its safety controlled by hardware.

Nevertheless, as systems are becoming more and more complex, safety
control based on hardware is no long sufficient. As an example, the military
crafts that fly under an aerodynamic unstable environment need software-control

system to adjust the flight surface as the environment changes.

As software is a mandatory element in building a complex system,
software quality becomes an essential factor that determines the success of the

software.

1.2 Purpose and Problem Statement

The reliability of software is crucial when it is being used in a mission
critical environment such as nuclear reactor controller, air traffic controller system,
etc. The reliability measurement could serve as an indication as whether or not
the software is reliable enough to be used, or should be rejected to avoid failure
or catastrophes.

The main goal of this major report is to describe the developed reliability
measurement mechanism and its implementation in TROMLAB [AAM98], an
environment for real-time reactive systems development based on the TROM
formalism [Ach95]. The theory that is used for reliability computation is based on
[Orm02] with some modifications. The main contributions of the report are:

e Studying the algorithm proposed by Dr. Olga Ormandjieva [Orm02], and
make modifications to the reliability measurement algorithms;

¢ |Implementation of the updated algorithms;

e Testing the implementation on the gate-train-controller case study and
compare the testing results to the theoretical ones.
This major report presents one possible implementation of the reliability

computation module in the TROMLAB environment. This reliability computation

unit, TROM-SRMS, is capable of computing the reliability of a real-time reactive

system that is formalized by TROM formalism.

1.3 Report Outline

The major report is organized as follows: Chapter 2 introduces briefly the
TROM formalism, and gives an overview on the TROMLAB environment.
Chapter 3 overviews the reliability measurement, and introduces the reliability
computation theory based on Markov model [Orm02]. Tﬁe software architecture
and the design of the reliability measurement implementation, TROM-SRMS, are
documented in Chapter 4. Chapter 5 contains the key algorithms used in the
reliability computation. Chapter 6 describes the Gate-Train-Controller case study.
Theoretical computation results are presented in the comparison to the testing
results gathered from the output of TROM-SRMS. The conclusions and the future

work are outlined in Chapter 7.

Chapter 2. Background
The proposed reliability measurement theory is derived from TROM
formalism in the context of TROMLAB, an environment for rigorous development
of real-time reactive system. The goal of this chapter is to give an overview of the
TROM formalism and the TROMLAB environment for development of real-time

reactive systems.

2.1 Real-time Reactive Systems

Real-time reactive systems are systems which are continuously interacting
with the environment through stimulus-response behaviour. These systems are
event-driven, and their behaviours are controlled by strict timing constrains.

Real-time reactive systems possess the properties of stimulus
synchronization and response synchronization, which distinguish them from other
systems. Stimulus synchronization states that the system is constantly reacting
to a stimulus from its surrounding environment, whereas response
synchronization asserts that the elapsed time between a stimulus and its
response is within a range such that the dynamics of the environment is kept and

thus the environment stays receptive to the response.

2.2 TROM Formalism

TROM formalism provides ways to specify, analyze and refine real-time

reactive systems.

2.2.1 Reactive Object Model

A reactive object is an abstract state machine built-up with ports, attributes,
logical assertions on the attributes, and timing constraints [Orm02]. Simple and
complex states exist in the context of reactive object. A complex state is an
encapsulation of another state machine which itself could be either a simple or
complex state. Synchronous message passing is the communication mechanism
among the reactive objects. Each reactive object possesses a number of ports
and both external input/output events can only occur at port of a specific type,
whereas an internal event occurs at null port. The port links are the linkages
among reactive objects. Two ports are compatible if one port can receive as its
input messages the set of output messages from the other port. All the messages
that can be exchanged between two ports are determined by the port links. The
type of an attribute can be either port type, or abstractly modeled as LSL trait.
Pre and post condition on a transition and port condition can be specified using
logical assertions and timing constraints. The response time constraint of a
reactive object to a stimulus is described on each transition. A generic reactive
class is a collection of reactive objects. All the reactive objects, which are
generated from the same generic reactive class, have the same attributes.
Putting in an object-oriented perspective, a generic reactive class, GRC, is a
class declaration, whereas each individual reactive object is an instance of that
particular class. TROM formalism is the basis used to specify GRCs and thus
reactive objects in a system. TROM is a three-tier formalism; each tier has its

own output and processing mechanism.

2.2.2 Layer one — Larch Formalism

Larch[GH93] is a two tier specifications. The top tier is Larch Interface
Language (LIL), which is tailored to a specific programming language. The
bottom tier is Larch Shared Language (LIL), which is a common specification
method for the programming languages.

Typically, LIL uses the declaration syntax of a specific programming
language, and the behaviors are specified by adding annotations. These
annotations consist of pre and post conditions.

LSL is a language for specifying mathematical theories. The specifications
in LSL consist of first-order equations between terms. Two symbols are defined
in LSL, namely sorts and operators. The sorts correspond to the types in
programming language and they are names for sets of values. The domains and
ranges of the operators are indicated by the sorts’ symbol. The operators are
equivalent to procedure in conventional programming language and they
represent total functions from tuples of values to values.

An LSL trait is used to describe a mathematical theory. A trait acts as a
basic unit of specification. [n each trait, operators are introduced and defined
with a set of equations that defines which terms are equal to one another, and
may assert additional properties about the sorts and operators. A trait can use
another trait by including it in the includes section of the specification. Figure 1
shows an example of the BirthdayBook trait:

BirthdayBook : trait

includes

Set(Name,NameSet),
FiniteMap(NameToDate,Name,Date)
introduces
known: -> NameSet
birthday: -> NameToDate
asserts
forall n: Name

n\in known <=> defined(birthday,n)

Figure 1 LSL trait for Birthday Book

2.2.3 Layer two — TROM Class

A TROM class is equivalent to a Generic Reactive Class (GRC). ltis a
hierarchical finite state machine augmented with ports, attributes, logical
assertions on the attributes and time constraints. Figure 2 shows a TROM
object. All the reactive objects generated from generic reactive class
communicate among them and the environment through their ports. The port can

receive and send a synchronous message.

Stinssifus

pidd - Incoming
Interaction

Attributes | A Frng States
7 a
pd (I}at

Port
Condition =--
‘!y PM

Trangition
A

Fvenrs

uiput

inf

Enable Time-Constrained Ficrhlcd
st Aoty ~HE Jisable
e Reactions Y e e '

Frﬁn Criobal clack

pd Qutgoing

¥

Interaction

Response

Figure 2 Reactive Object

A TROM object is made of a set of events, states, attributes and its related
functions, transitions and a set of timing constraints. Three types of events exist,
external input, external output and internal and they are represented symbolically
by e?, el and e respectively. An attribute of TROM object can be either one of
the following types:

e Abstract data type imported from the first tier

o Port types

Each reactive object instance can have multiple port types. A port is an
abstractly modeled bi-directional access point between environment and a

TROM object. A port can only process a set of messages defined by its port type.

The signature of a port type K is denoted as &£ K The relationships between

attributes and states are defined by attribute functions. A transition function
describes the state change due to a particular event. A transition is caused by
the occurrence of either an internal event or an external event. A timing
constraint on a transition specifies the constraint of response to stimulus in terms
of time.

A generic reactive object [Ach95] is an 8-tuple (P, E, 6, X, £, ®, A, I
such that P represents a finite set of port-types, £ is a finite set of events, O is a
finite set of states, X'is a finite set of typed attributes, £ is a finite set of LSL traits,
® is a function-vector, A is a finite set of transition specifications and I'" is a finite
set of time-constraints. A template of a GRC class is shown in Figure 3.
Examples of GRC formal specifications for the Train, Controller and Gate are

given in Figures 13, 15 and 17 respectively (Chapter 6).

Class<name>
Events:
States:
Attributes:
Traits:

Attribute-Function:
9

Transition-specifications:
Time-Constraints:
End

Figure 3. Template for GRC class

2.2.4 Layer three — System Configuration Specification
A system configuration specification specifies how a reactive system is
configured based on the objects instantiated from the second tier. A template for

a system configuration specification is shown in Figure 4.

Subsystem <name>
Include:
Instantiate:
Configure:

End

Figure 4. Template for System Configuration Specification

The system configuration specification for the Train, Controller and Gate system

is illustrated in Figure 20 (Chapter 6).

2.3 TROMLAB

TROMLAB is a framework that provides an environment for rigorous
development of real-time reactive system. It is based on TROM, which is a

formalism based on object-oriented and the real-time technologies.

10

TROMLAB has a number of tools to assist in the development of real-time

reactive systems. These tools provide an automatic mechanism to collect and

analyze quality measurement data.

The current architecture of the TROMLAB consists of the following components:

Rose-GRC Translator — [Pop99] module which maps graphical model
in Rational Rose to formal specification based on TROM;

Interpreter — [Tao96] performs syntactically verification on specification
and generate an internal representation of it;

Simulator — [Mut96] creates animation of a subsystem based on
internal representation generated by the interpreter;

Browser for Reuse — [Nag99] an interface to a library which helps the
user to navigate, query and access system components during the
development;

Graphical User Interface — [Sri99] an interface for the system
developer to interact with the TROMLAB environment;

Reasoning System — [Hai99] Debugging facility that allows the user to
query the system behaviour based on interact queries;

Verification Assistant — [Pom99] an automated tool that extracts
mechanized axiom from real-time reactive systems;

Test Cases Generator — [Zhe02] and [Che02] an automated tool for

generating test cases from specifications.

The aim of this work is to develop and integrate within TROMLAB a tool

for reliability assessment before the implementation. The concept of the reliability

11

measurement, and the reliability measurement mechanism based on Markov

model, are addressed in the next chapter.

12

Chapter 3. Overview of Reliability Measurement

3.1 Reliability Module in TROMLAB

The reliability measurement module TROM-SRMS is a new component in
the TROMLAB environment. It is a standalone independent module responsible
for evaluating the reliability of a real-time reactive system based on GRC
specifications, SCS specifications, and the synchronous product machine of
these GRC objects. The formal specifications are generated by Rose-GRC
Translator [Pop99], and the product machine is outputted by the Specification-

based Testing System tool [Che02].

3.2 Markov Model

Markov model is a very powerful tool for scientists and engineers to

analyze and predict the behaviors of a complex system.

A Markov model analysis can yield a variety of useful performance
measures describing the operation of the system. These performance measures

include the following:
» System reliability
« Availability
+ Mean time to failure (MTTF)
» Mean time between failures (MTBF)
» The probability of being in a given state at a given time

13

« The probability of repairing the system within a given time period

(maintainability)

« The average number of visits to a given state within a given time period

The Markov property states that given the current state of the system, the
future evolution of the system is not dependant of its past history.
Markov model is applicable to model the reliability of a reactive system is due to
the following reasons:
e Environmental laws are considered as random and not controlied by
system laws;
¢ Being in a particular state, a .system may choose to execute any of the

transition available at that state in order to move to another state.

3.3 Reliability Model
3.3.1 State Diagram

A state diagram represents the dynamic behavior of an object. It describes
the set of states and a set of transitions between the states. Each transition is
associated to a particular event that causes the triggering of state change.
Figures 14, 16 and 18 are examples of state transition diagrams that correspond

to the reactive objects Train, Controller and Gate.

3.3.1 Transition Matrix
Each reactive object has an associated state transition diagram that
visualizes its states and transitions among them. Each event that triggers a

transition has some probability to happen. When an object is in state i, the

14

probability of it moving to state j is denoted as P,, and is called the transition
probability. A transition matrix is a matrix M such that for each ij, entry

corresponds to P, . We compute the transition probabilities from the

i
specifications of the individual objects’ behavior, and the specification of their

collective behavior — the synchronous product machine.

3.3.2 Synchronous Product Machine

A synchronous product machine describes the interactions between the
reactive objects. The interactions between two reactive objects are triggered by
shared events.

Let P and Q be two reactive objects. Each object can transit from one
state to the other according to a fixed probability. If a shared event occurs when
the objects are in the states which are reactive to such event, then both objects
perform simultaneously a transition. The synchronous product machine captures
all these simultaneous transitions between reactive objects. Figure 5 shows an

example of synchronous product machine for reactive objects Train and

Controller.
T.idle Near T.toCross Lower T.toCross
@ ’ C.idle —— P C.activate —————» C.monitot
Raise T l In
T.idle Exit T.leave Out T.corss
C.deactive - —————— C.monitor ———— C.monitor

Legend :
T — Train
C - Cantroller

Figure 5. Synchronous Product Machine for GRC Train and Controller

15

The specification of a synchronous product machine can be obtained by
running the Specification-based Testing System [Che02]. The specification has
the following two sections:

o State List: A list of all the states in the synchronous product machine.
Notice that a state in a synchronous product machine is a composite state
that is formed by merging individual GRC state from each reactive object
into one state.

» Transition Spec List: A list of transitions along with source and destination
state and the event that triggers the transition.

Figure 19 (Chapter 6) shows an example of the specification of a synchronous

product machine for a Gate-Train-Controller subsystem.

3.3.3 Property
The reliability assessment model [Orm02] used in the reliability module is
significantly different from the conventional reliability evaluation methods in the
following ways:
e Based purely on architecture model of the reactive system and the state
machine descriptions of the reactive units;
¢ Based on Markov system;
e The prediction of the reliability is derived from the steady state of the
Markov system.
The advantage of this reliability model is its applicability at early stage of the

development cycle such as design specification phase.

16

Chapter 4. TROM-SRMS
This main goal of the project is to develop a reliability computation module,
TROM-SRMS, in the TROMLAB environment. TROM-SRMS computes the
prediction of reliability of a reactive system based on the Markov model. In this
chapter, system architecture and detail design of the reliability assessment tool

are presented.

4.1 Description of the System Functionalities
The TROM-SRMS is a standalone independent module in the TROMLAB
environment. The inputs to this system are:
1. GRC specifications files of a subsystem;
2. Synchronous product machine specification generated from the GRC
specification files;
3. System configuration file;
The outputs from the system are:
1. For each subsystem, there is a corresponding output file that contains all

the intermediate computational results, these include:

Transition matrix for each GRC specification in the subsystem;

- Transition matrix for synchronous product machine generated from
the GRC specifications;

- Steady vector of each GRC specification;

- Steady vector of the synchronous product machine specification;

17

- Various debugging information on the contents of the internal data
structure;
- The reliability of the subsystem.
2. An output file that contains the reliability of each subsystem and the
reliability of the overall system.
All the input files are generated by the TROM-SBTS [Che02]. In order to
achieve cross-platform capability, the system is implemented in Java. The

version of the JVM and JDK chosen is JSDK 1.4.1

4.2 Description of the System Components
The system is composed of three main components: GreStateParser,
ProductMachineParser and Subsystem. Each GRC specification has its

corresponding GreStateParser. The main functionalities of the GrecStatePaser

include:

Parse GRC specifications to identify a list of states, events and transitions;
- Compute transition matrix of the GRC specification based on the
transitions on each state;
- Compute the steady vector of the GRC,;
- Compute entropy value of the GRC.
The ProductMachineParser is associated to a synchronous product machine
specification of a particular subsystem. The main functionalities provided by

ProductMachineParser are:

- Parse synchronous product machine specification to identify a list of states,

events and transitions;
18

- Compute transition matrix’ of the synchronous product machine based on
the probabilities of each transition of each individual sub-state in a
composite state;

- Compute the steady vector of the synchronous product machine
specification;

- Compute the entropy value of the synchronous product machine;

- Compute the reliability of the subsystem.

The subsystem groups all the GreStateParser and ProductMachineParser
of a particular subsystem. It provides encapsulation abstraction to a subsystem
and hence the internal processing of the reliability computation is private and
independent to each subsystem. The functionalities of the subsystem include:

- Encapsulate subsystem whose reliability is to be computed;

- Compute the final reliability of the overall system;

- Provides access point for the GUI and the computational unit of the
TROM-SRMS.

TROM-SRMS has a graphical user interface (GUI) for the user to operate.
The GUI provides functionality to allow the user to choose GRC specification files,
synchronous product machine specification file and system configuration file.
The user can also check the current status of the file configuration, meaning
which files have been chosen for which subsystem. Lastly, the GUI allows the
user to start the reliability computation after the relevant files are selected. Figure

6, 7 and 8 are snapshots of the GUI of TROM-SRMS.

19

Figure 8 Snapshot of TROM-SRMS Status Window

Assumptions

The major restriction imposed by the GrcStateParser and is that the

format of the specification files must respect the format described in [Orm02]. As

20

for the ProductMachineParser, the format of the specification file has to follow the
one defined in TROM-SBTS. Since all these input files are generated by the

TROM-SBTS, it is assumed that they are all in the correct format.

4.3 Architecture Diagram

The architecture diagram of the TROM-SRMS is shown in Figure 9.

[]]
GreStateParser [€--~~--~. <<Uses>> ProductMachineParser
N
\\
<<Contains>>
A}
I_ \\\ J_
GUL [-=======---- <<Controls>> ----===-- 2 Subystem

Figure 9 The Architecture Diagram of the TROM-SRMS

4.4 Data Flow Diagram

The GUI takes as input the specification files (GRC and synchronous
product machine), it then creates a subsystem object. The Subsystem then
creates GreStateParser and ProductMachineParser objects by passing the
appropriate specification files. The ProductMachineParser then uses
GrcSlateParser objects in the final computation of the reliability. The
GreStateParser and ProductMachineParser generate the subsystem profiles in
the end and the reliability profile is created by the Subsystem. The data flow

diagram (Figure 10) shows the flow of data in the TROM-SRMS.

21

Specifications

Subsystem

ProductMachineParser

GreStateParser

Subsystem Profile [«

\ 4
Reliability Results

Figure 10 The Data Flow Diagram of TROM-SRMS

4.5 Class Diagram

The class diagram shown in Figure 11 illustrates the classes and their

relationships in the context of TROM-SRMS.

22

Reliabilityinterface

Subsystem ubSystemList
rcStateParserList {BicomputeButtan
%roductMachinePafser roductMachineCreated
BscsParser ?ﬁscsFileCreated
atputFile H
g e
eliability - %ﬁctgateS(atusFrame()
%;ubSystemFileName o {ERcreateFiloChooserFrame()
o {E¥positionToCenter()
SubSystemy)
tNama()
tSubSystemiName() —
{aseQutputFile(} T -
I$AddGreStateParser() T
I8AddProductMachineParser() T
28AddScsParser(T -
§§Findﬂeliability()
getGreList()
$9getGretistiength() State
$%getProductMachineParser() ;@sta(eName
£9%getScsParser() ;gﬁﬂie()
ERgetState()
?%qual()
F¥ndntinfo)
; i28getStringType()
! R
GreStateParser
istateList
BinternalEventList
EinputEventList
SoutputEventList
& fileName
istateTransitionList
& probabitityMatrix
EfinalProductMachineSymbol
iclassName
{gentropy StringProcessor
@isteadyVector
out ESalignString(
ESalignNumber()
%gmsmﬁ? arser() 7 3qremoveWiteSpace()
etProductMachineSymbol() P
&satOuputFile() o
WgetStates()

getinternalEventList()

S9printList()
E¥printProbabitity ()
HprintAllList()
%larﬂ’atseo
E¥extractStates Transition()
&extractTransitionEvent()
MextraciEvents ()
printTransitionList()
$%computeSteadyVector()
$RcomputeTransistionMatrix()
§®computeEntropy()
i®¥computeProbability()
&isEvenExtsmal()
g:gheckEvemExist()
etProbability ()
£8getEntropy()
§¥getProductMachineSymbal()
BRgetFileName()
getClassName()

s etQuputFile()

ProductMachineParser

ileName
iRistatelist
RistateTransitionList
EprababilityMatrix
igreParserList
B¥steady Vector

#8ProductMachineParser()
etGreStateParserList()
rintProability ()
arseProductMachine()
rintStateList()
E¥printTransitionList{)

P bility
omputSteadyVector(}
omputEntropy ()

/| 88getEntropy ()

SRgetrileName(

StateTransition

EihomStats
ransitionList
rmalizationFactor
BinormalizationFactorExtemal
#EnormalizationFactorinternat

ReotateTransition()
tNum Transition()

tF

0
tDestTransition()
etFromState()
ountNumDestEvent()
intinfo()
getSteingType(
#PaddTransition()
$8setEventProbability()

-ompUtNfAndProbability ()

puteSy bility ()
EgetProbability()

Figure 11: The Class Diagram of the TROM-SRMS

4.6 Sequence Diagram

The sequence diagram (Figure 12) depicts the dynamic aspect of the flow

of control in the TROM-SRMS.

23

lm QuSetePorser !Huml\MlmRasa' %%n%y
|
|
|
|

2 aaeetsamb{mrgﬁeoarandrg(}%m

'. 3 aeeteled!\Mrd%sa*Q@msrglfemmﬂrgydmguidm ingpec

B ' |

| T

5 qumkrm:p&yudmﬂmfegadrg reqietlhtyoamlalm

o
Gpases,ld'm.lpodn MmmadeJmmylmmLaﬂmtha]ityompMm

|
|
| A btmgrcbe |
|
l

' _____________________________ ;

&ralmrdaJMylL'hrMmfortres.hs,dan ‘

|
| ‘ Qaeaereﬁahin}esjs \
| ; |
| | | |
| | |

|
|«
|
|
|
|
|
|
|
|
|
|

Figure 12: The Sequence Diagram for TROM-SRMS Reliability Computation

24

Chapter 5. Key Algorithms in TROM-SRMS

This chapter describes key algorithms used in the reliability computation
process. The whole process can be divided up into three main algorithms; they
are used in the computation of transition matrix of GRC, transition matrix of
synchronous product machine, and the reliability. The algorithm of the transition
matrix computation of a single GRC computes the probabilities of events. The
algorithm of the transition matrix computation of the synchronous product
machine uses events’ probabilities. The reliability computation algorithm is
based on the outputs from the algorithm of the transition matrix computation of

the synchronous product machine.

5.1 Algorithm for Transition Matrix Computation of a single
GRC

The algorithm accepts a TROM GRC specification as its input. The output
of this algorithm includes the probability of each event and the transition matrix of
the underlying GRC.

Assumption:

For a transition R where R is denoted as:

R:<Ss, Sd>; e(port condition); enabling condition => post condition

R.Ss is the source state of the transition R

R.Sd is the destination state of the transition R

R.e is the event of the transition

Step 1: Initialize
EXOE: external output event list of GRC;

EXIE: external input event list of GRC;

E: internal event list

25

SS: states of GRC;
TS: transition specifications of GRC
TP: list of transition probability of a particular event and its associated
source and destination state.
TM: transition matrix of GRC
Step 2: Find events of each type and add them to EXOE, EXIE or IE depending
on their type

Events: event1!@port1, event2 @ port2, event3 @ port3, event4 ... eventN

Step 3: Find all the states and add them to SS
States: *state1, state2, state3 ... stateN
Step 4: Find all the transitions and add them to TS
Ri:<Ss, Sd>; e(port condition); enabling condition => post condition
h“n:<Ss, Sd>; e(port condition); enabling condition => post condition
Step 5: Do the following changes to TP for each transition R in TS
Step 5.1: compute W, the total number of transitions in TS such that
the source states are the same;
Step 5.2: compute U, the total number of transitions in TS such that
the source and destination states are the same;
Step 5.2: compute Q, the probability of transition R given by 1/W *U;
Step 5.3: Add R.Ss, R.Sd, R.e and 1/W in TP;

Step 5.4: Add Q in TM;

26

5.1.1 Pseudo Code
The function that implements the algorithm of transition matrix
computation of GRC is ComputeGreProbability(), which includes other sub-
functions, whose pseudo code are given separately.
Pre-Condition
¢ The transition matrix is empty
e The input GRC files are in the correct format
Post-Condition
o The GRC files are parsed and events, transitions and their probabilities
are computed
o The transition matrix is filled with transition probabilities
void ComputeGrcProbability()
Begin
find events parseEvent();
find states parseState();
find transition parseTransition();
find probability findTransitionProbability();

End

Find events paserEvent()

Begin
event <- read the event list from GRC specification;
write event into the event list;

End

27

Find states parseState()

Begin
state <- read the state list from GRC specification;
write state into the state list;

End

Find transitions parseTransition()

Begin
transition <- read the transition list from GRC specification;
write transition into the transition list;

End

Find probability findTransitionProbability()
Begin
For every Ti in the transition list Do
Find all transitions Tk such that source state of Ti == source state of Tk;
Total1 <- write the total number of transitions from previous step;
Find all transitions Tk such that the source state of Ti == source state of
Tk and destination state of Ti == destination of Tk;
Total2 <- write the total number of transitions from previous step;
Probability <- write combination of Ti and its event probability (1/total);
TransitionProbability <- write the transition probability of Ti (1/total *

total2);

28

End For

End begin

5.2 Algorithm for Transition Matrix Computation of
Synchronous Product Machine

The algorithm makes use of the probability of each event computed from
algorithm 4.1. The input to the algorithm is the synchronous product machine
specification. The output of the algorithm is the transition matrix of the

synchronous product machine.

Assumption:
a) For a transition R where R is denoted as:
CR: <<1.s1, 2.2, 3.s3 ...N.sn>, <1.d1, 2.d2, 3.d3 ... N.dn>>: ¢;
CR.X:si is the source sub-state of the transition CR, where si is a state in
GRC X;
CR.X.di is the destination sub-state of the transition R, where di is a state
in GRC X;
CR.e is the transition event;
b) TP_X contains the probability of each event in GRC X. This is
obtained from algorithm 4.1

¢) NF =0, NF =0, NF” = 0 where they represent normalization factor for

external events, internal events and the GRC itself

Step 1: Initialize
TMS: transition matrix of synchronous product machine;

29

TS: transition specifications of synchronous product machine.

Step 2: Do the following changes to TMS for each transition CRin TS

If CR has an external transition event, perform step 2.1
Step 2.1: compute NF:
Find the transition probability of each sub-transition in CR:
sub-transition 1: GRC 1, s1 -> d1 with event e

sub-transition 2: GRC 2, s2 -> d2 with event e

sub-transition N: GRC N, sN -> dN with event e
Find the product P of the transition probabilities of each sub
transition that is not equal to O;
Add NF to the P.
Find all other transitions such that the source state is the same.
For each transition TR of such kind, find the transition probability of
each sub-transition:
sub-transition 1: GRC 1, s1 -> d1 with event e

sub-transition 2: GRC 2, s2 -> d2 with event e

30

sub-transition N: GRC N, sN -> dN with event e
Find the product P of the transition probabilities of each sub
transition that is not equal to O;
Add NF to the P.
If CR has an internal transition event, perform step 2.2
Step 2.2: compute NF’:
Find the transition probability of each sub-transition in CR:
sub-transition 1: GRC 1, s1 -> d1 with event e

sub-transition 2: GRC 2, s2 -> d2 with event e

sub-transition N: GRC N, sN -> dN with event e
Find the sum S of the transition probabilities of each sub-
Transition;
Add NF’ to the S.
Find all other transitions such that the source state is the same.
For each transition TR of such kind, find the transition probability of
each sub-transition:
sub-transition 1: GRC 1, s1 -> d1 with event e

sub-transition 2: GRC 2, s2 -> d2 with event e

31

sub-transition N: GRC N, sN -> dN with event e
Find the sum S of the transition probabilities of each sub-
transition;

Add NF’ to the S.

Step 2.3: compute NF” for transition:
Find NF” by summing up NF and NF’.
Step 2.4: compute transition probability:
Find the transition probability depending on the type
of its transition event:
For internal event, find the sum S of all the transition
probability of the sub-states;
For external event, find the product P of all the transition
probability of the sub-states that is not equal to 0;
Add S and P to get R;
Find all other transitions that have the same source state and
destination state:
For each transition TR of such kind, find the associated
transition probability for internal and external event transition:
For internal event, find the sum Su of all the transition
probability of the sub-states;
For external event, find the product Pr of all the transition

probability of the sub-states that is not equal to 0;

32

Add Su and Pr to R;
Compute Q, the probability of the transition by R/NF”;
Add Q in TMS.
5.2.1 Pseudo Code
The function that implements the algorithm of transition matrix
computation of the synchronous product machine is CompSyncProductProb(),
which includes other sub-functions, whose pseudo code are given separately
Pre-Condition
¢ The transition matrix is empty
e The input synchronous product machine specification file is in the correct
format
¢ The transition probability of every single transition in the GRCs which form
the synchronous product machine is computed
Post-Condition
¢ The synchronous product machine specification file is parsed and events,
transitions and their probabilities are computed

e The transition matrix is filled with transition probabilities

Find transition matrix CompSyncProductProb()
Begin

find transition parseTransition();

find probability findTransitionProbability();
End

Find events paserTransition()

33

Begin
transition <- read the transition list from Synchronous Product Machine
specification.
write transition into the transition list;

End

Find probability findTransitionProbability()
begin
while(st <- read in transition from the transition list)
NF=0,NF=0,NF"=0,K=0,J=0;
begin
For every sub-state in st Do
begin
if(st.event == external)
K = probExt(st.substate.source, st.substate.destination,
TP_st.Grc_class);
NF +=K;
elseif(st.event == internal)
J = probint(st.substate.source, st.substate.destination,
TP_st.Gre_class);
NF +=J;
end begin
end for

while(st1 <- read in transition from the rest of transition list)

34

begin
if(st.source_state == st1.source_state)
for every sub-state in st1 do
begin

if(st1.event == external)

K = probExt(st1.substate.source, st1.substate.destination,
st1.Grc_class);

NF +=K;

elseif(st1.event == internal)
J = problint(st1.substate.source, st1.substate.destination,

st1.Grc_class);

NF +=J;
end begin
end for

end begin
NF” = NF + NF’;

P=0;

If(st.event == external)

P += probExt(st.substate.source, st.substate.destination,

TP_st.Grc_class);

elseif(st.event == internal)

P += problint(st.substate.source, st.substate.destination,

TP_st.Grc_class);

35

while(st2 <- read in transition from the rest of transition list)
begin
if((st.source_staté == st2.source_state)&&
(st2.destination_state == st2.destination_state))
if(st.event == external)
P += probExt(st2.substate.source, st2.substate.destination,
Transition_Probability_lists_of_all_the_GRC);
/* Transition_Probability_lists_of_ali_the_GRC are lists of
of each transition in the GRC and its associated transition
*/
elseif(st.event == internal)
P += problint(st2.substate.source, st2.substate.destination,
Transition_Probability_lists_of_all_the_GRC);
end begin
TP = P/NF;
write TP into transition matrix

end begin

end begin

/* This function computes the transition probability of a transition in a

synchronous product machine given an external event*/

Find transition probability due to an external event

probability probExt(source_state, dest_state, Grc_transition_prob_list)

36

while(tr <- read transition and its associated probability)
begin
if((tr.source_state == source_state) && (tr.dest_state == dest_state))
if(tr.probability != 0)
P *= tr.probability;
end begin
return P;

end begin

/* This function computes the transition probability of a transition in a
synchronous product machine given an internal event*/
Find transition probability due to an internal event
probability problnt(source_state, dest_state, Grc_transition_prob_list)
begin

while(tr <- read transition and its associated probability)

begin

if((tr.source_state == source_state) && (tr.dest_state == dest_state))
P += tr.probability;
end begin
return P;

end begin

37

5.3 Algorithm for Reliability Computation

The algorithm makes use of the transition matrix of each GRC and
synchronous product machine. The inputs to the algorithm are the transition
matrices of GRC and synchronous product machine. The output of the algorithm

is the reliability of the subsystem.

Assumption:
a) TM_X contains the transition matrix of the GRC X obtained from
algorithm 4.1
b) TMS contains the transition matrix of the synchronous product
machine obtained from algorithm 4.2
Step 1: Find Steady Vector for each GRC
For each transition matrix in TM_X, compute the corresponding steady
vector.
Step 2: Find Steady Vector for synchronous product machine
Compute steady vector for TMS.
Step 3: Find Entropy for each GRC

Based on steady vector, compute the entropy with

H=- Z Vv, Z P,log, P,
i=1 j=1
Note that when P ; is equal to 0, the term P ;10g9, P is considered 0.

Step 4: Find Entropy for Synchronous Product Machine

Based on steady vector, compute the entropy with

38

H=-V) P, log, P

J=1

ij
Note that when P ; is equal to 0, the term P log, P ; is considered 0.

Step 5: Find Reliability for the Sub-System

Based on entropy of GRC and synchronous product machine, the reliability

is computed as Reliability(Sub-System) = Z H-H
i1
5.3.1 Pseudo Code
The function that implements the algorithm of reliability computation is
ComputeReliability() which includes other sub-functions, whose pseudo codes
are given separately.
Pre-Condition
e The transition matrices of GRCs are computed
* The transition matrix of synchronous product machine is computed
Post-Condition
¢ The reliability of the subsystem is computed
ComputeReliability()
begin
find GRC steady vector findGrcSteadyVector()
find Synchronous Product Machine steady vector findSynchSteadyVector()
find GRC entropy findGrcEntropy()
find Synchronous Product Machine entropy findSynchEntropy()

find reliability findReliability()

39

end

| findGreSteadyVector()
begin
for each transition matrix TM that belongs to GRC X in TM_X do
solve equation of the formx +y +z+...=1;
where [xyz ...]TM=[xyz...];
steadyVectorList_X <- write the result in the corresponding GRC
steady vector list
end for

end begin

findSynchSteadyVector()
begin
for TMS of the synchronous product machine do
solve equation of the formx+y +z+...=1;
where [xyz..]TMS=[xyz...];
steadyVectorList_X <- write the result in the corresponding
synchronous product machine steady vector
list
end for

end begin

findGrcEntropy()
begin

40

while(V <- read from GRC steady vector list)
begin

P = transition matrix of GRC associated to V, obtained from TM_X;

Entropy += V) P log, P ;

ij?
j=1

end begin
E <- write entropy
End begin
findSynchEntropy()
begin
V <- read from Synchronous Product Machine steady vector list
P = transition matrix of the Synchronous Product Machine, obtained from

TMS;

Entropy = V Zn: P,log, P;

1j !
j=1

ES <- write entropy
End begin

findReliability()
begin
result = E - ES;
Reliability <- write result into reliability;

end begin

41

Chapter 6. Gate-Train-Controller Case Study

in this chapter, we introduce the Gate-Train-Controller problem that is
considered as a benchmark example by researchers in the real-time system
communities. The case study will demonstrate the theoretical computation results
of the reliability computation algorithms introduced in Chapter 3. The results will
be used to compare to the results generated by the software as a validation

scheme.

6.1 Description of the Problem

For the purpose of algorithm and software validation, this section only
presents a limited amount of information that suffices our purpose. For more
detail description of the problem, please refer to [Orm02].
The Gate-Train-Controller is a real-time time constrained system consisting of
Gate, Train and Controller subsystems. Each of these subsystems is mapped to
a TROM GRC object and their corresponding GRC specifications. Statecharts
and the synchronous product machine specification are shown in Figures 13, 14,

15, 16, 17 and 18:

42

Class ’I‘rainl\g@alﬂ
Events: Nearl@R, Out, Exit!@R, In
States: %dle, cross, leave, toCross
Attributes: ¢r:QC
Traits:
Attribute-Function:
idle - {}; cross — ;
leave - {}; toCross — {cr};
Trangition—Specifications:
R1: <idletoCrogs>; Near(true); true=>cr’ =pid;
R2: <crossleave>; Out{true); true => true;
R3: <leave,idle>>; Exit{pid = cr); true => true;
R4: <toCross,cross>; In(true); true =3 true;
Time—Constraints:
TCvar2: R, Exit, [0, 6], {};
TCvarl: R1, In, [2, 4], {};
end

Figure 13: Formal Specification of Class Train

Near/er'=pid && TCvar1=0

. && TCvar2=0 -
idle toCraoss

Exit[pid=cr& & true InJtrue && true
& & TCvar2<=6 && TCvarl>=2
&& TCvarl<=4]

out
leave - cross

Figure 14: State Chart of Class Train

43

Class Controller [@P, @Y]
Events: Lowerl@Y, Near?@P, Raige!@Y, Exat?@P
States: *idle, activate, deactivate, monitor
Attributes: inSet:PSet
Traits: Set[@P,PSet]
Attribute—Function:
activate — {inSet}; deactivate — {inSet};
monitor — {inSet}; idle — {};
Transition—Specifications:
R1: <activate,monitor>; Lower(true);
true => frue;
R2: <activate,activate>>; Near(NOT(member(pid,inSet)));
true => inSet’ = insert(pid,inSet);
R3: <deactivate,idle>; Raise(true);
true —=> true;
R4: <monitor,deactivate>; Exit(member(pid,inSet));
gize(inSet) = 1 => inSet’ = delete(pid,inSet);
R5: <monitor,monitor>; Exit(member(pid,inSet));
size(inSet) > 1 => inSet’ = delete(pid,inSet);
R6: <monitor,monitor>; Near(!(member(pid,inSet)));
true => inSet’' = insert(pid,inSet);
RT: <idleactivate>; Near(true);
true => inSet’' = ingert(pid,inSet);
Time—Constraints:
TCvarl: R7, Lower, [0, 1], {};
TCvar2: R4, Raise, [0, 1], {};
end
Figure 15: Formal Specification of Class Controller

Near[!{(member(pid,inSet))& &
true]/inSet'=insert(pid,inSet)

Near/inSet'=insert(pid,
inSet) && TCvar1=0 .
idle activate

Raise[true && true && Lower[true &4 true

& & TCvarl>=0
TCvar2>=0 && TCvarZ<=1 && TCvarl<=1

Near[!{(member(pid,inSet))&&
true}/inSet'=insert(pid,inSet)
| deactivate L moniter
Exit[member(pid, inSet)
& & size(inSet)>1 =>

inSet"'=delete(pid,inSet) Exit[member(pid, inSet)
& & size(inSet)>1 =>
inSet'=delete(pid,inSet)

Figure 16: State Chart of Class Controller

44

Class Gate [@S]
Events: Lower?@S, Down, Up, Raise?@S
States: *opened, toClose, toOpen, closed

Attributes:

Traits:

Attribute—Function:
opened — ; toClose = {};
toOpen - {}; closed = {};

Trangition—Specifications:
R1: <opened,toCloge>>; Lower(true); true => true;
R2: <toClose,closed>; Down(true); true => true;
R3: <toOpen,opened>; Up(true); true => true;
R4: <closed,toOpen>; Raise(true); true => true;

Time—Constraints:

TCvarl: R1, Down, [0, 1], {};
TCvar2: R4, Up, [1, 2], {};

Figure 17: Formal Specification of Class Gate

opene

Up|[true && true &&

ig:::;:_:_; && Down [true && TCvarl>=0
B & & TCvarl<=1]

Raise/ true && TCvarz=0 [)
l toOpen |-|< closed

Figure 18: State Chart of Class Gate

end

The synchronous product machine specification is shown below:

Class Name : C_T_G

State List:

<<G.opened, C.idle, T.idle>, true>
<<G.opened, C.activate, T.toCross>, false>

<<G.toClose, C.monitor, T.toCross>, false>
45

<<(@G.opened, C.activate, T.cross>, false>

<<QG.closed, C.monitor, T.toCros§>, false>

<<G.toClose, C.monitor, T.cross>, false>

<<(G.opened, C.activate, T.leave>, false>

<<G.closed, C.monitor, T.cross>, false>

<<G.toClose, C.monitor, T.leave>, false>

<<@G.closed, C.monitor, T.leave>, false>

<<G.toClose, C.deactivate, T.idle>, false>

<<(G.closed, C.deactivate, T.idle>, false>

<<G.toOpen, C.idle, T.idle>, false>

Transition Spec List:

CR-0 <<G.opened, C.idle, T.idle>, <G.opened, C.activate, T.toCross>> : C.Near;

CR-1 <<G.opened, C.activate, T.toCross>, <G.toClose, C.monitor, T.toCross>> : C/G.Lower;
CR-2 <<G.opened, C.activate, T.toCross>, <G.opened, C.activate, T.cross>> : T.In;
CR-3 <<G.toClose, C.monitor, T.toCross>, <G.closed, C.monitor, T.toCross>> : G.Down;
CR-4 <<G.toClose, C.monitor, T.toCross>, <G.toClose, C.monitor, T.cross>> : T.In;
CR-5 <<G.opened, C.activate, T.cross>, <G.toClose, C.monitor, T.cross>> : C/G.Lower;
CR-6 <<G.opened, C.activate, T.cross>, <G.opened, C.activate, T.leave>> : T.Out;
CR-7 <<G.closed, C.monitor, T.toCross>, <G.closed, C.monitor, T.cross>> : T.In;

CR-8 <<G.toClose, C.monitor, T.cross>, <G.closed, C.monitor, T.cross>> : G.Down;
CR-9 <<G.toClose, C.monitor, T.cross>, <G.toClose, C.monitor, T.leave>> : T.Out;
CR-10 <<G.opened, C.activate, T.leave>, <G.toClose, C.monitor, T.leave>> : C/G.Lower;
CR-11 <<G.closed, C.monitor, T.cross>, <G.closed, C.monitor, T.leave>> : T.Out:;
CR-12 <<G.toClose, C.monitor, T.leave>, <G.toClose, C.deactivate, T.idle>> : C.Exit;
CR-13 <<G.toClose, C.monitor, T.leave>, <G.closed, C.monitor, T.leave>> : G.Down;
CR-14 <<G.closed, C.monitor, T.leave>, <G.closed, C.deactivate, T.idle>> : C.Exit;
CR-15 <<G.toClose, C.deactivate, T.idle>, <G.closed, C.deactivate, T.idle>> : G.Down:

CR-16 <<G.closed, C.deactivate, T.idle>, <G.toOpen, C.idle, T.idle>> : C/G.Raise;

46

CR-17 <<G.toOpen, C.idle, T.idle>, <G.opened, C.idle, T.idle>> : G.Up;

CR-18 <<G.opened, C.activate, T.toCross>, <G.opened, C.activate, T.toCross>> : C.Near;
CR-20 <<G.toClose, C.monitor, T.toCross>, <G.toClose, C.monitor, T.toCross>> : C.Exit;
CR-21 <<G.toClose, C.monitor, T.toCross>, <G.toClose, C.monitor, T.toCross>> : C.Near;
CR-22 <<G.toClose, C.monitor, T.leave>, <G.toClose, C.monitor, T.leave>> : C.Exit;

CR-23 <<G.toClose, C.monitor, T.leave>, <G.toClose, C.monitor, T.leave>> : C.Near;

Figure 19: Formal Specification for Synchronous Product Machine of Gate-Train-Controller

SCS tgc-collab

Includes:

Instantiate:
G::Gate[@S:1];
T:Trainf@C:1];
C::Controller{@G:1, @P:1};

Configure:
controllert. @G1:@G <-> gate1.@S1:@§S;

controller1. @P1:@P <-> train1.@C1:@C;
end

Figure 20: Formal Specification for one train - one gate — one controller subsystem (SCS)

6.2 GRC related computations

This section presents the computation of transition matrix of each GRC in

the Gate-Train-Controller system based on the algorithm presented in Chapter 3.

6.2.1 Gate
6.2.1.1 Transition Matrix

GRC Gate has the following transitions:

R1: <opened,toClose>; Lower(true); true => true;
R2: <toClose,closed>; Down(true); true => true;

47

R3: <toOpen,opened>; Up(true); true => true;

R4: <closed,toOpen>; Raise(true); true => true;

e Since there’s only one transition with the source state <opened>,
transition probability of R1 is 1. All other transitions with source state
<opened> in the transition matrix are 0.

e Since there’s only one transition with the source state <toClose>,
transition probability of R2 is 1. All other transitions with source state
<toClose> in the transition matrix are 0.

e Since there’s only one transition with the source state <toOpen>, transition
probability of R3 is 1. All other transitions with source state <toOpen> in
the transition matrix are O.

¢ Since there’s only one transition with the source state <closeds, transition
probability of R4 is 1. All other transitions with source state <closeds in the
transition matrix are O.

The following table shows the transition matrix of the Gate class:

Table 1: Transition Matrix of Gate Class

opened toClose ToOpen closed
opened 0 1 0 0
toClose 0 0 0 1
toOpen 1 0 0 0
closed 0 0 1 0

The following table shows the transition probability of each event in Gate class:

Table 2. Probability of each transition in Gate Class

Transition : Event Probability
<opened,toClose> : Lower 1
<toClose,closed> : Down 1
<toOpen,opened> : Up 1
<closed,toOpen> : Raise 1

48

6.2.1.2 Steady Vector
Need to find a vector such that

0100
0001
1000
0010

pocyel |0 = ey

Converting the above formula to a set of equations give:
OW+0X+1Y+0Z=W

IW+0X+0Y+0Z=X

OW+0X+0Y+1Z=Y

OW+1X+0Y+0Z=2

W+ X+ Y+ Z2=1

By solving the equations we get:

W =0.25
X= 0.25
Y=025
Z= 025

[0.25 0.25 0.25 0.25] ... Steady Vector of Gate

6.2.1.3 Entropy

H,,. =-(0.25*(0*log,0+1*log,1+0*log,0+0 *log,0))+

(0.25* (0 *log, 0 +0 * log,0+0 * log, 0+ 1 * log, 1)) +
(0.25* (1 *log, 0 +0 * log, 0 +0 * log, 0 + 0 * log , 0)) +

(0.25* (0 *log,0+0*log,0+1 *log, 1 +0 *log,0)))

49

=0
6.2.2 Pseudo Code
6.2.2.1 Transition Matrix

GRC Train has the following transitions:
R1:<idle,toCross>; Near(true); true => cr'=pid;
R2:<cross,leave>; Out(true); true => true;
R3: <leave,idle>; Exit(pid=cr); true => true;
R4: <toCross,cross>; In(true); true => true;
e Since there’s only one transition with the source state <idle>, transition

Probability of R1 is 1. All other transitions with source state <idle> in the
transition matrix are 0.

e Since there’s only one transition with the source state <cross>, transition
Probability of R2 is 1. All other transitions with source state <cross> in the
transition matrix are 0.

e Since there’s only one transition with the source state <leave>, transition
Probability of R3 is 1. All other transitions with source state <leave> in the
transition matrix are 0.

e Since there’s only one transition with the source state <toCross>,
transition Probability of R4 is 1. All other fransitions with source state
<toCross> in the transition matrix are 0.

The following table shows the transition matrix of the Train class:

Table 3: Transition Matrix of Train Class

ldle Cross leave toCross
Idle 0 0 0 1
Cross 0 0 1 0
leave 1 0 0 0

50

toCross | 0 | 1 | 0 | 0

The following table shows the transition probability of each event in Train class:

Table 4: Probability of each transition in Train Class

Transition : Event Probability
<idle,toCross> : Near 1
<cross,leave> : Out 1

<leave,idle> : Exit 1
<toCross,cross> : In 1

6.2.2.2 Steady Vector
Need to find a vector such that

0001
0010
1000
0100

[wxyz] = [wayz)
Converting the above formula to a set of equations give:
OW +0X+1Y+0Z=W
OW +0X+0Y+1Z=X
OW +1X+0Y+0Z=Y
W +0X+0Y+0Z=Z
W+ X+ Y+ Z=1

By solving the equations we get:

W =0.25
X= 0.25
Y= 025
Z=0.25

[0.25 0.25 0.25 0.25] ... Steady Vector of Train

51

6.2.2.3 Entropy

H =-((0.25* (0 *log,0+0*log,0+0*log,0+1*log, 1))+

Train
0.25*(0*log,0+0*log,0+1*log,1+0*log,0))+
0.25*(1 *log,1+0*log,0+0*log,0+0 *log,0)) +
025*0*log,0+1*log,1+0*log,0+0*log,0)))

=0

6.2.3 Controller
6.2.3.1 Transition Matrix

GRC Controller has the following transitions:

R1:<activate,monitor>; Lower(true); true => true;

R2:<activate,activate>; Near(!(member(pid,inSet))); true => inSet'=insert(pid,inSet);

R3:<deactivate,idle>; Raise(true); true => true;

R4:<monitor,deactivate>; Exit(member(pid,inSet)); size(inSet)=1 =>
inSet'=delete(pid,inSet);

R5:<monitor,monitor>; Exit(member(pid,inSet)); size(inSet)>1 =>
inSet'=delete(pid,inSet);

R6:<monitor,monitor>; Near(!member(pid,inSet))); true => inSet'=insert(pid,inSet);

R7:<idle,activate>; Near(true); true => inSet'=insert(pid,inSet);;

R1 & R2:

Since these two transitions have the same source state <activate> but
different destination state, the probability of each is 1/2. All other transitions
with source state <activate> in the transition matrix are 0.

R3:

52

Since this is the only one transition with the source state <deactivate>,
transition probability of R3 is 1. All other transitions with source state
<deactivate> in the transition matrix are O.

R4, R5 & Ré6:

Since these three transitions have the same the source state <monitor>,
probability of each transition is 1/3. Due to the fact that R5 and R6 both have
the same destination state, we sum up the transition probability of both in the
transition matrix, which gives 2/3 for transition <monitor, monitor>.

R7:

Since there is only one transition with the source state <idle>, transition

Probability of R7 is 1. All other transitions with source state <idle> in the

transition matrix are 0.

The following table shows the transition matrix of the Controller class:

Table 5. Transition Matrix of Controller Class

activate deactivate monitor idle
activate 1/2 0 1/2 0
deactivate 0 0 0 1
monitor 0 1/3 2/3 0
idle 1 0 0 0

Table 6. Probability of each transition in Controller Class

Transition : Event Probability
<activate,monitor> : Lower 1/2
<activate,activate> : Near 1/2
<deactivate,idle> : Raise 1
<monitor,deactivate> : Exit 1/3

<monitor,monitor> : Exit 1/3
<monitor,monitor> : Near 1/3
<idle,activate> : Near 1

6.2.3.2 Steady Vector

53

Need to find a vector such that

1/20/11/20/1
0/10/10/1 1/1
0/11/32/30/1
1/1 0/1 0/1 0/1

[wiyz] = [wryz)
Converting the above formula to a set of equations give:
1/2W + 00X +0Y + 1Z2=W
OW +0X+1/3Y +0Z=X
1/2W + 0X +2/3Y +0Z =Y
OW +1X+0Y+0Z=Z2
W+ X+ Y+ Z=1

By solving the equations we get:

W =0.286
X= 0.143
Y = 0.429
Z= 0.143

[0.286 0.143 0.429 0.143] ... Steady Vector of Controller

6.2.3.3 Entropy

H

Controller

=-((0.286 * (0.5 * log, 0.5+ 0 * log,0 + 0.5 * log, 0.5 + 0 * log , 0)) +

(0.143 * (0 * log, 0 +0 * log, 0+ 0 * log,,0 + 1 * log,, 1)) +

(0.429 * (0 * log, 0 +0.33 * log, 0.33 + 0.67 * log,, 0.67 + 0 * log,, 0)) +

(0.143*(1 *log, 1 +0 *log,0+0 *log,0+0 *log, 0)))

= -(-0.286 + 0 +-0.3925 + 0) = -(-0.6785) = 0.6785

54

6.3 Synchronous Product Machine related computations
6.3.1 Transition Matrix

The synchronous product machine has the following transitions (see also Figure
19):

CR-0 <<G.opened, C.idle, T.idle>, <G.opened, C.activate, T.toCross>> : C.Near;

CR-1 <<G.opened, C.activate, T.toCross>, <G.toClose, C.monitor, T.toCross>> : C/G.Lower;
CR-2 <<G.opened, C.activate, T.toCross>, <G.opened, C.activate, T.cross>> : T.in;

CR-3 <<G.toClose, C.monitor, T.toCross>, <G.closed, C.monitor, T.toCross>> : G.Down;
CR-4 <<G.toClose, C.monitor, T.toCross>, <G.toClose, C.monitor, T.cross>> : T.In;

CR-5 <<G.opened, C.activate, T.cross>, <G.toClose, C.monitor, T.cross>> : C/G.Lower;
CR-6 <<G.opened, C.activate, T.cross>, <G.opened, C.activate, T.leave>> : T.Qut;

CR-7 <<G.closed, C.monitor, T.toCross>, <G.closed, C.monitor, T.cross>> : T.In;

CR-8 <<G.toClose, C.monitor, T.cross>, <G.closed, C.monitor, T.cross>> : G.Down;

CR-9 <<G.toClose, C.monitor, T.cross>, <G.toClose, C.monitor, T.leave>> : T.Out;

CR-10 <<G.opened, C.activate, T.leave>, <G.toClose, C.monitor, T.leave>> : C/G.Lower;
CR-11 <<G.closed, C.monitor, T.cross>, <G.closed, C.monitor, T.leave>> : T.Out;

CR-12 <<G.toClose, C.monitor, T.leave>, <G.toClose, C.deactivate, T.idle>> : C.Exit;
CR-13 <<G.toClose, C.monitor, T.leave>, <G.closed, C.monitor, T.leave>> : G.Down;
CR-14 <<G.closed, C.monitor, T.leave>, <G.closed, C.deactivate, T.idle>> : C.Exit;

CR-15 <<G.toClose, C.deactivate, T.idle>, <G.closed, C.deactivate, T.idle>> : G.Down:
CR-16 <<G.closed, C.deactivate, T.idle>, <G.toOpen, C.idle, T.idle>> : C/G.Raise;

CR-17 <<G.toOpen, C.idle, T.idle>, <G.opened, C.idle, T.idle>> : G.Up;

CR-18 <<G.opened, C.activate, T.toCross>, <G.opened, C.activate, T.toCross>> : C.Near;
CR-20 <<G.toClose, C.monitor, T.toCross>, <G.toClose, C.monitor, T.toCross>> : C.Exit;
CR-21 <<G.toClose, C.monitor, T.toCross>, <G.toClose, C.monitor, T.toCross>> : C.Near;
CR-22 <<G.toClose, C.monitor, T.leave>, <G.toClose, C.monitor, T.leave>> : C.Exit:

CR-23 <<G.toClose, C.monitor, T.leave>, <G.toClose, C.monitor, T.leave>> : C.Near;

55

CR-0

Since there’s only one transition with the source state <G.opened, C.idle, T.idle>,
the transition probability of CR-0 is computed as the following:

P1 = Prob(<G.opened, G.opened>:Near) =0

P2 = Prob(<C.idle, C.activate>:Near) = 1

P3 = Prob(<T.idle, T.toCross>:Near) = 1

NF Computation:
Event Near is an external event and triggers transition CR-0; therefore the NF is
computed as the following:

P2*P3=1%1=1

NF’ Computation:

Since there is no internal event involved in the transition, NF’ is equal to 0.
NF”’ Computation:

NF =NF +NF=0+1=1

Transition Probability:

TransProb(CR-0) = (P2 * P3)/NF” = (1 * 1)/1 =1

CR-1, CR-2, CR-18
There are three transitions that start with the source state <G.opened, C.activate,
T.toCross>.

The transition probabilities of CR-1, CR-2 and CR-18 are computed as the

following:

56

The following probabilities are associated to CR-1:
P1 = Prob(<G.opened, G.toClose>:Lower) : 1

P2 = Prob(<C.activate, C.monitor>:Lower) : 1/2
P3 = Prob(<T.toCross, T.toCross>:Lower) : 0

The following probabilities are associated to CR-2:
P4 = Prob(<G.opened, G.opened>:In) : 0

P5 = Prob(<C.activate, C.activate>:In) : 0

P6 = Prob(<T.toCross, T.cross>:in) : 1

The following probabilities are associated to CR-18:
P7=Prob(<G.opened, G.opened>:Near) : 0
P8=Prob(<C.activate, C.activate>:Near) : 1/2

P9=Prob(<T.toCross, T.toCross>:Near) : 0

NF Computation:

Events Lower and Near are external events and trigger transition CR-1 and CR-
18; therefore the NF is computed as the following:

(P1*P2)+P8=(1*1/2) +1/2=1

NEF’ Computation:

Event In is an internal event and triggers transition CR-2; therefore the NF’ is computed
as the following:

P4+P5+P6=0+0+1=1

NF’’ Computation:

NF"=NF +NF=1+1=2

Transition Probability:

57

TransProb(CR-1) = (P1*P2)/NF” = (1*1/2)/2 = 1/4
TransProb(CR-2) = (P4+P5+P6)/NF” = (0+0+1)/2 = 1/2
TransProb(CR-18) = (P8) /INF” = (1/2)/2 = Y4

CR-3, CR-4, CR-20 and CR-21

There are four transitions that start with the source state <G.toClose, C.monitor,
T.toCross>.

The transition probabilities of CR-3, CR-4, CR-18 and CR-21 are computed as
the following:

The following probabilities are associated to CR-3:

P1 = Prob(<G.toClose, G.Close>:Down) : 1

P2 = Prob(<C.monitor, C.monitor>:Down) : 0

P3 = Prob(<T.toCross, T.toCross>:Down) : 0

The following probabilities are associated to CR-4:

P4 = Prob(<G.toClose, G.toClose>:In) : 0

P5 = Prob(<C.monitor, C.monitor>:In) : 0

P6 = Prob(<T.toCross, T.cross>:In) :

The following probabilities are associated to CR-20:

P7 = Prob(<G.toClose, G.toClose>:Exit) : 0

P8 = Prob(<C.monitor, C.monitor>:Exit) : 1/3

P9 = Prob(<T.toCross, T.toCross>:Exit) : 0

The following probabilities are associated to CR-21:
P10 = Prob(<G.toClose, G.toClose>:Near) : 0

P11 = Prob(<C.monitor, C.monitor>:Near) : 1/3

58

P12 = Prob(<T.toCross, T.toCross>:Near) : 0

NF Computation:

Events Exit and Near are external events and trigger transition CR-20 and CR-21;
therefore the NF is computed as the following:

P8+P11=1/3+1/3=2/3

NF’ Computation:

Events In and Down are internal events and trigger transition CR-3 and CR-4;
therefore the NF’ is computed as the following:

Pl+P6=1+1=2

NF”’ Computation:

NF’ =NF + NF =2 + 2/3 = 8/3

Transition Probability:

TransProb(CR-3) = P1/NF” = 1/(8/3) = 3/8

TransProb(CR-4) = P6/NF” = 1/(8/3) = 3/8

TransProb(CR-20) = P8/NF” = (1/3)/(8/3) = 1/8

TransProb(CR-21) = P11/NF” = (1/3)/(8/3) = 1/8

Notice that CR-20 and CR-21 have the same transition states, therefore the
transition probability in the transition matrix is the sum of both transitions, i.e.
TransMatrixProb(CR-20 and CR-21) = TransProb(CR-20) + TransProb(Cr-21) =

1/8 + 1/8 = 2/8

CR-5 and CR-6

59

There are two transitions that start with the source state <G.opened, C.activate,
T.cross>.

The transition probabilities of CR-5 and CR-6 are computed as the following:

The following probabilities are associated to CR-5:

P1 = Prob(<G.opened, G.toClose>:Lower) : 1

P2 = Prob(<C.activate, C.monitor>:Lower) : 1/2

P3 = Prob(<T.cross, T.cross>:Lower) : O

The following probabilities are associated to CR-6:

P4 = Prob(<G.opened, G.opened>:0Out) : 0

P5 = Prob(<C.activate, C.activate>:Out) : 0

P6 = Prob(<T.cross, T.leave>:Out) : 1

NF Computation:

Event Lower is an external event and trigger transition CR-5; therefore the NF is
computed as the following:

(P1*P2)=1*1/2=1/2

NF’ Computation:

Event QOut is an internal event and triggers transition CR-6; therefore the NF’ is
computed as the following:

P4+P5+P6=0+0+1=1

NF”’ Computation:

NF?=NF + NF=1+1/2=3/2

Transition Probability:

60

TransProb(CR-5) = (P1*P2)/NF” = (1/2)/(3/2) = 1/3

TransProb(CR-6) = (P4+P5+P6)/NF” = (0+0+1)/(3/2) = 2/3

CR-7

There is only one transition that starts with the source state <G.closed, C.monitor,
T.toCross>.

The transition probability of CR-7 is computed as follows:

The following probabilities are associated to CR-7:

P1 = Prob(<G.closed, G.closed>:In) : 0

P2 = Prob(<C.monitor, C.monitor>:In) : 0

P3 = Prob(<T.toCross, T.cross>:In) : 1

NF Computation:

There is no external event involved in the transition, therefore NF is equal to 0.
NF’ Computation:

Event In is an internal event and triggers transition CR-7; therefore the NF’ is
computed as the following:

P1+P2+P3=0+0+1=1

NF’’ Computation:

NF” = NF’ + NF = (P1+P2+P3) + 0 = (0+0+1) + 0 =1

Transition Probability:

TransProb(CR-7) = (P1+P2+P3)/NF” = (0+0+1)/1 =1

CR-8 and CR-9

61

There are two transitions that start with the source state <G.toClose, C.monitor,
T.cross>.

The transition probabilities of CR-8 and CR-9 are computed as the following:
The following probabilities are associated to CR-8:

P1 = Prob(<G.toClose, G.closed>:Down) : 1

P2 = Prob(<C.monitor, C.monitor>:Down) : O

P3 = Prob(<T.cross, T.cross>:Down) : 0

The following probabilities are associated to CR-9:

P4 = Prob(<G.toClose, G.toClose>:Out) : 0

P5 = Prob(<C.monitor, C.monitor>:Out) : 0

P6 = Prob(<T.cross, T.leave>:Out) : 1

NF Computation:

There is no external event involved in the transitions, therefore NF is equal to 0.

NEF’ Computation:

Event Down and Out are internal events and trigger transition CR-8 and CR-9;
therefore the NF’ is computed as the following:
(P1+P2+P3)+(P4+P5+P6)=(1+0+0)+(0+0+1)=2

NF”’ Computation:

NF” = NF + NF = ((P1+P2+P3) + (P4 + P5+ P6)) + 0 = (1+0+0) + (0 +0 + 1) +
0=2

Transition Probability:

TransProb(CR-8) = (P1+P2+P3)/NF”’ = (1+0+0)/2 = 1/2

62

TransProb(CR-9) = (P4+P5+P6)/NF” = (0+0+1)/2 = 1/2

CR-10

There is only one transition that starts with the source state <G.opened,
C.activate, T.leave>.

The transition probability of CR-10 is computed as the following:

The following probabilities are associated to CR-10:

P1 = Prob(<G.opened, G.toClose>:Lower) : 1

P2 = Prob(<C.activate, C.monitor>:Lower) : 1/2

P3 = Prob(<T.leave, T.leave>:Lower) : 0

NF Computation:

Event Lower is an external event and triggers transition CR-10; therefore the NF
is computed as the following:

P1*P2=1*1/2=1/2

NF’ Computation:

There is no internal event involved in the transition, therefore NF’ is equal to 0.
NF”’ Computation:

NF’=NF + NF=0+ (P1*P2)=0+1/2=1/2

Transition Probability:

TransProb(CR-10) = (P1*P2)/NF” = (1*1/2)/1/2 = 1

CR-11

63

There is only one transition that starts with the source state <G.closed, C.monitor,
T.cross>.

The transition probability of CR-11 is computed as the following:

The following probabilities are associated to CR-11:

P1 = Prob(<G.closed, G.closed>:Out) : 0

P2 = Prob(<C.monitor, C.monitor>:Out) : 0

P3 = Prob(<T.cross, T.leave>:0ut) : 1

NF Computation:

There is no external event involved in the transition, therefore NF is equal to 0.
NF’ Computation:

Event Out is an internal event and triggers transition CR-11; therefore the NF' is
computed as the following:

Pt+P2+P3=0+0+1=1

NE”’ Computation:
NF” =NF + NF = (P1+P2+P3) +0=1+0=1
Transition Probability:

TransProb(CR-11) = (P1+P2+P3)/NF” = (0+0+1)/1 = 1

CR-12, CR-13, CR22 and CR-23

There are four transitions that start with the source state <G.toClose, C.monitor,

T.leave>.

64

The transition probabilities of CR-12, CR-13, CR-22 and CR-23 are computed as
the following:

The following probabilities are associated to CR-12:
P1 = Prob(<G.toClose, G.toClose>:Exit) : 0

P2 = Prob(<C.monitor, C.deactivate>:Exit) : 1/3

P3 = Prob(<T.leave, T.idle>:Exit) : 1

The following probabilities are associated to CR-13:
P4 = Prob(<G.toClose, G.closed>:Down) : 1

P5 = Prob(<C.monitor, C.monitor>:Down) : 0

P6 = Prob(<T.leaave, T.leave>:Down) : 0

The following probabilities are associated to CR-22:
P7 = Prob(<G.toClose, G.toClose>:Exit) : 0

P8 = Prob(<C.monitor, C.monitor>:Exit) : 1/3

P9 = Prob(<T.leave, T.leave>:Exit) : 0

The following probabilities are associated to CR-23:

P10 = Prob(<G.toClose, G.toClose>:Near) : 0

P11 = Prob(<C.monitor, C.monitor>:Near) : 1/3

P12 = Prob(<T.leaave, T.leave>:Near) : 0

NF Computation:

Events Exit and Near are external events and trigger transition CR-12, CR-22
and CR-23; therefore the NF is computed as the following:

(P2* P 3) +(P8) + (P11) = (1/3 * 1) + (1/3) + (1/3) = 3/3

65

NF’ Computation:

Event Down is an internal event and triggers transition CR-13; therefore the NF’
is computed as the following:

P4+P5+P6=1+0+0=1

NF”’ Computation:

NF"=NF +NF=1+33=6/3=2

Transition Probability:

TransProb(CR-12) = (P2*P3)/NF” = (1/3*1)/2 = 1/6

TransProb(CR-13) = (P4+P5+P6)/NF” = (1+0+0)/2 = 1/2

TransProb(CR-22) = (P8)/NF” = (1/3)/2 = 1/6

TransProb(CR-23) = (P11)/NF” = (1/3)/2 = 1/6

Notice that CR-22 and CR-23 have the same transition states, therefore the
transition probability in the transition matrix is the sum of both transitions, i.e.
TransMatrixProb(CR-22 and CR-23) = TransProb(CR-22) + TransProb(Cr-23) =

1/6 +1/6 =2/6 =1/3

CR-14

There is only one transition that starts with the source state <G.closed, C.monitor,
T.leave>.

The transition probability of CR-14 is computed as the following:

The following probabilities are associated to CR-14:

P1 = Prob(<G.closed, G.closed>:Exit) : 0

P2 = Prob(<C.monitor, C.deactivate>:Exit) : 1/3

66

P3 = Prob(<T.leave, T.idle>:Exit) : 1

NF Computation:

Event Exit is an external event and triggers transition CR-14; therefore the NF is
computed as the following

P2*P3=1/3*1=1/3

NF’ Computation:

There is no internal event involved in the transition, therefore NF' is equal to 0.
NE’’ Computation:

NF”=NF + NF =0+ (P2*P3) =0 + (1/3*1) = 1/3

Transition Probability:

TransProb(CR-14) = (P2*P3)/NF” = (1/3*1)/(1/3) = 1

CR-15

There is only one transition that starts with the source state <G.toClose,
C.deactivate, T.idle>.

The transition probability of CR-15 is computed as the following:

The following probabilities are associated to CR-15:

P1 = Prob(<G.toClose, G.closed>:Down) : 1

P2 = Prob(<C.deactivate, C.deactivate>:Down) : 0

P3 = Prob(<T.idle, T.idle>:Down) : 0

NF Computation:

There is no external event involved in the transition, therefore NF is equal to 0.

NF’ Computation:

67

Event Down is an internal event and triggers transition CR-15; therefore the NF’
is computed as the following:

P1+P2+P3=1+0+0=1

NEF”’ Computation:

NF” = NF’ + NF = (P1+P2+P3) +0=(1+0+0) +0=1

Transition Probability:

TransProb(CR-15) = (P1+P2+P3)/NF” = (1+0+0)/1 = 1

CR-16

There is only one transition that starts with the source state <G.closed,
C.deactivate, T.idle>.

The transition probability of CR-16 is computed as the following:

The following probabilities are associated to CR-16:

P1 = Prob(<G.closed, G.toOpen>:Raise) : 1

P2 = Prob(<C.deactivate, C.idle>:Raise) : 1

P3 = Prob(<T.idle, T.idle>:Exit) : O

NF Computation:

Event Raise is an external event and triggers transition CR-16; therefore the NF
is computed as the following:

P1*P2=1*1=1

NEF’ Computation:

There is no internal event involved in the transition, therefore NF’ is equal to 0.

NF*’ Computation:

68

NF’=NF + NF=0+ (P1*P2) =0+ (1*1) =1
Transition Probability:

TransProb(CR-16) = (P1*P2)/NF” = (1*1)/(1) = 1

CR-17

There is only one transition that starts with the source state <G.toOpen, C.idle,
T.idle>.

The transition probability of CR-17 is computed as the following:

The following probabilities are associated to CR-17:

P1 = Prob(<G.toOpen, G.opened>:Up) : 1

P2 = Prob(<C.idle, C.idle>:Up) : 0

P3 = Prob(<T.idle, T.idle>:Up) : 0

NF Computation:

There is no external event involved in the transition, therefore NF is equal to 0.
NF’ Computation:

Event Up is an internal event and triggers transition CR-17; therefore the NF’ is
computed as the following:

P1l+P2+P3=1+0+0=1

NEF*’ Computation:

NF” =NF + NF = (P1+P2+P3) +0=(1+0+0) +0 =1

Transition Probability:

TransProb(CR-17) = (P1+P2+P3)/NF” = (1+0+0)/1 = 1

69

Table7 shows the transition matrix of the synchronous product machine of Gate-

Train-Controller system.

State List:

S1 - <G.opened, C.idle, T.idle>

S2 - <G.opened, C.activate, T.toCross>
S3 - <G.toClose, C.monitor, T.toCross>
S4 - <G.opened, C.activate, T.cross>
S5 - <G.closed, C.monitor, T.toCross>
S6 - <G.toClose, C.monitor, T.cross>
S7 - <G.opened, C.activate, T.leave>
S8 - <G.closed, C.monitor, T.cross>
S9 - <G.toClose, C.monitor, T.leave>
S10 - <G.closed, C.monitor, T.leave>
S11 - <G.toClose, C.deactivate, T.idle>
S12 - <G.closed, C.deactivate, T.idle>

S13 - < G.toOpen, C.idle, T.idle>

Table 7. Transition Matrix of Synchronous Product Machine Gate-Train-Controller

S1 | S2 | S3 [S4 | S5 | S6 | S7 | S8 | S9 | S10|S11[S12|S13
S1 | 0 1 0 0 0 0 0 0 0 0 0 0 0
S2 | 0 |[1/4 14112 0 0 0 0 0 0 0 0 0
S3 | 0 0O |28| 0 [3/8[3/8| 0 0 0 0 0 0 0
S4 | 0 0 0 0 0 [1/3|283]| 0 0 0 0 0 0
S5 | 0 0 0 0 0 0 0 1 0 0 0 0 0
S6 | 0 0 0 0 0 0 0 |1/12| %21 0 0 0 0
S7 | 0 0 0 0 0 0 0 0 1 0 0 0 0
S8 | 0 0 0 0 0 0 0 0 0 1 0 0 0
S9 | O 0 0 0 0 0 0 0 (13|12 |16]| O 0
S10| O 0 0 0 0 0 0 0 0 0 0 1 0
S11] 0 0 0 0 0 0 0 0 0 0 0 1 0
S12| 0 0 0 0 0 0 0 0 0 0 0 0 1

70

[st3] 1 JoJoJoJoJoJoJ]o]J]oJoJ]oJo]o]

6.3.2 Steady Vector

Need to find a vector such that

|MNPQRSTUVWXYZ|

0/1 1/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1]
0/1 1/4 1/4 1/2 0/1 0/1 0/1 0/1 0/L 0/1 0/1 0/1 0/1
0/1 0/1 2/8 0/1 3/83/8 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1L 0/1 1/3 2/3 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/t 0/1 0/1 0/1 0/1 0/1 1/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/2 1/2 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 O/1 1/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0O/1 0/1 0/1 0O/t 1/3 1/2 1/6 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/t 0/1 1/1 0/1
0/1 0/1 0/1 0/L 0/1 0/t 0/t 0/1 0/1 0/1 0/1 1/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/L 0/1 0/1 0/1 0/1 1/1
1/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/L 0/1 0/l 0/1 0/1

= |MNPQRSTUVWXYZ|

Converting the above formula to a set of equations gives:

OM+ON+O0P+0Q+0R+0S+0T+0U+0V+0OW +0X+0Y+1Z=M
/MM +1/4N+0P +0Q +0R +0S + 0T + 0U + OV + OW + OX + 0Y + 0Z =N
OM+ 1/4N +2/8P +0Q +0R+0S +0T +0U + OV + OW +0X +0Y + 0Z =P
OM+ 12N +0P+0Q+0R+0S+0T+0U+0V+0W +0X+0Y+0Z=Q
OM+ON+3/8P+0Q+0R+0S+0T+0U+0V+0W+0X+0Y+0Z=R
OM+ON+3/8P+1/3Q+0R+0S +0T+0U+0V+0W +0X+0Y+0Z=S

OM+ON+OP+2/3Q+0R+0S+0T+0U+0V+0W +0X+0Y+0Z=T
71

OM+ON+O0P+0Q+1/1R+12S+0T+0U +0V +0OW +0X +0Y +0Z=U
OM+ON+OP+0Q+0R+12S+1/1T+0U+1/3V+0W +0X+0Y +0Z =V
OM+ON+OP +0Q+0R+0S+0T+ 11U+ 12V +0OW +0X +0Y +0Z =W
OM+ON+OP+0Q+0R+0S+0T+0U+1/6V+0W +0X +0Y +0Z=X
OM+ON+O0P +0Q+0R+0S+0T+0U+0V+1W +1X+0Y+0Z=Y

OM+ON+OP+0Q+0R+0S+0T+0U+0V+0OW +0X+1Y+0Z=Z

By solving the equations we get:
M=0.114
N =0.152
P = 0.051
Q=0.076
R=0.019
S =0.044
T =0.051
U =0.041
V =0.109
W =0.096
X=0.018
Y=0.114

Z=0.114

[0.114 0.152 0.051 0.076 0.019 0.044 0.051 0.041 0.109 0.096 0.018 0.114

0.114] ... Steady Vector of Synchronous Product Machine Gate-Train-Controller

72

6.3.2.1 Entropy

H Gate-Train—Controller =

-((0.114* (0 *log, 0+ 1 *log,1+0*log,0+0*log,0+0*log,0+0%*log,0+0
*log,0+0*1log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*log,0))+
(0.152* (0 *log, 0+ 1/4 *log, 1/4 + 1/4 * log, 1/4 + 1/2 * logl/2 + 0 * log , 0+ 0 *
log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*
log, 0)) +

(0.051 * (0 *log,0+0 * log,0 +2/8 * log,2/8 +0 * log, 0 + 3/8 log, 3/8 + 3/8
log,3/8+0*log,0+0*log,0+0*log,0+0*log,0+0*log,0+0 *log,0+0*
log, 0)) +

(0.076 * (0 *log, 0+0 *log,0+0 *log,0 +0 *log,0 +0 *log,0+ 1/3 *log, 1/3
+2/3*log,2/3+0*1log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*
log, 0)) +

(0.019 * (0 *log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*
log,0+1*log,1+0%log,0+0%*log,0+0*log,0+0*log,0+0*log,0))+
(0.044 * (0 * log,0+0 *log,0+0 *log,0+0 *log,0+0 *log,0+0*log,0+0*
log,0+ 1/2*log, 172+ 1/2*log, 1/2+0 * log, 0+ 0 * log, 0 + 0 * log, 0)) +

(0.051* (0 *log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*log,0+0*
log,0+0*log,0+1*log,1+0*log,0+0*log,0+0*log,0+0 *log,0))+
(0.041 * (0 *log,0+0*log,0+0*log,0+0 *log,0+0*log,0+0*log,0+0*

log,0+0*log,0+0*log,0+1*log,1+0*log,0+0*log,0+0 *log,0))+

73

(0.109 * (0 * log,0+0 *log,0+0 *log,0+0 *log,0+0 *log,0+0*log,0+0*
log,0+0*log,0+1/3 *log, 1/3 + 1/2 * log, 1/2 + 1/6 * log, 1/6 + 0 * log , 0 + 0 *
log, 0)) +

(0.096 * (0 * log,0+0*log,0+0 *log,0+0 *log,0+0 *log,0+0*log,0+0*
log,0+0*log,0+0*log,0+0*log,0+0*log,0+1*log,1+0*log,0))+
(0.0183 * (0 *log,0+0 *log,0+0*log,0+0 *log,0+0*log,0+0*log,0+0*
log,0+0 *log,0+0*log,0+0*log,0+0*log,0+1*log,1+0*log,0))+
(0.114* (0 * log,0+0 *log,0+0 * log,0+0 *log,0+0 *log,0+0 *log,0+0 *
log,0+0*log,0+0*log,0+0%*log,0+0*log,0+0*log,0+1*log, 1))+
(0.114 * (1 *log, 1 +0 *log,0+0 *log,0+0 *log,0+0*log,0+0*log,0+0*
log,0+0*log,0+0*log,0+0*log,0+0 *log,0+0*log,0+0*log,0)))

=-(-0.58045) = 0.58045

6.4 Reliability Computation
Reliability(Gate-Train-Controller)

=(H +H +H

Gate Train Controller

)-H

Gate~Train—Controller

= (0 + 0 + 0.6785) — 0.58045 = 0.09805

6.5 Conclusion of the results
The results generated from the TROM-SRMS are provided in appendix 1

and they conform to those computed in the previous sections.

74

Please note that due to rounding at different precision, there are slight
differences between the results generated by the TROM-SRMS and the

theoretically computed results in previous sections.

75

Chapter 7. Conclusion & Future Work

This project is about the implementation of TROM-SRMS, a software
module in the TROMLAB environment for assessment of the reliability of a real-
time reactive system based on the Markov model. Background theories on the
reliability computation as well as the key algorithms are presented in this report.
A case study is provided as a means to validate the results generated from the
TROM-SRMS.

The future work should consider the following enhancements:

e Currently the user has to specify the system configuration file of the
system, it would be more convenient and transparent to the user if there
were an alternative way to incorporate the file automatically to the TROM-
SRMS.

e Currently, in order to generate the synchronous product machine
specification, the user needs to remove all the time-constraints from the
GRC specifications and run the system test with TROM-SBTS. The

suggestion is to find a way to generate the specification in an automatic

fashion.

76

References
[AAM98] V.S.Alagar, R.Achuthan, D.Muthiayen. TROMLIB: A Software
Development Environment for Real-Time Reactive Systems. (first version 1996,
revised 2001), Submitted for Publication
[Ach95] R. Achuthan, A Formal Model for Object-Oriented Development of Real-
Time Reactive Systems. PhD. thesis, Department of Computer Science,
Concordia University, Montreal, Canada, October 1995
[Che02] M. Chen. The Implementation of Specification-based Testing System for
Real-time Reactive System in TROMLIB Framework. Master Major Report,
Department of Computer Science, Concordia University, Montreal, Canada,
December 2002
[GH93] J.V. Guttag and J.J. Horning. Larch: Language and Tools for Formal
Specifications. Springer Verlag. 1993.
[Hai99] G. Haidar. Reasoning System for Real-Time Reactive Systems. Master
Thesis, Department of Computer Science, Concordia University, Montreal,
Canada, December 1999
[HP85] D. Harel, A. Pnueli. On the Development of Reactive Systems. In Logic-
and Models of Concurrent Systems, NATO, Advanced Study Institute on Logics
and Models for Verification and Specification of Concurrent Systems Spring
Verlag, 1985
[Mut96] D.Muthiayen Animation and Formal Verification of Real-Time Reactive
Systems in an Object-Oriented Environment. Master Thesis, Department of

Computer Science, Concordia University, Montreal, Canada, October 1996

77

[Nag99] D.Muthiayen Real-Time Reactive System Developemnt — A Formal
approach based on UML and PVS. PhD Thesis, Department of Computer
Science, Concordia University, Montreal, Canada, January 2000

[Orm02] O. Ormandjieva, Deriving New Measurements for Real-Time Reactive
Systems. PhD. Thesis, Department of Computer Science, Concordia University,
Montreal, Canada, 2002

[Pom99] F. Pompeo A Formal Verification Assistant for TROMLIB environment.
Master Thesis, Department of Computer Science, Concordia University,
Montreial, Canada, November 1999

[Pop99] O. Popistas. Rose-GRC Translator: Mapping UML Visual Models onto
Formal Specifications. Master Thesis, Department of Computer Science,
Concordia University, Montreial, Canada, April 1999

[PRO1] Pressman, Roger S. Software Engineering: a Practitioner’s approach —5"
ed.p. cm-(McGraw-Hill series in computer Science) ISBN: 0-07-3655778-3
[Sir99] V. Srinivasan. Graphical User Interface for TROMLIB Environment.
Master Thesis, Department of Computer Science, Concordia University,
Montreal, Canada, December 1999.

[SOM95] I. Sommerville, Software Engineering 5th edition, Addison-Wesley ISBN
0201-42765-6

[Tao96] H. Tao. Static Analyzer: A Design Tool for TROM. Master Thesis,
Department of Computer Science, Concordia University, Montreal, Canada,

August 1996

78

[Zhe02] M.Zheng. Automated Generation of Test Suits from Formal
Specifications of Real-Time Reactive Systems. Ph.D. Thesis, Department of

Computer Science, Concordia University, Montreal, Canada, 2002.

79

Appendix Results of running Gate-Train-Controller on TROM-SRMS

=>State Transition Matrix<=
Probability for <idle,idle>: 0.0/1.0
Probability for <idle,activate>: 1.0/1.0
Probability for <idle,deactivate>: 0.0/1.0
Probability for <idle,monitor>: 0.0/1.0
Probability for <activate,idle>: 0.0/2.0
Probability for <activate,activate>: 1.0/2.0
Probability for <activate,deactivate>: 0.0/2.0
Probability for <activate,monitor>: 1.0/2.0
Probability for <deactivate,idle>: 1.0/1.0
Probability for <deactivate,activate>: 0.0/1.0
Probability for <deactivate,deactivate>: 0.0/1.0
Probability for <deactivate,monitor>: 0.0/1.0
Probability for <monitor,idle>: 0.0/3.0
Probability for <monitor,activate>: 0.0/3.0
Probability for <monitor,deactivate>: 1.0/3.0
Probability for <monitor,monitor>: 2.0/3.0
idle activate deactivate monitor
idle 0.0/1.0 1.0/1.0 0.0/1.0 0.0/1.0
activate 0.0/2.0 1.0/2.0 0.0/2.0 1.0/2.0
deactivate 1.0/1.0 0.0/1.0 0.0/1.0 0.0/1.0
monitor 0.0/3.0 0.0/3.0 1.0/3.0 2.0/3.0
----- steady vector---
0.14285714285714285
0.2857142857142857
0.14285714285714288
0.4285714285714286

............. the entropy value is 0.6792696431662097
====>State Transition List<====

+**State Transition Info**

From State :

activate

To State/Event

monitor/Lower prob: 1.0/2.0

activate/Near prob: 1.0/2.0

*#k**State Transition Info*****
From State :

deactivate

To State/Event

idle/Raise prob: 1.0/1.0

80

*Fxk*State Transition Info*****
From State :

monitor

To State/Event

deactivate/Exit prob: 1.0/3.0
monitor/Exit prob: 1.0/3.0
monitor/Near prob: 1.0/3.0

#Rk+*Gtate Transition Info*****
From State :

idle

To State/Event

activate/Near prob: 1.0/1.0

State List

idle

activate

deactivate

monitor

Internal Event List
QOuput Event List
Lower

Raise

Input Event List
Near

=>State Transition Matrix<=
Probability for <opened,opened>: 0.0/1.0
Probability for <opened,toClose>: 1.0/1.0
Probability for <opened,toOpen>: 0.0/1.0
Probability for <opened,closed>: 0.0/1.0
Probability for <toClose,opened>: 0.0/1.0
Probability for <toClose,toClose>: 0.0/1.0
Probability for <toClose,toOpen>: 0.0/1.0
Probability for <toClose,closed>: 1.0/1.0
Probability for <toOpen,opened>: 1.0/1.0
Probability for <toOpen,toClose>: 0.0/1.0
Probability for <toOpen,toOpen>: 0.0/1.0
Probability for <toOpen,closed>: 0.0/1.0
Probability for <closed,opened>: 0.0/1.0
Probability for <closed,toClose>: 0.0/1.0
Probability for <closed,toOpen>: 1.0/1.0
Probability for <closed,closed>: 0.0/1.0
opened toClose toOpen closed
opened 0.0/1.0 1.0/1.0 0.0/1.0 0.0/1.0

81

toClose 0.0/1.0 0.0/1.0 0.0/1.0
toOpen 1.0/1.0 0.0/1.0 0.0/1.0
closed 0.0/1.0 0.0/1.0 1.0/1.0
————— steady vector---
0.25000000000000006
0.2500000000000001
0.24999999999999986
0.25000000000000006

............. the entropy value is -0.0
====>State Transition List<====
*x¥**State Transition Info*****
From State :

opened

To State/Event

toClose/Lower prob: 1.0/1.0

xx*State Transition Info***
From State :

toClose

To State/Event

closed/Down prob: 1.0/1.0

*#¥%¥*State Transition Info*****
From State :

toOpen

To State/Event

opened/Up prob: 1.0/1.0

*EEF*State Transition Info*****
From State :

closed

To State/Event

toOpen/Raise prob: 1.0/1.0

State List

opened

toClose

toOpen

closed

Internal Event List
Down

Up

QOuput Event List
Input Event List
Lower

1.0/1.0
0.0/1.0
0.0/1.0

82

=>State Transition Matrix<=
Probability for <idle,idle>: 0.0/1.0
Probability for <idle,cross>: 0.0/1.0
Probability for <idle,leave>: 0.0/1.0
Probability for <idle,toCross>: 1.0/1.0
Probability for <cross,idle>: 0.0/1.0
Probability for <cross,cross>: 0.0/1.0
Probability for <cross,leave>: 1.0/1.0
Probability for <cross,toCross>: 0.0/1.0
Probability for <leave,idle>: 1.0/1.0
Probability for <leave,cross>: 0.0/1.0
Probability for <leave,leave>: 0.0/1.0
Probability for <leave,toCross>: 0.0/1.0
Probability for <toCross,idle>: 0.0/1.0
Probability for <toCross,cross>: 1.0/1.0
Probability for <toCross,leave>: 0.0/1.0
Probability for <toCross,toCross>: 0.0/1.0
idle Cross leave toCross

idle 0.0/1.0 0.0/1.0 0.0/1.0 1.0/1.0

cross 0.0/1.0 0.0/1.0 1.0/1.0 0.0/10

leave 1.0/1.0 0.0/1.0 0.0/1.0 0.0/1.0
toCross 0.0/1.0 1.0/1.0 0.0/1.0 0.0/1.0
----- steady vector---
0.25000000000000006
0.24999999999999994
0.24999999999999997
0.25000000000000006

............. the entropy value is -0.0
====>State Transition List<====
*rkFk*State Transition Info*****
From State :

idle

To State/Event

toCross/Near prob: 1.0/1.0

xk*Gtate Transition Info***
From State :

Cross

To State/Event

leave/Out prob: 1.0/1.0

*Fk4*kGtate Transition Info**+**
From State :

83

leave
To State/Event
idle/Exit prob: 1.0/1.0

*#**k*State Transition Info*****
From State :

toCross

To State/Event

cross/In prob: 1.0/1.0

State List

idle

Cross

leave

toCross

Internal Event List
Out

In

Quput Event List
Near

Exit

Input Event List

G.opened,C.idle,T.idle
G.opened,C.activate,T.toCross
G.toClose,C.monitor, T.toCross
G.opened,C.activate, T.cross
G.closed,C.monitor,T.toCross
G.toClose,C.monitor, T.cross
G.opened,C.activate,T.leave
G.closed,C.monitor, T.cross
G.toClose,C.monitor, T.leave
G.closed,C.monitor, T .leave
G.toClose,C.deactivate,T.idle
G.closed,C.deactivate, T.idle
G.toOpen,C.idle,T.idle

%*State Transition Infok*

From State :

G.opened,C.idle,T.idle

To State/Event

G.opened,C.activate, T .toCross/Near prob: 1.0/1.0
NF External: 1.0/1.0

NF Internal: 0.0/1.0

NF:1.0/1.0

84

*x¥kxGtate Transition Info*****

From State :

G.opened,C.activate,T.toCross

To State/Event

G.toClose,C.monitor, T.toCross/Lower prob: 1.0/2.0
G.opened,C.activate,T.cross/In prob: 1.0/1.0
G.opened,C.activate,T.toCross/Near prob: 1.0/2.0
NF External: 4.0/4.0

NF Internal: 1.0/1.0

NF : 8.0/4.0

*xxx*State Transition Info*****

From State :

G.toClose,C.monitor, T.toCross

To State/Event
G.closed,C.monitor,T.toCross/Down prob: 1.0/1.0
G.toClose,C.monitor,T.cross/In prob: 1.0/1.0
G.toClose,C.monitor,T.toCross/Exit prob: 1.0/3.0
G.toClose,C.monitor, T.toCross/Near prob: 1.0/3.0
NF External: 6.0/9.0

NF Internal: 2.0/1.0

NF : 24.0/9.0

¥k*¥*State Transition Info***

From State :

G.opened,C.activate,T.cross

To State/Event

G.toClose,C.monitor, T.cross/Lower prob: 1.0/2.0
G.opened,C.activate, T.leave/Out prob: 1.0/1.0
NF External: 1.0/2.0

NF Internal: 1.0/1.0

NF : 3.0/2.0

%%State Transition Info**

From State :

G.closed,C.monitor, T.toCross

To State/Event

G.closed,C.monitor,T.cross/In prob: 1.0/1.0

NF External: 0.0/1.0

NF Internal: 1.0/1.0

NF:1.0/1.0

*dk**State Transition Info*****

From State :

G.toClose,C.monitor, T.cross

To State/Event
G.closed,C.monitor,T.cross/Down prob: 1.0/1.0
G.toClose,C.monitor,T.leave/Out prob: 1.0/1.0
NF External: 0.0/1.0

NF Internal: 2.0/1.0

85

NF:2.0/1.0

*¥***State Transition Info*****

From State :

G.opened,C.activate,T.leave

To State/Event
G.toClose,C.monitor,T.leave/Lower prob: 1.0/2.0
NF External: 1.0/2.0

NF Internal: 0.0/1.0

NF: 1.0/2.0

*xxxxState Transition Info**#**

From State :

G.closed,C.monitor,T.cross

To State/Event

G.closed,C.monitor,T.leave/Out prob: 1.0/1.0
NF External: 0.0/1.0

NF Internal: 1.0/1.0

NF:1.0/1.0

*#*xx*State Transition Info*****

From State :

G.toClose,C.monitor, T .leave

To State/Event
G.toClose,C.deactivate,T.idle/Exit prob: 1.0/3.0
G.closed,C.monitor,T.leave/Down prob: 1.0/1.0
G.toClose,C.monitor, T.leave/Exit prob: 1.0/3.0
G.toClose,C.monitor, T.leave/Near prob: 1.0/3.0
NF External: 27.0/27.0

NF Internal: 1.0/1.0

NF : 54.0/27.0

*x*k*State Transition Info*****

From State :

G.closed,C.monitor,T.leave

To State/Event

G.closed,C.deactivate, T.idle/Exit prob: 1.0/3.0
NF External: 1.0/3.0

NF Internal: 0.0/1.0

NF: 1.0/3.0

*ik**State Transition Info*****

From State :

G.toClose,C.deactivate, T.idle

To State/Event

G.closed,C.deactivate, T.idle/Down prob: 1.0/1.0
NF External: 0.0/1.0

NF Internal: 1.0/1.0

NF: 1.0/1.0

x%xGtate Transition Info***

From State :

86

G.closed,C.deactivate, T.idle

To State/Event
G.toOpen,C.idle,T.idle/Raise prob: 1.0/1.0
NF External: 1.0/1.0

NF Internal: 0.0/1.0

NF: 1.0/1.0

¥+*Gtate Transition Info***

From State :

G.toOpen,C.idle, T.idle

To State/Event
G.opened,C.idle,T.idle/Up prob: 1.0/1.0
NF External: 0.0/1.0

NF Internal: 1.0/1.0

NF:1.0/1.0

. <G.opened,C.idle,T.idle> to <G.opened,C.idle,T.idle> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.opened,C.activate,T.toCross> with probability : 1.0

. <G.opened,C.idle,T.idle> to <G.toClose,C.monitor,T.toCross> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.opened,C.activate,T.cross> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.closed,C.monitor, T.toCross> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.toClose,C.monitor,T.cross> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.opened,C.activate,T.leave> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.closed,C.monitor, T.cross> with probability : 0.0

. <G.opened,C.idle,T.idle> to <G.toClose,C.monitor,T.leave> with probability : 0.0

10. <G.opened,C.idle,T.idle> to <G.closed,C.monitor,T.leave> with probability : 0.0

11. <G.opened,C.idle,T.idle> to <G.toClose,C.deactivate,T.idle> with probability : 0.0
12. <G.opened,C.idle,T.idle> to <G.closed,C.deactivate,T.idle> with probability : 0.0

13. <G.opened,C.idle,T.idle> to <G.toOpen,C.idle,T.idle> with probability : 0.0

14. <G.opened,C.activate,T.toCross> to <G.opened,C.idle,T.idle> with probability : 0.0
15. <G.opened,C.activate,T.toCross> to <G.opened,C.activate,T.toCross> with
probability : 0.25

16. <G.opened,C.activate,T.toCross> to <G.toClose,C.monitor,T.toCross> with
probability : 0.25

17. <G.opened,C.activate,T.toCross> to <G.opened,C.activate,T.cross> with probability :
0.5

18. <G.opened,C.activate,T.toCross> to <G.closed,C.monitor,T.toCross> with
probability : 0.0

19. <G.opened,C.activate,T.toCross> to <G.toClose,C.monitor,T.cross> with probability :
0.0

20. <G.opened,C.activate, T.toCross> to <G.opened,C.activate,T.leave> with probability :
0.0

21. <G.opened,C.activate,T.toCross> to <G.closed,C.monitor,T.cross> with probability :
0.0

22. <G.opened,C.activate,T.toCross> to <G.toClose,C.monitor,T.leave> with probability :
0.0

O 00NN AW

87

23. <G.opened,C.activate,T.toCross> to <G.closed,C.monitor,T.leave> with probability :
0.0

24. <G.opened,C.activate,T.toCross> to <G.toClose,C.deactivate,T.idle> with
probability : 0.0

25. <G.opened,C.activate, T .toCross> to <G.closed,C.deactivate,T.idle> with probability :
0.0

26. <G.opened,C.activate,T.toCross> to <G.toOpen,C.idle,T.idle> with probability : 0.0
27. <G.toClose,C.monitor,T.toCross> to <G.opened,C.idle,T.idle> with probability : 0.0
28. <G.toClose,C.monitor,T.toCross> to <G.opened,C.activate,T.toCross> with
probability : 0.0

29. <G.toClose,C.monitor, T.toCross> to <G.toClose,C.monitor,T.toCross> with
probability : 0.25

30. <G.toClose,C.monitor,T.toCross> to <G.opened,C.activate,T.cross> with probability :
0.0

31. <G.toClose,C.monitor,T.toCross> to <G.closed,C.monitor,T.toCross> with
probability : 0.375

32. <G.toClose,C.monitor,T.toCross> to <G.toClose,C.monitor,T.cross> with
probability : 0.375

33. <G.toClose,C.monitor,T.toCross> to <G.opened,C.activate,T.leave> with probability :
0.0

34. <G.toClose,C.monitor,T.toCross> to <G.closed,C.monitor, T.cross> with probability :
0.0

35. <G.toClose,C.monitor,T.toCross> to <G.toClose,C.monitor,T.leave> with
probability : 0.0

36. <G.toClose,C.monitor, T.toCross> to <G.closed,C.monitor,T.leave> with probability :
0.0

37. <G.toClose,C.monitor, T.toCross> to <G.toClose,C.deactivate, T.idle> with
probability : 0.0

38. <G.toClose,C.monitor,T.toCross> to <G.closed,C.deactivate,T.idle> with probability :
0.0

39. <G.toClose,C.monitor,T.toCross> to <G.toOpen,C.idle,T.idle> with probability : 0.0
40. <G.opened,C.activate,T.cross> to <G.opened,C.idle,T.idle> with probability : 0.0

41. <G.opened,C.activate,T.cross> to <G.opened,C.activate,T.toCross> with probability :
0.0

42. <G.opened,C.activate, T .cross> to <G.toClose,C.monitor, T.toCross> with probability :
0.0

43. <G.opened,C.activate,T.cross> to <G.opened,C.activate,T.cross> with probability :
0.0

44. <G.opened,C.activate,T.cross> to <G.closed,C.monitor,T.toCross> with probability :
0.0

45. <G.opened,C.activate,T.cross> to <G.toClose,C.monitor,T.cross> with probability :
0.3333333333333333

46. <G.opened,C.activate,T.cross> to <G.opened,C.activate,T.leave> with probability :
0.6666666666666666

47. <G.opened,C.activate,T.cross> to <G.closed,C.monitor,T.cross> with probability :
0.0

88

48. <G.opened,C.activate, T.cross> to <G.toClose,C.monitor,T.leave> with probability :
0.0

49. <G.opened,C.activate,T.cross> to <G.closed,C.monitor,T.leave> with probability :
0.0

50. <G.opened,C.activate, T .cross> to <G.toClose,C.deactivate,T.idle> with probability :
0.0

51. <G.opened,C.activate,T.cross> to <G.closed,C.deactivate,T.idle> with probability :
0.0

52. <G.opened,C.activate,T.cross> to <G.toOpen,C.idle, T.idle> with probability : 0.0

53. <G.closed,C.monitor, T.toCross> to <G.opened,C.idle,T.idle> with probability : 0.0
54. <G.closed,C.monitor,T.toCross> to <G.opened,C.activate,T.toCross> with
probability : 0.0

55. <G.closed,C.monitor,T.toCross> to <G.toClose,C.monitor,T.toCross> with
probability : 0.0

56. <G.closed,C.monitor,T.toCross> to <G.opened,C.activate,T.cross> with probability :
0.0

57. <G.closed,C.monitor,T.toCross> to <G.closed,C.monitor,T.toCross> with
probability : 0.0

58. <G.closed,C.monitor,T.toCross> to <G.toClose,C.monitor,T.cross> with probability :
0.0

59. <G.closed,C.monitor,T.toCross> to <G.opened,C.activate,T.leave> with probability :
0.0

60. <G.closed,C.monitor,T.toCross> to <G.closed,C.monitor,T.cross> with probability :
1.0

61. <G.closed,C.monitor,T.toCross> to <G.toClose,C.monitor,T.leave> with probability :
0.0

62. <G.closed,C.monitor,T.toCross> to <G.closed,C.monitor,T.leave> with probability :
(6)30 <G.closed,C.monitor,T.toCross> to <G.toClose,C.deactivate, T.idle> with probability :
24? <G.closed,C.monitor,T.toCross> to <G.closed,C.deactivate,T.idle> with probability :
250 <G.closed,C.monitor, T.toCross> to <G.toOpen,C.idle,T.idle> with probability : 0.0
66. <G.toClose,C.monitor,T.cross> to <G.opened,C.idle,T.idle> with probability : 0.0

67. <G.toClose,C.monitor,T.cross> to <G.opened,C.activate,T.toCross> with probability :
0.0

68. <G.toClose,C.monitor,T.cross> to <G.toClose,C.monitor,T.toCross> with
probability : 0.0

69. <G.toClose,C.monitor,T.cross> to <G.opened,C.activate,T.cross> with probability :
0.0

70. <G.toClose,C.monitor, T.cross> to <G.closed,C.monitor,T.toCross> with probability :
0.0

71. <G.toClose,C.monitor, T.cross> to <G.toClose,C.monitor,T.cross> with probability :
0.0

72. <G.toClose,C.monitor,T.cross> to <G.opened,C.activate, T.leave> with probability :
0.0

89

73. <G.toClose,C.monitor,T.cross> to <G.closed,C.monitor,T.cross> with probability :
(7)45 <G.toClose,C.monitor, T.cross> to <G.toClose,C.monitor,T.leave> with probability :
E/)55 <G.toClose,C.monitor, T.cross> to <G.closed,C.monitor,T.leave> with probability :
260 <G.toClose,C.monitor,T.cross> to <G.toClose,C.deactivate,T.idle> with probability :
E/)70 <G.toClose,C.monitor, T.cross> to <G.closed,C.deactivate,T.idle> with probability :
280 <G.toClose,C.monitor,T.cross> to <G.toOpen,C.idle,T.idle> with probability : 0.0

79. <G.opened,C.activate,T.leave> to <G.opened,C.idle,T.idle> with probability : 0.0

80. <G.opened,C.activate, T .leave> to <G.opened,C.activate,T.toCross> with probability :
glo <G.opened,C.activate,T.leave> to <G.toClose,C.monitor,T.toCross> with probability :
220 <G.opened,C.activate,T.leave> to <G.opened,C.activate,T.cross> with probability :
230 <G.opened,C.activate,T.leave> to <G.closed,C.monitor,T.toCross> with probability :
gf <G.opened,C.activate,T.leave> to <G.toClose,C.monitor,T.cross> with probability :
gSO <G.opened,C.activate,T.leave> to <G.opened,C.activate,T.leave> with probability :
260 <G.opened,C.activate,T.leave> to <G.closed,C.monitor,T.cross> with probability :
270 <G.opened,C.activate,T.leave> to <G.toClose,C.monitor,T.leave> with probability :
éé) <G.opened,C.activate,T.leave> to <G.closed,C.monitor,T.leave> with probability :
290 <G.opened,C.activate,T.leave> to <G.toClose,C.deactivate,T.idle> with probability :
8(? <G.opened,C.activate,T.leave> to <G.closed,C.deactivate,T.idle> with probability :
(9)10 <G.opened,C.activate,T leave> to <G.toOpen,C.idle,T.idle> with probability : 0.0

92. <G.closed,C.monitor,T.cross> to <G.opened,C.idle,T.idle> with probability : 0.0

93. <G.closed,C.monitor,T.cross> to <G.opened,C.activate,T.toCross> with probability :
gé? <G.closed,C.monitor, T.cross> to <G.toClose,C.monitor,T.toCross> with probability :
850 <G.closed,C.monitor,T.cross> to <G.opened,C.activate, T.cross> with probability :
(9)60 <G.closed,C.monitor,T.cross> to <G.closed,C.monitor,T.toCross> with probability :
0.0

97. <G.closed,C.monitor,T.cross> to <G.toClose,C.monitor,T.cross> with probability :
0.0

90

98. <G.closed,C.monitor,T.cross> to <G.opened,C.activate,T.leave> with probability :
0.0

99. <G.closed,C.monitor, T.cross> to <G.closed,C.monitor,T.cross> with probability : 0.0
100. <G.closed,C.monitor,T.cross> to <G.toClose,C.monitor,T.leave> with probability :
0.0

101. <G.closed,C.monitor,T.cross> to <G.closed,C.monitor,T.leave> with probability :
1.0

102. <G.closed,C.monitor, T.cross> to <G.toClose,C.deactivate,T.idle> with probability :
0.0

103. <G.closed,C.monitor,T.cross> to <G.closed,C.deactivate,T.idle> with probability :
0.0

104. <G.closed,C.monitor, T.cross> to <G.toOpen,C.idle,T.idle> with probability : 0.0
105. <G.toClose,C.monitor,T.leave> to <G.opened,C.idle,T.idle> with probability : 0.0
106. <G.toClose,C.monitor,T.leave> to <G.opened,C.activate,T.toCross> with
probability : 0.0

107. <G.toClose,C.monitor,T.leave> to <G.toClose,C.monitor,T.toCross> with
probability : 0.0

108. <G.toClose,C.monitor,T.leave> to <G.opened,C.activate,T.cross> with probability :
0.0

109. <G.toClose,C.monitor,T.leave> to <G.closed,C.monitor,T.toCross> with
probability : 0.0

110. <G.toClose,C.monitor,T.leave> to <G.toClose,C.monitor,T.cross> with probability :
0.0

111. <G.toClose,C.monitor,T.leave> to <G.opened,C.activate,T.leave> with probability :
0.0

112. <G.toClose,C.monitor,T.leave> to <G.closed,C.monitor,T.cross> with probability :
0.0

113. <G.toClose,C.monitor,T.leave> to <G.toClose,C.monitor,T.leave> with probability :
0.3333333333333333

114. <G.toClose,C.monitor,T.leave> to <G.closed,C.monitor,T.leave> with probability :
0.5

115. <G.toClose,C.monitor,T.leave> to <G.toClose,C.deactivate,T.idle> with probability :
0.16666666666666666

116. <G.toClose,C.monitor, T .leave> to <G.closed,C.deactivate,T.idle> with probability :
0.0

117. <G.toClose,C.monitor,T.leave> to <G.toOpen,C.idle,T.idle> with probability : 0.0
118. <G.closed,C.monitor,T.leave> to <G.opened,C.idle,T.idle> with probability : 0.0
119. <G.closed,C.monitor, T .leave> to <G.opened,C.activate,T.toCross> with probability :
0.0

120. <G.closed,C.monitor,T.leave> to <G.toClose,C.monitor,T.toCross> with
probability : 0.0

121. <G.closed,C.monitor,T .leave> to <G.opened,C.activate,T.cross> with probability :
0.0

122. <G.closed,C.monitor,T.leave> to <G.closed,C.monitor,T.toCross> with probability :
0.0

91

123. <G.closed,C.monitor, T .leave> to <G.toClose,C.monitor,T.cross> with probability :
0.0

124, <G.closed,C.monitor,T .leave> to <G.opened,C.activate,T.leave> with probability :
0.0

125. <G.closed,C.monitor,T.leave> to <G.closed,C.monitor,T.cross> with probability :
0.0

126. <G.closed,C.monitor,T.leave> to <G.toClose,C.monitor,T.leave> with probability :
0.0 _

127. <G.closed,C.monitor,T.leave> to <G.closed,C.monitor,T.leave> with probability :
0.0

128. <G.closed,C.monitor, T leave> to <G.toClose,C.deactivate,T.idle> with probability :
0.0

129. <G.closed,C.monitor,T.leave> to <G.closed,C.deactivate,T.idle> with probability :
1.0

130. <G.closed,C.monitor, T.leave> to <G.toOpen,C.idle,T.idle> with probability : 0.0
131. <G.toClose,C.deactivate,T.idle> to <G.opened,C.idle, T .idle> with probability : 0.0
132. <G.toClose,C.deactivate,T.idle> to <G.opened,C.activate,T.toCross> with
probability : 0.0

133. <G.toClose,C.deactivate,T.idle> to <G.toClose,C.monitor,T.toCross> with
probability : 0.0

134. <G.toClose,C.deactivate,T.idle> to <G.opened,C.activate,T.cross> with probability :
0.0

135. <G.toClose,C.deactivate,T.idle> to <G.closed,C.monitor,T.toCross> with
probability : 0.0

136. <G.toClose,C.deactivate,T.idle> to <G.toClose,C.monitor,T.cross> with probability :
0.0

137. <G.toClose,C.deactivate,T.idle> to <G.opened,C.activate, T.leave> with probability :
0.0

138. <G.toClose,C.deactivate,T.idle> to <G.closed,C.monitor,T.cross> with probability :
0.0

139. <G.toClose,C.deactivate,T.idle> to <G.toClose,C.monitor,T.leave> with probability :
0.0

140. <G.toClose,C.deactivate,T.idle> to <G.closed,C.monitor,T.leave> with probability :
0.0

141. <G.toClose,C.deactivate,T.idle> to <G.toClose,C.deactivate, T.idle> with
probability : 0.0

142. <G.toClose,C.deactivate, T.idle> to <G.closed,C.deactivate, T.idle> with probability :
1.0

143. <G.toClose,C.deactivate,T.idle> to <G.toOpen,C.idle,T.idle> with probability : 0.0
144. <G.closed,C.deactivate,T.idle> to <G.opened,C.idle,T.idle> with probability : 0.0
145. <G.closed,C.deactivate,T.idle> to <G.opened,C.activate,T.toCross> with
probability : 0.0

146. <G.closed,C.deactivate,T.idle> to <G.toClose,C.monitor,T.toCross> with
probability : 0.0

147. <G.closed,C.deactivate,T.idle> to <G.opened,C.activate,T.cross> with probability :
0.0

92

148. <G.closed,C.deactivate,T.idle> to <G.closed,C.monitor,T.toCross> with probability :
0.0

149. <G.closed,C.deactivate,T.idle> to <G.toClose,C.monitor,T.cross> with probability :
0.0

150. <G.closed,C.deactivate,T.idle> to <G.opened,C.activate,T.leave> with probability :
0.0

151. <G.closed,C.deactivate,T.idle> to <G.closed,C.monitor,T.cross> with probability :
0.0

152. <G.closed,C.deactivate,T.idle> to <G.toClose,C.monitor,T.leave> with probability :
0.0

153. <G.closed,C.deactivate,T.idle> to <G.closed,C.monitor,T.leave> with probability :
0.0

154. <G.closed,C.deactivate,T.idle> to <G.toClose,C.deactivate, T.idle> with probability :
0.0

155. <G.closed,C.deactivate,T.idle> to <G.closed,C.deactivate,T.idle> with probability :
0.0

156. <G.closed,C.deactivate,T.idle> to <G.toOpen,C.idle, T .idle> with probability : 1.0
157. <G.toOpen,C.idle,T.idle> to <G.opened,C.idle,T.idle> with probability : 1.0

158. <G.toOpen,C.idle,T.idle> to <G.opened,C.activate,T.toCross> with probability : 0.0
159. <G.toOpen,C.idle,T.idle> to <G.toClose,C.monitor, T.toCross> with probability : 0.0
160. <G.toOpen,C.idle,T.idle> to <G.opened,C.activate, T.cross> with probability : 0.0
161. <G.toOpen,C.idle,T.idle> to <G.closed,C.monitor,T.toCross> with probability : 0.0
162. <G.toOpen,C.idle,T.idle> to <G.toClose,C.monitor, T.cross> with probability : 0.0
163. <G.toOpen,C.idle,T idle> to <G.opened,C.activate,T.leave> with probability : 0.0
164. <G.toOpen,C.idle,T.idle> to <G.closed,C.monitor,T.cross> with probability : 0.0
165. <G.toOpen,C.idle,T.idle> to <G.toClose,C.monitor,T.leave> with probability : 0.0
166. <G.toOpen,C.idle,T.idle> to <G.closed,C.monitor,T.leave> with probability : 0.0
167. <G.toOpen,C.idle,T.idle> to <G.toClose,C.deactivate, T.idle> with probability : 0.0
168. <G.toOpen,C.idle,T idle> to <G.closed,C.deactivate, T.idle> with probability : 0.0
169. <G.toOpen,C.idle,T.idle> to <G.toOpen,C.idle,T.idle> with probability : 0.0

G.opened,C.idle,T.idle G.opened,C.activate, T.toCross
G.toClose,C.monitor,T.toCross G.opened,C.activate,T.cross
G.closed,C.monitor, T.toCross G.toClose,C.monitor, T.cross
G.opened,C.activate,T.leave G.closed,C.monitor,T.cross
G.toClose,C.monitor, T .leave G.closed,C.monitor,T.leave
G.toClose,C.deactivate, T.idle G.closed,C.deactivate, T .idle
G.toOpen,C.idle,T.idle

G.opened,C.idle,T.idle 0.0/1.0 1.0/1.0
0.0/1.0 0.0/1.0 0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0 0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0 0.0/1.0
G.opened,C.activate,T.toCross 0.0/8.0 4.0/16.0
4.0/16.0 4.0/8.0 0.0/8.0 0.0/8.0
0.0/8.0 0.0/8.0 0.0/8.0 0.0/8.0
0.0/8.0 0.0/8.0 0.0/8.0

93

G.toClose,C.monitor, T.toCross

54.0/216.0 0.0/24.0
0.0/24.0 0.0/24.0
0.0/24.0 0.0/24.0
G.opened,C.activate,T.cross
0.0/3.0 0.0/3.0
2.0/3.0 0.0/3.0
0.0/3.0 0.0/3.0
G.closed,C.monitor,T.toCross
0.0/1.0 0.0/1.0
0.0/1.0 1.0/1.0
0.0/1.0 0.0/1.0
G.toClose,C.monitor, T.cross
0.0/2.0 0.0/2.0
0.0/2.0 1.0/2.0
0.0/2.0 0.0/2.0
G.opened,C.activate,T.leave
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
G.closed,C.monitor, T.cross
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
G.toClose,C.monitor, T .leave
0.0/54.0 0.0/54.0
0.0/54.0 0.0/54.0
27.0/162.0 0.0/54.0
G.closed,C.monitor, T .leave
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
0.0/1.0 3.0/3.0
G.toClose,C.deactivate, T.idle
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
0.0/1.0 1.0/1.0
G.closed,C.deactivate,T.idle
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
G.toOpen,C.idle,T.idle
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0
0.0/1.0 0.0/1.0

----- steady vector---
0.11410459587955626

94

0.0/24.0

9.0/24.0

0.0/24.0
0.0/24.0
0.0/3.0
0.0/3.0
0.0/3.0
0.0/3.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/2.0
0.0/2.0
1.0/2.0
0.0/2.0
0.0/1.0
0.0/1.0
2.0/2.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/54.0
0.0/54.0
162.0/486.0
0.0/54.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0
1.0/1.0
1.0/1.0
0.0/1.0
0.0/1.0
0.0/1.0

0.0/24.0
9.0/24.0
0.0/24.0

0.0/3.0
2.0/6.0
0.0/3.0

0.0/1.0
0.0/1.0
0.0/1.0

0.0/2.0
0.0/2.0
0.0/2.0

0.0/1.0
0.0/1.0
0.0/1.0

0.0/1.0
0.0/1.0
1.0/1.0

0.0/54.0
0.0/54.0
27.0/54.0

0.0/1.0
0.0/1.0
0.0/1.0

0.0/1.0
0.0/1.0
0.0/1.0

0.0/1.0
0.0/1.0
0.0/1.0

0.0/1.0
0.0/1.0
0.0/1.0

0.1521394611727417
0.050713153724247256
0.07606973058637087
0.019017432646592704
0.04437400950871637
0.050713153724247256
0.04120443740095084
0.10935023771790811
0.09587955625990487
0.01822503961965134
0.1141045958795562
0.11410459587955625

......... the entropy value is 0.5811732270874608
.................. The Reliability of the Sub-System is 0.09809641607874897

95

