INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600






Central Limit Theorem
for some

Classes of Dynamical Systems

Mohammad Mahbubur Rahman

A Thesis
in
The Department
of

Mathematics and Statistics

Presented in Partially Fulfilment of the Requirements
for the Degree of Master of Science at
Concordia University

Montreal, Quebec, Canada

February, 1997

© Mohammad Mahbubur Rahman, 1997

i



B |

FNCALIWE WA IR Y

IR ISR Plr g i e § TRAM T TS

of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre rdigrence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protege cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-25986-2



Abstract

Central Limit Theorem for some classes

of Dynamical Systems

Mohammad Mahbubur Rahman

We consider a transformation T' of the unit interval [0,1] into itself
which is piecewise C2 and expanding. Using the spectral decomposition of
the Frobenius-Perron operator of T, we give a proof of the Central Limit

Theorem for
1 n—1 )
(;) Y foTi,

i=0

where f is a function of bounded variation. It is also shown that the speed

of covergence in the Central Limit Theorem is of the order 71;
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Chapter 1

Introduction

1.1 Aim of the Thesis

This thesis is a study of limit theorems for piecewise expanding transformation.
The study is motivated by the importance of the limit theorems in the present
day nonlinear dynamical systems. In many practical problems, we would like to

know how fast these limit theorems converge.



1.2 Outline of the Thesis

For a class of expanding transformations of the unit interval [0, 1] into itself,
we will prove the Central Limit Theorem for the process (f o T"),.n , Where f is
a real-valued function of bounded variation. We will also prove that the speed of
convergence in the Central Limit Theorem is of order 1//n.

It has been proven by Lasota and Yorke (1973) that if T : [0,1] — [0,1]
is piecewise C? transformation with inf z€[0,1] l T | > 1, then there exist a T-
invariant measure yx which is absolutely continuous and has density h of bounded
variation. Wong [13] has proven that, if (T, ) is weakly mixing then for some

positive o and for any fixed z € R,

n%“{(;\]}—_n) (:z;;fOTk —n,u(f)) < z} = #/_mexp (—u2/2) du.
where f is a function of bounded variation.

For the class of T”s considered in Lasota and Yorke [10], the spectral decom-
position of Frobenius-Perron operator ® can be found in Keller [7], from which a
Central Limit Theorem for stationary process f o T on ([0, 1], 1) is deduced, if
u is weak mixing.

In Chapter 2 we give the preliminary definitions, notations and results from



functional analysis and probability theory relevant to this work.

In Chapter 3, we will introduce operator Py (if) and we will study the spectrum
of P (i0) for the values of 8 in the neighborhood of 0. The basic result of this
chapter is due to Rellich ( see [2] ), who described how the isolated point spectrum
of an operator varies when this operator depends analytically on a parameter.

In Chapter 4, we will prove a version of functional Central Limit Theorem for

transformation 7" and estimate the speed of convergence.



Chapter 2
Background Material in Functional

Analysis and Probability Theory

In this chapter we will briefly review some well-known notions of functional
analysis and probability theory. We have selected only the concepts that we will
need in the following Chapters.

2.1 Measure space and Integration

Definition 2.1.1 Let X be a set. A o—algebra of subsets of X is a collection
Y of subsets of X satisfying:

1) X €y

NAer=>X\Aey;

and

NA, €. n=0,1,..=U2,4, €T

Definition 2.1.2 A real valued function m on a o—algebra }_ is a measure if:

1) m (@) =0

2)m(A)>0forall Ac Y ;

and

3) m (U2 o4,) = X2 om (Ayn) if {An} is a finite or infinite sequence of pairwise
disjoint sets from 3, that is A; N A; = @ for i # j.

4



Definition 2.1.3 If }" is a o—algebra of subsets of X and if m is a measure
on Y, then the triple (X, X", m) is called a measure space. The sets that belong
to 3~ are called measurable sets.

Definition 2.1.4 A measure (X, ,m) is called finite if m(X) < oco. In
particular, if m (X) = 1, then the measure space is said to be normalized or
probabilistic.

Definition 2.1.5 Let (X, 3", m) be a measure space. A real-valued function
f: X — R is measurable if f~!(I) € ¥ for every interval [ C R.

Theorem 2.1.1 (Radon-Nikodym theorem) Let (X, >, m) be a measure space
and let v be a another finite measure on Y~ with the property that v (A) = 0 for all
A € ¥ such that m (A) = 0. Then there exists a non-negative integrable function
f : X — R such that

v(4) = [ f(@) m(da)

forall Ae Y.

Proposition 2.1.1 If f; and f, are integrable functions such that

/A fi (z) m (dz) = /A 2 (z) m(dz)

forall A € ¥, then fi = f; a.e.(almost everywhere, i.e., m ({z : fi (z) # f2 (=)} =0)).



Let (X,3,m) be a measure space and let L' (X, Y ,m) be the space of inte-
grable functions on (X, ¥, m). For simplicity of notation we will use L}, instead
of LMX,¥,m).

Corollary 2.1.1 If (X,Y,m) is a measure space and v is a second finite
measure on Y such that v (A) = 0 whenever m (A) = 0, then there exists a

unique element f € L}, such that
v(4) = [ f(2) m(dz)

forall A e .
Definition 2.1.5 Let f be a function defined on [0,1]. The support of a

function f is

Suppf = cl{z: f(z) # 0},

where cls(A) denotes the closure of a set A.
Definition 2.1.6 Let (X, Y, m) be a measure space and let the set D (X, >, m)

be defined by

D(X,3,m)={feLL:f>0and |fl, =1, where ||f||, denotes the L, norm }.

6



Any function f € D (X, Y, m) is called a density.

Definition 2.1.7 If f € L}, and f > 0, then the measure

my(4) = [ f(2) m(da)

is said to be absolutely continuous with respect to m and f is called the Radon-
Nikodym derivative of m; with respect to m. In the special case when f €
D (X,3,m), we also say that f is the density of m; and that my is the nor-

malized measure.

Definition 2.1.8 Let (X, 3", m) be a measure space. A transformation T:X —

X is measurable if T} (A) € Y forall A€ Y.

Definition 2.1.9 A measurable transformation T : X — X on a measure

space (X, Y., m) is non-singular if
m (T~ (A)) =0

for all A € ¥ such that m (A) =0.
2.2 Frobenius-Perron operator

Consider a non-singular transformation T : X — X on a measure space



(X.X,m). We define ® : L}, — L! in two steps:

1. Let f € L, and f > 0. Consider

/’;'“(A) f(z) m(dz). (2.2.1)

Since
T~HU:A) = UT (A,

it follows from the property of Lebesgue integral that the integral (2.2.1) defines
a finite measure. Thus, by Corollary 2.1.1, there exists a unique element in L} ,

which we denote by @ f, such that
[,2f @ m) = [ f@) m)

forany A€ Y.
2. Now let f € L}, be arbitrary, that is, not necessarily non-negative. Write
f=ft—f", where f* =max (0, f) and f~ = (0, —f), and define
Of=oft —-of.

Then



Ja®f (z) m (dz) = fT-l(A) 7 (z) m (dz) —fT-l(A) [~ (z) m(dz),

that is

[ 2@ m)= [ | @) ma), (2.22)

for any A € 3. Then from Proposition 2.1.1 and the non-singularity of T, it
follows that equation (2.2.2) uniquely defines &.

Definition 2.2.1 Let (X, ,m) be a measure space. If T : X — X is a
non-singular transformation, the unique operator ¢ : L} — L! defined by the
equation (2.2.2) is called the Frobenius-Perron operator corresponding to 7T

It is straightforward to show from (2.2.2) that & has the following properties:

FP1) @ (af1 + Bf2) = a®f1 + 5D f;

for all fi,fo € LL,,,8 € R. Thus, ® is a linear operator;
FP2) ®f > 01if f > 0;
FP3) [ ®f () m (dz) = [y fm(dz), f € LL;

m?

FP4) If T" =T o---oT then ®7~ = &%, where ®r is the is the F-P operator
corresponding to 7.

Let us consider the transformation T on [0, 1], which is differentiable and

invertible. Then T must be monotone. Suppose T is an increasing function and



T-! has a continuous derivative. Then
T (fa,2]) = [T7' (@) . T (a)]

and we have

2f(x) = = [T f(a)as

dz JT-1(a)

= f(T@) [T @),

If T is decreasing, then the sign of right hand side is reversed. Thus, in the general

one-dimensional case, for T which is differentiable and invertible with continuous

daT—!
dz ’

&/ (z)= £ (T () = |[T7 @]

Example Let

—2z+1 if 0<z<

|

T(z)=
2z —1 if

10



For any interval [0,z] C [0, 1], we have

e = 4 ub 5]

-~ 4

Then

(@7 f) (z)

/—f:c+——/ F e
(5934
-3 ()

Theorem 2.2.1 Let T |;,€ C' [a;_,,qa;] (first derivative of T exists and continuous)

+ )

[SY)

be monotone, j =1,2,...,n, where 0 = ag < a, < --- < a, < 1. Then we have
®f (z) =) f (o) ¢ () x, ()
J

where o; is the inverse of T over .J; = T (I;); ¢; (z) = la; (:z:)' ; X; is the indicator

function of Jj.

11



Proof: Let 4; (z) = o; ([0,z]) N [;. Then

a;(x)
Aj(:) f(S) ds = iL,—(O) f(S) X1; (s) ds. (2.23)

We want [ 4,(z) f>0when f >0.T | 1; is monotone, o; is monotone and T |

and o; are either both increasing or both decreasing. Therefore

1

Gj(x) — 0’; (y)
o5 @) | @)

for all z,y € [0,1]. We use this to set the sign in (2.2.3), thus

(0 do= 12 L f ), (9) ds.

A;(2) 7 (x)| (0
This implies
2L f(s)ds = 7; (2) 4 aj(z)f(s) (s)ds
dz Ja;() B IO';. (:L')Idl' ;(0) X5,
= 58 ¢ o2)x, (05 () 7 (2)
o7 ()]



7 )|
o5 ()
f(o52) ¥; () X1, (05 (7)) -

flojz) xi; (0; ()

Note that
x; (i) = leozel;
& zeT (IJ) = .]j
< XJ = 1.
Therefore

xy; () = xu, (o57) ,

and we have

— [ f(s)ds=3_ f(a;z) ¥;(z) xy, ().
J

dl’ A,(z)
For

T= ZT |.r, X1;s

=1
o ([0,2]) = Ui 4; (),
where Ajs are disjoint since [ is are disjoint. Thus

13



d
°f(2) = [ Fls)ds

d n
= E;}/;j(x)f(s) ds
= Y f(o2) v @) x, ().

2.3 Functions of bounded variations:

In this section, we will briefly discuss some properties of an important class of
functions: functions of bounded variation, which are intimately connected with
monotonic functions.

Let the function f (z) be defined and finite on the interval I = [a, 6] . Subdivide
[a, b] into subintervals by means of points @ = 1, < --- < z,, = b and consider the

sum

n

sn (f) =D _If (zk) — f(zk=1)] -

k=1

We define the variation of f by

V (f) = supsa (f),

where the supremum is taken over all finite partitions of I. If f € L. then we

14



define V' (f) as the

inf{V(g9):9=fae}.

Some properties of functions of bounded variations on I:

BV 1) If fy, - -+, fn are of bounded variations on I, then

Vit ot -+ f) V() +V(R)+- -+ V(fa)-

BV 2)Ifg:|a,8] = I and f:I — R. then

V(feg) <V (f).

BV 3) If f is of bounded variation on I = [a,b] and g is C' on [a, b], then

V(fe) < Guplah V() + [ |f @) (2)]dz.

BV 4) If f is a function of bounded variation on I and [a,b] C I then

V (Fxesr) S2V () + 7 [ 1f @)l da.

15



Proof of BV 4) Without loss of generality, assume that the partitions of the

interval [0, 1] will always contain the points a and b. Then

5w (FXtea1) < 50 (F) + 1 @] + I (8)] (2.3.1)

Let c be an arbitrary point in [a,b]. Then from (2.3.1),

sn (Fxtn) S sa()+1F (@) = f (@ +1f () = £ ()] +21f (<)

< 2V (f)+2(f ().
It is always possible to choose the point ¢ such that

£ < = [ 1f (@) dz

so that

sn (FXest) <2V (N + o [ 1f @)l

which gives

V (fxien) <2V (D + = [ 1f (@)l da.

16



2.4 Invariant Measures, Measure Preserving Transformation, Er-
godicity
Definition 2.4.1 Let (X, 3", 1) be a measure space and T : X — X a mea-

surable transformation. Then T is said to be measure preserving if
p(T7(A) = p(4)

forall Ae Y.

Since the property of being measure preserving is dependent on T as well as p,
we will alternatively say that the measure u is invariant under T if T is measure
preserving. Note that every measure preserving transformation is necessarily non-
singular with respect to its invariant measure.

Theorem 2.4.1 Let (X,Y_, m) be a measure space, let T be a non-singular
transformation, and let ® be the Frobenius-Perron operator associated with T.

Consider a non-negative f € L! . Then a measure u given by

y(A)=/Af(x) m(dz) forall A 3

is T-invariant if and only if f is a fixed point of ®.

17



Proof. Assume p is T-invariant. Then by the definition of invariant measure,

p(A)=u(T7(4),

forall Ae 3, or

[ @ m@a)= [ f@) m ), (24.1)

for A € 3. However by the definition of F-P operator, we have

/A &f (z)m (dz) = / f(z)m (dz), (2.4.2)

T-1(4)

for A € 3. Comparing (2.4.1) and (2.4.2) we have by Proposition 2.1.1
®f = f. m-ae.

Conversely, if ®f = f for some f € L., f > 0, then the definition of the F-P
operator implies equation (2.4.1) and thus g is T-invariant.
a

Example 2.4.1 Let (X, 3, m) be a probability space, where X = [0,1],Y is

18



Borel o-algebra, and m is Lebesgue measure. Let T : X — X be a map defined
by T (z) = rz(mod 1), where r > 2 is an integer. Then T is measure preserving.
For any interval [a, b] C [0, 1],

T-l [a" b] = Ui=0 r ? r

1 [i+a i+b]

Thus, we get

m(rteal) = m(m [22 )
=1 [i-{-a z’+b]

= ;m ror
r—lb_a
= >

=0

T

= mla,b.

Definition 2.4.2 A transformation 7 is said to be ergodic if there exists no
non-trivial subset of A which is invariant under T". More precisely, T is ergodic if
for all A € 3 for which T-! (4) = A, u(A) =0 or u(X\A4) =0.

As an example let us consider the rotation F' on the unit circle S!, where
F(z) =z 46 and 6 € [0, 27] is constant. Obviously the measure induced by the

arc length is invariant under F. Depending on whether 6 is rational or irrational,

19



F' is not ergodic or ergodic respectively.
Definition 2.4.3 A transformation T is called mixing if

lim 4 (ANT™"(B)) = u(A)p(B),

n—oo

forall A, Bey .

Roughly speaking, this condition means that if one starts with a set A of
initials conditions, then after many iterations the fraction of solutions points lying
in some (arbitrary given) set B equals the product of the measure of the sets A
and B. Mixing is loosely called irregular or chaotic behavior.

Definition 2.4.4 A transformation T is called weakly mixing if

k-1
lim 3 |4 (ANT"(B)) — u(4) u(B)| =0

k—oo k =0

forall A, Bey.
Note: T is weak mixing = T is ergodic.
2.5 Piecewise Monotonic Mapping
Definition 2.5.1 A transformation T : [0, 1] — R will be called piecewise C?

(second derivative of T exists and continuous) if there is partition of [0,1],P =

20



{(0.a1),---,(ar-1.1)} where (aj_;,a;) is an open interval, such that, for each
O<ay<..<a1 <Ll t=12,---.7T;, =T |@;_,., can be extended to the
closed interval [a;_;,a;] as a C? function. T need not be continuous at the point
a;.

Theorem 2.5.1 Let T : [0,1] — [0, 1] be a piecewise C? transformation such
that inf IT | > L. Then for any f € L}, the sequence

1 k-1
Sy

n=0

is convergent in L}, —norm to a function h; € L} . The limit function has the
following properties:

1) f20=hy >0;

2) Jo hydm = [ fdm;

3) &rhs = hy and consequently the measure du = hy dm is T-invariant.

4) The function hy is of bounded variation, moreover, there exists a constant
C independent of choice of initial f such that the variation of the limiting function

h; satisfies the inequality

V (h) < CIIfYl, - (2.5.1)

Proof. See Lasota and Yorke [10] .

21



Now we will give definition and some properties of T' that we will use in
Chapter 3. We will consider a transformation T : I — I, where I = [0,1]. Let m
be the Lebesgue measure and L}, the space of integrable functions. Consider a
finite or countable sequence {a;} of points in I and let [; = (a;_;,a;) . We assume
that

(1) T |y, is strictly monotone and can be extended on I;, where [; = (a;-1,a;)
as a C? function;

(2) {T (I;)} is composed of finite number of disjoint intervals;

(3) There exists an n > 1 such that
7= Mf[(T") (z)] > 1

Condition (1) allows the existence of local inverse of T and condition (3 ) means
that T is expanding. F-P operator associated with T is equal to the operator

o: L

— L. defined by

1 1
/ <I>f-gdm=/ f-goT dm
0 0
where fe L}, g€ LY.

22



This operator is a positive contraction and we have ¢ f = f & measure u =

fm is invariant under T. Hypothesis (1) of T gives us an explicit form of & :

of (z) = Zf(ojz) ¥; () x; (z),

where o; is the inverse of T over J; =T (I;) ;¢; (z) = la; (a:)l ; X; 1s the indicator
function J;.

2.6 Banach space and spectral theory

In this section we will give some standard results of analysis which can be
found in any standard book of Functional Analysis (see [ 2] ).

Definition 2.6.1 A norm on a linear space X is a function ||-|| : X — R;z —
||z|| satisfying the following properties for all z, y € X and a € R or C:

Lfjz[l = 0;

2|zl =0 <=z =0:

3.llazl = laf ll=l;

dllz +yll < ll=ll + llyll-

The pair (X, ||.||) is then called a normed linear space.

A normed linear space (X, ||.||) is a metric space if one defines the metric p(z,y)

= ||z — y||. Thus the notions of convergent sequences and Cauchy sequences are

23



naturally carried over to (X, |.||) -

Definition 2.6.2 A sequence (z,) in a normed linear space X is said to
converge to an element z € X given an € > 0, there is an N such that ||z, — z|| <
e,¥n > N.

We write z,, — z or lim,, .., z, = z.

Definition 2.6.3 A sequence (z,) in a normed linear space X is called Cauchy
sequences, if for any given £ > 0, there is an N such that satisfies the condition
lzn — zZml|| <&, Vm,n> N.

Definition 2.6.4 A normed linear space X is called complete if every Cauchy
sequence (z,) in X is convergent, i.e., for every Cauchy sequence (z,) in X, there
is an element = € X such that z,, — z.

Definition 2.6.5 A subset A of a Banach space is called relatively compact
if its closure K is compact.

Definition 2.6.6 Let K and L be Banach spaces. An operator ® : K — L
is called a compact linear operator if ® is linear and if for every bounded subset
K' of K, the image & (K’ ) is relatively compact, that is, the closure WK_') is
compact.

From now on, we will consider bounded linear operator ® in a Banach space

K. We exclude the trivial case K = {0} .

24



Definition 2.6.7 The resolvent set r (®) of & is the set of complex numbers
z, for which (zId — ®)™! exists (where Id denotes the identity operator on K )
and is bounded on K. The spectrum o (®) of ®, is the complement of r (®) . The
function R (z) = (zf — )", defined on r (®), is called the resolvent function of
o.

Lemma 2.6.1 The resolvent set r (®) is open and the resolvent function R (z)
is analytic in r ($).

Corollary 2.6.1 If d (=) is the distance from z to the spectrum o (®), then
IR (2)ll = z&55- Thus R (z) — oo as d(z) — 0, and the resolvent set is the natural
domain of analyticity of R (z).

Definition 2.6.8 The spectral radius p (®) of a bounded operator ¢ is the

radius

p(®) = sup |z| = lim {2

zEo (P}
of the smallest closed disc centered at the origin of complex z-plane and containing
o (P).

Theorem 2.6.1 Let ®,P; be two bounded operators from K to L, z be in

25



r(®) and [[® — &,|| < |R(2)|™". Then z is in r (®;) and

o0

Ri(2)=R(2) X (2 — ) R()",

n=0

where R, (z) is the resolvent of ®,.

2.7 Some Properties of Characteristic functions

In this section we will briefly review some results of characteristic functions
which, we will need later, can be found in any standard book of Probability Theory
(see [4] ).

Let X = I be the unit interval, 3~ = B, the Borel o-algebra and m be the
Lebesgue measure. Then (X, ,m) is a probability space. A random variable f
on the probability space (X, Y, m) is a Borel measurable function f : X — R and
[ is said to be extended random variable iff f is a Borel measurable function from
X to R . If f is a measurable function on (X,3,m), the probability measure

induced by f is the measure m; on Y given by

mys(B) =m{z: f (z) € B},

B € ¥ . The distribution function of a measurable function f, is the function F}



from R to [0, 1] given by

Fr(t)=m{z: f(z) S t},

t € R. Since, for a < b,

Fr(b)—Ff(a) = m{z:a< f(z) <b}

myg ((ar b]) :

An important tool in the study of the measurable functions or distribution
functions is the characteristic function. For any measurable function f with mea-
sure my and distribution function FY, the characteristic function is defined to be

h on R as follows, Vt € R,
h(t) = [ exp(itf () dm (3).

Vvt € R. The characteristic function has the following simple properties:

i)Vte R: |h(t)| £1=h(0);h(—t) =h(-t);
ii) A is uniformly continuous on R;

iii) If g = af + b, where a and b are constants, then the characteristic function

27



of f and g are connected by the equation hg (t) = hy (at) exp (ibt) ;

iv) If {h,, n > 1} are characteristic functions, &, > 0, 332, a, = 1, then
Yoo | anhy, is a characteristic function;

v) If {hn, 1 < j < n} are characteristic functions, then II}_,k; is a character-
istic function.

Characteristic functions are uniquely appropriate in the study of the measur-
able functions because of the following result.

Theorem 2.7.1 Let fi, fo,..., fn be the independent measurable functions,
and let S, = fi + fo + - - - + fn. Then the characteristic function of S, is the
product of the characteristic function of the f!s, where i =1,2,...,n.

Note: The above theorem allows us to compute the characteristic function of
S,, knowing only the measure of the individual f!s. In fact, if the characteristic
function is known the distribution is determined (see [2]).

We shall now give the following theorem that makes a one-to-one correspon-
dence between one dimensional distributions and characteristic functions. In the
following we will write Fy = F.

Theorem 2.7.2 Let A (t) and F () be the characteristic function and distri-

bution function of a measurable function f. If a and b are the continuity points
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of F , then

c —ita) — exp (—ith
F(b)— F(a) = 2% _cexp( ita) it XP (~#0) ) (1) d.

Theorem 2.7.3 (uniqueness) A distribution function is uniquely determined
by its characteristic function.

Note: The following theorem is an important consequence of the above theo-
rem.

Theorem 2.7.4 A necessary and sufficient condition for the convergence of a
sequences {F, (z)} of d.f.’s to a df. F (z) is that the sequence of corresponding
c.f.’s {hn (t)} converges for all values of ¢ to a function A (t), continuous at ¢ = 0.
The limit & (t) is then identical with the c.f.’s of F (z) and {F}, (t)} converges to
F (t) uniformly in every finite interval.

By virtue of the uniqueness theorem the values of the characteristic function

h(t) = [ exp(itf () dm (z) = [ exp(ite) dF (a)

for all ¢ determines the distribution function F'(z). It is natural to expect that

all other numerical characteristics of one dimensional distribution (distribution)
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function can be expressed in terms of its characteristic function. The most impor-
tant numerical characteristics of one dimensional distributions are its moments.

The first moment is given by

E(f)= [ fdm

is usually referred as expectation or mean. The second moment is given by

E(f-E(f)) =0

and is called the variance.

The connection between the characteristic function and the moments is given

by the following :
Lemma 2.7.1 If a measurable function. f has a moment of order k. then
its characteristic function h (¢) has continuous derivatives upto and including the

k-th order. Moreover

1]|a°
s=— |5=h(t =1,2,---,k).
T [dts ( )} t=0 e ' )

where a, denotes the moment of order s.
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Chapter 3
Frobenius-Perron Operator and its

Perturbations

In this chapter we will use the powerful Ionescu-Tulcea and Marinescu Theo-
rem discussed in [6] to obtain a useful spectral decomposition for the Frobenius-
Perron operator ¢.

3.1.0perator ¢ and its Spectrum

Here we will study the spectrum of &, where ® is an operator on a subspace
of L!. Let BV = {f € L, : V(f) < oo}, which is a linear subspace of L}, but
it is not closed with respect to norm ||-||,. We define for f € V, ||fllgy =
V(f)+ [Ifldm =V (f)+]fll,- It can be proved that [|-|| g, is 2 norm on BV
and (BV, ||| gy/) is a Banach space and BV is dense in (L}, {|-]|,)- The spectrum
of @ is described by the theorem of Tonescn-Tulcea and Marinescu ([6]) .

Theorem 3.1.1 Given BV and L. two complex Banach spaces BV C L, with

respective norms ||-|| g, and [|-||, . Suppose

(a) If fo € BV, f € L,limp oo || fn — fll, =0 and || fn]| £ M, for all n,
then f € BV and ||fllgy S M <

Let & be a bounded operator ® : BV — L with respect to ||-[| g, . Then, in
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addition, we assume that

(b) sup,>o {II®"fll, . f € BV, || fllgy <1} < ©
(c) 3 np,0 < @ <1 and B < oo such that
8% fllgv < allfllgy +BIIfl..Vf € K.

(d) If BV is a bounded set of (BV,|-|| g,-) then ®°BV" is relatively compact
in (L, {-[.)-

Then ¢ has only finite number of eigenvalues of modulus 1: A,,---. A, and the
corresponding eigen subspaces :

E;={feLl:®f=M\f},
1 =1,2,...,p are finite dimensional and contained in BV.

Operator ®™ may be written as:

p
" =S MG+ 0", n>1

=1

where ®; are projections onto the proper subspace E;, ||®;||, < 1and ¥: L} —
L}, such that sup,,, [|[¥"]|, < oo. Also &;®; = ®;®; = 0if i # j, ¥? = &;,
;¥ = UP; = 0. Finally ¥ (BV) C BV and ¥ has spectral radius p(¥) < 1 in
BV, |I-llav) -

Proposition 3.1.1 If the mapping T satisfies (1), (2) and (3) ( see page 22
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) then & satisfies hypothesis of Theorem 3.1.1.

Proof (a) It follows since for every C > 0 the set

{feLly:llfllgy <Ch

is relatively compact in L}..
(b) It follows since ||" ]|, = | (2"~' f)II, < |2*~"FIl, < IIfll,.

(c) Lasota and Yorke [10] has proved that for f € K, 3 ng such that

V(@™ f) <aV (f) +B8I7l,

where 0 < a < 1,0 < 8 < oo are independent of f. First of all if T satisfies (1)
and (2) then for all n, T satisfies (1) and (2) . Let f € BV and let us go back to
the proof of Lasota and Yorke [10]. Let us choose N such that vV > 2. Also let
S = TV satisfy (1) and (2). The F-P operator associated with S is ™V, which

is given by

o™V f (z) = E; f (052) 5 (z) x5 (2), [o; (2)] < v~V

We have,

V(&™) < TV ((foa)wixs)

J
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< SV (o) wy)

+ Z(|(f°0j) (Taj—1) ¥ (Taj—1)| +|(f o 0;) (Ta) ¥; (Ta;)i)

Now, let g = (f o g;) 9; be a function of bounded variation. Then we have

9 @) +19 )] < Vi (0) + (257 ) [ ol

Therefore,

V(e"Wf) <257V5, (f ooy ) + X (2/m (%) [ 1fldm.

Using (2), there exists a 6 > 0, § = min; m (.J;)such that

S @/m() [ Ifldm < (2/8)1£1,

and we have

Vi, (fooj)¥;) = /J | (f o 0;) ¥l
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IN

[, foasllidm+ [ wsla(soy)
< K[ 1foavydm+v [ 1d(Fooyl,

where K = (maxlw;- (:z:)l / min; (x)) .

The constant K is finite which is obvious when the partition associated with
T is finite where T is piecewise C2. When the partition is countable, condition
(2) allows us to come to the same result. Therefore by changing the variable we

have,

Vi, (foos) ) S K [ Ifldm+y~" [ laf].

Then we obtain,

V(2" f) < (2Y) V() + (K +2/8)IIfl,

Hence

v (ef) <av (£ +BIfl;,

where =K +2/§and aa =27V < 1.
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By definition,

[o~*fla = v (@™1) +[ee],

< (2)V D+ k+2/8) 1, + e,

< (27) Wfllay + R+ 2/8) £1L, + 1111,
(

2/ Ifllgy + (1 + k+2/8) || £,

and since vV > 2, the result follows.

(d) It follows from (a) and since || @ fl oy < ) 1fllgy+1 + k +2/8) |I£]l,-

O

3.2 Existence of Invariant Measure and the description of the oper-
ator P induced by T

Set h, = (1/n) Y_pZy @% (1), where 1 denotes here the constant function equal
everywhere to 1. Then A, > 0, since ® is a positive operator and [h,dm = 1
because of m (®f) = m (f). Using Theorem 3.1.1 and evaluating the geometric
series it follows that h, converges in L} . The limit function is invariant under
® and has integral 1. Thus 1 is the eigen-value of ®, say A\, = 1, and it follows
from Theorem 3.1.1, that h, converges to ®; (1) = h. Now we will assume T is

weakly mixing. Then p is T-invariant, which follows from the following equalities,
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because ®h = h :
p(foT)=m(h-(foT) =m(@(h-(foT))) =m(f-®h) =m (fh),

p(f) =m(fh).

Therefore ;1 = hm is a probability measure, which is invariant under T and A\; = 1,

is the eigenvalue of ®. Then 1 is the only eigen-value and T ergodic. Indeed,

P f = ZP:A:‘@if+\D"f
i=1
= ANe, f+ T f
= ()" @ f+¥"f

= B f +T"f

where &1 f =m (f) h
Notice that (T, n) is weakly mixing < (T™, ) is weakly mixing V n.
Example 3.2.1. The continuous fraction transformation (or Gauss transfor-

mation ): T : [0,1) — [0, 1) is given by

37



{%},x#O

0, z=0

T(z)=

where {}:} denotes the fractional part of 1. Then F-P operator is given by
® (&) = 3 F (1/ G+ /G + )
The condition (3) for n = 2 is given by:
inf}(:ﬂ)' (z)l - 2
Transformation T' possesses an invariant measure 4 ( see [10] ), that is,

p(E) = [ h()ds

where

1

h(z) = log2 (1+z)
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and

u(T7H(E)) = n(E).

Since v =9/4 > V2, (T, u) is weakly mixing ( see [1] ).

In the following we will assume that T satisfies (1), (2), and (3) ( see page 22
) and that (T, ) is weakly mixing. Now we will introduce a lemma which will
give a description P induced by T.

Proposition 3.2.1 The operator P, defined by
Pf=®(fh)/h

is the operator in BV and it is a positive contraction L}‘.

Proof Since ¢ is a positive contraction in L},

1Pfl, = [ 18(fh)ldm
< [ easih) am
— /Ollflhdm
= fll-
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Remark: As ®" (fh) =m (fh)h + ¥"(fh), we have
PP=pu+Q™*, Vn>1

where the spectral radius of Q in BV, p(Q) < 1
Proposition 3.2.2 The operator P, defined by Proposition 3.2.1 satisfies the

hypothesis of Theorem 3.1.1. In particular, there exists an ng such that

NP flle < allfligy +BIfIl,

where0 < a < 1,8 < oo and

3
1l = [ 1£1dn

Proof: (a) It follows since for every ¢ > 0 the set {f € L, : [|fll gy < c} is rela-
tively compact in L},.
(b) For 1/h € BV,

1
V(1/h) < 55V (),

where D > 0 and D < h(z) < 1/D ( see [8] ) and ® is a bounded operator on
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BV. Thus P is also a bounded operator on BV.

(c) Using the proof of Proposition 3.1.1 and || fg|| 5 < 2| fll gv llgll g~ We have

[P flp = & (o) /],
< 20|1/Allgy @ (FR)|,,
< (8/ 7N) 11/2ll gy Bl gy 1 By

+2[11/hll gy (K +2/6 + 1) || fll, .-

(d) It follows from (a) and (c).

3.3 Spectrum of P (if)

Now we introduce an operator Py (i6) . Suppose f € BV has real values and

8 € R. Define
Py (i6) (g) = P (exp(iff)g) -
Let
Sof = 0.
and
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n—1
Saf=) foT*n>1
k=0

Now we have the following lemma which will help us in the study of the char-
acteristic function of S, f ( see Chapter 4 ) through iteration. of Ps (i) and the
spectrum of Py (i6).

Lemma 3.3.1 For 6 € R, P} (i6) (g9) = P" (exp (i6S.f) g) , where f € L}, .g €
Ly and n > 0.

Proof We have,

P 5.19) = P(F* (oo T 05, 115)
= P (exp(ibf) - P""" (exp (i85q-1f) g))
= P;(i6) (P (exp (i8Sa-11) 9))

= P} (i) (9)-

since P*(foT"-g)=f-P*g,Vn>1.
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In the following, we will study the spectrum of Py (i6) for all values of § in the
neighborhood of 0. One type of result is due to Rellich ( see [2] ) who described
how the isolated point spectrum of an operator varies when this operator depends
analytically on a parameter.

Proposition 3.3.1 For all § € R, the operator P; (i6) is a continuous operator
on BV (as well as on L] ) and the function § — P (i6) is analytic.

Proof Using definition of P and since ||fg|[gy < 2||fllgv 9]l gy -» We have

1P (28) (9)ll gy = IIP (exp(i05)9)lI gy < 2Pl gy llexp(ibf)l gy llgll gy -

We have

llexp (i0f)llgy = V(exp(:6f)) +1
< Vcos@f)+ V (sinff) +1

< 206|V(f) + 1.

Thus, we have
1 P£(20) ()l g < C (0) llgliy -
Also

125 (6) (@)l < llexp(E8f)glly,. = llgll,,, -
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We have Py (i6) = P (exp(i8f)g) = T4 ()" /nt) P (f*-g).

Then the series 32, ((¢8)" /n!) P (f™ - g) is absolutely convergent in BV since

n=0

(161" /) NP (£ - 9l gy < (2161 /n) 1Pl gy 1 f 15y llgll gy -

and therefore § — Py (i6) is analytic.

a
Proposition 3.3.2 There exists a real number a > 0 such that for [§| < a we
have

1) Forge Kandn>1

Py (i6) (g) = A" (i0) N, (i6) (9) + P5 (i) (9)

where )\ (i) is the unique eigenvalue of biggest modulus of Py (:6) and |\ (i6)] >
(2+p(Q)) /3. N;(i6) is the projection onto the subspace Ey of dimension 1,

corresponding to A (i8) . Pf (i8) is an operator on BV of spectral radius

p (P (i0)) < (1 +p(Q)) /3)"
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and

Pr (i) Eg = 0.

2) Mappings § — A(if), 0 — N, (i6) , 8 — P> (i6) are analytic
3)

175 (#0) (Dl < C161 (1 +p(Q)) /3)",

where C is a positive constant.
Before we prove the proposition, we need the following.

Lemma 3.3.2 R(z) is the resolvent of P in BV defined by

R(z) = 1/(zId- P)

= p/(z=1)+>_Q"/=""!

n=0

which is defined if |z] > p(Q) and 2 # 1 ( Id denotes the identity generator on
BV).

Proof.

R(z) = 1/(z1-P)=(ZI"zP)+PR(z)
I P I P 1
= ;tZRE=C+ T T p
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Proof of Proposition 3.3.2
Here is brief reminder of certain facts of spectral theorv:

(1) Let us define

Ro(2) = 3 ((P;(i8) — P)R())".

n=0

If || Pr(i8) — P|| g, < 1/||R(2)ll gy then above series converges absolutely in BV

and defined the resolvent of Py (i6).
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(2) Let I, and I, be circles with centres 1 and 0 and radii p;, = (1 — p(Q)) /3
and p, = (1 + 2p(Q)) /3 respectively. Let § > 0 be such that § < p, and p(Q) +
6 < p2- Let us define Ms = sup||R(z)|g,, where the supremum is taken over
|2} > p(Q) + 6 and |z — 1] < 6. If || P§(i6) — Pj| gy, < 1/Mj then circles I, and I

are in the resolvent set of Pf(i6). Then the projections are:

N, (i) = (1/2i) /1 Rio (2) dz

Ny (i) = (1/2mi) [ Ry (2)dz
For || N, (i6) — pflgy < 1, the image Ey of N, is of dimension 1 and we have
Pr(i0) Ny (i6) (go) = N1 (20) P;(20) (go) = A (i0) (g6) ,
where g, € K gencrates Ey. Thercfore, for all n > 1, we have

P7 (i) = Pf(i6) Ny (i0) + PF (i) N7 (i6)

= A" (i) N, (i8) + P (i),
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where

PP (i) = (1/2m) /[ 2" Rig (2) dz.

2

(3) For |0] < a, we have:
Rig () = R(2) + RS (2)
where

Pr(i6) (1) = (1/27rz')/[2 z"R(z)(l)dz+(0/27r)/[2 " RY (2) (1) dz

= (6/2m) /1 R () (1) de

Now,

14+ p(Q)

1PE ) (Dl gy < C101 65, p, =~

where

C=(1/2m) sup ||Rf;) (2)

|z|=p2,l0l<a

BV
a

Proposition 3.3.3 The operator P (i) defined by Lemma 3.3.1 satisfies the

hypothesis of Theorem 3.1.1.
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Proof
(a) It follows from the proof (a) of Proposition 3.2.1.
(b) It foliows from the proof (b) of Proposition 3.2.1.

(c) Using Lemma 3.1.1, we have

|27 @) ()|, = [P (expi8Sunf) (9)]|,, = @™ ((exp i85, f) gh) /]| .

< 2|11/hll gy ”‘pnN ((exp i65,.f) gh)”sv

< (16/’7N) 1/l gy iRl gy lexp (0S5 f)l gy 191l v

+2ii1/hiigy (K +2/6 + }igll,

where v = inf, (T") (z) and

”ewaSan”BV = V(expifSunf) +1
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nN-1
< 2|6 Z V((foT")+1

k=0

< N8|V (f) + 1.

Therefore, V8 € R ,3 ng = niNg such that

(16/4™) 11/hll gy IBll gy (20No 6]V (F) + 1) < 1.

Then the result follows.

(d) It follows from (a) and (c).
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Chapter 4
Central Limit Theorem for piecewise

Expanding Transformation

4.1 Central Limit Theorem
We will consider only functions f € BV, such that: (4.1.1) the functional
equation

f=k+¢oT—¢

has no solution ¢ € BV, k € R. We consider such assumptions unless otherwise
02 =0 (see Remark 4.1.1 for more detail).

Theorem 4.1.1 Suppose T : I — [ satisfies (1),(2), (3) [see page 22| and
that the dynamical system (T, 1) is weakly mixing. Suppose the condition (4.1.1)

is satisfied. Then, we have

2 v Y (Saf =nu ()’
o —nh_%l° A ( 7n ) dp >0

and Vz € R,

i {#((Snfd— ;;(f))) 9}:
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where
Sof =0.

n-1
Saf =3 foTn21
k=0

The proof of the theorem is given in a series of lemmas. Using Lemma 3.3.1 and

Proposition 3.3.2, for || < a, we have

[ e safydn = [ Prio) (1)du

- 1 - Id l -
= A" (i) / Ny (86) (1) dp + / Py (i) (1) dpe.
0 0
Lemma 4.1.1 Under the assumptions of Theorem 4.1.1:

N(0)=wn(f).

Proof We have

[ exo (Git/m) Suf) i = [ PF (it/m) (1) d



Using Proposition 3.3.2, for n sufficiently large, we have
1 R . n 1 i i i
| exp (t/m) Suf) d = (AGit/m)* [ My Git/m) (V) du+ [ Py Gt/m) (1) dp

and

[ B Gie/m) (1) ] < 185 (it/m) (Dl gy < C (1t /) 5

We also have
Ny (it/n) = p + (it/n) NV — (£/2n?) NP + £2/n* Ny (it /n)
where N, N®and Ny (it/n) are bounded in BV, with

lim “N—: (it/n)”Bv =0

n—oo

Then, we have

lim /01 N, (it/n) (1) dp = 1

n—o

and

A (it/n) = L+ (it/n) X' (0) — (£2/202) X" (0) + (£2/n%) X (it/n)
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where

lim X (it/n) = 0.

n—oQ

Lim (A (it/n))" = exp (itX (0)) .

On the other hand,

lim (1/n) Saf = p(f)

almost everywhere. So for all ¢t € R, we have

exp (itA'(0)) = exp (itu (£))

a
Without loss of generality and to simplify the calculations, from now on, we

will assume p (f) = 0.

Lemma 4.1.2 Under the assumptions of Theorem 4.1.1:

1 2
A(0) = lim /0 (%‘7{) dp.
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Proof Notice that we have

o[ () 59) ).~ [ ('

Using Proposition 3.3.2, we have

/Ole:cp ((—z\/%) Snf> dp = A" (%) /01 N, (%) (1) d;;+/01 Py (’Ttn) (1) dp.

We also have

Py (%) (1) = (1/2m) /{2 2" Ryyym (2) (1) dz.

Then, for sufficiently large n and |z| = p;, we can write R, 5 (z) in the form:
it ‘ . . _
Ry m(2) = R(z) + (%) RW (z) — (£2/2n)RP (z) + (t*/n) Ry ym (2)

where R (z), R® (z) and R, s (z) are bounded operators of BV and

iy [ R )], =0

n—oo
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Therefore, we have:

Py (%) (1) = <27rit\/r_t) /12 2"RW (2) (1) dz — (t2/4m'n) /[2 z"R® (2) (1) d=z

- (t2/27rin) /I ] "Ry sm (2) dz,

where

1 it . n .
8% /8¢ { (/o Py (ﬁ) (1)) du}lt:o = (—1/2min) /12 "R (2) (1) d=.

Using the definition of A" (it/n) and N, (it/\/n), we obtain
(82/8¢2) (X‘ (%)) / N (%) (1) dpsgemo = A" (0) — (1/n) N (1).

Therefore the limit of

[ (Susmya

exists and equals to A" (0) .

Lemma 4.1.3 Let




Then we have the following representation of o2:

o2 = /01 (p(g2) —(Pg)2)d,u, where g= (I — P)™' f

Proof We have

/f foT™ dy

M3 ;r[v]a

/OlP""f-fd,u

= 3 [leMrsau

x
i
8

(29 — f) f dp,

oHT

where g = T2, Q% f.
If we define

=iQ’°f =55P’°f =({I-P)7f,

k=0 k=0

then we have
1
= /0 (9 + Pg) (9 — Pg)dp
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/0 ‘P (¢°) — (P9)* du

Lemma 4.1.4 We have

n—og

lim 01 P? (—\’/t—ﬁ) (1) dp=exp (—t%0?/2).

Proof It follows from the proof of Lemma 4.1.1 with A" (0) = 0 and where
it/n replaced by it/\/n.
a
Lemma 4.1.5 (Fortet and Leonov) o> > 0 iff f is not of the form of f =
¢oT — ¢ where ¢ € K.
Proof The constant k& of Theorem 4.1.1 is equal to p (f) . Here we have k = 0.

By Lemma 4.2.3, 72 =0 iff Pg2 = (Pg)® almost everywhere either

® (g°h) @ (h) = (® (gh))?
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