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ABSTRACT

A MODIFIED LOW-BIT-RATE ACELP SPEECH CODER AND ITS IMPLEMENTATION
Jian Guang Zhou
In modern communication systems, low-bit-rate speech coder is widely employed to
increase the bandwidth efficiency of the network. The ITU-T G729 is one such speech
coder extensively used in packet voice communication systems. Since the reduction in the
complexity has been a major issue in designing and implementing low-bit-rate speech coder,
the focus of this research is on reducing the complexity of the existing G729 standard.
Based on the fact that the fixed codebook search accounts for much of the computation in
the coding process, in this thesis, the existing codebook search algorithm of G729A, a
reduced complexity version of (G.729, is modified and incorporated into this standard. The
test results on a general PC indicate that the modified search scheme reduces the
computation load by about 40% with only a slight degradation in the perceptual quality of

the speech.

In the second part of this project, the modified speech coder is implemented on the
TMS320C5416 DSK DSP board. First, the implementation scheme is described and the
initial results for both the G.729A and the modified coder are presented. Then, several
optimization procedures are developed to effectively reduce the run-time of the algorithm.
With the optimized implementation, the run-time of the speech coder is significantly
reduced to meet the real time requirement to process a single frame within 10 ms. As for
the savings on the computational load, the run-time of the modified fixed codebook search

algorithm is about 30% smaller than that of the original search scheme used in G729A.
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Chapter 1

Introduction

1.1 General

In modern digital systems, speech signal is represented in digital format and it is often
desirable to represent the signal using as few bits as possible. The purpose of speech
coding is to reduce the bit rate of digital speech signals. For storage applications, a
lower bit usage means less memory. For transmission applications, lower bit rate
means less bandwidth, power and memory. It is, therefore, cost-effective to use an
efficient speech compression algorithm in a digital speech storage or transmission
system. Speech coding is a technique to provide such a compression. Although larger
bandwidth has become available in wired communications because of the rapid
development in optical transmission, there still is a growing demand for bandwidth
conservation, particularly in wireless and satellite communication systems. Speech
coding plays a vital role in wireless and Internet transmission. A speech coder consists
of an encoder and a decoder. The encoder takes the original digital speech signal and
produces a low-rate bit-stream. This bit-stream is the input to the decoder, which
recovers an approximation of the original signal. Figure 1.1 shows the structure of the
speech coder in a communication system. There are many attributes associated with a
speech coder [1]. Bit rate, speech quality, delay, complexity and channel error
sensitivity are the fundamental characteristics of a speech coder. The criteria for
selecting the appropriate bit rate for transmission depend on the cost of transmission,

the cost of coding, and the speech quality requirements. Some twenty years ago,



speech coding was not commonly used because of the high cost of coding and the low
speech quality. However, now because of a dramatic increase in the efficiency of
digital speech processing hardware and the recent advances in speech coding research,
this situation has significantly changed, and speech coding is employed in a large

number of applications.

input Source , (Transmission 1\ Receiveq output
d Coder ~ Decoder d
Speech - Bit-stream ¥ | channel Bit-strea - speech
Figure 1.1 Block diagram of digital speech transmission

This chapter is organized as follows. Section 1.2 gives an overview of the basic
attributes of a speech coder. In Section 1.3, we introduce some basic properties of
speech signals for a better understanding of the speech coders. Section 1.4 gives a
brief review of speech coding standards. Section 1.5 provides the details of the thesis

Organization.

1.2 Attributes of the Speech Coder
There are many factors that should be considered when evaluating the performance of

a speech coder. Some major attributes of a speech coder are now considered.

(i) Bit-rate

An essential motivation for speech coding is to reduce the bit-rate of the speech coder.
The bit-rate of a speech coder can be lower than 1 Kb/s for a vocoder and can be as
high as 64 Kb/s for a waveform coder. Depending on application, there are fixed-rate

or variable-rate speech coders. Most of the existing speech coders are fixed-rate



coders, since they are simpler to design. Coders used for satellite and cellular
telephony range from 3.3 to 13 Kb/s, whereas those used for general telephone
networks have bit rates of more than 16 Kb/s. For a secure telephone communication,
the bit rates are between 0.8 to 4.8 Kb/s [2]. There are also many applications for
variable-rate coders. The ITU-T G.723.1 standard is an example of a variable rate

coder [3].

(ii) Speech Quality

The quality of the reconstructed speech signal is an important attribute of a speech
coder. The “mean opinion score” (MOS) is the most commonly used measure for the
subjective quality of the coded speech. The MOS is extracted from the results of a
category test performed by 20 to 60 untrained listeners. The listeners give a score for
each of a set of utterances on a scale from 1 (for unacceptable quality) to 5 (for
excellent quality). Because of a wide variation among listeners, the MOS test requires
a large number of speech data, speakers and listeners to get an accurate rating of a
speech coder. A MOS score of 4.0 or higher defines toll quality, and the reconstructed
speech signal is nearly indistinguishable from the original signal. A MOS score
between 3.5 and 4.0 defines communication quality, which is sufficient for natural
telephone communication. At a score of 3.0 or lower, the reconstructed speech may be
intelligible, but often lacks naturalness and speaker recognizability. It is a difficult
problem to have an objective evaluation of speech quality for a variety of speech
coders and input signals. This is because the quality of reconstructed signal of coders

becomes more and more dependent on the characteristics of the input signal, making



it difficult to anticipate the behavior of a coder in real-world applications. However,
recently a standard objective method has been developed to estimate the speech
quality [4], and this objective criterion is used in our project to estimate the quality of
the decoded speech signal using our modified codebook search algorithm. Another
objective measurement for the speech quality is segment SNR, this method is most
suitable for waveform coders and it is not particularly suitable for the evaluation of

vocoders.

(iii ) Delay

Delay is an issue that is of importance for a two-way communication. A delay of 150
ms can be considered as impairment for highly interactive conversational tasks.
However, if the echo canceller equipment is not used, the network echoes can be
objectionable even when the two-way delay is less than 100 ms. Coder delay includes
four components: algorithmic delay, computational delay, multiplexing delay and
transmission delay. Speech coders often operate on a block-by-block basis, each block
being called a frame. One frame of data must be collected before processing begins.
Often the coder requires some additional look-ahead beyond the frame that is to be
encoded. The algorithm delay is the sum of the frame length and the look-ahead.
Computational delay is the actual processing time required for the coder; in most of
the implementations, the processing delay is equal to a frame length or slightly less. In
many of the transmission systems, a block of bits corresponding to a frame is first
assembled by the coder before it is transmitted, while at the receiver, the block of bits

associated with a frame is assembled before decoding begins. This assembling delay,



whether it is at the transmitter or the receiver end, is called the multiplexing delay.
The transmission delay is usually less than a frame size. Often we assume that
multiplexing delay and transmission delay adds up to one frame length. So roughly
speaking, the minimum delay of the system is usually between 3 and 4 times the

frame size.

(iv) Complexity

The computational complexity of a speech coder determines the cost and power
consumption of the hardware used for it’s implementation. Most speech coders are
implemented on DSP chips. Speed and random access memory (RAM) usage are the
two most important contributors to complexity. The faster the chip or the larger the
chip size, the greater the cost. These same attributes also influence the power
consumption, which is also a critical attribute for many handheld applications. Thus,
complexity is a determining factor for both the cost and the power consumption.
Speed is most commonly measured as the number of millions of instructions per
second (MIPS) necessary for the real-time implementation of the speech coding
algorithm. Sixteen-bit fixed point DSPs are most commonly used for low cost
implementations. Hence, the complexity is often specified in terms of the fixed-point
MIPS and the number of 16-bit words of RAM needed for an implementation. In our
project, the speech coder is implemented using a 16-bit fixed-point DSP chip and
evaluate the reduction of the complexity using the modified codebook search

algorithm. Reducing the complexity of the speech coder for the real-time application



is a critical concern for most network operators. Thus, it is also a major motivation for

us to focus the research on this aspect.

(v) Channel Error Sensitivity

In wireless applications, the bit stream received at the other end of channel is always
corrupted by channel errors. Thus, there should be a packet loss recovery mechanism
in the decoder. There are two types of errors in the channel: random error and burst
error. For the random error, each transmitted bit has the same probability of error; and
the overall error rate is usually between 1% and 5%. Burst error is typical in the
wireless environment. To counter random errors, a sufficient signal-to-noise ratio
must be achieved. In many existing communication systems, the speech coder is
separate from the channel coder. In such systems, the transmitted bits are usually
classified into groups with different sensitivities to channel errors, and these groups
are protected at different levels. In ITU-T G729 [5], a parity bit is inserted in the
encoded parameter for error detection, and in the decoder, there is an error
concealment mechanism for the recovery of frame erasures. However, in our work we
assume transparent transmission through the channels. Table 1.1 lists some of the

basic attributes of different speech coders [1].



TABLE 1.1 SOME OF THE EXISTING SPEECH CODERS

Standard | Coding type Bit Rate MOS Complexity | Delay (ms)
G711 PCM 64 4.3 | 0.125
G.726 ADPCM 32 4.0 10 0.125
G.728 LD-CELP 16 4.0 50 0.625
GSM RPE-LTP 13 3.7 5 20
G.729 CS-ACELP 8 4.0 22 15

G231 ACELP 5.3 3.8 25 37.5

MP-MLQ 6.3
FS1015 LPC-10 24 Synthetic 10 22.5

1.3 Properties of Speech Signals

In order to build an effective speech coder, an understanding of the properties of a
speech signal is needed. Such an understanding leads to models that remove
redundancy from a speech signal and transmit only the perceptually relevant
information. The most prominent property of a speech signal is that it is band limited
with a bandwidth of about 3.4 KHz. Hence it can be sampled at the Nyquist rate of 8
KHz, quantized and companded to either 8- or 16-bit pulse code modulation (PCM).
Hence, an uncoded speech can be represented using a bit rate of 128 Kb/s, which is an
extremely high bit rate. Specifically, for a signal with a bandwidth of 3.4 kHz and a
SNR of 30 dB, assuming an additive white Gaussian noise (AWGN) channel, the bit

rate C, based on Shannon’s channel capacity theorem, is given by [2]

C = WLog[1 + P/G]

where W is the bandwidth and P/G is the SNR. The equation above shows that the bit
rate required to represent speech with a small error is about 34 Kb/s. Although it is a

reduction by a factor of 4, it is still too high for modern telecommunication systems.



The Shannon limit of 34 Kb/s is an upper bound, since it does not take into account
the redundancies in speech signals. Another important property of the speech signal is
that there exists a correlation between adjacent samples; this is known as short-term
correlation. Further, it is quasi-periodic, called long-term correlation [2]. By using
techniques such as linear prediction and pitch prediction, the short-term and long-term
redundancies can be removed to give an even lower bit rate. The time domain
characteristics of the speech signal can be classified into unvoiced and voiced
segments. Unvoiced segments are aperiodic and have a noise-like appearance. Figure
1.2 (a) demonstrates an example of unvoiced sound ‘T” and voiced sound ‘O’. The
fact that the unvoiced segments are noise-like in their appearance suggests that we can
replace it with a Gaussian noise source and the human ear will not be able to perceive
the difference. Voiced sounds, on the other hand, are found to be periodic and have
short and long term correlations. An example of the voiced speech is the sound of the
vowels (/a/, fel, 1i/, /of, /u/). The frequency domain characteristics of the speech signal
lie in regions called formants. Formants correspond to the resonant frequencies of the
vocal tract and usually it is below 4 KHz. It is also the region where most of the
speech energy is concentrated. Figure 1.2 (b) illustrates an example of an unvoiced

segment in the frequency domain, while Figure 1.2 (c) that of a voiced segment.
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(a) Voiced and unvoiced signal in the time domain; (b)

Unvoiced signal
Voiced signal “O” in the frequency domain

“T” in the frequency domain; and (c)

The final important characteristic of a speech signal has to do

4000

with human

perception. Exploiting the perceptual properties of the ear could lead to significant

improvement in the performance of a speech coder. This is particularly true as we

pursue lower and lower bit rate speech coders while avoiding major degradation in

speech quality. One of the well-known properties of the auditory system is the

auditory masking, which has a strong effect on the perceptibility of one signal in the

presence of another [6]. Noise is less likely to be heard at frequencies of strong speech

energy (e.g., speech formants) and more likely to be heard at frequencies of low

speech energy (e.g., speech valleys). Spectral masking is a popular technique that

10



takes advantage of this perceptual limitation by concentrating most of the noise in
high-energy spectral regions where it is least audible. Humans perceive voiced and
unvoiced sounds differently. In spectral domain, the amplitudes and the locations of
the first three formants and the spacing between the harmonics are important [7]. For
unvoiced signals, it has been shown in [8] that the unvoiced speech segments can be
replaced by a noise-like signal with a similar spectral envelope without a drop in the
perceived quality of the speech signal. In both the voiced and unvoiced cases, the time

envelope of the speech signal contributes to intelligibility and naturalness [9,10].

1.4 Speech Coding Standards

In the past decade, more speech coding standards have been created than in all the
previous years. The reasons for this are the maturity of speech coding technology and
the need to satisfy a growing demand for new speech communication techniques.
Standards exist because there are strong needs to have a common means for
communication. Manufacturers, service providers, and customers all realize that it is
in everyone’s interest to have a common standard. The International
Telecommunication Union (ITU) is responsible for setting global telecommunication
standards. The European Telecommunications Standards Institute (ETSI) is
responsible for setting standards for the digital cellular system in Europe. The
Telecommunication Industry Association (TIA) makes standards for cellular
telephony and other telecom applications in U.S. In 1994, ITU adopted the
Low-Delay Code-Excited Linear Predictive (LLD-CELP) algorithm [11] for the toil

quality coding of speech at 16 Kb/s, and is known as ITU G.728. Shortly after this

11



standard was adopted, another CELP-based speech coding running at 8 Kb/s was
developed by the University of Sherbrooke {5]. It is toll quality as well and has a
performance comparable to that of ITU-T G726 at 32 Kb/s. Later, G729A, a
reduced-complexity version of G.729, was developed [12]. During the same period,
ITU-T adopted G.723.1 as a standard speech coder to be used in the visual telephony
as part of the overall H.324 family. In 1996, U.S. Department of Defense (DoD)
standardized a new 2.4 Kb/s vocoder with communications quality to replace both the
FS1015 and FS1016. There were seven candidates involved in this standardization
and the winner was the Mixed-Excitation Linear Predictive Vocoder (MELP)
developed by Texas Instruments [13]. It has been reported that its speech quality is
even better than that of FS1016 4.8 Kb/s vocoder, a vocoder with twice the bit rate of
MELP. It is also computationally efficient and robust in difficult background
environments such as those encountered in commercial and military communication
systerms. Recently, [TU has set a demanding goal of further reducing the existing toll
quality rate by a factor of two, down to the regions of 4 Kb/s with a quality equivalent
to the existing 8 Kb/s standard (G.729). It is expected that this standardization will be
finalized soon. There are numerous intended applications for this standardization such
as visual telephony, multimedia applications in personal communication environments

and Internet telephony. A worldwide effort is currently underway to prepare for this

standardization. Table 1.1 lists some of the existing speech coder standards [1].

1.5 Scope and Organization of the Thesis
The main concern of this thesis is to reduce the complexity of the existing standard
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speech coder G.729A. In this thesis, a modified fixed codebook search scheme is
proposed and incorporated into G729A, which will be henceforth referred to as the
modified coder. In order to determine the reduction in the complexity for the new
search scheme, tests are carried out first on a general PC. Then, the scheme is
implemented on TMS320C5416 DSK DSP board, followed by some optimization
procedures employed to reduce the run-time of the speech coder. The test results both
on the general PC and on the DSP board indicate that the proposed fixed codebook

search scheme has savings of about 30% in computation complexity.

The thesis is organized as follows. Chapter 2 gives an overview of the linear
prediction technique, which is essential for a discussion of the CELP speech coder. An
overview of the basic structure of G.729A is also included in this chapter. Chapter 3
first describes in detail the codebook search algorithms used in G729 and G.729A.
Then, a new scheme for codebook search that reduces the computational complexity
is proposed. In Chapter 4, implementations of the speech coder G.729A and of the
modified coder are carried out on TMS320C5416 DSK board. Further, the
implementation results of the two coders are analyzed and compared. Chapter 5

summarizes the main contributions of the thesis and gives future research directions.
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Chapter 2
Introduction to LPC and the G.729 and the G.729A Speech
Coders

Since linear predictive coding (LPC) analysis is an essential part in most speech
coding algorithms, in this chapter, we will examine the algorithm in detail and see
how LPC can remove the short-term correlation (redundancy) in a speech signal. Also,

we will introduce the ITU-T G.729 and G.729A standards in this chapter.

2.1 Linear Predictive Speech Coding

LPC is the most common technique for low-bit-rate speech coding and is a very
important tool in speech analysis. The popularity of LPC derives from its precise
representation of the speech spectral magnitude, as well as its relatively simple
computation. In speech coding, the LPC is used primarily to provide a small set of
speech parameters that represent the configuration of the vocal tract. LPC estimates
each speech sample based on a linear combination of its p previous samples, a larger p

enables a more accurate model.

The main advantage of LPC analysis is that the speech is decomposed into two
highly independent components: the vocal tract parameters (LP coefficients) and the
glottal excitation (I.P excitation). These two components have very different
quantization requirements. As a result, different analysis schemes have been applied

to enhance the coding efficiency.

We first consider the underlying principles of the short term LPC analysis and
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discuss how to calculate the LP coefficients. Short-term correlation can be effectively

removed from the speech signals using a time varying linear analysis filter A(z) given

by [6]
p .
Al(Z)=1- Zaiz_' (2.1)
i=1

where a/s are linear prediction coefficients, and p is the prediction order. When the
speech signal s(n) is processed by this filter, a residual signal r(n) is produced at the
output. The inverse filter of A(z) is called the synthesis filter. The synthesis filter
models the effect of the vocal tract imposed on the glottal excitation and thus, the
frequency response of the synthesis filter corresponds to the spectral envelope (short
term correlations) of the input speech signal. In other words, the center frequencies of
the resonance of the filter should closely match the formant locations of the speech
signal. As a result, the order p of the filter should be chosen such that there is a pair of
poles allocated for each formant [6]. For practical speech signals sampled at § kHz,
normally there are four formants; thus, it is sufficient to set p = 10. Figure 2.1
illustrates the analysis filter, Figure 2.2 shows an example of the speech signal and its

residual signal, and Figure 2.3 the synthesis filter.

Speech signal p Residual signal
s P e

s(n) A(Z)=1“Za,~2 r(n)

i=1

Figure 2.1 The LP analysis filter
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Figure 2.2 An example of speech signal and its residual signal

(a) Female speech signal “e”; (b) The residual signal of “e”
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Residual signal > —— Sggech signal
r(n) -Yaz' | st

Figure 2.3 The LP synthesis filter

Mathematically, we can express the relationship between r(n) and s(n) by the

following difference equation
p
r(n)=s(n)- Y, a,s(n—k) 2.2)
k=1

The residual signal r(n) is also called the error signal e(rn). There are two methods
used to estimate the coefficients @;. One is the autocorrelation method and the other
the covariance method. We will use the autocorrelation method. This method uses the
least squares technique and chooses a; such that the mean energy of the resulting error

signal is minimized. The energy of the prediction error E is

5

E= i’zW: i [Sw(n)—iakSw(n—k)} (2.3)
n=-o0 k=1

n=-oo

where S.(n) is the windowed speech signal. The values of the coefficients a, are

derived by setting

a—E:O fork=12,...,p
da,

This will yield a system of p linear equations
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i S, (WS, (n—i)=) a,

n=—c0 k

iSW(n—i)SW(n—k), i=1,2,...,p (2.4)

n

The autocorrelation function of the windowed signal S.(n) is
o L-1
R(i)= ). S,mS, (n—i)=)Y.5,(m)S, (n-i) (2.5)
Hence, (2.4) reduces to
14
RO =Y aR(i—-k) fori=1,2..,p (2.6)
k=t

Since the autocorrelation function is an even function, R(i) = R(-i); hence, (2.6) can be

expressed in a matrix form as

R(0) R - Rlp-Dja | | RO
Rfl) R(:O) R(p:~2) a _ R(:2) 27
R(p-1) R(p-2) - RO Ja,| [R(p)

o, RA =r.

Solution of the above equation requires the inversion of the matrix R and
multiplication of the resultant pX p matrix by the r vector. However, we can exploit
the redundancy in the matrix R to simplify the computation. Notice that the matrix R
is symmetric and it has a Toeplitz structure, that is, all the elements along a given
diagonal are equal. This additional redundancy in the matrix allows the use of the
more efficient Levinson-Durbin recursive procedure [14], in which the following set

of ordered equations are solved recursively form=1, 2, ..., p.
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m-1

R(m)= Y a,_,(k)R(m—k)

k —_ k=1
m E

m-1

a,(m)=k,, (2.8)
a,(ky=a, (k)y—k,a,  (m-k)

E =(-k.)E

m-1,

where initially £y = R(0) and a(0) = 1.0, 1 £k<m-1. The final solution is given as a(k)
= au(k). During each cycle m, the coefficients a,(k) describe the optimal m™ order
linear predictor, and the minimum error E,, is reduced by the factor (1 — k). Since

m

<1. This condition on the reflection coefficients %,, also

E, is never negative, |k,
guarantees a stable LPC synthesis filter, since all the roots of A(z) are then inside the

unit circle in the z plane. Figures 2.4 (a) and 2.4 (b} illustrate the LPC analysis results

respectively for the voiced and unvoiced speech signals.

2.2 ITU-T G729 and G.729A Recommendations

This section describes how G729 and G.729A work as stated in the ITU standard. The
ITU-T recommendations contain the descriptions of algorithms for the coding of
speech signals at 8 Kb/s using algebraic-code excited linear prediction (ACELP).
These coders are designed to operate with a digital signal by first performing
telephone bandwidth filtering of the analog signal, then sampling it at 8000 Hz,
followed by conversion to 16-bit linear PCM for input to the encoder. The output of

the decoder is converted back into analog signal by similar means.
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(b) the unvoiced signal “t”
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Figure 2. 4 LPC spectrums
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2.2.1 General Description of the ACELP Speech Encoder

The coders are based on a code-excited-linear-prediction (CELP) coding model [15].
In this model, the locally decoded signal is compared with the original signal and the
coder parameters are selected such that the mean square weighted error between the
original and reconstructed signal is minimized. The coder operates on frames of 10 ms,
using a 5 ms look-ahead for linear prediction analysis. This results in an overall

algorithm delay of 15 ms. The encoding principle is shown in Fig 2.5.

Input speech

LPC info

! Transmitted

Bitstream

Figure 2.5 Encoding graph of G.729 and G.729A
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After processing the 16-bit input samples through a high-pass filter, whose cut-off
frequency is 140 Hz, a tenth-order LP analysis is performed, and the LP parameters
quantized in the line spectral pair (LSP) domain with 18 bits. The input frame is
divided into two sub-frames of 5 ms each. The use of the sub-frames allows for better
tracking of the pitch and gain parameters and reduces the complexity of the codebook
search. For each sub-frame, the excitation is represented by an adaptive-codebook and
a fixed-codebook contribution. The adaptive and fixed-codebook parameters are

transmitted every sub-frame.

The adaptive-codebook component represents the periodicity in the excitation
signal using a fractional pitch lag with 1/3 sample resolution. The adaptive-codebook
is searched using a two-step procedure. An open loop pitch lag is estimated once per
frame based on the perceptually weighted speech signal. The adaptive codebook index
and gain are found by a closed-loop search around the open-loop pitch-lag. The target
signal, which is the signal to be matched, is computed by filtering the LP residual
through the weighted synthesis filter. The adaptive codebook index is encoded with 8
bits in the first sub-frame and encoded with 5 bits in the second sub-frame. The target
signal is updated by removing the adaptive codebook contribution, and this new target
is used in the fixed codebook search. The fixed codebook is a 17-bit algebraic
codebook [17]. The gains of the adaptive and fixed codebooks are vector quantized
with 7 bits using a conjugate-structure codebook [18]. The bit allocation for a 10 ms

frame is shown in Table 2.1.
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TABLE 2.1 BIT ALLOCATION OF THE ITU-T 8KB/S SPEECH CODER

Parameter Codeword | Subframel | Subframe?2 Total
LSP coefficients LO,L1,L.2, 18
L3
Adaptive-codebook index P1,P2 8 5 13
Delay parity bit PO 1 1
Fixed-codebook index Cl1,C2 13 13 26
Fixed-codebook pulse S1,82 4 4 8
signs

Codebook gains(stage 1) | GA1,GA2 3 , 3 6
Codebook gains(stage 2) | GB1,GB2 4 4 8
Total 80

(1) Preprocessing

The 16-bit PCM input samples to the speech encoder are filtered with a second-order
pole/zero high-pass filter with a cut-off frequency of 140 Hz. The filter prevents the
undesired low frequency or DC components. Also, to prevent any overflow in the
fixed-point implementation, the input values are divided by two. The high-pass filter
is given by [5]

0.46363718 —0.927247057" +0.46367187

H,(z)= e
n() 1-1.9059465z"" +0.91140247°

The input signal filtered through Hj(z) is referred to as s(n), and is used in all the
subsequent encoder operations.

(2) LP Analysis

An LP analysis is performed on each speech frame using the autocorrelation method

with a 30 ms asymmetric window. Every 80 samples (10 ms), the autocorrelation
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coefficients of the windowed speech are computed and converted to LP coefficients
using the Levinson-Durbin algorithm. The short term synthesis filter is based on a

tenth-order LP filter, given by

1 1
Az 1430 a4z

where a,,i=1,...,10 are the quantized LP coefficients.

The LP analysis window consists of two parts: the first part is half of a Hamming

window and the second part a quarter of a cosine function cycle. The window is given

by
0.54—0.4600{%} n=0....199,
Co{ﬂ’;goﬂ} 1 =200....239. (2.9)

There is a 5 ms look-ahead in the LP analysis, which means that 40 samples are
needed from the future speech frame. This translates into an extra algorithmic delay of
5 ms at the encoder. The use of an asymmetric window allows a reduction in the
look-ahead without compromising quality [19]. The LP analysis window is applied to
120 samples from the past speech frames, 80 samples from the present speech frame,
and 40 samples from the future frame. The use of a 30 ms window was found to
provide a smoother evolution of the LP filter, thereby providing a better speech

quality. The graph of the window is shown in Figure 2.6.
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Figure 2.6 The asymmetric window used in G729 [5].

The windowed speech given by

Sw(n) = Wlp (n)s(n), n=0,...,239 (2.10)

is used to compute the autocorrelation coefficients:

239
r(k):ZSw(n)Sw(n—k), k=0,..,10 (2.11)

n=k
A 60 Hz bandwidth expansion [20] is applied; this is achieved by multiplying the

autocorrelation coefficients with

1 27f,k

Wi (k) = xpl=—( ; Y1, k=1,..,10 (2.12)

where fy = 60 Hz is the bandwidth expansion and f; = 8000 Hz is the sampling
frequency. The bandwidth expansion on the autocorrelation coefficients reduces the
possibility of ill-conditioning in the Levinson-Durbin algorithm. The modified

autocorrelation coefficients are given by:
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rik)=w,, (Ortk)  k=1,.,10

The modified autocorrelation coefficients are used to obtain the LP filter coefficients

a; i =1,...10, by using the Levinson-Durbin algorithm [14].

(3) Perceptual Weighting
The weighted speech signal sw(n) in a sub-frame is obtained by filtering the speech
through a perceptual weighting filter W(z) [21]. This perceptual weighting filter is

based on the LP filter coefficients @; and is given by

AGzly) 1+ 3" viaz"
W(z)= L= R @)
AGIY,) 1+ yiaz”

The use of the unquantized coefficients gives a weighting filter that matches better the

original spectrum, in G729, y, and y, are made adaptive as functions of the
spectral shape of the input signal. However, this adaptive process requires a large
computation. In order to reduce the complexity, the filter is modified in G729A as

__A®
A(z/y)

(2.14)

This filter is based on the quantized LP filter coefficients a,, with a fixed parameter
y =0.75. This simplifies the combination of the synthesis and weighting filters to
W(z2)/ A(z) =1/ A(z/ ¥), which reduces the number of filtering operations while

computing the impulse response and the target signal.
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(4) Pitch Analysis

To reduce the complexity of the search for the best pitch delay, the pitch search range
is limited around a candidate delay T, which is obtained from an open-loop pitch
analysis once every 10 ms using the weighted speech signal sw(n). The adaptive
codebook approach is used to represent the periodic component in the excitation. The
selected adaptive codebook vector is represented by an index, which corresponds to a

certain fractional lag value.

For each sub-frame, the target signal x(n) and the impulse response h(n) of the
weighted synthesis filter are computed. The target signal x(n) is computed by filtering
the LP residual signal r(n) using the weighted synthesis filter 1/ A(z/ v) . The impulse
response h(n) of the weighted synthesis filter is computed for each sub-frame by
filtering a signal consisting of a unit sample extended by zeros through the filter

1/A(z1y).

The detailed procedure of searching T, is as follows.

Three maximum values, one for each of the following three ranges

i=1: 2021,...,39

i=2: 4041L,...,79

i=3: 8081,...,143

are found using the correlation
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79
R(k) = sw(n)sw(n-k) (2.15)

n=0

These maximum values R(¢;), i = 1,2,3, are normalized as

R()= ,. (2.16)

The winner among the three normalized correlations is selected by favoring the delays
with the values in the lower range. This is achieved by weighting the normalized
correlations corresponding to the longer delays. The best delay T,, is determined as

follows.

Tnp = t3
R(T, )= R'(t5)
if R'(t,)2 0.85 R'(T

R(T, )= R'(t,)

op )

op )

end

if R'(t;)>=0.85 R'(Top)
R(T, ) = R'(1))

T, =t

op

end

This procedure of dividing the delay range into three sections and favoring the smaller
range is used to avoid choosing pitch multiples. In G.729A, the pitch analysis is
simplified from that in G729 by using decimation when computing the correlations of
the weighted speech, that is, (2.15) is modified as follows

R(k) = i sw(2r)sw(2n—k) 2.17)

n=0
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Based on the informal subjective tests reported in [22], the above simplification of the
open loop analysis does not introduce any significant degradation in the performance

of the coder.

After T, is decided, a closed loop adaptive codebook search is performed in the

first sub-frame around the index corresponding to T,,. In this sub-frame, a fractional

pitch delay T} is used with a resolution of 1/3 in the range [19%, 84%} and only

integers are used in the range [85, 143]. It has been found that this choice of
resolution provides a good trade-off between the performance and the bit rate. For the

second sub-frame, a delay T, with a resolution of 1/3 is always used in the range
. 2 . 2 . . . . .
int(7;) —55, mt(Tl)+4§ , where int(77;) is the integer part of the fractional pitch

delay T; of the first sub-frame. For each sub-frame, the optimal delay is determined
using closed loop analysis that minimizes the mean-squared error between the original
signal and the reconstructed speech signal. In the first sub-frame, the delay 7 is found
by searching a small range (six samples) of delay values around the open loop delay

T,,. The search boundaries tyin and tp,y are defined as follows.

Loin = To -3

if tyn <20 then ¢, = 20
Lok = foin T O

if t.. >143 then ¢, =143
Poin = loax = O

end
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For the second sub-frame, closed loop pitch analysis is done around the pitch selected

in the first sub-frame to find the optimal delay 7. The search boundaries are between

toin _2 and ¢, + % , where #in and tm., are derived from 77 as follows.
ton = int(T1) -5
if t, <20 then ¢ = 20
Lo = Tmn T 9
if to >143 then ¢ =143
tmm = tmax 9
end

The closed loop pitch search minimizes the mean squared weighted error between the

original and reconstructed speech. This is achieved by maximizing the term

> Xy ()

R(k) = =2
\/220 Y. (m)y (n)

(2.18)

where x(n) is the target signal and y(n) is the past filtered excitation at delay &, which

is past excitation convolved with A(n).

The pitch delay T; is encoded with 8 bits in the first sub-frame and the relative
delay in the second sub-frame is encoded with 5 bits. A fractional delay T is
represented by its integer part int(T), and a fractional part frac/3, frac = -1,0,1. The

pitch index is now encoded as
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1 2
3Gnt(T) -19) + ~-1,if T, e[19—, 84—
p = (int(7}) )+ frac it T €| 3 3,] 2.19)

(int(7,) —85) +197, if 7, € [85, 143]
The value of the pitch delay T> is encoded relative to the value of 7. The fractional
delay T3 is represented by its integer part int(73), and a fractional part frac/3, frac =

-1,0,1. It is encoded as

)+ frac+2 (2.20)

min

P, =3(int(T;) -t
where t,;, is derived from 7T; as described above.

To make the coder more robust against random bit errors, a parity bit PO is
computed on the delay index PI of the first sub-frame. This parity bit is generated
through an XOR operation on the six most significant bits of P/. At the decoder, this
parity bit is recomputed and if the recomputed value does not agree with the

transmitted value, an error concealment procedure is applied.

Once the adaptive codebook is determined, the adaptive codebook gain g, is

computed as

3 x(m)y(n)

= 2.21
TN Sy @20

where x(n) is the target signal and y(n) is the adaptive codebook vector. The vector y(n)

is obtained by convolving v(n) with h(n) as

n

y() =Y v(i)h(n—i) n=0,..,39 (2.22)

i=0
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where h(n) is the impulse response of the weighted synthesis filter 1/ Az/ 7), and

v(n) is the adaptive codebook contribution.

After the adaptive codebook search for the optimum delay and the gain, the fixed
codebook vector is searched. Then the adaptive codebook gain g, and the fixed
codebook gain g, are jointly quantized using a two-staged conjugate structured
codebook [5]. The first codebook is a 3-bit two-dimensional codebook _# and the

second codebook is a 4-bit two-dimensional codebook &. The first element in each

codebook is g, and the second element is the fixed codebook gain correction factor
7 . The term conjugate means that each input vector is quantized as a linear
combination of both codebooks. The conjugate structure reduces both computational
and memory requirements [27]. After the gain quantization, the final indices of the
two codebooks are represented as GA and GB respectively. The fixed codebook

search algorithm will be discussed in detail in the next chapter.

2.2.2 Functional Description of the Decoder

The function of the decoder (Figure 2.7) consists of decoding the transmitted
parameters (LP parameters, adaptive codebook vector and fixed codebook vector),
and performing the synthesis to obtain the reconstructed speech. This is followed by a
post-processing stage, which consists of a post-filter and a high-pass filter. For each
sub-frame, the LSP coefficients are converted back to the LP filter coefficients a;,
which are used to construct the synthesis filter. The following four steps are used

repeatedly for each sub-frame.
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Figure 2.7 Decoding structure for G.729 and G.729A [5]
(1) Decoding of the Adaptive Codebook Vector
The integer and fractional parts of the pitch delay 7, are derived from the received

adaptive codebook index PI. It is decoded as follows.

if p, <197

int(7,) = (P, +2)/3+19
frac = P, =3int(T}) + 58
else

int(7,) =P, -112

frac =0

end

The integer and fractional part of T, are obtained from P2 and f,,, where t,;, is

derived from 7 as follows:
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t, =int(T}) =5

ift. <20 thent = 20
Loy =t 19

if t.,. >143then

¢ =143

Loin = L =9

end

T is now decoded using

in(T,) = (P, +2)/3—1+1t,
frac: P2 ——2—3((P2 +2)/3_1)

After decoding T; and T3, the adaptive codebook vector v(n) is found by interpolating

the past excitation signal u(n) at a given pitch delay.

(2) Decoding of the Fixed Codebook Vector
After receiving the codebook index C and the sign S, the corresponding four pulse
positions and pulse signs are determined. Then the fixed codebook vector is

constructed using following equation.

c(n)=s,0(n—my)+s6(n-m)+s,0(n—-m,)+s,6(n—-m;), n=0,.39 (2.23)

(3) Decoding of the Adaptive and Fixed Codebook Gains

After receiving the indices GA and GB for codebook #and & respectively, the

adaptive codebook gain g, is obtained by [5]:

g,= A(GA) + G(GB)

and the quantized fixed codebook gain is given by:
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g.=g.7 =g.(F(GA)+G,(GB))
where g/ is a predicted gain based on previous fixed codebook energies.
(4) Computation of the Reconstructed Speech
As illustrated in Figure 2.6, the speech signal is recovered by filtering the excitation
signal u(n) through the synthesis filter, and is given by

10
s(n) zu(n)_za‘,s(n_,-), n=0,1,...,39 (2.24)

i=1

The reconstructed speech s(rn) is then processed by the post processing filters, which

include a high-pass filter and scaling by a factor of 2.

2.3 Conclusion

A detailed description of the ITU-T G.729 and G.729A speech coders has been given
in this chapter. It consists of two parts, namely, the coding and the decoding processes.
In the coding part, a few essential signal-processing functions have been presented in
detail. These include the LPC and pitch analyses. Some of the major differences
between the (G729 and G.729A have been described. Also, the decoding process,
which is essentially the same for both G.729 and G.729A, has been briefly presented.
In next chapter, a modified fixed codebook search that reduces the complexity of the

speech coder G.729A is proposed.
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Chapter 3

Proposed Fixed Codebook Search Scheme

3.1 Introduction

Reducing the complexity has been a major concern in designing and implementing
CELP speech coders. Recently, a large number of papers have appeared dealing with
the reduction of the complexity of CELP coders [23-30]. All these papers have
focused on the design of the fixed codebook structure and on efficient search
algorithms in finding the optimum codeword in the fixed codebook. As described in
Chapter 2, the ITU-T recommendation G.729A is one such speech coder having a
much reduced complexity compared to that of G729. Table 3.1 gives a breakdown of
the complexities for the codecs G.729 and G.729A [27]. It is seen from this table that
G.729A has about one half of the computation complexity of G.729 (12.418 vs 22.315
MIPS). About 50 percent of the complexity reduction in the coder part (a saving of
about 5 MIPS) is due to the algebraic codebook search of G.729A. However, it is seen
from this table that the computation of the algebraic codebook search still takes up
about thirty percent of the encoding process. Therefore, in this thesis, we focus our
attention in reducing the complexity of the fixed codebook search and propose a new
codebook search scheme. This chapter is organized as follows. An overview of the
theory of codebook search is given in Section 3.2. The search schemes used in G729
and G.729A are explained in detail in Section 3.3. A new search scheme that reduces
the computation complexity of G.729A is proposed in Section 3.4. Section 3.5

contains the simulation results, obtained on a general purpose PC, conceming the
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TABLE 3.1 BREAKDOWNS OF THE COMPLEXITIES OF THE CODECS G.729 AND G.729A
IN TERMS OF WMOPS' AND TMS320C50 MIPS

Pre-processing 0.20 0.20 0.226 0.226
LP analysis 1.63 1.28 1.957 1.696
LSP quantization & inter. 0.95 0.95 1.390 1.390
LSP to A(z) and weighting | 0.30 0.12 0.461 0.173
Open-loop pitch 1.45 0.82 1.563 0.955
Closed-loop pitch 2.83 1.55 3.453 1.778
Algebraic codebook 6.35 1.86 8.4006 3.046
Quantization of gains 0.46 0.46 0.643 0.643
Find exe & memory update | 0.21 0.08 0.278 0.112
Decoder 0.68 0.68 0.133 0.133
Post-filter 2.13 0.73 2.539 1.000
Post-processing 0.22 0.22 0.266 0.266

! WMOPS represents weighted million operations per second; see reference [27] for details.

37



speech quality for G729, G..729A and the modified codec using the proposed scheme
for the codebook search. A comparison of the three schemes in terms of the

complexity is also carried out. Conclusions are given in Section 3.6.

3.2 Fixed Codebook Search Criterion

The fixed codebook is based on an algebraic codebook structure using an interleaved
single-pulse permutation (ISPP) design. The algebraic codebook is a deterministic
codebook rather than the random codebook used in the traditional CELP coders. In
this codebook, each codebook vector contains four nonzero pulses. Each pulse can
have either an amplitude of +1 or —1, and can assume four different positions. The
algebraic codebook structure has advantages in terms of storage, search complexity,

and robustness [31-33].

The K" fixed codebook vector ¢ is searched by minimizing the mean squared
weighted error between the target signal x and the synthesized speech signal. The
error is defined as [33]

E, = |%-gHe,| 3.0
where H is a lower convolution matrix constructed from the impulse response of the
weighted synthesis filter?, g is a gain scaling factor, and X is given by

x(n) = x(n) - g,y(n) n=0,..39 3.2)
in which x(n) is the target signal for the adaptive codebook search, y is the filtered

adaptive codebook vector of (2.22) and g, is the scaling gain factor given by (2.21).

! Please see (2.14)
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The principal diagonal elements of H are h/0] and the lower diagonals are h[1],
h{2],....., h{L-1] respectively, where L is sub-frame size. Minimizing E, by setting

JE[dg =0, yields

x"He,
= Tk 3.3
8 ¢, H Hc, G-3)
Substituting (3.3) into (3.1) we get
’*TH 2
E, =55 - HoD)”
c¢.H Hce,
T 2
—grg- ) (3.4)
¢, PDc,

where d=H"x is a vector containing the correlation between the target vector and
the impulse response A(n) and @ = H'H is the covariance matrix of the impulse
response. The quantities @ and d are pre-computed before the codebook search

using following formulas:

L-1

d(m)=Y x(Dh(i-m), m=0,1,.., L1 (3.5)
L-1

8, j) = Y h(m—ih(m— j),i=0,1,....L-1 j=i...,L-1 (3.6)

m=j

Since the first term in (3.4) is fixed in searching the codeword ck, only the second
term in (3.4) needs to be calculated. Hence, the optimum codeword is obtained by

maximizing
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T, = (3.7)
‘e,

d'¢) C
£

in which C*=(d"c,)?, € = ¢; dc,. The winning codeword has the largest value
of 7,. Since the codeword c, contains only four nonzero pulses, the numerator of

(3.7) can be expressed as [5]
3
C? =) sd(m,))’ (3.8)
i=0

where s; and m; are respectively the sign and position of the i" pulse. The denominator
of (3.7) is given by [5]

€:i¢(mi,mi)+2i isis]ﬂ)(mi,mj) 3.9)
i=0

=0 j=i+l

3.3 Fixed Codebook Search Schemes in G.729 and G.729A
3.3.1 G.729 Search Scheme
As described above, the purpose of the fixed codebook search is to find the optimum

position and amplitude of the four pulses to maximize the value of 7,. The amplitude

of each pulse can be either +1 or —1, and can assume the positions shown in Table 3.2.

In order to simplify the search procedure, the pulse amplitudes are predetermined
by using the sign of the correlation signal d(m). This choice of signs for a given
combination of pulses maximizes the correlation term in (3.7) [5]. Therefore, before
entering the codebook search, the following steps are carried out. First, the signal d(m)

is decomposed into its absolute value d’(m)= ‘d (m)| and its sign, which characterize

40



TABLE 3.2 STRUCTURE OF THE 17-BIT FIXED CODEBOOK

Pulse Amplitude Positions Bits
i 511 my: 0,5,10,15,20,25,30,35 143
[ s+l m,: 1,6,11,16,21,26,31,36 143
i s,:t1 m,:2,7,12,17,22,27,32,37 143
i o it ] m,: 3,8,13,18,23,28,33,38 1+4

4,9,14,19,24,29,34,39

the pre-selected pulse amplitudes at each of the 40 possible pulse positions. Second,

in order to include the preset pulse amplitudes, the matrix @ is modified as

¢'(m,, m;) = sign[s(m,)] sign[s(m ;)1 ¢(m;,m ) (3.10)

The main diagonal elements of @ are scaled to remove the factor 2 in (3.9) so that

¢’ (m,,m)=05¢(m,m) m=0,1273 .39 (3.11)

The correlation in (3.8) is now given by

C* =(d'(my)+d'(m)+d'(m,) +d'(m,))* (3.12)

and the energy in (3.9) is given by
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3 2 3
£/2=3 ¢ (m,m)+ Y Y o'm,m)
i=0

=0 j=itl
= @' (my.my) + @' (my,m,) +¢'(my,m,)
+¢'(my,m,)+ ¢’ (my,m,) + ¢’ (m,,m,) (3.13)
+ glﬁl(m3 ,my)+ ¢'(m0, m,)+ q)'(ml, my)
+¢'(m,,m,)

The goal of the codebook search is to combine the computation of (3.12) and
(3.13) to maximize the value of (3.7). The optimal solution of the four pulse positions
that maximizes the value of (3.7) is found by using the nest-loop search scheme.
Under this search scheme, all of the possible combinations of the pulse positions are
tested. There are four-nested loops, each loop corresponding to one of the pulse
positions, and the contribution of a new pulse is added to calculate the value of C
and ¢ in each loop. In the innermost loop, the contribution of all the four pulses are
added in C and &. Therefore, the value of (3.7) in this specific pulse combination,
namely, {mo, m, m,, m3} is compared with the value due to the contribution of the
previous set of pulse combinations. The set of pulse combinations, which has the
largest value of C?/¢, is kept for the next round of search. The best pulse position is
found after searching all the possible pulse combinations. It is seen from (3.7), (3.12)
and (3.13) that for each search loop, 12 additions, 1 multiplication and 1 division are
needed to decide one set of positions, once the values of d’(m)and ¢’ (m,,m ;) have
been pre-computed. To evaluate all the possible pulse positions, a total of 2= 8192
combinations need to be examined. Thus, the computation is very large if this
exhaustive search scheme is employed. To reduce the search complexity, simplified

methods that set some additional restrictions are used to reduce the number of pulse
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combinations.

In G729, a focused search scheme is used. From the above analysis, it is observed
that the decision is made in the innermost loop and it also consumes most of the
computations. Therefore, the computation will be reduced significantly by decreasing
the number of times this innermost loop is entered. In view of the fact that most of the
codewords have far less correlation values than the winning codeword (the codeword

with the largest value of 7,), a threshold is used to reduce the set of pulse

combinations. It is set before the innermost loop is entered. The threshold is set as

thr=c,, +k(c,,, —¢,) (3.14)

where ¢, is the average correlation due to the contribution of the first three pulses,

c is the maximum correlation due to the contribution of the first three pulses, and

k is the coefficient that controls the threshold value, which is set to 0.4 in G729. The

quantities ¢,, and ¢, are given by [5]

max

7 7 7
c. =%(2d'(5n)+ Y d'Gn+1)+Y,d' (5n+ 2)] (3.15)
n=0 n=0 n=0
and
Cone = Max[d’(my)]+ max[d’(m,)] + max[d'(m, )] (3.16)

where max[d’(m,)] is the maximum value of d’(m,) at the first three position tracks

given in Table 3.2.

In the G.729 search scheme, if the intermediate absolute correlation contributed by

43



the first three pulses is less than the value of thr, that means the value of the numerator
of (3.7) is relatively small, these first three pulse positions are less likely to be part of
the optimum codeword. Therefore, in order to reduce the computation, these pulse
combinations are discarded instead of them being retained, thus avoiding the search
for the fourth pulse. After using the threshold, a large part of the pulse combinations
with small correlation values are discarded before entering the innermost loop.
However, this search scheme has a disadvantage in that the search time is different
from one sub-frame to another. In order to control the search time for the worst case,
the focused search limits the number of search loops of the innermost loop up to 90
for a sub-frame. Hence, in the worst case, the total number of pulse combinations
searched is 16 x 90 = 1440, which is only 17% of that for the exhaustive search, thus

providing a significant reduction in computation complexity.

3.3.2 G.729A Search Scheme

The structure of the 17-bit fixed codebook of G.729A is the same as that of G.729;
however, the codebook search scheme is completely different. As described above, a
fast search procedure based on a nested-loop search approach is used in (G729. In this
search, only 1440 combinations of the pulse positions are tested in the worst case
instead of the possible 8192 combinations of the pulse positions (that is, only 17.5%).
In G729A, in order to further speed up the search procedure, the search criterion
C?/¢ is tested for an even smaller percentage of the possible combinations of the
pulse positions using a depth-first tree search approach. In this approach, the P

excitation pulses in a sub-frame are partitioned into M subsets of N, pulses. The
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search begins with the first subset and proceeds with subsequent subsets according to
a tree structure in which the subset m is searched at the m™ level of the tree. The
search is repeated by changing the order in which the pulses are assigned to the
position tracks. In G.729A, the candidate pulses are partitioned into 5 tracks, T,, T,, T,
T, T,, as shown in Table 3.3. The depth-first tree search shown in Table 3.4 performs
two assignments, which are further divided into two subsets. The search procedure is

summarized as follows.

For the first assignment, the depth-first tree search starts from determining the
most-likekly pulse positions (ig, i7). In the first subset, G.729A first finds the positions
of the first two maxima of |d(n)| in track T, and combines with all the 8 positions in
track T;3. Thus, we have 2 x 8 = 16 combinations being tested in the first-stage search.
When the optimal positions (ip, i;) are ready, the second-stage search then determines
the positions (i, i3) by exhaustively testing all the 8 x 8 = 64 combinations in tracks
Ty and T;,. This will give a total of 16 + 64 = 80 combinations searched. By replacing
T; with Ty, a similar search procedure is performed. Thus, the number of pulse
positions searched in the first assignment is 2 x 80 = 160. For the second assignment,
we also need to follow a similar search procedure. Hence, this search scheme requires
a search of 320 combinations in total. This is about only 3.9% of all the possible
combinations of the pulse positions. It is seen that using this search scheme, the

search time for every frame is fixed.
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TABLE 3.3 STRUCTURE OF THE ALGEBRAIC CODEBOOK

Pulse No Track Positions
0 Ty 0,5,10,15,20,25,30,35
1 T; 1,6,11,16,21,26,31,36
2 7, 2,7,12,17,22,27,32.37
3 T; 3,8,13,18,23,28,33,38
Ty 4.9,14,19,24,29,34 39

TABLE 3.4 SUBSET ASSIGNMENT OF DEPTH-FIRST

TREE SEARCH FOR G729A
First assignment Second assignment
Subsetl i 1> Subset I iy TzorTy
i TiorTy i Ty
Subset2 i, T Subset2 i Ty
iz Ty iz T
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3.4 Proposed Algebraic Codebook Search Scheme

From Table 3.1, it is obvious that the complexity for the algebraic codebook search
has been reduced substantially in G729A compared to that of G.729. In order to
further reduce the complexity, we now propose a new fixed codebook search scheme.
This new search scheme has a structure similar to that of G729 except for two

modifications.

As described in Section 3.2, the fixed codebook search criterion is to maximize
the value of 7,. The codeword with the largest value of 7, will be chosen as the
final codeword. We can imagine 7, as the slope of a graph where the horizontal axis
is energy £, and the vertical axis is the correlation C*. The winning codeword is the
one with the largest slope. It is observed that only a small part of the codeword has a
chance of being the winning codeword, and most of the codewords have, for their
slopes, values that are far less than the value of the slope of the winning codeword
{33]. This gives us a hint that we should focus our search only on those codewords

that have relatively large slopes. This can be achieved in the following way.

Based on the conclusion in [29], it is observed that if the search is focused on the
positions with large values of 7,, defined as

d(m,)

y = — (3.17)
L Plm,m;)

the winning codeword can still be found. It is to be noted that the significance of 7,

lies in the fact that the pulse position with a large value of 7, is more likely to be

the part of the winning codeword. Therefore, the codebook structure in Table 3.2 is
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reordered according to the value of 7, . Those positions with a large value of 7,
are put in the beginning of the codebook and are searched first. An example of a
reordered codebook is presented in Table 3.5. From this table, it can be seen that for
pulse #1, position 25 is the most probable place in Track 7y and position 30 the least
possible place. Therefore, if the search is focused on the first M positions in each
track, the search time should be reduced. There is a trade off between the search
complexity and the speech quality when choosing the value of M. The size of the
search space for each sub-frame is 2 x M* when using the four-nested loop search
scheme. According to [29]}, when M = 5, there is a 97% chance that one of the five
positions might be a member of the winning codeword. Hence, in the proposed search
scheme, the original codebook in G.729 is reordered according to 7, , and the search
focused on the first five pulse positions in each track. It is seen from Table 3.5 that
when M = 5, only those positions in the highlighted area are searched. Using this
modification, the number combinations of the pulse positions reduces to
2 x 5* =1250, when the nested loop search method is used. However, this number is

still far more than that of G729A (320 per sub-frame). To further reduce the pulse

combinations, a second modification is introduced.
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TABLE 3.5 AN EXAMPLE OF REORDERED CODEBOOK

Pulse | Track |M=1 |M=2 |M=3 | M=4 |M=5 |M=6 |M=7 =8

2 T, 21 11 1

3 T, 127 2 32

4 T, 28 33 23
T, )I 29 14 19

Instead of one threshold used in G729, two thresholds are predefined in the
proposed search scheme. The first threshold, threshl, is computed based on the
average and the maximum of the absolute value of the correlation of the first two
pulses, whereas the second threshold, thresh2, is calculated based on the contribution
of the absolute value of the correlation of the first three pulses. After the first two
pulses are added in the search loop, d(m)=d(m,)+d(m,) is compared with threshl
to decide whether to enter the third loop. If this value is smaller than threshl, it means
that the correlation between the target signal x(n) and the impulse response of h(n) is
small at these pulse positions. Hence, these pulse positions are most probably not part
of the winning codeword and thus discarded. Otherwise, the search is continued in the
third loop. When the third loop is entered, d(m)=d(m,)+d(m,)+d(m,) is
compared with thresh2. If d(m) is greater than the threshold thresh2, the search is
continued in the fourth loop. In the fourth loop, since all the positions for the four
pulses are available, the value of 7, is obtained, and this value is compared with the
7, value of the previous codeword. The codeword with the larger value of 7, is

retained. The search is continued for the codeword having the largest value of 7.
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The two thresholds are computed using the following formulas:

threshl = av2+ a,(max2 —av2) (3.18)
thresh2 = av3+ a,(max3 — av3) '

where av2, av3 are the averages of the absolute values of the correlations values due
to the contributions of the first two and the first three pulses respectively, max2 and
max3 are the maxima of the absolute values of the correlations due to the
contributions of the first two and the first three pulses respectively, and «, and a,
are the coefficients that control the values of the two thresholds. Therefore, the search
space is controlled by ¢, and «,. If they are small, the search space is large. A
major concern is an appropriate choice of the values «,, @, and M to control the
search space with little sacrifice in the perceptual quality of the speech. By comparing
the results of various combinations of ¢, @, and M on a variety of speech samples,
it is found that the combination of ¢, = 0.1, @, = 0.4 and M = 5 yields a good
performance in terms of the speech quality and computation complexity. From the
simulation results to be presented later, the average number of combination of pulse
positions searched reduces to 178 with the proposed two modifications, and this
number is about 40% less than that of G729A. In terms of the speech quality, the
average PESQ score is reduced from 3.726 in G.729A to 3.592 in the proposed
scheme; thus, there is almost no degradation in the perceptual quality of the speech.
Figure 3.1 shows an example of the codewords searched for the three different search
schemes. It can be seen that only a small part of the codewords are searched in the
proposed search scheme. These have relatively large absolute correlation values. The

winning codeword is most probably located in this region.
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Figure 3.1 An example of the search space for the different search schemes.
(a) Full search (8192 points) (b) G.729 focused search (736 points)
(c) Proposed focused search (199 points)

Compute Compute @ Maximize Cod
ﬂ Target Signal —»{ Pre-set Pulse - and d and |—py dre.y? _Iie
R Amplitude Reorder the T, = naex
x(n) ¢, Pc,
Codebook

Figure 3.2 Block diagram illustrating the proposed fixed codebook search

A block diagram illustrating the proposed fixed codebook search process is

shown in Figure 3.2. The target signal X(n) is first computed according to (3.2).

Then, the pulse amplitude is pre-set, the correlation matrix d and the matrix & are
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computed according to (3.5) and (3.6) respectively. Next, the fixed codebook structure
is reordered according to (3.17). Also, the two thresholds threshl and thresh2 are
pre-determined using (3.18). Finally, the optimum positions of the four pulses are

obtained by maximizing the value of z, given by (3.7), and the code index

transmitted.

3.5 Simulation Results

In this section, we first present simulation results for the complexity of the fixed
codebook search used in G729, G.729A and the modified coder (which uses the
proposed search scheme incorporated in G.729A). For this purpose, we use 8 Nortel
speech samples. These include 4 female and 4 male speech samples in the English
language. Each sample contains 6 or 7 sentences, each sample having a length of
about 3000 frames. In terms of complexity of the codebook search, the average search
space and the execution time on a general PC as a percentage of the overall execution
time of the coder, are compared for the three coders G729, G.729A and the modified
G.729A. Tables 3.6 and 3.7 present the simulation results in terms of the average
search space and the percentage execution time for the three coders. It can be seen
that the average search space for the proposed scheme is less than 60% of that of
G.729A. Further, the execution time of the proposed search scheme as a percentage of
the overall execution time of the modified coder is substantially reduced in

comparison to the corresponding quantity for G.729A.

Next, we present simulation results concerning the speech quality for the three

coders. When evaluating the speech quality in the time domain, two objective

53



TABLE 3.6 COMPARISON OF THE AVERAGE SEARCH SPACE

Search scheme
G729 G729A Proposed
Speech sample
English (Female) 1025 320 174
English (Male) 1027 320 182

TABLE 3.7 COMPARISON OF THE EXECUTION TIME AS A PERCENTAGE
OF THE OVERALL EXECUTION TIME OF THE CODER

FOR THE THREE SEARCH SCHEMES

Coder

G729 G729A Modified
Speech sample
English (Female) 31.4% 12.7% 8.5%
English (Male) 34.1% 12.5% 82%

TABLE 3.8 COMPARISON OF THE SEGMENTAL SNR IN dB

Coder o
G729 G729A Modified
Speech sample
English (Female) 8.3949 7.9814 8.0116
English (Male) 8.2486 7.7992 7.8571
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distortion measures are generally used, namely, the SNR and SEGSNR. If s(n) is the

original speech sample, §(n) is the coded speech sample and the speech file has N
samples, then the SNR is defined as

¥ 52w

SNR =10log,y 7" (3.19)
Y (s(n) - 3(n))’
n=0

The SNR measures the quality after decoding the entire speech signal and hence, the
segmental detail of the quality of the speech signal is not measured. However, the
SEGSNR overcomes this disadvantage. Suppose the original speech signal s(n) has Ny

number of frames each of length N; and the decoded speech signal is 5(n), then the

SEGSNR is defined by
N, -1
N - 2 Wit ))
SEGSNR = — )'10log, 7%= (3.20)
fo=0 Y (s(Nji+ j)—8(N i+ )’
j=0

The SEGSNR measures the speech quality of the decoded signal frame by frame and
takes the average over all the frames. This measure has a better correspondence to the
auditory quality of speech [2]. However, the SEGSNR is not a good measure when an
entire frame is almost silent. These types of frames yield large negative SEGSNR,
which is not a true indication of the overall performance. To overcome this problem,

such silent frames are discarded from the speech sample.
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In order to compare the speech quality of the three coders, the SEGSNR for each
of these coders is determined by simulation studies using the same 8 Nortel speech
samples mention above. Table 3.8 presents the SEGSNR for the three coders. It is seen
from this table that the SEGSNR is somewhere between those of G.729 and G.729A.
Thus, if SEGSNR is used as a measure of the speech quality, then the performance of

the modified coder is somewhat superior to that of G.729A.

Although the SEGSNR is a better measurement of the speech quality than the SNR,
it still cannot accurately reflect the perceptual speech quality of a CELP speech coder
[2]. Therefore, an objective method is used to estimate the speech quality and is
contained in the ITU-T recommendation P.862 [4]. This standard uses a score for the
purpose of the perceptual evaluation of the speech quality (PESQ), and has a
correlation of 0.935 with the MOS score. Thus, it can accurately reflect the perceptual
speech quality of a speech coder. Based on this standard, the speech qualities of G729,
G.729A and the modified coder are evaluated using 16 Nortel speech samples,
consisting of the 8 speech samples mentioned earlier, and 4 female and 4 male speech
samples in the Chinese language. Each sample contains 6 or 7 sentences, each sample
having a length of about 3000 frames. The PESQ scores for each group of the speech
samples are given in Tables 3.9 to 3.12, and the average scores over all the 16 speech
samples in Table 3.13. It is seen from Table 3.13 that the PESQ score for the modified
coder is reduced only slightly compared to that of G729A. However, the average
PESQ score for the modified coder is 3.6, which is above the minimum level of

acceptable speech quality.
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TABLE 3.9 THE PESQ SCORE FOR THE ENGLISH LANGUAGE SPEECH
SAMPLES (FEMALE SPEAKERS)

Coder o
G729 GT729A Modified

Speech sample

Feng0000 3.627 3.551 3.376
Feng0100 3.716 3.789 3.574
Feng0200 3.763 3.677 3.541
Feng0300 3714 3.626 3.500
Average score 3.705 3.661 3.494

TABLE 3.10 THE PESQ SCORE FOR THE ENGLISH LANGUAGE SPEECH
SAMPLES (MALE SPEAKERS)

Coder .
G729 G729A Modified

Speech sample
Meng0000 3.487 3.475 3.329
Meng0100 3.907 3.847 3.709
Meng0200 3.889 3.823 3.674
Meng0300 3.934 3.844 3.801
Average score 3.804 3.747 3.628

TABLE 3.11 THE PESQ SCORE FOR THE CHINESE LANGUAGE SPEECH
SAMPLES (FEMALE SPEAKERS)

Coder .
G729 G729A Modified

Speech sample
Fchi0000 3.701 3.626 3.475
Fchi0100 3.717 3.664 3.535
Fchi0200 3.727 3.647 3.533
Fchi0300 3.789 3.707 3.597
Average score 3.734 3.661 3.535
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TABLE 3.12 THE PESQ SCORE FOR THE CHINESE LANGUAGE SPEECH

SAMPLES (MALE SPEAKERS)
Coder G729 G729A Modified

Speech sample

Mchi0000 3.935 3.882 3.786
Mchi0100 3.834 3.746 3.602
Mchi0200 3.894 3.863 3.707
Mchi0300 3917 3.844 3.734
Average score 3.895 3.834 3.707

TABLE 3.13 THE AVERAGE PESQ SCORE FOR THE16 SPEECH SAMPLES

Cod
odet G729 G729A Modified
PESQ

Average PESQ score 3.785 3.726 3.592

3.6 Conclusion

In this chapter, the fixed codebook search schemes used in G729 and G.729A have
been described in detail and a new search scheme proposed to reduce the search
complexity. In the proposed search scheme, two thresholds have been introduced to

reduce the size of the search space for the codebook. The codebook structure is

reordered based on the parameter 7, , that depends on the correlation signal and the
elements ¢(m,,m,) of the covariance matrix @ . The average search space has been
reduced significantly by focusing only on the pulse positions with large values of 7,

and large values of the correlation signal d(m). Simulations concerning the search
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complexity and speech quality have been carried out on a general PC using speech
samples from Nortel Net works for the three different fixed codebook search schemes,
namely those of G729 and G.729A, and the proposed one. The simulation results
indicate that, on average, the search space for the proposed scheme is less than 60%
of that of G.729A. However, in terms of the perceptual speech quality, the PESQ score
for the modified coder is slightly fower than that of G.729A. The final PESQ score of
the modified coder is 3.6, which is still above the minimum level of acceptable speech
quality. In the next chapter, we will deal with the results of implementation of G729A

and the modified coder on a DSP board.
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Chapter 4
Implementation and optimization on TMS320VC5416

This chapter describes optimized implementations of G 729A and the modified coder
on the TMS320V(C5416 DSP board. The main purpose of this chapter is to implement
the two speech coders on this board and use the implementation results to compare the
average run-time for the two coders. This chapter contains two major parts. First, the
implementation based on the host channel is tested and the run-time of the initial
implementations of the two coders obtained. Then, two kinds of optimizations are
carried out to reduce the run-time of the initial implementations. The chapter is
organized as follows. Section 1 is an introduction of the basic features of the C5416
DSP board. Section 2 illustrates, in detail, the implementation on the board. Section 3
describes the optimization procedures. Section 4 gives a summary of the

implementations and the optimization results.

4.1 Introduction to the TMS320V(C5416 Board

The TMS320VC5416 DSK is a 16-bit fixed-point digital signal processor in the
TMS320 DSP family [35,36,38,39], which is used by DSP designers to develop
various DSP applications. The C5416 DSP board includes a C5416 based target
hardware and Code Composer Studio (CCS) software. The C5416 has a processing

speed of 160 MHz. Following is a brief review of its basic structure.

(1) Central Processing Unit (CPU)

The C5416 CPU contains a 40-bit arithmetic logic unit (ALU), which includes a
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40-bit barrel shifter, two independent 40-bit accumulators, a 17 x 17 -bit multiplier
coupled with a 40-bit adder for a single cycle MAC (multiply/accumulate) operation,
a compare, select and store unit (CSSU) for the add/compare selection of the Viterbi
operator, an exponent encoder (EXP) to compute the exponent of a 40-bit accumulator
in a single cycle, a data address generation unit (DAGEN), and a program address

generation unit (PAGEN) [36].

(2) Bus structure

The C5416 architecture is built around four pairs of 16-bit buses, in which each pair
consists of an address bus and a data bus. These are the program bus pairs and three
data bus pairs. The program bus pair carries the instruction code from the program
memory. The three data bus pairs denoted by (CAB, CB), (DAB, DB), and (EAB, EB)
interconnect the various units within the CPU. In addition, the pairs (CAB, CB) and
(DAB, DB) are used to read from the data memory, whereas the pair (EAB, EB)

carries the data to be written to the memory.

(3) Memory

The C5416 provides a 16K on-chip ROM, a 64K on-chip single access RAM
(SARAM), a 64K dual access RAM (DARAM) and 256K words of flash ROM. The
memory includes the program memory and data memory. The program memory space
contains the instructions to execute and the tables used in the execution. The data
memory space stores the data used by the instructions. The RAM is always mapped

into the data space, but may also be mapped into the program space when the OVLY
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(overlay) bit is set to 1. The ROM is generally mapped into the program space, but
can also be mapped into data space when the DROM (data ROM) bit is set to 1.
However, on C5416, the ROM can only be used as the program space. Figure 4.1

presents the memory maps for the C5416 that is used in this project.

Hex Program Hex Data

0x0000 0x0000

Reserved Registers
0x007F 0x00SF
0x0080 _ 0x0060 Scrach-Pad

On-Chip 0x007F RAM

DARAMO3 P

(OVLY =1)
halbii On-chip
0x8000 DARAMO3

External
0xBFFF OXTFFF
0xC000 On-Chlp 0x8000
ROM
OXFEFF
0xFF00 On—Chxp
Reserved DARAM47
OxFF7F
OxFF80
Interrupts

OxFFEF OXFFFF

Figure 4.1 Memory maps for the C5416

4.2 Implementation on C5416

This section presents in detail the implementation of the G.729A and the modified
coder on the C5416 DSP board. First, the mechanism of loading the coder to the
C5416 DSP board is introduced. Then the method for collecting the statistical
information of the program is described. Finally, the initial implementation results of

both the coders are presented.

62



4.2.1 Loading the Program to TMS320V(C5416 Board

Data transfer is essential for any digital signal processing application. The TI
DSP/BIOS (basic input-output system) kernel provides basic runtime services to
manage the data transfer [34]. The host channel control and the pipe module handle
the input/output for DSP/BIOS applications. The DSP/BIOS pipes are used to buffer
the streams of the program input and output data. The data transfer is scheduled
through the use of the DSP/BIOS software interrupts (SWI). In this project, the host
channel control module and the pipe module are used to exchange the data between
the host PC and the target DSP board, and the statistics objects (STS) module
employed to gather the run-time information of the different subroutines. We now
describe the procedure to transfer the data between the host PC and the target DSP

board using the host channel.

In order to understand how the host channel works, we look into the pipe object
(Figure 4.2), which is managed by a pipe module and used to internally implement the
host channel. Pipes are designed to manage the I/O block. Each pipe object has a
buffer divided into a fixed number of frames, and each frame is set to a fixed length.
In this project, the frame length is set to 80 samples. This is for the purpose of real
time implementation when the sampling rate is § KHz and frame length is 10 ms.

Figure 4.2 illustrates the two ends of the pipe [34].
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‘Reader

. PIP_alloc . PIP_get
. Writes data into allocated frame . Reads data from frame
. PIP_put (notifyReader) . PIP_free (notifyWriter)

Figure 4.2 The two ends of a pipe

At the writer end, frames of data are written into the pipe, and at the reader end,

frames of data are read out from the pipe. The data notification functions, namely

notifyReader and notifyWriter, are employed to synchronize the data transfer. These

functions are triggered when a frame of data is written or read to notify the program

that the data is available or a frame is free. To read a full frame from a pipe, the

following procedures are performed {34]:

The program first checks the number of full frames available to be
read from the pipe. The program runs the function
PIP_getReaderNumFrames to return the number of full frames in a
pipe object.

If the number of full frames is greater than 0, the function then calls
PIP_get to get a full frame from the pipe.

Before returning from the PIP_get call, DSP/BIOS checks whether

there are additional full frames available in the pipe. If so, the

notifyReader function is called at this time.

Once PIP_get returns, the data in the full frame can be read by the
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application.

The procedures to write a frame to the pipe are quite similar. When a frame of data
is read out from the pipe, the reader end calls PIP_free to clear this frame to the pipe.
Then, the notifyWriter function is triggered to notify the program that a frame is free

and the writer end should call PIP_alloc to allocate the next frame.

The host channel works in a way similar to that of the pipe module, when it is
employed to transfer data between the host PC and the DSP target. Figure 4.3 is the

block diagram of our test system.

Output Channe
Interrupt

Input/Output Host Channel

Software :
Interrupt(SWI) M Service

speech file Control Modulg Routine(ISR)

il

Host PC Target DSP board

Figure 4.3 Block diagram of the data transfer mechanism between the PC
and the DSP board

It can be seen from Figure 4.3 that the input and output channels are controlled by
the host channel control (HST) module and the software interrupt (SWI) module. The
host channel control module is used to manage the input and output streams. The
input streams read the data from the PC to the target DSP board. The output streams
transfer the data from the target board to the host PC. Each host channel is internally
implemented using a pipe object. To use a particular host channel, the program uses
HST getpipe to get the corresponding pipe object and then transfers the data by

calling the PIP_get and PIP_free operations for the input or PIP_alloc and PIP_put

65



operations for the output. In the configuration file, two new channels are added in the
host channel control module, and these are the input_HST and output_HST. Then,
setting the properties of these two channels and binding the speech files in the host PC
to the corresponding channels are carried out. A speech sample file is used as the input
signal to the program. This file is stored in the host PC and is bound to the input
channel. Another speech file, which is created in the host PC, is bound to the output
channel to record the synthesized output speech. An example of binding the

input/output files to the corresponding channels is shown in Figure 4.4.

Host Channel Control
Channel | 'Transtened | Limit| State | Mode |
input_ HS T 179208 QKB Running Input C:\zig\speechsample\SPEECH.IN
output_ HST 166408 O0KB HRunning Qutput C:\zig\speechsample\speech.bit

Figure 4.4 Binding the input/output files to the input/output channels

As illustrated in Figure 4.3, the HST controls one end of the pipe and the SWI
controls the other end of the pipe. The SWI module in DSP/BIOS provides a software
interrupt capability. It is programme-triggered through a call to a DSP/BIOS API
(application program interface) [37]. The SWI is trigged every time there is an empty
frame in the output channel and a full frame of data in the input channel. In the C5416
DSP board, there is a mailbox for each SWI object, which is used to determine
whether or not to post the software interrupt. Since there are two events that must
happen together to trigger the SWI, the SWI_andn API is used to trigger the SWI. As
illustrated in Figure 4.5 [37], the SWI_andn function treats the mailbox as a bit mask.
When the input channel contains a full frame, it notifies the SWI_andn to clear the

second smallest bit of the mailbox; when the output channel contains an empty frame,
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it uses SWI_andn to clear the smallest bit of the mailbox. When the value of its
mailbox becomes 0, the SWI is posted. Therefore, the SWI is posted only when there
is a full frame in the input channel and an empty frame in the output channel. After
the SWI is posted, the interrupt service routine (ISR) is executed. In this project, the

G.729A coder and the modified coder are configured as the interrupt service routines.

Mailbox Value = 3

[ SWI object ]

input_HST object
performs
SWI_andn with
mask =2

Mailbox Value = 1

[ SWI object J

output_HST
object performs

SWI_andn with
mask = 1 Mailbox Value =0

0/0,0|o0j0j0|0{0fj0j0]0|0]O|0O|0O]|O

[ SWI object }——» Software
Interrupt posted

Figure 4.5 The SWI_andn mechanism

Using the host channel is an easy way to deal with the data transfer between the
host and the target board. During the initial implementation of a DSP algorithm, it can

be used to compare the output data file with the expected result. Later, when the
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implementation result is the same as expected, the program is modified, since the host

channel cannot be used for a real-time implementation.

4.2.2 Statistics Object Manager (STS Module)

DSP/BIOS statistics objects are used to track the number of the CPU cycles used by
the various routines during the execution. This module manages the statistics objects,
which store the key statistics while a program runs. Using this tool, we can gather
useful information, such as the number of cycles needed to execute a particular
function and the number of times the function is called. The STS module can obtain
the information for a software interrupt automatically, and is called implicit
instrumentation. However, it can also gather the information for the different parts of
the algorithm by using a pair of functions STS_set and STS_delta, and is called

explicit instrumentation. Here is how these two functions are used:

STS _set(&stsObj, CLK _ gethtime());
> do routine’

STS _delta(&stsObj, CLK _ gethtime());
STS_set saves the value of the CLK gethtime as the contents of the previous value
field (set value) in the STS object. STS_delta subtracts this set value from the new
value passed from the second CLK_gethtime. The result is the difference between the
time recorded before the routine started and after it was completed, that is, the time it
took to execute the routine. The host can display the number of times the routine was

performed, the total time taken to perform the routine, and the average time. In this

project, the STS module is used to collect the information for a few major subroutines
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in the coding process, namely, the LPC analysis, pitch search and the fixed codebook
search. Figure 4.6 shows an example of the Statistics View window. The statistical
information shown in the first line corresponds to the execution of the software
interrupt named newAlgl_SWI, which is the modified coder in our project. The
information shown in the other lines of the Statistics View window is an example of
the explicit instrumentation, which corresponds to a few of the essential subroutines
in the modified coder. It is noted that the result is shown in run cycles. It can be

converted into run-time using the formula

number of cycles X 1000
= ms

160 x 106

atistics View

newdligl _Swi

acelpcode_ST5 200561939175 inst 5346893.94
ipc_STS 3357505487 inst 895096.11
oldacelpcode_ _STS 3702747978 inst 493568.11
openPitch_57TS 20647567889 inst 550455.02

Figure 4.6 An example of Statistics View window

4.2.3 Implementation Results

Since this implementation is bit-exact with the ITU-T standard, the output speech file
is the same as that obtained on a general PC. Therefore, it is not necessary to have a
comprehensive test of the speech quality on a number of speech samples, as has been
done in Chapter 3. The speech sample used in this test is from the G.729A standard. It
has a length of 3751 frames. Table 4.1 illustrates the average run-time for the G729A

and a few of its subroutines, and Table 4.2 the corresponding results for the modified
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coder. In these tables, the average run-time is the total run-time divided by the number
of frames in the speech sample. It can be seen from these tables that the average
run-time of the modified fixed codebook search is reduced by about 30% compared to
that of the search algorithm in G729A. However, the average run-time of the two
coders are still far beyond the real-time requirement of being able to process one
frame in 10 ms. Therefore, some optimization procedures are carried out in the next

section to reduce the run-time of the two coders.

TABLE 4.1 IMPLEMENTATION RESULTS OF THE G 729A CODER

STS Object Tot';llle r;rz;;i:;e( r1;osr) all | Average rlzrr;—sti)me /frame
G.729A 165081.51 44.01
Fixed Codebook Search 32521.17 8.67
LPC Analysis 21005.6 5.60
Open Loop Pitch Search 12903.44 3.44

TABLE 4.2 IMPLEMENTATION RESULTS OF THE MODIFIED CODER

STS Object Totirftg;xtli;rsle( riosr) all | Average rlgln-st;me /frame
Modified Coder 155591.48 41.48
Fixed Codebook Search 23106.16 6.16
LPC Analysis 21005.6 5.60
Open Loop Pitch Search 12903.44 3.44

4.3 Optimization of the C Code

In order to reduce the run-time of the two coders, some optimization procedures are
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employed. The optimization procedures consist of compiler optimization and

replacing the basic operations with C5416 intrinsic functions.

4.3.1 Using C5416 DSK compiler optimization

The C compiler is able to perform various optimizations. The compiler tools include
an optimization program that improves the execution speed by performing such tasks
as simplifying loops, rearranging statements and expressions, and allocating variables
into registers [40]. High-level optimizations are performed in the optimizer and

low-level, target-specific optimizations occur in the code generator (Figure 4.7).

*C Saurce Eile - o » x| castii File

Figure 4.7 Compiling C program using optimizer [40]

There are four options to control the file-level optimization when compiling the

program. These four options are:

-00 Optimizes register usage, eliminates the unused code and simplifies

the expressions and statements.

-01 Uses —00 optimizations and optimizes locally.

-02 Uses —ol optimizations and optimizes globally.

-03 Uses —02 optimizations, removes all the functions that are never called,

simplifies functions with return values that are never used.

In our project, the —03 option is used and is combined with other compiling
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options such as the ~pm and —op options. The —pm option is used when compiling
multiple source files. The —op option is used to control the program level optimization.
It indicates as to whether the functions in the other modules can call a module’s
external functions or modify the module’s external variables. When this program level
optimization is used, the compiler performs several optimizations that are rarely used
during file-level optimizations [40]. These optimizations include the following: (a) if
a particular argument in a function always has the same value, the compiler replaces
the argument with the value and passes the value instead of the argument, (b) if a
return value of a function is never used, the compiler deletes the return code in the
function, and (c) if a function is not called directly or indirectly by the main function,
the compiler removes the function. There are four possibilities that can be selected for

the —op option:

-op0 specifies that the module contain functions and variables that are called or

modified from outside the source code provided to the compiler.

-op1 specifies that the module contains variables modified from outside the source
code provided to the compiler but does not use functions called from outside

the source code.

-op2 specifies that the module contains neither functions nor variables that are

called or modified from outside the source code provided to the compiler.

-op3 specifies that the module contains functions that are called from outside the

source code provided to the compiler, but does not use variables modified
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from outside the source code.

In this project, since the modules of the algorithm contain neither functions nor
variables that are called or modified from outside the source code, the -op2 option is
used in our program. Therefore, the option for the compiler optimization is a

combination of —03, -pm, and —op2.

4.3.2 Using Intrinsic Functions of C5416 to Replace C Functions

Code Composer Studio (CCS) provides some intrinsic functions such as calling
functions in C/C++ and produce assembly language, that can be used [40]. The
compiler in C5416 recognizes a number of intrinsic functions, which can be
conveniently used to reduce the execution cycles for these functions. It is very
convenient to use the intrinsic operators in the C program and get a more efficient
code at the same time. Most of the intrinsic functions in C5416 have the same formula
as the C functions in the G.729A, and the overflow control mechanism is also the
same. Therefore, most of the functions in the basic_op.c of the modified coder are
replaced with the corresponding intrinsic functions in C5416. Table 4.3 lists all the
C-functions and the corresponding intrinsic functions replacing them. Since the
intrinsic functions are written in the assembly language, the program after using the

intrinsic functions is much more efficient than the original C program.
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TABLE 4.3

Word 16 abs_s(word16 varl)

Short _abs(short src)

INTRINSIC FUNCTIONS USED IN THE MODIFIED CODER

Creates a 16-bit absolute value

Word32 L_abs(word32 L_varl)

Long _labs(long src)

Creates a 32-bit absolute value

Word 16 norm_s(word16 varl)

Short _norm(short src)

Produces the number of left

shifts needed to normalize src

Word16 norm_i(word32

Short _norm(long src)

Produces the number of left

L_varl) shifts needed to normalize src
Adds two 16-bit integers,
Word16 add(word16 varl, Short _sadd(short srcl, short . )
producing a saturated 16-bit
word16 var2) src2)
result
Adds two 32-bit integers,

Word32 L_add(word32 varl,
word32 var2)

long _lsadd(long stcl, long
src2)

producing a saturated 32-bit

result

Word32 L_mac(word32 var3,

word16 varl, word16 var2)

Long _smac(long src, short opl,

short op2)

Multiplies opl and op2, shifts
the result left by 1, and adds it
to src, produces a saturated
32-bit result

Word32 L_msu(word32 L_var3,

word16 varl, word16 var2)

Long _smas(long src, short opl1,

short op2)

Multiplies opl and op2, shifts
the result left by 1, and subtracts
it from src, produces a saturated

32-bit result

Word 16 mult(word16 varl,
word 16 var2)

Short _smpy(short srcl, short
src2)

Multiplies srcl and src2, and
shift the

Produces a

result left by L.
saturated  16-bit

result

Word32 L_mult(word16 varl,
word16 var2)

long _Ismpy(long srcl, long
src2)

Multiplies srcl and src2, and
shift the result left by 1.
Produces a saturated 32-bit

result

Negates the 16-bit value with

Word 16 negate(word16 varl) Short _sneg(short src) saturation. _sneg(0xffff8000)
=>0x00007ffff
Negates the 32-bit value with
Word32 L_negate(word32 .
L D long _lsneg(long src) saturation. _sneg(0x80000000)
-var —>Ox7EEFEEE
Subtracts src2  from  sicl.

Word16 sub(word16 varl, Short _ssub(short srcl, short . ]
Producing a saturated 16-bit
word16 var2) src2)
result
Subtracts src2  from srcl.

Word32 L_sub(word32 L_varl,
word32 L._var2)

long _ssub(long src1,longsrc2)
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The optimized implementation results of the two coders are presented in Tables
4.4 and 4.5. All the results contained in Tables 4.1, 4.2, 4.4 and 4.5 are summarized in
Table 4.6. From this table, it is clear that the optimization process has been very
effective in that there is an 81% reduction in the runtime of the codebook search
algorithms of the two coders and a 78% reduction in the runtime of the coders
themselves. Finally, it is observed that the average runtime for the proposed codebook
search algorithm is reduced by 30% and the runtime for the modified coder by 6%

compared to the corresponding run times for the G.729A coder.

TABLE 4.4 OPTIMIZATION RESULTS OF THE G.729A CODER

STS Object T;);ﬂa;r?};:rfrrlz II(11;1:) Average ru(rrlr—lzi)me / frame
G.729A 35709.52 9.52
Fixed Codebook Search 6114.13 1.63
LPC Analysis 5664.01 1.51
Open Loop Pitch Search 2513.17 0.67

TABLE 4.5 THE OPTIMIZATION RESULTS OF THE MODIFIED CODER

STS Object T;)Ot:laﬁntfll;:r;z IS;S) Average rtg;;l)me / frame
Modified Coder 33796.51 9.01
Fixed Codebook Search 4201.12 1.12
LPC Analysis 5664.01 1.51
Open Loop Pitch Search 2513.17 0.67
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4.4 Summary

In this chapter, the G729A and the modified coder have been successfully
implemented on the TMS320VC5416 platform, and the initial implementation results
further optimized to reduce the run-time of the two coders. It has been found that the
run-time for the proposed fixed codebook search scheme has been reduced by about
30% compared to that of the G.729A search scheme. This result should be compared
to that obtained in Chapter 3, wherein the average search space for the proposed fixed
codebook search scheme was 40% less than that of G729A when both of the

codebook search algorithms were run on a general PC.

On an average, it takes about 9 ms to run the optimized modified coder on C5416
DSP platform. However, in terms of the worst case, the run-time is slightly larger than
10 ms. Furthermore, in real time implementation, the coding and decoding process
should integrate with other algorithms, such as the VAD and echo cancellation
algorithms, to get a better bandwidth efficiency and better speech quality. Therefore,
further work needs to be done on the program to meet the real time implementation
requirement. For the coding process, most of the time-consuming signal processing
functions should be written in assembly language instead of using only the intrinsic

functions.

76



TABLE 4.6 COMPARISON OF THE RUN-TIMES (MS) OF THE TWO CODERS

G.729A Modified Coder
SWI/ Function Before After Reduced | Before After Reduced
Optimizations Optimizations by (%) Optimizations Optimizations by (%)
Totat coding process 44.01 9.52 78 41.48 9.01 78
Fixed codebook search 8.67 1.63 81 6.16 1.12 82
LPC Analysis 5.60 1.51 73 5.60 1.51 73
Open Loop Pitch Search | 3.44 0.67 80 3.44 0.67 80
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

Low-bit-rate speech coders are widely employed in most of the existing packet voice
communication systems to improve bandwidth efficiency, and there is a high demand
for low complexity speech coders. In this thesis, our research has focused on further
reducing the complexity of the standard speech coder, namely, G729A. Since the
fixed codebook search accounts for about 30% of the total coding process, a fixed
codebook search algorithm has been proposed to replace the existing search scheme in
G.729A. In the proposed fixed codebook search scheme, two modifications have been
incorporated in G.729 using a focused search method. First, the fixed codebook
structure has been reordered and the search focused on the first five pulse positions in
each track. Then, two thresholds, which depend on the average and maximum
absolute values of the correlation values of the first two and the first three pulses,
have been defined. By appropriately choosing these parameters that control the values
of the two thresholds, the average codebook search space has been reduced
significantly, without much degradation in the perceptual speech quality. The
simulation results on a general PC indicate that the average codebook search space for
the proposed algorithm of the modified codec is reduced about 40% compared to that
of G729A. As to the perceptual speech quality, the PESQ score is reduced to 3.592

from 3.726 for the G.729A coder. This score is still above the minimum level of
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acceptable speech quality.

Another contribution of the thesis is the implementation of the G.729A and the
modified speech coder on the TI 16-bit fixed point TMS320VC5416 DSP board.
The initial implementation results of the two coders have been optimized to further
reduce the run-time of the speech coders. The implementation results show that the
run time of the proposed fixed codebook search scheme is reduced by about 30%
compared to that of the G729A codec, thus confirming the effectiveness of the
proposed fixed codebook search scheme. According to the optimized results on the
C5416 platform, the final run-time for the modified coder has been reduced to 9.01

ms from 9.52 ms of that of the G.729A codec.

5.2 Scope for Future Research

Further work could be carried out on further optimizing the C code for real time
implementation. Although considerable reduction of the run-time has been achieved
by using the intrinsic functions of the DSP board, it is not the most efficient way. It is
better to use the assembly code to rewrite those functions that consume heavy
computation. In G729A speech coder, three of the signal processing filters are used
frequently and consume much of the computation. These three filters are Residu( ),
Convolve( ) and Syn_filt( ). In order to further reduce the run-time of the speech coder,
these filters must be implemented using assembly language and optimized. Finally,
other algorithms such as the voice activity detection (VAD) and echo cancellation
need to be combined with the speech coder to enhance the bandwidth efficiency and

the speech quality.
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APPENDIX

In this appendix, a brief description of the programs developed for this thesis is given.
The programs are developed on TI TMS320V(C5416 DSK board. A CD-ROM
containing these programs is included in this thesis. The list of the programs along

with their descriptions are given below:

acelp.c find algebraic codebook

basic_op.c basic operators

bits.c bit stream manipulation routines

cod_ld8a.c main coder function

coder.c main codec function. In this function, the coder and the decoder are
combined.

cor_func.c correlation functions

de_acelp.c algebraic codebook decoder

dec_gain.c decoding the pitch and codebook gains

dec_lag3.c decoding of fractional pitch lag with 1/3 resolution

de_ld8a.c main decoder routine

dspfunc.c contain three DSP functions: Pow2, Log2 and inv_sqrt
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filter.c

Ipc.c

pitch_a.c

post_pro.c

postfilter.c

pre_proc.c

pred_It3.c

qua_gain.c

tab_ld8a.c

newAlgl.cdb

newAlgl.cmd

three filter functions to compute the convolution, residual signal and

synthesis filter

LPC anal}ysis function

pitch related functions

post-processing of output speech

performs adaptive post-filtering on the synthesis speech
preprocessing of the input speech

Compute the result of long-term prediction with fractional

interpolation of resolution 1/3
quatization of the adaptive codebook gain and fixed codebook gain
contains all the tables used by the modified codec

The configuration file for the implementation on the C5416 DSP

board

The command file for the implementation on the C5416 DSP board
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