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Chapter 1

Introduction

In the last few decades, digital communication has been undergoing rapid development.
This development is principally attributed to the progress made in microelectronics,
which allows most of the tasks in a communication receiver to be implemented in a
digital manner. The present VLSI and ASIC technology have made it possible for a
receiver to be integrated on a small chip. The cost of a digital receiver thus depends
heavily on the rate of the transmitted signal as well as the local sampling rate. It is of
crucial importance to reduce the sampling rate as much as possible in order to decrease
the receiver cost. Symbol synchronization is one of the core tasks at the front end of a
receiver. The received continuous-time signal is sampled in the receiver and the sampling
clock should be synchronized with the symbol clock in the transmitter such that the
transmitted information symbols can be correctly detected. If the local sampler is not
synchronized withv the in-coming signal, symbol synchronization or symbol timing
recovery is required. It is well known that the mismatch between the sampling clock in
the transmitter and that in the receiver would cause inter-symbol interference (ISI), which
may deteriorate dramatically the bit-error-rate (BER) performance of the communication

system. Therefore, it is imperative to develop efficient symbol synchronization
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techniques, especially those that are very suitable for a digital implementation.

1.1. A Brief Review

Many symbol synchronization techniques have been proposed so far to combat the
inter-symbol interference [1-17]. In conventional receivers, the symbol synchronization is
performed using a feedback loop that controls the phase of the sampling clock. In 1960’s ,
feedback symbol synchronization techniques were implemented by analog circuits in
which the phase locked loop technique is utilized. In this technique, the received signal is
sent to a nonlinear device, where a signal representing the timing error can be generated.
This error signal is then feed into an analog voltage controlled oscillator (VCO) to control
the phase of the sampling clock. Later on, with the development of the VLSI technology,
it became possible to implement symbol synchronization by digital devices such as
digital signal processor (DSP), where the traditional VCO is replaced with a numerically
controlled oscillator (NCO) on the phase-locked loop. The digital realization of the
synchronization task has exhibited many advantages such as the reduction of the receiver
size, and the high precision and reliability of the timing recovery which is, unlike the
analog realization, less sensitive to the temperature variation. In recent years, therefore,
the investigation of timing recovery has been focusing mainly on the implementation of a
fully-digital receiver in which an intermediate frequency (IF) input signal is sampled first

with a fixed system clock, and then processed in a digital format [4] -[17].
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In addition to the feedback recovery technique, another broad class of symbol
synchronization methods is the so-called feedforward synchronization, which is known to
be ideally suited for implementation by DSP or ASIC chips. In the feedforward
synchronization, the symbol timing offset is first estimated and then exploited for
interpolation among the signal samples in order to reconstruct the original symbols
transmitted by the transmitter. The feedforward scheme is also found very suitable for
burst-mode communication systems because of its short acquisition time in capturing the
symbol timing of the received signal. Compared to continuous communication, a burst
communication system only transmits tens to hundreds of symbols without interruption
and therefore, it needs a rapid synchronization algorithm. The transmission of the signal
in the burst mode very often appears in wireless communications. The time division
multiple access (TDMA) system, which enables multiple users to communicate with each
other through different time slots over a common transmission channel, is one of such
example. The TDMA system has been adopted by a number of communication standards
such as GSM, DAMPS and IEEE 802.11b. The frequency hopping communication,
which is widely used in military systems, is another example of burst-mode
communication. As such, there has been a growing research interest in feedforward
timing recovery techniques [10-17].

The digital square timing recovery algorithm proposed by Oerder and Meyr [10] is
probably one of the earliest and most efficient feedforward recovery algorithms. It

extracts the timing information from the squared signal by computing the spectral
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component at the symbol rate, yielding an unbiased estimate of the timing phase. The
Oerder and Meyr algorithm enables a VLSI realization of the digital receivers, which
operate on a sampled input signal without any feedback to the sampling device. In [11],
the Oerder and Meyr algorithm has been used for symbol synchronization in 16-QAM
(Quadrature Amplitude Modulation) TDMA receivers, showing a satisfactory
synchronization performance in both the AWGN (Additive White Gaussian Noise) and
slow Rayleigh fading environments, when a sampling rate of 4 samples/symbol was used.
More recently, a feedforward synchronization method has been proposed for the
simultaneous symbol timing and carrier phase estimation [12]. In this method, the
auto-correlation of the preamble in the received signal is exploited to compute the
sampling time mismatch, leading to a fast estimation of the symbol timing error. This
method requires only two samples per symbol period and is very suitable for the
DSP/ASIC implementation. As this method needs a preamble inserted in each data frame,
it belongs to the category of the data/preamble aided feedforward symbol synchronization.
Some of the other feedforward synchronization techniques can be found from the recent

literature [13] — [17].

1.2. Motivation and Objective

In order to reduce the implementation complexity of the timing estimation and

interpolation, the lowest possible sampling rate would be preferred provided that the
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targeted signal-to-noise ratio can be met. Although many new symbol synchronization
techniques have been proposed in the recent literature, there is little work published that
considers non-data-aided (NDA) feedforward symbol synchronization at a very low
oversampling rate for burst communications. Although the Oerder and Meyr algorithm
makes it possible to compute the timing estimate directly without using a feedback loop,
and has reduced the implementation complexity for the receiver, yet it requires at least
four samples/symbol sampling rate. This may be critical for some applications, where the
cost of receiver depends heavily on the local sampling rate such as in a mobile cellular
telephone. The auto-correlation algorithm [12] is able to perform a fast timing estimation
at 2 samples per symbol, but it needs a preamble in the transmitted signal to help estimate
the timing mismatch. Driven by the need to develop simple, cheap and efficient timing
offset detectors, the study of the feedforward synchronization techniques is highly
motivated. The objective of this thesis is to develop a few efficient feedforward timing
recovery schemes that use two samples/symbol sampling rate, with emphasis on a fast
and accurate estimation of the timing offset. As a part of the research goal, the
implementation issues related to the proposed synchronization techniques are also

investigated.

1.3. Organization of the Thesis

The rest of the thesis is organized as follows.



Chapter 2 provides an overview of some of the existing symbol synchronization methods.
Firstly, the synchronization issues in a typical digital communication system, including
carrier and symbol synchronizations, are addressed with emphasis on the symbol
synchronization technique and its categorization. Secondly, two broad classes of symbol
synchronization methods, namely, the feedback and feedforward schemes, are described,
showing both their advantages and weakness, as well as the importance of the
feedforward method in burst mode communication systems. Thirdly, a more detailed
review of both the feedback and feedforward synchronization techniques is given,

indicating the research focus of the last decade in the area.

In Chapter 3, an in-depth study of a class of feedforward symbol timing recovery method
for digital receivers is carried out. The research focus is on the development of a symbol
timing estimation algorithm that uses two samples/symbol sampling rate and on the
performance analysis. The proposed algorithm consisting of modulation, filtering,
squaring and averaging operations on the sampled baseband signals is analyzed in terms
of the mean and variance of the estimated symbol timing offset. A simulation study of the
proposed algorithm is also carried out with various simulation results for different
parameters such as the rolloff factor, the length of the estimation interval and the order of
the lowpass filter used in the algorithm. Some of the implementation issues of the

proposed method are also addressed in this chapter.



Chapter 4 presents a few improved algorithms for the estimation of the timing offset.
First, a scheme using both the in-phase and the quadrature baseband signals is proposed
in order to reduce the variance of the timing estimate. Then, a Kalman filtering-based
post-processing strategy is considered for further smoothing the estimated timing, for
which a few simple yet efficient smoothing schemes are proposed and simulated,
resulting in a significantly reduced variance of the timing estimate in comparison to the
basic timing estimation algorithm presented in Chapter 3. The computational complexity

of the improved timing estimation algorithms is also discussed.

Chapter 5 concludes the thesis by summarizing some of the research results and

providing some suggestions for future study.



Chapter 2

Overview of Symbol Synchronization Techniques

In this chapter, a typical digital communication system that comprises some major
function blocks in both the transmitter and the receiver is first described, with which the
synchronization issue is addressed. Then, some of the principal symbol synchronization
techniques existing in literature are reviewed, showing their strengths and drawbacks.
The emphasis of this chapter is placed on the category of the synchronization algorithms
that can be implemented digitally, based on which some efficient feedforward

synchronization techniques are developed in the succeeding chapters.

2.1. Synchronization Issues in Communication Systems

2.1.1. A Typical Synchronous Communication System

Fig 2.1 shows a typical digital communication system that contains major constituent
blocks in the transmitter and the receiver. The source encoder in the transmitter is to
perform signal/data compression to create properly a binary sequence that is suitable for

further processing and transmission. The channel encoder is to add some redundancy bits
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into the binary sequence for the purpose of correcting bit errors due to transmission. With
channel encoding which is also called forward error control (FEC) coding, the BER
performance of a communication system can be significantly enhanced. The modulator
does the baseband modulation, which typically includes the bit-to-symbol mapping, the
in-phase (I) and quadrature (Qj signal modulation and pulse shaping. The radio frequency
(RF) modulation is usually the last step in the transmitter, which converts the analog

baseband signal to the high frequency passband signal for wired or wireless transmission.

Data Input [—P> Source 1 Channel ——» Modulator [——P RF
Encoder Encoder
Channel
Data Output [« Source — Channel Demodulator . [——— RF
Decoder Decoder ¥ :

Fig 2.1. Basic structure of a digital communication system
In the receiver side, an inverse process of coding and modulation carried in the
transmitter is performed, namely, the received analog signal is first demodulated by radio
frequency in the analog domain and then converted to a digital baseband signal in the
demodulator for synchronization, I and Q demodulation and symbol detection, etc. The
demodulated baseband signal is then mapped back to a binary stream for channel
decoding and source decoding.

As there might be a small frequency error between the carrier frequency in the transmitter



and that in the receiver, causing the received I and Q signals to be rotated at a constant
rate, a carrier synchronization is usually required in a coherent receiver in addition to the
symbol synchronization. The carrier frequency synchronization is to estimate the
frequency offset and instantaneous carrier phase, and then use them for the correction of

the signal constellation. In this study, we deal with the symbol synchronization only.

2.1.2. The Classification of Symbol Synchronization

Many symbol synchronization algorithms have been developed for a digital receiver.
They can be divided into two broad categories, the feedback synchronization and
feedforward synchronization. Under each category, the synchronization methods can be
further classified as independent symbol synchronization, and joint carrier recovery (CR)
and symbol synchronization. Moreover, irrespective of whether it is the independent
feedforward or the independent feedback synchronization, the symbol synchronization
algorithm belongs to one of the three categories, namely, data-aided (DA) method,
non-data-aided (NDA) method and decision-directed (DD) method.

Data-aided (DA) method uses a predefined training sequence called the preamble to aid
the timing recovery. This method has an advantage of reducing the synchronization time.
But using a preamble would occupy extra bandwidth, leading to less efficient utilization
of the channel resource.

Non-data-aided (NDA) method estimates the timing information from the transmitted
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signal itself without using a training sequence/preamble. Therefore, the channel resource
is fully exploited. However, the performance of the NDA symbol synchronization
techniques is generally lower than that of the data-aided techniques.

Decision-directed (DD) method makes use of the output of the receiver’s decision device
to aid the symbol synchronization. This technique also has a short acquisition time while

rendering the receiver to be more complicated due to the involvement of a decision

device.
Symbol Synchronization Techniques
Feedforward Feedback
Techniques Techniques
Joint CR and Independent Joint CR and Independent
Feedforward Feedforward Feedback Feedback
Symbol Symbol Symbol Symbol
Synchronization Synchronization Synchronization Synchronization
ffENofn-Data ‘: Decision Data Non-Data Decision Data
. Ajidedg Directed Aided Aided Directed Aided

Fig 2.2. Classification of symbol synchronization
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Fig.2.2 illustrates a tree diagram for the classification of the symbol synchronization
techniques. The major difference between the feedback and feedforward methods lies in
that the former uses a closed-loop system or a phase-locked loop to control the phase of
the sampler and the latter is an open loop system that uses a free-running sampler without
requiring a feedback loop. It is known that the feedforward scheme is well suited for a
digital implementation with DSP or ASIC chips. Therefore, we focus on the category of

feedforward and non-data-aided synchronization technique in this study.

2.1.3. Feedforward Synchronization and Burst Mode Communication

Typical applications of burst communication include time division multiple access
(TDMA) digital celluar radio systems such as the GSM, DAMPS and IEEE 802.11, and
frequency hopping (FH) communication systems. In TDMA systems, each user transmits
information in the allocated time slot. All users can receive the transmitted information
from each user and should be able to determine whether the information was sent to them.
In FH communication systems, the carrier frequency for each user varies in a
pseudo-random way. Both the TDMA and FH systems belong to burst-mode
communication system. For example, in FH systems, user’s information is broken into
bursts and transmitted at different carrier frequencies. These bursts are, in general,
packets of tens to hundreds of symbols. Similarly, in TDMA systems, each user’s data are

packed and distributed to different time slots, forming a burst mode communication
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system.

TDMA  Frame
e > Other Frame
User 1 User 2 User3 | ... | ... User k User 1 User 2 User3 | ... | ... User K
e
Burst
Preamble | Header Data
Guard Time Guard Time

Figure 2.3. TDMA time slot architecture

Figure 2.3 shows the time slot architecture of a TDMA system. Note that guard times
are usually required at the beginning and the end of each slot to avoid the overlap
between the adjacent bursts. The use of burst mode transmission will increase the
complexity of the demodulator compared with the continuous mode system.

Generally, each burst contains a preamble or a predefined sequence, header and data,
where either the preamble or data can be used for synchronization, i.e., symbol timing
and carrier recovery, depending on whether data-aided or non-data-aided synchronization

method is used. Regardless of the type of synchronization scheme employed, the
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synchronization should be completed within the burst time. Therefore, a fast acquisition
of symbol timing information is highly desirable. In comparison to the feedback scheme,
a feedforward algorithm usually provides a much faster timing estimation. As such,
feedforward synchronization is favorably considered in burst mode communication
systems. A more detailed review of feedback and feedforward algorithms will be

provided in the following sections.

2.2. Feedback Timing Recovery Techniques

2.2.1. A Example of Traditional Feedback Synchronization

Fig 2.4 shows a typical PSK (phase shift keying) demodulator with feedback symbol and
carrier synchronization. The symbol synchronization block is detailed in Fig. 2.5, where
the phase-locked loop is used for the symbol-timing tracking. The PLL-based error
tracking synchronization is a traditional synchronization technique. The received and
referenced signals are input to a nonlinear processing block, which can calculate the
timing error signal. The error signal is passed through a loop filter to get a lower variance
and then to drive a voltage controlled oscillator (VCO) to gencrate the symbol timing
clock. This clock is used to sample the received signal taken at the instant of maximum
eye opening point. The timing error detector (TED) in Fig. 2.5 is employed to determine

if the current sampling clock is advanced or retarded to the right symbol timing phase. In
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the following subsections, we will investigate a few typical feedback algorithms.

[

» Sampler

A

A
Symbol M
" | Synchronization
Received
Signal Carrier
"| Synchronization
A\

v

Signal
Pulse
Generator

90°
Phase Shift

[ S

foad

A

v

Data
Decision

h 4

A

Sampler

Fig 2.4. The structure of traditional PSK demodulator with synchronization

Received
signal imi
p| TimingError | g .00 Filger
Detector
Referenced
Signal
< veo
Symbol
Timing
Clock Oscillator

Fig 2.5. Basic PLL based Error Tracking Synchronization
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2.2.2. Early-Late Gate Symbol Synchronization

Early-late Gate synchronization exploits the symmetry character of the received signal.
Because of the noise, it is difficult to sample at exactly the peak point of the pulse.
However, one can sample the signal at an early point (sampling time t = peak point -5 ),
and a late point ( t = peak point +§ ) as shown in Fig. 2.7. Obviously, the absolute values

of the samples at the early and late points are smaller than the samples at the peak point.

Peak Point

‘/Late Point

Fig 2.6. Peak point sample and early & late point samples

Fig. 2.7 shows the architecture of the early-late gate symbol synchronizer. The received
signal is multiplied with the generated symbol waveform and integrated over the symbol

interval T. The signal is sampled ahead of the estimated optimum timing in the top branch
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and it is sampled behind the optimum sampling instant in the bottom branch. The early
and late sampled signals are squared in the square law device and compared to form an
error signal. The error signal is then sent to the loop filter in order to reduce its variance.
The smoothed error signal drives VCO to create the desired optimum sampling clock.
Using the optimum sampling clock, a symbol waveform can be generated, which is fed
back to the received signal to compute the new correlation function for further tracking

the sampling phase.

4 L Square law
.,®_. L()dt » Sampler > " device

A A
Advance
By o
Received
Signal Symb()l LOOp )
waveform < VCO <—— pier +
generator
Symbol
timing - Retard
By 0
\ J
Square law
4><§§>—> f()a’t — Sampler ———» ", o

Fig 2.7. Early-late symbol synchronization
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2.2.3. Discrete-Time Feedback Symbol Synchronization

Over the last decade, the investigation of feedback symbol synchronization has focused
on the implementation of a fully-digital receiver with a digital feedback timing recovery
algorithm. As shown in Fig. 2.8, the input signal is first sampled with a free-running fixed
clock. The timing error detector (TED) is employed to estimate the timing phase error,
which will be smoothed by the loop filter. The smoothed timing error is then used to
control an interpolator. The interpolator is to reconstruct the right symbol from the signal
samples. As the feedback algorithm needs a longer period of time, usually hundreds of
symbols, to get the initial phase, it is not suited for burst mode communication systems

especially with short bursts.

Output

—P A/D —» Interpolator ——® Decimator >

A

Timing Error
Detector

Fixed Clock

Controller |€——— FI;‘l)t(::l:‘ g

Fig 2.8. Fully digital feedback symbol synchronization
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2.3. Feedforward Timing Recovery Techniques

There has been a growing interest in feedforward recovery techniques. Since a
feedforward scheme is able to achieve a fast estimation of the timing without requiring a

feedback control loop, it is very suitable for burst-mode communication systems.

2.3.1. General Structure of Feedforward Synchronization

Fig. 2.9 shows a fully-digital implementation of NDA feedforward timing recovery. First,
the input analog baseband signal is sampled by a free-running oscillator. The sampled
signal is stored in data buffer to wait for interpolation. The TED is to estimate the symbol
timing phase from the sampled signal. This timing phase, measured as a fraction of the
symbol duration, is then used to determine the interpolator coefficients. The interpolator,
usually implemented as an FIR filter, reconstructs the optimal signal sample near the
maximum eye-open instant. The interpolator coefficients should be updated on a
symbol-by-symbol basis. The precision of the interpolation depends on the timing

estimate and the number of samples used for the interpolation.
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—p A/D > Data ———————® Interpolator —»

Buffer
Timing error Coefficient
. L AU
Fixed Clock detector Update

Fig 2.9. Digital Feedforward Timing Recovery Scheme

The use of a free-running oscillator has avoided the VCO in the analog front end and
hence reduced the complexity of the receiver. It also allows for a fast acquisition of the
symbol timing phase and therefore, it is well suited for high bit-rate communication

recelver.

2.3.2. Maximum Likelihood (ML) Feedforword Symbol Synchronization

Fig. 2.10 shows a simplified baseband transmission model which contains the transmit
filter G, (@), the AWGN channel and the receive filter G(@). The input symbols a,

are sent to the transmit filter for pulse shaping to create a baseband analog signal. The
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receive filter serves as the matched filter, which is to pre-process the received signal plus
noise in the front end of the receiver. The overall frequency response for the channel can

be written as

Channel

—> GT(UO) GR(w )_>

n'(1)

Fig 2.10. Equivalent Baseband Model of digital transmission

G(2) =G, (0)G,(a) @)

whose time-domain impulse response can be expressed as the following convolution
g(t)=g,()*g; (). (2-2)
Very often, G,(w) as well as Gp(®) are designed to be a root raised cosine filter

such that the overall frequency response G(@) is of the raised cosine characteristic,
which is well known to be very efficient for signal transmission.

Clearly, the signal arriving at the receive filter can be written as
r'(t)y=s'"(t)+n'(t) (2-3)

where
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s' ()= a,g,(t—&—kT) (2-4)
k

represents the transmitted baseband signal. In (2-4), € is the symbol timing offset, and T
the symbol duration used in the transmitter. The output of the receive/matched filter can
be expressed as

r(t)y=Y a,g(t—&—kT )+ n(1) 2-5)

k

where

n(t)=n'(t)* g (7). (2-6)
The signal model assumed above will also be used in Section 2.3.4 and the succeeding
chapters.
In maximum likelihood estimation, the received signal is sampled at the symbol rate and
then a log-likelihood function is defined over N symbols. It has been shown that the

log-likelihood function can eventually be expressed as [34]

N
A(m)y=2 |rGT,7) 2-7)
i=1
with
r(iT ,7) = iakg (iT —tT - kT )+ n(iT) (2-8)
k=—o

where 7 represents the normalized timing offset measured as a fraction of the symbol

duration, which can be determined by maximizing the log-likelihood function A ; (r).
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Fig. 2.11. Maximum likelihood feedforward symbol synchronization Scheme I

Fig. 2.11 illustrates a digital implementation of the feedforward maximum likelihood
symbol synchronizer in which L branches have been used to compute and compare the
likelihood functions obtained from the sampled signals with different delays. The L
branches give the minimum discernable timing error of T/L. Fig. 2.12 depicts another
implementation of the feedforward ML symbol synchronizer. Instead of using L samplers,
this implementation employs one sampler that oversamples the received signal by a factor

of L. The high-rate sequence is then decimated to L symbol-rate sequences, each of
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which has a different sampling phase. The sequence that gives the maximum likelihood

function represents the desired symbols or synchronized data.

(k +TML)T Recovered
Dat Decisi Data
> ata > ecision
"1 Buffer »- Interpolator P Device P
(k+7,)T
A (7o)
ol VL Z K -
Downs anipler Ll
OverSampling
rate=L (k+7)T hsglect
p| Matched | S 1L wl | AL () Tt e ms'tant
i T o Z 1* »| “mrwhich
filter Dovmsampler i ]
Maximum
likelihood
k+7, )T .
1L L Z|*| AT,
Downsampler el >

Fig 2.12. Maximum likelihood feedforward symbol synchronization Scheme II

The above Scheme 1II is more suitable for hardware implementation, since it requires only
one A/D converter and the delay of the sampled signal can be very easily implemented
with a digital device. On the other hand, Scheme I can be applied to very-high
symbol-rate receivers, where L symbol-rate samplers serve as a high speed (N times
symbol rate) A/D converter.

The maximum likelihood synchronizer enables a very fast acquisition of the symbol
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timing. With 10 ~ 20 symbols, the maximum value of the likelihood function can usually

be identified.

2.3.3. Spectral Line Generating Symbol Synchronization

The spectral line generating synchronizer shown in Fig. 2.13 represents another important
subcategory of symbol synchronization. The received signal passes through a nonlinear
device to generate a spectral line at the symbol rate 1/T, which contains the symbol
timing information. The spectral line method can be used for both the feedbgck and
feedforward synchronizations. When it is used in a feedback scheme, the symbol-rate
spectral component is extracted by using a bandpass filter or a PLL, and compared with a
local clock to create the timing phase, which can then be used to track the local sampling
clock. When it is employed in a feedforward scheme, the timing phase will be used to
determine the coefficients for an interpolator. It is worth mentioning that the bandpass
filter or PLL can be replaced with the discrete Fourier transform (DFT), which computes
directly the symbol timing phase. One of the examples of applying the DFT to the
spectral line. method for the estimation of the symbol timing is the Oerder and Meyr

method, which will be outlined in the next section.
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Fig. 2.13. Spectral line generating synchronizer and signal spectrums

2.3.4. The Oerder & Meyr Timing Error Detector

The Oerder and Meyr (O&M) algorithm [9] extracts the timing information from the

squared signal and yields an unbiased estimate of the timing phase. Figure 2.14 shows the

major functional blocks required by the O&M algorithm. The signal input to the sampler

is given by (2-5). After sampling, it can be written as

rn:r(n{,—):zakg(n%—g—kT)wLn(n—[Tv—) (2-9)
k
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Fig. 2.14. The Oerder & Meyr square timing error detector

The O&M algorithm needs to compute a DFT on the squared sampled signal. Let the

output of the square block be x,, . The DFT block produces

(m+1)LN-1 (m+1)LN-1

_ —j2m/N _ 2 _j2m/N
Xm - Z X,€ - Z Pl € (2-10)
n=mLN n=mLN
Then, the instantaneous estimate for the timing phase is given by
1
b = —Earg(Xm)_ (2-11)

The advantage of the O&M algorithm is that it allows for a direct calculation of the
symbol timing offset from the sampled signal. Moreover, the required square and DFT
operations can easily be implemented with DSP and ASIC chips. However, the O&M
algorithm needs at least 4 samples/symbol sampling rate. In the next chapter, a new
symbol timing estimation algorithm that uses only 2 samples per symbol will be

presented.
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2.4. Conclusion

In this chapter, the carrier and symbol synchronization issues in communication receivers
have been addressed with emphasis on the discussion of symbol synchronization methods.
Two broad classes of symbol timing recovery techniques, namely the feedback and
feedforward synchronization methods, have been reviewed. It has been pointed out that
the feedback methods usually need a longer period of time to acquire the initial timing
offset and then are able to track well the timing phase by a feedback loop. Therefore,
feedback methods are suitable for continuous mode communication. Feedforward
schemes allow the use of a free-running oscillator which samples the received analog
signal independently. The symbol timing phase can then be estimated from the sample
data. Feedforward algorithms enable a fast acquisition of the symbol timing phase and
enjoy a straightforward computation and therefore, they are well suited for burst mode
communication and digital implementation. Under the category of feedforward
synchronization, three techniques, the maximum likelihood (ML) estimation, the spectral
line method, and the Oeder and Meyr algorithm, have been discussed. The ML method
yields a very fast estimation of the symbol timing and requires only some ten symbols to
get the timing offset. But it needs a high-speed sampling device equivalent to at least

eight times symbol rate, or a number of symbol-rate sampling devices. The O&M
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algorithm as an implementation scheme of the spectral line generating synchronization
enjoys a small computational complexity. However, it still requires at least 4
samples/symbol sampling rate, which may be critical for high-rate communication

systems where the cost of the receiver heavily depends on the sampling rate.
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Chapter 3

A Symbol Timing Recovery Algorithm using Two
Samples per Symbol

As shown in Chapter 2, most of the exiting feedforward timing recovery methods use
four samples per symbol or a higher sampling rate. From the point of view of the cost of
a communication receiver, however, the lowest possible sampling rate is preferred since
the complexity of a receiver is dictated to a great extent by the sampling rate. In this
chapter, a feedforward timing recovery scheme that employs two samples/symbol
sampling rate is presented with an emphasis on the timing estimation algorithm and the
evaluation of its performance. Some issues pertaining to the implementation of the

proposed timing recovery scheme are also addressed.

3.1. Timing Estimation

The key to a feedforward recovery technique is an accurate and fast estimation of the
timing offset. In this section, we will present a timing estimation algorithm that is based

on the low-pass filtering and squaring operations on the baseband signal.
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The received complex baseband signal, after the matched filter, can be expressed as
I’(t)=l”,(l‘)+jl’Q(t) (3-1)
where 7,(t) and 7,(z) represent the in-phase (I) and the quadrature (Q) signals,

respectively, as given below

r[(t)zza[kg(t_g—kT)+n[(t)a (t=nT) (3-2)

1, (8) = Zk:agkg(t—g—kT)MQ(t) . (t=nT) (3-3)

In the above two equations, @,'s and @,,'S are, respectively, the in-phase and
q 1k o) p
quadrature components of the transmitted complex symbols, T the symbol duration, € the

timing offset, and g(r) the overall baseband impulse response that can usually be

modeled as

g(t) =gr(t)*gp(t) (3-4)
where g,(¢) and g.(¢f) represent, respectively, the impulse response of the
pulse-shaping filter in the transmitter and that of the matched-filter in the receiver. As in
many communication systems, g,(f) and g.(f) can each be chosen to be a
square-root raised-cosine filter and thus, the overall baseband impulse g(¢) is of the

raised-cosine characteristic as given by

Tsin(mwt/T)cos(anmt/T)
xt[l—Qat/T)]

g(t) = (3-5)

where a is the roll-off factor. The noise terms #,(¢) in (3-2) and n,(¢) in (3-3) are

filtered zero-mean additive white Guassian noise (AWGN) by the receiving filter g,() .
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Note that n,(¢) and n,(¢) still have a zero mean though they are no longer white after
filtering. In this chapter, only the in-phase signal is used for the estimation of the timing
offset. A similar estimation result can be obtained if only the quadrature signal is used. In
the next chapter, it will be shown that the estimation precision can be improved if both I

and Q signals are applied.

Fig 3.1 shows the block diagram for the proposed timing estimator. The I (or Q) samples
are first multiplied by a half-symbol rate quadrature sinusoidal and low-pass filtered to
construct the real and imaginary parts of a complex sequence y,(n7). The resulting
complex sequence is then squared and averaged over an interval of L symbols. The
averaged real and imaginary parts are sent to the arctan function to calculate the timing

estimate. In what follows, we will provide a theoretical justification.

Cos(nt/T)
u(t) Re A
0 LPF |—p —> Avg [P )
(u+jv)2 arctan(B/A) |—p»-
LPF > —> Avg P
0 Im .
Sin(at/T)

Fig. 3.1. Block diagram for the proposed timing estimator

The proposed algorithm starts with a complex modulation of the received in-phase
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%l
baseband signal with a half-symbol rate complex sinusoidal e’]T, followed by a

low-pass filtering with the impulse response A(r). Therefore, the output of the low-pass

filter is a complex-valued signal that can be written as

¥,(6) = u(®) + jv(e) = [, (e T 1*h(D) (3-6)

where u(t) and v(¢) are, respectively, the real and imaginary parts of y(z). We
assume that A(f) is an ideal low-pass filter with a cutoff frequency a/27. This
assumption is for the simplicity of the justification of the algorithm. As a matter of fact,
this filter does not have to be ideal. As will be shown in the simulation part, one can even
use a first-order IIR filter to achieve an accurate timing estimate. The received in-phase
signal can be written as

n(0)=s5,)+n, (1), (3-7)
where

s(1) = ;alkg(t —&—kT) (3-8)
represents the transmitted “clean” in-phase signal and n,(¢) is the AWGN noise. By

substituting (3-7) into (3-6) and using the frequency responses of the raised-cosine filter

and the low-pass filter A(¢), we have
yi(0)=[s,(0)e TIeh(e) +[n (D) TT*A(). (3-9)

We assume that the low-pass filter in Fig 3.1 is an ideal filter with a cutoff frequency .,
2T

The Fourier transform of s, (t) can be expressed as
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S, (@)=Fls,()]=e’* Y a, G(a) e, (3-10)
k

where G(w) is given by

T 0<o<(l-a)t

G(a)):<§{l—sin{ﬂ—(|—2%l_%—}} (l-a)+<|w|sQ+a)t

0 o|> 1+ a)+

i
The modulation of s,(t) with e’7 yields the shifted version of the spectrum §,(®),
! I

that 1s,

Fls,()e j”T_t] = S,(a) = ’T[—j (3-11)

t
The low-pass filtering of s,(f)e T gives the following spectral component,

Lowpass
fiter e,

0 1/2T

Fig. 3.2. Spectrum of G(w — %)
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- T = . nlTw
Sl(a)__j = e Te e M q, [1+sin 1. 312
LPF @

That is, the output signal of the low-pass filter can be written as

y;(t)=F_1[51£60——7TT—) ]+ [n,(1)e TIxh(z) . (3-13)

LPF

Fig. 3.2 shows the shifted baseband spectrum along with the frequency response of the

low-pass filter. Assume that f(r) is the inverse Fourier transform of the low-pass filtered

version of the shifted baseband spectrum. We then have

70 = F 1+ sin( "2 = £+ 1 £,(0) (3-14)
with
sin{ —)
fi(t)=—2=2T— | (3-15)
Tt
_ 1 T T _
fr(0) = L= 5 = fil 5 (3-16)

From (3-12) to (3-16), we obtain
5= LTS au == KT+ it o =KD+ 1, (1) (-17)

The noise component n,,(¢) in (3-17) is the modulated and filtered version of #,(¢), as

given by

ny(2)=[n, (e T 1%h(r). (3-18)
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As the transmitted symbols are independent of each other and independent of the noise

n, (¢t) as well, we have

E(a})=E; k=1
Ew&%)={(a% L (3-19)
Ela,n;, (1)) =E(a,)E[n, ()] =0. (3-20)

In (3-19), E, represents the symbol energy. By using (3-19) and (3-20), one can find the

expectation of the squared complex signal y,(¢) as given below

2
T*E, /*
— €

Ely (t)]= y TN fAt—e—kT)+ E[n}, (0)]. (3-21)

Note that

E[n (0] = E{[(n,() € T )*h()]*}

(t-7) (t=s)

= E| [n,(t—r)e’ T h(r)dr In,(z-s)e’ T h(s)ds]

2xt w(r+s)

=eJT[ IE[n,(t—r)n[(t—s)]h(r)h(s)e T dsdr

2t _ (T+S)

=¢' 7 [ [R,z=9)h()h(s)e T dsdr (322)

where R, (r —s) represents the auto-correlation function of n,(f). Here, we have
assumed that n,(¢) is a wide-sense stationary process. It is of interest to note that
E[n’(¢)] is a complex sinusoidal with a frequency that is equal to the symbol rate.

Using (3-22), (3-21) can be rewritten as
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y T2E JZ?TS 27rt
Ely/ (D)= ' Zf (t-e—kT)+Ke' T (3-23)

where K is a constant given by

_ w(T+s)

K =£ J;Rn(f—s)h(f)h(s)e T dsdr . (3-24)

We now integrate E[y}(f)] over a number of symbol durations. Since the received
analog baseband signal is already sampled by a free-running oscillator, the integration of

E[y}(t)] can be written as the following summation form,

27tnTS

ZE[y, (nTy,)]= Z Zf (nT,—&- kT)+KZe T (3-25)

where T, represents the sampling duration. It is evident that the second term on the
right-hand side of (3-25) vanishes as long as the sampling frequency is chosen to be an
integral multiple of the symbol rate, i.e., T = NT;, where N is an integer representing
the oversampling factor and N =2 in the proposed scheme. In what follows, we will show
that the double summation in (3-25) leads to a real value.

Using (3-14), we obtain
SN T —e—kT) =Y > [/ (nTy —&~kT) ~ f; (nTs — & —kT)]
nok n k

+ jZZZ[fl (nT, — e —kT) f, (nT; — & —kT)] (3-26)

From (3-16), the imaginary part on the right-hand side of (3-26) can be written as
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2Z;[fl (nTy, ——kT)f, (nTy—&—kT)]
= ;[Z[fl(nTS —e—kT) f,(nT; —&—kT —L)] -
SIS LS (1 Ty — & ~KT) fy(nTy — & — kT +4)] (3-27)
PRl
= ;[Rfl,k (—L&) R, ()]
where R, ,() represents the time-domain auto-correlation function of

f.(nT, — & — kT) . Noting that the auto-correlation function is an even function as long as

the summation interval for which the correlation is computed is large enough, (3-27)
yields a zero value and (3-26) is reduced to a real number. As a result, the timing offset

& can be calculated from (3-25) as

p=eiT = i"“g@ ELy,*(nTy)]

- -il;arg{z E[u(nT,) + jv(nTs)I’} (3-28)

Z 2E[u(nT)v(nTy)]
= ——arctan

27 ZnE[uz(nTS)—vz(nTS)] '

Equation (3-28) gives a theoretical result for the normalized timing offset relative to the
symbol duration. To use (3-28), one needs to compute first a few expectations. In practice,
however, these expectations are replaced with time-domain averaging operations, which
can readily be combined with the required summation. Therefore, the timing estimate can

be computed as
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LN-1

LN-1 j Z[”(”Ts)v(nTs)]

~

R 1
¢:3/T:Earg(;y2(nTS)

n=0

1
= 57}— arctan NI (3-29)
> [u? (nTg) - v* (nT)]
n=0

where L represents the number of symbols used to estimate the timing offset.

Thus, we have justified the estimation algorithm shown by the diagram in Fig. 3.1. Note
that the average operation, instead of the accumulation/summation as required by (3-29),
has been used in the diagram. Obviously, it does not make any difference in terms of the
phase calculation, yet in the implementation it may avoid an overflow due to the
continuous summation of samples when a large number of symbols are used for the

estimation.

3.2. The Mean and Variance of the Timing Estimate

In this section, the performance of the proposed timing estimation algorithm is examined

in terms of the mean and variance of the resulting timing estimate.

3.2.1. The Mean

The mean of the timing estimate can be written as

E(¢) = —2—1;E[arg<2)] (3-30)

where
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LN -1

2
Z=">y (nTy) (3-31)
n=0
For small variance of an estimate, we can linearize the arg-operation [9], that is,
- 1
E(§) = —arg[E(Z)]
2r

1 LN -1 1 LN -1 (3_32)
= Earg |:E( nzzoylz(nTS)J} = Earg[ Z E(ylz(nTS)):|

n=0

By comparing (3-32) with (3-28), we obtain E (gzg) =¢ when L — o, implying that ¢3

is an unbiased estimate of ¢ as long as L is large enough.

3.2.2. The Variance

"

In order to simplify the computation of the variance of ¢ , we assume that ¢ =0 and
therefore, ¢ =¢/T =0 and E(¢3)=¢ =0. (It can be shown that the results to be

obtained are valid for arbitrary & [9]). We then have

Var (§) = E(¢°)

— £ (g 2)T) (3-33)
1 Efmm z)?]

477 [ERe Z)T

Q

where Z is given by (3-31). The approximation in (3-33) is valid since the imaginary part

of Z has a zero mean, as seen from the discussion in the previous subsection, and the
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variances of both the real and imaginary parts are small compared to the squared real
mean [9].  Using (3-17), (3-25) and (3-31), and noting that &£ =0, E(ReZ)can be

calculated as follows.

2 LN-1 2anTy _
~Re T4ES S Ty —e-kT)+KY e T } (3-34)
n=0 k n

1!
3
EEN ojhj
el
r"i_l
M
»M

(T, —g—kT)}

From (3-34), it is seen that the denominator in (3-33), [E(Re Z )]2, is a constant that
depends only on the signal. Thus, the key to obtaining a closed-form expression for (3-33)

is the computation of the numerator, E[(Im Z)*]. To this end, we rewrite Z as

w=i [ . 2
Z = Z [E—Zalkf(nTS ~&—kT)e™" +n“(nTS)]
n=90 k (3'35)
=Z,+7Z,+7Z,

where

z, - 14_ S Y Y a, a, (-0 f(nTs &~ kT) f(nTs —& ~IT) (3-36)
ko1

n=0

LN -1

Z2:Tzzalk (—l)kf(nTS—g—kT)n“(nTS) (3-37)
n=0 k
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LN -1

= ZB n2(nTy) (3-38)
Then, the numerator in (3-33) can be written as
E[(Im Z)*1=E{})+ E(I})+ E(I3)
+2[E(1L, L)+ E(I,I,) + E(11,)] (3-39)

where 1, (i=1,2,3) each represent the imaginary part of Z,, 1.e.,

I, = {TT zzalk ap (_1)k+lf(nTs —e—kT)f(nTs - ¢ _IT)} (3-40)
n=0 k [
LN-1
= {TZ ay (_l)kf(”TS_g_kT)”n(nTs):l, (3-41)
n=0
LN-1
- m[anl(nTs)} . (3-42)
n=0

We now show that all the expectations associated with the cross-terms in (3-39) would
vanish, that is, the three components are orthogonal to each other.

First, we may write Z, as
LN-1
Z, = ZS(nTS)nll(nTS) (3-43)
where s(nT,) represents the signal part in (3-36), as given by

s(nTy) = Tzalk (=) f(nTy—e~kT) . (3-44)

Then, the imaginary part of Z, can be expressed as
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LN-1

I, =Y [s" (TN (nTy) + s (T (nTy)] (3-45)

€6_9

where the superscripts “#” and “” are used to indicate the relevant real and imaginary
parts, respectively. By using (3-45) and noting that n,(nT) is independent of the
transmitted symbols, one can express E(I,/,) as a linear combination of
En(nT,)] and E[nY)(nTy)] . Since the noise has zero mean, ie,
E[n" (nT,)] = E[n$)(nT,)] =0, we obtain E(,1,) = 0.

According to the fact that a, has a zero mean and is independent of n,(n7y), it can be
shown that E(I,I,) is linearly proportional to E(a,) and therefore, equals zero. As for

E(1,1,), we have

E(IIIB) = E(11)E(l3)
= E(1))E[Im(Z,)]
= E(1,))Im[E(Z;)]

=E(l) Im(LflE[nlzl (nT )]j

=0

(3-46)

In obtaining (3-46), we have used the discrete-time version of the expression for
E[n} ()] as given by (3-22). As aresult, (3-37) is simplified as

E[(Im Z)*1=E()+E;)+ E(I3) (3-47)
where E(I?), E(I7) and E(I?) are associated with the signal, the product of signal
and noise and the noise component, respectively. Using (3-47), the variance given by

(3-33) can be simplified as
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1 1

SN 2 2 2
Var (¢) = a7’ [E Re Z)]Z[E(11)+ E(I;)+ E(I7)] (3-48)
:O-szxs+o-s2xn +O—r12xn

where the three variance components are for the signal, the noise and the product of

signal and noise.

3.3. Simulation Results

This section presents some simulation results for the estimation method proposed in Section 3.1,
showing the estimation performance for different choices of estimation interval length, roll-off

factor, and the low-pass IIR filter.

3.3.1. Eye Diagram and Signal Constellation

For computer simulation, we apply the proposed timing recovery method to a QPSK
modulation system. The transmitter generates a baseband QPSK signal that is intended to
pass through an AWGN channel. In the receiver, the received baseband signal is first
sampled at two samples per symbol sampling rate. The baseband samples corresponding
to either the in-phase or quadrature component are used for the timing offset estimation.
Then, the baseband samples are interpolated using the estimated timing information to

reconstruct the original I and Q symbols. Fig. 3.3 shows the eye-diagrams of the
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reconstructed QPSK signal for a noise-free channel. When the AWGN channel is set to
have SNR=10 db, the reconstructed in-phase and quadrature signals have the eye

diagrams shown in Fig.3.4. The plot of the scattered signal constellation is shown in
Fig.3.5 for the noise-free case and in Fig.3.6 for SNR=10db. It is seen from the noise-free
case plots that the proposed estimation algorithm has a very good precision and the
scattering effect due to the estimation and the second-order interpolation is negligible.
Although the signal is scattered when SNR=10 db, a correct decision can still be

guaranteed according to the eye and constellation diagrams.

Eye Diagram for In-Phase Signal

2
Q
T
2
=
£
<
_2 Il
-0.5 0 0.5
Time
Eye Diagram for Quadrature Signal
2 .
()
©
2
a
£
<

Time
Fig. 3.3. Eye diagrams for QPSK signal in no noise-free channel:

(a) In-phase signal (b) Quadrature signal
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Eye Diagram for In-Phase Signal

Time
Eye Diagram for Quadrature Signal

Time

Fig. 3.4. Eye diagrams for QPSK with SNR=10 db
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Fig. 3.5. Signal scatter-plot after interpolation without noise
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Fig. 3.6. Signal scatter-plot after interpolation with SNR=10db
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3.3.2. The Length of Estimation Interval

This subsection shows the impact of the estimation length on the variance of the timing

estimate.
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Fig. 3.7. Variance of the timing estimate
Fig 3.7 shows the variances of the timing estimate with different estimation interval
lengths. Clearly, the variance is reduced as the estimation length is increased. But
increasing the estimation length would increase the acquisition time of timing phase
estimation in addition to causing more operations in the average unit. Also, the
improvement of the timing error is not linearly proportional to the increase in the

estimation length, implying that one has to increase the interval significantly in order to
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decrease the variance by a certain amount. Extensive simulation work has shown that
L=64~128 appears to be a good trade-off between the estimation performance and the

computational complexity.

3.3.3. The Influence of Low-Pass Filter

In order to see the influence of the low-pass filter on the estimation performance, we
employ different IIR (infinite-duration impulse response) digital filters in the simulation.

The simplest one is given by the first-order transfer function

0.2
1-0.8z""

H(z)=

which has the lowest implementation complexity. Other filters attempted in the
simulation are higher order Butterworth filters with different cutoff frequencies.

Fig.8 depicts the variance versus E/N, plot for the four IIR filters, when the roll-off factor
is chosen as 0.5. The cut-off frequencies for the three fourth-order filters are 0.25 F,
0.35F, and 0.45 F,, where Fs denotes the sampling frequency of the designed filters. It
is seen that the higher-order filters perform slightly better than the first-order filter only if
the SNR level is low ( < 15 db). The first-order filter is even superior when there is
almost no noise  (SNR =25 db). Fig.9 shows the simulation results for the same set
of filters as used in Fig.8, when the roll-off factor is chosen to be 0.7. Clearly, at the same

SNR level, a larger roll-off factor yields a slightly smaller variance.
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Fig. 3.8. Variance of the timing estimate with different lowpass filters (0=0.5)
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Fig. 3.9. Variance of the timing estimate with different lowpass filters (¢=0.7)
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3.3.4. The Effect of Roll-Off Factor

The roll-off factor a is a key parameter that influences the timing estimation perforfnance.
Fig. 3.10 depicts the variance curves for different values of o, where the estimation
length is set to be equal to 64 symbols. It is seen that the algorithm works better for large
roll-off factors. For applications where a small excess bandwidth has to be used, one can

improve the timing variance by using a large value of L.

-1
10 T T T 1 ! [ .
‘ - Rolloff factor=0.4 {
#-  Rolloff factor=0.6 ||
&~ Rolloff factor=0.8 |
2| -»— Rolloff factor=1.0 ||
10 ]
B N -
r \\ \\
b N .
A
10 Q’,\*\\\\ E
8 ,\:Q\\\\\\ :
5 NG
5 S
10 + LT E
5
10 +
-6
10 ! ! L | L :
0 5 10 15 20 25 30 35

E/MNo indb

Fig. 3.10. Variance of the timing estimate with different roll-off factors
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3.4. Implementation Issues

In many communication systems, the symbol synchronization algorithm will eventually
be implemented in an integrated circuit chip. The computational and implementational
complexity will be directly relevant to the cost of the receiver. In this section, we will
discuss some of the implementation issues for the proposed symbol synchronization

technique.

3.4.1. Implementation of Arctan(x)

A common task in feedforward estimation methods is to implement arctan(x). This is
usually done by a look-up table that stores the principle phase values in [0,n/4] which
corresponds to 0<x<1. By fitting the arctan(x) function in the interval [0,1], we find that
the following second-order two-coefficient polynomial

f(x)=1.062x—0.276x" (3-49)
is able to provide a very good approximation within 0 < x <1. As required by (3-29)
and Fig. 3.1, one division B/A is involved in arctan function, where A and B are signed

values. In order to avoid the division by a very small number, we do the following:

(1) If |A|>B|, calculate x=|B|/|A| and then use (3-49) to obtain the principle value

of ¢ in O~nt/4;
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(11) If |A|<B|, use arctan(|A/B|)=n/2-arctan(|B/A|) along with the approximation
formula (3-49).
Clearly, the true quadrant of ¢ can be determined from the signs of A and B. The above
polynomial approximation scheme is very suitable for real-time DSP implementation. If
the look-up table is used, one would need to do many comparisons to find a proper

entry for the table.

3.4.2. Interpolation

Interpolation is another important module in the implementation of feedfroward symbol
synchronization. As seen from Section 2.3, the received signal is first sampled by a fixed
clock. The timing phase is estimated from these samples and then used for interpolation
among the signal samples to find the correct symbols. Essentially, the interpolator is an

FIR filter whose coefficients can be determined by Lagrange interpolation formula.

A. Four-point Lagrange interpolator

A four-point Lagrange interpolator is very useful in symbol synchronization. Fig. 3.11
shows a scenario where four samples y_,, ¥,, ¥, and J,,which are located at x_,,

X,, X, and X, ,respectively, are known, and the right sample is deviated from X, by

>

i . Therefore, u indicates the timing offset which is measured as a fraction of 27
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according to the arctan() function. Usually, u is normalized for interpolation. For
example, it can be rescaled to the range of [0,2], where u = 0 implies a zero clock

phase and u = 2 means the maximum timing phase equal to 27.

Recovered Signal y( 1)

-

X1 X Xy X3

Fig. 3.11 Four-point Lagrange interpolation

Once the timing offset u is computed using the proposed estimation method, it can be

shown that the desired sample or the recovered symbol located x, + x is given by [28]

1 5 1 5,1 | | 1 5 1,
=(——u +=-u —= +(-p -y —=pu+Dy,+(——p +—-u +
y(u)=( GH S H 3u)y,1 (2u WS H )V +( SH o H Wy,

1, 1
+(=u = .
( Ll W)y,
(3-50)

It is known that the Farrow structure [32] can be used for fast implementation of the
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Lagrange interpolation. Using the Farrow algorithm, the desired output sample for the

four-point interpolation can be computed in a matrix form as follows.

T
3
1 1 #
- -1 —= 1 >
yw=| 4 | 2 0o v »o») (3-51)
- = 1 o4
2 2 {
1 1
S0 - 0
6 6

The Farrow implementation structure corresponding to (3-51) is shown in Fig. 3.12. A
number of FIR filters are contained in the structure and the outputs of these
constant-coefficient FIR filters are properly weighted and combined to produce the

interpolated sample.

-
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Fig. 3.12. Farrow structure of four-point interpolation
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B. Three-point Lagrange interpolator

Similar to Four-point Lagrange interpolation, one can use three signal samples, say y_ ,
¥, and y,, for interpolation. This three-point second-order interpolation is particularly
useful when two samples per symbol sampling rate is employed. Fig. 3.13 shows the
situation where three samples are available and the desired sample is off X, by x . In
this case, the correct sample can be calculated by the second-order Lagrange interpolation

formula [28]

Recovered Signal  y(11)

t
>
X4 Xo Xy
Fig. 3.13. Three-point Lagrange interpolation
1, 1 ) 1, 1
=G =gy A= a0y + (G a7+ 5 M (3-52)
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which can be written in matrix form as

LI TP
2 2 H
yw=|-1 0 1| a4, » ») (3-53)
1 1
— — 041
2 2

The Farrow implementation structure for the three-point interpolation is shown in Fig.

3.14, where the FIR filter has been reduced to three taps and furthermore, the number of

non-zero coefficients is decreased significantly.

(]
/
NN

) 4

‘g V()

Fig. 3.14. Farrow structure for three-point interpolation
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The four-point interpolation is a bit superior to its three-point counterpart in termns of the
interpolation precision. However, its implementation complexity is much higher. As such,
the second-order three-point interpolation is preferred from the application point of view,

especially when the sampling rate of the receiver is two samples per symbol.

C. Linear interpolator

Generally speaking, the interpolation precision depends on the number of samples in
addition to the estimation algorithm. The second-order polynomial interpolation that is
basically used for two samples/symbol sampling rate is able to give a very satisfactory
precision for QPSK modulation, even if the SNR is very low such as less than 3dB. For
higher-order modulation such as 8PSK or 16PSK, the second-order interpolation may not
be enough if a certain BER performance needs to be guaranteed at a low SNR value.
Then we may need four samples/symbol sampling rate for which the proposed timing
estimation algorithm is directly applicable. In this case, a fourth-order polynomial that is
analogous to the previous four-point and three-point interpolation can readily be used for
the approximation of the baseband signal waveform. Nevertheless, in order to reduce the
implementation complexity, a simple linear interpolation can be used with little sacrifice

in precision. The linear interpolation can be expressed as
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Vou = X4y +1(x, =X, 1) (3-54)

where y,, is the output of the interpolator, x,and x,_, are the two input samples which
are closest to the centre point, and u represents the interpolator parameter which can be

calculated from the estimated timing offset ¢,

1

4 0 < < —

¢ ¢ <

1

4¢—1 _41].‘S¢<;

H = 1 3 . (3-55)

4¢ -2 —<¢ < —

¢ 5 ¢ 2
3
49 - 3 > —
¢ ¢ 2

In (3-55), we have assumed that ¢ is normalized to the interval [0,1].

The linear interpolation needs only one multiplication and two additions for each
output sample. It is worth mentioning that the linear interpolation can also be applied for

two samples/symbol sampling rate in BPSK or QPSK modulation, where the SNR is not

a major concern.

3.6. Summary

In this chapter, a new symbol timing recovery scheme has been developed. A timing
estimation algorithm has been proposed for two samples per symbol or higher sampling

rate. The variance of the timing estimate has been analyzed to show the performance of

59



the proposed estimation algorithm. The proposed method has been simulated, giving the
variance plots of the timing estimate for various parameters such as the estimation
interval, low-pass filter and the roll-off factor. Some of the implementation issues have
also been discussed. Based on the analysis and computer simulation results, the following
remarks/claims can be made.

1. The variance of the timing estimate can be reduced by increasing the length of the
estimation interval. However, increasing the estimation length would require more
computations in the averaging unit and make the tracking of the timing slower.

2. Higher-order IIR filters give smaller variances when the SNR is low, and do not
improve the variance when there is no or little AWGN noise.

3. The proposed estimation algorithm performs better for large roll-off factors (o >
0.5).

4. The second-order three-point interpolation gives a satisfactory interpolation for
the QPSK modulation. The linear interpolation can be used for high SNR

environments, where the cost of the receiver instead of the SNR is a major issue.
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Chapter 4

Improved Timing Estimation Algorithms

In Chapter 3, we have developed a basic timing estimation algorithm that uses the
in-phase (I) or quadrature (Q) signal only. In this chapter, we present a few methods to
improve the estimation performance by taking both the I and Q signals into account and

by employing a post-processing technique.

4.1. Timing Estimation Utilizing Both I and Q Signals

In this section, we will demonstrate that the timing estimation performance can be
improved significantly if both the I and Q signals are simultaneously applied. Fig. 4.1
shows a modified scheme that utilizes both the I and Q signals to compute the timing
estimate, where 7,(f) and Yo (t) are the real and imaginary parts of the received
complex baseband signal, i.¢.,

r(t)=r, () + jry(0). 4-1)
The I and Q signals are each multiplied by a 1/2 symbol rate quadrature sine sequence

and then low-pass filtered and squared to construct two complex pairs, u,(f)+ jv,(?),
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and 1, () + jvy (1),

Cos(nt/T)
Uy Re A
LPF [——P Avg [P
ri(t)
v (UI+jVI)2 Im tan”(B/A) P
1
LPF [—P > + > Ag [P
B
) A
Sin(/T)
Cos(nt/T)
ug Re
LPF > _—
ro(t) .2
uptjv
Yo (ugtjve) .
LPF [——P

Sin(rt/T)
Fig.4.1. Modified estimation algorithm
(0 =, () + v, (1) = [, (D T1*h(D) (4-2)
Yo (t) = ug(t) + jvg (1) = [y (0 T1* (1) (4-3)

The real parts as well as the imaginary of y,(f) and y,(t) are added and averaged,

to calculate the timing estimate. It is evident that the estimate can be written as

~ 1
¢=—arg(Z, +Z,) (4-4)
2
where Z, and Z, represent the complex numbers obtained from the I and Q signals,

respectively, are given by
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LN-1

Z, =Y yi(nTy) (4-5)
n=0
LN-1
=Y yo(nTy) (4-6)

Using the approximation formula in (3-32), the mean value of ¢A can be written as

E(q%)—iar [E(Z, +Z )]——1—tan'1 Elm(Z, + Z)] 4-7
T TS TSl T E[Re(Z, +Z,)] “-7)

According to the discussion in the previous chapter, each of Z, and Z, gives an
unbiased estimate for ¢, which implies that arg[E(Z,)]= arg[E(Z,)] = ¢ . Using this
result, it is easy to verify that E(qg) =¢ in (4-7), implying that the estimate given by
(4-4) is also unbiased.

Although it is possible to derive a closed-form expression for the variance of the above
timing estimate, yet our objective is to demonstrate that the estimate given by (4-4) has a
smaller variance compared to the estimate obtained by the basic estimation algorithm.
For this purpose, we substitute ¢; from (4-4) into (3-33), yielding

1 E(m(Z,)+m(Z)F)

V. = 4-8
ar@) =47 > (E[Re(Z,)] + E[Re(Z,)])" (+-5)

Since the I and Q signals have the same symbol energy, we have
E[Re(Z,)]= E[Re(Z,)] (4-9)

Thus, the denominator of (4-8) is quadrupled compared to the case of using the I or Q
signal only. The numerator can be denoted as  E[(X, + X ,)?]1 for notational convenience,

where X, and X, represent, the imaginary part of Z, and that of Z,, respectively.

From the discussion in Section 3.2, we have E(X,)=E(X,)=0 since we assume that
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£ =0 as in the basic algorithm. As such, it is easy to verify that

E(XX,)| S VE(XEX,) = E(XT) (4-10)
which in turn leads to

E[(X, + X,)’|= E(X?) + E(X2) +2E(X,X,) < 4E(X}) (4-11)
The above inequality holds only if X, and X,,ie., Im(Z,) and Im(Z,), are linearly
correlated, which, however, is not possible even though they may be correlated somehow
because of the relationship between the transmitted I and Q symbols. The above
observation has shown that the numerator in (4-8) does not increase as much as the
denominator does. Therefore, the estimate given by the modified scheme always has a
smaller variance.
The simulation results convincingly show a significant reduction in the variance of the
estimate resulting from the above modified algorithm, even for very low SNR channels.
Fig. 4.2 depicts the variance curves obtained from the basic and the modified algorithms
for comparison. It is seen that the variance for the modified algorithm is roughly
equivalent to that for the basic version with a double estimation length.
It should be mentioned that the above modified algorithm can also be applied to other
feedforward symbol synchronization techniques such as the O&M and maximum

likelihood estimation techniques reviewed in Chapter 2.
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Fig. 4.2. Variance of the timing estimate
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Smoothing of Timing Estimate using Post-Processing

Technique

The timing estimate can be viewed as a constant for the duration of a number of symbols.

Therefore, we can apply a post-processing technique such as Kalman filtering to smooth

the timing estimate. In the following, we propose a few Kalman filtering-based

post-processing methods to reduce the timing estimate obtained in the previous chapter.
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The Kalman filtering problem can be formulated as [18] [19]

x(n+1) =F(n)x(n)+w,(n) (4-12)

¥(n) = C(n)x(n) + W, (n) (4-13)

where X(7) is called the state vector at time n, y(n) the measurement vector, W(%)
and Ww,(n) the noise vectors representing the process noise and the measurement noise,
respectively, F(n) the transition matrix, and C(n) the measurement matrix. It is
normally assumed that W(n) and W,(n) are zero-mean white noise process with the

following correlation matrices,

=k

Elw, (m)w, (k)] = {(?(”) ((’; 3 k)) (4-14)
R =k

ELw, (n)w, (k)] = {0 R (4-15)

where Q) and R(n) are diagonal matrices. It is also assumed that W(n) and W,(n)
are statistically independent and both are independent of observed signal/data. Fig. 4.3
shows a typical Kalman filter structure, where the observed data y(n) serve as the
original timing estimate and the estimate of X(n+1), the state vector at time n+/ ,

serves as the smoothed/filtered version of the estimated timing offset. As seen from the
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diagram, the estimate of the state vector can be written as

yL;@——> K(n) lXL

F(n) 7!

;’ " C(n) o T

Xn-1

Fig 4.3 Kalman filter architecture

X(n+1) =F(n)X(n) + K(n)[y(n) - C(n)x(n)] (4-16)

where X(n) is the estimate of the state vector at time n, and K(n) is an unknown
matrix, referred to as the Kalman gain, that can be determined by minimizing the
correlation matrix of the state error vector. The correlation matrix is formulated as

P(n) = E[e(n)e’ (n)] (4-17)
where

e(n) =x(n)—x(n) (4-18)
Minimization of P(#n) leads to a few updating formulas for the computation of K(n),
ie.,

K(n) = F(n)P(n)C" (m)[C(m)P(n)C" (n) + R(m)]" (4-19)
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P'(n) =P(n) + ' (n)Q(n - DIF ' (n)]" P(n) (4-20)
P(n+1) = F(n)P'(n)[F(m)]" + Q(n) (4-21)
In this study, we use the scalar-form Kalman filter to improve the timing estimation
performance. Thus, all the matrices in (4-19)-(4-21) are reduced to scalars. We also
assume that F(n) and C(n) are the identity matrix, i.e., the unity in the scalar case.

Then, the updating formulas for the evaluation of the Kalman gain are simplified as

K(n) = P(n)[P(n) + R(m)]"' (4-22)
P'(n) = P(n)+Q(n—-1)P(n) (4-23)
P(n+1)=P'(n)+Q(n). (4-24)

4.2.1 Kalman Filtering of the Timing Estimate — Scheme 1

As shown in Fig. 4.4, an obvious approach of post-processing is to apply a Kalman filter
to the timing estimate ¢3 obtained from the basic algorithm in Chapter 3, yielding a

smoothed version of ¢3 as given by

cos(mt/T)

Re A
LPF s Avg
ls(or Ci) (5 &,
amples -1 "| Kalman n
. / I
(U+JV)2 e (B8 Filter
LPF — Avg —»

sin(m /T)

Fig. 4.4. Post-processing using Kalman filtering — Scheme 1
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>

Y

=

%, =4,
8, = 4, + KNP, - ,..] (4-25)

where gz;” represents the timing offset estimated at time » (after n symbols have passed),
and an is the smoothed version of ¢An. To calculate the Kalman gain K(n), we need to
determine the initial values of Q(n), R(n) and P(n)as required by (4-22) through
(4-24).

In our simulation, Q(n) and R(n) are treated as constant. We have found that the
smoothing performance depends to a considerable degree on the ratio of R(n) to Q(n).
As for the initial value of P(n), we choose P(0) = 0, since the initial input estimate ¢AO
can be used as E(d,) and thus P(0) = E{[d, — E($,)T")=0. Fig. 4.5 shows the result
using Kalman filtering with Q(n) =1 and R(n)=0.05. It is clear that the amplitude of
the timing estimation error has been suppressed significantly. Fig. 4.6 shows the variance
curves for both the Kalman-filtered and non-Kalman-filtered timing estimates with
different estimation lengths. It is seen that the variance has been reduced using the

Kalman filter regardless of the length of the estimation interval.
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4.2.2. Kalman Filtering of A and B Values — Scheme 2

Another approach of smoothing the timing estimate is to apply two Kalman filters to the

averaged values 4 and B in Fig. 3.1., which can be shown in Fig. 4.7.

cos(nmt/T)
u Re A A
LPF > Avg » o
St Kol s,
F:tes) S alma A ~
— . \2 Bl
(utjv) Filter tan (B/A)
LPF —>  Avg >
m B
sin(zt / T)

Fig. 4.7. Post-processing using Kalman filtering Scheme 2

The A and B values from the averaging module at time n can be expressed as the

following vector form

Yu =

After Kalman filtering, A and B are smoothed, and denoted as
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. |4
— n

X, =
B

n

From (4-19) to (4-21), we obtain an update formula for 121,, and fi’n as

A o[ A k| |- A (4-26)
B B,] |2

n n-1 n n-1

A

Fig. 4.8 shows the A and B values as complex pairs plotted in the two-dimensional plane,
where the horizontal and vertical axes represent the value of A and that of B, respectively.

In this simulation, we have chosen Q(n)=1 and R(n)=0.05 as discussed in Section

4.2.1.
B % N
6 B i
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2 « 1 +
0 A 0 A
! !
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(@) (b)

Fig.4.8. Plot of A and B values: (a) Before Kalman filtering (b) After Kalman filtering

Fig. 4.9 shows the variance curves of the timing estimate obtained from the Kalman

filtered A and B values. As expected, similar to Scheme 1, this scheme also provides an
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improved estimation performance. It is worth mentioning that although Scheme 2 needs
two Kalman filters, which doubles the computational complexity of the post-processing
unit in contrast to Scheme 1, it has another advantage in addition to reducing the variance

of the timing estimate.
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Fig. 4.9. Variance of timing estimate with Kalman filtering — Scheme 2

In feedforward timing estimation, timing phase slip will possibly occur due to the phase
ambiguity of arctan(B/4) between 0 and 2n. When 4>0 and B~0, arctan(B/4) may result

in 0 or 27 depending on the sign of B. Due to the noise and the deviation of the timing
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estimate, the value of B may vary around O from a small negative value to a small
positive one. Thus, the estimated timing phase could slip between 0 and 2z, when the
clock phase of the local sampler is nearly synchronized with the symbol timing. The
phase slip does not create inter-symbol interference, but it causes the interpolator either to
skip one right sample or to repeat one and therefore, produces a symbol error.

By using Kalman filtering Scheme 2, the possibility of phase slipping can be decreased
greatly, since, after Kalman filtering, the values of A and B tend to be more convergent
around the straight line of a slop being equal to the true timing offset. Fig. 4.10 shows
that phase slip has occurred, where the estimated phase jumps between y and 27—y .
Fig. 4.11 illustrates that the phase slipping did not happen since the Kalman filtering

Scheme 2 has been used and the values of 4 and B have been smoothed.

A Timing phase estimated

2n
2 -y

Fig. 4.10. Phase slipping before Kalman filtering Scheme 2
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Fig. 4.11. No phase slipping after Kalman filtering Scheme 2

4.2.3. Simplified Smoothing Scheme — Scheme 3

The above Kalman filter is equivalent to a first-order recursive filter with a time-varying

coefficient K(n). If the Kalman gain K(n) remains a constant in each iteration, then

the Kalman filter is reduced to a regular IIR filter with the following transfer function

k

T1-(l—kpz @27

H(z)
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We may use (4-27) for the post-processing of the timing estimate ¢ as shown in Fig.
4.12. Although (4-27) offers the smallest computational complexity, it does not work well
for high SNR channels. Fig 4.13 shows the variance curves for the simplified smoothing
scheme along with the basic estimation method without smoothing, when the value of &
in (4-27) is chosen as 0.2. It is seen that the simplified scheme performs well if the SNR
is smaller than 15 db, but it does not reduce the variance when the SNR is larger than 25
db compared to the basic algorithm. In any case, the larger the length of the estimation

interval is, the better the estimation result can be obtained.
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Fig. 4.12. Basic timing estimation followed by the Ist-order IR filtering
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Fig 4.13 Variance of the timing estimate with the simplified scheme

4.2.4. Comparison of Three Smoothing Schemes

Fig.4.14 shows the variance plots for the three proposed smoothing schemes together
with that of the basic algorithm for the purpose comparison. The estimation length is set
to 32 symbols in this simulation. A similar comparison of the three schemes for L=64 is
also made in Fig. 4.15. It is of interest to note that Schemes 1 and 2 result in a very
similar performance, whereas Scheme 3 performs very well only if the SNR is under 15
db. As for the implementation complexity, Scheme 3 is the simplest one and therefore,

is preferred in communication systems where there exists heavy noise. Scheme 2 has the
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largest complexity , but offers the advantage of eliminating the timing phase slipping.

Generally speaking, Scheme 1 provides a good compromise between the complexity and

performance.
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Fig.4.14. Comparison of three smoothing schemes with L=32
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Fig.4.15. Comparison of three smoothing schemes with L=64

4.3. Summary

In this chapter, a few improved estimation algorithms have been presented to reduce the
variance of the timing estimate. Firstly, the basic estimation algorithm developed in
Chapter 3 has been modified by employing both the I and Q signals. Theoretical analysis
as well as computer simulation has shown that the modified scheme gives a smaller

variance. Similar to the basic algorithm, the modified scheme using both the I and Q
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signals enjoy a short acquisition time for the timing offset, making it possible to track the
symbol timing in burst-mode communication systems. Secondly, the Kalman filter has
been exploited to smooth the timing estimate. For this purpose, three schemes, the direct
Kalman filtering of the timing estimate, the Kalman filtering of the 4 and B values, and
the simplified smoothing scheme using only a first-order IIR filter, have been proposed.
The three schemes have been simulated and compared with the basic algorithm without
post-processing. Different scenarios for which each of the three schemes is suited have
also been identified. The first scheme works very well on an overall basis and appears
to be a good solution counting performance and complexity as well, the second one is
able to prevent the timing phase from slipping between 0 and 2w, and the third one is a

very good alternative for low SNR channels.
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Chapter 5

Conclusion

5.1. Summary of Research Results

In this thesis, an in-depth study of a broad class of feedforward symbol synchronization
techniques has been conducted. Some of the existing feedback and feedforward
synchronization methods have been reviewed, showing their advantages and drawbacks.
Motivated by the advantage of the feedforward synchronization in its fast acquisition of
symbol timing and straightforward digital implementation, a few feedforward timing
estimation schemes have been proposed for burst-mode communication systems.

A basic timing estimation scheme that uses either the in-phase or the quadrature signal
has been proposed. The mean and variance of the timing estimate has been analyzed to
show the estimation performance of the proposed algorithm. The proposed method,
consisting of modulation, low-pass filtering, squaring and averaging operations, has been
simulated, and the variance plots of the timing estimate given for different parameters
such as the estimation interval, low-pass filter and the roll-off factor. It has been shown
that the variance of the timing estimate can be reduced by increasing the length of the

estimation interval. However, increasing the estimation length would require more
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computations in the averaging unit and this make the tracking of the timing slower.
Higher-order TIR filters yield a smaller variance when the SNR is low, and do not
improve the variance when there is no or little AWGN noise. As expected, the proposed
estimation algorithm performs better for large roll-off factors (o > 0.5). Some of the
implementation issues have also been discussed. The proposed synchronization method
needs an interpolation among signal samples, once the symbol timing is estimated. It has
been shown that a second-order three-point interpolation gives a satisfactory precision for
the QPSK modulation. The linear interpolation can be used for high SNR environments,
where the cost of the receiver rather than the SNR is a major concern.

A few improved estimation algorithms have been presented to reduce the variance of the
timing estimate. Firstly, the basic timing estimation algorithm has been modified by
exploiting both the in-phase and quadrature signals for the estimation of the symbol
timing. Both the theoretical analysis and computer simulation have shown that the
modified scheme gives a significantly reduced variance of the timing estimate. Secondly,
the Kalman filter has been exploited to smooth the timing estimate. For this purpose,
three schemes, the direct Kalman filtering of the timing estimate, the Kalman filtering of
the real and imaginary parts of a complex value for the computation of the timing phase,
and the simplified smoothing scheme using only a first-order IIR filter, have been
proposed. The three schemes have been simulated and compared with the basic algorithm
without post-processing. Different scenarios for which each of the three schemes is suited

have also been identified. The first scheme, working very well in general, appears to be a
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good solution taking both performance and complexity into consideration; the second one
is able to prevent the timing phase from slipping between 0 and 2; and the third one isa

very good alternative for low SNR channels.

5.2. Suggestions for Future Study

The simulation study performed in this thesis is basically for QPSK-modulated signals in
a AWGN channel. For QAM modulation, such as 16 QAM and 64QAM, the proposed
algorithms should be directly applicable. However, their performance needs to be
examined through simulation. Application of the proposed synchronization methods to
multipath fading channel might be possible. Although a theoretical justification of the
proposed algorithms for use in multipath fading channel may be difficult, it is
worth-while to carry out a simulation study in this aspect. Therefore, the simulation of the
transmission of QPSK and QAM signals in multipath fading channel using the proposed
synchronization method is recommended.

The Kalman filtering-based post-processing scheme has been presented to reduce the
variance of the estimated symbol timing. One may attempt adaptive algorithms such as
the LMS (1§ast mean square) and RLS (recursive least square) algorithms to implement a
fast smoothing scheme for the timing estimate, since a fast estimation of the timing offset

is very important for burst-mode communications.
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