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Abstract

A Generative-Discriminative Framework for Time-Series Data

Classification

Karim T. Abou-Moustafa

Discriminative models such as SVMs and MLPs are known for their good generaliza-
tion in classification of static data. However, classification of time-series data using
these models is still a very difficult task for two reasons: 1) discriminative models are
unable to model the time variability in time-series data, and 2) time-series data usu-
ally have a variable length. Unlike discriminative models, generative models such as
HMDMs were able to overcome these problems and became the standard tool for mod-
elling time-series data, but on the other hand, their classification performance is poor.
This thesis targets the problem of poor performance of HMM-based classifiers. First,
we study the effect of the structure on the performance of HMMs and see how the
number of states and the topology can contribute to the classification performance.
As a result, our investigation showed the topology has a stronger contribution to the
classification performance than the number of states. Second, we propose a general
two-stage framework that combines generative and discriminative models to reach a
high performance in the classification of time-series data. In the first stage, HMMs
are used to model the time-series data, then a fixed size score vector is extracted from
this stage and used as the input to the discriminative model in the second stage. The

framework showed a potential for combining generative and discriminative models for
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time-series data classification and was able to achieve a recognition rate of 98.02%,

with an increase of 3.83% over traditional HMM-based classifiers.
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Chapter 1

Introduction

1.1 Motivation and Problem Description

A time-series pattern is a sequence of objects that appear in a certain order. Each
object in the sequence appears at certain instant in time, and the occurrence of an
object is dependent on the occurrences of previous objects in the sequence. If the
objects are real valued vectors, i.e. z € R, then the sequence is said to be a continuous
time-series pattern. If the objects are symbols from a finite dictionary, then the
sequence is known as a discrete time-series pattern. Continuous time-series data can
be obtained from modelling speech and handwritten words. Discrete time-series data
can be obtained from modelling DNA sequences or quantization of continuous data.
Time-series data of a single class can have different sequence lengths and different
order and values for its object, which makes it difficult in handling this type of data.

For a classifier to process time-series data, first, it must be capable of modelling
the time variability in order to recognize the sequence of objects, since two different
orders of the same objects can lead to two different patterns, and second, it must be
capable of ciealing with the variable length of the patterns. Discriminative models

for classification such as Multi layer perceptrons (MLP) neural networks and Support



Vector Machines (SVMs) that are well known for their good generalization in clas-
sification of static and fixed size patterns, to the best of our knowledge, can not be
used to classify this type of data due to their inability to model the time variability
and due to their inability to deal with variable length data.

HMMs were able to overcome these problems. Hidden Markov models or HMMs
[BP66, Rab89, Ben99], are a class of stochastic processes that are capable of mod-
elling the time and length variability of time-series data. They belong to a larger
class of models known as generative models that are mainly used for data modelling.
Generative models in general, and HMMs with no exception, are used to approximate
the true density of the data, and hence the meaning of data modelling. Although,
HMMs can be frained discriminately using Maximum Mutual Information (MMI)
[BBASM86] and Minimum Classification Error (MCE) [Bie02]. Since their first ap-
pearance in speech as tool for speech modelling [Jel72, Bak75], they became the
standard tool for modelling and classifying time-series data.

Unlike discriminative models that are known for their good generalization in clas-
sification tasks, generative models in general have a low classification performance
[NJ02]. This is due to several reasons that are discussed in detail in Section 5.2. In
addition to the limitation of generative models in general, HMMs have also factors
that affect its performance and hence might increase or decrease the classification
performance of time-series data. These issues are addressed at length in Chapter 4.

In this thesis, we target the low performance of HMM-based classifiers for time-
series data classification. In real world, many applications are related to this problem;
time-series data classification occurs in applications such as speech recognition, hand-
- written word recognition, classifying biological sequences, weather prediction, stock
prices prediction, and increasing the classification performance will certainly increase

the performance of these systems.



1.2 Summary of Contributions

Our primary investigations targeted the problem of structure optimization to in-
crease the performance of HMM-based classifiers. The investigation was based on
theoretical results from the machine learning literature supported by our experiments
that studied the effect of the number of states and the topology of the model, each
separately, on the performance of HMMs. As it will be shown in Sections 4.1 and 4.2,
the theoretical and the experimental results showed that the topology of the model
has a stronger influence on the performance of HMMs than the number of states.
Also, our research confirmed that the Bakis model, i.e, the left to right model with
self state transitions is indeed a good model that can handle time-series data. In that
sense, these results contradict the new approach that focused only on optimizing the
number of states as was proposed in [BDMOI, BMF03) and encourage, on the other
hand, the optimization of the whole structure as Stolcke [SO92] and Brants [Bra96]
algorithms do.

In the next investigation, we combined generative and discriminative models to
achieve high perfo;mance time-series data classification. We proposed a new two-stage
framework that combines the complementary features of generative and discriminative
models to classify time-series data. The proposed framework is intuitively derived
from the work of Jaakkola and Hausler [JH98). Since generative models are able
to model or describe the variable length time-series data and discriminative models
are able to classify static fixed size vectors, then a static fixed size feature vector
that contains enough information on the sequential pattern, can be extracted from
the generative models and then use the discriminative model to classify it. In other
words, after representing the time-series data using HMMs in the first stage, a feature
vector can be extracted from the HMMs, the likelihood score, then SVMs or MLPs,

in the second stage, can be used to classify this feature vector. In that sense, the role



of HMMs was reduced to data modelling only and the classification task is left for
the discriminative model. The proposed framework was compared with traditional
HMMs on the problem of recognition of unconstrained handwritten digits. A standard
database, the MNIST [LeC] database, was used to benchmark the performance of both
systems. The results of the simple prototype model used in the experiments showed
the potential of the generative discriminative approach in general and the potential of
our proposed combination method. Traditional HMMSs were able to achieve 94.19%,
while the framework was able to boost the results to 98.02%. The 3.83% increase

encourages future investigations to improve the proposed framework to achieve better

performance.

1.3 Thesis Organization

The thesis is organized in seven chapters. Readers familiar with these topics can
jump directly to the core of the thesis in Chapters 4, 5 & 6. The chapters contents

are as follows:

e Chapter 2 reviews previous and state of the art research work that were intro-
duced in the literature for two main problems: 1) Increasing the performance of
HMMs for classification tasks, and 2) Combining generative and discriminative
models for classification problems. Increasing the performance of HMM-based
classifiers depends mainly on increasing the discrimination between the models
of the classifier. In the literature, two approaches are followed: 1) optimizing
the model structure (the number of states and the topology, or 2) improving
parameter estimation or learning algorithms. Section 2.1 reviews the struc-
ture optimization approach and presents algorithms that are dependent and
independent from the application domain. To avoid redundancy and to keep
the consistency of the context, the detailed review for parameter estimation

algorithms is presented in Section 4.3 since it reviews, compares and analyzes
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these algorithms and shows how they affect the performance of HMMs. Finally,

Section 2.2 reviews the state of the art research in combining generative and

discriminative models for classification problems.

Chapter 3 introduces the basic theory of hidden Markov models, graphical
models and support vector machines. Hidden Markov models form the core of
this thesis so their basic theory comes in the first section. Section 2 reviews in
brief the basics of graphical models in general and generative models in specific.
Section 3 reviews the basic theory of support vector machines since they form
the second stage of the proposed framework in this thesis. Finally, the notations

that will be used through the thesis are illustrated in Section 4.

Chapter 4 takes a deeper insight into hidden Markov modelling by focusing
only on the representation capability of HMMs. The main issue covered in
this chapter is understanding the factors that affect the modelling capability of
HMMs and how it can affect the final performance of HMM-based classifiers.
The modelling capability of HMMs is affected by two main factors: (I) the
model structure, and (II) the parameter estimation or the learning (training)
algorithm. The model structure can also be split to two factors: (a) the number
of states, and (b) the topology, i.e. the connections between the states. In
addition to the mentioned factors, there are other factors that arise from the
nature of the model itself and have a direct effect on the modelling capability.

Sections (1), (2) and (3) discuss all the above mentioned issues with more details.

Chapter 5 introduces the new framework that combines the complementary

features of HMMs and SVMs for classifying time-series data. Section (1) recalls
Bayes decision theory, and Section (2) presents a thorough comparison between

generative and discriminative models in general. Finally, section (3) introduces



the new framework.

e Chapter 6 illustrates all the experiments conducted in order to validate the
investigation of this thesis. Section (1) introduces the features extracted from
the images and how they were represented as time-series data. Section (2) shows
the experiments that investigated the effect of the structure on the performance
of HMM-based classifiers. The first part provides experimental results that
support the theoretical results obtained in Section (4.2.1). The second part
provides the experiments that investigated the effect of number of states on the
performance of HMM-based classifiers. Finally, Section (3) shows the results
obtained from the proposed framework when used for recognizing unconstrained

handwritten digits from the MNIST database.

¢ Finally, Chapter 7 draws conclusions and describes future research directions.



Chapter 2

State of the Art

<

2

This chapter reviews previous and state of the art research work that XV-:G/LE introduced
in the literature for two main problems: 1) Increasing the performance of HMMs
for _classiﬁcation tasks, and 2) Combining generative and discriminative models for
classification problems. Increasing the performance of HMM-based classifiers depends
mainly on increasing the discrimination between the models of the classifier. In
the literature, two approaches are followed: 1) optimizing the model structure (the
number of states and the topology, and 2) improving parameter estimation (training
~ or learning) algorithms.

Section 2.1 reviews the structure optimization approach and presents algorithms
that are dependent on and independent from the application domain. To avoid redun-
dancy and to keep the consistency of the context, the detailed review for parameter
estimation algorithms is presented in Section 4.3 since it reviews, compares and ana-
lyzes these algorithms and shows how they affect the performance of HMMs. Finally,
Section 2.2 reviews the state of the art in combining generative and discriminative

models for classification problems.



2.1 Structure Optimization

2.1.1 'The role of the priori knowledge

The speech recognition community has introduced to the literature many state of the
art techniques and results using HMMs. With a similar success but later in time,
handwritten word recognition researchers, grasped many of the successful techniques
of speech recognition and casted them in handwritten recognition problems. The main
reason for state of the art results of speech recognition systems lies in the amount
of a priori knowledge plugged in to the recognition system [Lee99, BR99]. A speech
recognition system does not depend solely on HMMs and the simple Baum-Welch
algorithm, but depends on two tools that provide the necessary a prior information.
Word networks and language models are the true working horses of speech recogni-
tion system. They provide sufficient statistics and class priors that are plugged in
every phase of the recognition system: segmentation, code book generation, training,
recognition and post processing. Despite ‘phat these tools could be used in hand-
writing recognition, yet handwritten word recognition systems have a limited use for
such information. However, other types of information is plugged in to handwritten
recognition systems. El-Yacoubi et al. [EYGSS99] used prior information from a
character segmentation process and used it only to build a special HMM structure.
Although this information is not incorporated in training and neither in testing, this
system achieved promising results and was the basic system for several recognition
systems introduced later for large vocabulary word recognition [KRSG02] and ad-
dress recognition [GSSGO00]. Also, applications with limited vocabulary such as legal
amount recognition, use a different sort of priori information [ABKP98]. Special pur-
pose methods can not be applied generally to all other applications that use HMMs,

but it can encourage researchers to search for a priori knowledge and incorporate it



in the recognition system.

2.1.2  Optimizing the number of states and the topology

Unlike special purpose methods that are used to increase the performance of HMM
based classifiers, general methods that can optimize the structure from the data
without a priori knowledge from the application domain are few. The well known
Bakis model, or the left-to-right model [Bak76] was suggested to handle sequential
data like speech. For many years this model was used in many systems, and our
experiments showed the efficiency of this simple topology, however, other types of
data may need different random topology that should be deduced from the data.
The first work presented in the literature to optimize the structure of HMMs was by
Stolcke and Omohundro [SO92]. The structure optimization in their work was based
on incrementally learning the structure form the data, i.e. the structure is changed
as new evidence is added to the model. The algorithm is based on an observation
from the analysis of Bayes rule, that is, the model posterior Pr(\|2) is proportional
to the product of the model likelihood Pr(Z|)) and the model prior Pr()\), where
A Is the hidden Markov model and Z is the training set for the model A. As the
model gets smaller or simpler, the likelihood will drop, and hence the prior has to
compensate this decrease to increase the model posterior. The algorithm starts from
a very large model, My, and then iteratively merge some states and outputs some new
models, My, My, ..., where at each iteration, models are getting smaller. From these
models, the algorithm search for a model that maximizes the posterior probability of
the model. The algorithm stops when a decrease is found in the posterior. Indeed,
the likelihood is the deriving force for this algorithm since it accounts for an overall

increase in the posterior.

Followed by Stolcke [SO92], and using the same approach, Brants [Bra96] combines



state splitting with state merging. Determining either to split a state or to merge
states is based on the number of samples available for each state. States with sufficient
data are split, while those with very few samples are merged. The candidate state for
a split operation is chosen based on the divergence of probability distribution that
is based on the relative entropy. The algorithm starts with two sets of states, one
for those states with sufficient samples Qp, and the other for those with very few
samples Q). Iteratively the algorithm applies merging for Q7 and splitting for Q.
The main advantage of both algorithms is their independence from the application
domain and reliance on the available data. The drawback for the first algorithm
and consequently for the second one also, is that they require lots of approximation
and smoothing algorithms which can affect slightly the performance and therefore
it is computationally demanding to ensure accuracy. Although Stolcke’s algorithm

appeared in 1992, yet the left-to-right model is preferred in many applications.

2.1.3 Optimizing the number of states only

Recently, Bicego et al. focused completely on optimizing the number of states us-
ing two methods, 1) Bisimulation algorithm [BDMO1}, and 2) Sequential Pruning
[BMF03]. The first approach consists of eliminating syntactic redundancy of an HMM
using probabilistic bisimulation. Bisimulation is a notion of equivalence between
graphs, or as a relation between nodes ;)f a single graph. The algorithm starts with a
model with a large number of states and trains it using the Baum-Welch algorithm.
After, the model is transformed to a labelled graph, the bisimulation algorithm is
applied to the graph to reduce the number of states and a new model is obtained. Fi-
nally, the new model is retrained using the Baum-Welch algorithm. The algorithm’s
performance was compared to that of the Bayesian Information Criterion [Shw] which

showed almost the same results in terms of classification accuracy, however, BIC is
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more computationally demanding.

In the second method, sequential pruning [BMF03], the algorithm uses a model
selection criterion such BIC or Minimum Description Length (MDL) [Rai86] and
searches for a model that maximizes this criterion. First, the algorithm starts with
a large number of states K., and sets the minimum desired number of states for
a model Ky, Iteratively, the algorithm estimates the current parameters using
the Baum-Welch algorithm, computes it’s model selection value and prunes the least
probable state. After K,z — Ko iterations, the best model is the one that maximizes
the model selection criterion. The main disadvantage of both methods is that they
focus only on the number of states and consider a fixed topology and according to
our experiments, the effect of number of states has less influence on the performance
than the topology. Assuming equal computational cost for all previous algorithms,
Stolcke and Brants algorithms would be the first choice, since they consider the model

topology and the number of states.

2.1.4 Different approaches

A different approach for optimizing the structure of HMMs was based on measuring
the distance between HMMs. Lyngso et al. [LPhN99] focused on comparing HMMs
in terms of the co-emission probability of state emissions, Bahalmann et al. [BBLO1]
used Bayesian estimates of HMM states correspondences and suggested the use of this
measure as a criterion for selecting HMMs. Balasubramanian [Bal93) has done exten-
sive work on finding equivalent HMMSs based on equal probability of the observation
sequence alone, and regardless of the number of internal states. He then used this
result to define conditions and an algorithm for finding minimal generalized Markov

model.

Another method that is based on model selection approach is the Discrimination

11



Information Criterion (DIC) [Bie03]. In this method, it is not desired to select the
simplest model that best explains the data, but to select the model that is the less
likely to have generated data belonging to competing classification categories [Bie03].
The method is considered discriminative in regard to the classification task because
it uses the data that belong to competing classes and hence it introduces knowledge
of the classification in the model selection process. Unlike Stolcke, Brants and Brand
methods, this method focuses only on the number of states and the number of Gaus-
sian mixtures per state, and it assumes a fixed topology for all models. Selecting
HMMs based on the DIC increased the recognition results by 1.11% at the price of
increasing the number of states and the number of parameters. The number of states
increased by 14% and the number of parameters increased by 60% to achieve this
performance. Obviously, the DIC is computationally demanding.

As will be shown in section 4.3, improving HMMs’ performance using better pa-
rameter estimation algorithms received more attention than structure optimization
methods. Also, some of the new training algorithms are getting more popular due to
the improvement they provide. Their main advantage is that they require less compu-
tations than structure optimization methods and provide a reasonable improvement
in terms of performance while keeping the structure simple. An obvious observation
would be to combine structure optimization methods and new training algorithms
to achieve better performance, however, to the best of our knowledge, we have not
found this kind of work. In the following section, we show that improving time-series
data classification using HMMs took a new approach. The new approach does not
exclude HMMs but reduces their role to efficiently model the time-series data, and
leave the task of classification to discriminative models such as SVMs and MLPs.
‘The main challenge in this approach, is what would be the discriminative and fixed

size feature vector extracted from HMMs that contain sufficient statistics to classify

12



time-series data. In other words, since MLPs and SVMs have very good generaliza-
tion in classification tasks, and since no fixed size feature vectors can be extracted
from time-series data, then we can use HMMs to model this type of data, then extract

fixed size vectors from the HMMs.

2.2 Generative and Discriminative Models

A new approach that appeared recently in the machine learning community is the
framework of generative and discriminative models. The first comparison between
both models was introduced in [RH97]. Their analysis showed that learning discrim-
inative models may not always lead to the best classifier. According to Bayes rule,
generative models approximate the true density of the data likelihood, and with an
absence of the class prior, the decision ‘is taken based on the maximum likelihood.
In case of the presence of the prior from the data, the classification becomes more
accurate. For discriminative models, the focus on the posterior directly without con-
sidering the likelihood neither the prior, therefore, they ignore valuable information.
They also proposed for the first time the new approach of combining both models for
classification problems. However, the combination method was not clearly formalized

and according to their paper [RH97]:

... this suggests a promising way of combining the two approaches: par-
tition the feature space into two. Train a generative model on those di-

mensions for which it seems correct, and a discriminative model on the

others.

A combination stimulated from [RH97) was introduced in [PMSM*03] where they
used discriminative models (Ensemble of Neural Networks) to classify misclassified

patterns from generative models (PCA).
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A first formal combination appeared in [JH98]. They proposed a general method
for extracting discriminatory features from generative models in general. The basic
discriminative model in their work was the generalized linear model which is a gen-
eral form of support vector machines. Generalized linear models require defining a
kernel and hence was the need to derive the kernel function from generative proba-
bility model. Defining a kernel function implies assumptions about metric relations
between patterns, therefore, these metric relations should be defined from the gen-
erative probability model. The basic idea was to capture the generative process in
a metric between patterns by using the gradient space of the generative model. The
gradient of the likelihood with respect to a parameter, or the Fisher score, describes
how that parameter contributes to the process of generating a pattern, and it pre-
serves all the structural assumptions that the model encodes about the generation
process. An advantage of the Fisher kernel is its invariance to any invertible (and
differentiable) transformation of the parameters.

The previous work focused on differentiating between the generating process of
two diflerent patterns and it did not include the class label in the process, however
as mentioned in theorem (1) [JH98], if the Fisher kernel will be used as a kernel
classifier, it will be asymptotically at least as good as a MAP based classifier. The
Fisher kernel was recently applied to speech recognition and speaker verification in
[QB02] where the probabilistic generative models were HMMs and the discriminative
model was support vector machines.

Recently, thorough comparisons and rigorous analysis for the trade-off between
generative and discriminative models were introduced in [NJ02] and [Bou03] respec-
tively. In [NJO2], a comparison was carried out between generative and discriminative
classifiers that studied the asymptotic error of each. It was shown that as the training

set size increases, generative models indeed have a higher asymptotic error than the
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discriminative classifier. Also, the generative model may also approach it’s asymp-
totic error much faster than the discriminative model. Faster in this context implies
with less number of samples, possibly logarithmic in the number of parameters for
the generative case. The final conclusion of the paper is that as the size of the train-
ing set increases, there are two regimes for performance, one in which each model
does better. The first in which the generative classifier has already approached its
asymptotic error and is thus doing better, and the second in which the discriminative
model approaches its lower asymptotic error and does better.

In [Bou03], the comparison between both models is carried out at the level of pa-~
rameter estimation and it proposes a new method for combining generative and dis-
criminative models. The new method is called the generative-discriminative trade-off
(GDT) estimate and it is based on a continuous class of cost functions that interpolate
smoothly between the generative and the discriminative strategy. The preliminary
results on real data showed that the intermediate model often gives much better
classification performances than that of the discriminative and generative classifiers.

It can be seen from the above comparisons and investigations that combining both
models will complement their individual powers. The proposed framework in this the-
sis is in general stimulated from [JHO8] in that generative models are used to map the
variable length sequential data into a single fixed size vector using the likelihood score
instead of the Fisher score. Despite of the simpler combination method proposed, the
preliminary experiments on the framework boosted the results of standard HMM by

3.83% which shows the potential of the generative-discriminative trend.
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Chapter 3

Basics & Notations

This chapter introduces the basic theory of hidden Markov models, graphical models
and support vector machines. Hidden Markov models form the core of this thesis
so their basic theory comes in the first section. Section 2 reviews briefly the basics
of graphical models in general and generative models in specific. Section 3 reviews
the basic theory of support vector machines since they form the second stage of the
proposed framework in this thesis. Finally, the notations that will be used throughout

the thesis are illustrated in section 4.

3.1 Hidden Markov Models

Hidden Markov Models (HMMs) [BP66, Rab89, Ben99] are a class of stochastic pro-
cesses that is-capable of modelling time-series data. They belong to a larger class
of models known as generative models. An HMM model A can be seen as a single,
discrete, hidden and multinomial variable that changes its state with time according
to a certain distribution . At each state, the variable emits a symbol according to an-
other distribution depending on the state of this hidden variable. The resulting model

in that sense is a doubly embedded stochastic process with an underlying stochastic
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process that is not directly observable but can only be observed through another set

of stochastic processes that produce the sequence of observations [Rab89].

3.1.1 Elements of HMMs

A first order, time homogeneous HMM is defined by the following elements:

* A set of n random variables (states) Q = {Q1,...,Qn}.

¢ An initial state probability distribution for # = 1 defined by:

T = Pr{g = Q;) (1)

such that 1 <i<nand 3%, m=1.

o A state transition probability distribution defined by a transition probability
matrix A = {a;;} that represents the probability of moving from state i to state
g

A= {ai;} = Pr{g; = Qi1 = Qi) (2)

such that 1 <14, <n and Yo e =1

¢ An Observation probability distribution defined by B = {6;(.)} such that:

bi(zt) = Pr(0 = z|q = Q) (3)

For discrete density HMMs, the observation 2z, € V = {v1,...,vi}, so that

2t = Up,. Therefore :

By,,.j = bj(vm) = Pr(0 = vplg: = Q;) (4)

such that S0 b,(vy,) = 1.
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For continuous density HMMs, the observation z, € RP and the pdf of the state

is usually represented as finite mixture form as follows:

M
Bu.j =bi(z) = Y CN (21, sk, Ujr,) (5)
k=1

where Cj; is the mixture coefficient for the kth mixture in state 7, M is the
number of mixtures in state j and N is any log-concave or elliptically symmetric
density such as the Gaussian density. Eq. 5 considers that the mixture Gaus-
sian with a mean vector p;; and a covariance matrix Uy, for the kth mixture
component in state j. The mixture weight (coefficient) Cjy, satisfies the stochas-
tic constraint Z,’C\’Ilejk =1where1 <j<mn 1<k< Mand0< Cir < 1.
For convenience, the complete set of HMM parameters are defined using the

compact notation: A = (4, B, 7).

It is worth noting that a discrete observation HMM can be obtained from a con-
tinuous one using vector quantization or clustering methods such as Learning

Vector Quantization (LVQ) [Koh97] or K-Means clustering algorithm respec-
tively.

For a classification problem with P classes, one usually builds an independent

HMM for each class to maximize the likelihood of the training sequences labelled for

that class, and then the classification is done using the Bayesian criterion. A new

pattern Zy that belongs to class C; is correctly classified if:

Pr(Zold;) = max_Pr(Zo|,) (6)

In real world applications, three main assumptions are considered when using

HMMs for modelling time-series data. First, it is assumed that an event can cause

another event in the future, but not vice-versa. This tends to simplify the design of the
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HMM [Gha97]. Second, it is assumed that the underlying Markov chain is a time-
homogeneous process, i.e. time-independent. A time-independent Markov process
means that the state transition probability matrix is fixed throughout all the process
and does not change according to another distribution as time-dependent Markov
chain. This assumption makes capturing the dynamics of the model much easier, the
number of parameters is much smaller, and the model can be trained on sequences of
certain lengths and generalize to sequences of different lengths [Ben99]. Finally, it is
- always assumed that the HMM is a first order Markov chain. A higher order HMM
becomes quickly intractable for large orders since the number of parameters required
for an n state variable is O(n**1), where k is the order of the Markov chain. This
restricts one to use a small value of k. However, most observed sequential data do not
satisfy the Markov property for a small k, but as mentioned above, that the event can
cause another event in the future and not vice-versa, warrant the hypothesis that at
time ¢, past data in the sequence can be summarized concisely by the state variable,
and this is the real embedded operation in HMMs. The observed data sequence is
not assumed to have a low order Markov property, rather another hidden variable is
assumed to exist and to have the Markov property of order 1. A first order HMM can
emulate an HMM of any other order by increasing the number of values the hidden

(latent) variable can take [Ben99], i.e. increasing the number of states.

3.1.2  Observation likelihood, optimal state sequence and train-
ing
In addition to the above formal definition of HMMs, there are three basic issues

regarding the model in order to make it useful in real world applications. These

issues are as follows:

Observation likelihood : Given a time-series pattern (observation sequence) Z and
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a model A, it is desired to answer the question of How likely the observation Z
was generated by the model A ?, i.e. compute the quantity Pr(Z|)\). The
forward and backward operators [Rab89] are standard recursive algorithms for

computing this quantity, and they are used extensively in the Baum-Welch

training.

Optimal state sequence : Given a time-series pattern Z and the model ), it is
desired to answer the question of What is the optimal state sequence that best
ezplains the observation ?. The main problem in this question is the formal
definition for the optimality criterion. The most widely used criterion is to
maximize Pr(Q),Z|)). A formal technique for finding this single best state
sequence is based on the dynamic programming method and it is known as the

Viterbi algorithm [Rab89, Vit83].

Training : Training, parameter estimation or learning are three synonym terminolo-
gies for one problem, that is How to adjust the parameters of the model )\ to
mazimize the likelihood Pr(Z|)). The first parameter estimation algorithm for
HMMs and the most widely used is the Baum-Welch [BP70, Rab89] algorithm
which is a form of the generalized Expectation-Maximization (EM) [DLRT77)
algorithm. The Baum-Welch and the EM algorithms are parameter estimation
algorithms that maximize the likelihood of the data which do not guarantee the
minimum classification error. This drawback of the algorithm encouraged re-
searchers to develop new algorithms with different criteria than maximizing the
likelihood of the data and that suites classification problems such as . Maximum
Mutual Information [BBASM86], Corrective Training (BBdSM88], Maximum A
Posteriori [GL92], Entropy based Distance Functions [SW96), Minimum Clas-
sification Error (MCE) [JK92, KL98] and Factor Analysis & Minimum Classi-

fication Error [SR00]. Recently the MCE got the attention of a few researchers
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Figure 1: A simple graphical model for two random variables.

and the algorithm is getting more popular [Bie02, GHO02].

3.2 Graphical Models

Graphical models [Hec96] are a marriage between probability theory and graph the-
ory. They provide a natural tool for dealing with two problems that occur in applied
mathematics; uncertainty and complexity. Probability theory provides the glue that
combines parts together and ensures the system’s consistency. On the other hand,
the graph theory framework provides a way to view all these systems as instances of
a common underlying formalism. This view has many advantages, in particular, spe-
cializéd techniques that have been developed in one field can be transferred between
research communities and exploited more widely. Fundamental to graphical models
the notion of modularity - a complex system is built by combining simpler parts.
Graphical models are graphs in which nodes represent random variables and the
need of arcs represent conditional independence assumptions. Figure 1 shows a simple
graphical model for 2 random variables X and Y. The arrow from X to Y can be
interpreted as X causes Y, hence directed cycles are disallowed. We adopt the con-
vention used in [Mur01] that squares nodes represent discrete random variables, and
circles represent continuous random variables. Shaded nodes are observed variables,

and clear ones are hidden.
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The conditional independence assumption allows the joint probability distribution
over the random variables to be represented in a factored form. Such a representa-
tion has two advantages 1) the model has fewer parameters to be estimated and
consequently makes learning easier and faster, and 2) makes inference faster.

There are two main kinds of graphical models: undirected and directed. Undi-
rected graphical models, also known as Markov Networks or Markov random fields,
are used in physics and vision communities. Directed graphical models, also known as
Generative Models or Bayesian /Belief Networks, are used in Al and Machine Learning
communities. HMMs belong to this type of graphical models. The following subsec-
tion, discusses in brief generative models and gives several examples of different types

of HMMs and their representation as directed graphical models.

3.2.1 Generative models

Generative models (GM) are directed graphical models for probabilistic relationships
among a set of random variables. Such models record qualitative influences between
variables in addition to the numerical parameters of the probability distribution.
There are numerous representations for data analysis like rule bases, decision trees,
and neural networks, also, there are many techniques for data analysis such as den-
sity estimation, classification, regression, and clustering; but generative models have
some advantages over these representations and techniques. First, GM can handle
incomplete data sets, i.e. when some variables are missing their values. This is due
to their ability to encode correlation between input variables. Second, GM allows one
to learn about causal relationships which is important to a) understand the problem
domain, and b) allows to make predictions in the presence of interventions. Third,
they facilitate the combination of domain knowledge and data. Formally, GMs are

capable of learning and exploiting relations between a large set of variables due to
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Figure 2: Discrete hidden Markov model unrolled for 3 time slices.

/Ql o Q2

K1

Figure 3: An HMM with mixture of Gaussians output unrolled for 2 time slices.

their ability to encode the joint probability distribution between these variables.

A GM for a set of variables Q = {Q,...,Q,} consists of (1) a network structure
S (directed acyclic graph) that encodes a set of conditional independence assertions
about variables in Q, and 2) a set Pr of local probability distribution for Q. The
nodes in S are in one-to-one correspondence with the variables in Q. Pa; is used to
denote the parents of Q; in S. The joint probability distribution for Q is given by
Pr(Q) =1, Pr(Q;|Pa;).

Figures 2, 3, 4 and 5 show different types of HMMs from the literature such as
discrete HMMs, continuous HMMs, IOHMMs [BF96] and Factorial HMMs [GJ97]

with their representation as directed graphical models.
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Figure 4: Input-Output HMM (IOHMM) unrolled for 2 time slices.

K1 K2

Figure 5. Factorial HMM unrolled for 2 time slices.
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3.3 Support Vector Machines

Support vector machine is a new type of pattern classifier based on a novel statistical
learning technique proposed by Vapnik [Vap98]. The appeal of SVMs is two-fold.
Firstly, the process of tuning the parameters in the training algorithm is simpler,
and secondly, they showed great ability in generalization performance not only in
classification tasks but also in regression and density estimation problems. Due to
their good generalization, SVMs have been successfully applied to a number of pattern
recognition applications such as face detection, verification and recognition [NGO02,
WCHO02], object recognition [SG01], character recognition [ZLX00, ACS02b), speech
and speaker verification and recognition [WC00], information and image retrieval,
gender classification [ZL.Z01] and text categorization [Joa99b).

We recall that classical learning approaches are designed to minimize the error on
the training dataset following by that what is called ”Empirical Risk Minimization”
and Neural Networks are the most common example on such an approach. SVMs, on
the other hand, follow a different approach by minimizing the empirical risk and a
term known as the VC confidence. The Empirical risk Remp(c) and the VC confidence
are known to be the “Risk Bound”. SVMs minimize the Risk Bound via the Structural
Risk Minimization approach, a piecewise minimization process for the Risk Bound.

For this section we follow the notation used in [Vap98]. Given a training set
of I observations, and that each observation consists of a pair {X;,V;}i=1,...,1
where X; € ®” and ¥ € {—1,+1}. It is considered that there exists some unknown
probability distribution Pr(X,Y) from which these data are drawn and are assumed
to be “iid”. Suppose we have a learning machine whose task is to learn the mapping
Xi = Y;. The machine is defined as a set of mappings X — f (X, @) where f(X, )
themselves are labelled by the adjustable parameters . A particular choice of o

generates what is called a Trained Machine. Also we consider a 0-1 loss function
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defined as: |Y; — f(X;,a)|. The expectation of the test error for this machine

“Ezpected Risk” is defined by:

R(e) = [ 2%~ £(X, 0)|dPr(X,Y) (7)

The Empirical Risk, Reyy,(c), is defined to be the measured mean error rate on the

training set;:
!

Rem(0) = 37 3 1Y = £, ) ®

For a certain value 77 where 0 < n < 1 and for the 0-1 loss function defined above,

then with a probability of 1 — 7 the following bound holds [Vap98]

(@) < Rurpfo) + o8 ) + 1) = log) )

where h is a nonnegative integer called the Vapnik-Chervonenkis (VC) dimension,
and is a measure of the capacity of the machine. The capacity of the machine is
defined as the ability of the machine to learn a. training set without errors. The right
hand side of Eq. 9 is the Risk Bound and the the second term of the Risk Bound is
the VC confidence.

3.3.1 SVM for linearly separable case

The basic idea of SVMs is to construct a hyperplane as the decision plane which
separates the +ve examples and the —ve ones with the largest margin. In a binary
classification problem, it is desired to find the separating hyperplane which gives the
smallest generalization error among an infinite number of possible hyperplanes. Such
a hyperplane is the one with the maximum margin of separation between the two

classes, where the margin is the sum of distances from the hyperplane to the closest
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Figure 6: Among the separating hyperplanes, SVM chooses the one which has the
largest margin. The support vectors are circled.
data points of each of the two classes. Figure 6 shows an example for such a case
where the best hyperplane to classify the data is the one exactly in the middle (the
thick line). |

The data points that lie on the hyperplane are called the support vectors because
they support the decision boundary between classes and they define the decision
function of the SVM. Figure 7 shows the linear separable case for SVM. Suppose the

data are completely separable by a P-dimensional hyperplane defined by:
WX4+b=0 (10)

where W is a vector normal to the hyperplane known as the weight vector, b is the
bias term and ITWI%'W is the perpendicular distance from the origin to the hyperplane.
The separation problem is to determine the hyperplane such that W.X; + b > +1 for

+ve examples and W.X; +b < —1 for —ve examples. Such a hyperplane can be found
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Figure 7: Linear separating hyperplanes for the separable case. The support vectors
are circled

by maximizing W which implies minimizing the following objective function:

. 1 9
min L(W) = 5[|W]| (11)
under the constraint:
V(X;,W+b)—-1>0 Vi (12)

This is a quadratic programming problem that can be solved using standard tech-

niques such as Lagrange multipliers and Wolfe dual [CST00].

3.3.2 SVM for non-separable case

In real-life data, the two classes are not completely separable, but a hyperplane that
maximizes the margin while minimizing a quantity proportional to the misclassifi-
cation errors can still be determined. This can be done by introducing a +ve slack

variable &; in constraint 12, which then becomes:

YiXi W +b) <1-¢, Vi (13)
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Figure 8: Linear separating hyperplanes for the nonseparable case

If an error occurs, the corresponding & must exceed unity, so >.; & is an upper bound

for the number of misclassification errors. Hence the objective function L(.) becomes:

l
LW = IWIP+CS 6 v (1)

i=1

where C' is a parameter chosen by the user that controls the trade-off between the
margin and the misclassification errors. A larger C means that a higher penalty to

misclassification errors is assigned. Figure 8 shows the nonlinear separable case for

SVMs.

3.3.3 Nonlinear SVMs and kernels

In order to accomplish nonlinear decision function, an artificial mapping ¢ of the data
into a very high (possibly infinite) dimensional Euclidean space H is performed as
¢ : RF — H, and the linear classification problem is performed in the new space with

dimension D. Cover’s theorem states that if the transformation is high enough, then
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Figure 9: The role of the mapping function ¢ in making the data more linearly
separable

the input space may be transformed into a new feature space where the patterns are
linearly separable with high probability. Figure 9 shows the idea of mapping the data
from the input-space to the feature-space where they become linearly separable. The’
training algorithm then only depends on the data through the dot product in #H of
the form #(X;).4(X;). Since the computation of the dot product is prohibitive in
this new high dimension space, and since ¢ is unknown, Mercer’s theorem for positive
definite functions allows to replace ¢(X;).¢(X;) by a positive definite symmetric kernel
function K (X;, Xj), that is , K(X;, X;) = ¢(X;).¢(X;). in that sense, the data can
become separable in the feature space although the original input is not linearly
separable in the input space. Therefore, kernel substitution provides a route for
obtaining nonlinear algorithm from algorithms previously restricted to handling linear
separable data. Variant learning machines are constructed according to different
kernel functions K(X;, X;) and thus different hyperplanes in the feature space. Table

1 shows four different kernels and their inner product functions.
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Table 1: Summary of inner-product kernels

Kernel Function Inner Product Kernel
Polynomial Kernel KX, X;)=(XTX; +1)?

Gaussian Kernel K(X, X;) = exp(—||X — X;||?/20?)

Sigmoid Kernel K(X, X;) = tanh(Bo X" X; + 1),

where 8o and 81 are user defined parameters

KMOD Kernel [ACS02a] K(X, X;) = a[exp(m(—_—)gw) - 1]

where @ is a normalization constant equal to ey S,
exp(y/o®)—1

3.3.4 SVM applied to multiclass classification

‘The SVM is originally a binary classifier, however it should be extended to multiclass
problems. There are two basic strategies for solving P-class problems with SVMs: 1)

The one-against-all strategy, and 2) tree-structured (pairwise and DDAG) strategy.

One-against-all

Take the training samples with the same label as one class and the others as the
other class, then it becomes a two class problem. For a P-class problem, P classifiers
are formed and denoted by SVM;,i=1,...,P. For testing a sample Xj, d;(Xy) =
W;.Xo + b can be obtained by SVM;. The testing sample X, belongs to the class j

where

dj(Xo) = max dz(Xo) (15)

i=l1,...,P

Pairwise and DDAG

In the pairwise approach, P(P — 1)/2 SVMs are trained to classify a testing example
and the final result is synthesized from all these classifiers. The pairwise classifiers are
arranged in trees, where each tree node represent a SVM. The Bottom-Up tree which
is similar to the elimination tree used in tennis tournaments was originally proposed

in [GZLO1]. An alternative Top-Down tree called Decision Directed Acyclic Graph
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(DDAG) has been recently proposed in [PCST00]. There is no theoretical analysis
of the two strategies with respect to the classification performance. Regarding the
training effort, the one-against-all strategy is preferable since it requires less number

of classifiers to be trained.

3.4 Notations

In order to avoid any confusion for the reader, this section illustrates the basic nota-

tions that will be used in the rest of this thesis unless stated otherwise.

A training set of time-series data is defined by Z = {Z;|1 < i < N} such that

Z;= {71 <t < T}, 2! € RP and T; is the length of sequence i.

The pair {Z;, Y;} represent the training example Z; with the label Y; such that

Y € Y = {Cj|]1 < j < P} where P is the number of classes.

The set Zj = {Zk!}. <k< lg} such that Z, € Oj and lj = |Z||

The function F : R? — RF is a nonlinear function that takes Z; as input and
maps it to a point X; € RF. Therefore the set X = {X1,..., X n} is the image
of the set Z under the function F.

It is worth noting that it is not a restriction that the dimensionality of X should
be equal the number of classes. It could be that due to several variations in patterns
within one class, the data could be represented using more than one model. In that
case, the number of models is going to be larger than the number of classes and X
will have a dimensionality equal to the number of models. However, here we used the

simple case where each class is represented by one model.
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Chapter 4

Notes on Hidden Markov
Modelling

This chapter provides a deeper insight into hidden Markov modelling by focusing on
the representation capability of HMMs. The main issue covered in this chapter is
understanding the factors that affect the modelling capability of HMMs and how it
can affect the final performance of HMM-based classifiers.

The modelling capability of HMMs is affected by two main factors: (I) the model
structure, and (II) the parameter estimaﬁon or the learning (training) algorithm. The
model structure can also be split to two factors: (a) the number of states, and (b)
the topology, i.e. the connections between the states. In addition to the mentioned
factors, there are other factors that arise from the nature of the model itself and they
have a direct impact on the modelling capability. Sections (1), (2) and (3) discusses

all the above mentioned issues in more details.
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4.1 Hidden Markov Modelling Limitations

We discuss in the following some limitations that arise from the nature of hidden
Markov modelling. The first limitation limitation of HMMs is that they represent the
recent history of the sequence using a single, discrete n—state multinomial variable.
The efficiency of the Baum-Welch re-estimation depends on this fact, but it severely
limits the representational power of the model. The hidden state of a single HMM
can only convey log,n bits of information about the recent history. If the HMM had
a distributed hidden state representation [BHO1] consisting of m variables each with
n alternative states it could convey mlog, n bits of information. So, the information
bottleneck scales linearly with the number of variables and only logarithmically with
the number of states of each variable [BHO1]. This simply suggests that in a multi-
class problem, it is better to decompose the class to subclasses and use many small
HMMs to model each subclass (mixtures of models), where the outputs are somehow
combined to produce a single output for the class.

Second, despite that HMMs have a very powerful relationship between the un-
derlying state and the associated observations because each state stores a private
distribution over the output variables, any change in the hidden state can cause com-
plex changes in the output distribution. Consequeritly this makes it extremely difficult
to capture reasonable dynamics on the discrete hidden (latent) variable because in

principle any state is reachable from any other state at any time step and the next

state depends on the current one [Row99].

4.2 The Effect of the Structure

In the following, we investigate the effect of the topology on the modelling capability of

HMMs. We studied the effect of the topology from two different perspectives: (1) the
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graphical models framework, and (2) the diffusion of credits while learning Markovian
models. The experimental results supporting the theoretical results are illustrated in
Chapter 6 (Experimental Results). Investigating the effect of number of states on
the modelling capability of HMMs is based on extensive empirical experiments only,

therefore they are also illustrated in detail in Chapter 6

4.2.1 The topology factor

In many applications that use HMMs, the number of states is manually predetermined
prior to training. The connections between states, (topology) are determined by
setting non-zero probabilities in the 4 matrix prior training. During training, the
Baum-Welch (EM) [BP70] algorithm improves the estimates of these probabilities
from the data. Note that the EM algorithm can not set 0 or 1 (can approach 0 or 1)
probabilities in the A matrix, therefore it can not be seen as an algorithm that learns
the topology.

An approach that can determine automatically from the data the number of states
of the model and the interconnections between them, i.e. learning the number of states
and the topology, is the model selection approach. Using this approach the problem
can be formulated as follows. Given the training set of examples Z and a criterion
function T for the quality of the model on the data set Z, choose a model from a
certain set of models, in such a way to maximize the expected value of this criterion
function on new data (assumed to be sampled from the same unknown distribution

from which the training data was sampled) [Ben99].
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Bayesian formulation for model selection

HMMs can be viewed as a special case of Graphical Models [Hec96, Mur01]. Model
selection is one of the main problems in graphical models and much work has been in-
troduced regarding this problem. The Bayesian approach, one of the main approaches
for model selection, is a fundamental approach for model selection in graphical mod-
els. Following this approach means encoding the uncertainty about the structure
of the HMM by using a discrete variable whose states correspond to the possible
HMM-structure hypotheses S" and assessing it the a priori density P(S™). Given
the training example set Z for the model A and augmenting the model parameters
A, B, in a single parameter vector #, the problem would be computing the posterior

distribution for the HMM structures. This can be formulated as follows using Bayes

theorem:
Pr(Z[Sh)Pr(Sh)

Pr(S"z) = PriZ)

(16)

where Pr(Z) is a constant that does not depend on the network structure. The max-
imum likelihood structure would be the complete graph [Mur01], i.e. the full ergodic
model, since this has the greatest number of parameters, and hence can achieve the
highest likelihood. On the other hand this increases the model’s complexity and will
let the model overfit the training data resulting in a poor generalization. In fact, the
marginal likelihood in Eq. 16 plays an important role to prevent this overfit. From

the definition of the marginal likelihood:
Pr(2|S") = /Pr(ZISh, 6)Pr(8|S™) do (17)

it automatically penalizes more complex structures since they have more parameters
and hence cannot give as much probability mass to the region of space where the data

actually lies. In other words, a complex model is less believable and hence less likely
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to be selected. This phenomenon is known as Ocham’s Razor [Mur01] which favours
simple models over complex ones. It can be seen that though the number of states

may be fixed, the topology can affect the modelling capability in a serious way.

Diffusion of credits in Markovian models

A different approach that studied the effect of the topology on the modelling capability
of HMMs was presented in [BF95]. Bengio and Frasconi investigated the problem
of diffusion in homogeneous and non-homogeneous HMMs and its effect on learning
long term dependencies. Training HMMs requires propagating forward and backward
probabilities and taking products of the transition matrix A. Therefore, two types
of diffusion exist, diffusion of influence in the forward path and diffusion of credit in
the backward phase of training. Their paper studied under which conditions these
products of matrices will converge to a lower rank, thus harming learning long term
dependencies. The difficulty of learning was measured by using the Dobrushin’s

ergodicity coefficient [Sen86] defined as follows:

T(A) = lS?lPZ |air, — ajn] (18) |

12%) k

where A = {a;;} is the transition probability matrix. It was shown that in all cases,
while training HMMs, the ergodicity coefficient will converge to 0 indicating a greater
difficulty in learning, but the rate of convergence depends on the topology. Figure 10
[BF95] shows the convergence of 4 HMMs with the same number of states but with
different topologies. It can be seen that the full ergodic model has the fastest conver-
gence rate and that simpler models are slower. The final conclusion is that in order
to avoid any kind of diffusion, most transition probabilities should be deterministic
(0 or 1 probability). The result coincides with the Ocham’s Razor result obtained

from the previous section and both prefer simple topologies to complicated ones.
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Figure 10: Convergence of Dobrushin’s coefficient for 4 different topologies.

4.3 Parameter Estimation

This section discusses the effect of parameter estimation algorithms on the perfor-
mance of HMMs when used for classification. Prior to the discussion, a review on
some of the well known parameter estimation algorithms for HMMs is introduced.
Recall that for a P—class problem, each class is represented by a single model
(assuming simple case) independent from other models. Also, consider that the pa-
rameters A, B, m of the model of ); for class C; are stacked in single parameter vector
0; € © where O is the parameter space. Using this notation, we review the different

training algorithms for HMMs in a chronological order:

Baum-Welch (ML) [BP70]: The Baum-Welch algorithm was the first training al-
gorithm for HMMs. It is based on the Maximum Likelihood (ML) approach
that is achieved by means of the Expectation-Maximization algorithm (EM)

[DLR77]. The algorithm considers that 0; is fixed but unknown and iteratively,
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the algorithm finds 6; that maximizes the likelihood of the data as follows:
Orr = ammﬂgxPr(Zﬂ@) (19)

The Baum-Welch algorithm is guaranteed to monotonically increase the likeli-

hood function and many of the following algorithms depend on it as a first step

in the training.

Maximum Mutual Information (MMI) [BBdSMS86]: An initial estimation of
the parameters of each model is done using the Baum-Welch algorithm. Then,
the MMI algorithm changes the initial estimates of the parameters by maximiz-

ing the mutual information defined as:

1(Z;,0;) = log Pr(Z;|6;) — log(D>_ Pr(Z;|6;) Pr(6;)) (20)
i#]
Therefore:
éMMI = argn})gxl(zj,ﬂj) (21)

'The MMI in that sense is better than the pure EM since its second step updates
the initial estimates of the EM based on information from other models. A
complete derivation of the new estimates of ., can be found in [BBdASM&6).
However, MMI has a drawback as parameter estimation algorithm; unlike the
EM which provably converges to a local maximum of the likelihood, the MMI

has a lack of such a proof for it’s recursive estimators.

Corrective Training [BBdSMS88]: The Corrective training can be described in

the following steps:

1. Using the training data Z of each model A, use the Baum-Welch algorithm

to obtain an initial estimate for the parameters of each model.
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2. Perform a recognition for the whole training set using the models obtained

from the previous step.

3. If any pattern Z; € C; was recognized as Cy, adjust the correct model of

Z; 50 as to make A; more probable and ) f less probable, then perform step

2. Else stop the correction.

The algorithm is motivated from the error correction procedure for linear clas-
sifiers, but unlike the existence of a proof of convergence for linear classifiers,

the authors were unable to derive such a proof, however they proved empirically

that the algorithm is working well.

Segmental K-Means (SKM) [JR79]: The objective of the Segmental K-Means
is to maximize the state sequence of the observation, i.e. maxg Pr(Z;,Q16;).

Hence:

~

b; = arg rrb?x{mgx Pr(Z;,Q16,)} (22)

Eq. 22 which is known as the state optimized likelihood, focuses mainly on
the most likely state sequence as opposed to summing over all possible state se-
quences as in the ML approach. This tends to reduce the computational burden
of the algorithm. Also, Eq. 22 can be seen as maximum a posterior sequential
estimate. The algorithm was motivated from speech recognition problems and
it was shown to be better than the Baum-Welch, however, to the best of our

knowledge, it was only applied in speech recognition applications.

Maximum A Posteriori (MAP) [GL92]: The MAP estimate can be seen as a
Bayesian estimate of the vector parameter when the loss function is not spec-
ified. As mentioned earlier, the ML approach considers 6, to be fixed but un-
known, however, the MAP approach assumes that 0; is a random vector taking

values from ©. 0; has to be estimated from 2; which has a p.d.f f (.16;) and a
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prior p.d.f g(.) for §;. Hence, émap is defined as:

~

gmap = argrr‘lgz}xf(Zjo)g(@j) (23)

'The MAP could be estimated for mixtures of Gaussians and then it was deployed
to continuous density HMMs which resulted in two algorithms; 1) The Forward-

Backward MAP estimate, and 2) The Segmental MAP estimate.

Entropy Based Distance Function [SW96]: Instead of maximizing Pr(Z;|6;),
the Entropy based Distance Function, iteratively, maximizes the following func-

tion:

U(6;) = nlog(Pr(Z;16;)) - d(6;,6;) (24)

where 7 is the learning rate, and d(9~j, 0;) is the distance between the old and
new parameters. The dista,n.ce that was chosen in the algorithm was the relative
entropy between the two parameter vectors. The motivation for Eq. 24 is as
follows. Consider that in a batch training mode, and after several iterations, we
have a parameter vector . In the next iteration, it is desired to keep the new
parameter vector 8 close to § which incorporates all the knowledge obtained in
past iterations, but it should also maximize the log-likelihood of the data set.
Despite the theoretical proof of convergence that backs up the algorithm, and
the promising results it showed, it was not popularized in the speech recognition
community. This could be due to the appearance of the algorithm appeared in

different communities and its high computational cost.

Minimum Classification Error [Bie02]: An initial parameter estimate for the

model is done by using the Baum-Welch algorithm. For each model );, we
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define a discriminant function g; as follows:
9:(Z,\) = [logPr(Z|)\)] (25)

where v is a positive constant. By choosing a large v, the discriminant function
term is dominated by the lexeme of maximum score. By varying v, the contri-
bution of each lexeme’s score to the character discrimination function can be
controlled. The recognition is done by choosing the class that has the highest

discriminant measure:
choose G if i=argmax g;(Z,\)) (26)
J

From the discriminant function, a misclassification measure can be derived:

-g:(Z, Ai) + 109[51_—1 > j,j#i €XD gj(27 /\j)n]”"

(27)

where 7 is a penalty term, P is the number of classes and hence the number
of models and T is the sequence length of Z. Choosing a large +ven implies
focusing on learning the most competing categories. As 7 — +00, the mis-
classification measure is reduced to a difference in score between the best but
incorrect category and the true category, i.e. learning becomes a two class clas-
sification in each iteration. From the misclassification measure, the MCE loss

assigned to Z can be defined as:

(Z,A) = f(&(Z,3)) (28)

where f(.) is a smooth approximation of the step-wise 0-1 loss function, which

is equal to one for positive values and zero otherwise. The choice of f (.) should
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reflect the variations of the error rate and should be smooth enough to allow

minimization by standard gradient techniques. In [Bie02] the truncated sigmoid

was chosen:

—L _ fr>e¢
flr) = (29)
0 otherwise

where « is +ve and ¢ is a threshold that controls the degree of discrimination
during the MCE training. After defining the MCE loss function, the goal of the

MCE training is to minimize the expected loss L(A) of the overall parameter

set defined over the training set:

L) = 3 e, ) (30

The Minimization of L(.) is usually done by the Gradient Probabilistic Descent
| method (GPD) which updates the parameters of the system using a token by
token basis. A drawback of the GPD is its sensitivity to the tuning of the
parameters such as the learning rate. An alternative choice could be a second

order gradient method such as the Newton algorithm which is less sensitive to

the learning parameter.

4.3.1 Discussion

Two remarks can be drawn from the above algorithms. First, the MMI, The Cor-

rective Training and the MCE, share a common step, that is an initial estimate of

the model parameters using the Baum-Welch algorithm. Secondly, all of the train-

ing algorithms train each model independently without incorporating any knowledge

about other models. The two algorithms that overcome this problem are the MMI

and the MCE since they modify the parameters according to some knowledge from

other classes. Since the MMI has no proof of convergence, the MCE seems to be more
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attractive. In the literature of HMMs, the training procedure is called Parameter Es-
timation which best describes the function of these algorithms despite their different
criteria. This common feature is the main characteristic of )generative models, that is,
the training algorithm estimates the parameters of a predefined model by maximizing
the likelihood (or any other criterion) of the data(Pr(Z|6)) independently from other
models. Such a property has a strong effect on the performance of HMMs when used
for classification, that is maximizing the likelihood or any other criterion function,
does not guarantee less classification errors. For that reason, the MCE algorithm,
lately has received more attention from researchers [SR00, GHO02, Bie02].

On the other hand, it is well known from practical problems and the theoretical
foundation, that for classification problems, it is better to estimate the posterior
probability directly or learn a direct mapping from the data to their class labels.
This is the characteristic of discriminative models that construct decision boundaries
between classes. Unfortunately, discriminative models can not be used to classify
time-series data due to the variable length of these sequences. The next chapter
introduces a thorough comparison between generative and discriminative models in

general, followed by the proposed framework for classifying time-series data.
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Chapter 5

The Generative-Discriminative

Framework

As discussed in the previous chapter, HMMs have a great ability to model time-series
data, however, for classification problems, they have a degraded performance due to
factors such as the structure and the type of the training algorithms. Also, it is very
difficult to use SVMs and MLPs to represent this type of data. The difference in
modelling capability and classification performance among HMMs, MLPs and SVMs
is due to the type of each model. HMMs belong to the class of generati\}e models
that their primary use is in data modelling. SVMs and MLPs belong to the class
of discriminative models that it’s primary use is in discrimination (classification)
problems.

This chapter proposes a new framework that combines the complimentary features
of HMMs and SVMs for classifying time-series data. Section (1) recalls Bayes deci-
sion theory, and Section (2) presents a thorough comparison between generative and

discriminative models in general. Finally, section (3) introduces the new framework.
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5.1 Bayes Decision Theory

We review in brief the Bayes decision theory for classification. The classification
problem consists of assigning a vector X € P to one of the K classes. The true
class is denoted by Y € {C1,...,Ck}. The classifier can be seen as a, mapping
between the observations and the labels. For each class, there is a true joint density
Pr(X,Y) = Pr(Y|X)Pr(X) = Pr(X|Y)Pr(Y) which is unknown in practice and
the only available information is the training set {Xi, Y3} for 1 < 4 < N [RH97).
There is also a cost matrix C(r,s) where r,s = 1,. .., P which describes the cost
associated with misclassifying a member of class r to class s. A special case is the
0 —1 loss, where C(r,s) = 1 if r # s and 0 otherwise. The goal of the classification
Is to minimize the cost of errors, known as the The Overall Risk and in the case of a

0 — 1 loss, this can be achieved by assigning the observation X to the class with the

maximum poéterior probability:
C;=arg Jax, Pr(Y = Cj|X) (31)

where Pr(Y" = C;|X) can be defined using the Bayes rule as:

P?"(XIY = Cj)PT’(Cj)

Y =0C. = 2
Pr(Y = G|) Pt (32)
We also define the discriminant function
Pr(Y =Cj|X )
(X)) =1 J 3
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9.2 Generative Vs Discriminative Models

Choosing between a discriminative or a generative model is problem dependent. For a
density estimation problem, generative models would be the best choice. However, for
classification problems, discriminative models would be the first choice. A main reason
for this choice that is succinctly articulated [NJO2] by Vapnik [Vap98], is that “one
should solve the classification problem directly and never solve a more general problem
as an intermediate step such as modelling Pr(X|Y)”. Also in practice, discriminative
models are preferred to generative ones due to their low asymptotic error. Despite of
the low error rate in many classification problems that used discriminative models,
it was shown in [RH97] that learning discriminative models might not always lead to
- the best classifier. In addition, it is very difficult to classify time-series data using
discriminative models due to their variable length.

Since the paper is concerned with variable length time-series data but the goal
is the classification of this type of data, it is better to have an insight of the advan-
tages and disadvantages of generative and discriminative models from the following

perspectives [QB02]:

Target of learning and the decision rule : Generative models learn a model of
the joint probability density Pr(X,Y), of the input X and the label ¥ and
the prior density Pr(Y). Their prediction is made by computing the likeli-
hood Pr(X|Y’) using Bayes rule and then picking the most likely Y. On the
other hand, discriminative classifiers focus on modelling the decision bound-
aries between classes by modelling the posterior probability Pr(Y|X) directly
or learning the direct map from input X to the class labels. Therefore, the
focus of discriminative models is on correct classification only while generative

models focus on modelling the true density of the data.
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Learning method : For generative models, a model is chosen for the class densities
Pr(X|Y = C;) = N(X, yi3,0;) and the model parameters are estimated from
the data by maximizing the full log likelihood

N; _
= argmazg ¥  logPr( ec;r Yi) (34)

i=1

MLE
0;

where N; is the number of patterns in class C;, y; and g; are augmented in the
parameter vector 0;. The EM algorithm is widely used algorithm for maximizing

Eq. 34 and it has been proved it converges monotonically to a local maximum

likelihood solution.

The discriminative approach is more flexible within regards to the class densities
that it is capable of modelling. By observing Eq. 33 the generative model in
terms of class densities can be seen as a special instance of the more general
discriminative model. Parameter estimation in the discriminative case is carried
out by maximizing the conditional log likelihood

N;

077" = argmazy Y logPr(Y,-]XéCj) (35)

1==1

which focuses directly on the class posteriors. However, using this approach, a
part of the data is ignored, namely, the marginal distribution Pr(X). Compare
the full likelihood Pr(X,Y) = Pr(Y|X)Pr(X) with the conditional likelihood
which ignores the second term of the right hand side. Therefore, if the class
density is correct, the discriminative approach ignores important information.
However, ignoring the class models may be good if they are not correct. The

above observations are summarized in the following Table 5.2 [RH97]

Modular learning : For generative models, an independent model is built for each

class where each model is trained individually and considers only the data whose
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Table 2: Comparing Learning in Generative and Discriminative models

Generative Discriminative
Objective Function Full log likelihood Conditional log likelihood
YilogPr(X;,Y;) i logPr(Y;|X;)
Model Assumptions Class densities Discriminant function
Parameter Estimation Easy ' Hard
Advantages More efficient if More flexible, robust
model is correct because fewer assumptions
Disadvantages Bias if model is incorrect May also be biased
Ignores information in Pr(X)

labels correspond to it. Hence, the model does not interact with other classes
and avoids considering the whole training set and consequently learning is sim-
plified and the algorithm proceeds faster. Moreover, the addition of a new class
or deletion of an existing one is easier. Unlike generative models, discriminative
models build a single model for all classes and hence it requires simultaneous
consideration of all other classes which makes training harder, involve iterative

algorithms and do not scale well [RH97].

Sample complexity : In the case of many models, such as the case of generative
models in general, the VC dimension is roughly linear or at most low-order poly-
nomial in the number of parameters [NJ02], however, it was shown in [Vap98]

that the sample complexity for discriminative models is linear in the VC dimen-

sion.

Missing data : Unlike discriminative models, generative models are capable of learn-
ing even in the presence of some missing values. This is due to their learning
method which optimizes the model over the whole dimensionality and thus

models all the relationships between the variables in a more equal manner.

Rejection of poor or corrupted data : The likelihood value obtained from gen-

erative models is more reliable than the posterior obtained from discriminative
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models, since generative models try to represent the true density of the data. A
corrupted input or an outlier can be easily detected by the low likelihood and

hence the design of a rejection rule is made easier.

5.3 The Proposed Framework

The above mentioned advantages and disadvantages led us to propose a new frame-
work that combines the advantages of both models and overcomes the disadvantages
of each separately. The framework consists of two stages, namely 1) the modelling

stage, and 2) the classification stage. Figure 11 shows a block diagram of the proposed

framework.
Stage 1 Stage 3
Bledebing Classifiearion
3 - log{Pr(Z, 1 4.))
X3 ¥ T : 11
7=l : o
& “® - B
. HMM xR

Figure 11: A block diagram of the proposed framework

The modelling stage is the first stage of the proposed framework and it consists
of generative models. It has the basic role of mapping the variable length sequential
pattern Z; into a single fixed size vector X; € R7. The basic idea for the modelling
stage is as follows. For a P-class problem, each HMM is trained with a set of examples

that belong to its class. However, when using the classification rule of Eq. 6 to classify
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a new input pattern Z, each model ); is given the input pattern Z; to compute the
forward probability Pr;(Zo|);) [Rab89] and the hope is always that the model of
the correct class will output the highest likelihood. In the proposed framework, the
modelling stage gets more information from all the models of the modelling stage in a
P-dimensional real vector X (the likelihood score). In that sense, the modelling stage
represents each sequential input as a point in the new space R7, or more formally, it
can be considered as a nonlinear function F such that F : RP — RP. Therefore the
set X is the image of the set Z under the function F.

The classification stage is the second stage of the proposed framework. It consists
of a discriminative model that has the role of classifying the likelihood scores, the
set X, representing the sequential patterns. The discriminative model could be an
MLP neural network, an SVM or any other discriminative model, however, we chose
SVMs for their generalization capability. In fact, the discriminative stage acts as
an ordinary classifier and its input is the output of the modelling stage which acts
as a feature extraction layer. Increasing the discrimination between the generative
models implies more discriminative feature vectors and consequently more accurate
classification. Therefore, the modelling stage and the likelihood value are the key
players of the framework. In the following, an insight of the likelihood value and the

intuition lying behind the proposed model are elaborated in greater details.

5.3.1 The likelihood score

Consider the P-class problem in hand, each class is represented by a single HMM,
and that the data (training set and test set) are i.i.d drawn from the same unknown
distribution and they exist in an Euclidean space S.

The set of the P models estimated from the training data form a set of local

densities that allocate a certain part of the huge space S. Although, it is desired
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to have these densities far apart from each other in order to reduce the Bayes error,
real life data (probably with noise and outliers) do not produce perfectly separated
densities and ambiguities can exist easily.

The likelihood score of the HMM measures the closeness of the pattern to the
model itself, or how likely the model generated this sequence. Consider the two
classes C; and C; and the two sequences Z; € C; and Z; € C;. For correctly trained
models A; and A;, it should be that Pr(Z;|A;) < Pr(Z;|);) and the same for all other
sequences that do not belong to Cj. It was claimed in [QB02] that HMMs can assign
the same likelihood to two totally different sequences, however in practice, likelihoods
can be close to each other and not equal and this closeness depends on the similarity
between the two sequences and the sequences used for training this model. Consider
for example the two sequences generated from handwritten digits 1 and 7 as in Figure
12. Therefore, the likelihood scores stored in X should have a high likelihood of the
correct class and low likelihoods of other classes where each low value represents how

the sequence is close to its model.

Figure 12: Handwritten digits: samples of digits 1 are shown in the first row, while
samples for digit 7 are shown in the second row

The proposed approach is stimulated from this observation. For a pattern Z, each
model votes for this pattern and instead of considering the highest likelihood as in
Eq. 6, all the likelihoods are considered and taken as an input for a classifier that

learns the voting of these models. Apparently, the method can be considered as a

classifier combination scheme.
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Chapter 6

Experimental Results

Recognition of unconstrained handwritten digits is an old and yet a well known prob-
lem in pattern recognition. Due to the extensive research done in this area, state-
of-the-art techniques [LNSF03, SSP03] were able to achieve very low error rates on
well known databases such as the MNIST database [LeC]. However, the problem is
considered as a standard for testing new classifiers, learning algorithms and feature
sets.

The MNIST database [LeC] is a very well known database for unconstrained
handwritten digits that has a high variability in handwriting styles. The dataset has
a training set of 60,000 samples and a test set of 10,000 samples from approximately
250 writers. The digits are stored in gray level images (0 ~ 255) that are cropped and
scaled to be contained in a 20x20 pixels images. Figure 13 shows some samples from

the training set of the MNIST database.

O\ 344535673792
Figure 13: Samples from the training set of the MNIST data base.
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This chapter illustrates all the experiments conducted in order to validate the
investigation of this thesis. Section (1) introduces the features extracted from the im-
ages and how they were represented as time-series data. Section (2) shows the experi-
ments that investigated the effect of the structure on the performance of HMM-based
classifiers. The first part provides experimental results that support the theoretical
results obtained in Section (4.2.1). The second part provides the experiments that
investigated the effect of the number of states on the performance of HMM-based
classifiers. Finally, Section (3) shows the results obtained from the proposed frame-
work when used for recognizing unconstrained handwritten digits from the MNIST

database.

6.1 Feature Extraction

The features extracted from the images should be represented in a time-series format.
Therefore the well known sliding window technique [Cor96] was used for this purpose.
First, the gray level values of the images were normalized to the range from 0 to 1.
Second for each image a sliding window with a width of 3 pixels, height equals the
image height was passed over each image from left to right. Each two successive
windows were overlapped by two pixels. This resulted in an observation sequence
length of 18 vectors from each image, i.e. that the 2-D image was transformed to a
time-series pattern of continuous data where the length of the pattern is 18 observa-
tion vectors, and each observation has 20 variables. From each window (observation
vector), a feature vector is extracted by computing the aVerage gray level value in
each row of the window, i.e. the sum of gray level pixels in each row divided by the
window width and hence each vector consists of 20 features. All the experiments
described in the following sections, were conducted on the time-series data obtained

from the MNIST database with the method mentioned above.

94



6.2 The Effect of the Structure on the Performance

The experiments described in this section studied the effect of the structure on the
performance of HMM-based classifiers. Two types of experiments were carried out,
one to study the effect of number of states on the performance, and the other to study

the effect of the topology on the performance.

6.2.1 HMM density type, initialization and codebook size

The experiments were conducted using discrete HMM (DHMM) based classifiers
where each consisted of 10 DHMMs. The number of states for each model was deter-
mined according to the goal of the experiment. The topology used in the experiments
was the simple left-to-right with self state transitions and no jumps were allowed. The
initial parameters for B in all experiments were set using a uniform distribution. Ini-
tial parameters for A and 7 for the fully ergodic model were set using a uniform
distribution. For left-to-right (LTR) models, 7 was set to 1 for the first state. For the
A matrix, self state transition and transitions from state i to i + 1 were allowed with
equal probabilities (0.5). To achieve more accurate results, several code books with
different sizes were constructed using the K-Means [DHSO01] algorithm. In order to
overcome the problem of initialization of the K-Means, the algorithm was run using

10 different initializations. The performance in all experiments was measured on the

test set of the MNIST database.

6.2.2 Studying the effect of number of states

In studying the effect of number of states, two experiments were conducted. The first
experiment used HMMs with a left-to-right topology and all models had an equal

number of states. The experiment studied the relation between the performance
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No. of states Vs performance for 3 different code book sizes
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Figure 14: The relation between performance and the number of states with different
code book sizes.

and the increase in the number of states in the classifier. The second experiment
studied the performance of classifiers with a varying number of states in each model.

It compared the performance between models with an equal number of states and

models with a varying number of states.

Experiment 1

Figure 14 illustrates the results for experiment 1. It can be seen that increasing
the number of states can increase the performance up to a certain limit, and then
saturation is reached whenever more unnecessary states are added. However, the
saturation may be accompanied by a slight drop in the performance.

The saturation may be explained as follows. The number of states n, is the number
of values that the hidden variable can take and accordingly the emission of symbols

change. Consider the true (unknown) number of values of the hidden variable is .
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Table 3: Performance measures on the test set as the number of states and varying
code book size increased.

Code book size
No. of States | 256 | 512 | 1024
3 88.43 | 89.36 | 90.65
4 89.2 | 90.38 | 91.52
5 89.94 | 91.1 | 92.14
6 90.36 | 91.53 | 92.31
7 90.53 | 91.65 | 92.38
8 90.55 | 91.76 | 92.4
9 90.57 | 91.79 | 92.48
10 90.58 | 91.77 | 92.49
11 90.54 | 91.72 | 92.49
12 90.52 | 91.71 | 92.49
13 90.52 | 91.69 | 92.49
14 90.52 | 91.69 | 92.49
15 90.52 | 91.69 | 92.49
16 90.52 | 91.69 | 92.49
17 90.562 | 91.69 | 92.49
18 90.52 | 91.69 | 92.49

If n < ngy the model will have a poor modelling and hence a classifier with poor
performance. If n >> ng, additional states will introduce redundancy with no effect
on the modelling capability and hence the performance is saturated. Adding more

unnecessary states increases the complexity (time and computation) with no effect

on the performance.

Experiment 2

The goal of the experiment was to measure the performance of classifiers with different
number of states in each model to see how comparable they are with classifiers having
all models with an equal number of states. Two HMM classifiers were used. According
to the previous experiments, the first classifier had 10 states per model, the second
classifier had a different number of states in each model. Determining the number of

states in each model will be described in the next subsection. Figure 15 illustrates
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Comparing performance between equal and varying number of states models
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Figure 15: Performance comparison between models with equal (EQU) and varying
(VAR) number of states with different codebook sizes.

the results of this experiment. Models with an equal number of states are referred
as (EQU) and models with a varying number of states are referred as (VAR). Figure
15 shows clearly how models with a varying number of states can achieve almost the
same performance of models with an equal number of states with the advantage of
smaller number of states but at the price of more epochs. The total number of states
in the EQU models is 100, and the total for VAR models is 70 states. Achieving the
same performance with a smaller number of states brings considerable reduction in
complexity when it comes to large classification problems. However, as followed in
the literature [EYGSS99, ABKP98], a guaranteed performance with an easy design
would be an HMM classifier with an equal number of states for all models. In Figure
15, it is worth mentioning that the drop seen in the first graph is experienced in
the other graphs for the EQU and VAR models but in late epochs not shown in the

graphs. The reason for the drop is due to the overfit of models on the data and due

to the diffusion of credits while learning.
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Table 4: Comparison between performances of EQU models and VAR models at each
epoch on the test set using codebook size = 1024

No. of epochs | EQU | VAR
1 92.49 | 91.75
2 92.65 | 92.25
3 92.98 | 92.71
4 93.19 | 92.85
5 93.10 | 93.11
6 93.14 | 93.16
7 93.08 | 93.21
8 93.03 | 93.22
9 84.62 | 93.13
10 84.57 | 93.03

Table 5: Corﬁparison between performances of EQU models and VAR models at each
epoch on the test set using codebook size = 512

No. of epochs | EQU | VAR
91.77 | 90.66
92.06 | 91.36
92.58 | 92.21
92.75 | 92.47
92.92 | 92.65
92.88 | 92.78
92.88 | 92.86
92.97 | 92.93
92.96 | 92.27
92.92 | 92.31
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Table 6: Comparison between performances of EQU models and VAR models at each
epoch on the test set using codebook size = 256

No. of epochs | EQU | VAR
1 90.58 | 90.57
2 91.3 | 91.11
3 91.87 | 91.15
4 92.26 | 91.46
5 92.37 | 91.83
6 92.38 | 92.11
7 92.43 | 92.36
8 92.49 | 92.53
9 92.48 | 92.61
10 92.53 | 92.77

Determining the number of states

As mentioned earlier, the number of states is usually fixed (manually predetermined).
An exception are models that use an automatic clustering algorithms that determine
the number of states and their outputs, but this still leaves out the topology [Bra96,
TK99]. Clustering sequential data while neglecting the variations of the time factor,
tends to discover the underlying structure of the data given that the number of
clusters is known. To determine the number of states using clustering, we proposed
the use a cluster validity index [BP98] to measure the goodness of different clustering
configurations and then select the best number of clusters according to this cluster
validity index.

In the experiments, the K-Means algorithm [DHS01] was used to cluster the se-
quential data of each model. The sequential data were portioned from 3 up to 9 clus-
ters and to overcome the problem of initialization of the K-means, the algorithm was
run using 10 different initializations. For each clustering configuration, the DB-index
[BP98] was used to measure the goodness of clustering. According to the DB-index
measure, the number of states (clusters) in each model was determined according to

the clustering configuration corresponding to the lowest value of the DB-index. Table
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Table 7: The number of states of each model.

Model 01 2 3 45 6 7 8 9
No. of States |6 5 8 8 9 6 8 8 3 9

Performance

1 4 : ; i i 1
0 200 400 800 800 1000 1200 1400 1600 1800 2000
Code book size

60 4

Figure 16: Performance comparison between full ergodic and left-to-right models with
different codebook sizes.

7 shows the number of states for each model.

6.2.3 Studying the effect of model topology

To study the effect of the model topology on the performance, two HMM classifiers
were considered. Both classifiers had the same number of models and the same
number of states in each model but the model topology was different in both classifiers.
The first classifier had full ergodic (fully connected) models while the second had left-
to-right topology as described earlier. The comparison in performance was measured
with different code book sizes. Figure 16 illustrates the results obtained from this
experiment. As expected, the results show that the simpler model; which is the left-to-

right in that case, always outperforms the full ergodic model. The full ergodic model
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Table 8: Performance measures obtained from full ergodic and left-to-right models
with different code book sizes.

Code book size | left-to-right (%) | full ergodic (%)
8 72.3 64.36
16 78.71 73.62
32 83.54 79.88
64 86.52 82.49
128 88.57 84.46

256 89.98 85.86
512 91.02 86.97
1024 92.18 88.54
1500 90.21 85.11
1800 86.17 80.72
2000 82.34 74.63

represents a fully connected graph and hence has the largest number of parameters.
According to the Bayesian approach, the model has the highest likelihood of the data
which led the model to overfit the training set and hence the poor performance on
the test set. As for the diffusion of credits factor, the A matrix for the full ergodic
model does not have deterministic (0 or 1 probabilities) transitions which made it

difficult for the model to learn long range dependencies.

6.3 Experimental Results for the Proposed Frame-

work

We designed a simple prototype for the proposed framework to conduct some pre-
liminary experiments on the recognition‘ of unconstrained handwritten digits. The
experiments described in this section shows the results of the proposed framework

on the time-series data obtained from the MNIST database. In these experiments,
the test set was divided into two sets, a validation set and a test set. The first 5000

samples were taken as the validation set and the other 5000 samples were considered
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as the test set.

The HMM based classifier of the modelling stage consisted of 10 discrete HMMs.
Each model had 10 states with a simple left-to-right topology with self-state transi-
tion. Like the previous experiments, three codebooks of sizes 1024, 512 and 256 were
used in these experiments. The discrete HMM-based classifier was trained using the
Baum-Welch algorithm until a minimum error rate could be achieved on the valida-
tion set. After training, the training set Z was mapped to the set X as mentioned in
Section (5.3). Since the output probabilities of the models are usually very small, the
negative logarithms of the output probabilities were stored instead. Table 9 shows
the results obtained from the HMM based classifier on the validation set and the test
set with different codebooks.

Table 9: HMM based classifier performance on the validation set and the test set
with different codebooks

CodeBook size | Validation set (%) | Test set (%)
256 93.95 93.53
512 94.21 93.97
1024 94.87 94.19

For the classification stage, the package of SV ML#9" V 5.00 [Joa99a] was used as
the discriminative classifier. The stage consisted of 10 SVM classifiers (one against
all strategy) with a Gaussian kernel. The constant parameter C' of the kernel was
fixed at 10 and the gamma parameter [Joa99a] of the kernel was adjusted until the
+ minimum error rate could be achieved on the validation set. Table 10 shows the final
results obtained from the framework after using the SVM classifiers, and Table 11
shows a comparison between the results obtained from the HMM-based classifier and

the proposed framework.

It can be seen from Table 11 how the framework significantly boosted the results
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Table 10: The proposed framework performance on the validation set and the test
set with different codebooks in the modelling stage

CodeBook size

Validation set (%)

Test set (%)

256
512
1024

98.53
98.77
99.07

97.8
97.89
98.02

Table 11: Comparison of performance of the HMM based classifier and the proposed
framework

CodeBook size | HMM based classifier (%) | Proposed framework (%)
256 93.53 97.8
012 93.97 97.89
1024 94.19 98.02

Table 12: Digit error rate for the proposed framework

Digit | No. errors | Error rate (%)
0 9 4.85
1 3 2.7
2 11 10.79
3 11 11.22
4 11 10.9
) 9 9.17
6 7 7.12
7 11 11.0
8 18 18.66
9 13 13.59
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6003 0-8 5459 0- 8
Figure 17: Confusions among digit 0 and other digits

of the standard HMM-based classifier. However, to better understand the perfor-
mance of the framework, the 1.98% error rate (99 errors) was further analyzed in
Tables 12 and 13. Table 12 shows the contribution of each digit to the errors of the
whole framework, and for better interpretation of the errors of each digit, the con-
fusion matrix in Table 13 illustrates all the confusions among the digits. Tables are
further supported by Figures 17 through 26 that show all the misrecognized digits
(99 errors) where each figure shows the confusions encountered among other digits.
Each misrecognized digit is labeled in the form id : z — y where 4d is the digit serial

number in the MNIST database, z is the true label and y is the classifier output.

"Table 13: Confusion matrix for the errors generated by the proposed framework
L 10[1[2][3]4[5[6]7][8]9]

0 0]1]0|1]013]0}01]0
140 110j010j110]1]0
21110 2110|1142/ 0
3107113 01310122/ 0
4001121100 1{1]0]0}5
5111110121 3101110
614110011 0{010
710012(3/0,2(01/0 113
1113|1313 |1]|2 3
941012015 ]1]03]|1

By analyzing the confusion matrix, several reasons can be conjectured regarding
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the errors. First, the confusion between digit pairs such as (2,7), (3,2), (3,5), (4,9),
(7,2), (7,9), (8,3), (8,5), (8,9), (9,4) and (9,7) can be due to the closeness of the
likelihoods generated from each model, the correct and the false models, which is
a direct result of the training method. Training is problem independent, and as
mentioned earlier, maximizing the likelihood does not guarantee less errors for HMM-
based classifiers, and hence a discriminative training can improve the performance
of HMMs, and consequently the framework. A second reason would be the type
of features used in the experiments. Features are heavily problem dependent and
the simple type of features used in the experiments, are not discriminatory enough.
Lately, for handwritten digit recognition, Britto et al. proposed a set of complex
features for HMMs that showed a promising performance on HMM-based classifiers
[SABS03]. Another reason for the error is the likelihood score. In spite of the increase
in performance the likelihood score has provided, yet it is not known if there are
other fixed size feature vectors that can be extracted from HMMs and yield a better
discrimination. What was achieved so far, is that mapping the time-series data to a
fixed size vector is a promising approach, but what is the best feature vector that can
be extracted, this is still an open question that will be discussed in the next chapter.
In order to evaluate the proposed approach, our results were compared with state-
of-the-art recognition results (see Table 14) on the MNIST database [LNSF03, SSP03].
The experienced reader will quickly notice that the comparison might not be fair
since our results are based on a smaller test set (5000 samples), however, considering
the experimental conditions, our goal was to find out how far these results stand
from well known results on the same database. As a future work, an interesting
experiment would be to extract the validation set from the training set and repeat
all the experiments with all necessary adjustments based on the new validation set.

By comparing the results, one can see that the proposed approach is still far away
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Table 14: Comparison of performances of different classifiers on the MNIST database

Classifier Error rate (%)
Discrete HMMSs, codebook 1024 (modelling stage only) 5.81
Proposed framework 1.98
LeNet-4 [LIB+95] 1.1
MultiNet Framework [DKS01] 0.99
LeNet-5 [LIB+95] 0.95
Boosted LeNet-4 [LJB*95] 0.7
Belongie et al. [BMP02] 0.63
Teow et al. [TLO02] 0.59
Simard et al.[SSP03] 0.4
VSVM [Don03] 0.38

from the lowest error rate on the database, however, the framework made a jump of
3.83% from the standard HMM results. Moreover, as observed from state-of-the-art
technicjues and the results presented by Liu and Fujisawa [LNSF03], and Simard et
al. [SSP03], that the first barrier in a good character recognition system is to achieve
around 1.5% on the error rate. By injecting more salient features and classifier tuning,
one can achieve the 0.7% toward 0.4%, which is the actual best result. In spite of being
a prototype model, the preliminary experiments show the potential of the proposed
framework in specific and the potential of generative-discriminative trend in general.
Table 14 shows state-of-art recognition results on the MNIST database sorted in

descending order according to the error rate.
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Chapter 7

Conclusions and Future Work

High performance classification of time-series data is still a challenging problem due
to the time variability factor, their variable length and the absence of the priori knowl-
edge in many applications that use HMMs. Despite state of the art results achieved
in applications such as speech recognition and handwriting recognition, such appli-
cations do not depend solely on HMMs, but priori knowledge from the application
domain such as word networks and language models, which have been plugged into
the training and testing phase of HMMSs and hence the high performance is obtained.
Consequently, the more the proposed solution is less dependent on priori knowledge,
the better it can fit into many applications. The great ability of HMMs to model
time-series data and the ability of generative models, in general, to approximate the
true density of the data, combined with the guaranteed classification performance of
discriminative models, draw a very promising trend toward a general solution for the
problem.

In this thesis, we targeted the low performance of HMM classifiers. First we in-
vestigated the effect of the topology and the number of states, each separately, on
the performance of HMMs. The investigation, supported by our experimental results

showed that the topology has a stronger contribution to the classification performance
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of HMM-based classifiers than the number of states. Next, we proposed a new frame-
work that combines generative and discriminative models for classifying time-series
data. The two-stage framework uses HMMs in the first stage to model the time-series
data and then extracts a static fixed size feature vector (the likelihood score) from all
the HMMs. In the second stage, discriminative models are used to classify the likeli-
hood score. The framework was able to improve the results of standards HMMs by
3.83% when tested on the problem of unconstrained handwritten digits recognition.
Such an increase shows the potential of the generative-discriminative approach and
further research directions for this trend.

Future work : Based on the work presented in this thesis, we discuss several

issues that can improve the proposed framework:

Type of application and the data set: The first HMM appeared for speech recog-
nition problems and since that time, the state of the art techniques and results
were reported in the speech recognition community. Nowadays, many standard
speech databases are availab.]e on the World Wide Web. Speech data has several
advantages over any other type of time-series data. 1) Speech is a one dimen-
sional signal that by nature is in time-series format. 2) Unlike any other data,
the speech recognition community was able to standardize the type of features
extracted from speech data. Therefore researchers do not have to worry about

issues like best discriminative features.

Unlike speech recognition, handwriting recognition applications still face two
main challenges; first, the 2-dimensional signal representation of an image, and
second, the type of features to be extracted from the image. As for the first
challenge, yet there is no standard method to model a 2-D signal into a 1-D
signal like speech. For the second, to the best of our knowledge and despite

many excellent results of handwriting recognition systems, yet there are no
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standard features extracted from binary or gray level images in the form of
time-series data. Therefore, it will be of great importance to standardize the

modelling method of images using HMMs, in order to direct the research effort

to more advanced problems.

Finally, in our experiments, we used images of handwritten digits that have a
fixed width and height and hence all sequential data extracted from the images
had the same length. Usually digital images for words and speech data exist
in variable length sequential data, therefore it will be interesting to study this

effect on the performance of the proposed framework.

Type of HMMs: The original theory of HMMs was based on continuous density

The

HMMs which are richer models than discrete ones. For implementation issues of
continuous density HMMs, a very well known ready tool such as HTK (HMMs

"Tool Kit) can be used to save time and effort to develop continuous density

HMMs.

score: In this thesis, we proposed the use of the likelihood score extracted from
the HMMs of the generative stage. It is worth trying to find out how comparable
is the Fisher scére to the likelihood score. Also, instead of using the likelihood
score, which is the summation of all possible paths in the alpha computation
[Rab89], the non-zero elements of the last row of the matrix alpha, ar(q) for
all states 7 can be used instead. This vector can be augmented with other
vectors from other HMMs and then classified using the discriminative model.

The feature vector could be more representative than the likelihood score since

it contains information on each state inside the model.
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Increasing discrimination between models: Asmentioned earlier, increasing the
discrimination between HMMs will increase the performance of the classifica-
tion stage. This can be achieved by optimizing the structure of each model
in the classifier using Stolcke’s algorithm [S092], and using parameter estima-
tion algorithms that interacts with models of other classes such as the MCE

[JK92, KL98, SR00, GHO2, Bie02] algorithm.

MLPs Vs SVMs: SVMs are known for their good generalization in classification
problems, however the testing phase of SVMs is still very slow to be used in
real life applications such as speech recognition or handwriting recognition.
Speeding up the testing phase of SVMs is currently a hot research topic in
the machine learning community. For real life applications, MLPs represent
the alternative with several advantages. First, MLPs have a very fast testing
phase when compared with SVMs speed. Second, the output of MLPs can
be considered as a posterior probability which can be easier to combine with
the likelihood output of HMMs than to combine with the normalized distance
obtained from SVMs. Moreover, by looking at Table 14, most of the state of the

art results on MNIST database were obtained using neural network classifiers.

Open questions: In our approach, we reduced the role of HMMs from modelling
and classification to modelling only and let discriminative models be in charge
of classification. This is done by extracting a fixed size feature vector from
the HMMs, then using a discriminative model to classify these feature vectors.
An interesting question, what would be the feature vector extracted from the
HMMs that best describes the time-series pattern? Should it be extracted from

a single HMM, (the class of the pattern only), or should it be from all HMMs,

(more toward a majority voting)?
A second question; as in static data, there is the notion and the concept of
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the mean vector and the covariance matrix. How can these two terms can be

explained mathematically in the case of variable length time-series data?

Third, considering that our approach is a kind of voting scheme, how can this
scheme fit other classifiers? Should they always be a, generative discriminative

pair? Or can it be a discriminative discriminative pair?

76



Bibliography

[ABKP98]

[ACS02a)

[ACS02b]

[Bak75)

[Bak76]

[Bal93]

E. Augustin, O. Baret, S. Knerr, and D. Price. Hidden Markov model
based word recognition and its application to legal amount recognition

of French bank cheques. Computer Vision and Image Understanding,

70(3):404-419, 1998.

N. E. Ayat, M. Cheriet, and C. Y. Suen. Kmod a two parameter svin
kernel for pattern recognition. In Proc. of 16th ICPR, Quebec city,
Canada, pages 200~204, 2002.

N-E. Ayat, M. Cheriet, and C. Y. Suen. Optimzation of the SVM
kernels using an empirical error minimization scheme. In S-W Lee and
A. Verri, editors, Pattern Recognition with Support Vector Machines,
pages 354-369. Springer, 2002.

J. K. Baker. The dragon system - an overview. IEEE Trans. Accoustics,

Speech and Signal Proc., 23(11):23-29, 1975.

R. Bakis. Continuous speech recognition via centisecond acoustic states.

In The 91st Meeting of the Acoustical Society of America, 1976.

V. Balasubramanian. Equivalence and reduction of hidden Markov mod-

els. Technical Report 1370, MIT Aritifical Intelligence Laboratory, 1993.

77



[BBASMS6]

[BBASMSS]

IBBLO1]

[BDMO1]

[Ben99)

[BF95]

[BF96)

[BHO1]

L. Bahl, P. Brown, P. de Souza, and R. Mercer. Maximum mutual
information estimation of hidden Markov model parameters for speech

recognition. In Proc. of of ICASSP, Tokyo, pages 49-52, 1986.

L. Bahl, P. Brown, P. de Souza, and R. Mercer. A new algorithm for the
estimation of hidden Markov model parameters. In Proc. of ICASSP,
pages 493497, 1988.

C. Bahlman, H. Burkhardt, and A. Ludwigs. Measuring HMM similar-
ity with the Bayes probability of error and its application. In Proc. of
6th ICDAR, Seattle, Washington, USA, pages 406-411, 2001.

M. Bicego, A. Dovier, and V. Murino. Designing the minimal structure
hidden Markov model by bisimulation. In M. Figueiredo, J. Zerubia, and
A. K. Jain, editors, Energy Minimization Methods in Computer Vision

and Pattern Recognition, pages 75-90. Springer, 2001.

Y. Bengio. Markovian models for sequential data. Neural Computing

Surveys, 41(1):129-162, 1999.

Y. Bengio and P. Frasconi. Diffusion of credits in Markovain model.

In Proc. of Advances in Neural Information Procesing Systems 7, pages

1251-1254, 1995.

Y. Bengio and P. Frasconi. Input/Output aMums for sequence processing.

IEEE Trans. on Neural Networks, 7(5):1231-1249, 1996.

A. Brown and G. Hinton. Products of hidden Markov models. In
T. Jaakkola and T. Richardson, editors, Proc. of Artificial Intelligence
and Statistics, pages 3-11. 2001.

78



[Bie02]

[Bie03]

[BMF03]

[BMP02]

[Bou03]

[BP66]

[BP70]

[BPYS]

[BR99]

A. Biem. Minimum classification error training for online handwritten
word recognition. In Proc of 8th IWFHR, Niagra-on-the-lake, pages
61-65, 2002.

A. Biem. A model selection criterion for classification: Application to
HMM topology optimization. In Proc. 17th ICDAR, Edinburgh, U.K,
pages 104-108, 2003.

M. Bicego, V. Murino, and M. Figueiredo. A sequential pruning strat-
egy for the selection of the number of states in hidden Markov models.

Pattern Recognition Letters, 24:1395-1407, 2003.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog-
nition using shape contexts. IEEE Trans. PAMI, 24(4):509-522, 2002.

G. Bouchard. The trade-off between generative and discriminative clas-

sifiers. In Proc. of Advances in Neural Information Processing 16, 2003.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions

of finite state Markov chains. Ann. Math. Stat., 37:1554-1563, 1966.

L. E. Baum and T. Petrie. A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. Ann. of

Math. and Stat., 41(1):164-171, 1970.

J. C. Bezdek and N. R. Pal. Some new indexes of cluster validity. JEEE
Trans. on Sys. Man and Cybernetics Part B, 28(3):301-315, 1998.

C. Becchetti and Lucio Prina Ricotti. Speech Recognition, Theory and

C++ Implementation. John Wiley & Sons, West Sussex, England, 1999.

79



[Bra96]

[Cor96)

[CSTO0]

[DHSO1]

[DKS01]

[DLR77]

[Don03)

[EYGSS99)

Thorsten Brants. Estimating markov model structures. In Proceedings

of the Fourth Conference on Spoken Language Processing (ICSLP-96),
Philadelphia, PA, 1996.

S. Cornell. A Comparison of Hidden Markov Model Features for the
Recognition of Cursive Handwriting. PhD thesis, Dept. of Computer

Science, Michigan State University, 1996.

N. Cristianin and J. Shawe-Taylor. An Introduction to support vector
machines and other kernel-based learning methods. Cambridge Univ.

Press, Cambridge, England, 2000.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, Second
Edition. Wiley-Interscience, Canada, 2001.

J.X. Dong, A. Krzyzak, and C. Y. Suen. A multi-net learning framework

for pattern recognition. In Proc. of 16th ICDAR, Seattle, USA, pages
255-268, 2001.

A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood from in-

complete data via the EM algorithm. Royal Statistics Soc., 39:1-38,
1977.

J. Dong. Speed and accuracy, Large-scale machine learning algorithms
and their applications. PhD thesis, CENPARMI, Department of Com-

puter Science, Concordia University, Montreal, Canada, 2003.

A. El-Yacoubi, M. Gilloux, R. Sabourin, and C. Y. Suen. An HMM
based approach for off-line unconstrained handwritten word modeling

and recognition. IEEE Trans. PAMI., 21(8):752-760, 1999.

80



[GH02]

[Ghag7]

[GJI97]

[GL92]

[GSSGO0]

[GZLO1]
[Hec96]
[Jel72]

[JHOS]

Y. Ge and Q. Huo. A study on the use of CDHMM for large vocabulary
offline recognition of handwritten Chinese character. In Proc. of 18th

IWFHR, Niagra-on-the-lake, Canada, pages 334-338, 2002.

Z. Ghahramani. Learning dynamic bayesian networks. In C. Gile and
M. Gori, editors, Lecture Notes in Aritificial Intelligence: Adaptive Pro-

cessing of Temporal Information. 1997,

Z. Ghahramani and M. Jordan. Factorial hidden Markov models. Ma-
chine Learning, 29:245-275, 1997.

J-L. Gauvain and C-H. Lee. Map estimation of continuous density
HMM: Theory and applications. In Proc. of DARPA Speech € Nat.
Lang. Processing, Feb. 1992.

F. Grandidier, R. Sabourin, C. Y. Suen, and M. Gilloux. A new stratevgy
for improving feature sets in a discrete HMM-based handwritten word
recognition system. In Proc of 7th IWFHR, Amsterdam, pages 113-122,
2000.

G. Guo, H. Zhang, and S. Li. Support vector machines for face fecogni—

tion. Imag. Vis. Comput., 19(9 & 10):631-638, 2001.

D. Heckerman. A tutorial on learning with graphical models. Technical

Report MSR-TR-9506, Microsoft Recearch, 1996.

F. Jelink. Continuous speech recognition by statistical methods. Proc.

of IEEE, 64:532-556, 1972.

T. Jaakkola and D. Haussler. Exploiting generative models in discrimi-

native classifiers. In Proc. of Advances in Neural Information Processing

11, 1998.

81



[IK92]

[Joa99a)

[Joa99b]

[JR79]

[KL98)

[Koh97]

[KRSG02]

[LeC]

[Lee99]

B-H. Juang and S. Katagiri. Discriminative learning for minimum error

classification. IEEE Trans. Signal Processing, 40(12):3043-3054, 1992.

T. Joachims.  Making large-scale SVM learning practical. In
B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1999.

T. Joachims. Text categorization with support vector machines. In Proc.

Int. Conf. Machine Learning, pages 137-142, 1999.

B-H. Juang and L. Rabiner. The segmental k-means algorithm for es-
timating paramters of hidden Markov models. IEEE Trans. on Speech,
Accoustics and Signal Processing, 38(9):1639-1641, 1979.

S. Katagiri and C-H. Lee. Pattern recognirion using a family of design al-
gorithms based upon the generalized probabilistic descent method. Proc.

of the IEEE, 86(11):2345-2373, 1998.
T. Kohonen. Self-Organizing Maps. Springer, 1997.

A. Koerich, C. Y. Suen R. Sabourin, and M. Gilloux. A hybrid large
vocabulary handwritten word recognition system using neural networks
with hidden Markov models. Proc. of 8th I WFHR, Niagra-on-the-lake,
pages 99-104, 2002,

Y. LeCun. The MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist.

K-F. Lee. Automatic Speech Recognition: The development of the
SPHINX System. Kluwer Academic Press, 1999.

82



[LIB+95]

[LNSF03]

[LPhN99]

[Mur01]

[NGO2]

INJ02]

[PCSTO0]

[PMSM+03]

Y. LeCun, L. Jackel, L. Bottou, J. Denker, H. Drucker, I. Guyon,
U. Muller, E. Sackinger, P. Simard, and V.N. Vapnik. Comparison of
learning algorithms for handwritten digit recognition. In Proc. Intl.

Conf. Artificial Neural Networks, pages 53-60, 1995.

C-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten
digit recognition: Benchmarking of state-of-the-art techniques. Pattern

Recognition, 36:2271-2285, 2003.

R. Lyngso, C. Pedersen, and h. Nielsen. Metrics and similarity measures
for hidden Markov models. In Proc. Int. Conf. on Intelligent Systems
for Molecular Biology, pages 178-186, 1999.

K. P.  Murphy. A introduction to graphical models.

http://www.ai.mit.edu/ murphyk/papers.html, 2001.

J. Ng and S. Gong. Composite support vector machines for detection
of faces across views and pose estimation. Imag. Vis. Comput., 20(5 &

6):359-368, 2002.

A. Ng and M. Jordan. On generative vs. discriminative classifiers: A
comparison of logistic regression and naive bayes. In Proc. of Advances

in Neural Information Processing 15, 2002.

J. Platt, N. Critianini, and J. Shawe-Taylor. Large margin DAGs for
multiclass classification. In Proc. of Advances in Neural Information

Processing systems 13, pages 547-553, 2000.

L. Prevost, C. Michel-Sendis, A. Moises, L. Oudut, and M. Millgram.

Combining model-based and discriminative classifiers: Application to

83



[QBO2]

[Rabg9)

[Rai86]

[RH97]

[Row99]

[SABS03]

[Sen86]

SGo1]

[Shw]

handwritten character recognition. In Proc. of 7th ICDAR, Edinburgh,
pages 31-35, 2003.

L. Quan and S. Bengio. Hybrid generative-discriminative models for

speech and speaker recognition. Technical report, IDIAP, March 2002.

L. R. Rabiner. A tutorial on hidden Markov models and selected appli-
cation in speech recognition. Proc. of IEEE, 77(2):257-286, 1989.

J. Raissanen. Stochastic complexity and modeling. The Annals of Statis-

tics, 14, 1986.

Y. Rubenstein and T. Hastie. Discriminative vs informative learning.

In Proc. of Knowledge Discovery and Data Mining, 1997.

S. Roweis. Constrained hidden Markov models. In Proc. of Neural

Information Processing, 12, pages 782788, 1999.

F. Bortolozzi S. de Britto, R. Sabourin and C. Y. Suen. Complimentary
features combined in an HMM-based system to recognize handwritten
digits. In Proc. of 12th Intl. Conf. on Image Analysis and Processing,
pages 670-675, 2003.

E. Senta. Nonnegative Matrices and Markov Chains. Springer, New

Yor, 1986.

E. Santos and H. Gomes. Appearance-based object recognition using
support vector machines. In Proc. of XIV Brazlian Symp. Computer

Graphics and Image Processing, pages 399-405, 2001.

G. Shwarz. Estimating the dimensionality of a model. The Annals of

Statistics, 6(2):461-464.

84



[S092]

[SR00]

[SSP03]

[SW96]

[TK99]

[TL02)

[Vap98g)

[Vit83]

A. Stolcke and S. Omuhundro. Hidden Markov model induction by
Bayesian model merging. In S. Hanson, J. Cowan, and C. Giles, edi-

tors, Advances in Neural Information Processing 5, pages 11-18. Morgan

Kaufmann, 1992.

L. Saul and M. Rahim. Maximum likelihood and minimum classification

error rate factor analysis for automatic speech recognition. 8(2):115-125,

2000.

P. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolu-

tional neural networks applied to visual document analysis. In Proc. of

17th ICDAR, Edinburgh, U.K, pages 962-965, 2003.

Y. Singer and M. Warmuth. Training algorithms for hidden Markov
models using entropy based distance functions. In Proc. of Advances in

Neural Information Processing Systems 9, 1996.

S. Theodoridis and K. Koutroumbas. Pattern Recognition, chapter 9.

Academic Press, San Diego, 1999.

L-N. Teow and K-F. Loe. Robust vision-based and classification

schemes for off-line handwritten digit recognition. Pattern Recognition,

35(11):2355-2364, 2002.

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Sussex,
England, 1998.

A. J. Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimal decoding algorithm. IEEE. Trans. Information Theory,
13(4):179-190, 1983.

85



[WC00]

[WCHO02]

[ZLX00]

[ZLZ01]

V. Wan and W. Campbell. Support vector machines for speacker verifica-
tion and identification. In Proc. of IEEE Workshop on Neural Networks
for Signal Processing, pages 775-784, 2000.

Y. Wang, C. Chua, and Y. Ho. Facial feature detection and face recog-
nition from 2D and 3D images. Patt. Recog. Lett., 23(10):1191-1202,
2002.

B. Zhao, Y. Liu, and S. Xia. Support vector machines and its appli-
cation in handwritten numerical recognition. In Proc. of 15th I CPR,

Barecelona, Spain, pages 720-723, 2000.

L. Zhang, F. Lin, and B. Zhang. Support vector machine learning for

image retrieval. In Proc. IEEE Int. Conf. Image Processing, pages 721-
724, 2001.

86



