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ABSTRACT

A New Image Segmentation and Smoothing Method
Based on the Mumford—Shah Variational Model

Song Gao

Recently Chan and Vese have developed an active contour model for image segmentation
and smoothing. Tsai et al. have also developed a similar approach independently. In this
thesis, we develop a new hierarchical method which has many advantages compared to
the Chan and Vese multiphase active contour models. First, unlike previous works, the
curve evolution partial differential equations (PDEs) for different level set functions are
decoupled. Each curve evolution PDE is the equation of motion of just one level set
function; and different level set equations of motion are solved in a hiecarchy. This
decoupling of the motion equations of the level set functions speeds up the segmentation
process significantly. Secondly, because of the coupling of the curve evolution equations
associated with different level set functions, the initialization of the leve! sets in Chan and
Vese's method is difficult to handle. The hierarchical method proposed in this thesis can
avoid the problem due to the choice of initial conditions. Thirdly, we use the diffusion
equation for denoising. This method therefore can deal with very noisy images. In
general, our method is fast, flexible, not sensitive to the choice of initial conditions, and

produces very good results.
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Mathematical Notation and Symbols

K" (@)

K™ (Q)

AR

An open subset of R"

For 0 < y < 1: space of continuous functions f on £ such that
fix) — fiv)] <c|lx—y|", for some constant ¢, x, y €Q. It is called the
space of Holder continuous functions with exponent v.

Space of n—times continuously differentiable functions whose nth partial
derivatives belong to K*7 (Q).

Gradient of f in the classical sense.

dA

ox

I3

N
Divergence operator: V- A = Z
i=l

N 2
Laplacian operator: V*f = Z%’—
-1 0X;

1 ifxeR,
Characteristic function of R: ¥, (x) = {
0 otherwise.
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Chapter 1

Introduction

IMAGE segmentation [1] and smoothing are two popular problems in image processing
and computer vision [2]. The Mumford and Shah variational model [3] is one of the most
widely studied mathematical models that can achieve both goals simultaneously by using
a piecewise smooth representation of an image [4], [5]. Mumford-Shah variational
methods have been extensively used in image processing because of their flexibility in
modeling the image related problems, and various advantages in numerical
implementations. The basic idea of variational methods is to minimize an energy
functional F(u(x,y), C(x, y)) that contains boundary C(x, y) and intensity value u(x, y) of
an image. If C(x, y) is a closed curve, the image domain Q is partitioned into sub-
domains R and R . The classical way to solve the minimization problem is to solve the
corresponding Euler-Lagrange equation, which is a second order partial differential
equation (PDE). Variational methods have been used in many areas such as image
segmentation, object tracking, texture synthesis and vector field visualization [6].

The image segmentation problem under the framework of the Mumford and Shah
variational functional [3] consists in computing a decomposition of the image domain Q
= U ... U £, such that the image wu(x, y) varies smoothly and/or slowly within each

region £; (i = 1, ..., n) but varies discontinuously and/or rapidly across the boundary C



between two adjacent regions. From the viewpoint of approximation theory, the
segmentation problem can be stated as seeking ways to define and compute optimal
approximations of a general image function u(x, y) by piecewise smooth functions u(x,
y) in different region £2;.

Over the past decade, many different image segmentation approaches have been
developed, such as the classical snakes model [7], geodesic active contours [8], curve
evolution based on the Mumford-Shah functional method {5}, and active contours
without edges [4], [9]-[14]. A problem related to image segmentation is the object
detection problem by snakes or active contours. An initial curve evolves in an image and
stops on the boundaries of objects within the image. The classical active contour models
[71, [8] use the gradient of the image for stopping criteria. The active contours (or snakes)
stop on the boundaries where the magnitude of the gradient of the image is large. These
active contour models are usually called boundary—-based models.

For image smoothing, the technique developed from partial differential equation has
become a widespread field of research. Hspecially the anisotropic diffusion model
originally introduced by Perona and Malik [15], and further developed by {16], [17].
Other anisotropic diffusion techniques such as curve evolution methods based on
geometric scale space [18]-[20], and construction of the diffusion tensor that contains the
information of both modulus and direction of the gradient depending upon application
goals [21]-[25], have also been developed. The basic idea of most anisotropic diffusion
techniques is to employ the gradient (both modulus and direction) of the intensity to
detect the edges between regions then smooth the image within the homogeneous region

and along the edges but not across the boundaries of such regions.



Recently, Chan and Vese developed an active contour model to deal with the problem
of image segmentation and smoothing by using piecewise constant (and/or smooth)
representation of an image [4], [9]. Tsai, Yezzi and Willsky [5] also independently
developed a segmentation and smoothing method very similar to that of the Chan and
Vese piecewise smooth approach. These models are based on the Mumford-Shah
variational model and are applied to solve the image segmentation and smoothing
problems that can be formulated by level set methods introduced by Osher and Sethian in
[26], and further developed in [27]-[34]. These models actually are active contours based
on the Mumford-Shah model with level set methods. Their energy functional F(u(x, y),
C(x, y)) contains a closed segmenting curve C and image data inside (denoted by u[) and
outside (denoted by ") the curve. Minimizing the energy functional F with respect to ',
" and C, we can obtain the curve evolution PDE, and the optimal estimation equations
for &' and u'. The motion of the curve is obtained by solving the curve evolution PDE,
and the curve stops on the edges of the objects within a given image. The optimal
estimation equations for #' and «" have a smoothing effect on the original image uy,
therefore u' and ", which are obtained by solving the corresponding optimal estimation
PDEs for «' and ", are piecewise smooth approximations of ug inside and outside curve
C respectively. The curve evolution PDE together with the optimal estimation PDEs
produce piecewise smoothing and segmentation of an image simultaneously [4], [5], but
shortcomings also exist in this approach. Because of the coupling between the curve
evolution PDE and the optimal estimation PDEs for u' and «", when we solve the curve
evolution PDE the solutions of u' and u" are needed. Therefore it involves solving the

optimal estimation PDEs for «' and u" at each curve evolution step, and that makes the



algorithm very slow. Since the segmentation of an image finishes at the final iteration,
only the solutions of ' and u™ at the final iteration are required in the piecewise smooth
reconstruction of the image. All of the solutions of u' and u" before the final curve
evolution steps are only required for solving the curve evolution PDE. Moreover, the
optimal estimation PDEs for ' and u" are Poisson equations, their capability of denoising
1s limited.

Apart from the computational costs and the denoising qualities, handling the initial
conditions correctly is another problem of this model in multiphase approach. As
mentioned in [4], in the implementation through level set method, using one level set
function we can represent only two phases in an image. In order to represent images with
more complicated features, multiple level set functions should be used. Because the
Mumford-Shah problems are non-convex, and because there is no uniqueness for the
minimizer, the final segmented results may depend on the choices of the initial curves.
The muliiple seed initialization used by Chan and Vese [4} cannot always give correct
results.

In this thesis, we propose a new algorithm for image segmentation and smoothing,.
Based on the Chan—Vese piecewise constant segmentation model and the level set
method, we propose a new hierarchical method of multiphase level set framework for
piecewise constant segmentation of images. The multiphase segmentation of an image is
divided into different stages; at each segmentation stage only one curve evolution
equation (equivalent to one level set equation) is used. The next segmentation stage
begins after the previous stage has been completed. This continues until the last stage.

The number of stages is the same as the number of level set functions. This hierarchical



segmentation method makes the algorithm fast and initial conditions easy to handle. We
use the diffusion equation for image denoising because it can deal with very noisy
images. The proposed method actually works in two steps: for a given image, we first
apply the hierarchical piecewise constant segmentation method to partition the image,
then apply diffusion filtering to different regions independently, but not across the
boundaries of such regions. This method is fast, more flexible, and not sensitive to the
initial conditions.

Thus, the contributions in this thesis are the development of new, efficient techniques
for image segmentation and smoothing. This method can segment and smooth an image
stmultaneously and relatively enhance edges within the image.

This thesis is organized as follows: In chapter 2, we cover most of the mathematics
used in this thesis, including the principle of variation, partial differential equations, and
the level set methods. We survey some of the most popular and traditional image
segmentation methods as well as the segmentation algorithms based on the energy
functional minimization, and the basic idea of the anisotropic diffusion techniques for
image smoothing and denoising in chapter 3. In chapter 4, we introduce our hierarchical
image segmentations by using the level set method based on the Chan—Vese piccewise
constant active contours model [9]. We present the two-step segmentation and smoothing
method for image segmentation, smoothing and edge enhancement, and discuss how the
proposed method works for images with or without noise in chapter 5. Chapter 6 is our
experimental results, and the final chapter is our conclusion. The numerical

implementation methods used in this thesis are presented in the appendix.



Chapter 2
Mathematical Preliminaries and the Level

Set Method

This chapter introduces the mathematics used in this thesis. It covers some of the main
ideas of the calculus of variations and the theory of partial differential equations (PDEs).
The level set method that is the numerical technique used in most of the implementations

in the thesis is also reviewed in this chapter.

2.1 The Calculus of Variations

The calculus of variations originates from well-known facts, such as the shortest path
between two fixed points is a straight line, and the circle is the figure with the largest
enclosed area inside a given perimeter. The calculus of variations is concerned with the
extrema of a given functional (function of functions). It seeks to find the path, curve, or
surface, for which a given functional has a minimum or maximum. Mathematically, this

involves finding stationary values of a form of the functional integrals such as,

Styl= [ F(xy y)ds, @10



where y = y(x), and y” = dy/dx. In order to minimize (or maximize) the value of a

functional S[y] over the interval [x, x,], we must find the stationary values such that the

variation of S{y] equals zero (&5 = 0) for any small change in y(x) which is,
&S[yl= [ oF (x,y,y)dx, 2.2)

Calculate the variation of the functional I we have,

F ., oF JF d aF
5F=8—F5y+a,5y ==y + = —(dy) ——5y——[ ]5y+
dy dy dy

d (oF
— ) 2.3
dy” dx ay’ ( 5y} 2.3)

dx\ dy’

Where &' = 5[%} = di(é‘y) , and after integrating (2.3) by parts, we have,
X

OF d oF _|”
s[5 F b (5] Y

-t

F .l
The variation requires that 6y(x;) = dy(xy) = 0, therefore, B—, (3))} =0.
Y v

4

S0 we have:
~ X2 aF d aF
o = —_—— dx =0. 2.5
! [ay dx{ay H > =
Since Jy is arbitrary we have the following equation,
dy E}y ’ ©)

which is called Euler-Lagrange partial differential equation. S has an extremum only if
the Euler-Lagrange equation is satisfied. Solving the appropriate Euler-Lagrange

equation is equivalent to solving the problem in the calculus of variations [35], [36].



2.2 Partial Differential Equations

On the basis of their characteristic or curves of information propagation, partial
differential equations are usually classified into three categories, hyperbolic, parabolic,
and elliptic [37], [38]. In this thesis, we only focus on the parabolic type equations. A

typical parabolic equation is the diffusion equation as follows,

éﬁ;i(})i}ﬁ]’ .7
dJt  ox\| ox

where D is the diffusion coefficient. It defines an initial value or Cauchy problem: If
information on u is given at some initial time #, for all spatial variable x, then the
evolution of u(x, 1) with time ¢ is governed by this equation. The initial condition is
usually specified as,
u(x,t =0)=u,(x). (2.8)
The PDEs that govern the curve evolution in the image segmentation and used for
diffusion filtering in the smoothing approach are the type of parabolic equation. The
diffusion equation may, with or without boundary conditions, depend on the applications.
Generally, we need to solve this equation numerically, and we will discuss some finite
difference numerical techniques in the appendix.
If D in (2.7) is a constant, it is easy to get the analytical solution of the diffusion
equation with the initial condition (2.8). For example, we can use the Fourier transform
method to solve this diffusion equation with (—eo<x<oo). Applying Fourier transformation

with respect to x to (2.7) and (2.8), and letting

f(@.0) = Flu(x)l= [ u(nne™d, @)= Fluy(0]= [ u,(x)edx.



From the time-differentiation property of Fourier transform [If the function f(x) has

a Fourier transform u(w), then its derivative f/(x) has the Fourier transform iw u(w).]

we have,
W pwi, 2.7
dr
u(w,0) =u,(w). (2.8Y

Equation (2.7)" together with (2.8) is an ordinary differential equation (ODE), its

-Dw*t

solution is, u(w,t) = i,(@)e , therefore the solution of (2.7) together with (2.8) can be

obtained by the inverse Fourier transformation, u(x,t)=F '[i(w,1)]. Employing the

convolution property of the Fourier transform and do some straightforward calculations,
we have the final solution,

(-’

=L [y (He 2.9
u(x,1) T LL{O(@')@ . (2.9)

The idea behind the use of the diffusion equation in image processing arose from the
use of the Gaussian filter in image smoothing. Convolving an image o with a Gaussian

filter K5(x, y) as,

1 x| +]yf
K (x,v)= exp| —+—————r2 "1 2.10
o(%.7) 275t p( 20+ 10

with the standard deviation ©, is equivalent to the solution of the diffusion equation in two

spatial dimension at time t = 0.5 6°.



2.3 The Level Set Methods

The level set methods are the numerical techniques originally introduced by Osher and
Sethian for analyzing and computing the motion of interfaces [26]. Many applications of
the level set and PDE methods for image processing have also been developed [27], [29]}-
{31]. The basic idea of the Level Set Methods is the following: A boundary curve moving
in the plane (e .g. 2—dimension) is replaced by a problem in 3—dimension (see Fig 2.1)
through the introduction of the level set function 0(x, y, t). The equation of motion for the
level set function is governed by a partial differential equation. We give the definition of
the level set function and its properties next, followed by the introduction of the equation

of motion for the level set function.

Fig. 2.1. Basis of the level set methods. A closed curve can be seen as the zero—level of a higher
dimensional function ¢ [27].

2.3.1 The Level Set Function

From Fig. 2.1 we can see that an original circle in the 2-D xy plane can be represented by

the intersection of a 3-D cone—shaped surface and a xy plane at zero height. More
precisely, let us define a level set function z = ¢(x, y, 1) where the cross section in the xy

plane and the level set function ¢(x, y, 7) represents the boundary C(¢) of the set where

10



o(x, y, 1) = 0. Therefore, the level set function ¢(x, y, #) has the following properties if the

boundary curve C(¢) bounds a region £2,

ox, v, )>0 (x, y) inside €2,
o(x, v, 1) <0 {x, y) outside £2, (2.1
Ox, y, =0 (x,y) on 0Q = C(2).

For example, using an implicit function ¢ as follows can represent a curve in 2—

dimensional space that is shown in Fig. 2.2.

Plx,y)=x"+y* —1 (2.12)

x
g <0

e ¢ = 0

Fig. 2.2. Implicit representation of the circle x* + y*> = 1.

In this two spatial dimensional case, the curve is called the lower—dimensional
interface that separates R? into two (or more) sub-domains with nonzero areas. In Fig. 2.2
the interface curve is a closed curve, therefore it clearly has defined interior (e.g. 6 >0)
and exterior (e.g. ¢ < 0) regions. To allow modeling of dynamic processes which means
change of level set functions over time, a time-dependent PDE is introduced for the

moving interface (boundary curve) [32]. We will discuss this equation of motion next.

11



2.3.2 The Level Set Motion Equation

We can link the motion of the boundary to the evolution of the level set function ¢
through an initial value problem where the boundary is given by the zero level set of the
time-dependent level set function ¢(x, y, ) at any time . Thus, at any time ¢ the level set

value of each point X(¢) on the boundary dQ is given by ¢(X(¢),r), must be zero (i.e.
@(X(1),t) =0) that implies d@(X(r),t)/dr =0 . By the chain rule we have,

WED) gy 4%

=0. 2.13
ot dt ( )

It is an initial value partial differential equation and can be rewritten as,

a¢g5tc',t) L E|Vg| =0, (2.14a)

where, F=1-V,(V=dx/dr is the velocity of the boundary, n is the unit normal to the

boundary) is the normal velocity of the boundary. We have to add the following
conditions associated with (2.14a).
1. A boundary condition: we usually choose the normal derivative vanishes on the

boundary 09,

9% _o onoa. (2.14b)
on

2. Aninitial condition at 7 = 0. The initial function ¢ usually associated with an initial

given curve Cy:

¢(X’ y70) :¢0(x7 )’) . (214C)
The equation (2.14a) is the level set equation introduced by Osher and Sethian [26].

This equation describes the evolution of the level set function ¢ in such a way that the

12



zero level set of this evolving function is always identified with the propagating boundary
[27]. This means at any time ¢ the moving boundary C(z) is just the zero level set of the
level set function @(x(r),7) which is the solution of the level set equation (2.14).
There are many advantages [27] to working with this perspective on propagating
boundaries:
e The topological changes in the evolving boundary such as merging and breaking are
handled naturally: The position of a boundary at time ¢ is given by the zero level set
of the evolving function ¢, and it can merge as time advances (see Fig. 2.3).
e It is easy to build accurate numerical schemes to approximate the equations of
motion (2.14). For example, the finite difference approximations can be used.
e Intrinsic geometric properties of the boundary such as the normal vector and the
curvature can be easily expressed in terms of function ¢. At any point of the

boundary, the normal vector is given by

. V¢ .
n = W s (2 13)
and the curvature at any point of the boundary is
2 2
Kk=V-i=V. Vo - ¢""“¢)’ - 2¢x¢y¢xy + ¢yy¢x (2.16)
Vol a2y B

e The above 2~dimensional formulation can be extended to the applications in 3 or

higher dimension.

i3



z=¢ (Xy =)

-,

(@) (b)

Fig. 2.3. The change of topology. (a) The zero level set at time ¢ = 0 is the cross section of the
level set surface and the xy plane. (b) Later in time (¢ = 1) the level set surface has moved and the
new zero level set defines the new contour [27].

2.3.3 Curve Evolution with the Level Set Method

We illustrate the curve evolution governed by the solutions of the level set PDE through
two examples with different propagating speed F of the interface, namely motion under

curvature [26], {39] and motion with constant speed.

a) Motion under Mean Curvature

If the velocity in (2.14a) is chosen as F = —x, the level set formulation of the curve

evolution equation becomes:

WWED _ o | Ve
=V (!Wﬁlem’ (2.17)

which is a non-linear diffusion equation. If |V¢| = constant, (2.17) becomes linear
(Gaussian) diffusion equation.
In the first example we consider the curve motion under the speed of mean curvature.

Using the numerical methods in the appendix to solve the level set PDE (2.17) we obtain

the moving curve at different time stages which are shown in Fig 2.4. (a) is the initial
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curve, (b) to (e) are the resulting curves at different time stages. Notice that if we let the

evolutions run until convergence, any curve changes to a circle and then collapses.

(a) (b) {¢) (d) (e)

Fig. 2.4. Motion of a curve with a curvature—dependent speed. (a) Initial elliptic curve. (b)—(e)
The moving curves at time ¢ =1, 2, 3, 4 respectively.

These experimental results support the following famous theorem in differential
geometry [26].
Theorem: Any simple closed curve moving under its curvature collapses nicely to a

circle and then disappears.

b) Constant Speed Evolution [27], [32]

The second example is given by

dg (
—aT"CWW’ (2.18a)
P(x,y,0) = @ (x.y), (2.18b)

where ¢ is a constant. This equation represents a motion in the direction normal to the
interface (boundary). For ¢ = 1, the interface moves in the normal direction, it is the
simulation of the wave—interface propagation of a grass fire. Fig. 2.5 shows the evolution
of an elliptic curve under the speed ¢ = 1, it moves normal to itself in the outward
direction. The initial curve is shown in Fig. 2.5 (a), the other figures are the evolution of

the curve at different time steps.
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(@) (b) () (d) (e)

Fig. 2.5. Motion of a curve with speed ¢ = 1. (a) Initial elliptic curve. (b)—(e) The moving curves
at time ¢ =4, 6, 8, 10 respectively.

If the speed ¢ = -1, the interface moves opposite to the normal direction. In Fig. 2.6
we show the curve evolving with time in this case. Since the curve moves in the direction
to the interior region defined by this curve, it shrinks with time but has different behavior

compared to the mean curvature motion as shown in Fig. 2.4.

(@) (b) (¢} (d) {e)

Fig. 2.6. Motion of a curve with speed ¢ = —[. (a) Initial elliptic curve. (b)—(e) The moving
curves at ttme ¢ =4, 6, 8, 10 respectively.

The basic level set method concerns the solution of the level set PDE throughout the
space. Clearly this is wasteful for the boundary evolution problem which only cares about
the region near the zero level set. A local level set approach called narrow banding was

developed to improve the computation costs [27], [29]. The narrow band approach
defines ¢ only near the zero level set correspoding to a thin band around the boundary.

We may solve the level set equation in a neighbourhood of C with a width nAx, where n

16



is typically equal to 5 or 6. Points outside of this neighborhood need not be updated by
this motion. The narrow band approach is a fast numerical method for the boundary
evolution. It also allows the 3—dimensional interface evolution problem to be handled

with ease.
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Chapter 3
Image Segmentation and Smoothing

Problems

In this chapter, we survey some of the classical image segmentation and smoothing
techniques. We examine some of the widely used traditional image segmentation
methods and some more recent variational functional based segmentation techniques,

followed by the discussions of the PDE-based diffusion methods for image smoothing.

3.1 Image Segmentation Methods

3.1.1 Approaches to Image Segmentation

Image segmentation is one of the most important and difficult tasks in image processing.
The aim is to subdivide an image into its constituent regions, and the subdivision should
stop when the regions of interest have been detected. Traditional image segmentation
algorithms are based on one of two basic properties of image intensity values which are
stmularity and discontinuity. The principal segmentation approaches in the first case are
based on the portioning of an image into regions that are similar according to a set of
predefined criteria. Thresholding, region growing, and region splitting and merging are

examples of methods in this category. In the second case, segmenting an image is based
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on the abrupt changes in the intensity values of the images, such as edges in an image.
Classical discontinuity detection techniques, snakes and geometric active contour
methods are examples in that category.

Discontinuity detections, such as points, lines, and edges detections are important in
discussion of image segmentation. Since edges are the most important features in a digital
image, edge detection in particular has been a main concern of segmentation algorithms
for many years. Classical edges detection approaches are based on the first and second
derivatives of the image. For the first-order derivatives, the earliest methods were based
on the convolution of a mask with an image. Numerous masks have been developed over
the past decades, such as Roberts gradient operators {40], Prewitt operators [41], Sobel
operators [42], and Canny algorithm [43]. Further developments along this direction have
been done by Deriche [44], and Shen and Castan [45]. Review materials on this topic can
be found in [2], {46]. For second-order derivatives, the most widely used edge detection
algorithm was proposed by Marr and Hildreth {47] based on zero—crossing detection of
the Laplacian of a Gaussian (LoG) [48]-[50]. Corners are rounded and the connectivity
at the junctions is poor in this kind of algorithm. These edge detection approaches are
based on the local gradient or Laplacian of an image, and identify the edges that are
characterized by the sharp changes of the image intensity.

Thresholding technigues (2], [S1] are the early and popular approaches for image
segmentation, because they are simple to implement. Thresholding techniques require
very little computation, but the segmentations are often poor when there is noise in an
image. Noise creates artificial boundaries where there were no anatomical boundaries in

the original image, and the weak but real anatomical boundaries are often lost
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completely. Further, due to noise boundaries may contain artifactual discontinuities
which lead to ambiguities in segmentation. Recently, Chan, Lam, and Zhu [52] proposed
new adaptive thresholding method using variational theory for image segmentation, they
can achieve better performances.

Region growing segmentation method [53] is probably less common than edge
detection as a low level approach, but it is applicable in multi-dimensional cases and in
noisy environments. Region growing algorithm starts by choosing a set of “seed” pixels
and compare it with neighboring pixels. Then choose criteria for region growing, and
region is grown from the seed pixel by adding in neighboring pixels that are similar. This
process is continued until all pixels belong to some region. A new region growing
method using novel similarity and discontinuity measures has been proposed by
Hojjatoleslami and Kittler [54]. This method is more reliable and consistent than other
region growing methods when the aim is the segmentation of bright objects from a dark
background or vice versa. Region growing methods can be made less sensitive to noise
than simple edge-based methods, but they may become extremely computationally
complex for even simple rules [55]. Region growing method can also be applied to 3-D
medical image segmentation [56].

The morphological watersheds segmentation method is another early-developed
approach which embodies many of the concepts of the three approaches we just discussed
above. It can produce more stable segmentation results including continuous
segmentation boundaries [2]. Based on the multiscale behavior of gradient watershed
hierarchies, an image segmentation algorithm has also been proposed by Gauch [57], it

can be used for automatic and interactive image segmentation. Another method for



segmenting images using multiscale morphology was also developed very recently [58].
The PDE and morphology method can also be used for image segmentation [59].

In addition to the above deterministic methods for image segmentation, stochastic
modeling 1s another main image analysis approach. Stochastic modeling is widely based
on Markov random field (MRF) theory [60]. In these methods, image properties
described in terms of probability distributions and some prior knowledge about the
underlying image defined stochastically (i.e. prior probability model). Since there is one-
to-one correspondence between Markov random field and Gibbs distribution function,
one can formulate an a posteriori probability distribution based on observations and prior
probability models [61]. Many MRF-based image segmentation approaches have also
been proposed recently [62]-{64].

Another popular deterministic approach to the image segmentation problem is via
active contours (also called snakes, curve evolution). The underling principle in these
active contour methods is to define a simple, closed curve Cy and deform (shrink or split)
it towards the object boundaries. This idea was originally introduced by Kass, Witkin,
and Terzopoulos [7] via an eneréy functional. These models are active, because they are
always minimizing their energy functional and therefore exhibit dynamical behavior.

More generally, the curve evolution is governed by the PDE as follows [65], [66]:

ac
4

= F(x,1)N

where N is the normal to the curve, and F(x, 1) is the velocity function which usually
depends on the curvature x of the curve. In order to stop the evolving curve at boundaries

within an image, an edge strength function which depends on the local gradient of an

image is used to control the evolution of the curve. These active contour models using the
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gradient of the image for the stopping criteria are called as boundary-based models. We
will examine some of them (snakes and the geodesic active contour models) in the next

subsection.
3.1.2 Edge-Based Active Contours

The basic principle of the active contour models is the curve evolution and geometric
flow; different models are defined by choosing different energy functional. An energy
functional is Minimized so that its (local) minimum is obtained at the boundary of the
object. The aim of these approaches is to detect contours of objects based on a sharp
change of the image intensity u(x, y) between the background and the objects. Usually we
choose the gradient of an image to measure this sharp change of u(x, y). Therefore the
magnitude of the gradient of u(x, y) is high across the edges, and we may choose |Vu(x,
y)| {or a function of it) as a edge detector.

a) The Snakes Model

Snakes are planar deformable contours that are used to approximate the locations and
shapes of object boundaries within an image [7], [67]. Geometrical snakes, including
energy-minimizing and dynamic snakes, are explicit, parametric contours embedded in
the image plane. In the energy-minimizing snake approach, the final shape of the contour
corresponds to the minimum of the energy of the contour, which is represented by the

following energy functional [7]:
(€)= [[a| ) ds+ [ BOICO [ ds+A[ g (VuCe)) ds. G

where s is a point on the snake C(s). The first two terms in (3.1) represent the internal

energy and control the deformation of the contour. There are two non—-negative parameter



functions: as) controls the “tension” of the contour while 3(s) controls its “rigidity”. For
example, increasing o(s) tends to eliminate extraneous loops and ripples by reducing the
length of the snake. Increasing (s) makes the snake smoother and less flexible. The last
term in (3.1) is the external energy and attracts the contour toward the intensity edges
within an image. In general, the external energy is based on image attributes, and the
object of interest, such as lines, edges, or other image features of interest. Here we use the

edge—detector function g(s) to define the external energy. g(s) is regular monotonic
decreasing and g(0) = 1, while lim g(s)=0. A typical choice of g is g(s)= 1/(1+52).

Minimizing the energy functional (3.1), we can obtain the Euler—Lagrange equation for

the evolution of the snake as follows [67]:

d( _dCcy o a°C 2 B
“5;(0"5{]%5( B )Jr,%v( (Wu(C(S))I))—O. (3.2)

The first two terms represent respectively the internal stretching and bending forces,
and the third term is the external force that couples the snake to the image data.

The dynamic snakes can be represe}nted by introducing a time—dependent contour C(s,
1) along with a mass density |\(s) and damping density y(s). Again minimizing the energy

functional (3.1), the Euler-Lagrange equation of motion for a snake is given by [67]:

3’C  aC a[ ac)
=—1

Bt - il 2
o T T\ s e (ﬁ ] Avle(vucceny). 3:3)

The left hand side of this partial differential equation represents inertial and damping

forces.
The energy functional J(C) in (3.1) is non-intrinsic since it depends on the

parameterization of the curve C and is not directly related to the objects geometry [8]. We
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may obtain different solutions by changing the parameterization within the same initial
curve. And because of the regularity constraint, this model is not able to handle changes
in the topology of the evolving contour directly. In fact, it is impossible to detect more
than one object simultaneously [6].

The geodesic active contours model [8] which we present next, can overcome the
above difficulties.
b) The Geodesic Active Contours Model

In the Kass et al. snakes model (3.1), if we set the rigidity term to zero that is B = 0, we

obtain a particular case of the snakes model as (consider o as a constant),

L(©) =a[| )] ds+2 [[g*(vuccesy ) ds. (3.4)

We can locate the boundaries of objects by minimizing the functional J,(C). But J;(C)
is also not intrinsic because it still depends on the parameterization of C. So Caselles et

al. proposed an intrinsic energy functional as follows [8], [68]:
i P .
(0 =202 [ g Vu(C(s) )| ()] ds. (3.5)

It has been shown that minimizing the energy functional J5(C) is equivalent to
minimizing J(C) [69]. Furthermore J5,(C) is intrinsic because it does not depend on the
parameterization of the curve [6]. The Euler-Lagrange equation that governs the
evolution of the curve, can be obtained as [8],

—Q% =kg(u)N —(Vg(u)- N)N , 3.6)

where  is the Euclidean curvature, N is the unit inward normal. As already discussed in

[6], the Euler-Lagrange equation (3.6) associated with J, can be formulated by using the

level set methods that make the numerical implementation much easier, while it is not the
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case for Ji. The level set techniques have shown great promise for their speed and ability
to handle changes in topology of the evolving curve and make the implementations more
efficient and robust.

In both the snakes model and the geodesic active contours model, we minimize a
variational energy functional to get the curve motion equation, and an edge detector

function (depends on Vu,) is used to stop the evolving curve on the edges of the object.

Another variational energy functional approach is to find an optimal piecewise smooth
approximation u of an original image uo, and a set of boundaries C, such that u varies
smoothly within the homogeneous regions and discontinuously or rapidly across C. This
is achieved by minimizing the Mumford-Shah energy functional [3]. We will examine

the Mumford and Shah model and its properties in the next subsection.

3.1.3 The Mumford and Shah Model

Let Q be a bounded open set of R?, and up(x, y) be an initial image. The basic idea of the
Mumford and Shah model [3] is to find a pair (u, C) for a given image o, such that ¢ is a
nearly piecewise smooth approximation of uy, and C is a set of edges between regions
within the image. In order to solve this image segmentation problem, Mumford and Shah

proposed the following energy functional:
F@,C)= | u—u, [ dxdy+ p [ |Vl dxdy+v- Lengih(C), 3.7)

where 4 and v are nonnegative constants, Q bounds an open set of R (image domain), the
curve C C L, and {x, y} € Q. u(x, y) is the piecewise smooth function approximate to ug
with discontinuities only along the boundaries C. To solve the Mumford—Shah problem

we need to minimize the energy functional F(x, C) with respect to # and C. The authors



made the following conjecture in their original paper [3] for the existence of a minimizer
in this minimization problem:

Conjecture: There exists a minimizer of F such that the edges (the discontinuity set C)
are the union of a finite set of K" embedded curves. Moreover, each curve may end
either as a crack tip (a free extremity, i.e., C looks like a half-line) or in triple junction,
that is, three curves meeting at their endpoints with 21/3 angle between each pair.

It is important to notice that the Mumford—Shah functional is a concise mathematical
definition of the image segmentation problem. Bonnet made important progress in the
existence of a minimizer of the functional (3.7), and proved the following results:
Theorem 1 [6], [70]: If (u, C) is a minimizer of F such that C is connected, then (u, C) is

one of the following:

i) C is empty and u is constant.

ii) Cis a straight line defining two half-planes and u is constant on each half plane.

i) C is the union of three half lines with 21/3 angles and u is constant on each
secior.

v) In a polar set of coordinates (r, 6), u(r,0) = 1/2/75\/;(:08(6?/2) Jor @10, 24,

and C is the half-axis 0= 0 (a crack-tip).

Theorem 2 [6], [70]: Every isolated connected component of C is the union of a finite set
of K'-arcs. These arcs are K™ away from crack—tips and can merge through triple

Junctions with 21t/3 angles.

We notice that Theorem 2 does not allow a minimizer to have an infinite number of

arbitrarily small pieces connected to each other. Actually, the Mumford and Shah
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conjecture remains an open question in the most general setting [6]. Based on the quasi—
Newton minimizing algorithm, the numerical minimization techniques of the Mumford-—
Shah functional have been developed recently [71]. The difficulties in studying the
Mumford—Shah functional F(u, C) are that it involves two unknowns u and C of different
natures: # is a function in an N—dimensional space (N = 2 in our consideration), while C
i1s an (N-1)-dimensional set. The other difficulty is that the functional F(u, C) is not
convex, and may have numerous local minima. Therefore, it is not easy to minimize the
Mumford-Shah functional (3.7) in practice, there are some alternative solutions to this
problem, such as, the elliptic approximation to the weak formulation of the Mumford—
Shah functional method [6], the active contours without edges [9]-[13], and the curve
evolution based approach [5]. The characteristics of these methods are:

i) An active contour deforms within an image and stops when it reaches the
boundary Ofb regions. So the single active contour cannot detect a region if it is
inside another region.

ir) Because the level set method is used in these approaches, we always have closed
curves.

Generally, the Mumford—Shah energy functional model can perform curve evolution,
segmentation, and smoothing in a common way [72]. We present recent works that

consider these characteristics in the next subsection.
3.1.4 Active Contour without Edges and the Level Set Methods

Many active contour models use the level set method to represent the evolving curve,
because the level set method allows automatic topology changes, such as merging and

breaking of curves. Recently new active contours with level set methods have been
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proposed for images segmentation such as, edge based models [7], [8], [67], [68], [73]-
[76]. region based techniques [77], [78], curve evolution approaches [5], [79], [80], shape
based models [81]—[84], color imagery [11], and active contours without edges [10]-[14].
Among these methods, we would like to examine those closely related with the work of

this thesis.
a) The Chan—Vese piecewise smooth model

From the general form of the Mumford—Shah functional (3.7), if we consider that there is
a closed curve (active contour) C in the image domain &, € is partitioned into R and R
corresponding to the image sub-domains inside and outside the curve C respectively.

Then minimizing (3.7) becomes the minimization of the following problem {4], [5]:

F(ul,uz,C):j

inside (C)

lu, —uy |* dxdy +,uf

inyide (C)

| Vu, | dxdy

+ lie, —u, |* dxdy + 'M,g

autside (CV outside (C')

| Vi, [dxdy +v - Length (C). (3.8)

where u; and u, are the smooth function approximating the image function iy inside and
outside the curve respectively, and u and v are constants. We apply the level set method
to this model by replacing the unknown cﬁrve C(12) by the level set function ¢(x, y, 1), and
consider that ¢(x, y, 1) > 0 if (x, y) is inside the curve C, ¢(x, y, £) < O if (x, y) is outside
curve C and ¢(x, y, 1) = 0 if (x, y) is located on the curve C. Minimizing the functional

F(uy, uz, ¢) with respect to uy, u; and ¢, we obtain the equations for uy, u; and ¢ as the

following:

U, —1y = 4V, inside C, i% =0on C | (3.9)
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ou,

u, —u, = 4V°'u, outside C, —==0on C (3.10)
143

a(ﬁ_ [ wy) 2 2 B 2 Yy 2 311

LS| v V(%) L g P | Vit 4wy =y P+ | Vi, 3.11)

or
d(¢) is the Dirac & function. The image functions u,(x, y) and up(x, y) are obtained by
solving the damped Poisson equations (3.9) and (3.10) for any given curve C. This is the
piecewise smooth case of the Chan—Vese model [4]. Very similar idea has been also
developed independently by Tsai, Yezzi and Willsky [S]. The smoothing and denoising
effect on the image uy comes from solving the PDEs for u; and u,, which are inside and
outside the curve respectively. Therefore diffusion filtering only happens within different
homogeneous regions, but not across the boundaries. The smoothing approach is very

similar to the idea of “anisotropic diffusion” [15]-[17], [21]-[25].
b) The piecewise constant segmentation methods

There are two piecewise constant image segmentation approaches we would like to
present here, namely, the active contour model with level set formulation developed by

Chan and Vese in {9], [4], and the direct energy computation method proposed by Song

and Chan in [85].

i) The Chan-Vese model: The piecewise constant active contour model proposed by
Chan and Vese [9] is a particular case of the Mumford-Shah model. It minimizes the

following energy functional

CRAED) [, o (x.9) = ¢ dxddy +v - Length(C), (3.12)

where c;is the average value of u(x, y) in each connected region £, and Q = UQUC. v

is a positive constant. Using the Heaviside function H(¢) this energy functional can be



represented by the level set approach with C(¢) corresponding to the zero level set of the

level set function, ie. ¢(x, y, ©) = 0. The length of C can be expressed by

|Cl= LIVH (@) | dxdy . For n—phase image, m = log,n level set functions é(x, y, t) are
2

needed. Then the level set formulation of the energy functional (3.12) can be written as

follows,
Fe.®)= 3 | (e y)=c,) zdvdy+v- Y | [VH(@)|dxdy, (3.13)
1£I<n 1€i<m
where ¢ = (c,..., ¢, ..y Co)y @=(1 ..., @i B), c1is the average of ug in region I, and

is the characteristic function in region .
For example, in 2-phase segmentation (n = 2, m = 1) case, we can use only one level

set function ¢ to represent the two-phase energy functional as,
Fy(@.c,,c,) =v | | VH (@) ldrdy
+ J;Di u, —c, " H(@)dxdy + L[ uy =y |* (L= H (9))dxcy. (3.14)

It is to minimize the functional (3.14) with respect to ¢i, ¢; and ¢ to obtain the

equations for ¢y, ¢, and the curve C(7) respectively:

[ 1o (9)dxdly [ (1= H (p))dxdy

== H{(p)dxdy & (9) == ) (3.15)
[, @ axay J, A H(@dxdy

%‘?:5(¢)[ VV'(Ig—Z[>_(uo*cl)2+(uo"cz)2]- (3.16)

The segmented image therefore is a two—phase image, given by u(x, y) = cH(p) +c,

[I —H(¢)]. After solving these equations we can obtain the information about ¢;, ¢, and

C, and we expect that u is the best approximation of uy with two values ¢, ¢» and one
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edge C. The curve C is the boundary between the sets {# = ¢} and {u = ¢;}, therefore
we segment the original image uginto two parts {u = ¢} and {u = ¢, }.

ity Direct energy computation method: As we already mentioned, the main idea of
variational active contour model is to minimize the energy functional, and this model can
be formulated by the level set method. We can locate the boundaries by finding the level
set function ¢, this can be done by solving the corresponding PDE (3.16). However, for
the active contour segmentation model, we do not really need the values of the level set
function ¢, but only its sign. So it is possible to solve the minimization problem by
directly computing the energy F. Based on this observation, we present the direct energy
computation algorithm introduced by Song and Chan in [85] to solve the segmentation

problem as follows:
Step 1: Construct an initial partition. The initial curve corresponding to ¢ = 0 divides the
image into two parts, one part for ¢ > 0, and another part for ¢ < 0. Then compute the
value of the energy difference AF according to the sign of ¢.
Step 2: Advance. For each point (x, y) in the image, if the energy F decreases when we
change ¢(x, y) to — ¢(x, y) (i.e. moving the point from inside to outside of the curve or
vice versa), then update this point by ¢(x, y) = — é(x, y), otherwise, ¢(x, y) remains
unchanged.
Step 3: Repeat step 2 until the energy # remains unchanged.

The main advantage of the direct energy computation algorithm is that we do not need

to solve the level set PDE for the curve evolution, thus it improves the computational

speed, especially for image with large size.
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For 2-phase segmentation, given an initial curve that separates the image into two
parts, let ¢ = 1 for the region inside the curve and ¢ = —1 outside the curve. Let ¢; and ¢,
be the averages in regions for ¢ = 1 and ¢ = —1 respectively, m and n are the numbers of
pixels for ¢ = 1 and ¢ = —1, and let F be the energy at that moment. Assume that the
current pixel p(x, y) € {¢ = 1} with the intensity value of I(x, y). If we change p(x, y)
from region {¢ = 1} to region {¢ = —1}, the number of pixels in {¢ = 1} becomes m—1,
while the number of pixels in {¢ = —1} becomes n+1, the energy averages in regions {¢
= 1} and {¢ = -1} are also changed. Let Fy be the new energy after we change p(x, y)
from {¢ = 1} to {¢ = -1}, the energy difference between the new energy Fy and the old
energy o can be computed as [85],

m

AFy, =Fy = F, = ([(xry)“cz)zﬁ‘l—(l(«’cs)’)*cl)z (3.17)

m—1
It AFy; <0, change the value of ¢(x, y) from 1 to —1. Similarly for the ¢ = —1 case.
More generally, for image segmentation the deterministic edge detection-based,

region—based, active-contour—based, and stochastic models are subsets of the general

problem of variational functional minimization. This is our motivation for choosing the

Murnford-Shah variational energy functional as the starting point for our segmentation

method.
3.2 PDE-Based Image Smoothing Methods

3.2.1 Overview

The PDE-based, nonlinear anisotropic diffusion techniques are an effective way to

smooth and denoise images. The smoothed image can be obtained by the solution u(x, y)



of the diffusion equation at a specific time ¢ with initial conditions u(x, y, t=0) = up(x, y),
where uo(x, y) is an original noisy image. The general formula of a diffusion equation can

be written as,

du(x, y)
ot

=V (D(x, y)-Vulx, y)), (3.18)
ux,y,0 =0) =u,y(x,y),
where D is the diffusivity. According to the property of the divergence operation, the
diffusivity can be a scalar function (or constant) or a tensor (or tensor-valued function).
The simplest diffusion filter is the linear isotropic diffusion filter, where the diffusivity
is a scalar constant. It smoothes the noise in an image and blurs the edges of objects
within the image as well. In order to avoid blurring of edges, the nonlinear isotropic
diffusion [86] uses a scalar function of gradient Vi instead of a constant diffusivity,
where ug is the regularized image by convolving the original noisy image ug(x, y) with a
Gaussian filter K (x, y), which 1s us = upvKs and D = g(|Vug|). This diffusivity function
satisfies g(0) =1 and g(s) = 0 for s — oo . Therefore it behaves as linear diffusion in the

interior of a region (|Vus| — 0) and inhibits diffusion at strong edges (|Viuo| — o). The

nonlinear isotropic diffusion can avoid blurring of edges, but it cannot eliminate noise at

edges [25], [86].
3.2.2 Anisotropic Diffusion Method for Image Smoothing

The anisotropic diffusion technique, first introduced in [15] and further developed in
[16], [17], takes into account both the modulus of the gradient |Vug| and its direction.

Here D(x, y) is generally a symmetric positive definite diffusion tensor. It smoothes the

image within the homogeneous regions and/or probably along the edges, but not across
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the boundaries of such regions. Below we present the anisotropic diffusion techniques
developed by Weickert [21]-[25].
The basic diffusion equation is given by equation (3.18). In the anisotropic diffusion

approach, the diffusivity D(x, y) is chosen as a tensor function that contains information
of |Vu,| and the direction of Vu_as well. The key point for this anisotropic diffusion

approach is how to construct the diffusion tensor D. An easy way to construct D is from

the direct product of Vug:

. [, u’ U,
D=Vu,®Vu, =Vu,(Vu,) =| - (0, )= Sy (3.19)

¥

In order to construct the diffusion tensor D for applications, we introduce the

structural tensor which is a symmetric, positive semi-definite matrix.

ay The Structural Tensor:

J,(Vu,) =K, *(Vu, ®Vu,) (0=0), (3.20)

where K, is the Gaussian filter. Since J( Vit,) is a symmetric matrix, it has the following

[jll jIZ}
-iIZ j22

Assume that the matrix Ji(Vit,) has an eigenvalue # and the corresponding

form:

v,

¥,

eigenvector v = ( J , thus we have the following equation:

J J
( .u .12J [WJ:M[VQJ. (3.21)
Jiz J W, v,
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It is equivalent to

(J”__” e )(W‘jzo. (3.22)
Jiz Jn —H)\V,

The eigenvalues of the matrix J,( Vi) can be determined by the determinant of the

left-hand side 2x2 matrix in equation (3.22), which are:

7. . . . :
iy :5[11\ 1LJzzi—\/(]n "122)2 +4]122:l’ (3.23)
where ¢ corresponds to ‘+’ sign in (3.23). Since the matrix J,(Vus) has two eigenvalues

4 and tb, there are two corresponding eigenvectors v, and v, respectively.

When u = g4, from equation (3.21) and the orthonormal condition, we obtain the

o

. . 2 .
eigenvector v, :( 1), with,

27,
v = Ju - )
\/(jzz ju +\/(jn "jzz)z +4j122) + 4j122
@, = jzz"‘ju +\/(ju —j22)2+4j122

G =i G =y 472 ) 442

When p = 16, similarly, we get the eigenvector ¥, = (51 ), where,

2

CE{ — 2j12

> s
\/(jzz "ju —\/(ju "jzz)z +4j122) +4j122
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jzz —jn “\/(jn _jzz )2 +4j122

B 2 2 : 2 .
\/(/72 ‘jn "\/(]ﬁ “j22>~ +4J‘1a2) +4j12

It is easy to verify that the eigenvectors v, and v, are orthogonal, since

‘71.‘7; :[z[}'(fl fz):¢151+¢252 =0.

b) A Special Case

If the structural tensor has the form of equation (3.19), following the discussions above,
we obtain its eigenvalues as,
fyo=ul +u, = Vul?, M, =0

The corresponding eigenvectors are:

} [u_\/! Vu|
vl =

u, [ Vu

u, /| Vu |

,orthogonal to Vi .
u, /| Vi J : ’

J, parallel to Vu ; v, :[
Based on the above discussions, now we can present how to construct the diffusion

tensor D)(J,) as follows.

¢) Construct the Diffusion Tensor

Assume that the diffusion tensor D we would like to construct has the form:

D:(Z ’3.

The elements of D will be determined in the following way: we choose the

orthonormal basis of the eigenvectors of Jo(Vug), v, and v, as the eigenvectors of D,

while the eigenvalues of D denoted by A; and A; are different from the eigenvalues p; and
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wz of Jo(Vus). The choice of A, and A, depends on the desired goal of application. Since

v, and v, are orthonormal vectors, I} can be constructed as,

(@ D) (A O e o[ S [A 0 (e o
D—(b C)—(Vl VZ)[O ’%‘2}(1 2)—((02 52)(0 /?QJ {fl 52]

:( A0+ LE A, +zz§1§2}

2 2 (3.24)

It is easy to verify that if D has the form as equation (3.24), v, and v, are the

eigenvectors of D with the eigenvalues A, and A; respectively, then:

2 _ (), Sl (4
o (o )-4la) mem (2)-4(E)

Weickert proposed two different ways to choose the diffusion tensor D for different
diffusion goals, namely the edge-enhancing and coherence-enhancing anisotropic
diffusions.

a) Edge-enhancing anisotropic diffusion [21]: The goal of this type of diffusion filter
is to smooth within the homogenous region and preserve edges. Thus we should reduce
the diffusivity A; perpendicular to edges. The goal can be accomplished by choosing the

eigenvalues of Ay and A, as follows:

1 it p,=0

4

A= [ 3315} otherwise
I—exp| —

A, =1.
b) Coherence-enhancing anisotropic diffusion [22]: If we want to enhance flow-like

structures and close broken lines, we should smooth preferably along the coherence
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direction v, with the diffusivity A, that increases with respect to the coherence

(uI ~ U, )2. This can be achieved by the following choice of the eigenvalues of A; and A;:
A=a,
o if  u,=p,,

A= -1 ] otherwise,
2

o+ (1 - &’)exp[m—)—

where « is a small positive parameter € (0, 1).

Among PDE diffusion approaches for image denoising, the anisotropic diffusion
approach gives the highest performance. The fundamental idea of the anisotropic
diffusion filtering is to smooth the images isotropically within a region, while diffusing in
an anisotropic way along edges of the regions (e.g. diffusion along the edges but not
across the edges). The most important advantage of the anisotropic diffusion technique is
that it selectively smoothes an image while preserving and relatively enhancing the edges
of regions.

In the methods mentioned above, the edge detector is based on the gradient of the
convolved image V. In the next section, we will present our method to detect edges and

to anisotropically smooth noisy images without using the image gradients.
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Chapter 4
The Hierarchical Image Segmentation

Method

In order to segment images with complicated features properly, we need multiphase
segmentation techniques by employing multiple level set functions. In this chapter we
first examine the Chan and Vese multiphase segmentation model, then present our
hierarchical multiphase piecewise method which has many advantages compared with the

Chan—Vese model.

4.1 The Multiphase Image Segmentation Method

As we have already mentioned in chapter 3, the Chan and Vese 2-phase active contour
model [9] generalizes the Mumford-Shah functional model with one level set function.
The interior contours in simple binary images can be detected successfully, but there are
some important features such as triple junction points in general gray level images that
cannot be detected in this model. This is because we can only represent an image in two
phases (binary segmentation) by using only one level set function (see Fig. 4.2 below).

For images with more complicated features, usually multiple level set functions are

39



needed in order to obtain proper segmentations. We now present details of the

multiphase segmentation method.
4.1.1 Motivations

The Chan and Vese active contours model with one level set function [9] (as we have
discussed in chapter 3) detects the contours within an image by solving the contour

evolution equation represented by the level set function ¢ (3.15), and (3.16) under the

¢

Neumann boundary condition, 5 =0 on dQ. In the numerical implementation, we use
n

the regularized version of the Heaviside function H(¢) and the Dirac delta function & ¢),

defined by,

H_(¢) = é(l + %arctan(QB , 0(p)=H.(¢)=

1 £
woet et

&

As € - 0, both approximations of H, and 8 converge to their original definitions,

I, ifg=0

if —e<g<e
0, if¢<0 “

i
S(¢)=12¢

0, otherwise

H(¢)={

From the viewpoint of numerical implementation, this algorithm works as the

following steps:
1. Initialize ¢ from an initial curve C(0) <> ¢(x, y, 0) = g (n = 0).
2. Combute c1(¢.) and c3(9,) using the equations (3.15), and calculate the length
term length{ ¢,= 0}= Lengrh(¢,).
3. Solve the PDE for ¢ to obtain ¢, from (3.16).
4. Reinitialize ¢, at each iteration step.

5. Check if the solution is stationary near the boundary. If not, n=n+1 and repeat.
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Fig. 4.1. Segmentation results using 2—phase segmentation algorithm. The far left column shows
the original synthetic images with initial curves. The middle column contains the segmenting
results by using piecewise constant approach with the segmenting curves superimposed on them.

The right column shows the results using piecewise smooth representation with the segmenting

curves superimposed on them.

This algorithm can automatically detect different shapes, convexities, and interior
contours as already discussed in [9]. It works successfully for two—phase images, but it

cannot detect the triple junction point and cannot represent an image with more than two
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phases. We show an example in Fig. 4.1 with three synthetic images for these cases. We
choose =1, v = 100, and € = 1 in our numerical implementations.

Fig. 4.1 shows that, with the use of one level set function, we can segment an image
into two regions, and we get the successful segmentations of a two—phase image which is
shown in the first row. The middle column of Fig. 4.1 clearly indicates the segmented
results in two parts by using a piecewise constant representation; and the white curves are
the boundaries between these‘regions. Although we can show all parts within an image
by using piecewise smooth representation (see the far right column), but there are still
two regions. For example, the image in the second row of the far right column, the white
rectangle and the background belong to one region (there is no boundary curve between
them) while the black triangle belongs to another region. In order to overcome these
problems, we generalize the active contour model to segment images with more than two
regions by employing multiple level set functions. The main differences between one
level set function approach and multiple (for example 2) level set functions approach are
shown in Fig. 4.2. With one level set function, we have one curve (active contour) that
partitions the image domain into two regions (see Fig. 4.2(a)). In the two level set
functions approach (Fig. 4.2(b)), we have nwo initial curves (active contours) and these
two contours evolve during the segmenting process. The two contours associated with
two level set functions ¢, and ¢, partition the image domain up to 4 regions. Similarly,
we can use 3 level set functions to partition an image domain up to 8 regions, and so on.

Therefore we expect to get more detailed segmentations of an image by using multiple

level set functions [4], [87].
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4.1.2 The Multiphase Segmentation Models

We use 4—phase piecewise segmentation method as an example to illustrate the basic idea
of the multiphase segmentation models. We first examine how to extend the Chan—Vase
2-phase active contour model to the 4-phase segmentation approach, then we generalize
the direct energy computation method to segment images up to 4 regions based on the

same idea of the Chan—Vase multiphase segmentation method.

¢<0

¢>0

@) (b)

Fig. 4.2. Regions divided by one level set function ¢ and two level set functions ¢ and . (a) One

curve given by ¢ separates an image domain into 2 regions. (b) Two curves given by ¢, and ¢,

partition the image domain into 4 regions.

A. The Chan and Vase Multiphase Segmentation Method

For the 4-phase segmentation case, two level set functions ¢ and ¢ are needed. Let
$=(¢1, ¢). From the energy functional (3.12) proposed by Chan and Vese [88] based on
the Mumford-Shah model and using two Heavside functions H(¢) and H(¢,) associated

with the level set functions ¢ and ¢, respectively, we can obtain the level set formulation

of the 4—phase energy function as follows,
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Fo(e, @)= [ [uy =y, [ H(G)H (@,)drdy + [ [uy =iy [ H (@)1~ H(@,)ddy
+ [ 1ty = o[ (L= H@)H (8)dxdy + [ |ty = e [ (1= H ()1~ H(@,))dxcly
+v [ |VH(@) | dedy +v [ | VH(¢,) | dxdy . 4.1)

Where ¢={c,;,Cq.C.Cq } are the constants in each corresponding region, and the
segmented image therefore is a 4—phase image, given by

u=cy H(PH (P)) + ¢, o H(P)A=H(P,)) + ¢, A= H(NH(9,) +coo (1~ H{g )1 - H(9,))

The Euler-Lagrange equations for ¢ and @ can be obtained respectively by

minimizing the energy functional with respect to ¢ and ®. We obtain the equation to

compute the value in each of the four regions as follows,

[ (@) H (9,) dxdy
e, (@)= : (4.22)
LH (@) H (4,) dxdy

o [ waH (000~ H(p,)) dxdy

o ’ (4.2b)
LH (P —H(¢,)) dxdy
(@) LMO(I —H(¢)H(9,) dxdy .
R ’ 2c
[a-H@)H@®,) dudy
[~ H@)(U~ H(9,) dxdy
Coo (q)) = (4‘2(:)

[A-H@)U-H(p,) avdy
The curve evolution equations which are the Euler-Lagrange PDEs for the level set
functions ¢ and ¢ are given by,

9, _

=0 v-(3)
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ety =00 = g — o) JH (@) + (g = €10)* = (g —00)> 1= H ()] } , (43a)

2 stgaly v (52)

w[((uo —'Cu)z “(uo _Cxo)z)H(¢1)+((uo _Cm)z _(uo “000)2)(1" H(¢l ))] } - (4.3b)

Solving the above PDEs (4.3) for ¢, and ¢, we can obtain the evolution of the curves
Ci(#) and Cy(1). The average values ¢y, oo, Ci0, and co; can be calculated from equations
(4.2) for different ¢(x, y, 1) which are determined by the motion of curve Cy(r) (since Ci()
<> ¢(1)). The moving curves will stop at the boundaries of the objects within an image.

Although this algorithm works well and gets better performance than 2-phase
approach for image segmentation, solving the coupled Euler—Lagrange equations (4.3a)
and (4.3b) costs even more CPU time. The direct energy computation method gives a
way to improve the computational speed [85] as we discussed in section 3.1.4 (page 30).

We extend this approach to the 4-phase case as follows.

B. The 4-Phase Direct Energy Computation Method

Using two level set functions ¢; and ¢, we can also extend the direct energy computation
method to the 4-phase segmentation case. When we use two curves, an image domain
can be divided into 4 different regions, let ¢; and ny; be the average value and the number
of pixels in each corresponding region, thus the average value and the number of pixels in

each region can be denoted as follows,

Region “117; {61 >0and ¢, >0}, ¢y, i
Region “10™: {¢1>0and ¢, <0}, cyo, nig;
Region “017: {d1<Oand ¢ >0}, co1,  nou;
Region “00”: {01 <O0and 0 <0}, coo,  n00.
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Assume that a pixel p(x, y) with the intensity value I(x, y) in the region {¢; > 0 and ¢
> 0}, if we move this pixel out of its current region, it will go to one of the other three

regions. So we need to test the energy differences:

n n

AFy g = (106 y) =g ) —2— = (I (x,y) = ¢, ) —"—, (4.42)
oot n, —1

- 2 Ay 2 Ay 4.4b

AFy 6 —(I(an)_Cxo) —(I(x,y)——cu) , (4.4b)
1, +1 n,—1

— 2 n(n 2 72“ .

AF g :(I(x’y)"cm) “([(X’y)_cu) . (4.4c)
ny, +1 ny, —1

Let min(AF) be the minimum of {AF;, 500, AF11510, AF11501}. If min(AF) < 0, then
move the pixel p(x, y) from its current region to the region which produces minimum AF.
This is equivalent to changing the sign of ¢;(x, y) in the pixel’s current region (i = 1, 2) to
the sign of ¢,(x, y) in the region with the minimum AF value. For example, if min(AF) =
AFi1510, then move pixel p(x, y) from region “11” to region “10”. This is equivalent to
changing ¢x(x, y) to —¢o(x, y), and ¢;(x, v) remains unchanged, because in these two
regions ¢i(x, y) has the same value. If min(AF) > 0, the values of ¢;(x, y) remain
unchanged. Changing the sign of ¢,(x, y) in the other regions is done in a similar manner.

For the piecewise constant segmentation approach, we implemented both the Chan—
Vese active contour approach and the direct energy computation method. Both algorithms

give almost the same results for our testing images including synthetic and real medical

images.
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4.1.3 Remarks on the Chan-Vese Active Contour Models

A. The Edge Detection

One attractive feature associated with the Chan—Vese active contour models is that it can
detect contours with or without gradient, for example object with very smooth boundaries
or with discontinuous boundaries [9]. For binary images, the 2-phase segmentation
model discussed in section 3.1.4 is sufficient to get the correct detection of contours. We
show in Fig 4.3 that the edge detection results obtained by using the Chan—Vese active
contour model [9] and the results obtained from other edge detection methods for

COmparisons.

(a) “(b) N (© (d) ) (©)

Fig. 4.3. Edge detection using different approaches. (a) Original image. (b) The Sobel gradient
method. (c¢) The Laplacian method. (d) The Marr and Hildreth method. (e) The active contour

method.

Fig. 4.4 shows an image with very smooth edges, the difference of the intensity values
between the Greek alphabets and the background is only 1 and we cannot even
distinguish the objects from the background with human eyes. The Sobel gradient method
and the Laplacian method cannot detect these edges, although the Marr and Hildreth
method can detect the edges, but the corers are rounded. The active contour model gives
the best performance for the detection of very smooth edges. There we can conclude that

the Chan-Vese piecewise constant active contour model and the direct energy
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computation approach can perform edge detection very well. The direct energy
computation approach is more suitable to apply to edge detection because it is very fast,

easy to implement, and has good performance.

(b) | ©

{(a

Fig. 4.4. Detect very smooth edges. (a) Original images. (b) The Marr and Hildreth method. (c)

The active contour method.

Fig. 4.5. Detection of the contours of galaxies. From left to right, 1% column: Original galaxy
images. 2™ column: The piecewise constant segmentation results. 3™ column: The piecewise
constant segmentation results with the segmenting curves. 4" column: The piecewise smooth

segmentation results with the segmenting curves.
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As already discussed by Chan and Vese in [9], unlike the edge—based active contours
models using the gradient as stopping criteria, the Chan—Vese active contour model does
not have a stopping edge function. Its stopping term is based on the Mumford-Shah
segmentation techniques [3], so it can detect contours without edges. In Fig. 4.5 we use
two galaxy images to show how the Chan—Vese active contour model works for images
without edges. With the 2—phase approach, we can detect only the outer contours of the

galaxies.

B. Problems of the Initial Conditions

It should be noted that the segmentation results obtained by using the Chan—Vese
multiphase segmentation method are initial conditions dependent. In Fig. 4.6, we show an
experimental example obtained by using the Chan—Vese 4—phase segmentation algorithm
with different initial conditions. For the given synthetic image, we get different results of
segmentation from different initial curves. For example, when we use four initial circles
for the synthetic image (see the far left image in the first row), we can obtain the cotrect
segmentations. But we cannot get the correct segmentations when more initial circles are
used. Chan and Vese suggested that multiple initial conditions should be used [4], but we
cannot always obtain correct segmentations by using multiple initial conditions (see the
far right column of Fig. 4.6). So it is a big challenge to find an efficient way to handle
the initial conditions in the Chan—Vese multiphase segmentation model. Another problem
with the Chan—Vese segmentation methods is their computational costs. Because of the
coupling between the curve evolution equations for ¢; and ¢, (see (4.3a) and (4.3b)), the
algorithm is slow, and the final results depend on the choice of the initial curves. The

multiple initial curves technique cannot solve the initial curves dependent problem.
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Fig. 4.6. Segmentations in different initial conditions using Chan—Vese multiphase model. The
first row shows different initial conditions: white curves for ¢, and black curves for ¢,. The

second row contains the corresponding segmentations.

In summary, the Chan—Vese active contour model can detect contours with and
without edges. One problem of the Chan—Vese multiphase segmentation algorithm is that
the computation cost is very high, because it involves solving multiple coupled PDEs for
the curve evolution when multiple level set functions are used. For example in the 4
phase segmentation case, when we solve one of the two level set PDEs (4.3a) for
instance, we need to compute all the four average values in each region using equations
(4.2a)—(4.2d), and the other level set PDE (4.3b) is also involved because it needs the
value of . It is the same situation for solving the level set PDE (4.3b). Another problem
is the initial conditions are difficult to handle, because the two curves evolve

simultaneously when solving the coupled PDEs. The initial condition problem comes
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from the minimization problem of the Mumford-Shah energy functional as we have
mentioned in section 3.1.3. In general the global minimizer of the Mumford-Shah
functional is not unique, we may compute only a local minimum.

In the next section we propose a hierarchical method for multiple phase segmentation

in order to overcome the above shortcomings of the Chan—-Vese model.

4.2 The Hierarchical Multiphase Segmentation Method

In this section we examine how the parameters associated with the energy inside and
outside the contours affect the final segmentation result. Later we present the hierarchical

implementation of multiphase piecewise constant segmentation model.
4.2.1 The Effect of the Weight Parameters

It is well known that using one level set function in the Chan-Vese model we can
segment an image into different regions with two distinct means. If we consider the
parameters associated with the ‘fitting energies’ in the energy functional, (3.14) and

(3.16) can be written as:

Fyecp@)=v | |VH@)pixdy +a [ |uy,—c,[" H(g)dxdy

vy [ Juy—e, | (1= H(g)dxdy, @.5)

9 _

= SOl V-(58)- (- ) + iy (aty — )7, (4.6)

where o and O, are parameters associated with the energy inside and outside the
segmenting curve respectively. Actually, the energy inside (or outside) the curve is the

statistical measurement of an image within the region inside (or outside) the curve. The
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parameters o and 0O, behave as weight factors in the statistical measurement. If o > o,
the energy functional inside the curve is more important than that outside the curve,
therefore we can get more detailed segmentations inside the curve, and vice versa. Fig.
4.7 shows the experimental results for two given images. The first row in Fig. 4.7
presents (a) a synthetic image with one initial curve, (b) the segmented image by
choosing a; = 0 = 1, and (c) the segmented image by choosing o; = 1, 0, = 2. Those
results show that when we use the same weight factors in both regions (04 = o), we can
only detect two objects out of three. If we want to emphasize the region for ¢ < 0 by
choosing the weight factors 0, > ¢/, we can detect all of the three objects with the same
initial curve. Fig. 4.7 (d) shows an original MRI knee stir image with one initial curve,
(e)—(1) are the segmented results of the MRI image obtained by fixing o = 1, and varying
0. It can be seen that we can get more details of the segmented results by increasing the
weight parameter o to a certain limit. When the parameter ¢ becomes too large, some of
details of segmentation are lost (see (h) and (i) of Fig. 4.7).

Using different parameters in different regions allows us to obtain more detailed
segmentations in specific regions. However, we cannot completely segment an image
with multiple distinct means by just increasing certain weight parameters. In order to
obtain detailed segmentations of an image and better performance of the algorithm, we
propose a hierarchical approach of multiphase segmentation which is faster than the

Chan—Vese algorithm. Furthermore, the initial conditions are much easier to handle in the

proposed method.
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Fig. 4.7. Two-phase segmentation results with different parameters o and op. (a) Original
synthetic image with an initial curve. (b) o, = 1, and 0, = 1. (¢) o, = 1, and o, = 2. (d) Original
MRI knee stir image with an initial curve. (e) - (i), 0p = 1. (e) oty = 1. Do =3 (@o=5 (h
oy =10. () oy =20.
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4.2.2 The Hierarchical Method

Using the piecewise smooth representation of the Mumford-Shah model, Tsai et al. have
implemented the active contours model in a hierarchical approach [5]. In this approach,
they first apply the piecewise smooth segmentation and smoothing algorithm which is
described by equations (3.9)—(3.11) to the original image. Then the same algorithm is
applied to the particular sub-regions which require additional segmentation. Since only
one level set function is used in this approach, and it cannot detect in advance which parts
require additional segmentations, therefore this method can only deal with the second
segmentation in an ad-hoc manner rather than systematically and automatically as shown
by our method to be described in this section. Furthermore, solving the Poison equations
(3.9) and (3.10) is very time consuming.

We now present a new hierarchical approach for multiphase piecewise constant
segmentation model using multiple level set functions. This approach works in multiple
segmentation stages, in the first stage, we apply the Chan—Vese piecewise constant
segmentation model with one level set function ¢; to a given image. At the end of the
Jirst segmentation stage, we get fwo resulting sub-regions. Then the second stage starts by
applying the same model with another level set function ¢, to each of the sub-regions
independently. After the second segmentation, we get four resulting sub-sub-regions.
Next we apply the same model with the third level set function ¢5 to each of those sub-
sub-regions, and so on, each segmentation applying to the image automatically. In our
experience most real images require 2 level set functions. A third level set function may

be needed for images with very complicated features.
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We illustrate multiphase hierarchical approach through an example of the 4—phase

segmentation. Like the Chan—Vese model, there are two evolution curves C; and €5,
which are represented by the corresponding level set functions ¢; and ¢,. In the first
segmentation stage, the evolution of curve Cj is governed by the motion equation of the

level set function ¢y:

%?L:(S(%)[V V'(!—g%i') —a, (1, ~chy? +a, (u, ~c’], (“4.7)

where ¢! is the average of ug inside curve C (¢; > 0) and Mis the average of uy outside
curve C (¢ < 0). At the end of the first segmentation stage, we obtain two sub-regions,
defined by {¢1 > 0}, and {¢; < 0}. At the second segmentation stage, we apply the curve
evolution PDE of C, (represented by the level set equation for ¢) to these two sub-

regions separately, therefore for sub-region 7 {¢; > 0} we have the curve evolution PDE:

99,

ot =6(p)lv V- (%c%) = (g =)+ oy (g~ )], (4.8a)

where c[’ is the average of ug in sub-region [ and also inside the curve C, (¢, > 0, 0 > 0)

and cj is the average of ug in sub-region / but outside the curve C; (¢; > 0, ¢, < 0).

For sub-region 17 {¢; < 0} the curve evolution PDE is:

ng—:a(@)[v V(0 - (ny — ') + ety (g — )1, (4.8b)

where ¢' is the average of ug in sub-region II and also inside C; (¢; < 0, ¢ >0) and ¢/

is the average of ug in sub-region /I but outside C, (¢; < 0, 0» < 0). After the second
segmentation, we obtain the final four segments of a given image. Unlike the Chan—Vese

multiphase active contour model [4], [87], in our hierarchical multiphase segmentation
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method, instead of applying the level set functions ¢; and ¢, simultaneously to an image,
we apply these functions one after another. Thus, the motion equation of ¢; (4.8a) and the
motion equations of ¢, (4.8b) are completely decoupled. Each equation alone behaves the
same as the curve evolution PDE in the simple two-phase (one level set function)
segmentation model, therefore it is fast and its initial condition becomes easy to handle.

The direct energy computation approach can be implemented in the exact same way.

Fig. 4.8. Four—phase segmentation using hierarchical method. 1* column: Original images with

the initial curve of ¢,. 2" column: Results after first segmentation (see the white lines) with the

initial curve of ¢,. 3" column: Final segmented images with the segmenting lines.

We illustrate how the proposed hierarchical segmentation method works through an

example, which is shown in Fig. 4.8. The far left column is the original synthetic images
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with the initial curve of ¢ The middle column is the segmented images at the end of the

first stage with the initial curve of ¢, superimposed on them. The right column is the final
segmentations of the two given images which show that the triple and multiple junctions
within the images are detected. From Fig. 4.8 we can see that the first segmentation is
like a coarse segmentation of an image, while the second does more detailed
segmentation. Actually, this hierarchical method starts with a crude segmentation and
refines the segmentation down to the different sub—regions in order to capture finer and
finer details in a given image.

The initial condition i1s easy to handle in the hierarchical method, because curve
evolution PDEs are decoupled. At each segmentation stage, only one curve evolution
equation represented by a single level set function is involved. Therefore, just one level
set function needs to be initialized. In one level set evolution case, we can get sufficient
result by using one single initial curve [9], [85]. In our implementations, we use a single
initial curve for the level set function ¢ at the first segmentation stage to get a crude
segmentation. Although we also use a single curve to initialize ¢, for the second
segmentation stage, the actual initial condition of ¢ is multiple curves because of the
presence of the final stage of ¢;. The edges obtained by the first segmentation (white
curves in the middle column of Fig. 4.8) together with the initial curve of ¢ (the black
curve in the middle column of Fig. 4.8) make the actual initial condition of ¢, which is
optimal, multiple curves.

In this hierarchical approach, edgeé obtained from the first stage together with the
initial curve of the second level set function automatically construct the real initial

condition of the curve evolution equation at the second stage. Edges obtained at the end
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of second stage together with the initial curve of the third level set function construct the
actual initial condition of the curve evolution equation at the third stage, and so on. We
can get sufficient segmentations by using single initial curve for each individual level set
function, as long as the initial curve contains the regions (objects) we want to segment.
Like the Chan—Vese active contour model, the proposed hierarchical approach is
based on the Mumford-Shah energy functional, its stopping criteria comes from the
Mumford-Shah segmentation technique, it can detect contours within an image with or
without edges. Using the same galaxy images as in Fig. 4.5, the 4—phase hierarchical
method produces more detailed segmentations than the 2—phase active contour mode! and

the contour within these images are detected. The final results are shown in Fig. 4.9.

Fig. 4.9. Detection of the contours of galaxy images using the 4—phase hierarchical method. From
left to right, I column: Original galaxy images. 2™ column: The piecewise constant
segmentation results. 3™ column: The piecewise constant segmentation results with the

segmenting curves. 4™ column: The piecewise smooth segmentation results with the segmenting

curves.
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In the next experimental example we use an MRI medical image to demonstrate the
proposed hierarchical segmentation method is more efficient than the Chan—Vese
multiphase segmentation algorithm, the results are given in Fig. 4.10. This figure shows
that the hierarchical method works for v=1, while the Chan—Vese algorithm does not
work properly for v =1, but it tendencies to slow-down the algorithm using big value of
v. The effects of parameter v need more future investigations. We also compared the
machine time for those two algorithms by running our programs on Pentium IV 2.40GHz.
The result shows that our proposed segmentation method is faster than the Chan-Vese

algorithm.

@ ) © ) (e)

Fig. 4.10. Segmentation of an MRI image using the hierarchical and the Chan-Vese algorithms.
(@) Initial conditions for the hierarchical method. (b) Segmented results using the hierarchical
method, v=1, time=0:07min. (c) Initial conditions for the Chan—Vese method. (d) Segmented
results using the Chan—Vese method, v=1, time=0:17min. (e) Segmented results using the Chan—
Vese method, v=300, time=1:07min. Image size: 256 x 256.

As we already mentioned in section 3.1.4, the piecewise constant segmentation
method represents each segment of an image by a constant in each region. The most
general Mumford-Shah segmentation method is the piecewise smooth representation of
an image, which has been addressed in [4], [5], [87]. In order to get better performance
for denoising and segmentation of an image, we propose a new two—step segmentation

and smoothing method in the following chapter.
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Chapter 5
The Two-step Segmentation and Selective

Smoothing Method

This chapter presents the segmentation prior to smoothing method for image
segmentation, denoising, and edge enhancement. This method combines the Mumford—
Shah energy functional based hierarchical segmentation algorithm with the PDE-based
image smoothing and denoising method. This algorithm performs segmentation and
denoising in a unified way and the smoothing process is very similar to the anisotropic
diffusion process. This method gives better denoising resulis for very noisy image than

that given by using the Chan—Vese piecewise smooth active contour model.

5.1 The Mumford-Shah Active Contour Model

The active contour model based on the Mumford-Shah functional actually performs
image segmentation and smoothing simultaneously. As we have discussed in section
3.1.4, the simultaneous image segmentation and smoothing algorithm is obtained by
minimizing the original Mumford-Shah functional [4], [5] with respect to the image
values u,(x, y) in different regions and the active contours C;. For 2—phase segmentation

in which the active contour is represented by one level set function ¢, this algorithm is
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presented by the Euler—Lagrange equations (3.9)-(3.11). The evolution of the active
contour is controlled by (3.11) whereas (3.9) and (3.10) smooth the image data in
different regions. The smoothing process is the linear diffusion within each homogenous
region which is obtained from the segmentation of an image, and the edge is preserved

because smoothing is not across the edges.
5.1.1 Multiphase Piecewise Smooth Model

The piecewise smooth algorithm can also be extended to multiphase case by using more
than one level set function [4], [87]. Like the multiphase piecewise constant approach we
have discussed in chapter 4, using two level set functions ¢; and ¢, we can identify four
different regions (see Fig. 4.2(b)). Let us introduce four functions uy(x, v), uio(x, y),

upi(x, y), and ugolx, y) to represent the value of the image function u(x, y) in each of the

four regions, as follows:

u,(x,y), {9(x,y)>0,and g,(x,y) >0}
ue(x,y), {4(x,y)>0,and ¢,(x,y) <0}
g (X,¥), {9 (x,y) <0, and ¢,(x, y) > 0}
Uy (X, y), {4(x,y) <0,and ¢,(x, y) <0}

w(x, y) =

Using the Heaviside functions H(¢) and H(¢,), we can represent the image function

u(x, y) in terms of the four functions u,1, 4o, oy, and g as,
= H(G)H(P,) +u H (@)L~ H () + 1o (L~ H(NH (@) +ugy(1— H ()1~ H(,)).

Based on these notations, we can obtain the level set formulation of the Mumford—

Shah original energy functional (3.7) for the 4-phase representation of an image domain

as follows,

Fyw.®) = [ [u,~u, [ H@)H (@) dsdy+u [ |Vu, P H$)H(,) dxdy
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o [ty =ty P H(@)A= H(9,) dxdy + gt [ | Vi, [ H(@)A~H(g,)) ddy
+ [ o =uo) [ A= H($DH(8,) dxdy + g [ | Vi [P (1= H(@)H () dxdy
+ [ tg =g [ A= H@ N~ H () dxdy
4[| Vg [ (1= H(@)A~ H (9)) dxdly

#v [ |VH ()| dxdy+v || VH (@,) | dxdy . (5.1)

The last two terms are the approximations of the length term of the curves C; and C.
The active contour (dynamical scheme) of this model can be represented by introducing
the time—dependent level set functions ¢,(x, y, ) and ¢2(x, y, #) which correspond to the
active contours Cy(x, y, ) and Cy(x, y, ¢) respectively. Fixing the time ¢ and minimizing
the energy functional (5.1) with respect to the functions uyi, 10, to1, and ugy, we get the

Euler-Lagrange equations for uyy, u19, g, and wugg as follows,

g = MV Uy, in {¢1 >0 and ¢2 > 0},

9

a“}:o on {¢1=0and ¢, 20} and {¢; =0 and ¢, = 0}; (5.22)
n

Uy — g = UV u,, in{0;>0and ¢, <0},

u
—5}170:0 on {¢1=0and ¢, <0} and {¢; =0 and ¢ =0};  (5.2b)

2

g —uy = 4V uy in {¢; <0 and ¢, > 0},

du,

on

=0 on {¢; =0and ¢, >0} and {¢; <0 and ¢, = 0}; (5.2¢)

Ugy — g = UV uy, in {¢; <0 and ¢, <0},

62



duty,

o =0 on {¢; =0 and ¢, <0} and {¢; £0 and ¢, = 0}. (5.2d)
¥l

The curve evolution PDEs for ¢i(x, y, ) and ¢,(x, y, 1) are obtained by minimizing the

energy functional (5.1) with respect to ¢; and ¢, respectively as follows,

L@l v - ()T~ P H @) -]V H )

~ |y —uy [P A= H($,)) — 2| Vo[ (1~ H(8,))

+|utg — o [P H($y) + 1| Vi, [ H(g,)

+lugy g [P (1= H (@) + 4| Vi L~ H (g, (5.32)
e =500l v V() o P @)~V P H @)

+lug — 1y lz H(¢x)+ﬂlvum|2 H{(g,)

~|ug —uy [P A= H (@) — | Vg,

FU-H(g))

gy =y | (L= H(@))+ pt| Vg, |* (1- H(g, ))J a (5.3h)

The values of the functions w1, ug, g, and ugy, are obtained by solving the PDEs
(5.2a)~(5.2d) for some given curves C; and C,, These PDEs are damped Poisson
equations that can smooth the image data. The evolving of the active contours C; and C,
is governed by the PDEs (5.3a) and (5.3b) respectively. Like the curve evolution PDEs
(4.32) and (4.3b) in the piecewise constant approach, these two PDEs are highly coupled

that makes the algorithm slow and the numerical results depend on the choice of initial

curves.
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5.1.2 Comments on the Piecewise Smooth Model

Although some advantages can be achieved for image segmentation and denoising in this

piecewise smooth approach, such as simultaneous segmentation and smoothing of noisy

images, detection of triple junctions by using multiple level set functions, and smoothing

the images with complex features [4], [5]. However, in this piecewise smooth approach,

there are some disadvantages we would like to address here:

1)

iii)

The capability of denoising is limited because of the damped Poisson equation
used for denoising. Furthermore, because the Poisson equations for u; have the
same form and parameters, the same amount of noise will be removed in the
homogeneous regions divided by the active contours C;. In some applications this
restriction may limit the flexibility of the system.

Since this algorithm performs segmentation and denoising simultaneously, when
the image is very noisy, and noise may destroy some parts of the edges, one may
not be able to obtain correct segmentations and smoothing of the image.
Computation cost is another problem in this algorithm. For 2-phase segmentation
that uses only one level set function, there are three PDEs to be solved ((3.9)-
(3.11)) and solving the curve evolution equation (3.11) involves the other two
equations (3.9) and (3.10) in each iteration step. However, only the solutions of
(3.9) and (3.10) at the final step are the values of the smoothed image. For the 4-
phase segmentation case, since we need to use rwo level set functions, there are
totally six PDEs ((5.2a) —(5.2d) and (5.32)—(5.3b)) needed to be solved. Solving
each curve evolution equation (5.3a) for instance (it is same for solving (5.3b))

involves all the other five equations, because it needs the values of the functions
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Ui, U0, oy, and ugy from (5.2a)-(5.2b) and the value of ¢, from (5.3b). So this
algorithm is not efficient for numerical implementations. Although many speed-up
methods have been proposed in [5], it may not work well in practice when image
size is large and the noise ratio is high.

iv)  Like the Chan—Vese multiphase piecewise constant segmentation approach, if we
apply this piecewise smooth method to multiphase segmentation, because of the
coupling of the level set PDEs (5.3a) and (5.3b), handling the initial condition is

also an important problem.

Based on the hierarchical approach for multiphase image segmentation we have
proposed in chapter 4 and the diffusion equation for image smoothing we have discussed
in chapter 3, we propose a new two-step algorithm that performs image segmentation and
denoising all together but in sequence. At the first step we use the proposed hierarchicai
segmentation approach to find the regions within a given image. Then we apply the
diffusion filter to each homogeneous region independently but not across the boundaries

of such regions.
3.2 The Segmentation Prior to Denoising Method

5.2.1 The Algorithm

The basic idea of our segmentation prior to denoising algorithm is to obtain different sub-
regions within a given image by using the piecewise constant segmentation method first,
then select each sub-region of the original noisy image as the initial condition (input) of

the diffusion equation for the corresponding sub-region. The final reconstruction of an
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image 1s obtained in terms of the combination of the smoothing results in all such sub—

regions. Therefore we can smooth each sub-region separately but not across the edges

between the sub-regions. This algorithm works in the following steps:

1)

2)

3)

Convolve the original noisy tmage u(x, y) with a Gaussian filter (2.10) of standard
deviation o, to obtain the regularized image us(x, y), which makes the edge
detection insensitive to noise at scales smaller than o

Apply the piecewise constant segmentation method to the regularized image uq(x,
y), and partition the 1mage into different regions.

After segmentation of the regularized image us(x, y) in step 2), for example in 2—-
phase segmentation case, us(x, y) is segmented into two regions, one for {¢ > 0},
and another for {¢ < 0}. The result of segmentation in step 2) (i.e. values of ) is
now applied to the original image u(x, y), so that both us(x, y) and u(x, y) have the
same segmentation. Let u'(x, y) be the original image in region for {¢ > 0}, and
ul(x, y) be the original image in region for {¢ < 0}. We then apply the diffusion
filter to the different regions of wu(x, y) independently. In order to solve the
diffusion equations in different regions properly, we need to extend '(x, y) to the
region {¢ <0} and u"(x, y) to the region {¢ > 0}. For instance, to extend «'(x, y) to
the region {¢ < 0}, we can use the average constant approximation of u(x, y) in
region {¢ < 0}. Other extension methods can be found in [4]. Attention must be
paid to the boundaries between the regions. We can use the Neumann boundary
conditions du’(xyfdii=0 or du"(xyfo7=0 (/i is the normal of the curve C) when

we extend u'(x, y) or u'(x, y) across the edges between regions. Therefore the

diffusion does not cross the boundaries of different regions.
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This method is fast since detecting the boundary of the regions only requires updating
the average values inside and outside the active contours. This method is more flexible
since we can choose different diffusion parameters (or different smoothing methods) for
different sub-regions depending on the applications. It can process very noisy images
without difficulties. This may be useful in applications such as medical image
segmentation and smoothing. The previous piecewise smooth algorithm [4], [5], [87]
gives poor results for very noisy images.

We use the signal-to-noise ratio (SNR) to estimate the quality (or the amount of noise)
of the image u(x, y) with respect to a reference image (usually the ‘clear’ image) uo(x, v).

It is defined by [88]:

2
SNR = IOIOgm(Ez—%%) , (5.4)
0

-1 n—1

where ¢ is the variance. For the size of mxn images, o (u)= 9 E lu(i, H|>, and
ez
=0 j=0

m—=1 n-1

oy —u)= ZZ] uy (i, j)—u(i, j)|* . SNR is usually expressed in dB (decibel).

i=0 j=0
5.2.2 Regularizations

An important improvement of the PDE-based filtering theory has been introduced by
Malik and Perona [15], they replace the heat equation (3.18) by a nonlinear partial

differential equation of the porous medium type:

du

—é?=V~(g(l Vu|)\Vu), u(x, y,t =0) = u,(x,y), (5.5)

where g(|Vu]) is a scalar smooth function with the properties we addressed in section

3.2.1. As already pointed out by Catte et al. in [16], the Malik and Perona model has
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several serious practical and theoretical problems. In practice, although this model
performs nonlinear diffusion it cannot eliminate noise at the edges. Equation (5.5) itself

also poses difficulties because there is no theory to address existence and uniqueness of

the solution for the functions of the type g(|Vul) :exp(—[Vu |2//12), or
g( V) =1/(1+|VuP/ 2}, where A is a constant. Two regularization approaches have

been proposed to overcome these difficulties, one approach was proposed by Catte et al.
[16] through the regularization of the function g(|Vu|) in equation (5.5). Thus the
modification of the Malik and Perona model is only to replace the gradient |Vu| by its
regularized version [V(Ks*u)|, where K is a Gaussian filter. The other approach proposed
by Weickert [21], [25] uses regularized nonlinear anisotropic diffusion filters which use a
diffusion tensor instead of a scalar diffusivity function. Regularization is widely used in
PDE-based filtering including anisotropic diffusion {24]-[25]. This is the motivation for
performing regularization by convolving a Gaussian filter with the original noisy image
in the first step of our proposed denoising algorithm.

Under the framework of the proposed algorithm, we can get the proper sub-regions of
a noisy image by applying the hierarchical segmentation algorithm to the regularized
image. After that we apply the appropriate filters to the resulting sub—regions to obtain
the smooth version of the given image. In general, we can apply any kind of smoothing
algorithm to the different homogeneous sub-regions independently. In this thesis, we use
the linear diffusion filter defined by (3.18) with a scalar constant diffusivity D under the
Neumann boundary conditions. The numerical implementation techniques for solving this

type of diffusion PDE can be found in the appendix.
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In the first example of this chapter, we demonstrated that performing the
regularization of the noisy image before segmentation and smoothing can get better
results than without regularization. The regularization process is important especially for
very noisy images. Using a synthetic image and a MRI brain image as examples, we
show in Fig. 5.1 different results obtained by employing our two—step segmentation and
smoothing method with and without regularization of the noisy images. We use the
signal-to-noise ratio SNR to measure the amount of noise in the noisy images, the higher
the signal-to-noise ratio SNR the lower the amount of noise by definition (5.4). The
images with additive Gaussian noise are shown in the 2% column of Fig 5.1, for the
binary synthetic image (first row) SNR = 6.89, and SNR = 9.20 for the medical image
(second row). Fig. 5.1 shows that the denoising results using regularized images (fourth

column) are better than that using the noisy images without regularization (third column).

Fig. 5.1. The denoising results with and without regularization. From left to right, 1% column:

Original images. 2™ column: Images with Gaussian noise. 3 column: Smoothing results without

regularization. 4™ column: Smoothing results with the regularized images.
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5.2.3 Comparison with the Chan and Vese Piecewise Smooth Model

The Chan—Vese piecewise smooth active contour model [4], [87] and the similar
approach developed by Tsai, Yezzi and Willsky [5] perform image smoothing and
segmentation simultaneously, the smoothing process governed by the damped Poisson
equations (for 2—phase (3.9) and (3.10), whereas (5.2a)-(5.2d) for 4—phase case). Besides
the computing costs and the initialization problem, this model cannot give good
denoising results for very noisy images. Our hierarchical segmentation approach
presented in chapter 4 can overcome both the computing costs and the initialization
problem. Furthermore, since we use the diffusion PDEs instead of the damped Poisson
equations to handle the denoising problem, our method can handle very noisy images.

In Fig. 5.2, for comparison, we show the segmentation and denoising results obtained
by using the piecewise smooth active contour model developed by Chan and Vese [4],
and our proposed method. For an image with small amount of noise (a) (SNR = 16.29
dB), the smoothing image (b) obtained by using the piecewise smooth algorithm [4], [5]
is acceptable. If the image is very noisy (d) (SNR = 2.69 dBj, the smoothed image (e)
obtained by using the Chan—Vese piecewise smooth approach is not as good as desired.
Fig. 5.2(h) is the results of the linear isotropic diffusion filtering. The edges of the objects
within the image get very blurred when noise is removed. The smoothing results (¢ and f)
obtained by using our proposed two—step segmentation and smoothing method are better
than that of the Chan and Vese piecewise smooth model. Unlike the isotropic diffusion
that smoothes the whole image in the same way and the edges between regions within the
image are also affected. Our algorithm first segments a given image into sub-regions,

then the diffusion equation is applied within each sub-region but not across the edges,
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therefore the edges are preserved. This is very similar to the smoothing process in
anisotropic diffusion [17], [21], [25], and our smoothing result (f) is similar to the

smoothing result (i) using Weickert’s anisotropic diffusion algorithm [21], [25].

@ @

Fig. 5.2. Segmentation and smoothing of noisy synthetic images using different approaches. (a)

and (d): Original noisy images. (b) and (e): Reconstructions by Chan—Vese piecewise smooth
approach. (c) and (f) Reconstructions by our proposed approach. (g) Original clean image. (h)
Reconstruction of image (d) by linear diffusion filtering. (i) Smoothed image obtained by

Weickert's anisotropic diffusion {21].
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5.24 Edge Enhancement

As we have already mentioned, the proposed segmentation and smoothing method which
adapts itself in an anisotropic way to the evolving image, is well suited for smoothing
noise while simultaneously preserving important features such as edges. This
charactenistic may be important in medical image processing.

In recent years, many new imaging techniques such as Magnetic Resonance Imaging
(MRI), x-ray, x-ray tomography, ultrasound imaging, Computed Tomography (CT), etc.
have been widely used in modern biomedical research and practice [77], [83], [84], [89]-
[91]. In medical image processing, segmentation is an objective measurement of an
anatomical structure location represented by some set of contours, boundaries, or shapes.
These boundaries between anatomical structures can be very useful for diagnosing
diseases and tumor detection. Our segmentation prior to smoothing method can perform
segmentation, denoising, and edge enhancement in a unified way which may meet the
requirements of medical image processing. Furthermore, this level set based approach
can also be extended to 3D image processing [92], [93] without difficulties.

In Fig. 5.3, we show an example where a smoothing and edge enhancing process has
been applied to a MRI brain image. The result obtained by using our proposed method is
shown in (d). Compared with the result using the edge enhancing anisotropic diffusion
filter developed by Weickert [24] which is shown in (b), the proposed method gives
better edge enhancing results. We attribute this to the fact that the edge detection is not
based on the gradient of the image in our method. Fig. 5.3(c) shows the segmenting

curves superimposed on the resulting image.
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{c) {d)

Fig. 5.3. Smooth and edge-enhancement of a medical image. (a) Slice of an MRI image. (b) After
anisotropic edge-enhancing diffusion filtering by Weickert [24]. (c) After segmentation and
smoothing, segmenting curves (black curves) are superimposed on the image. (d) Final result

after segmentation and smoothing of the image.
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Chapter 6

Experimental Results

We present in this chapter the segmentation results of the images without noise using our
hierarchical segmentation method, followed by the segmentation and smoothing results
of the proposed two-step segmentation and smoothing algorithm for noisy images. The
proposed method has high performance for image segmentation, denoising, and edge

enhancement.

6.1 Segmentation Results

Since the energy functional which is minimized in the Mumford-Shah model is not
convex; the segmentation algorithm may not converge to a global minimum for some
given initial conditions. As we have shown in Fig. 4.6, it is difficult to handle the initial
conditions in the Chan-Vese multiphase active contour model [4]. In the following
examples we show that it is easy to handle the initial conditions in our hierarchical
segmentation method because we decouple the curve evolution PDEs (4.3). In Fig. 6.1
we present the segmentation results for a synthetic image and a real x—ray hand image
with different initial curves. The synthetic image is the same image used in Fig.4.6. The
detected edges are superimposed on top of the resulting segmented images. For a given
image, all those different initial curves give the same segmentation results. Our

observation is that, as long as the initial curve contains (or partially contains) the regions
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we want to detect, we can obtain the same segmentation results regardless of the
positions and sizes of the initial curves. Therefore the problem of choosing the initial
curves becomes easy to handle. We have also compared the computational time spent in
the hierarchical and the Chan—Vese algorithms, and the machine we used is Pentium IV

2.40GHz.

Fig. 6.1. Segmentation results with different initial conditions. 1* and 2™ rows are the results of
our hierarchical method: different initial conditions (white curves for ¢; while black curves for
¢2) give the same segmentation result (images in the far right column are the segmented results).
The third row shows different initial conditions used in the Chan—Vese algorithm, and the last
row contains the corresponding segmentation results. The average machine time: synthetic image,
hierarchical method: 0:04min, Chan-Vese: 1:10min. x-ray image, hierarchical method: 0:24min,

Chan-Vese: 1:48min, image size: 256 x 256.

75



In the next example, we demonstrate how the proposed hierarchical segmentation
method works for real medical images, and we also show the results at the middle stage
of the algorithm. The segmentation results of different medical images with multiple
distinct regions are shown in Fig. 6.2. For comparison, we present the results obtained for
the first stage segmentation (using one level set function ¢;) and the final stage (using
two level set functions ¢; and ¢,). The left column in Fig. 6.2 contains the original
images, which are MRI chest, knee, and brain from top to bottom, and the initial curves
of ¢; and ¢, superimposed on them. The middie column is the results obtained after the
first segmenting stage with the piecewise smooth approximation. Although the
segmented results show all parts of the images using the piecewise smooth
representation, they are actually only two regions divided by the active contour
associated with the level set function ¢;. In order to get details within each region, we
should go to the next stage where the second level set function ¢, is involved into the
algorithm. The right column of Fig. 6.2 contains the results of the piecewise smooth
segmentation in this stage which is the final stage of the 4-phase case. It can be seen that
the final stage with two level set functions ¢; and ¢, given more detailed segmentations
than the first stage with only one level set function ¢;. In our experimental experience, we
can obtain sufficient segmentation results with two level set functions for most real

images. For some images with very complicate features or some special type of images,

the third level set function may be needed.
This experimental result shows that with this simple choice of initial curves in the 4—

phase hierarchical segmentation approach, we can obtain good segmentation results for

real medical images.
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Fig. 6.2. Segmentation of MRI images. Left column: Original images with initial curves, white
curves for ¢, while black curves for ¢,. Middle column: Results after the first step segmentation
while only level set function ¢, involved. Right column: Final segmentations by using two level

set functions ¢; and ¢,.
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6.2 Segmentation and Smoothing Results

We now demonstrate how the proposed two—step segmentation and smoothing algorithm
works for the noisy images. Both synthetic images and real medical images with additive
Gaussian noise are used in our experiments.

The segmentation and denoising result of a noisy synthetic image with multiple
distinct means is shown in Fig. 6.3. In this case, in order to obtain better performance,

two level set functions are needed.

(&} (b} {c}

Fig. 6.3. Segmentation and smoothing of a very noisy synthetic image. (a) Image with Gaussian
noise (SNR = 10.49 dB). (b) Reconstructed image using the proposed method with 1 level set

function. (c) Reconstructed image using the proposed method with 2 level set functions.

For comparisons, we present the denoising result by using one level set function (after
the first segmentation stage) in Fig. 6.3(b). We get two regions of the image at that stage:
one region is the black triangle, while the white rectangle and the background are
assigned to another region. Then we apply our smooth procedure that behaves as an
isotropic diffusion in each homogenous region. Since the triangle and the background

belong to different regions, the edges of the triangle are preserved as we expected. But
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the edges of the rectangle are blurred because it belongs to the same region of the
background and diffusion in this region is isotropic. Fig. 6.3(c) shows the result by using
two level set functions. Since two different objects and the background are in three
different regions and diffusion filtering is applied to each region separately, therefore all
edges of the objects are preserved. This experimental result shows that although the
algorithm performs linear isotropic diffusion within each homogenous region, the
denoising effect for the whole image is similar to anisotropic diffusion filtering.

Medical image segmentation and denoising is an important problem in image
processing. In the next experimental example, we demonstrate how the hicrarchical
multiphase segmentation method is used in the implementation of our selective
smoothing algorithm for the segmentation and reconstruction of real medical images. In
Fig. 6.4, we present three MRI images with additive Gaussian noise, which are chest,
brain and knee from top to bottom in the left column, and the denoised results by using
our two-step smoothing method. The segmentation and reconstruction of real MRI
images are shown in the middle column. The last column contains the final resulting
images with the segmenting curves superimposed on them. It should be noted that the
proposed algorithm removes noise very well and preserves and enhances the edges of
different regions.

In the last example, we demonstrate how the proposed hierarchical segmentation and
selective smoothing method works for a real MRI knee stir image. The original image is
shown in Fig. 6.5(a) with initial curves for 01 and ¢,. Fig. 6.5(e) shows the final
reconstruction of the image and the segmenting curves superimposed on it. It can be seen

from this resulting image some details within the image, such as the white stripe in the
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upper part and two small round white matters in the lower part which can not be detected

by the Chan—Vese method or our method with oy/0 = 1.

Fig. 6.4. Segmentation and smoothing of noisy MRI images. Left column: Original image with
Gaussian noise (SNR = 11.06, 10.72, 10.68 dB, from top to bottom). Middle column: Final
segmented and reconstructed image based on the proposed method with 2 level set functions.

Right column: Segmenting curves are superimposed on final reconstructed images
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Fig. 6.5. Segmentation and smoothing of real MRI knee stir image. (a) Original image with
initial curves, white curve for ¢; and black curve for ¢.. (b) and (c) First stage smoothed images
with different ratio of ou/an; (b) aw/on = 1, (¢) oo, = 3. (d) Final reconstructed image (/o =
3). () and (f) Final segmented and reconstructed image with segmenting curves; (e) o,/o, = 1, (f)

OC]/O(Q =3.

In order to get more details within the region of interest, as discussed in Fig. 4.7 we
can choose different values of the weight parameters oy and o, in the first segmentation
stage. It is easy to specify the parameter with a simple single initial curve at the firss
stage. For example, for the initial (white) curve as shown in fig. 6.5(a), we can get more
details inside the curve by choosing o > ci. Fig. 6.5(d) shows the final segmentation and

reconstruction with the choice of oy/a, = 3. Fig. 6.5(f) shows the same result of Fig.
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6.5(d) with the segmenting curves superimposed. We also present the first stage results in
(b) and (c) for comparison.

These figures demonstrate that our segmentation and smoothing method provides
better details in different regions, relatively enhances the edges between regions, and

highlights the regions of interest.
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Chapter 7

Conclusions and Future Work

In this thesis we have proposed and implemented a new image segmentation and
smoothing algorithm based on the Chan-Vese active contour model and PDE-based
diffusion techniques. The level set method is employed in our numerical
implementations. This algorithm works in two steps, first segments the regularized image
by using hierarchical piecewise constant segmentation method, then using PDE-based
diffusion method smoothes and denoises each segmented region of the original image
separately but not across the boundaries.

Because of the coupling of different curve evolution PDEs associated with different
level set functions in the Chan—Vese multiphase segmentation algorithm, the
initialization of the level set functions becomes a difficult problem. The proposed
hierarchical approach decouples the curve evolution PDEs, makes the initialization
problem easy to handle, and also speeds up the algorithm.

Compared with the previous simultaneous segmentation and smoothing methods [4],
[5], the proposed method is more efficient and flexible. Firstly, we separate the
segmentation and smoothing processes, and use hierarchical piecewise constant
segmentation algorithm in the segmentation process. Therefore it improves the
computational speed drastically and makes the initial condition easy to handle. Secondly,

since we use the regularized image obtained by convolving the original noisy image with
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a Gaussian filter, edge detection is not sensitive to noise. Thus we can obtain better
segmentation of noisy images. Finally, the proposed method allows us to apply different
smoothing algorithms in different regions in an image, so it is very convenient when the
applications need to highlight some special regions in an image. For example, the inverse
diffusion technique [94] can be implemented in our method for edge enhancement. Like
anisotropic diffusion methods, the proposed algorithm only smoothes the image within
the homogeneous regions but not across the boundaries, thus edges are preserved during
the denoising process. The proposed method can process very noisy image with good
performance. Our experimental results show that for very noisy images we can still detect
the objects and preserve the boundaries of the objects within the image when we remove
noise. Actually, this model can perform active contours, denoising, segmentation and
edge detection in a unified way.

The segmentation and smoothing method proposed in this thesis can be extended in
several directions. One direction is to develop the application specific smoothing
algorithms for the purpose of denoising. Since our image segmentation and smoothing
method provides a very convenient way for choice of the smoothing algorithm, it is
interesting to investigate different kinds of the denoising algorithms that can be used for
different purposes of application, for example, the image denoising algorithms using
wavelet transformation [88], [95], [96]. The wavelet—based denoising algorithms are very
different in technique from the PDE denoising methods, but quite close in spirit and
experimental resulis. Very recently Mrazek et al. studied the connections between the
nonlinear diffusion and shift-invariant wavelet shrinkage in one-dimensional case [97].

We may use wavelet based denoising algorithm in our two-step segmentation and
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smoothing method for the purpose of dencising. Since the proposed algorithm is based on
the level set methods, it can be easily extended to solve the image processing problems in
higher dimensional space [92]-[94]. Therefore, another direction is to extend our
segmentation and smoothing method to three~dimensional image segmentation and

smoothing applications, especially for medical image processing.
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Appendix

Numerical Techniques

This chapter concerns the problem of solving numerically the partial differential
equations that we have encountered in this thesis. The main numerical techniques have
been used in our implementations are the finite difference methods [37], [98] for the 2—
dimensional parabolic type partial differential equations. The initial and boundary
conditions are also considered. Although other kinds of numerical techniques (e.g. finite
elements) can be considered, the finite difference methods gain great success in image
analysis because the structure of the digital images provide a natural regular grid for
discretization. This chapter is an introduction to the two commonly used finite difference
methods, namely Forward Time Centered Space (FTCS) and the Alternating Directional
Implicit (ADI) which are used in the numerical implementations of this thesis.

The prototypical parabolic equation is the diffusion equation, the general form of the

diffusion equation in two—dimensional spatial space is,

%fl‘_. =V (kCx, y)Vu) + f(x, y,1)

where « is the diffusion coefficient, and f(x, y, ¢) is the source term. The level set
equations belong to the category of parabolic equation, so we can use the numerical

techniques developed for the diffusion equation for solving the level set equations

associated with the curves evolution.
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A.1 Finite Difference Numerical Algorithms for the Diffusion
Equation

Consider the diffusion equation in 2—dimensional space,

=k, tuy) 0<x<L,0<y<L, (A.1)
wloo=0, u |, =0, u,],,=0, u/|._ L, =0 (Boundary conditions)
1(x, y,0) =u,(x, ), (Initial condition)

When we solve this equation using the finite difference approximation in image
processing, it is natural to associate an image with a uniform grid. The grid spacing in
the x and y directions is usually chosen equal to Ax = Ay = h. Let Ar be the timestep, (x;,
yj) = (ih, jh), and u/, =u(x,,y,,nAr), while i =0, 1, .., M, -1,j=0,1, ..., M, -1,

Equation (A.1) can be differenced in the obvious way,

bl n
Lii,‘ ““ui/-_ k [ ( " T + n )+( N, P + n ) ] A )
e Uipy =28y Tty J W — 20 g )| (A2

3

At k-

This is explicit FTCS scheme which is first order in time and second order in space,

and it is conditionally stable. The stability criterion is

hl
Ar< (A.3)
4k

The Crank-Nicholson scheme that is second-order accurate in time allows large
timestep. If we consider the spatial derivatives on the right-hand side of (A.2) as

evaluated at timestep n +1, we get the implicit (or backward in time) scheme as,

n+l n
Wy —uy _/_C[ (unH

n+l n+l n+l n+l n+l ]
iy 2ug +ui‘,j)+(ul‘./.+1 - 2%- +L£l../;l) . (A4

At h?
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The Crank—Nicholson scheme can be obtained from the average of the explicit and

implicit FTCS scheme as,

n+l 7

Uy A; by _ 2(1;;)2 [(ul':lj —2u;+1 +u[’:‘j)+(um} 2u +u 11)]
+~2—(—§))7[<u33 2un+1 +u;z+11)+( Lo — 2ug g 1)] (A.5)

This scheme is unconditionally stable for linear problems. However, the coefficient
matrix needs to be strictly row diagonally dominant and block tridiagonal if we use the
natural row ordering. The other problem in this scheme arises in solving the coupled
linear equations.

The alternating directional implicit (ADI) scheme uses a slight different way of
generalizing the Crank—Nicholson algorithm, it is still second order in time and space and
unconditionally stable for linear problems. The idea is to use implicit discretization in
one direction while using explicit in another direction and divide each timestep 4z into
two steps of size (half-timestep) 41/2. The advantages of this method is that each half—

step requires only the solution of a simple tridiagonal system, therefore the equations are

easier to solve than (A.5) in the Crank—Nicholson scheme. The ADI scheme is,

it n 1 1 .
uij “ —uij k At rH-— s k )
AL/2 = Ax’ Uy —2u,; *+u +~——~Ay2( e — U U (A.6a)
n+l n+—2- 1 1 1
., —u; k A et nt— k
N2 ar ( -2y ? 1,]+ gt -2 ), (A.6b)
e ) y
. . kAt kAt
Using the notations r, =—, r, EXy_Z.; 53 =u y ..Qu "t " 53 =y u+1 _zun +u N

Equations (A.6a) and (A.6b) can be written as,

100



1
(1_i§zj M" 2 (14_5’_52j ut, (A.6a)
2 X i Yy )

1
r r a+— ,
=262 | u'=1+28 | u 2, (A.6b)

2 ¥ i 2 x i

This method works in two steps: at the first step we use (A.6a)” to get the result at the
il .
first half-timestep u,, * (from the initial conditions we know u7 ), the second step is to get
i i1 i , n+; .

the solution of the second half-timestep u;" by using (A.6b)" and u, *. The process is

iterated for each time step.

Step 1) solve equation (A.6a)

Rewrite (A.6a) as,
i
Foonts n+-; r. n+; r’"y . rz ry “ i
- —Zj‘—uwg + (1 +ru, - —;—LtH; :Euw (=7 u; + _Eu’j"l (A.6a)

Since we know «” from the initial condition, the right hand side of (A.6a)" is constant,
g

denote by r,. To write the scheme (A.6a)” in matrix form, we must first consider how to

write our vector of solution values. We choose one of the most obvious orderings and set

T
7t g n - e n n . . a n “ e n
u = (’“‘007 sUpg 00 Mo, My gy qule),~1) .

We must realize that the indices started here at 0 and ended at M,~1 and M,~1 because
we use the Neumann boundary condition at second order (we will discuss the boundary
condition in section A.3). This is different from the Dirichlet boundary conditions. For

Dirichlet boundary conditions, the indices started at 1 and ended at M,-2 and M,-2,

because the values with indices of 0, M~1 and M,—1 are not needed.
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For each j we have M, algebraic equations for i = 0, ..., M1 from (A.6a)” using a
Neumann boundary condition at x = 0 and x = L,. The algebraic equations can be written

in the matrix—vector form as follows,

n+if2
l+r, —r 0 0 Uy, To;
¥ v n+if2
- 1+r, —-= 0 1j {v
2 2 /2
Uy LY
r, ¥, J “J
0 '“——2— I+ r —"i‘
¥, I8
_ _ ' n+lf2
L+r, 5 || 2 -2
n+l/2 e
—-r. 1+ T, Wy o1 M1

the elements in blank place of the M, xM, matrix are zero. This equation can be written in

an equivalent vector form as,

1
nt—

Bii, »=F A7y

i
+

-
It 1s a tridiagonal system of algebraic equations for & ;1. Matrix B and vector 7, are

H
known, thus we can use the Gaussian elimination method to obtain i ; 2,

With j running from 0 to M,~1, (A.6a)” becomes a diagonal system of equations as

follows,
—n+1/2 e
B © ”_;';)/ =0
@ B ﬁ}l;l/Z i—";-:[
5 o= T, (A.8)
B ﬁ;:iﬁ% ;:jsMyﬂ

where © is a M xM, matrix with all elemeats are zero. Solving the system of equations

—a+lf2 —n+1/2

(A8)wegeti, ', ..., Uy~ Which is equivalent to solving M, systems of (A.7).
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Step 2) solve equation (A.6b)
Similar to the procedures in step 1), we rewrite (A.6b)" as follows,

1
nt—

n+l 2

i+l

1
nt— -
2 2

i+
+(1- rx)uij :

n+l rx

¥ r
¥ ntt Ty Tx

——=uy, + 1+ Uy =—=u, iy
2 2 2

r\[
+2u 2
2

(A.6b)”

This time fixed i first, we can get a tridiagonal system of algebra equations for ﬁf” from

(A.6b)” similar to (A.7) as follows,

— n+l
I+, r, 0 0 u
7, r, n+l
- l+r, == 0 Uy
2 2 n+l
r. r i
0 -2 1+r, -2
2 ’ 2
v, +1
2 i+l"y —_2 ui’;%rz
ekl
—r, l+r, ) | M

and the equivalent form,

atl o
Qu —=r,

¥

zM_‘fZ

Mt

; (A.9)

(A9Y

where r," is the right hand side of (A.6b)” which takes the solutions from step 1). 0 is a

M, xM, matrix similar to matrix B. The final solutions of u;“can be obtained by solving

the following whole system of equations,

-+l =1

Q © Uig Fizo
8 0 l_ii':l F
o =

Q ﬂ'in:;}{xq r i 1
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A.2 Numerical Techniques for the Curve Evolution with the

Level Set Method

In this section we discuss the discretization of the level set PDEs governing the curve
evolution using the finite difference method. We use the following finite difference

notations for the level set function ¢:

. . x ¢i, 1,'—¢i-,‘
A~¢i,j - ¢i,j .._¢[_Lj; A+¢i,j :¢l+l,j _¢i,j; A ¢i,_/ = = ? = ’

¢1,_/+1 - ¢i,j—-l

Ay—¢)i,j = ‘ij,j E¢’i‘jvl; A)’+¢i,j = in —¢i,j ; Ay¢l\] = 7

The curvature term K that plays an important role in the level set PDEs (for example

(2.7), and (4.6) etc.) can be approximated by [31],

V[EJL(LJ _1(__?__] | (A1)

IVol) axl|Vel), ayl|vel),

where, ¢, :J—A"+ i (_(/}‘_) L A‘“_[ . J and there are same formulae for y.
av Vel Ax Ve

Thus,

v (Y L e ) (4 (e (o
: V(;vmlj Ax{(wm),., [:vmji_l.,}Ayﬁwml, (IWIJLJ a1

With this discrete method applied to the curvature term K we can approximate the
curve evolution level set PDEs by using different finite difference schemes (for example
FTCS and ADI). The FTCS method was used in the implementations of Chan and Vese’s
works [4], [9] we use both FTCS and ADI methods in our numerical implementations of

the thesis. In order to get stable solutions in the FTCS method we need to use a small
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timestep. For the ADI method we can use larger timestep because the solution is

unconditionally stable.
A.2.1 The Forward Time Centered Space (FTCS) Method

Let us use the level set PDE (4.0) as an example to describe this numerical approximation
method. Following the finite difference schemes discussed above, the discretization of

(4.6) can be obtained as,

g A g Agr,
&t =5(¢,;7)[—'% e e 2
\/;L?(A+ !j/') +E‘2715'2‘(A) Q-) \/E?(AF(/)H/') +(2h)2 (A‘ ¢H/>
) ng; ) N,
I e, Lo o 1 v Vo L fa o B
\/‘/(211.)2 (A ¢1) + F(ATQ/) J(zh)l (A qjtj*l) + h’ (A*r@jfl)
- (”0.5; "Cx(q)};’w)"l”az(”‘o‘,,‘ —Cz(@i;)) ] . (A.13)

After doing some algebraic calculations, the solution of the level set equation (4.6) can

be written as,

"+ 1 n n n H 3
¢;‘j ' :E {Q, + m(Cﬁém; + C2¢i—ij + C3¢i/+1 + C4¢ij—1)

+ A0 e,y — )+ 0y (g, ~ ) ] , (A.14)

- and the coefficients

where, C= 1+m(Cy+Cr+C3+Cy), m:ézl—(f(qb,;’)v, I(x) :—1—
h ‘ TE +x

Cy, Gy, (3, and C4 can be expressed as follows,
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i 1
Cl - 3 CZ: 9

z n i 2 1 i 2 s n 2
¢1n+u - ‘727 + ¢q+1 - ¢l;,'-1 4/7[,' B ¢i—lj 4 ¢i—lj+1 B (Z)ivlj—l
h 2h h 2h

I
C, = - C,=

2 2 ’ + a n
¢i"+1j - i'iu " P ”Q:;; Pyt ~ ¢ 1j-1 ¢zz ¢u 1
2h h 2h h

A.2.2 The Alternating Directional Implicit (ADI) Method

As has been discussed in the last section, the ADI method works in two steps, at the first
half timestep A#/2 (from n to n+-;), we do the discretization of (4.6) implicitly in x

whereas explicitly in y, thus we have,

1
At

%’ ’ '¢u1
Arl2

I2+

SCATHCN G - C NG )

llj

:gﬁ)L(0N¢

=g,y — e @)+ g, — 9] ] (A.15)

where C, (b, C5, and Cy are the same coefficients as we have defined in section A2 1.

VAL of n VAL ; VAL . VAL ,
Let r, = 2 5(%) G, ro= 3 5(%) C,, =03 5(¢z‘j> G, fi2 :“‘2—5(%) C,,
h h h h
equation (A.15) becomes,
v n+ l +F errl r n*l»l
x1 X x2 A
— 5 P F 3 0] = Ry (A.16)

where,

R, =g +0-" “)«zj ¢>,-;t]+A’5(¢;)[—al(uo.f,~c]<¢;>)+ag(uo,i,-*cm;))]‘

2 2
Using the procedures as discussed in section A.l and the Neumann boundary

conditions
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§—¢—-0 forx =0, and x = L, and B{ﬂ

=0 fory =0, and y = L,, we can get the solution
ox dy

of ¢;+5 by solving the resulting tridiagonal system of algebraic equations.

For the second half timestep (from n+% to n+l1), we do the discretization of (4.6)

explicitly in x and implicitly in y, thus we have,

¢»l.’7+1_¢i'_1+3 NEOTTE I 7% o onel e . .
Tz"jm:é(ﬁ') HCAYT - O+ C g —CNg)

— iy — () + g, — 0 ] (A.17)

Using the same notations, we can write (A.17) as,

v, .
_ :\)l ¢l:;1:ll (1+ )’1 )7 )¢n+l 2 ;jll — RIU i (A18)
where,
¥ 1 L I" -
v 'xl 1 12 2 2
R, = é 'H/ (1~~\ e W,, i B H;

+—A;)E§(¢;H/2) [“ax(uo,,j —CI(Q;‘L[/z))-!— ()lz(uo iy C7(¢ln+1/7 )]

F

Similarly, we can get the final solution of (Zﬁl.;’“.

A.3 The Neumann boundary conditions

For the two dimensional partial differential equation, assume that the system we want to
solve bounded in0<x <[, 0<y< L,, the Neumann boundary conditions in our case can

be expressed as,

¢.0,3.0=0, ¢.(L,,y.0)=0, ¢, (x0,0)=0, ¢,(0,L,,1)=0 (A.19)
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To approximate the Neumann boundary condition in a manner consistent with our

difference scheme, we derive a second order approximation. If we apply the centered

difference @ﬂ = Mii at the boundary, the difference operator reaches out of the
ox 2Ax
region. For this reason, we place a ghost point, x.; = —Ax, outside the region, and

approximate the boundary condition by

A+l an+l

e 9 (A.20)
2Ax

This is the second order approximation of the boundary at x = 0. For the boundaries at
other lines, we can get the condition equations similar to (A.20). We then use these

Neumann boundary condition equations to eliminate the terms ¢, , ¢y, e 08y

that contain the ghost points.

In the FTCS approach, the boundary condition is very easy to handle. We will give a
short discussion of the implementation of the Neumann boundary conditions for the ADI
scheme. For the curve evolution level set PDE (4.6), the numerical solution involves
solving equations (A.16) and (A.18). Let us examine how the Neumann boundary
condition affects the equation (A.16) and (A.18) respectively.

Equation (A.16)

Since the left hand side (LHS) of (A.16) only has differences in the x direction, and the
right hand side (RHS) of (A.16) contains only differences in the y direction, so the
Neumann boundary condition at x = 0, and x = L, will affect the left hand side only,
whereas the Neumann boundary condition at y = 0, and y = L, affects only the right hand

side. Therefore, for the left hand side of (A.16) we have,
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1
nt—

t
wt— |
ifi=0(x=0), LHS :[1+%<rxl t7a )J &y, ? "”2‘(’}1 + r_x.-z) @, :,

1 n+% 1 =
if i =M—1 (x=Ly), LHS = -E(rxl + rxz)qf’/wxizj + ljl +5(rx1 T )} (/)Mﬁlj-

For the right hand side of (A.16) we know,

if j =0 (y = 0),
RHS = i ;"yz o)+~ n ‘*2"}2 )i +'42‘[§(‘7)in > [— 24 (uo,n -G (Q%))"" @, (uo,io -G (¢z’(l)))} ,

ifj =M,~1(y = L),

Pl + Fia [ Ty + Fya n
RHS = _“—’)-_Q)iM - + (1 ———)}—2—20)¢in~1

+ ‘Az_té‘(¢,z,v —1) [“ a (I’lO,iM",vl -G )‘L &, (Lt()A,iMy 176 )} .

Equation (A.18)

Since the left hand side of (A.18) only has differences in the y direction, and the right
hand side of (A.18) contains only differences in the x direction, so the Neumann
boundary condition at y = 0, and y = L, will affect the left hand side only, whereas the
Neumann boundary condition at x = 0, and x = L, affects only the right hand side.

Therefore, for the left hand side of (A.18),

ifj=0(y=0), LHS= [1 + % (r+7, )} o «-;-(ryx tr, )

b Al l et 1 nt
i) = My-1 (y=Ly). LHS =1, +1,,)g5i’ , + [H E(ry, + rﬂ)} s

L

For the right hand side of (A.18),
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if i =0 (x = 0),
RIS = (l*r‘urrp )(":T r, +nz ¢u (4”0; ) [ (uooj -—cl)+a2(uo,0j~c2)] ,

if i =M1 (x = L)

¥ +F7 n ?[ . \_ /\7 nt
RHS :“&“f‘(f)mt‘-zj +(1—= )¢M+M,/

+ —A"Z'J(W:riu ) [— & (MO,MX—U ! )+ aZ(uO,Mxvlj G )] .

2

The implementation of the Neumann boundary condition for the diffusion equation is
very similar.

We approximate the initial condition as a circle with center at (xo, vo) as,

R(i, j) = (ih = )" + Gl — y,)" . (A21)
Two initial values are assigned to the level set function ¢ corresponding to the interior
region and exterior region of the circle with the radius Ry as follows,

I RG, <R,

Gt D=0 RG j)=R,, (A.22)
-1 R(G,j)>R,.

In summary, we see that the FTCS scheme is an explicit scheme, and easy to
implement. Since it is conditionally stable, we cannot make the timestep Az too large. The
ADI scheme is a second order scheme that is unconditionally stable. The solution
procedure in this approach involves solving tridiagonal matrices that are more expensive

than using the explicit scheme. If the larger timestep At made available for the required

accuracy, the ADI scheme is more efficient to use than the explicit scheme.
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