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ABSTRACT

Compression of a Thin Lz;yer Overlying Deep Deposit

Enad Khamis

Roads constitute the largest and most expensive project governments undertake. The
deterioration of the infrastructure of these roads represents a major and outstanding
problem in transportation engineering. Construction of roads is usually made by stripping
the top soil (600 to 1000 mm), which often contains organic materials, and replacing it
with a layer of subgrade material (crushed stones, well-graded sand). A thin layer of
asphalt or concrete is usually placed on the top of the subgrade layer to provide a durable
surface.

This thesis examines the role of a deep deposit on the compression of the overlain
subgrade layer. The object of this study is to provide a practical method of analysis for
the design of airport runways. The cross-anisotropic elastic body that is characterized by
three independent elastic constant with a plane of isotropy is suggested as an improved
mathematical model of natural soil deposit. The theory of stresses and displacements in a
two-layer system is presented in accordance with the theory of elasticity. The theory
present herein reveals the controlling influence of two important ratios on the load-
settlement characteristics of the "two-layer system,"” namely; the ratio of the thickness of
the upper layer to the radius of the bearing area and the ratio of the modulus of the
deposit to that of the upper layer. For practical design purposes, the theoretical results of
settlement and compression of the upper layer have been evaluated numerically and

expressed in basic influence curves, for rough and smooth interfaces at the center and the
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edge of the load. These influence curves are made for a various combination of
anisotropic and isotropic two-layer system. The influence curves of the compression of a
thin layer overlying deep deposit, confirm fhat the stiffness of the lower layer has a

significant influence on the compression of the upper layer.
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LIST OF SYMBOLS

The following symbols are used

a Radius of uniform circular load

£ Uniformly distributed load

P Point load

E, Modulus of elasticity of the lavers where i =1, 2

v, Poisson’s ratio of the lavers where i =1, 2

(r,0,z) Cylindrical coordinates.

J v(mr) Bessel function of the first kind of orderv , wherev=0,1,2...
m Dimensionless parameter of Bessel function expansion
cléz First partial derivate

o7 /e’ Second partial derivate

o(r, =) Love’s potential strain function

v* Laplace’s operator

A B,C,D Constants depending on boundary condition

W, Settlement (normal displacement) of the surface of the layers where i =1, 2
U, - Horizontal displacement of the surface of the layers where i =1, 2

c. Normal stress of the surface of the layers where i =1, 2

o, Radial stress of the surface of the layers where i =1, 2

Trz, Shearing stress of the surface of the layers where / =1, 2
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Normal stress in terms of the functiong, (=, m)
Settlement in terms of the functiong, (=, m)

/
Degree of anisotropy

Ratio of anisotropy

Gamma function

Passive earth pressure coefficient

Active earth pressure

Angle of internal friction
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CHAPTER 1

INTRODUCTION

/

1.1 General:

The problem of calculating the stresses and displacement in a laver elastic system is one
which arises in engineering analysis and design, especially in the field of soil mechanics.
Soils in general follow extremely complicated stress-strain-time laws. This, together with
the fact that soil is rarely homogeneous, makes it difficult to predict stresses and
displacements accurately. One of the main problems ot soil mechanics is to predict
settlements, and to accomplish this, it is necessary to accept over-simplified models of
soil behavior in order to arrive at an engineering approximation.

The universally accepted mathematical model of the soil is the homogeneous isotropic
elastic half-space, the solution to which was provided by Boussinesq (1885). Soil is
certainly not a truly elastic material and it is necessary first to investigate the validity of
such solutions based on the theory of elasticity.

1.2 Definition:

Engineering structures settle for many reasons, owing to the effect of additional
loading of subsoil by a structure, lowering of the groundwater level, diverse forms of
ground surface sinking (mining, sliding, subsidence, underground erosion). Several
components put together to make up the magnitude of the final settlements such
components are: (1) instantaneous (immediate) settlement that occurs immediately after
the application of load without a change in moisture content. (2) settlement produced by

the effect of primary consolidation. (3) settlement due to secondary consolidation. There



are many methods used for calculating the final settlement, they form four qualitatively
distinct groups of solution, the first group includes mathematically exact methods of the
elasticity theory which satisfy the equilibrlium conditions, the constitutive equation and

the boundary conditions prescribed

/ ISOTROPIC
/ HOMOGENEOUS

LINEAR \ ANISOTROPIC

THEORY OF ELASTICITY NON~-HOMOGENECOUS

{DIRECT METHODS )} \
NON-LINEAR

STRESS - PATH

/ STATE BOUNDARY SURFAGE

ENGINE ERING (INDIRECT } METHODS —— OEDOMETRIC COMPRESSION

SKEMPTON — BJERRUM METHOD

LOADING TESTS
EMPIRICAL METHODS < DYNAMIC PENETRATION
\STAT(G PENETRATION

PRESSUREME TER

/FINITE ELEMENT METHOD
NUMERICAL METHODS “—— METHOD OF FINITE DIFFERENCES

LUMPED-PARAMETER METHOD

Figure 1-1 Methods of calculating the final settlement
Calculating settlement of soils which more often than not are layered in character is one
which often arises in engineering analysis especially in the field of soil mechanics.
if in a two layer system the stiffness of lower layer were infinite that means a layer
overlaying a bed rock, the settlement of upper layer will be equal the compression, and
the total load would be used to compress the upper layer.
However if hypothetically the stiffness of the lower layer were zero the upper layer will
sink downward as an elevator without any compression and the settlement of the system
would be from lower layer only. Between these two extremely cases part of the load will

be consumed to compress the upper layer and the rest to settle the lower layer.
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Figure 1-2 Compression of upper layer.

1.3 Anisotropic elastic material:
A comprehensive experimental investigation of the distribution of stresses and
displacements for remolded clays, by the U.S. Army Engineers Waterways Experiment

Station (1958) show that for clay there is remarkable agreement between the

experimentally measured values ofo,,0,0, and 7, and the values computed from

Boussinesq's equations. These results suggest that, in clay soils at least, computation of
stresses by elastic theory is admissible. It is accepted on the basis of the limited
experimental evidence that normally consolidated clays may be effectively isotropic.
Many undisturbed deposits of over consolidated clay will exhibit marked anisotropy, so
that such clays will possess a greater load spreading capacity than indicated by
Boussinesq, 1'£ 1s possible that this effect contributes to the fact that observed settlements
in heavily over-consolidated clays are usually considerably smaller than the predicted
values. Unfortunately no direct measurements of stress distributions have been made in
undisturbed clays as the placing of pressure measuring cells require an artificially

prepared test bed. Such test beds, consisting of remolded clay that has been compacted
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rather than consolidated, will result in an over all isotropy. Moreover; experiments show
that the vertical stress in sand is greater in the region of the load than indicated by
Boussinesq (U. S. Army Engineering 1954), anisotropy is not likely to be the entire
explanation, however, as in sand compressibility decrease with depth that this effect can
also cause an increase in the intensity of vertical stress near the load. The idea of using
the theory of cross —anisotropic for the foundation soil stems from the concept that the
soils have been formed by sedimentation. This concept implies that the mechanical
properties of soil in vertical direction should differ from those of horizontal direction (all

horizontal directions are being equivalent to one another).

1.4 Research objectives:

This study has the following objectives

1- Introduce the cross-anisotropic elastic body that is characterized by three independent
elastic constants as an improved mathematical model of natural soil deposit.

2- Examine the role of deep deposit on the compression of the overlain subgrade layer.

3- Reveal some of the fundamental relations existing between the physical factors, which
control the load-settlement relations, and provide a practical method of analysis for the

design of airport runways.



CHAPTER 2
LITERATURE REVIEW

/

2.1 GENERAL

In foundation engineering, designers must deal with real soils in natural deposits, which,
more often are layered in character. Several solutions for surface loading conditions
associated with multilayered elastic solids, of infinite lateral extent, are already
available in existing literature. The boundaries between the individual elastic layers
are usually assumed to be either perfectly continuous or completely smooth.
However, most of the numerical solutions for stresses and displacements have been
done for the purpose of airport design, where the upper layer is stiffer than the lower
layer. None of the numerical solutions has dealt with the opposite case where the lower
layer is stiffer than the upper layer except for Ueshita and Meyerhof (1967). This case
could be encountered in field compaction.

Furthermore; all these solutions have dealt with isotropic elastic solids, where
experiments show that overconsolidated clay possesses a greater load spreading
capacity than indicated by Boussinesq. This may well contribute to the fact that the
predicted settlements in such soil usually exceed the observed values. Also the

observed stress distributions in sand are partly a result of anisotropy.

2.2 REVIEW OF PREVIOUS WORK

Burmister, (1943)

Burmister developed the theory of stresses and displacements in a two-layer system in

accordance with the methods of the mathematical theory of elasticity. The necessary



assumptions of the theory of elasticity were made that the soils of each of the two layers
are homogeneous, isotropic, elastic materlials, for which Hooke's law is valid. Moreover
the surface of layer 1 is assumed to be weightless and to be infinite in extent in the
horizontal direction, but of finite thickness h, and must be free of normal and shearing
stresses outside the limits of the loaded area. Layer 2 is assumed to be infinite in extent
both horizontally and vertically downward, and the stresses and displacements must be
equal to zero. It is assumed that the two layers are continuously in contact and act
together as an elastic medium of composite nature. Continuity requires that the normal
and shearing stresses and the vertical and horizontal displacements must be equal in the
two layers at the interface. The theory reveals some of the fundamental relations existing
between the physical factors, which control the load-settlement relations. The theoretical
results are evaluated numerically and expressed in basic influence curves, giving values
of the settlement coefficient F, in terms of the basic ratios that control the load-settlement

relations, at the center of a circular flexible bearing area, (Figure 2.1)

Ueshita, and Meyerhof, (1967)

Ueshita and Meyerhof evaluated the surface displacement of an elastic layer on a rigid
base (a soil-rock system) under uniformly loaded areas of various shapes. They also
evaluate the displacement of a two-layer elastic system, where the upper layer is more
compressible than the lower layer, under a uniformly loaded circular area. The surface
displacement is computed according to a rigorous solution of the theory of elasticity.
Concerning a two-layer elastic system, Burmister computed the displacement factor of
the system where the upper layer is stiffer than the lower layer.

Ueshita and Meyerhof evaluated the surface displacement factor, for the center and the



edge of a loaded circular area on a two-layer system for the cases where

E /E,=0.01,0.1,0. 2and 0. 5, assuming v,= v, = 0. 5 (Figure 2.2).

/

Hoskin and Lee, (1959)
Hoskin and Lee explained in their paper that for axially symmetrical problems both in
three dimensional elasticity theory and in plate theory, stress components which vary
radially in proportion with the Bessel function J,(mr) where r 1s the radius and m a
constant, play a particularly significant role. For elasticity theory in cylindrical
coordinates the Bessel function loading distribution produces separation of the axial
coordinate z and the radial coordinate r in the basic equation and so generates a simple
deformation expression and simple solution, However this load function, introduces
certain difficulties. J,(mr)represents a damped oscillatory load with maximum intensity
at the origin. The amplitude of the oscillations decrease, to zero with increasing r in such

a way that J,(mr) can be represented asymptotically for a large values of r by:

Jo(mr) = ‘/mfzr cos{ mr — %) (2.1)

This ensures that all stress components approach zero as r increases, so. However the

total load applied on the surface is not defined.

The total load p within an arbitrary radius » =4 is given by

2

e 272‘pr 27h 37 22
P =p, Jo(mryrdrd 8 = ==0] (mb ) ~ 2 py |~ cos( mb ~ =) (2.2)
0

0
As b increases the value p given by equation (2.2) of oscillates with an amplitude that

tend to infinity so that the total load is not defined. This difficulty can be overcome by
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considering an integral of terms of this type over varying m, for example; a distribution

of load that is of uniform intensity p, over an area of radius «, but which is zero outside

this area can be represented in the form

P(r)= POaTJO(mr )/ (ma )dm (2.3)
Since r appez:rs only in the term J,(mr) the analysis detailed above for deflection of a
flexible surface supported by certain types of foundation, can be applied directly to the
integrand, resulting in an infinite integral over m.

In general an arbitrary load distribution p(r) can be represented in the form of a
Fourier-Bessel integral  p(r) = 'fp*(m)jo(mr)dm (2.4)
¢

Where p(m)= mJ‘ np(n) j,(mn)dn (2.5)
0
Expressions for forms of surface loading can be obtained by considering the general

Fourier-Bessel integral, for p(r). Each surface loading is characterized by the
expression for p’(m),

(1) For a uniform circular load of stress intensity p, and radius a

p’(m)= pyaj,(ma) (2.6)

(ii) For a concentrated force P applied at the origin

pT(m) =21 2.7)
2r

(iii) For a parabolic loading, with maximum stress p,, acting over a circular area of

radius a

p*(my=2L2j (ma) (2.8)
m

(iv) For a hemispherical loading, with maximum stress p, acting over a circular area

of radius a
1

)zji(ma) (2.9)

2

T
p*(m)= poa(
2ma



Cauwelaert, (1977)
Cauwelaert shows that the anisotropic materials with a plane of isotropy, characterized by
five independent elastic constants, can quite probably be reduced to three fundamental
constants as follows, in the case of an anisotropic body with a plane of isotropic the

relation given in equation of Hooke’s law,

€, a, a, a, 0 0 0 o,

sy) (al a, a, 0 Y 0 ] (o'y}

E: | _[9s Ay an 0 0 0 *{ o, | (210)
Y\ 0 0 0 a, O 0 c.,

7. 0 0 0 a 0 o..

7 0 0 0 0 0  a, O,

may be reduced to contain five independent terms «,,a,,,4,5,a,,,4;;,anda,,. These

independent terms may be expressed by way of the following technical constants,

also shown in Figure (2.3)

. lad
n vV nv
all‘%z:fzf alz—"fZF au:“‘g?:g‘
n n n
1 11 2*n*(1+v)
a.,=— iy =Qec = —— = —— a,. =2*a, —a,)z=———= 2.11
33 E 44 55 Gyz G\,: 66 (11 l.r.) E ( )

In which £, = £ = elastic modulus along axis of symmetry, £, = £ =FE/n elastic

modulus in isotropic plane, £, /E_ =n = degree of anisotropy; = Poisson's ratio

defining strain induced in 1sotropic plane by stress applied along the axis of symmetry z,

4 /n=Poisson's ratio defining strain induced along axis of symmetry z by a stress
applied along one of the axes x ory, v = Poisson's ratio in isotropic plane (xy); and G,
and G = shear moduli in anisotropic planes (yz and xz).

By transformation of the coordinate axes (a rotation about the y-axis in this case), the

number of independent technical constants could logically be reduced to three.

10
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Figure 2-3 Technical constants of axisymmetric anisotropic body with plane of
isotropy
The values obtained after transformation are

1 =1+n+2,u oM (2.12)
G E n

Xz

The coefficients reduced to three independent coefficients namely
1. £: Young's modulus along the axis perpendicular to the plane of isotropy.

2. n: The degree of anisotropy (n=L,/E = E./E,)

3. u : Poisson's ratio in an anisotropic plane.

Generally these three values can easily be determined in a laboratory.
Cauwelaert shows as an application to problems with axial symmetry that the stress

equation becomes.

2 2
"+ fn+n— ,u)VCD n1+ﬂ)5&-®j‘ T, = aa[(n ,u)VCD n1+,u)68_q)}

?IQ)

’

=3
[,u n+ 1)V - n(l+,u)aazq)} Oy = 0 {u(n+y)v - n(l+,u)l%—q)} (2.13)
r ¥

F"’IQ)
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In which the ® function has to satisfy V*V:d =0

_ o 1o @ o 18 18

V= ——+—— ,and Vie ot 2.14
or’ ror o7° ¢ ot ror sPoct 219
L
With s (the ratio of isotropy) =[ n-u 27 ]2 (2.15)
no—pu-
The displacements are
_aln+ pfi+p) 0

U

2
W :%[(l+n+ 2ufn- 12 WD —n{l+ 1) ‘;ﬂ (2.16)

E oroz
Obviously; all these relations can be reduced to the relations given by Love (1927) in the
case of an isotropic body (n = 1), with the exception of one factor (1+ u)

The compatibility equation, V2V ® =0, is satisfied for

@ =J (mr)(Ae™ — Be™™ +Ce™ — De™™) (2.17)
It is interesting to note that » will always be greater than u, as s must remain real and u
cannot be greater than unit. In the case of anisotropic materials, 1 can be greater than 0.5
The stress and displacement expressions then become.

o, = —mJy(mr)|n(l+ u) Am*e™ + Bm?e™ )+ ns(n+ p)(Cm*e™ + Dm*e )| (2.18)

7. = mJ,(mr)|n(1+ ) Am*e™ — Brme™ )+ ns* (n+ p)(Cm’e™ - Dm*e™)|  (2.19)

U= I -;u n(n+ 1)J, (mr)[Amze"’“' +Bm?e™ +sCme™ + stze"”“:] (2.20)
2
W= —%ﬁ.fo (mr)[n(l + ) (Anfe™ ~ Brfe ™) +ns? %Ji%— (CrPe™ + Dnte™ )} @.21)
+



CAUWELAERT and CERISIER, (1982)
Cauwelaret and Ceriser studied the relation between mechanical and geotechnical
properties of an anisotropic semi-infinite Body with a plane of isotropy submitted to a
uniform circular load. In the Prandtl failure model, the limit of equilibrium under a
continuous footing (Figure 2-4) is reached when the stresses along a slip line (OA or OB)

satisfy Coulomb’s criterionz = o fg@, where ¢ 1s the angle of internal friction.

The real appearance of the slip lines undemeath the footing is debatable. Failure starts
however in A and B under a well specified direction.

The mechanical properties for the case of cylindrical coordinate (Figure 2-5) are given by

E@=Fr= E—, r=F
n
H H
My = My = Mg = Hogp =~ (2.22)
n n
I 1+n+2u
Grz E

The stress function and stresses are
O =J,(mr)(Ae™ —Be™™ +(Ce™ — De™™) (2.23)
o.=-mJ, (mr)[n(l + u)(Am*e™ + Bm*e ™ Y+ ns(n+ pu)}Cm*e™ + Dm*e™™ )J (2.24)

7. =mJ,(mr )[n(l + puXAm?e™ — Bm’e ™ Y+ ns*(n+ u)(Cm*e™ — Dm’e ™ )J (2.25)

. _ 2
0-,- — mJo(mr ){in(l + ,U)(Am Zem: + Bm Ze‘m:)+ né((n .u) )(Cm Zems: + Dm Ze—ms: )} (226)
n+ U

- Mll(l + ;/)[Am 2e™ + Bm e ™™ +sCm *e™ +sDm ‘e ™ ]
-

using Hankel transform

J(ma)
m

F(m)dm . (2.27)

Fz—Poaoi
Q

Where F(m) is one of the aforementioned stresses.



One can obtain for a homogeneous deposit for r=0 and z=0
o = Lu(+s) P 7 =0 (2.28)
’ 2n c2

Transforming the stresses in A from (z, r)’to (z, r’), one obtains

U’=£[uwcos2a+5m2a] > U;=£[,u(1—+‘—g)—s'm2a+cosza} (2.29)
n

o2 n 2

Tl = E[(l - /!)M] sin & cos &
T2 n

for the case of non cohesive soil 7). = o} (g

p(+s) _18(@=9) It |ike Prandtl, we take a=2+2
n tga 4 2

u(l+s) 1g(n/d-p/2) - Xa
n tig{n/4+¢/2)

2 2
andthus 7 _ /8 (7/4+¢/2) _Kp (2.30)
He(l+s) tg“(n/d-¢@/2) Ka

Where Kp is the passive earth pressure coefficient and Ka the active earth pressure

coefficient. In the case of cohesive soil

pars) _g@-e)y, € (2.31)
n 1ga tgo —1ge

Plate bearing tests allow very easily to determine the Young modulus, Poisson’s ratio
and the degree of anisotropy, as follows. The elastic deflection on top of a semi-
infinite anisotropic body is given by

— (11— n+v
_ l+v, -s(d-k), poa. Where K = , therefore
E (1-3) 1+v

W

Wzs(l_n)*M,thus w _ s(l-n)
(I-s) E, Fa E(1-s)

. L . : w
This equation gives us a relationship between — E and n
a
0

14



Measurements realized with 2 plates of different diameters allow then to determine by
succesive approximations the values of E and n, and thus of v . A test realized with
another plate, or another load, permits to verification of the validity of the results. Then
the value of v can be obtained from equation (2.30)

The geotechnical parameters¢ and C can be determined by the classic shear test.
Veverka, (1973) has realized a large scale experiment on different granular materials
placed in a trial pit on a Winkler foundation (K = 7.8kg/cm?). He measured the vertical
stresses (within and beyond the axis of the load) at the interface and the deflections at the

surface (in the axis of a circular load). He determined the modulus E, of the granular

materials in a "Geonor" type triaxial cell. He recorded the concentration of the vertical
stresses in the axis of the load for all the materials. Cauwelaert and Cerisier have treated
the problem theoretically as a two-layer with a frictionless interface. The first layer is

anisotropic with a vertical modulus E,, and the second is assimilated with a semi-infinite
isotropic body with modulus E,. Concerning the geotechnical aspect, they have analyzed

in greater detail the cases where the thickness of the granular layer was sufficient in
comparison with the diameter of the load to allow a full development of Prandtl’s failure
model in the material.

Using Winkler’s relation o, = Kw, they have then computed the value of E, taking into
account a relation, established by Zimpfer, between deflections under rigid and flexible

plates : w(rigid) = (1.18/1.50) w(flexible). The results of the computations are given in

Table (2-1).

15



Tablel (2-1) Computation of Young moduli out of geotechnical properties

o = h 3 o [ B - w © [ X o] < 4 Q [e) alo
(o] o a3 [o] =2 g 2 o o ou @ o Q o190
" pes -0 = [ [ST )  w» a3 [ = =3 3|3
[} o 0O = o (oI o T - o o =~ o ] e b~} T T
" (a3 "o © x c - 0 ® S c =4 = e e
s | 8|5 513l |% %5185 Elg1 35! 5l3
- = B *h El w il o ~| o (=% g ‘g. 84
—~ s vl =] 1Tl d<] 8w !l om
= = 3 5 = | <~ |8l e c = = 2 L
-3 - * o a [} > |l on —_n — ~ —
1 - ~ =3 1] 2 rr Q™ = L] Ed
= ~ g~ S CAE IR B a
> — ~ wy [¢] }
= — ~ E] 3
Q (X3 ~
. =3 — ~—
~N
1 58.8 ) 6.30 ] 30.0 |0.07 | 60 j15.5] 2 {12.9 ]0.053 | 1940 {4.15} 3.15] 1640|.64
1 58.8] 6.30 | 30.0 10.07 |45 ]15.5) 3 :22.7 |0.087 | 1940 | 2.4 2.5 7501.50
2 83.014.75 {37.5 j0.13 | 60.{15.5]1 6 {11.9 [0.113 {2420 (8.4 4.6 3370}.75
2 83.0] 4.75 {37.5 ]0.43 | 60 {22.0¢{ 6 ]22.2 |0.186 | 2420 7.4 4.8 3170}1.79
2 83.0]4.75 {37.5 10.13 ] 45 {15,516 |16,9 {0.130 | 2420 {5.3 2.8 18504.41
3 80.4 } 0.00 | 44.0 |0.09 | 45 [15.5] 3 ]13.4 }0.062 | 4220 7.} 2.4 27504.37
4 81.5[0.00 {39.0 {0.1t |45 {15.5] 6 {17.4 [0.123 | 5450 [16.3 7.1 5465 {.50

Material; 1) Natural sand 0/Imm

2) Natural gravel 0/40mm

3) Crushed stone 40/63mm + natural sand

4) Crushed stone 40/63mm + crushed sand.
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Figure (2-4) Prandtl’s failure model

Z (Ez)

Figure (2-5) Failure model for a circular load

17



CHAPTER 3

THEORETICAL ANALYSES

/

3.1 General

The linear theory of elasticity has enjoyed a fairly long and profitable history in the field of
foundation engineering. Geotechnical engineers have turned to elasticity for answers to a
variety of questions, and despite the sure knowledge that the answers are at best
approximate, they will continue to do so for some time. The reasons for this lie in the
essential simplicity of the relevant elastic solutions. This can be a significant advantage
when compared with the time and effort involved in obtaining numerical solutions that
employ one of the multitudes of existing plasticity models for soil.

In geotechnical engineering, particularly in airport design the engineer is dealing

with real soils in natural deposits, which, more often are layered in character.

Moreover; design practice for flexible pavements follows at least two radically different
approaches. One of the most common methods is to base the pavement design on an
empirical measure of the performance characteristics of the soil and pavement system.
Such a measure can be the CBR test. The design of the pavement system is based

upon the use of tables and diagrams, previously prepared on the basis of experience

and regional data. Another approach to pavement design is to combine theoretical
analyses with field and laboratory experiments. The field and laboratory testing are
designed to determine the material properties in the pavement system. These

properties make up the "numbers" which go into the theoretical analysis to provide data

on predicted stresses and/or displacements.

18



3.2 Two-layer system of isotropic elastic solid:

The case of two-layer was considered and the theory of elasticity was applied, see
Figure (3-1). In this model, the necessary assumption of the theory of elasticity and
the essential boundary and continuity conditions were satisfied across the interface

between the two layers. Specifically:

surface Uniform bearing load
layerl
E v, h
interface \ 4
 «————»
layer? ] r
E,v @
. E, > E,

Figure (3-1) Two-Soil layer system

a)  The soil of each of the two layers is assumed to be homogeneous, isotropic
elastic material for which Hooke’s Law is valid.

b)  The surface layer no.1 is assumed to be infinite in extent in the horizontal
direction, but of finite thickness h. The underlying layer no.2 is assumed to
be infinite in extent in the horizontal and vertical direction.

¢) The surface of layer no.1 is free of shearing and free of normal stresses

outside the limits of the surface loading. Also, the stress and displacement
must be equal to zero in layer no.2 at infinite depth. Therefore the boundary

conditions are.

O 1 =~ Jo(mr)...... 0<r<a,..z=0
Ot = O, O D SRR z=0 (3.1)
T =0, . 0<r<o,..... z=10



Furthermore
Case 1: It is assumed that the two layers are continuously in contact with
shearing resistance fully active between them, so that the two layers act together as the
elastic medium of composite nature with full continuity of stress and displacement
across the interface between the layers. (Rough interface, no slip occurs at the
interface) Thus; (referring to Figure 3-2) the continuity conditions for rough interface
u=U,, Irz=Irz,, W, =W,, o,=0., (3.2)
Case 2: It is assumed that the two layers of the system are continuously in
contact but with a frictionless interface and a continuity of normal stress and normal
displacement only. (Smooth interface the layers can slip over each other without any

shear stress) Thus; (referring to Figure 3.1-2) continuity conditions for smooth Interface

Trz, =0, Trz,=0, W,=W, o.,=0., (3.3)

Uz'ez

Or,Er

Z |
Og.Eq Trz, Yrz

Figure (3-2) Coordinate system



The general solution of the axisymmetric problem in the isotropic theory of elasticity in
the absence of body forces can be formulated in terms of Love’s potential strain

functiong(r, z), which satisfies the equatibns of equilibrium and compatibility.
0o . olrz . Or—-06

1) Equations of Equilibrium: z 0
or oz r
ofrz 90, Tz _y (3.4)
or oz r

2) Equations of Compatibility (2): V*®(r,z)=0
2 2
Wheresz[—q—+—l— 0,8 J

a’ ror oz

is the Laplace operator referred to a system of cylindrical polar coordinates (r, 6, :).

The components of displacement vector in the r and z directions U, ¥, respectively

(U8 = 0 for axial symmetry) can be expressed in terms of @(r, z)

2
1+v[6 CD:i 1+v (36)

2
UJ=—0 W = —r 2(1—V)V2(D—ag)
E | orez E %)

Where v 1s Poisson’s ratio and £ modulus of elasticity. The non-zero components of

the Cauchy stress tensor o referred to the cylindrical polar coordinates system can be

expressed as

2
az=-a—(2—v)v2cp—a(f , 0,:-(2« vv%b—azqz)
oz oz oz or
0 1 8b o .. OO
=Zweo -2, Trz = —| (1= V)V2D - 3.7
ik az[ r Gr} ’ ai‘l:( ) 522} G

The logical approach to seek a solution to a three dimensional problem is to introduce
some functions that satisfy the equilibrium equations and to use the compatibility
equation to define these functions. Since the problem is one which possesses axial
symmetry, it is convenient to formulate the associated elasticity problem by recourse to

the theory of Hankel transforms:

F(m.2)= HF. R = [r .2, ()
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The basic properties of the Hankel transform depend on the properties of J v(mr).

Where Jv(mr)is the Bessel function of the first kind of order v which is the bounded
/
solution of the Bessel differential equation,

2 2
d ?.{.ldﬁ_.—‘iz_(l):o
dar ror v

The Hankel transform is compatible with the Bessel differential operators in the sense that

it algebraizes the variable coefficient part of the Bessel equation

2 2
HAL2 L Vol ()
dr rdr r

So that whenv = 0, it is clear that the J - Hankel transform is compatible with

5 2
d (2D+liiq—) , this means that /4, ﬁ;gh_l@ =-m2<D0(m).
dr r dr

dr r dr

For the boundary value problefn which is associated with the biharmonic equation

2 2
Vz(v2(D):O ’wherevzz _8_2.4_.1__2_*._?_2 ,
or° ror oz

The Hankel transform of ®(r,z) is

D, (m, z) =H, {(I)(r, z)} = Tr(D(r, z)JO (mr)dr

i

=12
H, = {V4(I>(r, z)}: [g’;— - mZJ @,(m,z)
The J, - Hankel transform reduces the radial part of the biharmonic operator to an
algebraic one. The general solution to this equation is:
®,(m,z)= JOA(mr)l_Ae"’z —Be™ +Cze™ - Dze'"‘zJ (3.8)
Where A, B, C, D are arbitrary functions, and m is a dimensionless parameter which are
to be determined by satisfying the boundary conditions.

The expression for displacement and stress components can be expressed in terms of

the transformed strain potential @ ,(m, z)




W, =1+v1

2
[2(1 -V OVO(r,z)- aa (D] In terms of @©(r,z)

e

" E 2?
1+, [2 d*®, o d*d, d*®

“

2
W o= 1+v, [2(1— vl)[;iz ]CD %(P—} In terms of @ (m, z)

Wml -
E

e e —#—2(1-vl ymo,

ml

2
W “;'{(1 )= 4 0, —2(1—V1)m2(DOJ

ao, . :
=J, (mr)[4me™ +B me™ +Ce™ +C,zme™ — Die™™ + D,zme™™ ]

A

d’®, _ Jo(mr){Alm e”™ —Bm’e™ +Cme™ +C me™ :}

dz

d*®
dz

+Czm*e™ + Dyme™ + Dime™ — D,zm’e™

L= Jo(mr)[4m*e™ — Bm*e™ + Cym(2+ zm)e™ +D,m(2 - zm)e™],

Substitution into,
(1-2v)Am*e™ —(1-2v)Bm*e™ +(1-2v,)C,m(2 + mz)e™
Jo(mr) +(1=2v)Dm(2 = mz)e™ - 2(1-v, )4, m*e™ +2(1-v,)Bm’e™™
~2(1-v,)C,m*ze™ +2(1-v,)Dm*ze™™

W =1-|-v1

mi

1

W, = 1;‘/1 J P\ Ani e ~ Burie™ ~C2—4v, ~mae™ - D2~ v, + m2e™ | (3.9)

m
1

This equation is the equation of displacement in terms of strain potential @ ,(m, z)

Doing the same procedure for the rest of the displacement and stress components with

the use of recurrence relation of Bessel function

Ji(x) = —Z—J,,m T (®) TR = J,,-l(x>—§c’—J,,(x)

o, = -—mjo(mr)[A m*e™ + Bm*e™™ —~ Cym(1—- v, -mz)e™ + Dim(1-2v, + mz e'”’:] (3.10)

zml T
T_, =ml, (mr)[Almze"” ~Bm*e™™ + C;m(2v, + mz)e™ + Dm(2v, -—mz)e""‘] (3.11)

G =MJ, (mr)[Almze +Bme™ + Cim(1+2v, + mz)e™ — Dim(1+ 2v, — mz)e""“]

—m————J‘(mr)[A,mze"‘z +Bm’e™ +C,m{l+mz)e™ ‘Dlm(l‘mz)e_m] (3.12)
mr

3]
(9]



1+v,

U, = Jl(mr)[A,mze'": + Bm*e™ + Cym(1+ mz)e™ —Dlm(1~mz)e_m:] (3.13)

ml
1

All these equations are for layer number 1, for layer number 2 a similar set of equation

could be obtained with elastic properties £, , v, and coefficients B,and D, , because the
coefficients 4, and C, must be equal to zero to satisfy the boundary conditions that the

stress and displacement must be equal to zero at infinite depth.
The boundary and continuity equations which must be satisfied for case one (rough
interface), are expressed mathematically in the following equation.

Boundary conditions at the surface of the ground where Z = -h are

m

o, = —J,(mr) Distribution of surface loading must be equal to the normal stress:

-mJ, (mr)[AlmZe""h +Bm*e™ —Cim(1-2v, + mh)e™ + Dym(1~2v, - mh)e'"h] =—J,(mr)

Shearing stress at surface 7,_,,= 0

zml
mJl(ml”)lAlmze_'”h - Bm*e™ + Cim(2v, — mh)e ™ + Dm(2v, + mh)e’"”J: 0
Continuity conditions at rough interface where Z=0 are

= Tr:mZ ?

T

rzml

w.,.=W Cp =0

m2?

U, =U,,, 0, 2 and the coefficients 4, and C, must

be equal to zero at infinite depth

Vertical displacements must be equal toW,, =W,

I1+v, 1+v,

[4m? = B> —20-2v)Cm=201-20) Dim|=——22[- B, m? ~2(1-2v,) D,m]

1 2

Horizontal displacements must be equal toU,, =U ,,

1+v, I+v,

[Alm2 + Bm’ +C1m—D1m]= + [Bzm2 —Dzm]

1 2

Normal stresses must be equal too_,,, =0,
~|4m? + Bm?* (1 =2v,)C,m+ (1= 2v,)D,m|=—|B,m* + (1= 2v,) D,m]
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Shearing stresses mustbeequal 7_,, =7,_ ,
+ [Alm2 - Bm* +2v,Cim + 2VID1mJ= +l— B,m* + 2v2D2mJ

From the above equations the coefficientss 4, B,,C,, D, were determined so as to satisty

these boundary conditions

24,m? = [K (1= 4v,)(1+ 2mh)e™ ~ Le™ + KL(4v, - 2mh)e‘”’h]*%

2B,m? = [(4v, + 2mh)e™ — Le™™ + K (1- v, )(1 - 2mh)e™™ J* -;-

C,m = [K(l + 2mh)e™ - KLe"”h]* % (3.14)

Dym = le™ — K(1-2mh)e™" |+ %

Where A is the common denominator.

A=m*|e?™ —(L+K +4km*h*)+ KLe ™™ | (3.15)

Where the coefficients of the strength properties of the two layers are:

_Blev] 1 1-n [ | B-4v)—n(3-4v) (3.16)
Efl+v,] 1+n(3-4v,) (3-4v,)+n

Substituting the values of coefficients 4,, B,,C,, D, into equation (3.9) after replacing

Z = -h at the surface, this equation becomes:

W, =~ ! 2‘/‘ o (mr)[Almze‘"’” - Bm’e™ —Cim(2—4v, + mh)e™ - Dim(2 - 4v, - mh)e‘”"”’]
1
-l;—(l — 4y, X1+ 2mh)- g + %(41/1 —2mh)e~2m"
l+v (41+2mh) 5 L K 1
W, =- EllJO(mr) -———2~———e +3——i—(1—4v1)(l—2mh) *_A_
— K(1+2mh)2 - 4v, + mh)+ KL(2 - 4v, + mh)e™>™
|- (2—4v, - mh)e*™ + K(1-2mh)2 - 4v, — mh)
l+v, i 2mih ~2mh 1
Wy=- B Jo(mr)-(2-2v)e™ + KL(2-2v))e -(2-2y, )4mhK]* N
1




W = 2(1_‘/12)[ e L AKmh — KlLe 2"

1
*—*J (mr 3
TR | e (L+K+4Km2h )+KLe"Z”’h}  Jolmr) )

/
A distribution of a uniform load with intensity /£, over an area of radius a can be
represented in the form P(r)y=pya .[ Jo(mr) j,(ma)dm

0
Since the equation of displacements and stresses was obtained for an arbitrary load

o, =~ J,(mr),the values of the stresses and displacements can be obtained by

applying the transtormations

- Poaf J(ma)F (m)dm For a distributed load (3.18)
0

lj mE (m)dm For a point load p

2r

0
in which F(m) represents the aforementioned stress and displacement relations. Hence

the equation of settlement can be written in this form

W, = Rya[W,,J, (ma)dm
0

. 2 @© —2mh
4 :2(1 Vi )Poa_[ — " +4Kmh- KLe — |* J1(ma) *Jy(mr)*dm  (3.19)
E, )| e —(L+K+4Km‘h‘)+KLe“’”’ m

2
Gl o
E

isotropic
1 rough interface

where Fwl is the Factor of settlement of isotropic elastic upper layer

isotropic
rough interface

T [ ™™ + 4Kmh~ KLe™"" ] o Jy(ma)

Fwl )
2mh (L+K+4Km2h2)+KL —2mh

5 J (mr)*dm (3.20)

isotropic -
rough interface 0

The equation of settlement at the interface, Z =0 is

Wz == H;‘ Jomr)[m® = B® ~Com(2—4v,) = Dym(2 - 4]

1

Substituting the values of coefficients 4,,B,,C,,D, into this equation:



%(1 — 4y X1 +2mh)e™ - %e’"” + %L—(awl —2mh)e™

4y, +2mh L _ A K ~nifr
W, =_1;V1 —%e"’h toe ””l—?(l—4v1X1—2mh)e ! *%*Jo(mr)
~ K(1+2mh)2~4v, )e™ + KL(2 - 4v, )e™

|- (2-4v)e™ + K(2 - 4v, N1 - 2mh)e™™

- )i )= 2= @, )| L

- -4v)-KQ-4v,))1 +2mh)

*_1_*
" £, —[zg—(l—4vl)(1—2mh)-—K(2—4v1)(1—2mh) L p Totmn)

- e
_3_525(4% —2mh)- KL (2 - 4v,)

—mh

[2-2v,+mh +05L+05K(@-4v X1+ 2mh)E™
W _L vy ~[KL @2 - 2v, - mh)+ O.SL+O.§K(3—4v1)(1—2mh)]e‘””’ *—L*Jo(mr)
? E, e (L + K +4Km*h? )+ KLe ™ m

As for the settlement of the surface, the settlement of the interface would be

2-2v, +mh+05L ”
e
+0.5K(3-4v, X1 +2mh)
KL(2-2v,—mh)+0.5L
e
+0.5K(3-4v, X1 -2mh)
et — (L + K + 4Km2h2)+ KLe >

~mh

1 an
W, =+ 2"1 Pyaf

1 0

xJ1(ma) *J, (mr)*dm (3.21)
m

(1+v,)
W2 = : P()aFW2isorropic s
1 rough interface
Where Fw2,,,....  isthe factor of settlement of the isotropic elastic lower layer

rough interface



+05K(3-4v, 1 +2mh
{KL(z -2v, —mh)+ O‘SL:, .

e
! _ 3.22
+0.5K(3 — 4v, Xt - 2mh) « Li0M9) 4 5 ey * dm (5.22)

[2—21/l +mh +0.5L ] ”
I

e
F w 2 isotropic = J-
0

riugh interfuce

e —(L+K+4Km*h*)+KLe ™™ [ m

To ensure the correctness of these equations the following checks were made.
If the elastic properties E and v are equal in the two layers, that is, a homogeneous deposit
throughout, £, = £, & v, =v, => n=1 that means K = 0& L = 0, hence the integration of

equation (3.19) reduces to

2(1—1/2) ?

W, =———E—————P0aJ- —I—*Jo(mr)*.]l(ma)*dm
m

0

At the center of the load r = 0= J,(mr) =1

1 v=0 "

0 v>0
Where J(0) = 0 ve—lo

o v<0, v£-1-2..

Subsequently, the equation reduces to
2-v? “
W, =—(—)P0aj Lw s (ma)* dm
E 5 mo

Applying the well-known integration

o 2"F(%+%n+wv)

[, (mrym"dm = —

0 i B e
2 2 2

where T'is Gamma function, and n=-1&v =1

%Qszﬂ
zr(zj T

2 2

[, (mrym ™ dim =
0

consequently; the two layer system equation reduces to the well-known Boussinesq
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equation for a distributed circular load

.

E
For equation of displacement at the interfade, if the modulus £, becomes infinite, that

means a rough rock surface at the base of upper layer will exist, the coefficients of the

strength properties becomes

£2—————HV‘—»oo, soK—)————_1 ,and L — —(3-4v,)

E =
r e E 1+v, (3-4v,)

If Poisson’s ratios of both layers are equal to 1/2, the strength coefficients L. and K
both become equal to minus one (- 1) and the settlement of the interface of the second

layer will be equal to zero.
For the case of smooth interface, the boundary and continuity equations are expressed
mathematically in the following equation.

Boundary conditions at the surface of the ground where Z = -h are

o =—J,(mr) Distribution of surface loading must be equal to the normal stress:

—mJy (mr)| dm>e™ + Bym*e™ — Cym(1-2v, + mhye™ + Dim(1 = 2v, — mh)e™ |=~J, (mr)

Shearing stress at surface 7,,,,= 0

mJ,(mr)| 4 me™ — Bm’e™ +Cym(2v, — mh)e™ + Dym(2v, + mh)e™ |= 0
Continuity conditions at smooth interface where Z=0 are

Wi =Woss ot = Cpys Loy =0, T, =0, and the coefficients 4, and C, must be

equal to zero at infinite depth

Vertical settlements must be equal toW,, =W, ,

14w 1+v,

[4m> - Bym? —2(1-2v,)Cym—2(1-2v,) Dym|= -

1 2

- B, m* -2(1-2v,)D,m]

Normal stresses must be equal too,,, =0,
—l4m® + Bym® —(1=2v,)Cm + (1= 2v,)Dym|= ~|B,m? + (1= 2v,) D,m]



Shearing stress at the interface for upper layer is equal to zero 7_,, =0
+|4m® - Bm? +2v,Cm + 2v,Dym|=0

Shearing stress at the interface for lower layer is equal to zero 7, =0
- B,m* +2v,D,m|=0

From the above equations the coefficients A4, B,,C,, D, were determined so as to satisfy,
these boundary conditions
Am =[C(F -2v))= D,(1- F)],

Bm =[C,F - D,(1-2v, - F)],

Cm= [(1 =2v, = F)e™ +Q2v, + mh)e™ - (1- F)e™ ]* %, (3.23)
Dm = [Fe’"” ~(F =2v)e™™ - (2v, — mh)e™ ]* —i— ,
Where A is the common denominator.
A =m*|Fe?™ +(2F =1)2mh—(1+2m*h*) + (1= F)e ™™ | (3.24)
Where the coefficients of the strength properties of the two layers are:

Ell+v - -

— ..[ 1] F: (1 V2)+n(]‘ Vl) (325)
Efl+v,] 2(1-v,)

Substituting the values of coefficients 4,, B,,C,, D, into equation of settlement of layer
number] after replacing Z = -h at the surface, this equation becomes:

W = 121/1 Jo(mr)[A m’e™ ~ Bim*e™ ~ Cim(2~ 4v, + mh)e™ — Dim(2 - 4v, ~ mh)emh]

ml
1

I I e
" E | FE"+QF-12mh—(14+2m ) +(1- F)e >

}*‘L*Jo(mr) (3.26)
m

Applying the transformation

A V‘ T Fe 2 t-dm- (b DD ey m (3.27)
| FE QR -12mh-(1+2m ) +(1-F)e ™™ | m °
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2 )
— )i
Wl - E P 0 aFw 11}\'()lmpic >

1 smooth  interface

Where Fwl , is the factor of seftlement of isotropic elastic upper layer, for

isotroic
smooh interface

smooth interface

*Jo(mr)*dm (3.28)

nolropu
smooth interfuce

°°I ™+ AKmh—KLe™™ 4 Jy(ma)
3™ —(L+ K +4Kmh? )+ KL

The equation of settlement at the interface, Z =0 is

W, =~V e Am® ~ Bm® — Cym(2 = 4v,) = Dym(2 = 4v,)]

m2

1
Substituting the values of coefficients 4,,B,,C,, D, into this equation:

(1+ mh)e™ —(1—mh)e™

2(1-v2)
W= 2mh 212 —2mh
E, | Fe™™ +(2F —12mh—(1+2m*h*)+(1- F)e

}*Jo(m”)

As for the settlement of the surface, the settlement of the interface would be

i) (+mhe™ —(1-mhe™ Jmd,
E P°aoj {Fez'”h+(2F—l)2mh—(1+2nfh2)+(l—F)e‘2’"" Dl 29

W, = &E——Vj—) PyaFw2,, ,

1 smooth  interface

Where F'w 2 , 1s the factor of settlement of isotropic elastic lower layer, for

isotroic
smooh interface

smooth interface

T » 1+ mh 1— —mh J'
Fsoroge = | — (Ltmhe™ ~(1-mhe — ‘(m@*Jo(m;j*dm (3.30)
smooth lm‘uyuu 0 Fém 2F 12]nh_(1+2]n h )+(1 F)e m



3.3 Two-layer system of anisotropic elastic solid:

Cauwelaert, 1977 has shown that the five independent elastic constants that
characterize the anisotropic material with a plane of isotropy can probably be reduced
to three fundamental constants. Knowing the values of the elastic constant, the stress

equation can be easily determined.

Gr:?_[V(nw)vch-n(lw)zzﬂ 09=§{v(n+v)vz®—n(l+v)la—®} (3.31)

2 r Or

2 2
o, =§[(n2 +vn+n—v2)V2CD—n(l+v)aaff} . _—a‘[(”l“‘/z)vzq)—n(l+v)(z-?}

&

£ -

'z o -

in which the ® function has to satisfy V’V:® =0

2 2 2 2
v 10,0 g v 10,10 (332)
or® ror oz or® ror s°oz
. . . ((n=v? 2
with s (the ratio of anisotropy) =| ——— (3.33)
n’—v

and n the degree of anisotropy (n=E,/E, = £, /E))

The displacement equations are

5 2
U= n(n+1;:)(l+v) grgz W :%{:(1+}’l+2VXH—V2)V2CD"H(1+V)2 0 ?} (3.34)

p

Where the stress function is

@ =J,(mr)(4e™ — Be™™ +(Ce™ — De™) (3.35)
The stress and displacement expressions become.

o, = —mJO(mr)[n(l +v)(Am*e™ + Bm*e™™ )+ ns(n +v)}(Cm*e™ + Dm*e™™" )] (3.36)
T = mJl(mr)ln(l +v)(Am*e™ — Bm*e™™ )+ ns’ (n+v)(Cm’e™ — Dm*e™ )J (3.37)

U= 1—%—V—n(n +v)J, (mr)[Amze”"" + Bm’e™ +sCm’e™ + stze‘”“"] (3.38)

(8]
o



1+v

2
W= ——E— A (mr)|:n(l + V)(Amze'": - Bmze_'":) +ns? —————(n )

(1+v)

For the case of the rough interface the boundary and continuity equations which must be

(CmZenm: _Dm2e—mv:)} (339)

7/
satisfied are expressed mathematically in the following equation.
Boundary conditions at the surface of the ground where Z = -h are

0., =—mJ,(mr) Distribution of surface loading must be equal to the normal stress:

zm]

—nUJmﬂb(LHqXAm%”m+&m%ﬂ@+nﬁxm+vJKh#ewm+DmfdMﬂ:—mﬁxm@

Shearing stress at surface 7. =0

mJ, (mr)[n1 (L+v ) 4mPe™ -~ Bm’e™) +ns,” (n, +v, (CmPe ™" - Dlmze””h)J =0
Continuity conditions at a rough interface where Z=0 are:

T

w.=Ww.,, U,=U,, ©,=0 wm = L,.p» and the coefficients 4, and C,

m zm| zm?2

must be equal to zero at infinite depth.

Vertical settlements must be equal toW,, =W, ,

m(L+v,)(4m" ~Bm’) (14, )(=B,m®)
SN I S T,
E U s’ TN nt D) | B 0+ mst 2 2 (Dot
I+v) (1+v,)

Horizontal displacements must be equal toU,, =U

m2

1+v,

Z J, (mr)[n2 (n, +1/2)(B2m2 +s2D2m2)]
2

n(n, +v,)(Am* + Bm’ +:’ 1+,
1

J| (mr)li

2 2
5;Cim” +s5,Dym”~)

Normal stresses are equal too_, = o

zml zm?2

ma+mx4m2+am6+

ns, (n, +v, )(Clm2 + D,mz)

-mJ, (mr)[

:| =—mJ,(mr)[n,(1+v,)B,m* +n,s,(n, +v,)D,m*]
Shearing stresses are equal to7,_, =T

rem2
m(L+v,)(4m’ —Bm®)

+mstn+v)(Cm =Dyt J = (s (4, ) By ) 4,3 v, ) D)

i)

(OS]
(U]



From the above equations the coefficients A4, B,,C,, D, were determined so as to satisfy

these boundary conditions.

s - 1
n(1+v)Am* =(Je™ — fge™ + s, Fe™ " + 5 AJe™™ + 5, Age™™ + 5 Fe™™ ) * —

n(1+v)Bm? = (Je™™ — Pge™ +5 fe™™ + S1eslrnh)*713—
ns,(n, +v)Com® = (fe™ — pFe™™ — LJe™ - s,ies"”")*% (3.40)

2 - _ _ 1
ns (n, +v)Dim” = (Fe mh_ g™ + Age h —-s5,Ae ‘“”’j’)*——

Where A 1s the common denominator

A=2] - 2ﬂg - lel - (1 - )em/’+sl”’h + ﬁ(1+ S{)emh—slmh

+(Ag + + sy (3.41)
( 3% FY1+s5))e” hbsymit_ F+A1-s e‘”’h—sl’”}’
! 1

Where the coefficients of the strength properties of the two layers are

_Elev] o mrv o mrv,  N-1 o NsK -

E1[1+v2] b I+v, 2 14, —SZKZ—SZ 5,K, =,
_ a(l-s,) g___(l-i—sl)+b(1—sz) Jz(l—sl)—b(l—sz)
2+a(l-s,) 24+a(l-s,) 24+a(l-s,)

Q= (NK,-K,)—a(l-s,K,)+ F[(NK, +K,)+a(l-5,K,)
(N+8K,))+b(1-5,K,)-g[(NK, +K,)+a(l-s,K,)]

(3.42)

3 (N =5,K,)=b(1-5,K,)-J[(NK, +K,)+a(l-s,K,)
(N +5,K,)+b(1-5,K,) - g[(NK, +K,)+a(l-5,K,)]

Substitute the coefficients 4,, B,,C,, D, and the coefficients of the strength properties of

the two layers into the equation of settlement, this equation becomes:

Jo (mr)[

1+
=,

w

ml

' —  (3.43)
— S1 (1 - I{1 )wF + U)e—mh—s]mh + ﬂyl (] _ Kl )emh—-s‘mh

+ 5 (1 _ K] )emh+slmh 5, (1 _ 1<1 )(F + /flg)e—mhﬂlmh :l* 1
A

As shown by Burmister, the values of the stresses and displacements beneath a

uniform load, F, applied to a circular surface (radius a), and for an arbitrary stress

o, =—mj,(mr),canbe obtained by applying the transformations
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-Pa j Jima) (m)dm  For a distributed load (3.44)
m
0

o

P I F(m)dm For a point load p
2y
in which F(m) represents the aforementioned stress and displacement relations.

The equation of surface settlement becomes

— +S1 (1 _ Kl )emlﬂ—slmh —S1 (1 _ Kl )(F'}“ﬂg)e-mmslmh
W= 1+ 4 PCIT =38 (1 - [{1 )(ﬁ«—' + ﬁ]k_’”h"ﬁ”’h +/1§'1 (1 _I(vl )emlp—xlmh . Jl (}’I’le
1 Evl 0 . 2]—2@—2/15‘1 _(1 _Sl )emh\‘-slmh +ﬂ(1 +Sl )emh—slmh m

l_._5_ (Ag +P‘)(1+S1 )e—m/&slm/x “W+l})(1 _Sl )e—mb—slmh_

*J(mp*dm  (3.45)

I+,

VV[ - P OaF Wlanisatropk:
1 rough interface
where Fwl . ... 1S the Factor of settlement for anisotropic elastic upper layer, for

rough interface

rough interface

The equation of settlement at the interface where Z =0 1s

W.,= —H—VJO (mr)[n(1+ vY(Am® — Bm?) + ns® (—n—il/)—z(sz — sz)}
E (1+v)

m.

Substituting the coefficients 4, B,,C,, D, and reorganize, the equation becomes

-(ps,K, +J +5,K, _ﬂg)emh
y — —mh
L5V g | TP T K B R AR = Ags KDe L L (3.46)
1 —(ﬂlel + /L]sl - ﬂsl —ﬂsl‘-Kl)e—xlmz

~(Fs, + Ags, — 5, — As K )e"™

W, =
T E

Applying the transformation

1=(BK +J +5 K, - fR)e™

© 2 smih

VVZ=1+V1 E)aj' =(Fis, +7gs, -, — 25K )e ’ *-]-*Jl(ma)*Jo(mr)*dm (3.47)

B o |~(B~J~Fs,K, - fFsk, —As K - AgsK)e™ | A

—(Bs, K, + s, - fs, — AsTK e ™™

1+v

WZ = 1 P OaF W2anisotropic
1 rough interface

where FW2 ... 1S the factor of settlement for lower anisotropic elastic layer, for

rough interfuce



rough interface

To ensure the correctness of these equations, the following checks were made.

In the case of homogeneous deposit the styess function becomes

@ =], (mr)(—Be™™ — De™™*) The coefficients 4, and C, must be equal to zero to
ensure the nullity of stress and displacement at infinite depth.

Applying the same previous procedure, the settlement of homogeneous deposit becomes

oLy, sk,

a 3.48)
E (1-9) P (
1
no+v ERVERRY)
where K = , and s:( n\ d J
1+v no—v

In the case of two layer system, the settlement of upper layer 1s

+ Sl (1 _ I<1 )emh-f—.ylmh
1+ © _ 1_ K F + ﬂ, e—m}H-slmh
vy Poaf 1 ( X 2) o « L
k| o | =8, (1=K )BF + e ™™™ 1 A
+ ﬁSl (1 _ Kl )em/z—s\mh

*

W, = *J,(mr)*J,(ma)*dm

1
m

If the Poisson’s ratio and modulus of elasticity for the both layers are equal, that means
homogeneous deposit throughout, then this equation reduces to the aforementioned
equation of homogeneous deposit.

That is when £, = £, &v; =v, the coefficients of the strength properties N will be equal tol

Eft+v,

N = ] =1, Consequently the other coefficientsa=F =J =0, g=b=1 and
Eft+v,]

A = f =0, then the equation of settlement will reduce to

1+v s(—=kye™= | 1 v _
W, = a Fl—*J (mr)*J (ma)*dm
| I Py {:—(1—s)e”’h”’"h -!;m o(mr)*J (ma)

For the displacement of surface at the center»=0=.J,(mn =1, the equation will reduce to

(V8]
[@))



(1 _ mhvsmh | ©
g 1+v poa[ s(1-k)e mh+sth* J,(ma) *
E ~(1-s)e 5 m
ma)

: : . i
As mentioned previously the integration I ,-L
0

dm =1, hence the equation of two layer
system reduces to the equation of homogenous deposit.

Second check on the validity of this equation has been made by comparing between
isotropic and anisotropic equation.

Equation of settlement of anisotropic upper layer can be written as follows

— +S‘ (l _ 1{l )emlﬁs‘mh "‘Sl (1 _[(v1 )(F+ ﬂg)e——mhﬂ*lmh

=2(1+V‘2)PaT -5, (I=K)@+ANe™ ™ +75, (1=K "™ |1 Ji(ma)
E T 2728205 — (1= 4 Fl4s e 2A1-1)

g+ P+ (4 A=)

m *J (mp*dm

That means the factor of settlement of anisotropic becomes

[ s (1=K e =, (1= K, )+ g™

P, <] | AUKAE A a1 K |, 1
anisotromi . 2 ] _ 2 @ _ 2 ﬂsl _ (1 _ Sl )emhé-slmh + ﬁ(l + Sl )emh-sxmh 2(1 _ VI)

| +(Ag+ F)(L+s)e™™ " — (B + A1 - s )™ |

*J,(mA*dm

When the degree of anisotropy (n=FE,/E, = E,/L ) equal one (1) that means the ratio

2 \2
of isotropy s = [ — ] equal one too. In this case the factor of settlement of
n

anisotropic should be reduced to the isotropic one

1,2
w, —g(l——z’—)POale

- isotropic
1 rough interface

W, = ”2(1—;,‘/—12)}) ol Wlanisotropic

1 rough interface
A check has been made for the case where n=1 and the Poisson’s ratio of lower and
upper layer are equal to 0.5. It is found that the settlement of anisotropic upper layer

when n=1 is equal to the settlement of isotropic elastic upper layer.

(93]
~



These verifications ensure the correctness of the aforementioned equations of anisotropic
elastic solid. The theory of two layer system of anisotropic elastic solid in this sense is
more general than the Burmister theory, in,the sense that it allows dealing with both
cases, isotropic and anisotropic and their combinations in a two-layer system.

For the case of a smooth interface, the boundary and continuity equations which must be
satisfied are expressed mathematically in the following equation.

Boundary conditions at the surface of the ground where Z = -h are

o, =-—mJ,(mr) Distribution of surface loading must be equal to the normal stress:

zm]

-mJ, (mr)[n1 A+v ) (Am’e™ + Bm*e™) +ns,(n +v, (Cime™™ + Dlmze’"“"')l = —mJ, (mr)

Shearing stress at surface 7,,,=0

mJ, (mr)[n1 A+v,)(4mPe™ —~ Bm*e™)+ns, (n, +v,(Cm*e™" - D, mze"”h)J =0
Continuity conditions at a smooth interface where Z=0 are

W.=W

ml m2?®

T

rzml

o =0, T

ot =0, s ..» = 0, and the coefficients 4, and C,

must be equal to zero at infinite depth.

Vertical settlements must be equal toW,, =W, ,
n1(1+v1)(A1m2 "Blmz) n, (1‘*"/2)('37””2)
1+v, J s _ J ‘ -
o(mr) 2 (1 +v) - o(mr) +n)Sz (n2+V2)(_D2m2)

E, +ms, —(—1;7)——((311712 ‘“D]mz) E, S Ad+v,)
1 p

Normal stresses are equal o,,, =0,
2 2
m(+v)(Am® +Bm’)+ }

=—mJ,(mr)\n, 1 +v,)B,m* +n,s,(n, +v,)D,m*
n1sl(nl +V|)(C1m2 +D]m2) 0 [ 2 2/ EPAUS) 2 b ]

-mlJ, (mr)\:

Shearing stress at the interface for upper layer is equal to zero T._, =0

rzml

mJ (mr)|n, (1+ v, ) Am? = Bim?) + s (n, +v,(Cym* = Dym®)|=0



Shearing stress at the interface for lower layer is equal to zero 7,_,, =0
mJ, (mr)l_n2 (I+v, )(—Bzm2 )+ nzszz (n, +v, )(—D2m2 )J= 0

From the above equations, the coefficients A4, B,,C,, D, were determined so as to satisfy

these boundary conditions

nl(1+VI)A1”12 —< Sl(l )emh Sl( —SlV)e_slmh +S1(1‘— S'[L )eslnlh) *
+ — l ] 1
I’ll (1 Vl )Bln/l2 = (Sl e—mh - Slge—mh - Sl(]e—sxmh t Sleslmh) *
n n, + — Z 7,~mh !] 1
1Sl( 1 Vl)Canz == ( €_ e”’h SII e—’"h _Sll;esln]h) k__

B} B} ; 1
ns, (n, +v)Dm* = (e™ —e™ —s Ve ™ + 5 Ve s‘m”)*X

where A is the common denominator

A=+2sU + 25V =25, — (1= 5)e™™™ ~U(1+5,)e™ 5™

+(1 - SlV)(l + s )e—mh+s]mh + (U _ S1V)<1 -5 )e—mh—s,mh

Where the coefficients of the strength properties of the two layers are

_E2[1+V1] Koty r o -mtv 8, —5,K,
_E[1+v] 14w Y R
1 2 1 2 22
_ 2c U= Ns;K,+c—sN +s,c
Ns, K, ~-c~sN+s,c Ns\ K, —c—sn+s,c

(3.49)

(3.50)

(3.51)

Substitute the coefficients 4,, B,,C,, D, and the coefficients of the strength properties of

the two layers into the equation of settlement, this equation becomes:

1+,

+ Sl (1 - [<1 )emh+51mh _ Sl (1 _ I<1 )(1 _ slV)e—m/HsImh
J,(mr)

w « L
El + Sl (1 —_ K} )(U _ S]V)e—mh—symh _ SIU(I _ ]<1 )emh—slmh A

ml

After applying the transformation, the equation of settlement becomes
+S1 (l _Kl )emlﬁ-slmh _Sl (] —Kl )(1 _Sl V)e—nzh+slmh
w1 p Jf +5,(1-K)U=s, V)e"’; —sU-K, )eh o i(ma)
E, o | 25U +2sV =25, —(1—5))e™ "™ =U(1+s, )™ ™
(1= /) )e ™ (U=, )e

*Jo(mr*dm

39
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I+,

Wl = P OaF WImzisotropic
1 smooth interface
where Fwl ... 1S the factor of settlement for anisotropic elastic upper layer, for

smooth interface

Smooth interface

The equation of settlement at the interface where Z = 0 is
2
W, = —I—W—L—‘-/-J0 (mr)| n(1+ vY(Am* — Bm?) + ns* M—(sz — Dm?*)
E (1+v) -

Substituting the coefficients 4,, B,,C,, D, and reorganizing, the equation of settlement of
the

interface become,

l+v
W, = B 1Jo(mr){

1

-Hﬂ—&m~mw“wﬁ—mm—m5m}l
A

— (3.54)
+ SIZV(I _ Kl )eslmh _ SIZV(I _ Kl )e—slmh

After applying the transformation, the equation of settlement becomes

+5,(1-K)1-U)"" —s5,1-K)1-U)e™
7, = bl +ST1-K)e™ ~ 21~ K )™ ACE
n2 E1 0 ’ 25 1 U+ 25 IV_ 2.5' - (l—'Sl )em}»—m.yh _ U(l _‘_'Sl )emh—m.qh m

|+ (=5 ) 1+5)e™ " (U-s V) 1-s5)e "

P OaF Wz anisotropic

1 smooth interface

*J,(mn*dm  (3.55)

w, =1+v1

where Fw?2 is the factor of settlement for anisotropic elastic lower layer, for

anisotropic
smooth interface

smooth interface
Furthermore, an attempt has been made to calculate the compression of anisotropic
upper layer, the theoretical results have been evaluated numerically and expressed in
basic influence curves, for rough and smooth interface at the center of the load, for a
various combinations of anisotropic and isotropic elastic materials (Chapter 4 ).

’

The compression of upper layer is easily found to be

C=W, -W,
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El
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anisotropi ¢
rough interface
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rough interface

1

— Fwl
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1

El
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1
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Pyakc
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1

— Fwl
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. Where Je

anisotropi ¢
rough interface

anisotropi ¢

smooth  interface 2(1 — Vl)

1

- Fw
rough interface 2(1 - Vl)

anisotropi ¢
rough interface

1

- Fw2
2(1-v,)

1
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anisotropi ¢
smooth interface
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1
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rough interfuce
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rough interface

anisolropi ¢ (3 5 7)
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smooth  interface



CHAPTER 4

NUMERICAL AND ERROR ANALYSIS

/
Infinite integrals involving products of Bessel functions are commonly encountered in

the analysis of the axisymmetric problem, as the current problem and like the problem

of an infinite plate resting on a linearly deformable medium. These integrals can be
rerepresented in the generalized form

I'= [F (e} () + 3 (), (o) (Be)ax @.1)
The ;umerical evaluation of this type is carried out by representing the integral as an
infinite series bounded by subsequent zeros of J,(fBx)and J, (cx)J, (fx) .

Integration which proceeds by one interval at a time is carried out by using a number of
Gauss-Legender quadrature points. The summation is terminated when the absolute

value of the partial integral is less than 0.01%, or until the following condition is satisfied

Integration of n” region__ <0.001 4.2)

> (Integration of n" region)
n=1

Another way of evaluating this integral could be as follows. The expressions of the

displacements of the surface of upper layer as mentioned before is

2A0l-v?), °t Numerator , |
( M )Poaj. LMETAIOT « %y \(ma)dm  for the center of a loaded circular

Wl = :
Denominator m

1 i 0
area
An analytical evaluation of the integrals is impractical if not impossible. However, in

order to obtain numerical solution, Burmister suggested that the reciprocal of the

denominator expression can be expressed as a series of exponential terms of the



Ao "e *“  where A,n,b,are constants. These terms may be multiplied by the terms in
: : N, 1 :
the nominator, so that the expression, (BJ *—J,(ma)dm becomes a sum of a series
m

of terms of the form A, @™ e * J,(ma)dm where A,,n,.b,, are constants, the
1 1 1 1 I

integrals A, I a "e™*J (ma)dm are standard integrals forms involving Bessel functions

OJ, a)ob” | \b* +a?
| " J (ma)dm = —(l]{l ——b—} 4.4)
5[ € (ma) m p m |

. . : E
Then the equations may be evaluated numerically for the required values ofv,,v,,—-,a

a"e™ J (ma)dm = —(~1)" [lj o { b } 4.3)

The accuracy of the values calculated in this manner depends primarily on the accurazlcy
N 1
of the approximation of D'(m) = ——
D(m)

2

If the error kept to a known value of ¢ by letting \/ I{ﬁ - D’(m)} dm < ¢ then the
m
0

total error of the approximation can be found

Y0, G YO i \/ ()2 5)

0

Since ¢ can be an arbitrary set, the order of approximation can be as precise as desired.
This procedure is a real painful trial and error, even though it has been used by
Burmister (1943) in his paper “Theory of stresses and displacements in layered system
and application to the design of airport runways”, Biot (1935) “Effect of certain
discontinuities on the pressure distribution in a loaded soil”, and Poulos (1967)
“stresses and displacements in an elastic layer underlain by rough rigid base”

This agonizing procedure to solve the integration was used at the time where no

efficient computers existed.

For our problem a small program in Cmap (an educational program created by Dr. K. H.



Concordia University) was adopted to evaluate these integrations numerically.

This program has a built in function that facilitates the programming work

Since the Bessel function represent a damped oscillatory load with the maximum
intensity at the origin, and since the amplitude of the oscillations decrease to zero with
increasing the variable, and because it is impossible to evaluate infinite integral
numerically, a finite upper limit has been chosen, the reminder integral will not affect
the accuracy of the result. The upper limit has been chosen by trial and error to be (350)
then the accuracy will be 0.1%. This program serves for all settlement cases of a layered

system, an elastic layer underlain by rough rigid base, two layers, and homogeneous

. : E,
deposits, and for both the center and the edge of the load, for a wide range of'v, ,E"—
I

andﬁ , and with a little change, this program could serve for the evaluation of
a

compression of the upper layer.
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Program in Cmap(1)
Settlement of isotropic elastic upper layer for the center and the edge of the load

main ()
{
v2=(0.5;
defmat(v1]8],0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.5);
defmat(ah[15],0.01,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7);
defmat (ee [6], 1, 2, 5, 10, 20,100);
numvi=8§;
numah=15;
numee=6;
r =0;
view (v2, numvl, numah, numee, r);
if (numvl! =8) {resizemat (vl [numvl]) ;}
if (numah! =15) {resizemat (ah [numah}) ;}
if (numee! =6) {resizemat (ee [numee)) ;}
view (v1, ah, ee);
zero (integral [numah, numeel);
/Iview (integral);
for (i=1; i<=numvl; i=i+1)
{ If(r==0) {print (*""Center") ;}

If(r! =0) {print (**"Edge") ;}

print (*"for vi=", v1 [i]);

print (**"  ""E2/E1 ");

for (t=1; t<=numee; t=t+1)

{ print (eeft]) ;}

for (j=1; j<=numah; j=j+1)

{

print (*'"h/a="", ah[j]);

for (m=1; m<=numee; m=m+1)

f
t

//claculation n, k, 1
n=ee[m]*(1+vl [i])/ (1+v2);
k= (1-n)/ (1+n*(3-4*v1 [i]));
I= ((3-4%v2)-n*(3-4*v1 [i]))/ ((3-4*v2) +n);

/lintegration
H(r==0) {
integral [j, m] =imteg(x, 0, 354, upf(x)/downf(x)*(1/x)*bessj (1, x/ah{j]));
}
If(r! =0) {
integral[j,m}=imteg(x,0,354,upf(x)/downf(x)*(1/x)*bessj(0,x/ah[j]) *bessj(1,x/ah[j]));

}

print (integral [j, m]);
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3
}
//plot(x, 1, 7, integ(y, 0.001, 200, upf(y)/downf(y)/y*bessj (1, y/x)));

)
upf (float x)

{

return exp (2*x) +4*k*x-k*1*exp (-2*x);

}
downf (float x)

{
return exp (2*x)-(I+k+4*k*x*x) +k*1*exp (-2*x);
}

The following Figures 4-1 to 4 -16 show the relation between the factor of settlement and

N E :
the ratios - andE—2 for rough interface at the center and the edge of the load, for
a i
Poisson’s ratio of the lower layer equal to 0.5 and for the upper layer equal to

0.1,0.15,0.2,0.25,0.3,0.35,0.4, and 0.5.
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Figure 4-1 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, = 0.1 & v,=0.5

}Center V2=0.5 & V1=0.15

1

0o |/

el /.
¥

0.7

06

|
05 — |
/ // | | —s—E2E1=2 |
04 // % ‘ ’ —&—E2E1=5
, | ——E2E1=10 |
03 2 = 2 ; L
% W _20-v)) B0 |
| W, = P,aFw , L
0.2 * £ 1 E2/E1=100{———
4 +
01 / | | |
04 | |
o 05 1 15 25 3 ,,35 4 45 5 55 6 65 7
hia y

Figure 4-2 Factor of settlement of an {sotropic elastic upper layer at the center of

the load,v, =0.15 & v,=0.5
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Figure 4-3 Factor of settlement of an isotropic elastic upper layer at the center of

the load, v, = 0.2& v,=0.5
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Figure 4-4 Factor of settlement of an,isotropic elastic upper layer at the center of

the load v, =0.25 & v,=0.5
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Figure 4-5 Factor of settlement of an isotropic elastic upper layer at the center of

the load,v, =03 &v,=0.5
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Figure 4-6 Factor of settlement of ar' isotropic elastic upper layer at the center of

the load,v, =035 & v,=0.5
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Figure 4-7 Factor of settlement of an isotropic elastic upper layer at the center of

the load,v, = 0.4 & v,= 0.5
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Figure 4-8 Factor of settlement of an isotropic elastic upper layer at the center of

the load,v, = 0.5 & v,=0.5
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Figure 4-9 Factor of settlement of an isotropic elastic upper layer, at the edge of

the load,v, =0.1 & v,=0.5
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Figure 4-10 Factor of settlement of an isotropic elastic upper layer, at the edge of

the load,v, = 0.15 & v,=0.5
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Figure 4-11 Factor of settlement of an isotropic elastic upper layer, at the edge of

the load,v, =0.2 & v,=0.5
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Figure 4-12 Factor of settlement of an isotropic elastic upper layer, at the edge of

the load,v, =0.25 & v,= 0.5
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Figure 4-13 Factor of settlement of an isotropic elastic upper layer, at the edge of

the load,v, =03 & v,=0.5
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Figure 4-14 Factor of settlement of an,isotropic elastic upper layer, at the edge of

the load,v, = 0.35 & v,=0.5
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Figure 4-15 Factor of settlement of an isotropic elastic upper layer, at the edge of
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the load,v, =04 & v,=0.5
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Figure 4-16 Factor of settlement of an isotropic elastic upper layer, at the edge of

-
!Edge V2=0.5& V1=0.5

the load,v, = 0.5 & v,=0.5

’

54




i %Center, frictionless interface V2=0.5 & v1=o.2|

1.1
1
09
208
o7 =
§ 06
805 74— e E2E1=1
B o4 —s—E2/E1=2
S 4 —a—E2/E1=5
g 03 / —%—E2/E1=10
*02 ‘/ / —x—E2/E1=20
04 Y4 | | ———E2/E1=100
84 L | T
o 05 1 15 2 25 3 35 4 45 5 55 § 65 7

\ h/a J

Figure 4-17 Factor of settlement for a frictionless interface, at the center of the load

v,=0.2 and v,=0.5
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Figure 4-18 Factor of settlement for aArictionless interface, at the center of the load

v,=0.5 and v,=0.5
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Figure 4-19 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, = 0.5 & v,=0.5, for £, > £,

: Center V2=0.5, V1=0.4, E1>E2

11
. : :
—+—E2E1=1
! @\V’ " —a—E2/E1=05 | ]
09 | —4—E2/E1=02 |
| 2(1-12) i
2 08 5 AW = L P aFw —~E2/E1=01 ||
B \\\\\ \-\ | | | o | _%—E2/E1=0.05
' o7 | | ‘ 2  — E2/E1=0.01
; 3 . ‘ ——E2E1=0.
g 06 \\\\\ j ‘ ‘ ! f
ol AN B — —
g 04 ‘} \\\\:\h\‘ } | ‘
S ] —
. i ‘(\)L\L | P b L
e A o I
i N ‘ | ‘ | : |
O . : i)
0 05 1 1.5 2 25 3 35 4 45 5 55 6 6.5 7
—_ ha J

Figure 4-20 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, =04 & v,=0.5, for £, > £,
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Figure 4-21 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, =0.35 & v,=0.5, for £, > £,
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Figure 4-22 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, =03 & v,=0.5, for £, > £,
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Figure 4-23 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, =0.25 & v,=0.5, for £, > £,
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Figure 4-24 Factor of settiement of an isotropic elastic upper layer, at the center of

the load,v, =0.20 & v,=0.5, for £, > E,

58




"ngenter, V2=0.5, V1=0.15. E1>E2

1.2

| | ]
| } —+— E2/E1=1
1 , ¢ —s—E2/E1=05 —¢
2 ‘ 2 —a—E2/E1=02
_ -V ——E2/E1=0.1
08 w, = 5 Pal'w —%— E2/E1=0 .05
k\\-\’\t\ 2 —— E2/E1=0.01
| |

A —— L !
MNSUER T
! \Q\\A

o
'S

Factor of settlement Fw
o <
[e2]

o
[

0 05 1 1.5

L | hia | | Yy

Figure 4-25 Factor of settlement of an isotropic elastic upper layer, at the center of
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the load,v, =0.15 & v,=0.5, for £, > £,
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Figure 4-26 Factor of settlement of an isotropic elastic upper layer, at the center of

the load,v, =0.1 & v,=0.5, for £, > £,
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/: Center, V2=0.5, V1=0.1, E1>E2, smooth interface
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Figure 4-27 Factor of settlement for a frictionless interface, at the center of the

load,v, =0.1 & v,=0.5, £, > F,

Center\2=0.5, V1=0.5, E1>E2, smooth interface
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Figure 4-28 Factor of settlement for a frictionless interface, at the center of the

load,v, =05 & v,=0.5, £, > E,
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Program in Cmap (2)
Settlement of anisotropic elastic upper layer for the center and the edge of the load

main()
{
v2=0.5;
n1=1.0000001;
n2=1.0000001;
defmat(v1[8],0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.5);
defmat(ah[15],0.01,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7);
defmat(ee[6],1,2,5,10,20,100);
numvi=8§;
numah=15;
numee=>6;
r=0;
view(v2,numvl,numah,numee,r);
if(numv1!=8){resizemat(vl[numv1});}
if(numah!=15){resizemat(ah[numah]);}
if(numee!=6){resizemat(ee[numeej);}
view(vl,ah,ee);
zero(integral[numah,numee]);
/Iview(integral);
for(i=1;i<=numvl;i=i+1)
{
if(r==0){print(* " Center");}
if(r!'=0){print(*"""Edge"");}
print(*''for vi=",v1{[i});
print(/\/\" ","EZ/EI ");
for(t=1;t<=numee;t=t+1)

{ print(ee[t]);}
for(j=1;j<=numah;j=j+1)
{

print(*'""h/a=",ah[j});
for(m=1;m<=numee;m=m+1)

{

t

/fclaculation N,k,L,s1,s2,A,B,F,g,J,V,W
N=ee[m]*(1+v1[1])/(1+v2);
k=(n1+v1[1]D/(1+v1[1]);
L=(n2+v2)/(1+v2);
sI=((1-v1[1]*v1[1])/(n1*nl1-v1[1]*V1[1]))*0.5;
s2=((n2-v2*v2)/(n2*n2-v2*v2))*0.5;
A=(N-1)/(s2*L-s2);
B=(N*k*s1-s1)/(s2*L-s2); ’
F=(A*(1-s2))/(2+A*(1-s2));
g=((1+s1)+B*(1-s2))/(2+A*(1-s2));
J=((1-s1)-B*(1-s2))/(2+A*(1-s2));
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V=((N*k-L)-A*(1-s2*L)+F*((N*k+L)+A*(1-s2*L)))/((N+s1*L)+B*(1-s2*L)
-g*((N*k+L)+A*(1-s2*L)));
W=((N-s1*L)-B*(1-s2*L)-J*((N*k+L)+A*(1-s2*L)))/((N+s1*L)+B*(1-s2*L)-
g*((N*k+L)+A*(1-s2*L)));
//integration
if(r==0){
integral[j,m]=imteg(x,0,354,upf(x)/downf(x)*(1/x)*bessj(1,x/ahj]));
}
if(r!=0){
integral[j,m]=imteg(x,0,354,upf(x)/downf(x)*(1/x)*bessj(0,x/ah[j})*bessj(1,x/ah[j]));

}
print(integral{j,m]);

}
}
b
/Iplot(x,1,7,integ(y,0.001,200,upf(y)/downf(y)/y*bessj(1,y/x)));

}
upf(float x)

{

return -(-s1*(1-k)*exp(x+s1*x)-W*s1*(1-k)*exp(x-s1*x)+(W*F+V*J)*s1*(1- k)*
exp(-x-s1*x)+HF+V*g)*s1*(1-k)*exp(-x+s1*x));

!

s
downf(float x)

{

return 2*%(1-v1[i])*(-2*W*g-2*V¥*s1+2*J)-exp(x-+s1*x)+W*((1+s1))*exp(x-s1*x)
HV*g+F)*((1+s1))*exp(-x+s1*x)-(W*F+V*J)*exp(-x-s1*x);

}

}

This program allows calculation of the settlement for both isotropic and anisotropic

layers. The following figures show the relation between the factor of settlement and the
ratios g- andé for anisotropic elastic upper layer resting on elastic half space, the
reverse case, arid anisotrppic two-layer, for both rough and smooth interfaces at the
center of the load. Because of the shortage of time to do some experiments to determine
the properties of the anisotropic materials, the results of the Cauwelaert and Cerisier
(1982) experiment have been adopted. Therefore an anisotropic layer has been chosen to

be material number 1 (natural sand, 0/Imm), and material number 3 (crushed stone +

natural sand), see Table (2-1),
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§Settlem ent of anisotropic two-layer, V2=V1=0.64, n1=n2=3.15, at the center for rough

interface
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Figure 4-29 Factor of settlement of an anisotropic two-layer, at the center of the
load for a rough interface, v,=v,=0.64, n1=n2=3.15
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Figure 4-30 Factor of settlement of an ’anisotropic two-layer, at the center of the

load for a smooth interface, v,=v,=0.64, n1=n2=3.15
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v2=0.37 n2=2.4 for rough interface

/' Settlement of anisotropic upper layer v1=0.64 n1=3.15, resting on anisotropic lower layer
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Figure 2-31 Settlement of an anisotropic elastic upper layer v,= 0.64, n1=3.15

resting on an anisotropic elastic lower layer v,=0.37, n2=2.4 for a rough interface

(Natural sand over crushed stone + natural sand)
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Figure 2-32 Settlement of an anisotropic elastic upper layer v,=0.64, n1=3.15

resting on an anisotropic elastic lower layer v,=0.37, n2=2.4 for a smooth interface

(Natural sand over crushed stone + natural sand)
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”;Settlem ent of anisotropic upper layer V4=0.37, n1=2.4, resting on anisotropic iower layer

V2=0,64, n2=3.15, for rough inter face
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Figure 2-33 Settlement of an anisotropic elastic upper layer v,= 0.3, n1=2.4 resting

on an anisotropic elastic lower layer 1,=0.64, n2=3.15 for a rough interface

(crushed stone + natural sand over Natural sand)
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Figure 2-34 Settlement of an anisotropic elastic upper layer v,= 0.3, n1=2.4 resting

on an anisotropic elastic lower layer 1,=0.64, n2=3.15 for a smooth interface

(crushed stone + natural sand over Natural sand)
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Figure 4-35 Factor of settlement of an anisotropic elastic upper layer resting on
an isotropic elastic half space,v, = 0.64 & v,= 0.5, n1=3.15, n2=1, at the center of the

load, for a rough interface
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Figure 4-36 Factor of settlement of an jsotropic elastic upper layer resting on
an anisotropic elastic half space, v, = 0.5 & v,= 0.64, n1=1, n2=3.15, at the center of

the load, for a rough interface
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Figure 4-37 Factor of settlement of an anisotropic elastic upper layer resting on

An isotropic elastic half space, v, = 0.64 & v,= 0.5, n1=3.15, n2=1, at the center of

the load, for a smooth interface
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Figure 4-38 Factor of settlement of an ,isotropic elastic upper layer resting on

an anisotropic elastic half space,v, = 0.5 & v, = 0.64, n1=1, n2=3.15, at the center of

the load, for a smooth interface
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V1=0.64, n1=3.15, V2=0.5, n2=1, for rough interface, E1>E2
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Figure 4-39 Factor of settlement of an anisotropic elastic upper layer resting on

an isotropic elastic half space, v, = 0.64 & v,= 0.5, n1=3.15, n2=1, at the center of the

load, for a rough interface, £, > £,

{Anisotropic upper layer resting on isotropic iower layer, V1=0.64, n1=3.15 & V2=0.5, n2=1, )
for smooth interface, E1>E2
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Figure 4-40 Factor of settlement of an anisotropic elastic upper layer resting on

an isotropic elastic half space, v, = 0.64 & v, = 0.5, n1=3.15, n2=1, at the center of the

load, for a smooth interface, £, > F,
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Figure 4-41 Factor of settlement of an anisotropic two-layer, at the center of the

load for a rough interface, v,=v,=0.64, n1=n2=3.15, £, > F,

. flsotropic elastic upper layer resting on anisotropic elastic lower layer V1=0.5, n1=1&
l V2=0.64, n2=3.15 for rough interface E{>E2
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Figure 4-42 Factor of settlement of an jsotropic elastic upper layer resting on

an anisotropic elastic lower layer,v, = 0.5 & v,= 0.64, n1=3.15, n2=1, at the center of

the load, for a rough interface, £, > E,
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K Factor of compression of anisotropic upper layer resting on isotropic elastic lower layer,
for rough interface
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Figure 4-43 Factor of compression for an anisotropic elastic layer v,=0.64, n1=3.15

resting on elastic half-space v,=0.5, n2=1, for a rough interface.
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rough interface
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Figure 4-44 Factor of compression for an anisotropic elastic layer v, =0.64, n1=3.15

resting on elastic half-space v,=0.2, n2=1, for a rough interface.
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Figure 4-45 Factor of compression for an anisotropic elastic two-layer, rough

interface (1,=0.64, n1=3.15, v,=0.37, n2=2.4

The following checks on the correctness of the influence curves were made

1.

b2

for h/a approaching zero that is, with /2 very small the deposit becomes a
homogenous one all of layer (2), (for v,=v,=0.5) the settlement coefficient

reduces numerically to the value of £1/F£2 that the equation of settlement

reduces to Boussinesq equation for lower layer as would be expected.

W:2(1—vf)*_[?_1=2(1—vf)
L, E, L,

when the ratio E2/Elequal to infinity in all diagrams, and for the ratio h/a equal
zero, (the upper layer does not exist and the load is resting on the strong lower
layer), the settlement is equal to zerd as would be expected.

when the ratio h/a tends to infinity, that is either with (a) very small or /4 very large,
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the deposit becomes a homogeneous one all of layer number (1), the factor of
settlement then tends to unity for isotropic elastic diagrams, as it should be.

. For the case of £1>E2, and when £1 and the ratio h/a are equal to infinity that is with A
very large, the deposit becomes a homogeneous one all of layer number (1), the factor
of settlement tends to zero as would be expected (figure (4-19)).

. If the contact between the layers is perfectly smooth interface, thé settlement
increases.

. Figure (4-38) shows a factor of settlement of isotropic elastic upper layer resting on
anisotropic elastic half space,v, = 0.5 & v,= 0.64, n1=1, n2=3.15, when the ratio h/a
tend to infinity, that is either with (aj very small or / very large, the deposit becomes
a homogeneous one all of layer number (1), the factor of settlement then tends to

unity as would be expected.
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CHAPTER 5

CONCLUSIONS
5.1 Conclusion
The fundamental principles of isotropic and anisotropic elastic two layer system is
presented, the displacement and the compression of the upper layer is computed
where the upper layer is more compressible than the lower layer, under a uniformly

loaded circular area, for a wide range of Poisson’s ratio v,, modulii of elasticity
E, / E, and the thickness of the upper layer over the radius of the loaded circular area

h/a and is presented in the form of influence curves.
Based on the results, the following can be concluded:

1) The cross-anisotropy with a plane of isotropy coincides with the plane of the load,
which is characterized by three independent elastic constants, suggested as an
improved mathematical model of natural soil deposit. The results of the
application of the theoty of elasticity on a two-layer system of a cross-anisotropic
material has shown that the current application is more general than Burmister
theory in the sense that it allows to deal with both materials, isotropic and
anisotropic.

2) depending on the result of settlement of two-layer system, compression of upper
layer, is computed and is presented in the form of influence curves to examine
the role of a deep deposit on the compression of overlain subgrade, these
compression’s influence curves of anisotropic elastic upper layer show that the

4

compression increases owing to an increase in the stiffness of the lower deep

deposit.

73



5.2 Recommendation for further research

As they say “no one believes the theoretician, except the theoretician himself. Everyone

believes the experimentalist, except for the experimentalist himself.” Therefore

1y

2)

Experimental investigation should be conducted to investigate the correctness and
the validity of the current application.

Compaction, which consists in a reduction of the void content principally in the
vertical direction leads to an increase of the angle of internal friction, Thus to

an increase of the ratio K,/ K, and thus to an increase of the degree of

anisotropy n. Further investigation could be conducted to study the relation

between compaction and the degree of anisotropy n.
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