A Performance Evaluation of Multiplexer Scheduling

Algorithms

Zhao Chen

A Thesis
n
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

November 2003

© Zhao Chen, 2003

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91011-3
Our file Notre référence
ISBN: 0-612-91011-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

ABSTRACT

A Performance Evaluation of Multiplexer Scheduling Algorithms

Zhao Chen

In the future, Broadband Integrated Services Digital Network (B-ISDN) is expected
to serve voice, video, data and other signals in a single network. Asynchronous Transfer
Mode (ATM) and Internet have emerged as two competing networking architectures for
the realization of B-ISDN. ATM and Internet are connection-oriented and connectionless
packet-switching technologies respectively. A main roadblock in this integration is how
to meet Quality of Service (QoS) requirements of different services. Real-time traffic
such as voice and video are delay sensitive and loss tolerant while data is usually loss
sensitive and delay tolerant. Thus there is a need to provide support for service
differentiation in both network architectures. An important network device for service
differentiation is the scheduling algorithms implemented at the switch and router queues.

The objective of this thesis has been to provide a comprehensive performance study
of these scheduling algorithms. The main scheduling algorithms are First In First Out
(FIFO), Priority Queueing (PQ), Fair Queueing (FQ) and Weighted unnd Robin (WRR)
service disciplines. Several derivatives of these algorithms were introduced with varying
efficiency and complexity. We compare these algorithms and their derivatives with
respect to mean message delay, probability distribution of delay and call blocking
probability performance measures. It is known that mean delay is independent of service
discipline if service doesn’t depend on message size. We observe that service in both PQ

and FQ may be made message size aware and we are able to obtain mean message delay

I

results very different than FIFO service discipline. The WFQ algorithm has the desired
property of isolating the service given to each class of traffic from the others. However,
implementation of WFQ is complex and it doesn’t scale well with the number of traffic
flows. WRR is much simpler and it is known to behave similar to WFQ. Our study shows
that the probability distribution of message delay under WRR is very close to that of
WFQ. Thus WRR may be preferred to WFQ in many situations. We also study call
admission control under different scheduling algorithms and present call blocking
probabilities.

As the Internet backbone speed increases, the users are demanding higher throughput
from the network. However, TCP congestion control algorithm stands in the way of
meeting these demands. Among the proposed solutions are to modify the congestion
control algorithm and to increase the allowed message size in the network. The first
solution results in very large window sizes that will further increase the already heavy
processing load of the routers. However, both solutions have the common drawback that
they fail to protect low-throughput users from the high-throughput users. In this work, we
propose that low and high throughput traffic queues up separately and then use a WFQ or
WRR server to protect the bandwidth share of low-throughput users. The simulation

study shows satisfactory results for both types of users.

v

Acknowledgments

I would like to express my sincere gratitude to my thesis supervisor for his
invaluable guidance, encouragement and help throughout the entire course of this work.

I also would like to appreciate all my friends for their encouragement and moral
support.

Finally, I wish to thank my family for their continuous support and encouragement

through every step of my life.

Table of Contents

LIST OF FIGURES ...uuiiiereietetesiecneeseresessessesseessessesssssssssossonsessessssnsessossesnsensanses X
LIST OF TABLES ... ivtitriireneracnaennessenesesseesesissossorsesssssssssnsessossessesssssesessensan XV
LIST OF ABBREVIATIONScotrttrerreeeerenreseesessessscsessssssenssssasessssssessenensans XVI
CHAPTER 1 INTRODUCTION .ucuieeerecrenreneereenesressonsessssesessssecssesssssessenssssnsenssnns 1
1.1 EVOLUTION OF COMPUTER NETWORKS.......cce v iueioeieiorereer e ees e l
1.2 THE NEED FOR QUALITY OF SERVICE........c.eeiot it eeee e eeeeeee oo 3
1.2.1 The Concept of QOS......ccouiioiioiaeiaieeeeeeeeee e, 4
1.2.2 Quality of Service PAramerterscccc..oocooioieieeeeeeeeeeeeeeeeeeeeeeeee 4

1.3 ATM NETWORKS AND QOS MECHANISMS.......ovteeteoe e 5
1.3.1 The Asynchronous Transfer Mode (ATM)...............cc.ccoovovoeeeeeeoee 5
1.3.2 Quality of Service in ATM REIWOTKScoocooviiioeeeeeeeeeeeeeeeeee 6

1.4 IP NETWORKS AND QOS MECHANISMSoveeeeeeeeeee oo 7
Lo d TP NEIWOTKS ..o e 7
1.4.2 Integrated ServiCes.............ccccuuimiimeeeeeeee e 8
1.4.3 Differentiated SErvicesccooummeiiieiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeee . 9

1.5 PACKET SCHEDULER ..ottt 11
1.6 THE OBJECTIVES OF THE WORK ..ottt 13
1.7 OUTLINE OF THE REST OF THE THESISoutiviiueeeeeeeeeeeeeeeeeeeeeees oo e 14
CHAPTER 2 SCHEDULING ALGORITHMSouooovenieieeeereecsenesensssessssessesses 16
2.1 BACKGROUNDooiiiiitiittitieie ettt et ee e 16

2.2 FIRST IN AND FIRST OUT (FIFO) ..ot 18

2.3 PRIORITY QUEUEING (PQ) .eeiiioiiiie et 19
2.4 FAIR QUEUEING (FQ) ...eoiiiiiiiiee e 21
2.4.1 Fair Queueing (FQ) ettt et e tr et et ntereeae s et tnneeraeaaeeaeetreeae et 21
2.4.2 Processor Sharing — based Fair Queueing (PS-based FQ)....................... 23
2.4.2.1 Bit Round Fair Queueing (BRFQ)cc.oooiiiiioiieeeeeeeeeeee 23
2.4.2.2 Weighted Fair Queueing (WFQ)............ccooiii i, 26
2.4.2.3 Worst-case Weighted Fair Queueing (WF” Q)cooovioiorveeeenn, 28
2.4.2.4 Worst-case Weighted Fair Queueing+ (WEF> Q4)..oovvoovoioeeeee 29
2.4.2.5 Self-clocked Fair Queueing (SCFQ)c.ooovoioiooeeeeeeeeeeeeeeee 30
2.4.3 Round Robin — based Fair Queueing (RR-based FQ)ccooccveevveiiii. 31
2.4.3.1 Weighted Round Robin (WRR)ocooooi 31
2.4.3.2 Deficit Weighted Round Robin (DWRR) ..., 32

CHAPTER 3 PERFORMANCE ANALYSIS OF SCHEDULING ALGORITHMS

... 36
3.1 SYSTEM MODEL DESCRIPTIONccuttuiiitiaiieaenseeiensssesee s 36
3.2 SOURCE MODEL DESCRIPTIONcccitiitiininuiiniaeieiaieeete e, 37

3.2.1 The Binary Markov On/Off Traffic Modelcccocoooveeveaeeeearn.. 37
3.2.2 Source Model Par@meters..................c.ocoeeeeeoeeeeeeieeeeeeeeeeeeeeeeeeeee, 38
3.3 SIMULATION PROGRAM ...ttt 40
3.3.1 Introduction of the Simulation Program and Parameter Setting 40
3.3.2 Class Diagram of the Simulation Program......................cocccocoveeeevnn.... 42
3.3.3 Simulation FIOW CRAFT.........c.cccoooeroiiieeieieeeeeeeeeeeeeeeeeeeeeeeesan 44

3.3.4 Performance Measures and Statistic Collection..................c..cocooueeueuer.... 49

3.4 SIMULATION RESULTScoiiiiiiiiioiiiaiiint ettt 51
3.4.1 Mean MesSage Delaycccoovovivmiiiiiiiiioiiieeeies e, 52
3.4.2 Mean Message Delay of Different Classescc.cocoooeieceeceeeeeann. 56
3.4.3 Standard Deviationccoccuieeeioiiioeeeeeee e 64
3.4.4 Probability Distribution of Message Delaycccc.ccooveviuveeacin.. 66
3.4.5 The Probability Distribution of Message Delay of Different Classes........ 69
3.4.6 Comparison of WFQ and WRRccooooieieeiii oo 74
3.4.7 Call Admission CORIFOL.........c..c..c.ooiiveieeieiceieeeeeeee e 76

CHAPTER 4 A PERFORMANCE STUDY OF SCHEDULING ALGORITHMS

WITH TCP CONGESTION CONTROLcoinresrnrnrererrrrrnessessrseseseseesessesessesces 80
4.1 TCP CONGESTION CONTROL ALGORITHMoouiiiiiiioiiiieiiieiieeee e, 80

G LA TCP FIoW CORFOL ..o 80
4.1.2 TCP Retransmission Strategy..................... e 83

4.2 SIMULATION PROGRAM ...ttt . 84
4.2.1 Simulation Model and Parameters Setting....................c..cccvovevvereeeeenennn. 84
4.2.2 Class Diagram of the Simulation Program......................c..c..ceceeveereennr... 85
4.2.3 Simulation FIOW CRAFEc..ccc.oooooiieeie oo 88

4.3 SIMULATION RESULTS. ..ottt ettt 90

4.4 THE PERFORMANCE OF TCP CONGESTION CONTROL ALGORITHM OVER HIGH-SPEED

TRANSMISSION LLINKS ...ttt 98
CHAPTER 5 CONCLUSIONS AND FUTURE WORKuooiiteeeeeeerveeessnssssens 113
5.1 CONCLUSIONS ... e 113

5.2 FUTURE WORK ..ottt eeeeeee e e e e e e as et ataeaaeeaaeaessesear s esseaanss 115

REFERENCES ..uioiittinieitininsesisnsnssnisasssisnisssssssssssssassnsssssssasasssssasonsassassss 116
APPENDIX PSEUDO CODE FOR SCHEDULING ALGORITHMS.............. 120
L. First In First Out (FIFO)occooiiiiiiiiiii e 120
2. Priority Queneing (PQ)......cccoiiiiiiiiiiiiiii i 121
3. Fair Queueing (FQ) ..o 122
4. Bit Round Fair Queueing (BRFQ)c.ccccciviiiiiiiieeieeiie e 123
5. Weighted Fair Queueing (WFQ)......ccooooeiioeieeeoeeeeeeeeeeeeeeeeeeaen 124
6. Worst-case Weighted Fair Queneing (WFQ).......ccooveoeeeoeiieeeeeeeeeen 125
7. Worst-case Weighted Fair Queueing+ (WFQ+) ..ccocoooiiiiiiiieiiieciieeee 125
8. Self _clocked Fair Queueing (SCFQ) ...c..cccoooiiiiiioioeoeeeeeeeeeeee 125
9. Weighted Round Robin (WRR) ..ot 126
10. Deficit Weighted Round Robin (DWRR)c..ccoooviiiiiiiiiiiiieieee 127

IX

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:

Figure 3.9:

List of Figures

A General Structure Inside a Router..........ccoocioi i I
Packet Scheduler Model ..., 12
FIFO MoOdel......ooiii e 18
PQ model ..o 20
Fair Queueing model ...t 22
Deficit Round Robin Step 1. 33
Deficit Round Robin Step 2. ..o 33
Deficit Round Robin Step 3. ..., 34
A multiplexer with multiple queues and a single server 37
On-Off Markov Source Model ..., 39
Class Diagram of the Simulation.................. 42
Flow Chart of the Simulation ... 45
Flow Chart of a Simulation Run............c.ccooii, 46
Flow Chart for Message Generation in a SIot ..., 47
Mean message delay comparison of FIFO, PQ and FQ algorithms..... 54

Mean message delay comparison of the PS-based queueing algorithms54

Mean message delay comparison of RR-based queueing algorithms .. 55

Figure 3.10: Mean message delay for each class of traffic under FIFO 58
Figure 3.11: Mean message delay for each class of traffic under PQ....................... 59
Figure 3.12: Mean message delay for each class of traffic under FQ........................ 59

X

Figure 3.13:

Figure 3.14:

Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:

Figure 3.25:

Figure 3.26:

Figure 3.27:

Figure 3.28:

Figure 3.29:

Mean message delay for each class of traffic under BRFQ 60

Mean message delay for each class of traffic under WFQ, WF*Q, WF*Q +

... 60
Mean message delay for each class of traffic under SCFQ................... 61
Mean message delay for each class of traffic under WRR.................... 61
Mean message delay for each class of traffic under DWRR................ 62
Mean message delay for each class of traffic under WFQ 62
Mean message delay for each class of traffic under WRR.................... 63
Mean message delay for each class of traffic under DWRR................. 64
Standard deviation comparison of FIFO, PQ and FQ algorithms 65
Standard deviation comparison of PS-based queueing algorithms 65

Standard deviation comparison of RR-based queueing algorithms....... 66
Probability distribution comparison of the message delay of FIFO,PQ, FQ
ALZOTTTNIMNS .o e 67
Probability distribution comparison of the message delay of PS-based
queueing algorithms ... 68
Probability distribution comparison of the message delay of RR-based
queueing algorithms 68

Probability distribution of the message delay for each class of traffic under

XI

Figure 3.30:

Figure 3.31:

Figure 3.32:

Figure 3.33:

Figure 3.34:

Figure 3.35:

Figure 3.36:

Figure 3.37:

Figure 3.38:

Figure 3.39:

Figure 3.40:

Figure 3.41:

Figure 4.1:

Probability distribution of the message delay for each class of traffic under

Probability distribution of the message delay for each class of traffic under

WEQ, WEF?Q, WF? Q 4 .o 72
Probability distribution of the message delay for each class of traffic under
SCFQ ettt ettt 72
Probability distribution of the message delay for each class of traffic under
WRR ettt 73
Probability distribution of the message delay for each class of traffic under
DWRR L. et 73
Mean message delay under WFQ and WRR ..., 75

Mean message delay for each class of traffic under WFQ and WRR ... 75
Probability distribution of message delay for each class of traffic under
WEFQ and WRR ... 76
Probability of source blocking versus the probability of new source

F20S 11 18T | RSOOSR 78
Probability of source blocking for each class of traffic with different
INESSAZE SIZES «nniiiiiiiiieiitie ettt e e eee e e et tee et eeaanee e s ereesneeeeasaeaesneeeeanaeeeannens 78

Probability of source blocking for each class of traffic with different loads

XII

Figure 4.2:
Figure 4.3:
Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:
Figure 4.9:
Figure 4.10

Figure 4.11

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.17:

Figure 4.19:

Figure 4.20:

Figure 4.21:

Class Diagram of Simulation Program.............ooi 86
Flow Chart of STmulationccoccciiiiiiiiiiiicceccee e 89
Mean message delay of RT traffic versus its load under PQ and WRR 93
Standard deviation of RT message delay versus its load under PQ and WRR
... 94
Probability distribution of RT message delay under PQ and WRR 94
Mean transmission time of TCP traffic versus RT traffic load under PQ and
WRR ettt 95
Probability distribution of TCP transmission time under PQ and WRR95
Throughput of TCP traffic versus RT traffic load............cccoocooo. 96
Mean RT message delay versus its load at the router............................ 96

Probability of TCP message loss versus RT traffic load at the router under

PQand WRR .o 97
Probability of TCP message loss versus RT traffic load with different buffer
SIZES UNAET PQ e 97
Probability of TCP message loss versus RT traffic load with different buffer
sizes under WRR L. 98
Simulation Model ..., 100
Throughput of class 1 versus the traffic load of class 2 103
Throughput of class 1 versus traffic of class 2 under different service rate
... 104
Simulation Model ... 105
Throughtput versus service rate of class 2 traffic........cccooceiecennni. 106

XTI

Figure 4.22:
Figure 4.23:

Figure 4.24:

Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:

Figure 4.30:

Figure 4.31:

Figure 4.32:

Average round trip time of class 2 traffic versus its service rate......... 107
Probability of message loss for class 2 traffic versus its service rate.. 107
Message loss probability of class 2 traffic due to buffer overflow versus its
SEIVICE TALE ...ttt et et e e e et eene 108

Probability distributions of window sizes for class 2 service rate of 0.9108

Average window size for class 2 traffic versus its message size......... 109
Throughtput versus service rate of class 2 traffic......... e 110
Average round trip time of class 2 traffic versus its service rate......... 110

Probability of message loss for class 2 traffic versus its service rate.. 111
Message loss probability of class 2 traffic due to buffer overflow versus its
SEIVICE TALE ...euiiiiiiiriciiie ittt sttt e e e e saneeens 111
Probability distributions of window sizes for class 2 service rate of 0.9112

Average window size for class 2 traffic versus its message size......... 112

XIvV

List of Tables

Table 3. 1 : Confidence intervals for the simulation results presented in Fig.

3.7,3.8and 3.9 for p=0.6 ...ccoooiiiiiiiii e

XV

ABR
AF
ATM
BREFQ

B-ISDN

CBR
CLR
DS
DWRR
EF
FIFO
FQ
FR
GPS
Gbps
GFR
IPP
ITU
IETF

IS

List of Abbreviations

Available Bit Rate

Assured Forwarding

Asynchronous Transfer Mode

Bit Round Fair Queueing

Broadband Integrated Services Digital Network
Bit per second

Constant Bit Rate

Cell Loss Rate

Differentiated Service

Deficit Weighted Round Robin
Expedited Forwarding

First In First Out

Fair Queueing

Frame Relay

General Processor Sharing

Gigabit per second

Guaranteed Frame Rate

Interrupted Poisson Process

International Telecommunications Union
Internet Engineering Task Force

Integrated Services

XVI

ISA
Kbps
LAN
LB
Mbps
MMPP
PHBs
PQ
QoS
RT-VBR
RSVP
SLA
SCFQ
UBR
WAN
WEQ

WRR

Integrated Services Architecture
Kilobits per second

Local Area Network

Leaky Bucket

Megabits per second
Modulated Poisson Process
Per Hop Behaviors

Priority Queueing

Quality of Service

Real-time Variable Bit Rate
Resource Reservation Protocol
Service Level Agreement
Self-clocked Fair Queueing
Unspecified Bit Rate

Wide Area Network

Weighted Fair Queueing

Weighted Round Robin

XVII

Chapter 1

Introduction

In this decade, dramatic changes have been taking place in communication
networking techniques. High-speed networks now dominate both the wide-area (WAN)
and local area network (LAN) markets. The advent of high-speed networking has
introduced opportunities for new applications such as video conferencing, scientific
visualization and media imaging and it is in turn driven by the popularity of those

applications.

1.1 Evolution of Computer Networks

Computer networking involves the two fields of the communication and computer.
On the one hand, communication networks provide the necessary means for the data
transmission and exchange between computers; on the other hand, digital computation
technology is used in the telecommunication technology and improves the performance
of communication networks.

Circuit switching and packet switching are two different technologies that evolved
over a long period of time. Public telephone system is based on the circuit switching,
which involves three phases: circuit establishment, data transfer and circuit
disconnection. In circuit switching, channel capacity is dedicated for the duration of the
connection, even when no information is being sent. Circuit switching is a good solution
for voice, which has a relatively continuous flow of information. However, it is not a

good solution if the information is bursty as the case of data. That intermittent type of

transmission causes the low utilization of the circuit-switched connection. In addition,
because the data transmission rates in the computers and terminals are different, it is
difficult to communicate between different types of terminals.

To overcome the shortcomings of circuit switching, packet switching technology has
been developed for data exchange. Information is sent in packets, and each packet has a
header with the destination address. A packet is passed through the network from node to
node until it reaches its destination. Compared with circuit switching, packet switching
has the following advantages:

¢ Bandwidth efficiency is greater. A single node-to-node link can be dynamically

shared by many packets over time. The packets are queued up and transmitted
over the link.

e Two stations of different data rates can exchange packets because each station

connects to its node at its proper data rate.

¢ On a packet-switched network, when traffic becomes heavy, packets are still

accepted with increased delivery delay.

e The traffic may be prioritized, so that the higher-priority packets will experience

less delay than lower-priority packets.

Packet switching also leads to some new problems. Packets experience a random
delay due to processing and queueing in the node. In addition, control information in each
packet results in extra overload. The packet switching network needs specified
management and control mechanisms.

In packet switching, two different techniques can be used, virtual circuits and

datagrams. A virtual circuit imitates circuit switching, which involves the same three

phases: call set-up, transfer of packets, and call termination. Before any packet is allowed
to be sent, a logical connection is established between the sender and the receiver; as a
result, all packets follow the same path. However, in packet switching, channel capacity
on each transmission link is not dedicated to a virtual circuit. Rather, the transmission
link is shared by all the virtual circuits that pass through it. For example, ATM networks
are packet-switched networks with virtual circuits.

In datagrams, no call set-up is required, and each packet is routed through the
network individually. The IP network, used in the Internet, is a packet-switched network

based on datagrams.

1.2 The Need for Quality of Service

As the network capacity is increased, network users have more demands on real-time,
multimedia and multicasting applications. They are beginning to combine real-time
applications such as voice and video, which have a limited tolerance for network latency,
with non-real time data traffic. These different service classes have different performance
requirements in terms of throughput, end-to-end delay, delay jitter and packet loss rate.
Current IP networks only offer a best-effort service, which treats all packets equally.
- Under a best-effort scheme, the performance of each flow can be degraded significantly
when the network is overloaded. There is an urgent need to provide network services
with performance guarantee and to develop algorithms supporting these services.

The new approach for network design is to carry large volume of traffic with
different quality of service requirements over networks operating at very high data rate.
IP network and ATM network are two types of network facilities that dominate high-

speed scene and have many common features.

3

1.2.1 The Concept of QoS

Quality of Service (QoS) refers to the capability of a network to meet user traffic
requirements over various network technologies including Ethernet and 802.1 networks,
wireless networks, IP-based networks, Asynchronous Transfer Mode (ATM), and Frame
Relay (FR). It also can be interpreted as a method for providing preferential treatment to
some arbitrary amount of network traffic, as opposed to all traffic being treated as “best

effort”.

1.2.2 Quality of Service Parameters

A number of different parameters can be used to express the service quality of a
connection.

¢ Throughput: Throughput defines how much data is delivered to the end system in
a fixed time interval. A minimum throughput value may be required for many
applications. It needs to be determined to ensure that components and links are
sized correctly.

¢ Delay: End-to-end delay is the time that takes to transfer a packet end-to-end, that
is from the source to the destination. The end-to-end delay is made up of a fixed
and a variable component. The fixed delay is the sum of all fixed delays that a
packet encounters from the source to the destination, such as transmission times
and propagation delays. The variable delay is the sum of all variable delays that a
packet encounters between the source and the destination. These delays are

primarily due to queueing delays in the switches along a packet’s path.

o Jitter (Delay Variation): This is the variation in the inter-packet arrival time
introduced at the destination as a result of the variable component of the end-to-
end delay. If a packet arrives at a switch when it has a large queue length, and
another packet arrives when the switch has a small queue length, the difference
between the queue sizes in these two cases cause a packet’s total end-to-end jitter.
Removing jitter requires storing packets in buffers at the receiver and holding
them long enough to allow the slowest packets to arrive in time to be placed in
correct sequence.

¢ Packet loss: IP networks don’t guarantee delivery. Packets will be dropped under
heavy load and during periods of congestion. Because there is no flow control in

ATM networks, Cell Loss Rate (CLR) is also a popular QoS parameter.

1.3 ATM networks and QoS Mechanisms

As mentioned earlier, ATM network and IP network dominate the high-speed

network scene. Next we will present the main characteristics of both of these networks.

1.3.1 The Asynchronous Transfer Mode (ATM)

ATM is a technology that provides a single platform for the transmission of voice,
video and data at specified quality of service and at speeds varying from fractional T1
(1.e. nX64 Kbps) to Gbps [2].

ATM was standardized by ITU-T (ITU Telecommunications Standardization Sector)
in 1987. It is based on packet switching technology and it is connection- oriented. An
ATM packet is known as a cell. It has a fixed-size of 53 bytes. It consists of a payload of

48 bytes and a header of 5-bytes. Unlike IP networks, ATM has built-in mechanisms that

permit it to provide different quality of service to different types of traffic. The small,
fixed-length cells allow fast and efficient multiplexing and switching of traffic with
different QoS constraints. Due to its low queueing delay and delay variance, ATM
technology networks are well suited for multimedia applications, and can handle any kind
of traffic from voice to bursty video stream at any speed [3]. Until now, ATM is still the
only networking technology that provides quality of service guarantees to different
services.

ATM was originally defined to run over high-speed links and is the preferred
architecture for Broadband Integrated Service Digital Network (B-ISDN). There is
neither error control nor flow control between two adjacent ATM nodes. Error control is
not necessary because of the high reliability of fiber-based transmission links. Congestion
control schemes permit the ATM network operator to carry as much traffic as possible

without affecting the QoS requirements of the users.

1.3.2 Quality of Service in ATM networks

Next, we briefly describe the QoS features of ATM networks. An ATM service
category is in simple terms of a QoS class. Each service category is associated with a set
of traffic parameters and a set of QoS parameters. The traffic parameters are used to
characterize the traffic transmitted over a connection, and the QoS parameters are used to
specify the performance requirements of each class: the cell loss rate, the end-to-end
delay, and delay jitter. Functions such as call admission control and bandwidth allocation
are applied differently to each service category. The switch and multiplexer scheduling

algorithms provide mechanisms to meet QoS requirements of different services.

There are six different categories provided by the ATM networks: Constant Bit Rate
(CBR), Real-time Variable Bit Rate (RT-VBR), Non-Real-Time Variable Bit Rate (NRT-
VBR), Available Bit Rate (ABR), Unspecified Bit Rate (UBR), and Guaranteed Frame
Rate (GFR). CBR and RT-VBR are for real-time applications. The remaining service
categories are for non-real-time applications.

The CBR service is intended for real-time applications which transmit at constant bit
rate, such as circuit emulation service and constant-bit rate video. The RT-VBR service is
intended for real-time applications that transmit at a variable bit rate, such as encoded
video and voice. The NRT-VBR service is intended for non-real-time applications that
transmit at a variable bit rate. The UBR service is a best-effort type of service for non-
real-time applications with variable bit rate. It is intended for applications that involve the
transfer of data, such as file transfer, web browsing and email. The ABR service is
intended for non-real-time applications that can vary their transmission rate according to
the congestion level in the network. The GFR Service is for non-real-time applications

that may require a minimum guaranteed rate.

1.4 IP Networks and QoS Mechanisms

Next, we describe the main features of IP networks.

1.4.1 TP Networks

The web growth in the Internet is the dominating factor in the development of new
protocols and mechanisms for data communications and computer networking. The
TCP/IP protocol suit running on the Internet combines logic for routing through an IP

network with end-to-end control.

IP networks were designed to provide a best-effort, fair delivery service that treats all
packets equally. It was intended for applications that are relatively delay insensitive, can
tolerate variations in throughput, and can tolerate packet loss. With the tremendous
increase in traffic volume and the types of service, IP networks are being asked to support
new applications such as video conferencing, scientific visualization and media imaging
over high-capacity links. These different service classes have different performance
requirements in terms of throughput, end-to-end delay, delay jitter and packet loss rate.
There is a strong need to provide network services with suitable QoS and to develop
algorithms supporting these services.

To provide different QoS commitments, two different traffic management
frameworks have been defined by the IETF (Internet Engineering Task Force): Integrated

Services (IS) and Differentiated Services (DS).

1.4.2 Integrated Services

The Integrated Services Architecture (ISA) was proposed in RFC 1633 [4] to support
real-time traffic as well as “best-effort” traffic. It requires resources such as bandwidth
and buffers to be explicitly reserved for a given flow to ensure that the application
receives its requested QoS.

Network nodes classify incoming packets and use reservations to provide
differentiated services. It performs resource reservation using a dynamic signaling
protocol and employs admission control, packet classifier, and packet scheduler to
achieve desired QoS. Packet classifier identifies flows that are to receive a certain level
of service. Packet scheduler handles the forwarding of different packet flows in a manner

that ensures that QoS commitments are met. Admission control determines whether a

router has the necessary resources to accept a new flow. This model is relatively complex
because it provides per flow service, therefore it has difficulties in scaling to large
backbone networks.

The Resource Reservation Protocol (RSVP) is used by the Integrated Services model
to provide the reservation messages required to set up a flow with a requested QoS across
the network. RSVP is used to inform each router of the requested QoS. If the flow is
found admissible, each router in turn adjusts its packet classifier and scheduler to handle
the given packet flow.

The integrated services model defines three categories of service: guaranteed service,
controlled-load service, and best effort service. The guaranteed service can be used for
applications that require real-time service delivery. It provides a firm bound on the end-
to-end delay for a flow. The controlled-load service is intended for adaptive applications

that can tolerate some delay but are sensitive to traffic overload conditions.

1.4.3 Differentiated Services

Because of the scalability and complexity issues associated with the integrated
services model, IETF has introduced another service model called the differentiated
services (DS) model [5], which is designed to provide a simple, easy-to-implement, low-
overhead tool to support a range of network services that are differentiated on the basis of
performance.

The efficiency and easy-deployment of DS model is based on several key

characteristics:

e TosS field in IPv4 header or the IPv6 Traffic Class field is used for differing QoS
treatment, these fields mark a packet to receive a particular per-hop behavior at
each network node. No change is required to IP.

e A service level agreement (SLA) is established between the service provider and
the customer. Existing applications need not be modified to use DS.

e DS provides a built-in aggregation mechanism. Per flow service in IS model is
replaced with per aggregate service. All traffic with the same DS field is treated
the same way by the network, this provides good scalability to larger networks
and traffic loads.

e DS is implemented in individual router by queueing and forwarding packets based
on the DS field. Routers do not have to save state information on packet flows.

e Complex processings such as classification, marking and policing are moved from
the core of a network to the edge. Only packet handling requirements need to be
provided in the core of the network.

Two types of per hop behaviors (PHBs) are defined in the DS model, which can be
associated with a specific differentiated service. The expedited forwarding (EF) PHB
provides a low-loss, low-latency, low-jitter, assured bandwidth, end-to-end service
through DS domains. Such a service is referred to as a‘premium service. The assured
forwarding (AF) PHB provides a service superior to best-effort but one that does not

require the reservation of resources within an internet and does not require the use of

detailed discrimination among flows from different users.

10

1.5 Packet Scheduler

The actions of the packet scheduling algorithms at the ATM switches or IP routers
are one of the most important issues in providing service performance guarantees. This is

used in both integrated services and differentiated services mechanisms.

— O — -O—>
Switch
Fabric

Ll] - O ™

Yy
anmemman

Figure 1.1: A General Structure Inside a Router

In a packet-switched network, packets from different flows interact with each other
at each switching node and share a limited network resource; without proper control,
these interactions may adversely affect the performance seen by different services. The
packet scheduler at the switching node, which controls the order in which packets are
served, determines how packets from different flows interact with each other and fairly
allocates the limited shared resources. From Figure 1.2, the basic model of a switching
node is a single server with n FIFO queues each being fed by an independent traffic flow.
The scheduling algorithm determines the service order of head-of-line (HOL) packets in

the n queues.

11

2 Output link
—_ > ———— | Server »

cmcmann

Figure 1.2: Packet Scheduler Model

Generally, there are several tasks that a scheduling algorithm should accomplish:

Support the fair distribution of bandwidth to each of the different service classes
competing for bandwidth at the output port.

Furnish protection (firewalls) between the different service classes at an output
port, so that a poorly behaved service class in one queue cannot impact the
bandwidth and delay delivery to other service classes assigned to other queues at
the same output port.

Allow other service classes to access bandwidth that is assigned to a given service
class if the given service class is not using all of its allocated bandwidth.

Provide an algorithm that can be implemented in hardware, so it can arbitrate
access to bandwidth on the high-speed router interfaces without negatively
impacting system forwarding performance. If the scheduling algorithm cannot be
implemented in hardware, then it can be used only at the low-speed router or

switch interfaces.

Scheduling algorithms are the main mechanisms available to networks to ensure that

QoS requirements of different services are met. The scheduling algorithms may be

classified as follows:

12

e FIFO algorithm

This is the simplest scheduling algorithm that serves the packets on the order of their
arrivals.

e Priority Queueing (PQ)

The queues are assigned priorities and served according to the non-preemptive
priority service discipline.

e Fair Queueing (FQ)

This scheduling algorithm simulates the Processor Sharing (PS) service discipline.
Many variations of PS have been introduced for delivering different amount of
service to different queues.

e Round Robin Queueing (RRQ)

This scheduling algorithm serves the queues in round-robin order. The server is able
to give different amount of service to different queues either by serving different
number of packets at each queue or visiting a queue multiple times during a cycle.

The above scheduling algorithms are applicable in both ATM and IP networks.

1.6 The Objectives of the Work

The objectives of this work have been to give a comprehensive performance
comparison of the packet scheduling algorithms introduced in the previous section. The
performance comparisons have been made with respect to the following measures,

® average message delay
¢ standard deviation of delay

e probability distribution of delay

13

¢ call blocking probabilities

We have chosen simulation as the main tool for the performance study because of
the large number of scheduling algorithms under consideration. As far as we know, there
is no such detailed comparison of these algorithms in the literature. Most previous works
compared the average message delay of the algorithms in the same class among two or
three algorithms. These comparisons are made when a new variant of a class of
algorithms is introduced in order to demonstrate that it performs better than the other
algorithms in the same class [6][7][8][9][10]{11][12]. Thus, we provide performance
comparison of all the classes simultaneously at the probability distribution of message
delay and call blocking probability level.

Recently, there has been a growing interest in the performance of TCP congestion
control algorithm in the high-speed links. It has been shown that the additive
increase/multiplicative decrease adjustment of congestion window by the TCP congestion
control algorithm will limit the throughput of TCP users in the high-speed links. Two
solutions have been proposed to this problem, faster increase and slower decrease of
congestion window size [13][14] and increasing the maximum packet size [15]{16].
Neither of these two algorithms protects the low-throughput users from the high-
throughput users. Further the first solution results in large window sizes that increase the
already heavy router processing load. In this work, we prefer the second solution and
propose to store the low and high-throughput user traffic at two different queues in order

to protect the bandwidth share of the low-throughput users.

1.7 Outline of the Rest of the Thesis

The outline of the rest of the thesis is as follows.

14

Chapter 2 describes the different scheduling algorithms and discusses their
advantages and disadvantages.

Chapter 3 introduces the simulation program and then presents the simulation results
for the different scheduling algorithms.

Chapter 4 first presents the performance of TCP in the presence of real-time traffic
under the scheduling algorithms. Then it studies the behavior of TCP in the high-speed
links with large message sizes.

Chapter 5 concludes this thesis and gives some suggestions for future work.

15

Chapter 2

Scheduling Algorithms

In this chapter, we present a survey of several well-known traffic scheduling
algorithms for serving multiple queues. In a later chapter, we will study the performance

of all these algorithms.

2.1 Background

Providing QoS guarantees in a packet-switched network requires the use of traffic
scheduling algorithms at the switches (or routers) and multiplexers. The function of a
scheduling algorithm is to select, for each outgoing link of the switch, the packet to be
transmitted in the next slot from the available packets belonging to the flows sharing that
output link.

Some notions are given before further description:

* A flow is defined as a sequence of packets that have one or more characteristics in
common. For example, each traffic class such as voice, video may be considered
as a flow; similarly, all packets with identical destination may be considered as a
flow. The packets belonging to different flows are usually queued separately
while they await transmission.

* A scheduler dequeues packets from these queues and forwards them for

transmission.

16

e Fairness in the allocation of a resource among multiple requesting entities means
every entity receives equal right to the resource for the equal demand; for unequal
demands access to the resource, is as follows [17]:

= The resource is allocated in the order of increasing demand.

= No entity receives a share of the resource larger than its demand.

= Requesting entities with unsatisfied demands get equal shares of the
resource.

There are many different scheduling algorithms, each attempting to find the correct
balance between complexity, control and fairness.

A packet scheduler is generally classified as either work-conserving or non-work-
conserving. With work-conserving scheduler, the server is never idle when a packet is
buffered in the system. FIFO, PQ [1], FQ [7] [18], PS-based Queueing [6] [19] [20] {21],
WRR [22] and DRR [9] are all work-conserving schedulers. With a non-work-conserving
scheduler, the server could be idle even when there are buffered packets in the system.
This kind of discipline is proposed to control the traffic distortions in the network such as
Stop-and-Go [23], Hierarchical Round Robin (HRR) [24], and Rate-Controlled Static
Priority [25].

Furthermore, based on its internal architecture a packet scheduler is also classified as
either sorted-priority or frame-based. With sorted-priority scheduler, a system potential (a
global variable) is updated each time a packet arrives or departs, and a timestamp is
computed as a function of the system potential for each packet, then packets are sorted
and transmitted based on their timestamps. Priority Queueing (PQ), Weighted Fair

Queueing (WFQ) belongs to this kind of scheduler. With frame-based scheduler, time is

17

split into fixed or variable length frames. Each flow makes a reservation in terms of
maximum traffic that it is allowed to transmit during a frame period. Weighted Round
Robin, Deficit Round Robin belongs to this category of scheduler. Next, we will describe

the main scheduling algorithms one by one.

2.2 First In and First Out (FIFO)

FIFO queueing is the most basic scheduling algorithm. In FIFO queueing, all
packets are treated equally by placing them into a single queue according to their arrival
time, and then servicing them in the order of their arrival times.

FIFO queueing may be modeled as shown in the Figure 2.1:

flow 1

\ /\ Output link

flow n Server

Figure 2.1: FIFO model

FIFO queueing offers the following benefits:

e For software-based routers, FIFO queueing places an extremely lowk
computational load on the system compared with more elaborate queue
scheduling algorithms.

e The behavior of a FIFO queue is very predictable. Packets are not reordered and

the maximum delay is determined by the maximum depth of the queue.

18

e As long as the queue depth remains short, FIFO queueing provides simple
contention solution for network resources without adding significantly to the
queueing delay experienced at each hop.

FIFO queueing also has the following drawbacks:

e A single FIFO queue does not allow routers to provide service differentiation.

e A single FIFO queue impacts all flows equally during congestion, and the mean
queueing delay for all flows increases as congestion increases. As a result, FIFO
queueing can result in increased delay, delay jitter, and packet loss for real-time
applications.

e If a number of smaller packets are queued behind longer packets, FIFO queueing
results in a larger average delay per packet than if the shorter packets were
transmitted before the longer packet. In general, flows of larger packets get better
service.

e A bursty flow can consume the entire buffer space of a FIFO queue, and that
causes all other flows to be denied service until the burst is serviced. This can
result in increased delay, jitter, and loss for the other well-behaved flows

traversing the network.

2.3 Priority Queueing (PQ)

Priority queueing is the basis for a class of scheduling algorithms that are designed to
provide a relatively simple method for supporting different service classes. In classic PQ,

packets are first classified by the system and then placed into different priority queues.

19

Packets are scheduled from the head of a given queue only if all higher priority queues
are empty. Within each of the priority queues, packets are scheduled in FIFO order.

The model of PQ is shown in Figure 2.2:

Highest Priority

Medium Priority

Lowest Priority /

Figure 2.2: PQ model

Output link

PQ scheduling offers the following benefits:

e For software-based routers, PQ places a relatively low computational load on the
system compared with more elaborate scheduling algorithms.

e PQ allows routers to provide service differentiation to meet QoS requirements.
For example, real-time applications get priority over applications that do not
operate in real time through the priorities set.

PQ also poses the following limitations:

e [f the amount of high-priority traffic is not policed or conditioned at the edges of
the network, lower-priority traffic may experience excessive delay as it waits for

unbounded higher-priority traffic to be served.

20

e If the volume of higher-priority traffic becomes excessive, the lower-priority
traffic can be dropped as the buffer space allocated to low-priority queues starts to
overflow. This ultimately leads to complete resource starvation for lower-priority
traffic.

¢ A misbehaving high-priority flow can add significantly to the amount of delay
and jitter experienced by other lower-priority flows sharing the same queue.

PQ can be configured in two modes: strict priority queueing and rate-controlled
priority queueing. Strict PQ ensures that packets in a high-priority queue are always
scheduled before packets in lower-priority queues. Rate-controlled PQ allows packets in
a high-priority queue to be scheduled before packets in lower-priority queues only if the

amount of traffic in the high-priority queues stays below a user-configured threshold.

2.4 Fair Queueing (FQ)

The primary goal of fair queueing is to serve flows in proportion to some pre-
specified service shares, independent of the traffic load presented by the flows. Recent

years, many fair queueing algorithms have been proposed.

2.4.1 Fair Queueing (FQ)

To overcome the drawbacks of FIFO and PQ scheduling, Nagle proposed a scheme
called fair queueing [18]. Nagle’ FQ is the foundation for a class of scheduling
algorithms that arc designed to ensure that each flow has a fair access to network
resources and to prevent a bursty flow from consuming more than its fair share of output

port bandwidth.

In FQ, a router maintains multiple queues at each output port (Figure 2.3) and each
incoming packet is placed in the appropriate queue. The queues are serviced in a round-
robin order, taking one packet from each non-empty queue in turn and skipping empty

queues.

Flow 1

Output link

Flow 2

Flow n

Figure 2.3: Fair Queueing model

The primary benefit of FQ is that an extremely bursty or misbehaving flow does not
degrade the quality of service delivered to the other flows because flows are isolated from
each other. If a flow attempts to consume more than its fair share of bandwidth, only its
own queue is affected. So there is no impact on the performance of the other queues on
the shared output port.

FQ also has several limitations:

e The objective of FQ is to allocate the same amount of bandwidth to each flow

over time. FQ is not designed to support a number of flows with different

bandwidth requirements.

22

e FQ provides equal amounts of bandwidth to each flow only if all of the packets in
all of the queues are the same size. Flows containing larger packets get a larger
share of output port bandwidth than those containing smaller packets.

e FQ is sensitive to the order of packet arrivals. If a packet arrives in an empty
queue immediately after the queue is visited by the round-robin scheduler, the
packet has to wait in the queue until all of the other queues have been serviced
before it can be transmitted.

¢ FQ does not provide a mechanism to support real-time services easily.

2.4.2 Processor Sharing — based Fair Queueing (PS-based FQ)

2.4.2.1 Bit Round Fair Queueing (BRFQ)

A serious drawback to the FQ is that queues containing shorter packets are
penalized. This disadvantage is overcome by bit-round fair queueing (BRFQ) [7], which
uses packet size as well as flow identification to schedule packets. This discipline is
based on an ideal policy Processor Sharing (PS) [26] that is not practical to implement.

In PS, only one bit from each queue is transmitted on each round. The queues
containing longer packets no longer receive an advantage, and each busy queue receives
exactly the same amount of service. In particular, if there are n queues and each of the
queues is always active, each queue receives exactly 1/n of the available capacity. Next,
we define some terms to describe PS:

R(¢) = the number of rounds made in the PS service discipline up to time ¢

N(f) = the number of active queues at time ¢

23

R(r) can be thought as a virtual time, which records the rate of service seen by the
packet at the head of a queue. An equivalent definition is

d 1
1 - 2.
R dt R max |1, N(2)] @1

A packet of size L whose first bit gets service at time ¢, will have its last bit serviced
L rounds later, at time ¢, then,

R(t)=R(t,)+L (2.2)
Then, we set

7, " = arrival time of packet i to queue o

S, “ = the values of R(t) when the packet i in queue o starts transmission

B
R
1

the values of R(t) when the packet i in queue « finishes transmission

L, 7 = the size of the packet i in queue o

Then, the following relations hold,

F9=S“+L° (2.3)

¢ l !

S, % =max[F,_ *,R(t,")] (2.4)
Since R(¢) is a strictly monotonically increasing function whenever there are bits at the
node, the ordering of the ', “ values is the same as the ordering of the finishing times of
various packets in the PS discipline.

Sending packets in a bit-by-bit round robin fashion in order to satisfy the

requirements for an adequate queueing algorithm, is obviously unrealistic. BRFQ

emulates this impractical algorithm in a practical packet-by-packet transmission scheme.

BRFQ is implemented by computing virtual starting and finishing times on the fly as if
PS is running.

The BRFQ rule is this: Whenever a packet finishes transmission, the next packet to
be transmitted is the one with the smallest value of F, .

The order of transmission of packets, based on either real start time or real finish
time, is not exactly the same for BRFQ and PS. Nevertheless, BRFQ gives a good
approximation to the performance of PS. In fact, it is demonstrated that the throughput
and average delay experienced by each flow under BRFQ converges to that under PS as
time increases.

BRFQ is an improvement over FQ and FIFO in that it fairly allocates the available
capacity among all active flows even with different packet sizes. However, it is not able

to provide different amounts of capacity to different flows. If we set W (z£)/r, as the

normalized service provided to the flow i by the scheduler during the time interval (7-¢) ,
where

the service rate allocated to flow i

~
il

r, = the service rate allocated to flow j
W, (7t) = the amount of service received by flow i during the time interval (7f) -

W, (5,r) = the amount of service received by flow j during the time interval (7¢)

A scheduler is called perfectly fair if | W, (z0)/r, - W, (zt)/r ;| = 0 such as PS
scheduler. For a packetized scheduler like BRFQ, there is a definition to describe its

fairness: a scheduler is defined to be close to fair if | W, (z0)/r, - W (z6)/r | S F' , here

25

F* is a constant that does not dependent on the time interval (7¢), and it is named as

fairness of the scheduler [4].

2.4.2.2 Weighted Fair Queueing (WFQ)

WEFQ is an enhancement of BRFQ to support unequal capacity allocation to different

flows. WFQ is based on the ideal Generalized Processor Sharing (GPS) policy [19].

GPS is generated from the PS discipline to allow for arbitrary capacity allocations.

With GPS, each flow o is assigned a weight ¢, that determines how many bits are

transmitted from that queue during each round. Let us define each arrival and departure

to/from the GPS queues as events. Let

T = abusy period of the GPS system
t, = the occurrence time of the j* event
B, = the set of flows that are busy in the time interval (z, |, 7)

Virtual time R(¢) is defined as

R0)=0

R, , +D)=R(t,)+

-1

7
ZieB,- ¢[

The following modified equation from PS holds:

! 1

L-a
F.%=8 %+
P

S, % = max[F,_, “,R(t, “)]

So a nonempty flow i has a guaranteed rate,

26

LTS, -1, ,j=23

(2.5)

(2.6)

2.7)

; (2.8)

where r is the output link data rate, and the sum is taken over all active queues.

GPS is an attractive scheme for a number of reasons:

e If a user requests a given service rate r for a flow, then the node can grant the
request if sufficient capacity is available and can assign the proper weight to
guarantee the service.

e The delay experienced by flow o can be bounded as a function of its queue
length, independent of the other queues. Schemes such as FIFO and FQ do not

have this property; by varying the ¢, we have the flexibility of treating the flows

differently from each other. For example, when the all ¢, are equal, the system

reduces to PS.

e Most importantly, it is possible to make worst-case network queueing delay
guarantees when the sources are constrained by leaky buckets. Thus, GPS is
particularly attractive for flows sending real-time traffic such as voice and video.

WEFQ is a packetized version of GPS and tries to emulate GPS on a packet-by-packet
basis. WFQ approximates GPS by calculating and assigning a virtual finish time to each
packet. Given the bit rate of the output port, the number of active queues, the relative
weight assigned to each of the queues, and the length of each of the packets in each of the
queues, it is for the scheduling algorithm to calculate and assign a virtual finish time to

each arriving packet. The scheduler then selects and forwards the packet that has the
earliest finish time F, “ from all of the queued packets.

However, weighted fair queueing comes with several limitations:

27

e WFQ implements a complex algorithm that requires the maintenance of a
significant amount of per-service class state and iterative scans of state on each
packet arrival and departure.

e Computational complexity impacts the scalability of WFQ when attempting to
support a large number of service classes on high-speed interfaces. Furthermore,
on high-speed interfaces, minimizing delay to a single packet transmission may
not be worth the computational expense if the insignificant serialization delay
introduced by high-speed links and the lower computational requirements of the

other scheduling algorithms are taken into account.

2.4.2.3 Worst-case Weighted Fair Queueing (WF* Q)

Worst-case Fair Weighted Fair Queueing (WF” Q) [20] is an enhancement to WFQ
that uses both the virtual start and finish times of packets in the corresponding GPS to
achieve a more accurate simulation of a GPS.

Recall that in WFQ system, when the server chooses the next packet for transmission

at time f, it selects among all the packets that are backlogged in the queues, the first
packet that would complete service (packet with smallest value of F', *) in the
corresponding GPS system. In WF?* Q system, when the next packet is chosen for service
at time ¢, rather than selecting it from among all the packets in the queues as in WFQ, the

server only considers the set of packets that have started (and possibly finished) receiving

service in the corresponding GPS system at time ¢ and selects the packet from them that
would complete service first. Formally, the packets set p, “ (the packet i in queue o)

considered by the server at time ¢ is,

28

{p,"|S,“<R@),0€ B} 2.9)
where B ; is the set of flows that are busy in the time interval (¢ i)

WE? Q provides almost identical service to GPS system, differing by no more than

one maximum size packet.

2.4.2.4 Worst-case Weighted Fair Queueing+ (WF* Q+)

Worst-case Fair Weighted Fair Queucing+ (WF”Q+) {[6] is an enhancement to
WF?Q which implements a new virtual time function that results in lower complexity
and higher accuracy. WF* Q+ provides the same delay bound and worst-case index as
WF?*Q.

Let’s define the following notations:

W(t, t+17) = total amount of service provided by the server during the period (¢, t+17)
B(t) = the set of flows backlogged in the WF * Q+ system at the time ¢

h, (1)

the sequence number of the packet at the head of the queue o at the time ¢

e (1)
S.

I

the virtual start time of the packet £ , () in the queue o

F, " = the virtual finish time of the packet &, (¢) in the queue o,
The new virtual time function R(¢) is defined as:
R(t + 7) = max(R(t) + W(t, t+2), min _,,, (S, ")) (2.10)
To simplify the implementation, this algorithm also modifies the definition of virtual
start and finish times. With the old definition in WFQ and WF? Q, virtual start and finish

times need to be maintained on a per packet basis. In WF?Q+, there is only one pair of

S,and F , that needs to be maintained for each queue o. Whenever a packet 4, (¢)

29

reaches the head of the queue o at time ¢, S, and F ,are updated according to the

following:
5, =y Q. () %0 @11
max(E,,R()) Q,(1)=0
L‘a
F, =85, + — (2.12)
e

Where O, (¢) is the size of queue o just before time ¢. With this definition, S, and F , of

queue o are also the virtual start and finish times of the packets at the head of the queue.

2.4.2.5 Self-clocked Fair Queueing (SCFQ)

WFQ and its enhancements are computationally expensive since system needs to
emulate a reference GPS system and keep track for the number of active connections at
any moment in GPS system. To reduce the complexity of calculating the virtual times,
Self-clocked Fair Queueing (SCFQ) introduces an approximation [21]. However, the
decrease in complexity results in a larger worst-case delay and the delay increases with
the number of service classes.

In the SCFQ algorithm, the system’s virtual time at any moment ¢ may be estimated
from the virtual time of the packet currently being serviced.

Let’s define:

p = the packet receiving service at time ¢

NG

the virtual time that packet p starts service

FP

the virtual time that packet p finishes service

The approximate virtual time function R(¢) is defined to be F'¥ where

30

SP <i<F?
Each arriving packet i in the queue « is tagged with a virtual time F, before it is

placed in the queue. The packets in the queue are picked up for service in the increasing

order of their associated virtual time.

o

L.
F. %= ? +max(F_, “, R(z, “)), where F,“=0 (2.13)

!
o

2.4.3 Round Robin — based Fair Queueing (RR-based FQ)

2.4.3.1 Weighted Round Robin (WRR)

WRR is the foundation for a class of queue scheduling algorithms that are designed to
address the limitations of the FQ and PQ models. WRR also addresses the limitations of
the FQ model by supporting flows with significantly different bandwidth requirements.
With WRR queueing, each queue can be assigned a different percentage of the output
port’s bandwidth.

[n WRR queueing, the queues are served in a round-robin order, and as in FQ,
empty queues are skipped. WRR is also referred to class-based queueing or custom
queueing. WRR queueing supports the Aallocation of different amount of bandwidth to
different service classes by either visiting each queue once during a service round and
allowing higher-bandwidth queues to send more than a single packet during a visit or
allowing each queue to send only a single packet during a visit, but visiting higher-
bandwidth queues multiple times in a single service round.

WRR includes the following benefits:

31

e WRR can be applied to high-speed interfaces because of its lower complexity
implementation.

e WRR queueing ensures that all service classes have access to at least some
configured amount of network bandwidth to avoid bandwidth starvation.

e (lasstfication of traffic to service classes provides more equitable management
and more stability for network applications than the use of priorities or
preferences.

The primary limitation of WRR queueing is that it provides the correct percentage of

bandwidth to each service class, only if all of the packets in all of the queues are the same

size or when the mean packet size is known in advance.

2.4.3.2 Deficit Weighted Round Robin (DWRR)

DWRR queueing [9] is designed to address the limitations of the WRR and WFQ
models. DWRR addresses the limitations of the WRR model by accurately supporting the
weighted fair distribution of bandwidth when it serves queues containing variable-length
packets. DWRR addresses the limitations of the WFQ model by defining a scheduling
algorithm that has lower computational complexity, and it can be implemented on high-
speed interfaces.

A number of parameters are configured in DWRR queueing.

e A Weight defines the percentage of the output port bandwidth allocated to each
queue.

¢ A DeficitCounter specifies the total number of bytes that the queue is permitted to
transmit each time when it is visited by the scheduler. The DeficitCounter allows
a queue that was not permitted to transmit in the previous round because the

32

packet at the head of the queue was larger than the value of the DeficitCounter to
save transmission “credits” and use them during the next service round.

e A quantum of service is proportional to the weight of the queue and is expressed
in terms of bytes. The DeficitCounter for a queue is incremented by the quantum
each time that the queue is visited by the scheduler.

Packets arriving from different flows are stored in different queues. Defining:

byte(i,k) = number of bytes sent out from queue i in round k.

T T

weight=1, Quantum{[1}=1000 Deficitcounter[1]

600 | 200} 400 1000 |q———— Round Robin Pointer

weight=2, Quantum{2]=2000 Deficitcounter[2]

300} 400 {300 0

weight=2, Quantum[3]=2000 Deficitcounter[3]

400 300 600 0

Figure 2.4: Deficit Round Robin Step 1

weight=1, Quantum{1]}=1000 Deficitcounter[1]

600 400 -—————— Round Robin Pointer

weight=2, Quantum[2]=2000 Deficitcounter[2]

300 | 400 |300 0

weight=2, Quantum[3]=2000 peficitcounter[3]

400 300 600 0

Figure 2.5: Deficit Round Robin Step 2

33

T T

weight=1, Quantum[1]=1000 Deficitcounter[1]

600 1400 | qg——— Round Robin Pointer

weight=2, Quantum[2]=2000 Deficitcounter[2]

300] 400 |300 0

weight=2, Quantum[3]=2000 Deficitcounter([3]

400 300 600 0

Figure 2.6: Deficit Round Robin Step 3
Each queue i is allowed to send out packets in the first round subject to the
restriction: byte(i,k) < Quantum (Figure 2.4). If there are no more packets in queue i after
the queue has been served, DeficitCounter is reset to 0. Otherwise, the remaining amount,
Quantum(i) - byte(i,k), is stored in the DeficitCounter (Figure 2.5). In subsequent rounds,
the amount of bandwidth usable by this flow is the sum of DeficitCounter of the previous
round added to the Quantum (Figure 2.6). The ActiveL.ist, which is a list of indexes of
queues that contain at least one packet, is kept to avoid examining empty queues.
Whenever a packet arrives to a previously empty queue i, { is added to the end of
ActiveList. Whenever index i is at the head of ActiveList, the algorithm serves up to
Quantum(i) + DeficitCounter, worth of bytes from queue i. If at the end of this service
opportunity, queue i still has packets to send, the index i is moved to the end of
ActiveList; otherwise, DeficitCounter is set to 0 and index i is removed from ActiveList.
The benefits of DWRR queueing are that it:
e Provides protection among different flows, so that a poorly behaved service class
in one queue cannot impact the performance provided to other service classes

assigned to other queues on the same output port.

34

Overcomes the limitations of WRR by providing precise controls over the
percentage of output port bandwidth allocated to each service class when
forwarding variable-length packets.

Overcomes the limitations of strict PQ by ensuring that all service classes have
access to at least some configured amount of output port bandwidth to avoid
bandwidth starvation.

Implements a relatively simple inexpensive algorithm, from a computational
perspective, which does not require the maintenance of a significant amount of

per-service class state.

As with other models, DWRR queueing has limitations:

DWRR does not provide end-to-end delay guarantees as precise as other queue
scheduling algorithms do.

DWRR may not be as accurate as other scheduling algorithms. However, over
high-speed links, the accuracy of bandwidth allocation is not as critical as over

low-speed links.

35

Chapter 3

Performance Analysis of Scheduling Algorithms

In this chapter, first we describe the system and source models for the simulation.
We introduce the simulation software and explain the major classes and their functions in
the program. Then, we discuss gathering of statistics for determining the various network
performance measures. Finally, we present performance results of the scheduling

algorithms introduced in the previous chapter.

3.1 System Model Description

We consider a multiplexer with n queues each with infinite waiting room and a
single server (Figure 3.1). The queue i is fed by type-i sources and each type of source
consists of a number of mutually independent and identical binary Markov sources. The
server according to the scheduling algorithm decides the order of message transmissions
on the shared output link.

We assume that each message consists of a variable number of fixed-size packets.
When a message is served, all the packets that belong to that message are served
consecutively. The time axis is divided into equal duration slots and a packet is
transmitted at the slot boundaries. A packet transmission time is equal to one slot. The

transmission of a message cannot begin during the slot that it has arrived.

36

type_1 sources

queue_1

type_2 sources

@ Output

queue_2

queue_n

0000

SN\

type_n sources

«

Figure 3.1: A multiplexer with multiple queues and a single server

3.2 Source Model Description

3.2.1 The Binary Markov On/Off Traffic Model

To evaluate the performance of current networks that support various
communication services, an appropriate source modeling is required. There have been
many traffic models proposed in the literature for characterizing individual data traffic
source and superposition of multiple sources. For instance, Poisson arrival process
(continuous time case), geometric inter-arrival process (discrete time case) are proposed
for data traffic, Interrupted Poisson Process (IPP) for voice traffic and Markov Modulated
Poisson Process (MMPP) for data, voice and video traffic. A good survey on traffic

modeling can be found in [27].

37

Among those traffic models that have been used for different types of sources, the
most versatile one is the binary Markov On/Off model. In this model, each source is
characterized by On (corresponding to active bursts) and Off (corresponding to silent
duration) periods, which alternate with each other. During the silent periods, no packets
are generated. This model is very popular and has been often used for the modeling of
traffic. For instance a binary Markov model has been successfully applied for modeling
the voice source ([28][29]). In addition, in [30], a video source is modeled as a birth-
death process, which consists of the superposition of a number of independent and
identical On/Off mini-sources.

Because of its versatility and flexibility, the binary Markov On/Off model has been
chosen as the basic model for the characterization of input traffic sources. Hence input
process in this simulation consists of the superposition of many identical independent

traffic streams generated by binary Markov sources.

3.2.2 Source Model Parameters

In this section, we describe the parameters of binary Markov sources. We assume
that type-i sources consist of m, independent and identical binary Markov sources. Each
source alternates between On and Off states (Figure 3.2). During an On slot each source
generates a single variable-length message, while during an Off slot no message is
generated. State transitions of the sources are synchronized to occur at the slot’
boundaries according to a two-state periodic and irreducible Markov chain.

Let us define the probabilities of the following events:

a, = Pr (that type-i source will be active in the next time slot given that it is

38

active in the present slot)
[, = Pr (that type-i source will be passive in the next time slot given that it is
idle in the present slot)
From Figure 3.2, the probability of a transition from an On state to an Off state is 1-
o, , while a transition from an Off state to an On state occurs with a probability 1- £, ,
where i corresponds to the source type. Thus the number of slots that a source spends in

On and Off states is geometrically distributed with parameters @, and f, respectively.

1-
T T
e
S _!L
z'f_—'— T -~ -, “____-‘—-‘4\%
4 4 \'1 .) \\“'I 3
{ ¢ 3
o | [on | | om 14
'\ 1 f‘ll '\ 4 y ;
. “'ﬁk‘~——;—-"’f .
\“-,\ A
“ ,
]. - Jlf_:}!

Figure 3.2: On-Off Markov Source Model
When a,and £, are high, the generated packets have tendency to arrive in clusters,
alternatively when a, and f, are low, the packet arrivals are more dispersed in time.
Also, the sum of a source’ On and Off probabilities, o, + f,, is an index of the
correlation of the arrivals. When , + f, =1, the probability that a source is On is

independent from one slot to the next one and this results in independent Bernouli
arrivals; the lower or higher values of the sum a,+ £, cause an increased correlation
between the arrivals in consecutive slots.

We assume that each message consists of random number of packets. Let us define:

p; = the probability that a message consists of j packets

39

f (z) = probability generating function (PGF) of the number of packets in a
message generated by a type-i On source during a slot. f . (z)is

determined by the following equation [31]:

f(z)= ipjzj (3.1)
=0

f, = the average number of packets in a type-i message. 7, 1s determined by the
following equations[31]:
E: f(@) l =D F2p, 3 pHap,H5ps+.. (3.2)

If the service rate of the system is assumed to be 1 packet/ slot, the load of the system

can be determined from the following equation in [31}:

n . n 1___ r
p= Zmi Pr(a type-i source is On) f, :Z m, % (3.3)
i=1 “ ai M

i=l

and for a stable system we require that p<1.

3.3 Simulation Program

In this section, we describe the simulation program.

3.3.1 Introduction of the Simulation Program and Parameter Setting

The simulation program has been developed in C++ programming language. The
output of the program is the MATLAB M-file type that can be directly run by MATLAB
and plots the figures. All the performance figures in this chapter have been produced by

this program. Even though the simulation program structure for the different scheduling

40

algorithms is similar, the coding for the different algorithms is very different. Therefore

the different algorithms have been simulated with different programs.

We use XML file as our input file. In XML file, we set source type, the number of
sources and the weights of different classes of traffic. We can also control the run times
of our program in XML file to get more smooth and accurate curves.

The number of queues in the simulation is automatically changed with the number
of source types. The messages belonging to the same source type are stored in the same
queue. Next we introduce major simulation parameters:

N = number of simulation runs. Simulation has been repeated N independent times to
ensure that the results are statistically reliable. N is chosen on the basis of
confidence interval for the mean queue delay that will be explained later on.
The value of N=10 gives good confidence intervals.

amax = number of messages that has gone through the system during a run. If amax is
not large enough then simulation results are not reliable, on the other hand, if
amax is too large, the simulation takes too much time. It has been found that a
value of amax = 8000 is adequate, larger values of amax don’t change the
results

astart = message number for the beginning of statistics collection. At the beginning of a
simulation run, system is idle; therefore the system goes through a transient
period before reaching steady-state. During the transient period, statistics are
not collected since it is not representative of steady-state system operation. We
found that a value of astart= 100 is adequate, therefore we start collecting

statistics after astart messages have gone through the system.

41

3.3.2 Class Diagram of the Simulation Program

Queue

; . B Fmim”Server N
l Source WsetWeight() I e
<> M%B Empty() <58 0perate()
téﬁ; !mtlahzahon(“¥GetLen() FwaitTime()
S Epysh() Wﬁsmectoueo ;
Y %Pop() SR

SrcPrdc

' VirualQueue |

ESetWeight() VirtualServer
— isEmpty()
“®Random Get() #8GetLen()
acLenGet() pPush()
"’@PacProduce() BPop()
Figure 3.3: Class Diagram of the Simulation

The main classes of the simulation program are shown in Figure 3.3. Next, we briefly
describe these classes:
Source class:

This class is used to create source types and sources in the system.

e Initiatialization() function is used to sete, and f, for type-i sources from the

setting in XML input file.
SrcPrdc class:
This class controls the arrival rate of packets and the length of messages. The main
functions of this class are,
e RandomGet() is designed to generate a uniformly distributed random number

between 0 and 1.

42

e PaclenGet() determines the length of a message in number of packets by using
the random number generated by the RandomGet().
e PacProduce() generates a variable-length message through the comparison of the

random number with a; or f,.

Queue class:

This class includes the functions for the maintenance of queues, such as for the
storage and removal of the messages from the queues. We use linked lists to simulate
queues. The main functions of this class are,

e Push() stores a message at the end of a queue.

e Pop() removes a message from the head of a queue.

e [sEmpty() checks if a queue is empty.

e Getlen() gets the length of a queue.

e SetWeight() is used to set service weights in those applicable scheduling

algorithms.
Server Class:

The main function in this class is Operate() which determines the queue to be
serviced in the present slot under the current scheduling algorithm.

e SelectQue() determines the queue that the packet at the head of it has minimal
virtual finish time, this function is used for those algorithms that need virtual
server running on the fly as if PS is running.

e WaitTime() accumulates and calculates the waiting time of a message in the

queue.

10 Class:

43

This class controls the input and output of the program. For the input part, functions
GetTimes(), GetDataNo(), GetSrcTypeNo(), GetSrcNum(), GetSrcWgt(), GetSampleA(),
GetSampleB() are used to read data from XML file. It includes run times, source type, the
service weight of a queue, the parameters of a source type. The function RptFinish()
generates Matlab M-file type output file.

VirtualQueue and VirtualServer classes:

They are designed to determine virtual time in the PS-based Fair Queueing
algorithms. At the same time when a message enters into a queue, it is pushed into its
corresponding virtual queue. The virtual server services the messages in the virtual queue
according to the fluid Processor Sharing (PS) discipline. The message’s virtual finish

time will be used to determine the service order of messages in the real queues.

3.3.3 Simulation Flow Chart

Figure 3.4 presents the flow chart of the simulation system. Next we explain the
major steps in the simulation.

At the beginning of the program, the number of source types is set. Then we create
source instances according to the number of source types from the source class. After that
we set the parameters of sources through the functions in the IO class. These parameters
include the number of sources under the certain source type, On, Off parameters of the
sources, distribution of the number of packets in messages. The network load is
controlled by the setting of these parameters. The queues are created adaptively
according to the number of source types. We assume that the messages generated by each

source type form a different traffic flow.

44

set source
parameters

v

number of runs <= N

v

number of generated messages <=
amax

'

message generation of
the sources

store messages into
corresponding queues

Y

schedule the
transmission of a
message

Y

finish the transmission of all
messages in a run

!

‘ finish all simulation runs l

collect statistics

Figure 3.4: Flow Chart of the Simulation

45

initialize parameters
for a run

g=0,d=0,t=0

message generation
q = g+Aq(t)

t=t+1

r = remaining
packets in the
scheduled
message

a packet
transmission

d > astart

collect statistics

Figure 3.5: Flow Chart of a Simulation Run

46

m<mi

v

‘ random variable

generation
O<x< 1

source ON

Source Off

Random variable
generation
O<y<t

4

k k+1
ij sys ij
=0 j=0

generate k packets in a

message
g
y
m=m+1

{ i=i+1,m=0 J

Figure 3.6: Flow Chart for Message Generation in a Slot

47

We have made several runs to obtain each simulation point for statistical reliability.
During each run, we generate amax number of messages. When all these messages have
been transmitted, then the run is over. Next we present the steps during a simulation run
(Figure 3.5). Let us define the following additional notation for this chart:

t = time in number of slots

r = remaining number of packets that needs to be transmitted in a message. At the
beginning of a message transmission, it is set to the message length in number of
packets

q = variable to store the number of the generated messages until time ¢

Aqg(t) = variable to store the number of messages generated during the slot ¢

d = variable to store the number of the transmitted messages until time ¢

From Figure 3.5, each run begins with the initialization of ¢, d and ¢ to zero. During
each slot, first we generate the new messages as long as the total number of messages
generated 1s less than the maximum (amax) . In each slot, if the system is not empty, a
packet is transmitted and the time is incremented by one. When all the packets of a
message are transmitted, the message depart from the system, d is incremented by one. If
the number of messages that have departed from the system is larger than astart, the
statistics is collected. When the number of messages departed from the system equals to
amax, a simulation run is over.

Figure 3.6 is the detailed flow chart of message generation in a slot. Let us define

the following notation for this chart:

~.
i

index of source type

m = the variable to store the current source number in type-i sources

48

m, = the number of type-i sources

x, y = values of the uniformly distributed random variables in the interval (0,1)
In the message generation process, the status of each source is checked by the two
layers loop. The outer layer loop controls the current source type (i) and the inner loop

controls the source number of the current source type (m). For each source, a random

number x is generated. If the source is at On status currently, it remains On if x < ¢ ;
otherwise, it changes to Off status during the next slot. If the source is Off currently, it
remains Off if X < [, ; otherwise, it changes to On status during the next slot. If a source

1s On during a slot, it generates a message with a random number of packets. The number

of packets in a message is determined by the random variable y.

3.3.4 Performance Measures and Statistic Collection

The main performance measures of interest are mean message delay, standard
deviation of message delay, probability distribution of message delay and the confidence
interval for the mean message delays. Next we explain how these performance measures
have been determined.

Let us define:

t,(j) = arrival time of the jth message during simulation run i
¢ ,(j) = departure time of the jth message during simulation run
d (j) = message delay in number of slots of the jth message during simulation

uni.

d, = random variable that denotes the message delay during run :

49

d, = mean message delay during simulation run i .

d = random variable that denotes the message delay during the simulation

d = mean message delay in number of slots during the simulation.

s = standard deviation of the message delay

¢, = number of messages during run i that experience delay less than or equal
to x

¢ = total number of messages under consideration during run i

From the above, we have

d.(j) =1 () -1.(j) (3.4)
YO
d =—12 (3.5)

amax-—astart

then,

d= - (3.6)

s 1s determined by,

N o , N ,
s:\/(dei“~(2d,-)') N(N -1) (3.7)
i=] i=1
The probability distribution of the message delay is calculated by the following equation:

Prob (d, <x)= <& (3.8)
C

N
Y Prob(d, < x)

Prob (d<x) = = 3.9
(d<x) N (3.9)

50

Next, we give the (1-01)100% confidence interval p for mean message delay, d,

N

d-ty, 7=

<pu< d+t (3.10)

§
%N

where t 5 is the ¢-value with v=N-1 degrees of freedom [32]. The above result states that

2

we are (1-a)100% confident that the true mean delay lies in the given interval. The

tighter is this interval, the more reliable is the simulation results. Clearly, as N increases,

the results become more reliable.

3.4 Simulation Results

The objective of this study is to determine the effect of different queueing algorithms
on the behavior of ATM and IP multiplexing systems. Next we present the simulation
results.

In the simulation, three types of sources have been assumed, each type of sources
feeding a different queue. It is assumed that each source type has 5 sources and the traffic
load generated by each type is assumed to be 1/3 of the total traffic load. Thus we have n
=3, m,;=5(=123),p, =p,=p;=p/3 where p is the total load. To fully observe the
performance of different scheduling algorithms, we set the average message sizes of three

classes of traffic to different values, that is flz 1, ;‘:: 2, E: 3 respectively. Since the

loads of different source types are equal, the number of message generated per class
decreases with the class number. We set the total number of generated messages (amax)
to 8000 to control the running time of simulation. The first 100 generated messages
(astart) are not recorded in the simulation result, as has been explained on earlier. Each

simulation was repeated 10 times independently, then the results were averaged to have

51

statistically dependable results. Next we present the simulation results for different

performance measures.

3.4.1 Mean Message Delay

In this part, we give the simulation results for overall mean message delay. Then,
results have been determined without distinguishing among messages of different classes.

Figures 3.7 — 3.9 present the overall mean message delay in number of time slots
versus the system traffic load p under different scheduling algorithms. It may be seen that
the mean message delay always increases with the traffic load p and it approaches to
infinity as p approaches to 1.

Figure 3.7 presents the mean message delay under FIFO, PQ and FQ service
disciplines. FIFO serves the messages in the order of their arrival. FQ serves them in a
round robin manner. In the case of PQ, the priority decreases with the increasing queue
number, thus class 1 messages have the highest priority. As may be seen, the results are
very close under light load, but as the load increases, PQ, FIFO and FQ experience
increasing delays in the given order. In general, the mean message delay is independent
of the service discipline, therefore, this is an interesting result. In the system under study,
the mean message delay depends on the service discipline because the service order
depends on the message size. As indicated before, class 1 traffic has the shortest message
size but it generates the highest number of messages. Since PQ gives the highest priority
to class 1, it results in the least delay. In the FQ service discipline, the messages are
transmitted in round robin manner, classl traffic experiences the highest delay since class
1l forms the largest group. Thus, PQ and FQ result in least and highest overall delay

respectively.

52

Figure 3.8 presents the mean message delay in the PS-based algorithms. In all these
algorithms, we assign equal weight to provide the same amount of service for three
classes of traffic. We observe that the mean message delay curves are very similar for all
algorithms.

Figure 3.9 presents the mean message delay in the RR-based algorithms again with
equal weights assigned to three flows. The figure shows that DWRR has smaller mean
message delay than WRR. When WRR transmits messages from different queues, it
doesn’t take into consideration the message size. When the mean message size is
different in different classes of traffic, the received service in different classes of traffic is
different even though we have assigned the same weight to different classes of traffic.
However, in DWRR, algorithm considers message size when it transmits a message. So
when we assign the same weight to different classes of traffic, these classes of traffic
receive the same amount of service.

In Table 3.1 we present the mean message delay confidence intervals for the
simulation results presented in Fig.3.7, 3.8 and 3.9 for p=0.6. In general, we would like to
have confidence intervals as short as possible. It may be seen that these intervals are quite
short thus giving confidence to the simulation results. As expected, the corresponding

interval gets larger with the increasing confidence level.

53

1 T T T T T T T
— FIFO
- PQ
FQ
@ 10F
°
@2
>
o
@
[}
@
(o
o
o
w
O
s
C
a
@
= st
O L] il 1] 1 i 1 I
0 0.1 0.2 03 0.4 05 0.6 07 08 09

Tralffic Load

Figure 3.7: Mean message delay comparison of FIFO, PQ and FQ algorithms

10 T T T

Mean Message Delay (slots)

o] 01 0.2 0.3 04 0.5 0.6 0.7 0.8 09
Traffic Load

Figure 3.8: Mean message delay comparison of the PS-based queueing algorithms

54

18

T
— WRR

.- DWRR

16

14

—
N
T

10

Mean Message Delay (slots)
o]
T

o} 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09
Traffic Load (p)

Figure 3.9: Mean message delay comparison of RR-based queueing algorithms

Scheduling Algorithm | Mean Delay Confidence Interval

(slots) 90% 95% 99%
FIFO 3.181141 0.0619 0.0762 0.1083
PQ 2.842647 0.0383 0.0471 0.1083
FQ 3.368027 0.0517 0.0635 0.0904
BRFQ 2.878911 0.0464 0.0570 0.0811
WEFQ 2.925907 0.0490 0.0603 0.0857
WF?Q 2901344 0.0483 0.0594 0.0845
WF?Q + 2.864524 0.0483 0.0594 0.0844
SCFQ 2.952513 0.0511 0.0628 0.0893
WRR 3.371022 0.0666 0.0819 0.1165
DWRR 2.903531 0.0486 0.0597 0.0849

Table 3. 1 : Confidence intervals for the simulation results presented in Fig.
3.7, 3.8 and 3.9 for p=0.6

55

3.4.2 Mean Message Delay of Different Classes

Figures 3.10- 3.12 present the mean message delay in each class of traffic versus the
system traffic load p under the FIFO, PQ and FQ algorithms. As we noted earlier, classes
1, 2, 3 have average message sizes from | to 3 respectively and the three classes have the
same traffic load. Delay of a message consists of its queueing delay plus its transmission
time. In FIFO service discipline (Figure 3.10), the message delay is determined by the
message transmission time under light load. Therefore, flows with larger message size
experience higher delay. Under heavy load, the delay curves approach each other because
queueing delay dominates. In PQ (Figure 3.11), the priority is set according to the
message size, that is traffic with smaller average message size has higher priority. The
class 1 has the highest priority, then classes 2 and 3 respectively. In this case, as
expected, we observed that the traffic with highest priority has the lowest delay. Under
light load, FQ behaves similar to FIFQ and PQ. However, as the load increases we have
the interesting result that the mean message delay of class | increases (Figure 3.12). This
is because the queue with larger message size receives more service since FQ serves one
message per queue per cycle. Therefore the queue with shortest message size is penalized
compared to those with longer message size.

Figures 3.13- 3.15 present the rﬁean message delay in ea(‘;h class of traffic against tﬁe
system traffic load p under the PS-based algorithms. The service weights for the three
classes of traffic are assigned to be same, thus the service rate of each class is 1/3 since
the output link data rate is 1 packet /slot. In BRFQ (Figure 3.13), as the traffic load
increases, the delay curves rise with a similar slope. The difference between the curves

under light load is due to difference between the transmission times of three classes of

56

messages. Though three classes are given the same amount of service, class 1 messages
experience the shortest delay because they have the shortest size. That is expected
because BRFQ is trying to provide the same amount of service to each queue. Since the
three classes have the same load, the increases in their mean message delay should be
similar. In Figure 3.14, we see that WFQ, WF*Q, WF? Q+ have similar curves. We note
that WFQ in this figure corresponds to BRFQ since all classes have equal service
weights. The WFQ-based algorithms can be used to provide different amount of service
to different classes through assigning different weights to different queues. Compared
with the WFQ-based queueing. BRFQ can only provide same amount of service to
different traffic classes. The curves in SCFQ (Figure 3.15) have some differences with
those in Figure 3.14, which is due to the approximation in simulating GPS in SCFQ.
SCFQ algorithm increases the inaccuracy in simulating GPS while decreasing the
computational complexity.

Figures 3.16-3.17 present the mean message delay of each class of traffic versus the
system traffic load under the WRR and DWRR algorithms. We can see that the curves of
WRR are similar to those of FQ (Figure 3.12) in this case because the same weights have
been assigned to different queues. The curves of DWRR are similar to those of PS-based
algorithms.

We also present figures about the mean message delay of each class of traffic versus
the system traffic load when different service weights are assigned to each class. In this
case, the service weights assigned to each class are 1,2,3 respectively. As a result, the
service rates received by classes 1,2,3 under WFQ are 1/6, 2/6, and 3/6 respectively

(Figure 3.18). The service rate of class 1 decreases, class 2 remains same and class 3

57

increases with respect to BRFQ. As may be seen in all the figures, the message delay of

class 3 decreases at the expense of class 1 traffic.

T
—— Class 1
-—- Class 2
Class 3

12 B

Mean Message Delay (slots)

] I 1 i 11
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Traffic iLoad

Figure 3.10: Mean message delay for each class of traffic under FIFO

58

30

25

Mean Message Delay (slots)
& 3

-
(=]

H L T T T T T T
-~ Class 1 (high priority)
— Class 2
-~ Class 3 (low priority) .
I .'1
1 i [i 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load

0.9

Figure 3.11: Mean message delay for each class of traffic under PQ

25

20

Mean Message Delay (slots)

1
—— Class 1
— Class 2
Class 3

0 0.1 02

03

0.4 05 0.6
Traffic Load (p)

0.9

Figure 3.12: Mean message delay for each class of traffic under FQ

59

18

1
— Class 1
— Class2
1eH Class 3

12] 4

Mean Message Delay (slots)

0 0.1 0.2 0.3 0.4 0.5 0.6 Q.7 0.8 0.9
Traffic Load (p)

Figure 3.13: Mean message delay for each class of traffic under BRFQ

T 1 T T T T T

T
} —=— Class 1 (weight=1, service rate=1/3)

—- Class 2 (weight=1, service rate=1/3)
Class 3 (weight=1, service rate=1/3)

Mean Message Delay (slots)

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Traffic Load

Figure 3.14: Mean message delay for each class of traffic under WFQ, WF?Q, WF2Q +

60

I 1 I L T T T
— Class 1 (weight=1, service rate=1/3)
—- Class 2 (weight=1, service rate=1/3)
-+ Class 3 (weight=1, service rate=1/3)

Mean Message Delay (siots)
3
T
t

w
T

0 0.1 0.2 0.3 04 0.5 06 07 0.8 0.9
Traffic Load

Figure 3.15: Mean message delay for each class of traffic under SCFQ

25 T T T Y T T T T
—- Class 1 (weight=1, service rate=1/6)
-~ Class 2 (weight=1, service rate=2/6)
Class 3 (weight=1, service rate=3/6)
20+

Mean Message Delay (slots)

0 0.4 0.2 03 0.4 0.5 0.6 0.7 08 0.9
Traffic Load

Figure 3.16: Mean message delay for each class of traffic under WRR

61

T T I
—— Class 1 (weight=1, service rate=1/3)
— - Class 2 (weight=1, service rate=1/3)
1gH Class 3 (weight=1, service rate=1/3) 4

14+ s

—
N
T
I

>
T
3

Mean Message Delay (slots)

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09
Traffic Load

Figure 3.17: Mean message delay for each class of traffic under DWRR

14

T I L1 T T T T T —
— Class 1 (weight=1, service rate=1/6)
-— - Class 2 (weight=2, service rate=2/6)
- Class 3 (weight=3, service rate=3/6)
12F g
i
10
@
]
el
>
o 8k
j
o
[}
o
]
0
NS
=
j o
[
QQ
=
4 -
2 -
O 1 1 i 1 I 1 ! 1
o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Traffic Load

Figure 3.18: Mean message delay for each class of traffic under WFQ

62

18

—r

I T T
— Class 1 (weight=1, service rate=1/6)
—~ - Class 2 (weight=2, service rate=2/6)
16H - Class 3 (weight=3, service rate=3/6)

141

—-
n
T

pre
(=]
T

Mean Message Delay (slots)

0.2 0.3 0.4
Traffic Load

05

0.6

0.7

0.8

0.9

Figure 3.19: Mean message delay for each class of traffic under SCFQ

25 I T T I T T T T
— Class 1 (weight=1, service rate=1/14)
— Class 2 (weight=2, service rate=4/14)
Class 3 (weight=3, service rate=9/14)
20

w
T

—_
[=}
T

Mean Message Delay (slots)

Figure 3.20: Mean

0.2 0.3 0.4
Traffic Load

0.5

0.9

message delay for each class of traffic under WRR

63

18

I I I T T T T T
—— Class 1 {weight=1, service rate=1/6)
-— - Class 2 (weight=2, service rate=2/6)
1 Class 3 (weight=3, service rate=3/6)
14}
w12
k<]
G2
>
[u]
o 10
a
@
o
]
%
& 8r
=
ot
1]
@
= 6
4 -
2 -
0 i 1 Il 1] L] 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Traffic Load

Figure 3.21: Mean message delay for each class of traffic under DWRR

3.4.3 Standard Deviation

Figures 3.22 - 3.24 present the standard deviation of the message delay versus the
system traffic load p under different scheduling algorithms. The figures show that the

mean message delay variation increases as the traffic load increases. The trend in the rise

of standard deviation is very similar to that of mean delay curves.

64

1 T T T T T T T
-—— FIFO
- PQ
- FQ

251 4
>
o
]
[a}
& 2 i
]
[
[%]
L4}
=
@
£
B 15F b
I
Q2
@
>
[
a
o
s Ir
9
c
pe]
1]

05+

0 5 + - s i | I L
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9

Traffic Load (p)

Figure 3.22: Standard deviation comparison of FIFO, PQ and FQ algorithms

1.4 T T T T T T T T
— BRFQ
= WFQ
- - WF2Q
1o WF2Q+ A
—— SCFQ

08

06}

Mean Message Delay (slots)

02

0 .t 0.2 03 04 0.5 0.6 0.7 0.8 09
Traffic Load

Figure 3.23: Standard deviation comparison of PS-based queueing algorithms

65

~— WRR
-~ DWRR

25

n
T

Standard Deviation of the Message Delay
- &
T T

05

O | I M Vlv. 1 1
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9
Traffic Load

Figure 3.24: Standard deviation comparison of RR-based queueing algorithms

3.4.4 Probability Distribution of Message Delay

In Figures 3.25 - 3.27, we present overall probability distribution of message delay
with the traffic load as a parameter under different scheduling algorithms. From left to
right, the curves are for p=0.2 and p=0.8 respectively.

In Figure 3.25, we present the probability distribution of message delay under the
FIFO, PQ and FQ algorithms. Under the light traffic load, p=0.2, the three probability
distribution curves are very close. Under the heavy traffic load, p=0.8, the probability
distributions diverge from each other. For example, it may be observed that the
probability that message delay is less than or equal to 8 slots is lower under PQ than
under FIFO and FQ which are close to each other. That means there are more messages
that experience shorter delay under PQ than under FIFO and FQ. As may be seen, the

curve of FQ approaches to unity slower than that of PQ and FIFO, which means that

66

more messages experience larger delay under FQ. These observations are in agreement
with those of mean delay in reference to Figure 3.7.

Figure 3.26 presents the probability distribution of message delay under the PS-
based scheduling algorithms. Under light traffic load, the five probability distribution
curves are almost same. Again under heavy traffic load, there are differences among the
curves. The probability that a message experiences shorter delay is highest under BRFQ
and lowest under SCFQ.

Figure 3.27 presents the probability distribution of message delay under the RR-
based scheduling algorithms. Again the curves are very close under light load but they

are different under heavy load. DWRR results lower delay than WRR under heavy load.

1

0.9

o o o o
o [#>] ~ w
T T T T

Probability (message delay <= j siots)
o
-
T

——FIFO
= PQ |7
FQ

03

02 !

0.1 1 L 1 L I L L
0 5 10 15 20 25 30 35 40

j slots
Figure 3.25: Probability distribution comparison of the message delay of FIFO,PQ, FQ

algorithms

67

Probability (message delay <= | slots

Figure 3.26: Probability distribution comparison of the message delay of PS-based

Probability (message delay <= j siots

Figure 3.27: Probability distribution comparison of the message delay of RR-based

o
©
T

e
3
T

o
=]
T

0.51 — BRFQ |
‘= WFQ
- - WF2Q
WF2Q+
0.4} — SCFQ |]|
0.3F 4
02 1 i i 1 1 1 i
0 5 10 15 20 25 30 35
i slots

queueing algorithms

40

09+

o
©
T

e
~
T

e
o

o
n

N
KN

p=0.8

031 b
0.2 B
01 i | 1 1 1] i
0 5 10 15 20 25 30 35
j slots

queueing algorithms

68

40

3.4.5 The Probability Distribution of Message Delay of Different Classes

Figures 3.28 — 3.30 present the probability distribution of message delay for each
class under the FIFO, PQ and FQ scheduling algorithms. The high priority traffic benefits
absolutely under the PQ algorithm. The curves for the FIFO algorithm are very close for
larger delays. As may be seen, class | messages experience the largest delay under FQ.

Figures 3.31-3.33 present the probability distribution of message delay for each class
under the PS-based algorithms. We observe that the curves of probability distribution of
WEQ, WF?Q, WE* Q+ are very similar. We note that since we assumed equal weights,
BRFQ and WFQ are identical. From Figure 3.33, SCFQ results in higher delay because it
is not as accurate as the other algorithms in tracking GPS.

Figures 3.34-3.35 present the brobability distribution of message delay for each class
under the RR-based algorithms. The curves of WRR and DWRR have obvious
differences. The behavior of WRR is similar to that of FQ, while that of DWRR is close

to the curves of PS-based algorithms.

69

09

o
o]
T

e
3
T

o
o
T

Probability (message delay <= | slots)
=
o
T

p=0.8
04r A
0.3 1
I
osf ! .
! K
[
01k v - — Class 1| 4
N -— Class 2
Class 3
0 1 L i 1 1 1 1
0 5 10 15 20 25 30 35 40

i slots
Figure 3.28: Probability distribution of the message delay for each class of traffic under

FIFO

08} ; » ' R

j slots)
[=]
~
T
1

C -

06} / |

p=0.8

04 { N

Probability (message delay <

0.3 . R]

; —— Class 1 (high priority)
02k : -—- Class 2
- [- Class 3 (low priority)

oAb ! i

O | 1 1 1 i 1] i
0 5 10 15 20 25 30 35 40
] slots

Figure 3.29: Probability distribution of the message delay for each class of traffic under

PQ
70

o o
o0 ©
T T

e
u
T

j slots)

4
)
T

o
o
T

0.4

Probability (packet delay <

03

02f - 8
e
;-
01 - —— Class 1 |
’ -~ Class 2
- Class 3
0 1 1 1 1 L 11 1
0 5 10 15 20 25 30 35 40

j slots

Figure 3.30: Probability distribution of the message delay for each class of traffic under

FQ

= | slots)
=] o o
~ [ee] [{e}
T T T

g
(o2}
T

o
w
1

p=0.8
0.4+

Probability (message delay <

o1, - — Class 1 | |
- ~- Class 2
- Class 3

O i 1 1 1 i 1 i i
0 5 10 15 20 25 30 35 40

j slots

Figure 3.31: Probability distribution of the message delay for each class of traffic under

BREQ

71

09

—— Class 1 (weight=1, service rate=1/3)
— - Class 2 (weight=1, service rate=1/3)
- Class 3 (weight=1, service rate=1/3)

o
[
T

©
~
T

o
(=]
T

Probability (message delay <= j slots)
o
w
T

0.4¢ .
p=0.8
0.3 J
!
o2t ! .
[
, j
0fF 14 B
0 i ! 1 1 1 1. 1
0 5 10 15 20 25 30 35 40
j slots

Figure 3.32: Probability distribution of the message delay for each class of traffic under

WFQ, WF>Q, WE?Q +

0.9 B
o8k — Class 1 (weight=1, service rate=1/3) |
’ — Class 2 (weight=1, service rate=1/3)
. - Class 3 (weight=1, service rate=1/3)
w
5 o7t R
2

051

0.4

Probability {message delay <

p=0.8
0.3} B
02 ! J
I,
[
o1l i~ .
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

j slots
Figure 3.33: Probability distribution of the message delay for each class of traffic under

SCFQ
72

1 T T T T SR TE T =
09} L
/
B 4 — Class 1 (weight=1, service rate=1/6) { |
08 -—- Class 2 (weight=1, service rate=2/6)
- Class 3 (weight=1, service rate=3/6)

ﬁ 0.7F B
[72]
v
Yosf 8
R
Q
o
& o5l .
[&3
«
&
Z 04} .
=
[
Q
o
a 03r 4

o2k 1/ N

e
N
0.1 -
0 1 1 i] L 1] 1
0 5 10 15 20 25 30 35 40

jslots
Figure 3.34: Probability distribution of the message delay for each class of traffic under

WRR

———=7

<
©
T

. — Class 1 {(weight=1, service rate=1/3)
, : — Class 2 (weight=1, service rate=1/3)
Va - -+ Class 3 (weight=1, service rate=1/3)

o
<o
T

j slots)
(=
~

T

o
(o2}
T

(=]
w
T

0.4+
p=0.8

Probability (message delay <

o2k 1 .

0 i | L 1 i i 1
0 5 10 15 20 25 30 35 40
j slots

Figure 3.35: Probability distribution of the message delay for each class of traffic under

DWRR

73

3.4.6 Comparison of WFQ and WRR

Next, we would like to show that the WRR may achieve performance similar to
WFQ. This is a significant achievement since WRR 1s a much simpler algorithm than
WFQ. Since in the example under study, the three classes have identical traffic loads,
WFQ with equal weights provides the same amount of service to each class. As explained
earlier on, WRR service discipline doesn’t take into account message sizes. We have
factored message sizes into WRR service discipline through service weights. Since
average message sizes of class 1,2,3 are 1,2,3 packets respectively, we have assigned
service weights of 6,3,2 to the corresponding classes. This choice of service weights
ensures that each class will receive the same amount of service as in WFQ.

Figures 3.36-3.38 present the simulation results. Figure 3.36 shows the mean
message delay under WFQ and WRR. WRR experiences higher delay than WFQ under
heavy load. Figure 3.37 shows the mean message delay under WFQ and WRR for each
class. As may be seen, WRR and WFQ differ from each other under heavy load. WRR
results in higher delay than WFQ except for class 2. Figure 3.38 shows the corresponding
probability distribution of message delay for each class, which confirms the observations
of mean message delay.

Thus the above results show that WRR may achieve performance similar to WFQ.
WRR may be used in place of WFQ in applications that delay requirements are not very

strict since it is less complex.

74

11 T T T T T

T T T
— WFQ (weight for class 1,2,3=1,1,1, service rate for class 1,2,3 = 1/3,1/3,1/3)
- WRR (weight for class 1,2,3=6,3,2, service rate for class 1,2,3 = 1/3,1/3,1/3)

Mean Message Delay (slots)
=
T

a4t
3t
ol
1 : ' L I 1 L i 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Traffic Load

Figure 3.36: Mean message delay under WFQ and WRR

20

I H T H T T T
— WFQ (weight for class 1,2,3=1,1,1, service rate for class 1,2,3=1/3,1/3,1/3)
WRR (weight for class 1,2,3=6,3,2, service rate for class 1,2,3=1/3,1/3,1/3)

12

Mean Packet Delay (slots)

[¢) 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9
Traffic Load

Figure 3.37: Mean message delay for each class of traffic under WFQ and WRR

75

j slots)
=] o o
~ o=} 0w
T T T

o
[
T

04+ .

03

Probability (message delay <

021

01r

— WFQ (weight for class 1,2,3=1,1,1, service rate for class 1,2,3=1/3,1/3,1/3)
- WRR (weight for class 1,2,3=6,3,2, service rate for class 1,2,3=1/3,1/3,1/3)
1 I3 L 1 1 1

O 1
o] 5 10 15 20 25 30 35 40
j slots

Figure 3.38: Probability distribution of message delay for each class of traffic under

WFQ and WRR

3.4.7 Call Admission Control

The objective of this part of the simulation is to study the call admission control in
the system under study. We assume that each source represents a call and the number of
calls in the system is variable. Thus, the number of sources feeding the multiplexer will
be dynamic. If an arriving call to the system is accepted it stays a random amount of time
in the system and then it terminates. We note that the call and source blockings are
equivalent, therefore we will use them interchangeably. It is assumed that the arrival of a
new source during a slot is according to a Bernoulli process, thus during a slot a new
source is generated with probability p and no source is generated with probability 1-p.
The new source will increase the total load of the system, if the new total load is higher
than 1, the new source is blocked. As before a source in the system alternates between On

76

and Off states, however, at the end of an On period a source may leave the system with
probability g and remain in the system with probability 1-q.

Figure 3.39 presents the overall source blocking probability against the probability of
new source generation during a slot under FIFO and FQ service disciplines. It may be
seen that the results are very close. We also observe the blocking probability of each
source class versus the probability of new source generation during a slot under FQ
algorithm (Figures 3.40-3.41). In Figure 3.40, three source classes have the same load.
The mean message sizes of three source classes are 1,2,3 respectively. We can see that
the blocking probabilities are close when the loads from three source classes are same
even though their mean message sizes are different. In Figure 3.41, we assume that the
traffic load of each class is different and the loads of class 1,2,3 are 1/6,2/6,3/6 of the
total load respectively. Since the average message sizes of the three classes are 1,2 and 3,
1t means that on average equal number of calls from each class will arrive at the system.
As expected, class 3 calls experience much higher blocking probability because they

demand more resources.

71

0.8 T T T T T T T

— FIFO
-~ FQ

Probability of blocked source

0 1 1 1 1 1 1 5 1
0.1 0.2 0.3 04 0.5 06 0.7 08 0.9 1
Probability of new source generation

Figure 3.39: Probability of source blocking versus the probability of new source

generation

0.8 T T T T T T T T

—— Class 1(message size=1)
0.7+ — - Class 2(message size=2) R
Class 3{message size=3) Z

0.6

o
&)

o
w

Probability of blocked source
=)
J;

0.2

0.1

0 t L i 1 | 1 1 1
0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1
Probability of new source generation

Figure 3.40: Probability of source blocking for each class of traffic with different

message sizes

78

0.9 T T T T T T T T

— Class 1 (load=1/6)
08 -~ Class 2 (load=2/6)
- Class 3 (load=3/6)

o o o
S wm »
T T T

\
\
\
1 L L

Probability of blocked source

o
w
T
N
It

o1F-]

O 1 X i] 1 L 1 1
01 0.2 0.3 0.4 0.5 06 07 0.8 09 1
Probability of new source generation

Figure 3.41: Probability of source blocking for each class of traffic with different loads

79

Chapter 4
A Performance Study of Scheduling Algorithms with

TCP Congestion Control

In this chapter, we evaluate the performance of scheduling algorithms with TCP
congestion control in the packet-switched networks. First, we investigate the performance
of a real-time connection and a TCP connection sharing a single bottleneck link. After
describing the congestion control algorithm and the network under consideration, we
present the results of the simulation. Then, we study the performance of TCP over high-

speed links.

4.1 TCP Congestion Control Algorithm

4.1.1 TCP Flow Control

TCP uses a form of sliding window mechanism to provide flow control. The unit of
window size is byte. The size of send window is set through the consulting between
sender and receiver when the connection is established. During the communication,
receiver can adjust the size of receive window dynamically, and informs sender to adjust
its send window size. For this scheme, each individual byte of data transmitted is
considered to have a sequence number. When a TCP entity sends a segment, it includes
the sequence number of the first byte in the segment data field. A TCP entity
acknowledges an incoming segment with a message of the form (A=i, W=j), with the

following interpretation:

80

¢ All bytes through sequence number i —1 are acknowledged; the next expected byte
has the sequence number .

e Permission is granted to send an additional window (W) of j bytes of data; that is,
the j bytes corresponding to sequence numbers i through i +j -1.

In our simulation, the send window size is determined according to the following

formula [33],

wnd = MIN(cwnd, maxwnd) 4.1)
where,
wnd = the window size used by the sender

maxwnd = the maximum window size that the receiver specifies at TCP

connection set-up
cwnd = the congestion window adjusted by the sender in response to

network congestion

To simplify the simulation, all window sizes are assumed to be measured in units of

maximum message size, instead of bytes. In the original TCP specification [29], the
window used by the sender, which we denote by wnd, is the receiver advertised window
maxwnd regardless of the load in the network. In the TCP algorithm in [28], the window
size used by the sender is adjusted in response to network congestion. The sender has a
variable cwnd, which is increased whenever new data is acknowledged and is decreased
whenever a message drop is detected. The mechanism used to adjust the size of cwnd is
shown as the additive increase/multiplicative decrease. The actual window used by the

sender is the minimum of the congestion window and the receiver advertised window.

81

The congestion window adjustment algorithm has two phases, the slow start or
congestion recovery phase, during which the window increases exponentially; and the
congestion avoidance phase, during which window increases linearly. During the slow
start, the sender increases the congestion window by one each time when it receives an
acknowledgement from the receiver. During congestion avoidance, the sender increases
the congestion window by one after each round-trip time and this is the additive increase.
This halving of the control threshold corresponds to the multiplicative decrease. The
current phase of the algorithm is determined by a control threshold, ssthresh. Whenever a
message drop is detected, ssthresh is set to half of the current cwnd value, cwnd is then
set to one, and the congestion recovery phase begins. cwnd increases rapidly until it
passes the threshold ssthresh. After cwnd passes the ssthresh, the algorithm switches into
the congestion avoidance phase and from there the cwnd increases linearly. The
adjustment algorithm is specified below:

When new data is acknowledged, the parameters of the algorithm are set as follows
(341,

if (cwnd < ssthresh)
cwnd +=1;
else
cwnd += l/cwnd,

On the other hand, when a message drop is detected, the parameters are initialized as:

ssthresh = cwnd/2;

cwnd =1;

82

We define an epoch of a TCP connection to be the time period which an entire
window of messages have been acknowledged. The amount by which the congestion
window increases during an epoch, which will be called the acceleration ¢, is an
important measure of how rapidly the window size is changing. Notice that when cwnd <
ssthresh, cwnd doubles during an epoch, so ¢ = cwnd. In contrast, when cwnd > ssthresh,

cwnd increases by approximately | during an epoch: ¢ = 1.

4.1.2 TCP Retransmission Strategy

TCP relies on retransmission as error control when an acknowledgement does not
arrive within a given timeout duration. There is a timer associated with each segment.
When a segment is sent, the timer is set. If the sender doesn’t receive acknowledgement
before the timer expires, the segment is retransmitted.

The retransmission timer is set according to the following adaptive algorithm
specified in RFC 793 [35]. The round-trip time is estimated using exponential averaging:

SRTT(K + 1) =ax SRTT (K) + (1 - o) x RTT(K + 1) (4.2)
where
SRTT(K) = smoothed round-trip time estimate for the last K segments
RTT(K+1) = the round-trip time observed for the (K+1)th transmitted segment

o = constant value (O<a < 1)

o is a constant value that is independent of the number of past observations. We would

like to give greater weight to more recent instances because they are more likely to reflect
future behavior.

The retransmission timer RTO is set by :

83

RTO(K+1) = B x SRTT(K+1) 4.3)

Here, P is also a constant (f>1). RFC 793 does not recommend specific values for o
and {3, but does list as “example values” a range of values, 0.8 < <09and 1.3<B <

2.0. In our simulation, we set ¢ to 0.8 and 3 to 2.

4.2 Simulation Program

In this section, we describe the program used for the system simulation. We will only

explain the new features of the program from the one used in the previous chapter.

4.2.1 Simulation Model and Parameters Setting

We will consider a network topology that consists of two tandem links connected by
a router. As may be seen from Figure 4.1, two hosts are communicating with each other
over this network. We assume that there are two connections between the two hosts, a
real-time (RT) and non-real-time (TCP). We assume that RT connection is fed by five
On-Off sources and TCP connection always has data to send and the message flow is
only controlled by the congestion window. Each connection has its own queue at the
source and router. We assume infinite queue except for a finite queue (assumed to be 60
packets size) for TCP traffic at the router. We assume that the link A between the source
host and the router has a bandwidth of 100 Mbps and propagation delay of 0.36msec. The
link B between the router and the destination is assumed to be the bottleneck, which has a
bandwidth of a 90 Mbps and propagation delay of 1.08msec. RT messages have a mean
size of three packets and TCP messages are assumed to have a constant size of three

packets. We assume that the packet size is 1500 bytes. This results in 120 usec and 133.3

84

usec packet transmission times over the link A and B respectively. We base the slot
duration on the packet transmission time over the link A, 120usec. As a result, the packet
transmission times over links A and B are | slot and 1.11 slots respectively. The
propagation delays over links A and B are 3 slots time and 9 slots time respectively.

To simplify the simulation, we ignore the processing time of the messages at the
destination host and assume that the ACK packets on the return channel don’t experience
any delay and arrive at the sender with a minimum spacing equal to the transmission time
of a data message at the bottleneck link. TCP connection is assumed to have a maximum
window size of 50 messages. For our network topology the value of cwnd never exceeds

50, so that the maximum window size will not be a factor in any of our simulations.

RT sources

RT queue 100Mbps 90Mbps
Server queue_1 Server R
A B

(LI LTI

TCP queue queue_2

O
O

Source Router

Figure 4.1: Network Model

4.2.2 Class Diagram of the Simulation Program

The main classes of the program are shown in Figure 4.2. In addition to the source,

server and queue classes, we have created several new classes.

85

Receiver

#8pProceeding()

AN
194

N " Queue o ~ Source [SrcPre
—— — T
','I,x :.’:..“_
o - | 1o e o e

' . Link | i é TCPQue R -
SourceSerer RouterServer ‘\ inkQue l‘g infiniteQlue i __FiniteQue -

[! &inQueLen
1E®Proceeding() ;E & B

Figure 4.2: Class Diagram of Simulation Program

New Queue Class has four subclasses:

TCPQue class is designed to store TCP messages and send messages within the
window size. When a TCP message is send, its corresponding information is still
buffered in this queue. When this message is detected to be lost during the
transmission time, it will be retransmitted. Message drops are detected by either
the receipt of duplicate acknowledgements or the expiration of a timer. This class
has more functions than its base class. The function CorrectACK() checks if an
ACK from the receiver is correct. It includes the checks of the sequence number
and time out duration. The function Messagel.oss() checks if a message is lost in
the transmission. When the timer expires or the sender receives a wrong sequence
number, this determines a message loss. The function CalculateRTO() calculates
the time out duration for a new send message from the round-trip times of the
previous messages. The function GetWndSize() calculates the window size

according to the adjustment algorithm described in chapter 4.1.1. The function

86

DropPkt() clears the corresponding information of a transmitted message after
receiving its correct ACK.

e FiniteQue class is designed to handle the finite queue size and stores TCP
messages at the router. When the buffer is full, the new coming messages will be
dropped.

e InfiniteQue class is designed to handle the infinite queue size and stores RT
messages.

e LinkQue class is designed to simulate the links between the source and router and
between the router and receiver. Messages experience constant delays
(propagation delays) over the links. The function Processing() provides a constant
delay for a message.

SourceServer and RouterServer classes are the subclasses of the Server class:

e SourceServer includes all the functions to control message transmission at the
source end. The name of functions in this class is same with its base class we
described in chapter 3.3.2, but there are differences in the implementation and
coding. PQ and WRR algorithms have been used to schedule the messages.

e RouterServer includes all functions to control the message transmissions from a
finite queue and infinite queue at the router.

Receiver class includes functions to send an ACK to the sender. The main

function Proceeding() sends an ACK including receiving time and the sequence number

of a TCP message.

87

4.2.3 Simulation Flow Chart

Figure 4.3 is the flow chart of the simulation system, for both RT and TCP traffic,
infinite and finite queues, scheduling algorithms, TCP flow control and retransmission
strategy. All procedures execute within a loop representing a time slot over the link A. In
this loop, we simulate all the activities for the transfer of a message from the source to the
receiver. As described earlier, the bandwidth on the link B is the 90% bandwidth on the
link A. Because the loop in our program is based on the slot time on the link A, the router
terminates a packet transmission in one slot after 9 slots to simulate this slower

transmission rate on the link B.

88

set source
parameters

A

number of generated RT messages <=
amax(RT)

Y

message generation
during a slot

A

store messages into
corresponding
queue

check TCP
window size

scheduler at the source
host transmits a
packet during a slot

Router serves a
packet

End host sends

ACK, TCP source
adjusts window

'

All genetated RT messages are transmitted to
the destination

A

get data

Figure 4.3: Flow Chart of Simulation

89

4.3 Simulation Results

In this section, we present simulation results for the system under consideration. The
objective is to study the performance of TCP traffic under the multiplexer scheduling
algorithms.

We have studied the performance of the system under two scheduling algorithms,
Priority Queueing and Weighted Round Robin respectively. The size of finite queue at
the router has been set to 60 packets size. Under the PQ (Priority Queueing), the RT
traffic is assigned higher priority than the TCP traffic at both source end and the router.
TCP messages can only be transmitted when the RT queue is empty. Under the WRR
(Weighted Round Robin), RT queues at the source and router are assigned higher service
weight than the TCP queues.

First we consider the performance of TCP and RT traffics at the source end (Figure
4.4- Figure 4.9). Figure 4.4 presents the mean message delay of RT traffic versus its load
under PQ and WRR algorithms. As expected, under PQ algorithm, the performance of
RT traffic is not affected by the TCP traffic. On the other hand, under WRR, the
performance of RT traffic depends on its ‘service weight’ which is proportional to the
service rate provided. As the service weight assigned to RT traffic increases, its
performance approaches to that of under PQ.

Figure 4.5 presents the standard deviation of the message delay versus the RT
traffic load under the PQ and WRR. It shows that the message delay variation increases
as the traffic load increases.

In Figure 4.6, we compare the probability distribution of RT message delay under

PQ and WRR. We can see that the probability distribution of message delay under PQ is

90

steeper than that under WRR. As the service weight for RT traffic increases, the
corresponding probability distribution becomes steeper. This means that the RT messages
experience shorter delay under PQ than under WRR.

Figure 4.7 presents the mean transmission time of TCP messages versus the RT
traffic load. Since we have assumed that the TCP source always has a message to
transmit, only the transmission time of a message may be determined. The transmission
time is the time interval between the arrival time of the correct ACK for that message and
the first transmission of that message. When a message drop is detected, the source
retransmits the message. We observe that the message transmission time increases with
the increase of the RT traffic load. When the RT traffic load is light, the mean TCP
transmission time under the two scheduling algorithms is similar. When the RT traffic
load becomes heavy, the mean TCP transmission time under PQ increases sharply. The
reason is that the amount of service provided to the TCP traffic decreases with the
increase of the RT traffic load. We see that the increase of mean TCP transmission time
under WRR algorithm is less steep than that under PQ algorithm. As the service weight
assigned to TCP traffic decreases, the curve of mean transmission time approaches to that
under PQ. This shows that the resource distribution to different queues under WRR is
fairer than that under PQ if the suitable weights are assigned to different types of traffic.
The WRR algorithm not only provides priorities to different queues but also don’t
entirely deny service to the lower-priority queues. In Figure 4.8, we compare the
probability distribution of TCP transmission time under PQ and WRR. We conclude that

the result in this figure is in agreement with that of the Figure 4.7.

91

Figure 4.9 presents the throughput of TCP traffic versus RT traffic load under the
two scheduling algorithms. The unit of throughput is packets/slot. It may be seen that the
traffic load for the high-priority queue affects the throughput of the lower-priority queue:
as the RT traffic load increases, the throughput of TCP traffic decreases, because server
has to spend more time serving the RT traffic. It may be seen again that the service given
to the TCP traffic is better protected under the WRR than the PQ algorithm. As the
weight assigned to TCP traffic increases, the throughput of TCP traffic increases under
the WRR algorithm.

Figures 4.10-4.13 present the performance of the two types of traffic at the router.
The infinite queue is for RT traffic and the finite queue is for TCP traffic. Note that we
always use the same scheduling algorithm both at the source and router, thus both of
them are either PQ or WRR.

Figure 4.10 presents the mean message delay of RT traffic as a function of its load at
the router. We can see that there is longer delay for RT messages under WRR algorithm
than under PQ algorithm. Compared with Figure 4.4, we observe that the curve under
WRR increase sharper under heavy load. The reason is that TCP traffic have larger
throughput when WRR is used at the source end. Therefore the server at the router has to
spend more time in the finite queue under WRR algorithm.

Figure 4.11 presents the TCP message loss probability versus RT traffic load at the
router. Message loss includes both losses due to buffer overflow and the timeouts. As the
RT traffic load increases, the message loss probability of TCP messages at the router also
increases. It shows that the message loss increases sharply under the PQ algorithm when

the RT traffic load becomes heavy. On the other hand, the increase of message loss under

92

WRR algorithm is not sharp and it levels off under heavy traffic because of service
protection of WRR.

Finally, Figures 4.12 and 4.13 present the probabilities of TCP message loss versus

RT traffic load for different buffer sizes under PQ and WRR algorithms.

25 T T T T T T T

— PQ (High priority for RT) -
201 - WRR (Service rate for TCP=0.3) 7
WRR (Service rate for TCP=0.5))

Mean RT Message Delay (slots)
~N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RT Traffic Load

Figure 4.4: Mean message delay of RT traffic versus its load under PQ and WRR

93

35

T T T
— PQ (High priority for RT) !
-— - WRR (Service rate for TCP=0.3) /

= o
(4] NN wm
T T T

i L

Standard Deviation of Mean RT Message Delay
T

05

0.4 0.5
RT Traffic Load

09

Figure 4.5: Standard deviation of RT message delay versus its load under PQ and WRR
1 T SR S T T T
0.9 1
— PQ (High priority for RT)
08 — WRR (Service rate for TCP=0.3)
m WRR (Service rate for TCP=0.5)
o
207 8

Probability (RT Message Delay rr<

o
@

o o o
w IS wn

o
S

0.

1

RT p=04

25 30 35

j slots

Figure 4.6: Probability distribution of RT message delay under PQ and WRR

94

100

T 1 T T T

T T
- PQ (High priority for RT)
— - WRR (Service rate for TCP=0.3)
goH WRR (Service rate for TCP=0.5)

S %3] D ~ @®
(=] [=] (=] (=] [=}
T T T T T

Mean TCP Message Transmission Time (slots)

[
=
T

01 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RT Traffic Load

Figure 4.7: Mean transmission time of TCP traffic versus RT traffic load under PQ and

WRR
1 T T
e
ool / .
/
/ PQ (High priority for RT)

» 08 — WRR (Service rate for TCP=0.3) E
i - WRR (Service rate for TCP=0.5)
12}
v o7t]
[
£
" osf]
2
123
@
5 o5t RT p=04 .
§
’_
% 0.4l «
o
2
g 03 B
Q
<)
o

02 N

Q1 4

0 i 1 1
0 50 100 150 200 250
i slots

Figure 4.8: Probability distribution of TCP transmission time under PQ and WRR

95

0.8 T T ™ T T T T
— PQ (High priority for RT)
-~ WRR (Service rate for TCP=0.3)
- WRR (Service rate for TCP=0.5)

07F e

061

0.4

TCP throughput (packets/slot)

0.2

01r

0 I 1 1. 1 1 1 1

o] 0.1 0.2 03 0.4 0.5 06 0.7
RT Traffic Load

Figure 4.9: Throughput of TCP traffic versus RT traffic load

60 T T T T 1 T T
— PQ (High priority for RT)
WRR (Service rate for TCP=0.3)

40

301

20+

Mean RT Message Delay (slots)

0 1 I 1 L 1 ! i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RT Traffic Load

Figure 4.10: Mean RT message delay versus its load at the router

96

09 T T T T T T T T T

081 R

-©- PQ (High priority for RT)
—#— WRR (Service rate for TCP=0.3)

o o o
E-N w [e)]
T T T
L 1 I

Probabiltiy of Message Loss

o
w
T
1

0-0-0-0-9-6-9'9 0 8 60 90 660 - X b wxi .
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
RT Traffic Load

Figure 4.11: Probability of TCP message loss versus RT traffic load at the router under

PQ and WRR

0.8 Y T T T T T T T T
-©- Buffer size=5

—*~ Buffer size=20
—%- Buffer size=30

0.7

06

o
o
T

Probability of Message Loss
=] =}
W S
T T

021

0o 01 o2 03 04 05 06 07 0.8 0.9 1
RT Traffic L.oad

Figure 4.12: Probability of TCP message loss versus RT traffic load with different buffer

sizes under PQ

97

0.25 T T T T T T T T

- Buffer size=5
—%— Buffer size=20
~#— Buffer size=30

02r

o

o

w
T

@
=
T

Probability of Message Loss

0.05f

0.9

Figure 4.13: Probability of TCP message loss versus RT traffic load with different buffer

sizes under WRR

4.4 The Performance of TCP Congestion Control Algorithm
over High-speed Transmission Links

Recently, the performance of TCP congestion control algorithm over high-speed
transmission links has been receiving growing attention. As explained earlier, the main
feature of TCP congestion control algorithm is its additive increase/multiplicative
decrease property. This congestion control algorithm is proved to be inadequate as the
speed of the transmission links increases and users demand higher throughput [13]. For
example, certain future TCP applications may require a throughput of 1-2 Gbps over a 10
Gbps high-speed transmission line. The main drawback of the present TCP congestion

control algorithm is its additive increase/multiplication decrease feature. As a result, it

98

may take minutes for a TCP connection to recover from a message loss. The [13] has
proposed to modify the congestion control algorithm to remedy this problem. High-speed
TCP is designed to have a different response in environments of very low congestion
event rate, and to have the standard TCP response in environments with packet loss rates
of at most 10 °. In environments with very low packet loss rates, high-speed TCP
presents a more aggresstve response function. The high-speed TCP response function is
specified using three parameters: Low_Window, High Window and High P.
Low_Window is used to establish a point of transition and ensure compatibility. The
high-speed TCP response function uses the same response function as the regular TCP
when the current congestion window is at most Low_Window. High Window and
High_ P are used to specify the upper end of the high-speed TCP response function. It is
set as the specific packet drop rate High P, needed in the high-speed TCP response
function to achieve an average congestion window of High Window. As described
earlier: in congestion avoidance phase, the congestion window (cwnd) can be expressed
by the following equations:
ACK: ewnde—cwnd + al{cwnd)/cwnd “4.3)
DROP: cwndé¢—cwnd +b(cwnd)* cwnd 4.4
For standard TCP, a(cwnd)= 1 and b(cwnd) = V2. For cwnd = High_Window, there is
following relationship between a(cwnd) and b(cwnd):
a(cwnd)= High_window * * High_P*2* b(cwnd)/(2 ~b(cwnd)). 4.5)
As a result, the high-speed TCP response function will have faster additive increase
and slower multiplicative decrease than standard TCP. In [13], it has been shown that this

will provide big users with high throughput over high-speed links. Unfortunately, there is

99

another problem related to the transmission over high-speed links. Since TCP limits the
maximum message size to 1500 byte, the window size of a big user will be in tens of
thousands. Clearly, this will substantially increase the processing load of routers. Another
proposal to remedy the problem of high-speed TCP is to change the maximum message
size in TCP while keeping the additive increase/multiplicative decrease congestion
control algorithm [15]. This solution doesn’t result in very large window sizes as the
previous solution. However, both solutions have a common problem that they fail to
protect the low-throughput users against the high-throughput users. Low-throughput users
don’t receive their share of bandwidth at the presence of high-throughput users. Next, we

demonstrate this through a number of simulation results.

Class 1 traffic

queue

\ 1Gbps D:D:EI O.7Gb
A B
/ queue

«
Class 2 traffic O

Source Router

Figure 4.14: Simulation Model

Simulation model is showed in Figure 4.14. Low and high throughput user traffics
(class 1 and 2) are stored in a single queue at the source and router. The class 1 traffic
load is kept constant value 0.5 while the class 2 traffic load is varied. We assume that the
link A between the source host and router has a bandwidth of 1 Gbps and propagation
delay of 0.36msec. The link B between the router and the destination is assumed to be the
bottleneck. It has a bandwidth of 0.7 Gbps and propagation delay of 0.12msec. We

assume that the packet size is 1500 bytes. This results in 12 usec and 17.1 usec packet

100

transmission times over the link A and B respectively. We base the slot duration on the
packet transmission time over link A, 12 usec. As a result, the packet transmission times
over links A and B are 1 slot and 1.33 slots respectively. The propagation delays over
links A and B are 30 slots time and 10 slots time respectively. Figure 4.15-4.17 present
the throughput of class 1 versus the traffic load of class 2. In Figure 4.15, the average
message sizes of low and high-throughput users are 1 and 10 packets respectively. As
may be seen, the throughput of class | decreases as the load of class 2 increases. In
Figure 4.16, it is assumed that the standard TCP algorithm controls the flow in both
queues. As may be seen, the throughput of class 1 decreases as the load of class 2
increases. Next in Figure 4.17, we assume that low and high throughput traffic use
standard TCP and high-speed TCP respectively and they have equal message sizes of
single packet. As explained earlier on, high-speed TCP uses faster than the additive
increase and slower than the multiplicative decrease compared to standard TCP. As may
be seen, the throughput of class 1 decreases as the load of class 2 increases. Thus none of
the above three solutions is able to protect the bandwidth share of low throughput users in

the presence of high throughput users.

101

05 T T T 7 T T T

0.45- AN 4

04} L]

03+ \

Throughput of class 1 (packets/stot)

0.2 T

015 ¢ ; I { :
02 03 04 0.5 0.6 07 0.8 0.9 1

Load of class 2

Figure 4.15: Throughput of class 1 versus the traffic load of class 2

0.5 T R T

0450

0.4k]
0.35} \ 4
03}]

0.251 B

Throughput of class 1 (packets/siot)

02 4

015} e

0.1 1 1 L L L i L
0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Load of class 2

Figure 4.16: Throughput of class 1 versus the traffic load of class 2

102

0.5 T T T T T T T

0.45- B

035+ B
03 b
025 h

015} ~ 4

Throughput of class 1 (packets/siot)

0.1 I] : 1 t L 1
0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Load of class 2

Figure 4.17: Throughput of class | versus the traffic load of class 2
Next we consider a system with different maximum message sizes for low-
throughput and high-throughput users. Low-throughput users will still have a maximum
message sizes of 1500 bytes, while high-throughput users will have a maximum message
size of may be 10 times higher. The low and high throughput users traffics will be stored
in two separate queues at the source and router. They will be controlled by the standard
TCP. The system will provide different throughputs to the two types of users by

assigning appropriate service weights to each queue.

Class 1 traffic

w 1Gbps m‘ 0.7Gbps
TCP queue 1 Server |———— queue_1 Server ——
A B

[T 1]

Class 2 traffic TCP queue 2 queue_2

« v
« v

Source Router

Figure 4.18: Simulation Model

103

Next, we have studied the performance of the proposed algorithm through
simulation. It will be seen that the throughput of the high-throughput users increases with
the increase of their service weight while low-throughput users are being protected. We
first study the performance in the model of Figure 4.18. Low and high throughput user
traffics (class 1 and 2) are stored in separate queues at the source and router. The load of
low-throughput user is also kept 0.5 while the load of high-throughput user is varied. The
average message sizes of low and high throughput users are 1 and 10 packets
respectively. We have used WRR scheduling algorithm in serving to the two queues.
Figure 4.19 presents throughput of class 1 versus load of class 2 under different service
rate. As may be seen, the throughput of class 1 can be controlled by assigned different
service weight. The throughput of class 1 increases as the assigned service weight

increases.

0.45 T T T

035} \\\ R

03 \\.\ . _

0.25}- NN : h
N
\ N Service rate for class 1 =0.3

Throughput of class 1 (packets/slot)

0.15+

01}]

Service rate for class 1 =0.1

0.05 1 L 1 I j | !
0.2 03 04 0.5 0.6 07 0.8 0.9 1

t oad of class 2

Figure 4.19: Throughput of class | versus traffic of class 2 under different service rate

104

Next we present the simulation results in the model of Figure 4.20. Low and high-
throughput user traffics are stored in TCP queues | and 2 respectively. We assume that
both source queues are saturated, thus they always have messages to transmit. The
message size of low-throughput user traffic 1 is assumed to be 1 packet and the message
size of large user traffic 2 is assumed to be 10 and 50 packets respectively. We assume
finite queue size of 500 packets at the router. Message loss includes message drops at the
tail of finite queues as well as message timeouts. We have also used WRR scheduling

algorithm in serving to the two queues.

TCP queue 1 1Gbps 0.7Gbps

Server |——— queue_1 Server Des

TCP queue 2 queue_2

L.

Source Router

Figure 4.20: Simulation Model

Figures 4.21-4.26 present some simulation results. Figure 4.21 presents the
throughput of each class versus service rate of class 2 traffic. We observe that the
throughput of class 2 (high—throﬁghput user) increases together with its service rate. It
may be seen that the message size doesn’t affect the results. Figure 4.22 presents the
average round trip time of class 2 versus its service rate. We observe that the messages
with larger size experience longer round trip time than those with smaller size. Figures
4.23-4.24 present the probability of message loss for class 2 traffic as a function of its

service rate. We observe that the probability of message loss decreases as its service rate

105

increases. Figure 4.24 presents message loss probability of class 2 traffic due to buffer
over flow versus its service rate. Comparison of Figure 4.23 and Figure 4.24 shows that
most of message losses are due to timeouts. Figure 4.25 presents the probability
distributions of window sizes for both classes for a given service rate. Figure 4.26
presents the average window size for class 2 traffic as a function of its message size for
constant values of service rate. As may be seen, the average window size drops as the
message size increases. This confirms that the large message size keeps the required

window size small.

0.7 T T

T
— Message size = 10 packets
- — - Message size = 50 packets

T T T T T

Throughput (packets/slot)

0 I L 1 t i ! 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Service Rate of Class 2

Figure 4.21: Throughtput versus service rate of class 2 traffic

106

1 8006/\' 1 T T T T T T T

—%— Message size = 10 packets
- ©- Message size = 50 packets

1600} 8

1400

1200

1000

800

600

Average Round Trip Time (slots)

400

200

01 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Service Rate of Class 2

Figure 4.22: Average round trip time of class 2 traffic versus its service rate

0.1 T T T T T T

T T
—¥— Message size = 10 packets
©- Message size = 50 packets

0.09

0081 1

<
o
byl
T
!

o

=)

3
T

o
1

o

=3

b
T
/
1

Probability of Message Loss
=)
o
(5]
T
7
i

0] 1 i 1 1 1
0.1 02 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Service Rate of Class 2

Figure 4.23: Probability of message loss for class 2 traffic versus its service rate

107

0.012

T T T T ® T T T
—%— Message size = 10 packets LN
©- Message size = 50 packets 1 '\
I \ .Q
\ . .
0.011+ ! T \ |
! o \
! \
I \

A 0.008f b
o
-
(]
j*2]
i
w)
w
D

2 o0.006} .
o
2
a
o
a
o

@ 0.004} E

0.002 b

0.t 02 03 0.4 0.5 086 07 08 09 1

Service Rate of Class 2

Figure 4.24: Message loss probability of class 2 traffic due to buffer overflow

service rate

08r

o) o)
S w (2] ~
T T T T

Probability of Window Size

<
%)
T

02

7/

class 2
/

—— Message size = 10 packets
Message size = 50 packets

4 —

class 1

i 1 I L 1 i 1 L 1

2 4 6 8 10 12 14
Window Size < j Packets size

20

versus its

Figure 4.25: Probability distributions of window sizes for class 2 service rate of 0.9

108

14 T T T T T T T
—%— service rate for class 2 = 0.9
- ©- service rate for class 2 = 0.6
121 N
~.
~.
~.
10 Sl 4
Q ~
N ~
0 ~
3 e
o ~
g ~.
s 8¢ Sl 1
i) ~
2 '~
a—, ~
<>(~
~
Qo
6} - N
~.
~.
~
\.
\.
~. 3
4+ O |
2 L 1. i i 1 1 1
10 15 20 25 30 35 40 45 50

Message Size of Class 2 (packets)
Figure 4.26: Average window size for class 2 traffic versus its message size

Figures 4.27-4.32 present the simulation results for different values of the
propagation delay of links A and B. The propagation delays of links A and B have been
increased by ten times to 3.6msec and 1.2msec respectively in this simulation.

We observe the simulation results when the class 2 traffic achieves the similar
throughput to the previous simulation. Figure 4.27 presents the throughput results for the
two classes. Comparison with Figure 4.21 shows that their throughput remains
unchanged under higher propagation delay. Comparison of Figure 4.28 and Figure 4.22
shows that the round trip time has increased. Figures 4.29 and 4.30 are similar to Figures
4.23 and 4.24. Figures 4.31 and 4.32 correspond to Figures 4.25 and 4.26 respectively. As
may be seen, higher propagation delay results in larger window sizes. However the
increase in window sizes is far greater for small message sizes than large message sizes.
This again confirms that the large message size provides a better solution to the high-

speed TCP than modification of the congestion control algorithm.

109

0.7 T T T T T T T T

—— Message size = 10 packets
-~ - Message size = 50 packets

Throughput (packets/slot)

O 1 i I3 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Service Rate of Class 2

Figure 4.27: Throughtput versus service rate of class 2 traffic

3000 T T T T T

T ¥ T
—%—- Message size = 10 packets
i ©- Message size = 50 packets

2500

2000

1500

1000

Average Round Trip Time (slots)

500

0 L 1 1 i 1 1 L |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Service Rate of Class 2

Figure 4.28: Average round trip time of class 2 traffic versus its service rate

110

0.060———— @ T T Y T T T T
N —%—- Message size = 10 packets
\ - ©- Message size = 50 packets
.\-
0.05}1 N .
\.
v
RS
2 0041 BN 4
o]
— N
® ~
S .
© A
@
L) \O\
= 0.03f N &
o N
= N
z]
3 \
2 \
o 0.02F . b
\
\.
\.
\.
001} & - -0]
N
¢]
;‘**\x———ﬁ\w
O I i 1 t T T T T B
0.1 02 0.3 04 0.5 0.6 0.7 0.8 Q.9 1

Service Rate of Class 2

Figure 4.29: Probability of message loss for class 2 traffic versus its service rate

0.012 T T T T i T T T
—%~ Message size = 10 packets JoN
© Message size = 50 packets ~)
/7 ~ -
0.01 7 ~o- \
/ \
4 \
@
\
/
2 0.008- / o
4 .
3 /
2 .
g /
& 7
L
= 0.006f ! .
o 1
- .
£ /
0
3 d
<] /
a 0.004 ; B
,
K
7
0.0021 K B
e
0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1

Service Rate of Class 2
Figure 4.30: Message loss probability of class 2 traffic due to buffer overflow versus its

service rate

111

0.8 T T T T T T T T T

—— Message size = 10 packets

07 — - Message size = 50 packets o

class 1 R

o
0
T
N

class 1

o
N
T

Probability of Window Size
[en)
w
T
1

’ class 2

02r

0.1p

O i 1 1 i 1 1 { 1 i
0 2 4 6 8 10 12 14 16 18 20
Window Size < j Packets size

Figure 4.31: Probability distributions of window sizes for class 2 service rate of 0.9

30 T T T T T T T
—%— Service Rate for class 2 =0.9
3 © Service Rate for class 2 = 0.6

25

ny
[=]

Average Window Size
o

5 1 1 I3 i 1
10 15 20 25 30 35 a0 45 50
Message Size of Class 2 (packets)

Figure 4.32: Average window size for class 2 traffic versus its message size

112

Chapter 5

Conclusions and Future work

5.1 Conclusions

Main challenge facing the telecommunication industry is how to integrate the
transmission of voice, video, data and other information in a single network. ATM and
Internet have emerged as the two competing network architectures for the realization of
this integration. In both solutions, traffic will be divided into a few broad service classes
according to their characteristics and QoS requirements. The service classes will be
treated differently in terms of call admission, routing and bandwidth allocation.

The bandwidth sharing is determined by the scheduling algorithms implemented at
the switch and router queues. This thesis has concerned itself with a comprehensive study
of different classes of scheduling algorithms. We have studied FIFO, PQ, WFQ and
WRR classes of algorithms. The mean and probability distribution of message delay,
throughput, message loss probabilities and call blocking probabilities have been
performance measures of interest. Simulation has been used as the main tool of the
analysis. We have modeled different types of multimedia traffic with Markov On/Off
sources. This type of sources is suitable for capturing burstiness and correlation of traffic.

Among the scheduling algorithms studied, FQ and PQ provide the least and the most
service differentiation respectively while WFQ and WRR may cover the entire spectrum
between the two. WFQ and WRR allow the amount of service differentiation to be
controlled through assignment of service weights. This gives an effective way to control

the bandwidth allocation to different services in order to meet their QoS requirements.

113

The implementation of the WFQ class of algorithms is far more complicated than WRR
algorithm. This work shows that through appropriate choice of serving weights, the
performance of WRR may be close to WFQ not only in mean but as well as in probability
distribution of delay. Thus much simpler WRR may be used in place of WFQ in many
applications. Our work also shows that the message size may also be used in service
differentiation. If the order of service depends on the message size, then mean delay is
not independent of service discipline. Thus we suggest that the service classes may also
be created based on the message size.

Presently the Internet uses two transport protocols, UDP and TCP, which carry real-
time and non-real-time traffic respectively. Voice and video make up real-time traffic
while non-real-time traffic consists of data. Up to now the Internet has treated all the TCP
traffic in the same manner. However, in the future there will be non-real-time
applications that require high throughput. It is proposed to meet this demand either
through modification of TCP congestion control algorithm or by increasing the maximum
allowed message size. We prefer the latter solution to the former since it keeps the
window size and therefore the processing load of routers under control. However, neither
of these solutions protects the bandwidth share of low-throughput users. As a solution,
we propose to divide the non-real-time traffic into two classes as low and high throughput
TCP traffic and queue them separately. The WFQ or WRR scheduling algorithms may be
used to protect the bandwidth share of low-throughput users. The simulations show
satisfactory results for both types of traffic. It is expected that low-throughput users will
use smaller messages compared to high-throughput users. This proposed solution is an

example of service differentiation based on message size explained above.

114

5.2 Future Work

This work may be extended along the following directions,

e Performance of scheduling algorithms in multi-node networks through simulation.
This will show if our results hold at a network level.

e Study the performance of scheduling algorithms analytically. The most promising in
this aspect will be the analysis of WRR algorithm. Further the results of this analysis

will also apply to WFQ algorithm.

115

References

[1] W. Stallings, “High-Speed Networks and Internets: Performance and Quality of
Service”, Second Edition, Prentice Hall Inc., 2002.

[2] Harry G. Perros, “An Introduction to ATM Networks”, John Wiley & Sons, Ltd.

. 2002.

[31 X.Song, “ Performance Analysis of a Multiplexer with Priority Queues and
Correlatedd Arrivals”, M.A.Sc. thesis, Dapartmetn of Electrical and Computer
Engineering, Concordia university, 2002.

[4] R.Braden, D.Clark, S.Shenker, * Integrated Services in the Internet Architecture: an
Overview,” RFC 1633, June 1994.

[5] K.Nichols, S.Blake, F.Baker, D.Black, “Definition of the Differentiated Services
Field (DS Field) in the Ipv4 and Ipv6 Headers,” RFC 2474, December 1998.

(6] J.C.R.Bennett and H. Zhang, “Hierarchical packet fair queueing algorithms,” in
IEEE/ACM Tran. on Networking, Oct 1997.

[71 A. Demers, S. Keshavt and Scott Shenker, “Analysis and simulation of a fair
Queueing Algorithm,” in ACM, 1989, pp.1-12.

[8] A.G. Greenberg and N. Madras, “ How fair is fair queueing?” in ACM, July 1992.

[9] M. Shreedhar and G. Varghese, “ Efficient fair queueing using deficit round robin,”
in ACM, 1995.

[10] Hyun-Ho Yoon, Hakyong Kim, Changhwan Oh, and Kisecon Kim, ” A
queue length-based scheduling scheme in ATM networks, ” in IEEE, 1999.

{11] Y.Ito, S. Tasaka and Y.Ishibashi, *“ Variably weighted round robin queueing for

core IP routers, ” in IEEE, 2002.

116

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

(22]

[23]

M. F. Horng, W. T. Lee, k. R. Lee and Y.H. Kuo, “ An Adaptive Approach to
Weighted Fair Queue with QoS Enhanced on IP Network, ” Proceedings of IEEE
Region 10 International Conference on, Aug. 2001.

S. Floyd, S.Ratnasamy and S. Shenker, “ Modifying TCP’s Congestion Control for
High Speeds, ” URL http://www.icir.org, May 5, 2002.

S. Floyd, “ HighSpeed TCP for Large Congestin Windows,” IETF draft, February,
2003.

“Raising the Internet MT, ” URL http://www .psc.edu/~mathis/MTU/.

S. Shalunov “TCP Armonk, ” URL http://www.internet2.edu/~shalunov/tcpar/ .
S.Keshav, “An engineering approach to computer networks, " Addison-Wesley,
1997.

J. Nagle, “On packet switches with infinite storage, ” IEEE Transactions on
Communications, April 1987.

A.K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow

control: the single node case”, in Proc. of IEEE INFOCOM, May 1992.

J. C. R. Bennett and H. Zhang, “WF” Q: worst-case fair weighted fair queueing”,
in Proceeding of IEEE INFOCOM, Mar, 1996.

S. Golestani, “ A self-clocked fair queueing scheme for broadband
applications, ” in Proceedings of IEEE INFOCOM’94,June 1994, pp. 636-646.
H.M. Chaskar, U. Madhow, “ Fair scheduling with tunable latency: A Round Robin
approach”, IEEE 1999.

S. Golestani, “A stop-and-go queueing framework for congestion management. ”

In proceedings of ACM SIGCOMM’90, pp. 8-18, Sep. 1990.

117

(24]

(25]

(26]

C. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very high-
speed networks, ” in IEEE Global Telecommunications Conference , San Diego,
California, December 1990, pp. 300.3.1-300.3.9.

H. Zhang and D. Ferrari, “ Rate-controlled static priority queueing, ”” In
Proceedings of IEEE INFOCOM’93, Apr. 1993, pp. 227-236.

L. Klenrock, “Queueing Systems, Volume 2: Computer Applications, *“ Wiley,

New York, 1976.

[27] Selvakumaran N. Subramanian, “Traffic Modeling in a Multi-Media Enviroment”,

[28]

(29]

[30]

(31]

M.A.Sc. thesis, Department of Electrical and Computer Engineering, Concordia
University, 1996.

K. Sriram and W. Wjott, “Characterizing superposition Arrival Processes in Packet
Multiplexer for Voice and Data”, [EEE on Selected Areas in Communications,
vol.4. No.6, September. 1986, pp.833-846.

H. Heffes and D. M. Lucantoni, ©“ A Markov Modulated Characterization of
Packetized Voice and Data Traffic and Related Statistical Multiplexer
Performance”, IEEE on Selected Areas in Communications, vol.4. No.0,
September.1986, pp.833-846.

B. Maglaris, et al., “Performance Models of Statistical Multiplexing in Packet
Video communications”, IEEE Transactions on Communications, vol 36, No.7
1998, pp.834 —844.

M.Mehmet-Ali Asrin, F.Kamoun, “ A transient discrete-time queueing analysis of

the ATM multiplexer”, Elsevier Performance Evaluation, 32, 1998, pp.153 - 183.

118

(32]

(331

[34]

[35]

(36]

[37]

[38]

[39]

R. E. Walpole, P. H. Myers, “Probability and Statistics, ” Macmillan, New York,
1985.

V. Jacobson, “ Congestion avoidance and control”, In proceedings of SIGCOMM’
88, August 1988.

S. Shenker, L. Zhang and D..Clark,” Some observation on the Dynamics of a
congestion control algorithm”, ACM Computer Communication Review, Vol. 20
No.4, Oct. 1990, pp.30-39.

J. Postel, “ DoD Standard Transmission Control Protocol”, RFC 793.

E. de Souza and D. Algarwal, “ A HighSpeed TCP study: Characteristics and

Deployment Issues.” URL http://www-itg.1bl.gov.

A. Romanow and S. Floyd, “ Dynamics of TCP Traffic Over ATM Networks.”
IEEE Journal on Selected Areas in Communications, May 1995.

D. Stiliadis and A. Varma, "Latency-Rate Servers: A General Model for Analysis
of Traffic Scheduling Algorithms", IEEE/ACM Transactions on Networking,
October 1998.

D. Stiliadis and A. Varma, "Rate Proportional Servers: A Design Methodology for

Fair Queueing Algorithms", [EEE/ACM Transactions on Networking, April 1998.

119

Appendix
Pseudo Code for Scheduling Algorithms

In our simulation, the key part is the message processing in the queues. Because the code
of total program is big and complex, we only provide the pseudo code of this part in

different scheduling algorithms.

1. First In First Out (FIFO)

When a message arrives, it is placed at the end of the queue. The function dequeue()
deals with the message at the head of a queue during a slot.
Dequeue()
{
while (('lempty(queue))
{
server is idle;
}
prciength= the processed message size in one message until past slots
queue.message.prciength++;
/*handle a message during a slot */
if(queue.message.prclength = message length)

transmit the whole message;

120

2. Priority Queueing (PQ)

e Q= Number of flows(queues)

i = the queue number that is being processed at current slot

max= the non-empty queue that has max priority in all active queues
Dequeue()
{
tf((lempty(queueli]))
{
if(empty(queue[max] empty)

server is idle

else

if(Queue[i].prclength==0)
{
if(empty(queue[max]))

server is idle

}

queuefi].message.prclength++;

[*processing of a message during a slot */
if(queue[i].message.prclength = message length)

transmit the whole message;

121

3. Fair Queueing (FQ)

¢ Q= Number of flows(queues)
Dequeue()
{
while (('empty(queuefi]))
{
if (i<Q)
i++; //point to next queue
else
server is idle
i
queuel[i].message.Prclength++;
/*processing of a message during a slot */
if(queue[i].message.Prclength = message length)
{
transmit the whole message;

i++; //point to next queue

122

4. Bit Round Fair Queueing (BRFQ)

When a message arrives, it is placed in the current queue as well as the corresponding
virtual queue. Caculating the message’ virtual finish time from the processing virtual
queues. Virtual time is got from the function Operate():
Operate()
{
ActiveVirtualQueue= queue numbers that are not empty at current slot;
virtual_time= Virtualtime+ 1/ActiveVirtualQueue;
transmit 1/ActiveVirtualQueue bytes messages from the virtual queue;
}
Recording message’ virtual finish time when a message is placed in the queue:
queueli].virtual_finish_time = virtual _time + messagelength;
Selecting the queue with minimum virtual finish time message and transmiting the
message at the head of this queue:
selectqueue()
{
min.virtual_finish_time = Min(queue[i].virtual_finish time);
i = queue(min.virtual _finish_time) ;
queue_selected=1 ;
}
Dequeue()
{

if((lempty(queueli]))

123

if((queue[i].message.prclength ==0) /* no message has been processed

message in the past slots */

if(!selectqueue())
/* find the queue with minimum virtual time message */

server 1s idle;

else

if(!selectqueue())
/* find the queue that has the message minimum virtual finish time */
server is idle
}
queue(queue_selected).message.prclength++;
if(queue(queue_selected).message.prclength = message Length)

transmit the whole message;

5. Weighted Fair Queueing (WFQ)

The main difference between BRFQ and WFQ is the calculation of the virtual finish time:
queuef:].virtual_finish_time = virtual_time +Messagelength/queue[i]. Weight;

124

6. Worst-case Weighted Fair Queueing (WFQ)

The main difference between WFQ and WFQ is in the selectqueue():

selectqueue()

{
for(i=0;i< num_queues: i++)
if (lempty(queue(i])) && queue[i].virtual start_time> virtual _time
&& queuefi].virtual_finish_time < minimum_finish_time)
{
minimum_finish_time = queue(i).virtual_finish_time;

queue_selected =i :

7. Worst-case Weighted Fair Queueing+ (WFQ+)

The queue selection and message transmission procedure of WFQ+ are same as of WFQ.
The different point is the calculation of virtual time. When a message arrive in queue[i],
queuel[i].virtual_start_time = virtual time;
queueli].virtual_finish_time = virtual time + messagelength/queue[i].weight
min.virtual_start_time = Min(virtual_start_time);

virtual_time = max(min.virtual_start_time, virtual_time);

8. Self_clocked Fair Queueing (SCFQ)

This algorithm doesn’t need to simulate virtual queueing system at the same time that it is

processing the messages in the queues. When a message arrives at queue(i]:

125

queue(:].virtual_finish_time = max(queuel[i].lastmessage.virtual _finish_time,virtual
time) + messagelength/queueli]. weight;

virtual time = queueli].virtual_finish_time;

9. Weighted Round Robin (WRR)

dequeue()

{
while (empty(queuefi]))
{
if (i< num_queues)
{
queue(i].usedweight=0;/* initial the couter recording used weight;

i++; // check next queue

else

server is idle;
}
if(queuel[i].usedweight<queue[i].weight) /* the weight allows this queue to
transmit a message™/
transmit a packet in the message;

if(queue(queue_selected).message.prclength = message length)

{

126

transmit a message;
queueli].usedweight++; /*record used weight for this queue*/
}
if(queueli].usedweight>=queue[:].weight)/*used up all weight*/
{
queue[i].usedweigt=0;//initial used weight for the given queue

move {0 next queue;

10. Deficit Weighted Round Robin (DWRR)

Initialize the DeficitCounter for each queue:
for(i=0;i< num_queues: i++)
{

queue[i].deficitcounter =0;
}
The function Enqueue(i) places newly arriving messages into the correct queue and
manages what is known as the ActiveList. The ActiveList is maintained to avoid
examining empty queues. The Activel.ist contains a list of the queue indices that contain
at least one message. Whenever a message is placed in a previously empty queue, the
index for the queue is added to the end of the ActiveList by the function
InsertActiveList(i). Similarly, whenever a queue becomes empty, the index for the queue
is removed from the ActiveList by the function RemoveFromActiveList(i).
Enqueue(i)

127

i = the index of the queue that will hold the new message
if('ExistsInactiveList(i)) /*if i not in ActiveList*/
InsertActiveList(i);
Queue(i).DefictCounter = 0;
Enqueue message to queue(i); /*place message at end of queue */
}
Whenever an index is at the head of the of the ActiveList, the function Dequeue()
transmits up to queue[i].DeficitCounter + queuefi].Quantum worth of bytes from the
queue. If queue[i] still has messages to send at the end of the service round, the function
InsertActive(i) moves the index i to the end of the ActiveList. However, if queue[i] is
empty at the end of the service round, the queue[i]. DeficitCounter is set to zero and the
funtion RemoveActiveList(i) removes the index i from the ActiveList.
Dequeue()
{
while(true)
{
if (ActiveList 'empty)
i= the index at the head of the ActiveL.ist;
queueli].DeficitCounter = queue[i].DeficitCounter + queue[i].Quantum;
while(queue[i].DeficitCounter > 0 and !empty(queue(i)))
{

messagelength= length(head(queue(i));

128

if (messagelength <= queue[i].DeficitCounter)

{
transmit message at the head of queue(i];
queue[i].DeficitCounter = queue[i].DeficitCounter — messagelengh;
}
else
exit;
if(empty(queuel[i])
{
queueli].DeficitCounter = 0;
RemoveFromAcitveList(i);
}
else

InsertActiveList(i);

129

