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ABSTRACT

Coherent States of the Poincaré Group, Related Frames and Transforms

Mohammed Rezaul Karim, Ph.D.

Concordia University, 1996

We construct here families of coherent states for the full Poincaré group, for repre-
sentations corresponding to mass m > 0 and arbitrary integral or half-integral spin.
Eaéh family of coherent states is defined by an affine section in the group and con-
stitutes a frame. The sections, in their turn, are determined by particular velocity

vector fields, the latter always appearing in dual pairs.

We discretize the coherent states of Poincaré group in 1—space and 1—time dimensions
and show that they form a discrete frame, develop a transform, similar to a windowed
Fourier transform, which we call the relativistic windowed Fourier transform. We also

obtain a reconstruction formula.

Finally, we perform numerical computations. We evaluate the discrete frame oper-
ator numerically and present it graphically for different sections and windows. We
also reconstruct some functions, compare reconstructed functions with the original
ones graphically. We compare the reconstruction scheme of the relativistic windowed

Fourier transform with that of the standard windowed Fourier transform.
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Introduction

This thesis is based on two related notions— ‘coherent states’ and ‘wavelet trans-
forms’ and in the first chapter we describe them in order to set up the background.
‘Coherent states’ were first introduced by Schrédinger [74] in 1926 as a system of
non-orthogonal wave functions to demonstrate the transition from quantum mechan-
ics to classical mechanics. These states are just displaced forms of the ground state
of the harmonic oscillator and they minimize the uncertainty relation of Heisenberg,
(AqAp = }). The completeness of these states was first noted by von Neumann [60].
Since its discovery by Schrodinger, this idea did not get much attention until 1963,
when Glauber [39, 40] and later Klauder [50, 51] rediscovered them. Glauber intro-
duced them in the context of quantum optics during the study of the coherence of
light beams and coined the term ‘coherent states’ (CS), because of their property of
maintaining the same pattern over long distances and time. Glauber also surveyed the
properties of CS, specially the expansion of arbitrary states in terms of CS. The CS
introduced by Schrodinger and Glauber are customarily known as the canonical co-
herent states. Klauder set forth the group theoretical foundation of CS and he stated
the resolution of the identity, a central property of coherent states, in the present
form [52]. He also parametrized the CS by phase space points.

A connection between the canonical CS and certain types of unitary irreducible group
representations was noted by Klauder [50, 51], Gilmore [37, 38] and Perelomov [62].

They observed independently that the construction of the canonical CS is actually



associated to the unitary representation U of the Weyl-Heisenberg group Gwx and
that the CS could be obtained by acting on the harmonic oscillator ground state with
U. Unlike Klauder, Gilmore and Perelomov did not use the whole group Gwy but the
coset space X = Gwy/Z, where Z is the center of Gwy (i.e., the set of all elements
commuting with every element of Gwy) and the CS are indexed by the points of the
coset space X. In addition, the representation U is ‘square integrable’ in the sense

that for n € H = L*(R, dz),
/X [(U(g)n|¢)[Pdv(z) < o0, g € Gwn, Ve EH (z = g2),

where v is the invariant measure on X.

Taking any locally compact group G, rather than the Weyl-Heisenberg group Gwn,
the following generalization can be made: Let U be a unitary, irreducible representa-
tion of G in an abstract Hilbert space H, n € H and H,, the isotropy group of . (Let
G be a group acting on a set X and let z € X. The isotropy group of z, denoted by
G., is the subgroup of all elements of G leaving « fixed, G- = {g € G|gz = z}). If
X = G/H, is the corresponding coset space the CS system associated with U is the
set of vectors

Sy = {U(0oo(z))n |z =gH, € X, g € G}.

where gp : X — G is a Borel function defining a section in the group.



Although the method of Gilmore and Perelomov was very suitable for the extraction
of CS of most of the groups, it was soon discovered that their method was not capable
of handling at least some groups, for example, the Galilei and Poincaré groups {9, 10,
11, 12, 66, 67]. A possible way to overcome the drawbacks of the Gilmore-Perelomov
method was suggested by Ali [2] and later developed in a series of papers by Alj,
Antoine and Gazeau [3, 4, 5, 6, 7, 8, 14]. Unlike in the Gilmore-Perelomov framework,
in the new method, CS are contructed using a homogeneous space X = G/H, where
H is a suitable closed subgroup of G and H does not necessarily coincide with H, and

one needs to find a section, ¢ : X — G. Then the CS are defined to be the vectors

Ne(z) = U(o(z))n, z € X, n € H.

It ought to be noted here that the introduction of sections in the above sense was
done implicitly by Prugovecki [66, 12], and in the Gilmore-Perelomov frame-work the

section o(z) appears as well, often implicitly.

The history of wavelet anlysis is only about 20 years old, and yet in this short period
of time it has become very popular among mathematicians, physicists and engineers
alike. The reason behind this popularity is its synthetic nature, i.e., it is a synthesis of
a variety of fields, for instance, the Littlewood-Paley decomposition in mathematics,
coherent states expansion in quantum mechanics, sub-band coding in signal processing

etc. ‘Wavelets’ were first introduced by Morlet [59] in 1982, as a convenient tool to an-



alyze seismic data. Wavelets are actually coherent states of the affine group, satisfying
some admissibilty conditions. After successful applications in seismic study, Morlet
and Grossmann [44] studied them extensively and developed a mathematical founda-
tion for wavelet theory. Then Meyer observed a connection between the method of
signal analysis and the techniques used in the study of singular integral operators. Af-
ter that, Daubechies, Grossmann and Meyer [27] constfucted a special type of frames,
generalizing the concept of a basis in a Hilbert space. The next major breakthrough
was due to Mallat [55, 56] and Meyer [58] through their introduction of multiresolu-
tion analysis, and Daubechies’ construction of families of orthonormal wavelets with
coﬁlpact support [29, 30, 26] can be treated as a giant leap in the progress of wavelet
analysis. At the heart of wavelet analysis is the wavelet transform (WT) which is
defined in terms of wavelets. Because of the presence of a translation and a dila-
tion parameter, the WT is extremely efficient in reconstructing images/signals even
at points of discontinuities. Nowadays wavelet analysis is a complete subject in its
own right and has applications in many different fields, for instance, signal analy-
sis [53], numerical analysis [21] and physics [20], neural networks [47], fractal image

and texture [49], telecommunication [75], etc., and the literature keeps growing .

Many of the techniques used in wavelet analysis have been around for quite a long
time but there the term wavelet was not used explicitly. Fourier analysis is a kind of
wavelet analysis in the broader sense of the term. The limitation of Fourier analysis

is that it offers either an all-time or an all-frequency description of a signal, nothing



in between. But for practical purposes, we need both. To overcome this situation,
Gabor [34] introduced the ‘windowed Fourier transform’ (WFT) (also knwon as ‘short-
time Fourier transform’ ). In the WFT a window function is chosen to localize the
signal and then the window is shifted repeatedly. The WFT and the wavelet transform
are two equivalent transforms, although they are also different. It is possible to switch

from one to another without losing any information [33).

Coherent states for the Poincaré group ’Pl(l, 1), in 1—space and 1—time dimesions
have been studied extensively in [6, 8] for unitary irreducible representations (UIR’s)
corresponding to mass m > 0. These states are indexed by the points of the ho-
mogeneous space [ = 'Pl(l, 1)/T, where T is the subgroup of time translation. An
affine section o : T — PL(1,1) has been defined in order to construct these coherent
states. Several types of special sections are mentioned and for each section its dual
is also defined and there exists a section which is dual to itself. The resulting co-
herent states constitute a frame and under certain specific situations this frame can
be made a tight frame. Consequenly the CS generate analogs of a resolution of the
identity. The full Poincaré group PJ(1,3) was studied earlier and the corresponding
CS were constructed in [12, 67] for UIR’s corresponding to mass m > 0 and spin
§=0,1,2,.... Noidea of sections was used there and in the context of 'Pl(l, 1) CS,
they were related to a particular section, o = o9, the Galilean section. Construction
of CS of 'Pl(l,3) corresponding to m > 0 and spiu-% representation was reported

in [65). These CS did not form a frame and thus led to no resolution of the identity.



Coherent states of the De Sitter and Poincaré groups were also studied for particular

sections in [35].

In chapter 2 we extend the results in [6, 8] for PL(1,1) CS to any UIR of P1(1,3), for
m > 0and s=0, %, 1, %, 2,.... Just like in the case of 'Pl(l, 1), each family of CS
is defined in terms of a particular affine section, and it constitutes a frame. Under
certain specific conditions this frame can be made tight, thus leading to a resolution
of the identity. Since the base space of PL(1,3) is much larger than that of PL(1,1),
the duality of the sections in the case of 'P_I_(l, 3) is better understood. The duality of
sections can be interpreted in terms of Lorentz invariant fibrations of Minkowski space.
Each affine section can be characterized by a 4-vector field u(p) = (uo(p), u(p)), where
p is a relativistic 4—momentum on the mass hyperboloid V} and the 4-vector field
u(p) maps V} onto itself. Then the dual section u*(p) which is also a 4-vector field
can be obtained by applying the Lorentz boost A to @(p) = (uo(p), —u(p)), pointwise
for all p. It should be mentioned here that the CS obtained in this thesis are similar
to the vector CS studied in [69]. Vector coherent states are obtained from a set of
linearly independent vectors of a representation space of an isotropy subgroup of a
group G, and each state is written as a linear combination of these vectors. But the
situation we consider here is much more general than that in [69] in the sense that the

subspace generated by the ‘fiducial vector’ in our case is not stable under the action

of any non-trivial subgroup of Pl(1,3).

In chapter 3, we discretize the CS of ’Pi(l, 1) obtained in [6, 8] by periodizing a com-



pactly supported window function and show that this discretized family of CS forms
a discrete frame. We calculate the frame operator T for different sections and for var-
ious conditions on the window function. Under some specific situations, the operator
T' becomes a multiple of the identity operator and consequently the frame becomes
tight. We develop a transform, similar to the windowed Fourier transform, which
we call the relativistic windowed Fourier transform. We also obtain a reconstruction

formula using the frame operator T and the relativistic windowed Fourier transform.

In chapter 4, we perform some numerical computations. We evaluate the operator T
obtained in chapter3 for different sections and window functions. Using the recon-
struction formula of chapter 3, we reconstruct a function under various assumptions on
the sections and the window function, and compare the reconstructed function with
the original one both numerically and graphically. It is observed that for a smooth
window the reconstruction scheme does a better job than that for a non-smooth
window. However different sections play more or less the same role under identical
conditions. For comparison, discretizing the CS of the Weyl-Heisenberg group, we
obtain the corresponding frame operator and the reconstruction formula. We finish
this chapter by reconstructing a function using the reconstruction formula obtained
in chapter3 and that obtained using the Weynl-Heisenberg CS. Comparing these two

schemes we see that the reconstructed values are in close agreement.

In the Conclusion, we briefly describe the results we obtained earlier and suggest

possible applications. We also indicate possible extensions of some of the results.



Chapter 1

Coherent States, Generalized
Wavelet Transforms, Frames

In lthis chapter, we give an overview of ‘coherent states’, ‘generalized wavelet trans-
forms’ and ‘frames’ — notions central to this thesis. In the description of coherent
states, we place emphasis on the group-theoretical background, i.e. how coherent
states are related to group representations. By the term ‘generalized wavelet’ (GW)
transform, we mean here a specific type of a transform originating from the coherent
states of an arbitrary group. Here we shall give a brief description of: i) a Gabor
transform and ii) a wavelet transform, both of which are examples of generalized
wavelet transforms; the Gabor transform originating from the coherent states of the
Weyl-Heisenberg group and the wavelet transformrelated to the affine group. Finally,
at the end of this chapter, we give a short description of frames and some of their

properties.



1.1 Coherent States

We begin with the canonical coherent states. The canonical CS are an overcomplete
(i.e., the set remains complete upon removal of at least one vector) and non-orthogonal

system of Hilbert space vectors. Starting with
f(z) ==t &% € L*(R, dz)
the canonical CS f,, are defined by
fop(Z) =€ F e f(z—q), VzeR (1.1)

with [|f||*> = 1. The canonical coberent states have many remarkable properties and

here we focus on some of them. Let us define the formal operator

Azg [T 7 dadpliun) (fus ] (12)

™

where | f,,) ( fo.p | is the projection operator on the state | fo,); by (fy,,| we mean
Dirac’s ‘bra’ vector and | f,,) the ‘ket’ vector. The scalar product of a bra vector

( f.» | and a ket vector | g, ) will be written ( fy» | kg ). Then for ¢ € H = L*(R, dz),

and almost for all z we have

(A8)2) = 5= [ [ Uuo6)fup(z) dadp



= o [ [0 [ 7)) fusls) dy dado
= o= [ [ [T e y=q6w) flz - q)dpdy do

(Using Fubini’s theorem)

= /_:, /.: 8(z—y) fly—q) é(y) f(z —q) dy dq

= #@) [ 1f@) Py = 4= I = é(a) (13)
From (1.3) we can write
A=a [T [T dadvl o) funl =1 (14)

where [ is the identity operator on M. This property is known as the ‘resolution of
the identity’. From (1.4) we observe immediately that the canonical coherent states
are linearly dependent, i.e., any canonical coherent state can be written as a linear

combination of the rest. That is,

= [ [ dadpfs) ol ) = i) (1.5)

Define the kernel K : R? x R2 — C by

K(q,piq'\0") = (for | o) (1.6)

10



Then

K(q,p;9,p)

[ e e = a—q et e fla-q)dz

[ ife-aPd =1l =1>0,

and K satisfies the properties

(:) K(g,psqp) > 0, Vgp). (L.7)
(1) K(d.p'5q.p) = (Jeoulfon)=K(apid,P); (1.8)
(5) K(q,p:q"p") = - / ) / T K(q,piq\p) K(d'\p5q", ") da’ dp' (1.9)

15 3 27r —oo —oo 1 b bl b b

where for z € C, = indicates its complex conjugate. To check (7%, we note that

1 Lol oo
:)—7!'- -/—oo -[-oo IX,((I,p; ql,pl) [\’(ql’ PI, q”,P”) dq, dp,

— /oo dq’ / dp’ / d.z/ dz’ eE—= W' g=irz s’

e "

8 e Tz — ) f(z - V@ — ) S = ")
(Using Fubini’s theorem)

/°° dq’/ d:/ dz' §(z — z') e~ "% x
P eI T —q) Sz - V@ - ) f(& — ")

" _n

1ot P9 P 9q
/ dq/ dz e 7% ?'7 e e~ 7 x

fz—q)f(z—q") fz —¢') fz —q")

11



= I faplfanen) = K (g, P 0" ")

A kernel with the properties (i) ,(i¢) and (i) is known as a reproducing kernel [15).
As we shall see later (Section2.1) in a group theoretical context, for an arbitrary
feH=L*R,dz), fo,(z)= e~ 5 eirT f(z —q), Vz € R, are the coherent states of

Weyl-Heisenberg group.

1.1.1 Square Integrable Representations

Let G be a locally compact group, H a Hilbert space (over C) and g — U(g) a strongly
continuous unitary irreducible representation (UIR) of G in H. Let H C G be a closed

subgroup and

X =G/H (1.10)

be the left coset space. The elements of X are denoted by z, which are cosets gH,
g € G. Assume that there exists an invariant measure v on X. Let o : X =G
be a (global) measurable (Borel) section (a map which associates to each z € X, a
o(z) € G such that the coset o(x)H is exactly z), F' a positive operator on K with

finite rank n. Suppose that F has the diagonal representation

F = Z)\;Iu;)(ugl, u; € H, x>0, (1.11)

=1

12



where

(u,'luj) = 6,'1', i,j = 1,2,3, ..... n, (1.12)

and denote by P, A’ the projection operator and the subspace of H :

P=Y fushuil, (113)

=1
Nt =PH. (1.14)

Using the operator F and the section o, define the positive operator valued function
F,: X = L(H)":

F,(z) = U(o(z))FU(o(z))". (1.15)

Definition 1.1 The representation U is said to be square integrable mod(H, o), if
there exists a positive operator F, of finite rank, and a bounded positive operator A,
on H with the bounded inverse, such that {H, F,, A,} is a reproducing triple, that is,

one has

/X Fy(z)du(z) = A, (1.16)

in the sense of weak convergence. In this case we call F' a resolution generator and

the vectors

n=Fiuy, uweN* (1.17)

admissible vectors mod(H, o). We also say that the section o is admissible for the

representation UU. (We say a sequence of vectors fi € H (k = 1,2,3,...) converges

13



weakly to the vector f if limi—co (fi|h) =(f|R), forall h € H.)

Foreach u;,i=1,2,...,n,let g = F%u.-, and define
M= b = Ule(@), i=1,2,...,n (1.18)

If (1.16) holds we call the set (1.18) a family of covariant coherent states. Then the

‘modified resolution of identity’ is given by

> [ i) mbia (=) = Aq (1.19)

We call the relation (1.19) a modified resolution of identity, because the operator A,
on the right hand side of it is not necessarily an identity operator as in (1.4), but
rather a positive bounded operator with a bounded inverse.

At this point, let us show how the canonical CS, Perelomov'CS and the vector CS
fit into the above definition of covariant CS (CCS). In the definition of CCS, if we
replace the invariant subgroup H by the center of G, then CCS reduces to Perelomov
type of CS. Since the family of canonical CS is a special case of Perelomov CS,
the canonical CS also fits into the definition of CCS. Before going on to show how
the vector coherent states (VCS) are in conformity with the definition of CCS we
briefly recall the construction of VCS. Let Gy be a semisimple Lie group which has a
faithful representation and go be the corresponding Lie algebra. Let g be the complex

extension of gg and G be the corresponding Lie group. Let Kj be a compact semisimple

14



subgroup of Gy with Lie algebra ko and k the corresponding extension of ky with K
the corresponding Lie group. Then g can be decomposed as g = ny + k+n_, where
ns and n_ are respectively the spaces of positive and negative roots. Let P be a
parabolic subgroup of G with Lie algebra p = ny + k. Let U be a unitary irreducible
representation (UIR) of G} acting on the Hilbert space H and u be a UIR of Ko acting
on H, C H. Let T be the extension of U to G. Let e = {e;} be a basis for n_. Then
an arbitrary vector in n_ can be writtten as z - e = 3_; zie;, where z; are complex
numbers. Treating = - e as a representative of a coset space Pezp(z-e€) € G/P,
z = {z;} become the coordinates of G/P. If for |a@) € H, and for any non-zero
z € ng, T(z)|a) is not in H,, Ko can be treated as an isotropy group that leavs
H, invariant. If {e;} is an orthonormal basis for H,, the vector coherent states are
defined by

#(z) = Z(a,— | T(exp(z-€)) ¢) |c:), ford € H.

Clearly, ¢ : G/K — H, is a holomorphic function. The group action is given by

g#(2) =3 _(e:|T(ezp(z-e)) U(g) ¢} lei), g € G.

What we observe here is that the construction of vector coherent states is a kind of gen-
eralization of Perelomov’s method, in the sense that in both methods an isotropy sub-
group of the group in consideration is used. In Perelomov’s case a 1—dimensional pro-

jection operator F = |a) (a| is used, whereas in the case of VCS an n—dimensional



projection operator F = Y%, |a;) (]| is used. Thus, if the closed subgroup H in

the CCS is an isotropy group that leaves M, invariant, the CCS are exactly vector

CS.

1.2 Generalized Wavelet Transforms

In the previous section we gave a brief description of coherent states and their prop-
erties. Here we use coherent states to define generalized wavelet transforms. For
example, we use the coherent states of the Weyl-Heisenberg group to define the Ga-
bor transform and those of the affine group for the wavelet transform. A signal (e.g.
music, speech etc.) evolves with time and its frequency changes with time. When
a signal is represented by its Fourier transform, it gives information only regarding
the frequency of the signal and no information concerning its time evolution. But
in practice we need both time- and frequency-localization. In that sense the Fourier
transform is not a useful way to represent a signal. Fortunately, there are at least two
types of transforms which have this desired property. They are i) Gabor Transform
(also known as the windowed Fourier transform or short-time Fourier transform) and
ii) wavelet transform. Both of these transforms are related to square integrable group

representations in the sense defined above.

The Gabor transform [34] of a signal f € L*(R) is defined by

(Tewsf)(w,t) = [ ds f(s)g(s = t)e™™ (1.20)
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where ¢ € L*(R) is a fixed function, known as a window-function or mother wavelet.
In the literature (1.20) is known as a continuous Gabor transform. Signal analysts use
its discrete version, where t and w are discretized and written as t = ntg, w = muwy,
where m and n are integers, and wp, to > 0 are fixed. The discrete version of (1.20)
is given by

(TaasS ) = [ ds f(s)g(s — nto)e=mees (1.21)

On the other hand, the continuous wavelet transform of a signal f € L*(R), for the

mother wavelet ¥ is defined by

(Tunof)a,8) = a~# [ dt f(t) (t—‘—") (1.22)

where a (> 0), b € R. A possible discretization of a and b is written as ¢ = ao™,
b = nbg ag™, where m and n are integers and ag > 1 and by > 0 are fixed. Then the

discretized version of wavelet transform is given by

(Turo s = 30™% [ dt f(2)(a0™ = nbo) (1.23)

In both cases the mother wavelet 1 must satisfy the admissibility condition:

/Rdtxp(t) =0 (1.24)
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The functions

Gur(s) = €“"g(s — 1) (1.25)

and

bosls) = aby ( - ”) (1.26)

a

define coherent states of the Weyl-Heisenberg group and of the affine group respec-

tively, as we will now demonstrate.

1.2.1 The Weyl-Heisenberg Group

Let Gwy be the Weyl-Heisenberg group, Gwy = T x R x R, where T is the set of

complex numbers of modulus one. The group multiplication is given by

1 ’

Apd' =)
(L, p)(t5 e, p)=(e7 7 g+ p+D) (1.27)

with identity element (1;0,0) and inverse (¢; q,p)"" = (t7Y —q, —p).

A unitary irreducible representation U/ of Gwn, acting on the Hilbert space
H = L¥(R,dz), (1.28)

is given by

(U(9)f)(z) = te™ P f(z — q) (1.29)
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where g = (t;q,p) € Gwy- The center of Gwy is Z = (t;0,0) and the left coset space
X is defined by

X = Gwny/Z ~ R? (1.30)

An arbitrary element g € Gwy has, according to (1.30), the following coset decom-
position:

g = (tz,y) = (1;2,y)(£0,0) (1.31)

If (¢, p) € R? are the global coordinates of X, then since
(tz,y) (g, p) = (L z+q,y+p) (€971 0,0), (1.32)
the action of Gwy on X is given by
g-(p)=(+qy+p) (1.33)

and the invariant measure on X, under this action, is dg dp.

The section g9 : X — Gwy is defined by
oo(q,p) = (1;4,p)- (1.34)
Then the coherent states f,, of the Weyl-Heisenberg group are given by

fon(2) = (U(00)(g,p))(z) = e~ Fe® f(z — q) (using (1.29)). (1.35)
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1.2.2 The Affine Group

The affine group is the set

Gass = {(a,b)la > 0, b e R} (1.36)

and has the natural action z — az + b on R. The group multiplication law is given

by

(a,b)(a’, V') = (ad’, b+ ab’) (1.37)

with identity element (1, 0) and the inverse (a, b)~' = (a~!, —a~'b). This group
is not unimodular and the left Haar measure is a~?dadb, the right Haar measure
a~!dadb [43]. The unitary irreducible representation U of Gasy, acting on the Hilbert

space H = L%(R, dz), is given by [16, 17]

(U(a,b)p)(z) = a=% ¥ (* — ”) , (@a>0 beR) (1.38)

a

The square integrability of the representation U/ and the admissibility of a vector

¥ € L*(R, dz) in this case reduces to the condition:

2 d(l db

a?

Co= /C KU (a, by l)| < o0 (1.39)

It is connected to our definition of square integrability of a representation and ad-

missibility of a vector in the sense that here FF = |[¢) (| (n = 1) is a multiple of
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1—dimensional projection operator on H = L*(R, dz), and the trivial section o(g) = g
may be used, because the representation is square integrable with respect to the whole

group. The condition (1.39) can also be written as
© . 2d
Co=2ellP 7 1O T < o0 (1.40)

where 9 is the Fourier transform of 1. From (1.40) we observe that if $(0) # 0, the

integral does not converge, so it is necessary to assume #(0) = 0. That is,
p is admissible if $(0) =0 (1.41)

or equivalently,

/_Z ¥(z)dz =0 (1.42)

i.e., the mean of 9 is zero. Now we see that the coherent states of the affine group

Gy are the vectors:

Yas(2) = (U(a,b)p)(x) (1.43)
that is,
Yap(z) = %w (”’ ; b) ., (@>0, beR) (1.44)

with ¥ an admissible vector.



1.3 Frames

The concept of a frame was first introduced by Duffin and Schaeffer [31] in 1952,
in the context of non-harmonic Fourier analysis and has also been reviewed in [77].
Here we will define it and give a brief description of some its properties, for later use,
specially in chapter 3. Let H be a separable Hilbert space (over C) and X be a locally

compact space, v a regular Borel measure on X with support equal to X.

Definition 1.2 A set of vectors {ni}¥, in H is a frame if for all z € X the vectors
{ni},i=1,2,... N, are linearly independent, and there exist two numbers A, B > 0

such that for all ¢ € H one has

N 2 5
Al < X [ nile)* dw(z) < Bllgl (1.45)

=1

It is appropriate to note here that the definition of frame given above is much more
general than the one given in [31, 28, 48, 45, 25, 46]. If N =1 and X is a discrete
space with v a counting measure i.e., v(z) = Loz _, 6(z —n), where n is an integer, it
reduces to the usual definition of frame used in the literature and we call it a discrete
frame, otherwise, it will be called a continuous frame. The numbers A, B are called
the frame bounds. The frame is tight if A = B. The frame is ezact if it ceases to be
a frame whenever any single element is deleted from the sequence. In general, the
set of vectors {n.}X, is not an orthogonal basis, even a tight frame may not be an

orthonomal basis but an orthonomal basis is a tight frame with A = B =1.

(8]
[3%]



Let {¢;,i = 1,2,...00} be a discrete frame and ¢ be any vector in H. Then an

operator S defined by

Sé =S (d:l8): (1.46)

=1
is known as the frame operator. It can be shown [31] that

i) S is a bounded linear operator with
AI<S<BI, (listhe identity operator) (1.47)

ii) S is invertible with

B'I<STT<A™ (1.48)

iii) {S~1¢:} is a frame, called the dual frame or reciprocal frame of {¢:}.

iv) Every ¢ € H can be written as

6= SBIS )6 = Y(816:)57 6 (1.49)

=1 =1

which we call the reconstruction formula.
v) The decomposition of ¢ € H is, in general, not unique in the sense that if we write
¢ = T2, oid;, where a; = (¢|S~1¢;:), then it is possible to find a set of complex

numbers B; such that ¢ = Y22, B:¢:, where

=1

Zlﬂzl =S lail? + 3 e — B (1.50)

1=1 =1



Example 1.1 Let {e, }2, be an orthonormal basis for H. Then

i) {e1, e1, €2, €2, €3, €3, ...} is a tight inexact frame with bounds A = B = 2 (since
the eigenvalues of the frame operator are always 2), but is not an orthonormal basis;

although it contains one.

ii) {e1, €2/2, ea/3, ...} is a complete orthogonal sequence; but not a frame (since,
in this case, the eigenvalues of the frame operator lie between 0 and 1 and are not
bounded away from 0 and consequently, the inverse of the frame operator is not

bounded).

iii) {2e1, ez, €3, ...} is a non-tight exact frame with bounds A = 1, B =2 (since, the

minimum eigenvalue of the frame operator is I and the maximum eigenvalue is 2).

In practice, the reconstruction of a signal / image using the reconstruction formula,
could be highly efficient, in the sense that the sum converges very rapidly and can be
truncated after a few terms, if |[B/A—1|{< 1. It is a matter of fact that the frames used
in wavelet analysis (we mean both Gabor wavelets and affine wavelets) are obtained by
discretizing a set of coherent states of the respective group. We have already shown in
the previous section of this chapter that Gabor wavelets are associated to the coherent
states of the Weyl-Heisenberg group and affine wavelets or simply wavelets with those

of the affine group.
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Chapter 2

The (-Duality And Spin Coherent
States

In the previous chapter, we gave a brief description of coherent states, along with
some examples. Here our aim is to construct the coherent states of the Poincaré group
7—’,{_(],3), in 3-space and 1-time dimensions, for a unitary irreducible representation
Uy, corresponding to a positive mass m and arbitrary spin s, by adopting the same
technique as used in extracting the coherent states of the Weyl-Heisenberg group in
the previous chapter. Then we will show that the resulting coherent states form a
frame, which we call a relativistic frame. In section 2.1, we give a brief description
of Minkowski space and some notational conventions, we construct coherent states of
the full Poincaré group and discuss S-duality respectively in section 2.2 and section
2.3. Finally, in section 2.4, we show that the coherent states of the full Poincaré group

form frames and analyse the frames for various known sections.



2.1 Notational Conventions

We denote the coordinates of a point of the four-dimensional space-time continuum

R1.3, known as Minkowski space, by z* = (£°, x), with

z° ct, the time coordinate (2.1)

x = (z'=1z,2z2 =y, 2°=2z2), the spatial coordinates (2.2)
In what follows we shall assume i = ¢ = 1. We use the Greek indices to denote
the components of four-vectors taking values 0, 1, 2, 3, and Roman indices to denote
the components of ordinary space vectors taking values 1, 2, 3. We write covariant
vectors with subscripts and contravariant vectors with superscripts. Thus a* is a

contravariant vector and the corresponding covariant vector a, is obtained by

= gua (2.3)
where
( 1 0 0 O )
0 -1 0 O
Guv = (24)
0 0 -1 O
\0 0 0 -1 )
is the space-time metric tensor. (2.3) gives ap = a® ar=—a*, k=1,2,3 Here

the convention of summing over repeated indices is to be understood.
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The Minkowski scalar product of two four-vectors a* and b is defined by

a,b* = a*b, =a®®—a-b (2.5)

and the Minkowski norm of a* is

a*a, = (a°)*—a-a (2.6)

Because of the negative signs in the metric tensor (2.4), the scalar product a”a,
is no longer positive definite, it can be positive, negative or zero. The vectors in
Minkowski space are classified into three categories, depending on whether the norm
of a* is positive, negative or zero. The vector a* is said to be space-like if its norm
is negative; it is called light-like if the norm is zero; and it is called time-like, if the

norm is positive.

An affine transformation in Mikowski space is defined by

" — ™ = N4V + o* (2.7)

with the A} satisfying

g;w/\‘;/\; = Yoo, (28)

Here A* is the matrix of the Lorentz transformation and the vector a* represents a

simple translation of the space-time axes. (2.7) is known as an inhomogeneous Lorentz
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transformation and if a* = 0, it is called a homogeneous Lorentz tranformation. The

homogeneous Lorentz transformation leaves the scalar product invariant

'y = g2y = gm,/\z/\;:z:"y” = zy (2.9)
and forms a group known as the Lorentz group (we denote it by £).

Topologically the matrices of the Lorentz group £ consist of four disconnected pieces.
From (2.8) we have g,, AbA§ = goo = 1 which implies
» 3 »
(A)* =1+ 3 (A)* 21 (2.10)
k=1

Then we have either

AN>1 or AL -I (2.11)

Taking the determinant of both sides of (2.8) we get
det(A\) = £1 (2.12)

Thus we have the following decomposition of the Lorentz group into four pieces [72] :

Ll :  det(A) = +1, sign AJ = +1. This one itself forms a group, known as the

proper, orthochronous Lorentz group.
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LY :  det(N)= -1, sign A§=+I1. This piece has an element /; defined by

I,z = (z°, -2, —z%,—2°)

and is called space inversion operation.

£l . det(A) = —1, sign A = —1. This piece has an element I, known as a time

reversal operation, is defined by

Iz = (—z° 2!, z?, %)

/.Ll,, :  det(A) = +1, sign A = —1. This one has an element /5 = I1,.

From these four pieces we can build the following three subgroups of the Lorentz

group:
L£'=cluLl, the orthochronous Lorentz group (direction of time unchanged).
Ly = L:L U E#, the proper Lorentz group.
Lo = L',L_Uﬁl_, the orthochronous Lorentz group (spatial directions unchanged).

The inhomogeneous Lorentz transformations form a group, known as the Poincaré
group. We denote this group by PL(1,3) (in 1-time and 3-space dimensions) which

can be identified as T4 @ L1(1,3), where T* ~ R, 3 is the group of space-time trans-
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lations and @ denotes the semi-direct product. Since £} and SL(2,C) are physically
equivalent (as they are 2 — 1 homomorphic [70]) here we use SL(2,C), the universal
covering group of L} instead to include the half integral spins [76]. Here by ‘universal
covering group’ we mean: Let G be an admissible topological group and (G, ™) a
covering of the topological space G. By introducing a multiplication into G, it is pos-
sible to show that G itself is a topological group and 7 : G — G is a continuous

homomorphism with discrete kernel

N={3€eG|n(§) =e}

which is a discrete invariant subgroup and G = G /N. In this case G is called a
covering group of G. Given any admissible group G, there exists a simply connected
covering group of G. It is determined up to isomorphism and is known as the universal

covering group of G [64]. We write [13]

PL(1,3) =T* 0 SL(2,C) (2.13)

Elements of P1(1,3) will be denoted by

((l, A), a= ((lo, a) € R1'3, AE€ SL(2, C) (214)
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The multiplication law is
(a,A)(d',A") = (a + Ad', AA") (2.15)

where A € E.T,_(l,3) (the proper, orthochronous Lorentz group) is the Lorentz tran-

formation corresponding to A:
As = %Tr[AayAfa“], g v=0,1,2,3, (2.16)

where: Tr[M] denotes the trace of the matrix M,

and & = (0!, 0%,0%) are the Pauli matrices. We take the following specific realization

for the Pauli matrices:

ol=0,= ot=o0, = , oO°=o0.= (2.17)

Let

Vi = {k = (ko,k) € Ry 3] k% = ko® — k®> = m?, ko > 0} (2.18)

be the forward mass hyperboloid. It is noted that the invariant measure under
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the action of A € £1(1,3) on Vi is % and A acts on V7 in the following manner:

E=Ak=o0 -k =Ac-kA! (2.19)

where o - k = o*k, = kol — k-0

If T4 is the dual group of T4, then the orbits of an arbitrary # = (fio, 721, fiz, i3) € T4

under the action of SL(2,C) are of the form,

a2 — il -l — a2 =m?, (2.20)
here we identify m with mass. In total there are six different orbits (2 for m? > 0,
1 for m? < 0, and 3 for m = 0) [19]. Correspondingly, there are six different
classes of unitary irreducible representations of PL(1,3) [19, 54]. For our purposes
we need the representations corresponding to the orbit of 2 = (m, 0,0, 0), m > 0.

The corresponding representations denote particles of mass m > 0 and spin s =

0,3,1, %, 2, .... These representations U}, are carried by the Hilbert spaces [76].
dk
Hyy = C*Hlw L2 (v+ k—) (2.21)
0

of C>*+1.valued functions ¢ on V}, which are square integrable in the sense:

m?

[, 8016800 55 = 1617 = (61¢) < oo (222
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The representation is defined by

(Ui (a, A)g)(k) = e*°D*(h(k) ' AR(AT k))$(AT k), k-a = koao —k-a  (2.23)

where D* is the (2s+1)-dimensional irreducible spinor representation of SU(2) (carried

by C***1) and
ml,+0-k

k— h(k) = \/‘Zm(ko )

, (k= (ko,—k)) (2.24)

is the image in SL(2,C) of the Lorentz boost A, which brings the four-vector (m, 0)

to the 4-vector k in VI:

o kot ke ke—ik
A(m,0) = k & h(k)mLAk) = mh()P =0 = | "1 (2.23)

ky + ik, ko — k-

The matrix form of the Lorentz boost is

[k ke Ky k)
m m m m
R = T = ey

_ m m(ko+m m{ko+m m(ko+m At
A = = Ak (2.26)

ky keky 1+ ky kyk=
m  m{ke+m) m(ko+m) m(ko+m)
ke kzks kyks 1+ k-2

\ m  m(ko+m) m(ko-+m) m(ko+m) )

which could be written as

1 | ko k!
Ao =— (2.27)
k mV
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where V; is the 3 x 3 symmetric matrix

k® kt

o —vit=
e Vit =1 (2.28)

Vi=I3+

It is noted that A, and Vi have following useful properties which can be easily verified:

det A\, =1, det(Vi)= %, (2.29)
and
(Aebdo = ~ (koo +k-p) = =2, (Aup) = ko + Vi (230)
kPjo = T obo p) =5 (Qwp) = TPt VkPs )
the underline denoting the spatial part of a 4-vector, while
ko(Axp) — k(Awp)o = bV ', (2.31)
from which it follows that
lIko(Awp) — k(Acp)oll < Kollpll- (2.32)
Also, since
/\;:l = Az (2.33)
we have,
h(k)™! = h(k). (2.34)
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2.2 Phase Space For Massive, Spin-s Particles

In general, a phase space of a system with n degrees of freedom is a 2n-dimensional
space. The notion of phase space goes back to the Hamiltonian formulation of classical
mechanics [41], where a dynamical state of a system at a given instant is completely
determined by its n postion coordinates q;, gz, - x, and the n corresponding conju-
gate momenta py, ps, - - - Pn. Then the 2n-dimensional space I' whose points have the
coordinates (qi, G2, - ** @u} P1» P2y -+ - Pu) is known as phase space. The phase space
I for a massive relativistic particle with arbitrary spin s corresponding to a Wigner

representation can be written as [1]
T =PL(1,3)/(T x SU(2)), (2.35)
where T denotes the subgroup of time translations. For A € SL(2,C), let
A = h(k)R(k), R(k)e€ SU(2), (2.36)

where h(k) is defined in (2.24), be its Cartan decomposition. An arbitrary element

(a, A) € PL(1,3) has the left coset decomposition,

aok mag

(a, 4) = (02— 22, h(k)((52, 0), R(K)) (237)
0 0



according to (2.36). Thus , elements in I" have the global coordinatization, i.e., any
point on T has the coordinates (q, p) € R with

aok

q=a~—

In terms of these variables, the action 8 : P1(1,3) x [ — T of PL(1,3) on T is,

according to (2.37), given by

00, (0, A,)) = a((0,a) A)s 9= (a Ar)
= (& A0, @) A,)

= (a+Au(0,a) AcA,)

= ((a+Ac(0,a)Ap,)

= ((l + /\k(ov q)’ Ap’)s Pl = /\kp

_ kg9
m(m + ko)

i

k-
((aO + Tzqa at+q+ k)a Ap’) (239)

Then using (2.38) and writing the new coordinates as (q', p’), we get

q = a+q+ =ik — e+ X9)
( +LO) Po T (2.40)

P = Ao
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which can be written as

q, = ;}7(1’01[3 + Ak(oa Q)]) - p,[ao + {Ak (0’ Q)}O]

P = Avp, p=(VmI+p?p)

(2.41)

where A € £1(1,3) is related to A by (2.16) and po' = (A Po-

Now we want to show that the invariant measure under this action is dqdp: The

Jacobian matrix J of the transformation (2.40) is given by

39’ 39 A=V,- L (p ® k" 3q’
J=1 %% % |= mPo op (2.42)
& Os B=Vi+ 1 (k ®p')

where V; is defined in (2.28) and Oj is a 3 x 3 zero matrix. Since J in (2.42) is an
upper triangular block matrix, the determinant det(J) = det(A) - det(B) = 1 which
implies

dq' dp’ = dqdp (2.43)
Hence the invariant measure v on I, in the variables (q,p), is dqdp.

Next, in terms of these variables let us define the basic section,

oo:T — PL(1,3) such that (2.44)

oo(a, p) = ((0,q), k(p)) (2.45)
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which we call the the Galilean section, if h(p) = I. Let II : PL(1,3) — T defined
by II(g) = g - (T x SU(2)) € T such that II(go(q, P)) = (q, P), then any other section

o =0p0ll : T = PL(1,3) is defined by:

o(q,p) = oo(q, P)((f(a, P),0), R(q, P)) (2.46)

where f : R® — R and R : R — SU(2) are smooth functions. We work with affine

sections, for which the function f is taken to be of the form

f(q,p) = ¢(p) +q-I(p) (2.47)

where, » : R® — R, and 9 : R® — R3 are smooth functions of p alone. In calculating
the frame operator, we need to evaluate an integral, (see (2.120)) where it is necessary
for f to have the above form. We will later see that as far as the construction of CS is
concerned, ¢ only introduces an inessential phase and it does not make any difference
even if we set o = 0 (see(2.120)). Moreover, we also impose the restriction that
R(q,p) = R(p) be a function of p alone (we need this for the evaluation of the

integral (2.120) below). Thus writing,

a(q,p) = (& A(P)R(P)), §=(do,q) € Ru (2.48)
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we see that

4 — P_o . 9
Go = mi’(p) q (2.49)

q = M(p,9)q (2.50)

where M(p, ) is the 3 x 3 real matrix

p®9(p)! (251)

m

M(p,9) =I5+
We shall analyze (2.51) extensively later. Let us simply note here that

det[M(p,9)] =1 + &%p—) (2.52)

so that if det[M(p, )] # 0,

p® 9(p)!

-1 _ _
g )

(2.53)

Also, assuming M(p, ") to be continuous in p and ¥, and non-singular for all (q, )

(i.e.,q = 0 & =0 in (2.50)) and since det[M(0,9)] = 1, it follows that

det[M(p,¥)] >0, V(q,?). (2.54)
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2.3 The 58— Duality and Space-Like Sections

Since the matrix M(p,¥) in (2.50) has an inverse, we easily obtain from there,

do = B(p) - 4, (2.55)
where 3(p) is the 3—vector field
po¥(p)
= 2.56
Blp) = S (2.56)
Solving for ¥(p), this gives
mB(p)
¥ (p) = ———————. 2.57
)= =B (257)

Let us also introduce the dual vector fields 8~ and 97,

- _ P~ mV,8(p)

ey TS, (2.58)
. mfB3~(p)

¥ = TP D) (2.59)

where V, is the matrix defined in (2.28). The significance of these dual quantities

will shortly become clear. First note that

=8, I9T=9 (2.60)
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and
p—poV; 97 (p)

m+p-9(p) (2.61)

8(p) = ——[p — mV,8"(p)] =

Let us try to get a better understanding of the 8 — 3 duality [13] as defined in (2.56)
and (2.58). Since in order to satisfy the positivity condition of the Jacobian Jx (k)
(see (2.124)) we will need ||B(p)|| < 1 (see again (2.131)), let us define the relativistic
4-velocity n(p) by
_1 n
a(p) = (na(p).n(p)), no(p) = [1 = IBEITE, = EE=B(p).  (262)

Then, by (2.55), the point § = (qo, q) € T* satisfies
n(p)-4=0, (2.63)

that is, § lies on the space-like hyperplane with normal vector n(p), determined by

B(p). Let us denote this hyperplane by ¥ " In particular, for the Galilean section,
B(p) =Po(p) =0, o=00, and I =%)=1{(0,q)|q€R’} (2.64)
while for the Lorentz section,

R 1,
B(p) = B.p) = p, o=o0, and Zf:Ef,={q€T4|;p-q=0} (2.65)
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Note that these two sections are related by the duality of (2.58), i.e., Bo"(P) = B«(P)-
From (2.62) and (2.63), we see that, with [|B[| < 1, Vp, we can associate to B(p) the
time-like 4-vector field u(p) = mn(p) which is normal to the space-like hyperplane Zg
in T4. More generally, if p — B(p) is a p-dependent 3-vector field, we can associate

to it a ray [u(p)] of p-dependent relativistic 4-vector fields u(p) in the following way:

w(p) = (uo(p)u(p)), »=(porD)s uo(P) >0, l:((l;))=ﬁ(p) (2.66)

with

u(p) - u(p) = uo(p)* — llu(p)li*- (2.67)

The 4-vector u(p), and hence the ray [u(p)] = R¥u(p) is time-like, light-like or space-
like according as ||[B(p)l| < 1, 1B®)Il = L, or IB(P)I| > 1, respectively. Under a

Lorentz transformation A , u(p) — Au(p) and

_ u(p) oy Au@)

Of course, such a transformation preserves the property of u being time-like, light-like
or space-like, and hence of the equivalent properties of IB(p)|| being <, =, or > 1.
Now let A, be a Lorentz boost. To any u(p) € [u(p)], let us associate its k-conjugate

4-vector field under A;:
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u*(p) = Aeu(p),  u(p) = (wo(p), —u(p))- (2.69)

Clearly,

u(p) = Aeu*(p) = (u™(p))™* = u(p). (2.70)

Let B~*(p) be the k-conjugate 3-velocity associated to [u=*(p)], i.e.,

g (p) = L (B). (2.71)
ug" (P)

Then, using (2.30) and (2.31),

k —mV,.8(p)
ko — k- B(p)’

—mV, 8"
B(p) = k VB8 (p)

T ke—k-Bp) (2.72)

B (p) =

In particular, the 4-vector field

u™(p) = Apu(p) (2.73)

depends on p only, (like u(p) itself). We call u*(p) the dual of the 4-vector field u(p).

Thus, for arbitrary u(p) € [u(p)],

u(p) = Apus(p), v (p) = u(p) (2.74)
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B(p) = -:0—((%, B (p) = :og:; (2.75)

and B(p), B7(p) satisfy the duality relationship in (2.58). Taking the dot product
of B(p) with p on both sides of (2.58), using the explicit form for V, in (2.28), and

rearranging, we get the relation

(3o —p-B(P)) (po — P -B(P)) = m* (2.76)

Similarly, one may verify the matrix relation

(mV,, —-p® ﬁ(p)*) (mVp -pR ﬂ'(p)t) = m?l3, (2.77)

Note also, that u*(p) is time-like if u(p) is time-like and vice-versa. Hence,

1Nl <t & B/l <l (2.78)

Physically, to each ordinary 3-vector velocity B(p), u(p) associates a relativistic 4-

velocity n(p) (= u(p)/[u(p)-u(p)]?, if u(p)-u(p) # 0and = u(p)/ua(p) if u(p)-u(p) = 0),
while B87%(p) is the velocity obtained by relativistically adding the 3-velocity —3(p)

to the 3-velocity associated to the boost A,.

Below are details of some particular space-like affine sections and a light-like limiting

section, all of which have interesting physical interpretations.
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1. The Galilean section og:

As noted in (2.64), for this section
B(p) =Bo(P) =0,  ¥(p)=1Do(p)=0 (2.79)

Bip) =1, %(p)=, (2.80)
Here, [|Bo(P)ll < 1, I185(P)Il < 1, ¥P-

2. The Lorentz section oy:

This time (see (2.65))

B(p) = Bp) =Bs(p),  ¥(P) = Fe(p) = Y5(p), (2.81)

in other words, the Galilean and Lorentz sections are duals to each other.

3. The symmelric section o,:

This section is self-dual, being given by

—_ —_ he — p — — = - p
B(p) = B.(p) = Bi(p) = —~ e ¥(p) = 9(p) = ¥:(p) = —~ et (2.82)

Again, ||B.(p)ll < 1, Vp. Note that in a sense o, lies half-way between oo and
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4. The limiting sections o4:

These sections are duals of each other and are both light-like, being given by

P mp
B(p) = B4(p) = 7—7. F(p)=9+(p)= 2.83
)= A= o POV =P = e )
- P = mp
‘3_ — ﬂ = —— 9_ =9 = — 2.84
() =Bi(p) =~y 9-0)=%40) = "o e %Y
In this limiting situation, ||B.(p)ll = IB_(p)ll = 1, Vp.
At this point we state and prove the following proposition (for later usages).
Proposition 2.1 The following conditions are equivalent:
1. The 4-vector ¢ = (o, q) is space-like, i.c.,
ldof* — l@II* < 0. (2:85)
2. The matriz
§(p,9) =La+ |9 (£ gt+ P _9) gt (2.86)
S Y= Ta “\m 2 m 2 ’
is positive definite for all p € VX, or equivalently,
1 P v 1 2
—p- -9 I|= - =l + =||? 2.
1+ 2p-9(p) > IS — S+ 51912, (2.87)
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forallp e VL.

8. For all unit vectors & € R3 and for all p € R3,
& (90) = ) | < —{(&- p)? + milt. (285)
m m
4. Fordllp e V},
poll9(p)ll <m +p-9(p) = [m +p-I(p)l- (2.89)
5. For all p € R3, the 3-vector field B obeys
18(p)Il < 1. (2.90)
6. For all p € R3, the 3-vector field B~ obeys

18 (p)ll < 1. (2.91)
Note that (2.88) shows, in particular, that
. . P Po
G space-like = ||9(p) m” < (2.92)
forallp € Vi.
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Proof:

We start with 1. The condition rewritten as
lall* ~ lgl* > 0,
implies by (2.49) and (2.50) that
q- |M(p,9)'M(p,9) — 7—;:;(2";19(13) ®9(p)'| >0, VqeR’ q#0.  (293)

The expression within the square brackets is easily seen to be the matrix S. In other

words,

q-S(p,¥)q>0, VqeR?q#0. (2.94)

which is equivalent to 2. Next note that S is a matrix of the type
A=I;+a®bl+b®a', abeR:

Such a matrix has eigenvectors

bxa

= — d - . -=0
Tb < af] e, and e_, e;-e ,

e

where e, and e_ are linear combinations of a and b. Moreover e has eigenvalue 1,

while ey have eigenvalues 1 + a - b£||a]|||b]|, respectively. Since |[al|||b]| > a - b, the
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matrix A is positive definite if and only if 1+a-b—|a]|[|b]| > 0. Applying this result
to S yields (2.87) and hence 2. Going back to (2.93) take q = &, an arbitrary unit

vector in R3, and rearrange to obtain

(- 8(p)) ~ (- p)(&-9(p)) ~ 1 <O,

which can be factorized to yield

(¢-90) - —{(6-p) +[(&- P +mH})
< (&-9(p) - {6 p) - [&-p)* + m?H}) <0,

m

Since (&-p) + [(é-p)? +m?? > 0, and (é-p) — [(é-p)* + m?z < 0, the above

inequality holds if and only if
1 - - 2 2 1 ~ 1 . - 2 2l
—{(&-p)-[E-p)*+m:} <&-p<_{l(é-p)+(é-P) +m?7},

and this is the same as 3. To see that 1. and 4. are equivalent, use (2.53) to rewrite

(2.49) as
o = pa¥(p) - q .
m + p - ¥(p)
Then,
2
ldol* = 1 :cf reS AU ¥(p)")a. (2.95)
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In this equation, for fixed ||g]|, if we choose q to lie along ¥(p), we get

2 21 a2

. 2 _ pallo(p)i*iall
= ) 2.96
ol = 1 ¥ p- 9(p)P (2.96)

Thus, for any |||/, we can find a q for which

WP RI@)IE
ol” _ _ 2.97
lal? = m+p- 9P (2.97)

Now, § is space-like & |Go|?2 < ||dl|® < |d0/?/llall* < 1, and in general, from (2.95)

|dol? < péllo(p)|I? .
Nallz =~ Im+p-9(p)?

Hence, if

rall9(P)I?
[m + p - 9(p)[?

<1, (2.98)

then § is space-like. Conversely, if § is space-like, then |§o|?/|q||* < 1, and since for
fixed [|g]|? there is a always a q for which (2.97) holds, it follows that § space-like
= (2.98). Since by (2.52) and (2.54), m + p - 9(p) > 0, we see that 1. < 4. The
equivalence of 4. and 5. follows from the definition of B in (2.56). Finally (2.78)

shows that 5. & 6.

q.e.d.

We end this section by proving the stability of the class of affine sections under the



action of 'PL(1,3). o:T — ’Pl(l,3) is any section then, as shown in [6], for

arbitrary (a,A) € 'Pl(1,3), O(a.4) is again a section where,

(.4)(Q P) = (a,A)a((a, A)"'(a,p)) = o(q, P)k((a, A), (¢, A)(q,p)),  (2.99)

(a, A)"}(q, p) being the translate of (q,p) by (a, A)™" under the action (2.40) and

k((a, A), (a, A)'(q,p)) = o(q,P) (e, A)o((a, A)(q,p)) € T x SU(2). (2.100)

Moreover, if o defines the frame .F{nf,(q'p),Aa,‘Zs + 1} (nf,(q'p) = U (o(q,p))n),

then o(, 4) defines the frame F {’7;(., afap) Aoeay 28+ 1} where

A = Uy, (a, A)A Uy (a, A)".

%(a,A)

Let U denote the class of all affine space-like sections, defined by (2.47) - (2.50) and
satisfying the conditions of Proposition 2.1, but with ¢ not necessarily assurned to be

zero. Then we have the result:
Proposition 2.2 [fo € U, then oq 4 €U, for all (a,A) € ’Pl(1,3).

Proof:

If p is included in the definition of the section, the relations (2.49) and (2.50) generalize
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to

o = Ze(p)+9(p)-a) (2:101)
a = Ze(p)+Mp.9)a. (2.102)
From this it follows that
. _Po e P
Go = —w(p) +B(p)- (4 —2(p)), (2.103)
ie.,
n(p) -3 = ML Po(p), (2.104)

with n(p) given by (2.62). Next, write A = A.p, where p is a rotation. Then

/\-1 = Ap—lzp_la
so that writing
(d,p") = (e,4)7(q,P) (2.105)
in (2.99), we get (see (2.40))
d = —=pk+p'Vi(a~a), (2.106)
P = A'p, (2-107)
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with Vi as in (2.28). Thus, if o is the affine section corresponding to the quantities

B and g, and (¢, p’) = o(q’, p’), then

/

n(p) - = XELE gy, (2.108)

Let

(§", k(p)) = (a, A)o(d',p') = (a, A)(@', h(p)) = (a + AJ', h(p)),

and n'(p) = An(p). Clearly, B’ = An/(An)o satisfies ||B']] < 1if ||B]| < 1. Further-

more,

n'(p)-§" = n'(p)-(a+ A{)

n'(p) - p [n(p) -(mA”'a + o(p)p)| (2.109)
m n'(p) - p

Thus, 0(,,4)(q, P) is again an affine section corresponding to the quantities B' and ',

with

, An(p)
B'(p) o) (2.110)
' n(p) - (mA~'a + o(P)p)
¢'(p) W) (2.111)
q.e.d.

In view of this result, starting with any family of coherent states G, = {nfr(q.p)}?
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we may generate an entire class of covariantly translated families Go(a,4) of other
coherent states, using the natural action (2.99) of P1(1,3) on the space of sections.
If o is characterized by B and ¢, then o(a, A) is characterized by B’ and ¢, the

relationship between ¢ and ¢’ being given by (2.111) above.

2.4 Relativistic Frames and Coherent States

We now take an arbitrary affine section o, and going back to the Hilbert space Hjy
in (2.21), choose a set of vectors n', ¢ = 1,2,...,2s 4+ 1, in it to define the formal

operator (see (1.16) and (2.23)):

2341 . . . .
Aa = Z As ln;(q,p))(n;(q,p)‘ dqdpv ﬂ;(q,p) = II:V(U(qa p))""t (2112)

=1

From the general definition (1.18), in order for the set of vectors
Go = {Moaml(@P) ERS i =1,2,...,25 + 1} C Hiy (2.113)

to constitute a family of coherent states for the representation Ujy, the integral in
(2.112) must converge weakly, and define A, as a bounded operator with a bounded

inverse.

To study the convergence properties of the operator integral in (2.112) we have to
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determine the convergence of the ordinary integral

2s+1

low= 3 [l (@Inqp)nbqpl¥)dadp

=1

for arbitrary ¢, € Hjy. In (2.48) set

A(p) = h(p)R(p) and A(p) = A, p(p)

(2.114)

(2.115)

where A(p) and p(p) are the matrices in the Lorentz group £'(1,3) which correspond

to A(p) and R(p), respectively. Then.

N (k) = exp{—iX(k) - a}D*(v(k,p) 7 (A() " k),

where
k
X(k) = —29(p) + M(p,d)'k,

m

is a one-to-one function of k having the property that:
X(k) = X(k') implies k =k’ and ko = k'o

and

v(k,p) = h(k) " A(P)R(A(P)” k) € SU(2).

(2.116)

(2.117)

(2.118)

(2.119)



Substituting into (2.114) yields

2541
Tt = 32 foomyeys P [ = K)- B o(e) + (X6 - XK1} - o] $(0

xD*(v(k, o)) (Ap) &) ' (A(p) " KD (u(¥', p)) 1o (K)

xﬁ a dqdp (2.120)
ko kb

In order to perform the k, k' integrations in (2.120), we need to change variables:
k — X (k). At this point we compute the Jacobian Jx(k) of this transformation from

(2.117). To this end, using (2.51) for M (p,¥) we write the components of X(k) as
Xi(k) = ki — ;1-1 (kopo — k- p) ¥i(p),1=1,2,3. (2.121)

where 9;(p), i = 1, 2, 3; are the components of ¥(p). Then

OXi v 5. _ L (Kipo 1\
ak; (k) = &;; m ( ko PJ) 9:(p) and
Jx(k) = (aXi(k)) =0+ —1 J(p) ® [kop — k ]Ir (2.122)
X - akj — 43 mko p Op PO b bdd

which has the determinant
1
det[Tx(k)] =1+ -,-n—k;ﬂ(p) - [kop — kpa]- (2.123)
Since at k = p =0, det[Jx(k)] = 1, and since in order to change variables we need

56



det[Jx(k)] # 0, we must impose the condition that
det[Jx(k)] >0, V(k,p). (2.124)

We shall show that the condition(2.124) holds for all k, p € R3 if and only if the
4-vector § = (o, q) is space-like. To this end we first rewrite (2.124) in terms of B~.

Let p(k — ) be the rotation matrix defined by

p(k = D) = A AN (2.125)

(it is a rotation, since the determinant of the matrix is I and for any 4-vector

a=(1,0), (/\,;1 /\k/\,i,/\,f.1 a)o = 1) which could be written as
p(k = BINA;" = Ay A (2.126)
and acting on the vector (m,0) with both sides of the equation we obtain,
plk = P)NP = Nk = Ask (2.127)
Then using (2.61) we can write,

ko + %(kop —kpo) - 9(p) = ko + %(kop — kpo) - %[p -mV,B8%(p)]  (2.128)



and plugging in the explicit form of V, from (2.28) and simplifying we get,

1
o+ Skop — ko) -9(p) = Zk-p— R2R_ v, 5(p)

= Bl(Aw)o + (Ask) - B0 (2.129)

by virtue of (2.30). So

det[Tx(k)] = 1+ F:To[“p — kpo] - 9(p)

= & [bo+ s ltap — kool - 9(0)]
= 2 (Ao + (Ask) - B7(p)] (2.130)
ofn
which implie-s
_ Po(Axp)o (AxP) =
det[Jx(k)] = —m [1 + Ao)o (k—7p)B8 (p)] , (2.131)

after making the use of (2.127).

Thus, it would appear that the positivity of det[Jx(k)], as required by (2.124), would
be ensured if the second term within the square brackets in (2.131) did not exceed 1

in magnitude, in other words, (2.124) would seem to require that I18~(p)ll <1, Vp.

Proposition 2.3 The condition (2.124), det[Jx(k)] > 0, holds for all k, p € R3
if and only if the 4-vector § = (go, q) is space-like, i.e., if and only if any one of the
equivalent conditions in Proposition 2.1 is satisfied.
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Proof:

Suppose that § is space-like. Then by Proposition 2.1, [|[87]| < 1. Hence, since

p(k — D) is a rotation matrix,

OB e
IR ok~ ) <1,

so that
1+((/L\\§))o-p(k—'ﬁ)*ﬁ'(p)>0,

ie., det[Tx(k)] > 0 (2.131)).

Conversely, assume that det[Jx(k)] > 0. Then by (2.122),

14 2\
+ m > m ko

p-¥(p) p_og.,,(p)_

Taking k in the direction of 9(p) and letting |{k|| — oo, the above inequality implies
that
p-9(p)

Po
|+ ————> =—||¢
+=—=> =9 (p)ll

which, in view of condition 4. of Proposition 2.1, implies that § is space-like.

q.e.d.
From now on, unless otherwise stated, we shall work with space-like affine sections o;
actually the only exception will be the two limiting sections o4 in (2.83) and (2.84).

Thus we shall assume that the conditions of Proposition 2.1 hold.
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Going back to the computation of / Xy in(2.120), we note that dq integration yields
a §-measure in X, and hence making the change of variables k — X, integrating and

rearranging (using (2.131)) we obtain,

Loap = foy g SR AP, (2132

where A,(k,p) is the (2s + 1) x (2s + 1)-matrix kernel

2s+1
Ao(k,p) = (nPm Y [po+p-olk — AS'P)B (= AR

x D (v(k, Az P (p(A: ") " p(k — A:'P)P)

<0 (p(Ae p) ok = AT PRI D (K ATTR))T (2:133)

where p(p), p(k — p) and v(k,p) are given by (2.115), (2.125) and (2.119), respec-

tively. Assuming the integral (2.114) to exist for all @, ¥ € Hjy, let us write
dp
A(k) = [, Ao(k,p) =2 (2.134)
vvn p
Then the operator A, in (2.112) is a matrix -valued multiplication operator:
(As0)(k) = As(k)b(k), & € Hy. (2.135)

At this point we make two simplifying assumptions on the the nature of the vectors

eHy, i=12,...,2s+ 1L
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1. Assumption of rotational invariance of the operator 3_223" [7')(n], i.e., VR €

SU(),
2s41 ] . 2s+1 ) .
o) [ | @ = Wi @i
This implies that
2s+1 R .
(z: In')(n‘l) (8) = Laona In()P, (2.137)
=1

where n € L3(V}, %), and thus we may take for n° € Hj, the vectors

n'=¢ém®n, :1=12,...,2s+1, (2.138)

the é; being the canonical unit vectors in C***! (i.e., &; = (8;),7 = 1,2,...,2s+
1).

2. Assumption of rotational invariance of [p(k)[? in (2.137):

In(pk)|* = [n(k)[?, Vp € SO(3). (2.139)

We shall generally refer to these two assumptions as the assumption of rotational

invariance. With this assumption, the kernel A, (k, p) in (2.133) simplifies to

As(k,p) = ao(k,p) [n(p) "Lastr,
(27)3m
po+p-p(k— AP B™(-AL'P)

aq(k,p) (2.140)
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On H3y, define the operators (Fo, P),

(Pu¢)(k) = kn¢(k)- (2.141)

We shall also denote the analogous operators on L%V,*,[,%) by the same symbols.

Note that P;! is a bounded operator with spectrum [0, =]. Then, with the above

simplifications (2.134) becomes
Aa(k) = ((l,,(k, P)),)]['Zs-f-l’ (2142)

where (-), denotes the L?(V{, %) expectation value with respect to the vector 1 in

(2.137). Hence for the operator A, (see (2.135))

|Acll = sup |[{as(k, P)),l, (2.143)

|
kevi

provided this supremum exists. On the other hand, since I8~ (=Az'p)ll < 1 and

lo(k — A7 p)t| = 1, from (2.140) we get,

1 1 1
(27r)3m(p0 —lipll) < as(k,p) < (gw)sm(l’o + el (2.144)

The two extreme values in the above inequality are reached for the limiting sections

o+ (see (2.82)). Thus, we have the result:
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Lemma 2.1 If ||B(p)|| < 1,Vp, then a,(k,p) is a bounded function satisfying

(21f) (2 )

(po = lIpll) < ao(k,p) < )- (2.145)
Suppose now that 7 lies in the domain of PO%, ie.,
/, . (k) < oo, (2.146)
and set
(Po £ PI), = [, (o % IpI) In(BF2 (2.147)

Then (2.132), (2.140 and (2.145) together imply

Lemma 2.2 If the assumption of rotational invariance on n,i=1,2,...,2s+1 is

satisfied, and if n € Dom(Po%), then for all B such that ||B(p)|| <1, Vp,

(27r)

(P~ IR, 1181 < g5l < ZE (P + [P I8N Il (2148)

As a consequence of this lemma we see that both the operator A, in (2.112) and its

inverse, A;!, are bounded, with
(A;'@)(k) = [(as(k, P '@(K), & € Hyy. (2.149)

Indeed, collecting all these results we obtain,
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Proposition 2.4 Letn', i = 1,2,...,2s+1, satisfy the condition of rotational invari-
ance. Then for each B satisfying ||B(P)|| < 1, Vp, the set of vectors G, in (2.113) s a
family of spin-s coherent states, forming a rank-(2s + 1) frame F {nf,(q'p, Az 25+ 1},
if and only if n € Dom(PO%). The operator A, acts via multiplication by a bounded
invertible function A,(k) given by (2.142) and A;' via multiplication by the function

A;1(k). Moreover,

(277)3

(2m)°
) Py~ 1P, < 11401 < Z (R + [P, (2.150)
and,
(27r
Spectrum(As) C [(Po = [P}, (Po + IIPI),,)- (2.151)

Note that since we are assuming rotational invariance, we could just as well have
done without the restriction, R(q,p) = R(p), in defining the sections o in (2.48).
The following construction now emerges for building spin-s coherent states for the

representations Uy, (see (2.23)) of mass m >0 and s =0, %, 1, %,2, ..., of ’Pl(l,3):

1. Choose a function 8 : R3® — R3 such that ||3(p)|| < 1, Vp, or equivalently,
amapu : Vi — Vi asin (2.66); choose an arbitrary measurable function
R : R3 — SU(2) and construct the corresponding affine space-like (or in the

limit, the affine light-like) section o, using (2.57), (2.48), (2.49) and (2.50).

2. Choose an n € L*(V},dk/ko), satisfying (2.139) and (2.146) and form the vec-

torsn' i=1,2,...,2s+ 1, using (2.138).
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3. Construct the family, G,, of coherent states niq'p) using (2.112).

While this procedure provides us with a large class of CS and frames, the latter are
generally not tight, i.e., A, is not, in general, a multiple of the identity. A few special
cases worked out below will make this statement clearer. For computational purposes,

the following expressions prove useful (assuming rotational invariance):

- (27)*m(Ac"P)o
aa(k, P) - 77lk‘0 _ [I"O(Z\LIR) + k(/\L_IP)OI . 0(_1\&) ’ (2.152)

and,

m

— 3 " f
Toap = [y $ 0 e —p T T 90=P)

(AP P (R) dp - (2.150)

1. The Galilean section oo :

From (2.79), (2.80) and (2.152),

Y (b = 2T Ropo =k P 2
a,(k,p) = ao(k,p) = - I , (2.154)
and using the rotational invariance of |7(k)|?,
9 3
A (k) = Ao(k) = ( :1) (Po),L2st1- (2.155)



Hence,

Ao = 0= iRy 1,
so that the frame is tight.
. The Lorentz section oy :
From (2.81) and (2.140),
all,p) = aclk,p) = ELT,
Do

so that

Al (k) = Adk) = (20 )*m(P), Lagir.

Thus,

A, = A= (‘21r)31n(P0'1)"1,
and once again the frame is tight.

. The symmetric section o, :

From (2.82) and (2.153),

_ .t Kopo + m?
Igap = CoF [, . SO Sl (k)
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(2.159)
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Thus,

2
(k) = as(k,p) = (2nf 2RET, (2.161)
and
ko Py 2

A, (k) = A, (k) = (2,)3(73(_&%)),11[2,“. (2.162)

The operator A, = A, is given by

k 2

(AB)(K) = AN = (2n) (2T, 0(k), e Ty (2163)

To determine the spectrum of A,, note that the function f : [m,00) — RY,

defined by

kopo + m?2
) = 3 FoPo TR
f(ka) = @m)*FE (2.164)

is uniformly bounded for all po € [m, c], for any finite ¢ > m. Also f'(ko) # 0,

for all ko,po > m (here f’ denotes the derivative of f) and

fim)=(2r)%,  f(oo) = (2 2. (2.165)

m

Thus,

(2r)° < f(ko) < (2022, (2:166)
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which, by virtue of (2.162), implies that
P,
Spectrum(A,) = (2r)° [”1}"2,( 0)"] . (2.167)

m

Hence, in this case, the frame is never tight.
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Chapter 3

A Relativistic Windowed Fourier
Transform

In the previous chapter we constructed the coherent states of the full Poincaré group
P1(1,3) and showed that they form continuous frames. Here we discretize the coher-
ent states of PL(1,1) and show that discretized CS of PL(1,1) can also be made into
discrete frames and develop a transform, analogous to the windowed Fourier trans-
form, which we call the relativistic windowed Fourter transform (RWFT). Finally, we
obtain a reconstruction formula for any function on the Hilbert space H = L*(V{, %)

using the RWFT.

3.1 The Mathematical Formalisn and Notation

Uunlike the previous chapter (which dealt with P1(1,3)), here we restrict ourselves to
P1L(1,1)) i.e., instead of dealing with a 3-component space vector, we work with a

single-component space vector. Most of the relations and statements which were true
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for PL(1,3) in Chapter2, are also true for PL(1,1). Let G = PL(1,1) be the Poincaré
group in one space and one time dimensions. It acts on the Minkowski space R,
whose points we denote by z = (zo,X), To = t, X € R (we assume that h = ¢ = 1).
The metric is ¢ = diag(1, —1). The elements of PL(1,1) are denoted by (a; A), where
a = (ag,a) € R?is a space-time translation and A is a Lorentz boost. Let V; denote

the forward mass hyperbola,
Vi = {p = (p0,p) €R?|po > 0, p} — p* = m?} (3.1)
for some mass m. The matrix A may be parametrized by a vector p = (po, p) € Vi:

1 Po P
A=N=— . (3.2)

The group multiplication is defined by the semi-direct product:

(a1; Ar Mag; Ag) = (a1 + Avazs A1A2), (3.3)

and the inverse and the identity elements are respectively (a; A= (ATl AT
and (0, 7), where I is the 2 x 2 identity matrix. The elements A, of the Lorentz group

act on V} in the natural manner,
k=K =Nk, keV]. (3.4)
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This action is transitive and by a straightforward calculation, it can be shown that the
invariant measure on V; is dk/ko. We work with the unitary irreducible representation

Uw of PL(1,1), on the Hilbert space
Hw = L2V}, dk/k), (3.5)

given, for g = (a; A,) € PL(1,1), by
(Uw(9)®) (k) = e*"d(A;'k), Vo € Hw, (3-6)

where k - a = koag — k - a. We call Uy the Wigner representation of PL(1,1) for the

mass m. Since for any ¢ € Hw ,

Lo 1(Uw(g)$16)1? daodadp/po
PL(1.1)

I

/;,,(1 1) /v+ Ut expli(k'oao — k' -a — ko ao + k- a)] ¢(A;' k) #(k) ¢(k')

x $(A;' K) — —- dagda —

ko '6 Po

L P [ 60— ko) expli(ic = k) - 2)] 8(A;7R) (k) 6(F)
,dk dk' . d

oo . , , dk dp
— 1LY R 1R 12 da Z5 9P
= 2n [, [ 18 P16 Pda gz S = oo,

we see that the Wigner representation is not square integrable with respect to the

whole group P1(1,1). However, as in the PL(1,3) case, it is square integrable with
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respect to the homogeneous space ' = PL(1,1)/T, where T is the subgroup of time
translations. Then T has global coordinatization (q, p) € R? and the left invariant

measure is dqdp [6]. The action of PL(1,1) on I corresponding to (2.40) is :

((l, Ak) - (q’ P) = (qI’ pl) (3'7)
where
Po= AP (3.8)
+ =1
¢ - ptng s
Po

In case of PL(1,1) the particular section og:T — PL(1,1) is defined by

Uo(q, p) = ((07 q)7 /\p)v p= (V |p|2 + 7n2, P) (310)

Then any other measurable section reduces to

o(q,p) = oa(q, p)((f(a, P),0), 1) (3.11)

where f : R? — R is a smooth function. The relations (2.48), (2.49) and (2.50)

reduce respectively to

o(q,p) = (4A) (3.12)
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P pof f:,p) (3.13)

+ pf(q,p) (3.14)
m

L
|

q

The function f(q,p) is defined in (2.47) and in this case ¢ : R —= Rand ¥ : R —
R are continuous functions of p alone. As we saw in Chapter?2. that ¢ played an
inessential role for our purposes, here we set ¢ = 0. It is to be noted here that all
the relations from (2.55) to (2.61) also hold true for the case of PL(1,1) where B(p)
has to be treated as a 1—dimensional vector field and V, = 2. Consequently (2.61)

reduces to

I(p) = 71—1[1:' — po B7(p)] (3.15)

Then the coherent states of 'P.I_(l, 1), for an arbitrary section o(q,p), are the set of

vectors

Notap) = (Uw(a(a,p)n)(k) = e®in(A; k) (3.16)

for an i in the domain Po? defined in (2.141)). The coherent states in (3.16) satisfy

the frame condition

/l_ [ M0(q.p)) (Mo(qp) | dadp = A (3.17)

(see (1.19)) where both A, and A,~" are bounded operators.
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3.2 Periodization of Compactly Supported
Functions

Let Y : R — C be a compactly supported function, with support [a, ] which means
Y is zero outside the interval [a,b] and the length L of the support is finite, i.e.,

L =b—a < co. We want to periodize the function Y in the following manner:

Let Y : R — C be a periodic function with period L such that

Y(z) = Y(z), Vze€la b (3.18)

Y(z+L) = Y(z), VzeR (3.19)

Y has the Fourier series decomposition

Y(z)= Y c.e™T5, VzeR (3.20)
and,
Y(z)= ) e ¥ T*, Vi € a, ], (3.21)
where
. / "V (2)em¥E da (3.22)
“=Ih '
Then
1 x c 2N !
I > === = §(z — 1) (3.23)
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where §(z — z') is the Dirac delta function defined, in the sense of distributions, by
§(z —2') = — [0 eMe=a (3.24)
2

-0

It has the property that for a sufficiently smooth function f(z)

/_ : £(z)é(z — zo) dz = f(z0). (3.25)

For an arbitrary section o(q,p) (see (3.11)) and ¢,j € Z, where by Z we denote the

set of integers, we write the discretized form of coherent states in (3.16) as
N, (k) = e~ Xsk)ae, (A k), qej = Agjl, (3.26)

where, A; denotes the discretized version of A,, for time being we take Aq; > 0 and

will fix it later and

Xj(k) = k—(A;'k)od(p;)

1
= —kopjod(p;) + k(1 + —p;9(p;)) (3.27)
Let a = (ao,a), b = (bo,b), pj = (pjo,P;j), and k = (ko,k) € V} satisfying

al—al=m? a9 >0, aeR etc
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Let n(k) = 0 if k ¢ [b,a], i.e., the length of the support of (k) is b — a. Then

n(A;'k) = 0 if

K ¢ |%Pi+apjo bo p; + b pjo
¢ m ! m

and the length of the support of n(/\;lk) is

((bo — ao)p; + (b — a)pjo)/m.

Let n(A; k) = #(X;(k)), where X;(k) is given by (3.27) and

bopjo+b-p; bop;+bpjo
m ’ m

b = A0 = (

G pjo+a-p; ap;+ ano)
m ’ m )

d; = /\}1(0)=(

Then the length of the support L; of §(X;(k)) is given by

L= X;(5) - X;(a;) = Lomcalpit (B =alpio oy gy,

m

Then, for any ¢ € Hw, we write

(1e518) = [, P TITR) $(B) T
v 0

m

where 7 indicates complex conjugate of 7.

76

(3.28)

(3.29)

(3.30)
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We define the formal operator T

o0

T= Z 123} (Me 5 (3.32)

£,j=—00

in order to calculate the discretized frame operator. We will study the convergence

properties of this operator in the next section.

3.3 The Frame Operator

Now we want to study the convergence properties of the operator defined in (3.32).

To do this, for arbitrary ¢, ¥ € Hiy, we consider the formal sum

Ig (oIT¥)

(s ]

= Z (D[110,5) (M0, 1)

{j=-c0

= [, OO0 GE (A k) 9(ATTH) (k)

Lj=-00
dk dk’

ko Ky

(3.33)

using (3.31).

Now let n(A7'k) = 9(X;(k)) and setting Aq; = Z—’;, where L; is the length of the
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support of 7(X;(k)) and defined in (3.30), we can write

oy = 2 3 - MO CNEA T (X (1) TG D) B (k)

Since,

aX;(K') = {— [k — (AR - 8(p;)] dic

changing variables k' — X (k') yields

Ig = / / di s 'I{XAk)—x,(w)}-i—je]
-1/] = oo v+ LO l—
1

" k- (A7) 9(P))

1(X;(k)) 2(X;(K") b(k) P (K')

Using (3.23) we write,

o = X [ [, T L0 = X))
1
BCRITSORTT

)fl( i(k)) (X, (k') $(E) (k)

Then using [ f(z)é(z — zo)dz = f(z0) we get,

dk—— ke L; -1
o = o 5PN 2 iyt A O
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which implies
TE)= 2 L=h 90

j=-oo

(A1 E)I. (3.39)

Let, for t, 6;, 6, and 6, €R:
k = m sinh(t), ko =m cosh(t); p; =m sinh(f;), pjo =m cosh(d;) (3.40)

a = m sinh(d,), ao=m cosh(d,); b = m sinh(6), bo = m cosh(6s) (3.41)

Also,

9(p;) = = [p; — pioB"(ps)] (see (3.15)) (342)

Now substituting (3.40), (3.41), (3.42) in (3.39) and writing

T(t) = T(cosh(t), sinh(t)), 7(t) = n(cosh(t),sinh(t)), B (8;) = B"(cosh(f;), sinh(b;)),

we have,
T(t) = 2sinh (25 f: cosh((%57%) + ©°(6;)) lin(t — 6;)? (3.43)
- o3 2 ) &=, Cosh(t—0;+(6,)) >

where we have written,

B°(6;) = tanh(®(6;)). (3.44)
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Let 8; = j6o, where 0o > 0 (fixed) (we call fp the step size), then T takes the form:

[t — j60)? (3.45)

0 — 0.\ & cosh((%4%) + &°(j60))
2 ) Z cosh(t — jbo + ®=(760))

& j=—00

T'(t) = 2sinh (

For any compactly supported function 7, with finite length of the support L, the sum
in (3.45) contains at best L/8;+ 1 terms only, i.e., it is a finite sum. We observe that
each term in the sum is positive and bounded for any ¢ € R and j € Z, consequently,
the opefa.tor T is strictly positive and bounded. Hence the discretized version 7, ;
of the coherent states in (3.16) form a frame, more appropriately, a discrete frame.
Depending upon different situations, this frame could be tight or non-tight. Here we
now show it by analysing some particular sections and imposing restrictions on 7.

Note that the contributions of the sections come from the function &~ in (3.45).

1. The Galilean section og:

For this section ¥(p;) = 0, that implies &*(j6o) = jfo (using (3.42) and

(3.44)) and

. 2sinh (Qﬁﬁ) o 0, +0, . X o

For different values of t, T is different, so in this case the frame is never tight.

By contrast, in the corresponding continuous case the frame was tight [6].
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2. The Lorentz section oy:

For this section 9(p;) = B¢  that implies ®*(j6p) =0 and

m

L3 . 06 - 03 0{; + 0(; > 1 - - 2
t) = —_— t— . (3.
T(t) = 2sinh ( 3 ) cosh ( 5 ) jzz_m cosh{t — 700) l7(t—760)|°. (3.47)

If |f(t — j60)|?> = cosh(t — 7o) in the support of 1, i.e.,

cosh(t — j@y) if sinh(8,) <t — jfo < sinh(6s)
[7(t — j6o)|* =
0 otherwise

Then

Ll— sinh!ﬂn!J
. -4, 6 a 2
T(t) = 2sinh b — 0 cosh [ 2 +98 z
2 2 t—sinh(8,)
i= [, &1

= 2sinh (0" ; 0“) cosh (0" “; 0“)
(- [

bl

where

n if n is an integer
[n] =

integral part of n +1  otherwise ,

n if n is an integer
[n] =

integral part of n  otherwise ,

is a constant operator and therefore, the frame is tight.
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3. The symmetric section oy:

For this section 9(p;) = ;{Jm—o which implies ®*(j60) = -i%?- and

) _ o By+0a+i00
T(t) = 2sinh (0" 0“) cosh (75 )

2 2 cosh(t — 22) [ (t — 760)I*. (3.52)

Jj=-o00

In this case, T is a non-constant operator and so the frame is never tight.

Note that if ®" is a constant function, say for example, *(j60) = « (a constant),

then

- . 0, — 0, 0, + 6 had 1 - . ’
t) = "0S - t — j6o)|*.
T(t) = 2sinh ( 5 ) cosh ( 5 + a) ) cosh(t — ;00 + @) [7(t — 7o)

2 2 Pl
(3.53)
Then if we have |7j(t — j6o)|? = cosh(t — jo + ) in the the support of §(t — j6o),

T'(t) becomes a constant operator and hence the frame is tight.

Again, substituting (3.40) and (3.41) in (3.27) and (3.30); using (3.42) and (3.44);
writing 7(t) = n(cosh(t),sinh(t)) and 6; = jf,, the discretized version of coherent
states in (3.16) takes the form,

sinh(t — j6o + ®*(j60))
sillh(Q";—o‘“) cosh(&tle + §+(760))

1¢,;(t) = exp [—iﬂ'( 7)(t — 760). (3.54)

Also, assuming ¢(t) = ¢(cosh(t),sinh(t)), using (3.54), we can write the scalar prod-



uct in (3.31) as

o ge [, sinh(t 80+ ©7(i6))
s 8) =[x [ T ah(5% ) cosh (555 + &7 ( j0o))]

x7(t — 00) P(t) dt, (3.55)

which we call the discretized relativistic windowed Fourier transform of the

function ¢(t) for the window-function #(t)).

Now
T = [#103) (105l (see(3.32)), (3.56)
¢j=—00
implying
-1 & . .
I=[T]" X [f1,)(f,! (3.57)
lj=—cc

~1—1
where I is the identity operator on Hiw and [T] = % . Then we can write,

)= 3 (e;1$) [T 19e(t), foranydeHw.  (358)

{,j=—00

We call (3.58) the reconstruction formula. Substituting (3.45),(3.54), and (3.55) in
(3.58), we can reconstruct any function ¢ € L}(Vi, %) In the next chapter, we will

analyse the reconstruction formula and reconstruct some functions in Hw numerically.
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Chapter 4

Numerical Computations Using
The Relativistic Windowed Fourier

Transform

We devote this chapter to numerically computing the operator T and applying the
reconstruction formula obtained in the previous chapter in various situations. First
we evaluate the operator T'(t) for different values of ¢, various window functions and
sections. Then we reconstruct several functions using the reconstruction formula,
for different window functions, sections and the step sizes. We also evaluate the
original functions at the same values of ¢ as the reconstructed ones and compare them
graphically. Finally, we show the effectiveness of the relativistic windowed Fourier
transform in comparison with the general windowed Fourier transform (also known

as the Gabor transform).



4.1 Numerical Evaluations of T

Here we rewrite the operator T':

A(t — j6o)l? (4.1)

T(t) = 2sinh (06_-9_) @, cosh((%3%) + &"(j60))

9 )3 cosh(t — jbo + ®*(j60))

j=—c0

For the Galilean sections (4.1) turns into (see (3.46))

T(t) =

2 Z cosh 3

2sinh(&5%) = 6, + 0,
cosh(t) Py

+300) lite =00, (82)
Unless otherwise stated, from now on we assume:
a = sinh(f,) = -1, b = sinh(8) = 1, 6o = 0.025, (4.3)

which implies

T(t) = 2 3" cosh(0.0255) |7(t — 0.0255)2. (4.4)

"~ cosh(t) Pl

Let the window function #) be compactly supported with the support [—1, 1] and

defined by

R 1+ if -1<t<0
n(t) = (4.5)
1—t fo0<t<l1

which we call the triangular window.



58.16

58.12

58.08

-1.0 -0.5 0.0 0.5 1.0

Figure 4.1: Frame operator for Galilean section and triangular window.

Substituting (4.5) in (4.4) we get

N 9 L(o_o‘?_{)-lj
T(t) = 2+— 3" cosh(0.0255) (1 —¢ + 0.0255)°
cosh(t) . o,
=gz
9 l.(o—‘%%)l ,
+ — cosh(0.0255) (1 + ¢ — 0.0257) (4.6)
cosh(t) = (o) +1]

where [n] and |n| are defined respectively in (3.50) and (3.31). Using (4.6) we obtain

the above Figure.
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§3.04 53.06

53.02
1

53.00

52.98
1

1 |

-1.0 -0.5 0.0 0.5 1.0

52.96

Figure 4.2: Frame operator for the Lorentzian section and triangular window.

For the Lorentzian section, asssuming everything is same as in the case of Galilean

section, the operator T'(t) takes the form (see (3.47)):

) (oatzs)-1] , 2
) = 242 _ (1=t +0.025
(@) e RZ:. . cosh(t — 0.025)) (1 —+0.025)
= 0.02%
Uasss)

\
cosh(t — 0.0257)

w

+ (1 +t—0.0255)? (4.7

i=[(gass)+11

From (4.7) we have the above Figure.
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56.0

55.8
]

55.6
I

55.4
!

Figure 4.3: Frame operator for the symmetric section and triangular window.

For the symmetric section

Lemm)= (6sh(0.01255)

—t+0.0255)?
wouh(i —0.0125;) (¢ +00259)

T@) = 2 +2

= o‘.;zls N

bt
l(o.ozs )-I cosll(0.0125j )

cosh(t — 0.01257)

+ 2 (1 + ¢ — 0.0255)? (4.8)

i=[(zasz)+11

Using (4.8) we produce the above Figure:
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0.08
|

0.06
L

-0.010 -0.005 0.0 0.005 0.010

Figure 4.4: Frame operator for the Galilean section and the smooth window.

We now want to calculate T'(#) for the smooth window

(1-)° if -1<t<1
(t) = (4.9)

0 otherwise

For the smooth window (4.9) and Galilean section the operator T'(t) becomes

g lEE

= p ) > cosh(0.0255) [l —(t- 0-025]')2] 20 (4.10)

= (a5

T(t)

from which we get the above Figure.



9.10
1

9.08
L

9.02
1

9.00

-0.010 -0.005 0.0 0.005 0.010

Figure 4.5: Frame operator for the Lorentzian section and the smooth window.

Corresponding to the smooth window and the Lorentzian section T(t) takes the form:

L
Wzass ) 1

0‘021.':
T(t)=2 :
(t) i= I’%‘-&H cosh(t — 0.025;

] [1 = (¢t —0.0255)%*° (4.11)

which gives the above Figure:
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31,1280

31.1276

31.1272

-0.10 -0.05 0.0 0.05 0.10

Figure 4.6: Frame operator for the symmetric section and the smooth window.

Finally, for the symmetric section the expression of T(t) corresponding to the smooth

window becomes

a3 coeh(0.01255)
cosh(t — 0.01255)

T(t) =2 [1 — (¢ — 0.0255)%]%° (4.12)

i= ()

From (4.12) we produce the above Figure:
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4.2 Reconstruction of Functions
In this section, we reconstuct some functions using (3.58). Denoting é, [fl“‘(t)]—1 and

1),,; respectively by ¢, [T(t)]”" and 7, ; we can write (3.58) as

)= 3 (mes18) TOT 1ne,2)) (4.13)

L, j=—00

where

Sillll(t - ]00 + @'(]90))
siuh(gﬁ-;ﬁ) cosh(ﬁ"';—a“- + ®=(560))

7,,;(t) = exp | —inl ] n(t — jbo) (4.14)

(see (3.54)) and T'(t) is given in (4.1). Let
é(t)=e" (4.15)

First we construct ¢ (t) for the triangular window (non-smooth window) (see (4.5))
and different sections, then we do the same for the smooth window (4.9). For the
Galilean section with the assumption (4.3) and (4.15); (4.14) and (3.55) change re-

spectively to:

_ : sinh(¢) :
Mes{t) = exp [ mecosh(0.025j)] (¢ ~0.0257) (4.16)
and
0o . sinh(t) | ——————= _p ,
@) = ————L 1t —0. t :
(M| @) [_oo exp [mecosh(0.0‘ZSj] n(t —0.0255)e™" d (4.17)
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1.0

0.8

0.6

0.4

0.2

0.0

Figure 4.7: Reconstruction of e~ for the Galilean section and the triangular window.

Then substituting (4.16), (4.17) and (4.5) in (4.13) we get

o Ugzm)d Lo 0251+1 sinh(z)
— -1 ] DR ———
o) = [T(t)] l_f_.:m rg-‘ /oozs_; [”ecosh(o.ozsj)]
= 0025

xe== [1 — z + 0.0255] dz

oo l(o—‘}zl's'” 0.0255 1
. sinh(z)
+[TET 2 > 002551 © [ cosh(0.025j)]

== j=[(5zs)]

x e~= (1 + z — 0.025;] dz (4.18)

where T'(t) is given by (4.6). Using (4.18) and (4.15); we have the above Figure:
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1.0

N 2
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@
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©
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N —

o

o

o

Figure 4.8: Reconstruction of et for the Lorentzian section and the triangular win-
dow.

For the Lorentzian section, the reconstruction formula becomes:

o Usss))

0.025j41
o) = [T X X / 7" exp [in€ sinh(z — 0.025;)]
l=—00 j= r(ﬁ%%n 0.025;

x e~ (1 -z + 0.025;] dz
oo BN L0025

+re) X " exp [inl sinh(z — 0.0255)]
=—o j= [(ggs)] ~ 02!
x e~ [l +z — 0.0255) dz (4.19)

where T'(t) is given by (4.7). For (4.19) and (4.15) we have the above Figure.
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Figure 4.9: Reconstruction of e~? for the symmetric section and the triangular win-
dow.

The reconstruction formula corresponding to the symmetric section is given by

o) = [TOT X X

=~ j= (3555

xe® [1—z+0. 0‘701] dz

o Ugam)l /o 025541 sinh(z — 0.0125; )]
0.

.94
0255 eXP [ur cosh(0.01255)

(53s) 0.025;5 smh(:z: - 0.0125;
- : -01255)
+[T(2)] Z 2 _/0 [ cosh(0.0125j)

t=-oco Jj= r(o 025 )]

e~ [1 + z — 0.025j] dz (4.20)

025_1-1

where T'(t) is given by (4.8). For (4.20) and (4.15) we have the above Figure.
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Figure 4.10: Reconstruction of e=** for the Galilean section and the smooth window.
Observation: We see from the Figure 4.7, Figure 4.8 and Figure 4.9 that the dif-
ferent sections play more or less the same role in the reconstruction scheme and the
accuracy of approximation of a function by its reconstructed counterpart is not very
high when the triangular (non-smooth) window is used. From now on we use only the

Galilean section and some smooth window.

For the smooth window function 1 defined in (4.9), the reconstruction formula for the

Galilean section becomes

o Usts)

o) = [T@)’ Z E /00'025”'1 €xp [iwe cossli?(?.((;:léj )}

t==oo j=[(gekN ~O 0!
x e~ [1 — (z — 0.0255)%]"° dz (4.21)

where T(t) is given by (4.10). Using (4.21) and (4.15) we have the above Figure:
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Figure 4.11: Reconstruction of a discontinuous function for the Galilean section and
the smooth window.

Observation: From the Figure 4.7, Figure4.8, Figure4.9 and Figure4.10, we see
that for a better approximation of a function by the reconstruction formula we should
use a smooth window.

So far we observed that the reconstruction scheme goes well for smooth functions and
smooth windows and at this point we want to see how does it work with discontinuous

functions. To this end we take the following discontinuous function:

t if —2<t<2

@(t) = (4.22)

0 otherwise.

Substituting (4.22) in (4.21) we have the above Figure.
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The Figure 4.11 tells us that in the vicinity of zo where a function f(z) is discontinu-
ous, the reconstructed function starts ringing and the accuracy of approximation is not
high. A situation like this in Fourier analysis is known as the Gibbs’ phenomenon [61].
It also tells us that f(zo) converges to

f(=3) ;rf(za), (4.23)

where f(z&) and f(zg) are respectively the right- and left-hand limit of f(z) at zo.
It is worthwhile mentioning here that the inverse Fourier transform of a function f at

a point zo converges to (4.23) [61].

4.3 Comparison with the Windowed
Fourier Transform

In this section, we discretize the coherent states of Weyl-Heisenberg group and fol-
lowing the techniques of chapter-3 we come up with the corresponding frame operator
and the reconstruction formula. Finally we reconstruct a function using both the rel-
ativistic windowed Fourier transform and the usual windowed Fourier transform and

compare them.

The discretized version of the coherent states of the Weyl-Heisenberg group is given
by:

¢m.n($) = eimpox ¢($ - nqo) (4.24)
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where po, g0 > 0, m, n are integers and po, qo must satisfy the condition
Po- go < 27. (4.25)

The condition (4.25) is necessary for ¢ma(z) to be complete and to form a frame [18,
62, 27]. Let ¢(z) be a compactly supported function with support L = %;'—. The frame

operator T : L*(R, dz) — €*(Z?) is defined by

T = z Z l¢m.n) (¢m.nl (4'26)

m=—0o0 n=-=00

For v € H = L*(R, dz), we consider the formal sum

I'/'-'/’ = ('/)IT‘!)): _z: -Z (¢l¢m.n)(¢m,nl¢)
= S > [ et gz — ngo) 6y = 7o) 9E) ¥ly) dr dy

-y > [

m=—oco n==o00 Y ~X

/—Z eimzf(l'-y) ¢(£ —_ nqo) qS(y —_ 71.([0) 1,[)(13) z»[)(y) d.’l! dy

=LY [T s y)bla — n0o) By na B $l) e dy

= [C Pl L 1 - nol (4.27)
which implies
2 o
T(z)= ;705 3" |é(z — ngo)l? (4.28)
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and the corresponding reconstruction formula is:

¥(z) = E Z (S [} |Gmin) (4.29)

m=—00 n=—00

Let po =7 and

é(t) = 0(t) = - (4.30)

0 otherwise.

Then we can write
LEED) 10
Tty=2 Y [1-(- ngo)?] (4.31)
n= [(4=L)]

and

1 ) L(%I-)J ngo+1 .
Y(t) = T—— ; Z [/’ e (1 — (z — nq0)2]l°1/)(:z:)d.1:]

n=feigtn e

x eimﬂ’t [1 _ (t _ 0 2]10. (4.32)

Now writing cosh(t) e=50* for ¢ in (4.21) and ¢ in (4.32) and setting 6o = 0.01

(instead of 0.025) in (4.21), qo = 0.01 in (4. 32), we have the Figure 4.12 (in the next

page).

From the Figure 4.12, we observe that the reconstruction scheme goes well both in
relativistic windowed Fourier and windowed Fourier techniques and the respective

reconstructed values are virtually the same.
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Figure 4.12: Reconstruction of cosh(t) e=rtinh(e)? using RWFT, WFT and smooth win-

dow.
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Conclusion

In chapter2, we constructed coherent states of the full Poincaré group and we saw
that they formed frames. We believe that these coherent states will have applications
to spin dependent problems in atomic and nuclear physics, as well as to image recon-
struction problems, using the discretized versions of these frames. In chapter3, we
discretized the coherent states of the Poincaré group PL(1,1) and obtained discrete
frames and a reconstruction formula. We observed in chapter4 that the reconstruc-
tion of a signal is much more accurate if we use a smooth window function, instead of
a non-smooth window function and the Galilean - , Lorentzian - and symmetric sec-
tions all play similar roles in the reconstruction programme. As we also saw that the
reconstruction of a signal by relativistic windowed Fourier transform (RWFT) was as
good as the reconstruction by the Gabor transform (GT), the RWFT can be used as
a substitute of the GT. The RWFT has applications in many fields, including pattern
recognition, signal and image reconstruction, detection and extraction of unknown

signals etc.

Some Specific Applications:

States and observables in quantum mechanics can be viewed in a very special way
in terms of coherent states. For example, if we consider the hydrogen atom, we can
describe its continuum and bound state wave functions, dipole operators, etc., in

terms of an overcomplete basis consisting of Galilean coherent states as:
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(rIq, p) = (U(O’o(q, p)) Z Su.l,m) (Po, l‘),

ntm
where the S, ¢m(po,r) are the Sturmian functions [68]. The Sturmian functions are
solutions of one of the Sturm-Liouville problems and form a complete discrete basis
set in the Hilbert space. For computational purposes, for example, matrix elements
of multi-photon process in the non-relativistic case [57, 71], the states (r|q, p) are
suitable. This is also true in the intermediate relativistic case, where the Dirac or the
Feyman-Gell-Mann equation is able to describe the interaction of a charged spin—3
particle with the electromagnetic field. Some work in atomic physics in this direction
has been done recently in [73]. The spin-Sturmian functions for the Feynman-Gell-
Mann equations were obtained in [22]. Using these wave functions one can construct

relativistic coherent states in the light of the present work:

(rlg,p, s) = (lffv(d(q, p)) > S,i,z,m) (Po,T)-

n,f,m

In constructing these coherent states one has the freedom in the choice of available
sections, in addition to the already existing freedom in the choice of the Sturmian
functions. The various sections o also have applications to relativistic statistical
mechanics in thé computation of distribution functions [36].

We now show, as a specific example, how the RWFT can be used in detection and

extraction of unknown signals: In detecting a signal by a radar a ‘threshold’ is to
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be set. A threshold is an electronic device that produces an output signal when the
receiver output, averaged over the several repitition periods, exceeds a predetermined
level. If the threshold voltage level is adjusted to lie well above the rms ‘noise’ output
of the receiver, false alarms caused by noise may be kept to any desired low rate. The
use of high threshold setting will also result in failure to note the presence of actual
target when their signals are relatively weak. Hence the probability of detection will
be a function both of signal-to-noise rati;) and the threshold setting. Here by ‘noise’
we mean very small random fluctuating voltages that unaviodably are present in the
input circuit of the receiver. An observed waveform may be a signal mixed with
noise or a noise alone. In their work, Chen and Qian [24] used the following steps in

detecting an unknown signal:

1) representing the noisy signal in the joint time-frequency domain by using Gabor

transforms;

2) determining the mean of the Rayleigh distribution of the background noise in the

joint time-frequency domain;
3) thresholding the time-frequency coefficients;
4) defining the time-frequency coefficients which are above the threshold;

5) measuring the time-frequency location, time duration and frequency range from
the coefficients above the threshold.

In the step 2) , by the Rayleigh distribution we mean,
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2

I T
p(z) = 7 SXP [—5‘7 (z =0)

where u is related to the mean value by, mean = \/12"_- Q-

After the detection of the signal, it is extracted by using the inverse Gabor transform.
The localization of the time and frequency by the Gabor transform makes it possible
for de-noising, signal detection, and signal extraction in the time-frequency domain.
Finally the extracted signal is reconstructed by a Gabor expansion. We can use the
RWFT instead of the Gabor transform in the above procedure to detect, extract and

reconstruct an unknown signal.
Some Possible Extensions of the Present Work:

The immediate extension one can do is to discretize the coherent states of the full
Poincaré group to obtain discrete frames and a reconstruction formula, as in the
case of 'Pl_( 1,1). These could be applied in the reconstruction of signals and images.
Since each transform (e.g., wavelet transform, RWFT, GT etc.) arose from the CS of
different groups and the discretization of CS in each case is done in different ways, one
transform may be more suitable for a certain class of functions than for another class.
So one can also explore the possibility of finding the classes of functions suitable, for
the reconstruction formula obtained in chapter 3, so that the reconstruction scheme
does a better job, at least for that kind of functions, than other available schemes. It

is our intention to proceed in this direction.
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