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Abstract

Mechanical Behavior of Triaxial Woven Fabric (TWF) Composites

Qi Zhao, Ph.D.

Concordia University, 2003

This study is to explore the mechanical behavior of TWF composites. It covers following

five aspects:

©® Two finite element models (Superelement 1 and Superelement 2) were developed for
prediction of mechanical behavior of TWF composites. Superelement 1 is a 15-node
superelement constructed of six identical 8-node 3D isoparametric elements and
three .identical 4-node 2D isoparametric laminate elements. Superelement 2 is similar
to the first element except that this element takes into account the geometric and
material properties of the twisted yarﬁs. The assembly is done by the pseudo element
technique suggested herein and the static condensation procedure. Superelement 1
can be used for the vibration analysis with some economy of computer space and
time. Superelement 2 can be used for detailed stress analysis and for strength
prediction. Although these two elements are developed for the TWF composites,
they can be applicable for analytical models for other materials and structures made

of other types of textile composites.

1ii



A series of experiments were done to obtain the tensile elastic constants of the TWF
composites done by another person. Finite element models (Superelement 1 and
Superelement 2) developed for the TWF composites were used to provide results for
comparison with experiments. The effects of sizes and aspect ratios of TWF panels

on their Young’s modulus and Poisson’s ratio are studied.

Thermal deformation behavior of TWF composites is modeled using Superelement 2.
Thermal deformation behavior and Thermal Expansion Coefficients (TECs) of the
TWEF composites are evaluated. Effects of the aspect ratios and size of the panels on

the TECs are studied.

The mechanical behavior of a sector of the reflector subjected to uniform pressure is

studied by modeling several different-scale sectors using Super-finite elements.

Progressive failure of TWF composite panels subjected to uni-axial extension is
studied numerically and experimentally. TWF panel is discretized respectively using
linear and nonlinear Super-Finite-Elements proposed here. Tensor polynomial
progressive failure procedure is employed with maxirhum stress, Hoffman and Tsai-
Wau critera. Two displacement-loading cases were considered. The first and ultimate
failure loads, maximum exteﬁsion displacement, locations and modes of failure are

estimated and compared well with experimental data.
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Chapter 1

Introduction

Textile composites are a class of advanced composites of using textile fabrics (preforms)
as reinforcements [1]. They have the potential for improved inter-laminar fracture
toughness and impact damage tolerance because of the interlacing. Also, since fiber
performs can be fabricated using automated textile equipment, there is the potential for
reduced cost. Based on the textile processing techniques, textile composites can be

classified as shown in Figure 1.1 [2].

Weaves 2D Orthogonal: Plain, Twall, Satin
Traxal

3D Angle Interlock
E E Orthogonal Interlock

Sandwich Weave
Warp knit
Weft kot
Brads 2D Bias
Traxial

3D < Tubular

Cartesian

Figure 1.1: Classification of textile composites



Among the different types of textile composites, composites made from Triaxial Woven
Fabric (TWF) offer many interesting characteristics. The preform is composed of three
sets of yarns, which intersect and interlace with each other at 60° angles, shown in Figure
1.2. Due to the presence of the three yarns along these directions, the TWFs have more
isotropic responses to both tensile and shear deformations compared with biaxial woven
fabrics. In addition, the TWFs are stiffer and easier to handle and have the ability to
maintain structural integrity. Therefore, the TWF composites are attractive for many

industrial applications.

Figure 1.2: Triaxial woven fabric

Laminates made of TWF can consist of mény layers of the preform fabric impregnated
with resins. In this case, solid laminates can be made and the hole between the yarns as
shown in Figure 1.2 are covered. The analysis for this type of laminate may not be much
different from that of laminates made up by other types of weaves such as plain weave or
satin weaves. There are also applications where only a single layer of the fabric is used to

make the laminate, yielding a structure as shown in Figure 1.2. One example application



is the communication satellite. The reason for this construction is due to lightweight, and
also due to the facility to allow the air to escape through the holes during launching. This
air escape reduces significantly the air impact, which significantly reduces the loading on
the structure. Although there is a lot of research work on mechanical behavior of textile
composites, this single layer material receives less attention than other textile composites.
There is only little research work concerning this material. We know little or even
nothing about its thermo-elastic properties and the effects of various parameters (size,
aspect ratio and temperature, etc.) on the thermo-elastic properties. It is therefore

necessary to study the mechanical behavior of the TWF composites for better application.

Over the past twenty years, many researchers have spent effort in developing models for
the prediction of properties of textile composites. A variety of analysis for predicting
effective properties and stress distributions of plain weaves has been proposed. The
analyses varied both in terms of how faithfully the architecture is modeled and in terms

of the assumed variation of the stresses and displacements within the material.

In the 1980s, Ishikawa and Chou presented three analytical 1-D elastic models for the
thermo-mechanical modeling of 2-D woven fabric composites [3-8]. These models are
known as the mosaic model, the fiber undulation model and the bridging model. The
classical lamination theory forms the basic analytical tool for these developments [9].
The mosaic model in Refs [3,4] represents a woven material by an array of rectangular
parallelpiped (“brick”) elements and ignores the undulated regions of the yarns. The fiber
undulation model in Ref. [5] assumes that the material consists of a collection of

laminates arranged in series. Fiber undulation is modeled in one direction only. These



models are labeled 1-D models because they only consider the undulation of the yarns in
the loading direction. Notice the total absence of any geometric analysis. That is, the
actual yarn cross-sectional shape or the presence of a gap between adjacent yarns is not
considered. Therefore, no predictions are made for the out-of-plane yarn orientation and
the fiber volume fraction. Moreover, these models consider balanced closed weaves only,
whereas in practice the fabric can be unbalanced and open. Since the classical laminated

plate theory is the basis of each model only the in-plane elastic properties are predicted.

Two-dimensional versions of “modified laminate theory” have been developed by Raju
[10], N.Naik, Shembekar & Ganesh [11-13]. These analyses in Refs [10-13] approximate
a weave by a collection of cross-ply laminates. However, the fabric geometry was not
described adequately. The mechanical properties in the lateral direction (z) could not be
correctly modeled. Refs [11-14] propose various methods to obtain the effective
properties of this collection of “laminates”. Refs [15,16] extend the thermo-elastic
models of N. Naik et al to include the prediction of failure in plain weave composites
under on-axis static tensile loading. In R.Naik [17], the woven composite was analyzed
by discretely modeling each yarn in the unit cell with a ﬂa£tened lenticular cross-section
and sinusoidal undulation at each yarn cross-over point. The 3-dimensional stiffness
matrix was computed by discretizing the yarn path into piecewise straight yarn slices and
then using a stress averaging technique. Composite strength was calculated by using a
beam-on-elastic foundation model for each yarn undulation together with an incremental
progressive damage algorithm. However, it is questionable that the calculation of local
stress fields in yarn and matrix slices in this strength model is based on the isostrain

assumption



Three-dimensional analyses that account for the fiber architecture in a “smeared” fashion
have been proposed in Refs [18-20). These typically do not model the interface between
fiber bundles and the matrix pockets with precision. Instead, effective properties at a
quadrature point (during numerical integration) are obtained by homogenizing the
properties of the materials near the quadrature points. Hahn and Pandy [21] present a
thermo-elastic model for non-hybrid plain fabric composites. This model is essentially an
extension of the 2-D models of N. Naik. The geometric model accounts for the
undulation of warp and weft yarns, the actual yarn cross-section and the presence of a
gap between adjacent yarns. The yarn undulations are sinusoidal and described witﬁ
shape functions. The gap between two neighboring yarns, however, is introduced by
terminating the yarn at the start of the gap. Hence, for large gaps the yarn cross-section
becomes quasi-rectangular, which is not realistic. Also, this model uses isostrain
assumption. The isostrain assumption is not capable of accurately predicting all 3-D

elastic constants and of solving stress analysis problem accurately [22].

The correct laminate theory [23-26] considers that the material consists of the union of
unidirectional layers whose directions respect the typical axes of real material. Under
these conditions, it is possible to apply the traditional laminar theory, which, however,
has been corrected with coefficients related to the average value of fiber waving angle;

this angle is experimentally determined by using micro-photographs taken on various

fabric sections.

The FGM (fiber geometric model) analytical model [27-31] is widely used to foresee

composite fabric characteristics. This model considers the fibers and matrix as a group of



rectilinear bars with various spatial orientations. Once the whole group of bars has been
characterized, the composite global stiffness matrix, therefore all elastic constants, are
obtained by adding the contributions of single bars that should have transverse isotropy.

In the calculation of axial stiffness, some errors are found for small braiding angle values.

There is an application procedure that adopts a sub-structuring on material volumes
considered homogeneous [32-37]. By using analytical methods such as FGM, volumes
having different properties (fiber and matrix) are transformed into an element with
homogeneous properties. The solution of the global structure can be obtained through a
FEM analysis utilizing single cells as the elements. It is difficult to evaluate the elastic

properties with this method, when components have very different elastic moduli.

A variation to the previous method divides the structure into meso-volumes [38-41] and
each one of these volumes contaiﬁs several single cells, the elastic properties of which
are calculated through the FGM method. Meso-volume approach gives a more general
" tool for the analysis of the structures than the approach with single cells. The test pieces
that can not be decomposed into single cells may be analyzed. However, the use of this
method may cause errors in the global analysis, due to the introduction of sub-elements

and fictitious subdivisions.

The approach with macro-elements is based on the use of finite element [42-44]. The
finite element formulation implicitly takes into account the composite micro-geometry
and the mechanical properties of fiber and matrix, without a precise correspondence with
the spatial position of fabric components. This is in contrast with the usual choices to

decompose the structure into several elements to have a more precise consideration of



microstructure, or with the choice to use average properties for every element. However,
the result is a lower number of elements required for material discretization. This method
gives good results in the prediction of fabric global movements and deformation, whereas

it is not effective in calculating deformations and tensions inside the elements.

Another numerical approach is called global-local approach with finite elements [45-49].
It makes a distinction between three levels: in one level the structure is assumed
homogeneous; in another level micro-structural components appears well differentiated
between each other, a different discretization is used according to the degree of

homogeneity. The reliability of a method depends on the choice of procedures in

discretization at the different levels.

Paumelle, Hassim and Lene [50,51] developed a finite element method for analyzing
plain weave fabric composite structures. The periodic medium homogenization method is
implemented. Basically, by applying periodic boundary conditions on the surface of the
" unit cell and by solving six elementary loading conditions on the unit cell, the complete
set of elastic moduli of the homogenized structure can be computed. At the same time,
the method provides a good approximation of the local distribution of force and stress
fields acting in the composite components and at their interface. These microscopic stress
fields give a strong indication of the type of damage that will occur. But this approach
requires large computer calculation power and memory because of the 3-D nature and the
complexity of the yarn architecture. Also, a correct finite element model includes the
generation of the fabric geometry and the finite element mesh of nodes and elements.

Most of the time spent is related to the creation and the verification of a correct geometric



model [52]. Moreover, there are major problems in analyzing and interpreting the results

in a 3-D domain of a rather complex geometry [53].

Blackketter [54] constructed a simplified 3-D unit cell of a single ply non-hybrid plain
weave graphite/epoxy composite to model damage propagation in 2-D woven
composites. Twenty node isoparametric hexahedron elements were used in generating the
finite element meshes. Limits on element refinement were imposed by the computational

time required for solution.

Recently, Verpoest and co-workers [55] have used the method of cells to model the
microstructures of textile composites. This method examines the different segments of
the mi’crostructures of the textile composites. This method is similar to the finite element
approach except that cells are used instead of finite elements, which requires a computer

program to include the many elements in the unit cell.

In 1993, Fujita, Hamada and Maekawa [56,57] investigated the tensile properties and
fracture behavior of carbon fiber TWF composites without open holes using
experimentation and FE analysis. In this FE model, beam elements were used to
discretize each yarn, and short beam elements of resin were placed at the crossovers to
represent the bonding interface between the two interlacing yarns and to assure load
transfer from one yarn to the other. In 1999, Dano, Gendron and Picard [58] applied this
model to investigate the elastic properties of a carbon fiber TWF composite. However,
there are some problems in application of this model, such as how to suitably determine
geometric and bending stiffness of the beam. Also, this model is simple and cannot

reflect the complex real deformation of the TWF composites.



For triaxial composites, Sheng and Hoa [59,60] proposed an equivalent energy model for
the determination of elastic constants. Yong and Hoa [61,62] also proposed an equivalent
energy approach for the determination of elastic constants of three-directional braided

composites. Xu, Ganesan and Hoa [63] studied the buckling of triaxial composites using

nonlinear beam elements.

In conclusion, the current models for 2-D woven fabric composites all have limited
applicability, in that either they are not sufficiently accurate to predict the local stress
fields in yarn and matrix phases, or they are not computationally efficient. Furthermore,
the approaches mentioned above by previous investigations [3-58] were designed to
model textile composites without open holes. As such they are not efficient for the case
of textile composites. The investigations in [59-63] were mainly averaging techniques
that can predict the apparent Young’s moduli well. However there is still uncertainty in
the prediction for shear values. In addition they cannot determine the stresses required for
failure prediction. The response to these needs gave the motivation for this work. The
objective of this work is to provide techniques for the accurate determination of elastic
properties and stresses within the triaxigl composites. For this, special purposed super
finite elements were developed. These elements are then used to model the triaxial

composite structure subject to different loading conditions.

In this study, mechanical behavior of TWF composites is explored. It covers following

five aspects:

Firstly, two finite element models (Superelement 1 and Superelement 2) are developed

for prediction of mechanical behavior of TWF composites. Superelement 1 is a 15-node

9



superelement constructed of six identical 8-node 3D isoparametric elements and three
identical 4-node 2D isoparametric laminate elements. Superelement 2 is similar to the
first element except that this element takes into account the geometric and material
properties of the twisted yarns. The assembly is done by the pseudo element technique
suggested herein and the static condensation procedure. The availability of these
elements allows for the analysis of complex structures of the triaxial fabric. Superelement
1 can be used for the vibration analysis with some economy of computer space and time.
Superelement 2 can be used for detailed stress analysis and for strength prediction.
Although these two elements are developed for the TWF composites, they can be
applicable for analytical models for other materials and structures made of other types of

textile composites [88].

Secondly, a series of experiments were done to obtain the tensile elastic constants of the
TWF composites. Finite element models (Superelement 1 and Superelement 2) developed
for the TWF composites were also used to provide results for comparison with
experiments. The effects of sizes and aspect ratios of TWF panels on their Young’s

modulus and Poisson’s ratio are studied [89].

Thirdly, thermal deformation behavior of TWF composites 1is modeled using
Superelement 2. Thermal deformation behavior and Thermal Expansion Coefficients
(TECs) of the TWF composites are evaluated. Effects of the aspect ratios and size of the

panels on the TECs are studied [91].

10



Fourthly, the mechanical behavior of a sector of the reflector subjected to uniform

pressure is studied by modeling several different-scale sectors using Super-finite

elements [90].

Fifthly, progressive failure of TWF composite panels subjected to uni-axial extension is
studied numerically and experimentally. In numerical study, TWF panel is discretized
respectively using linear and nonlinear Super-Finite-Elements proposed here. Tensor
polynomial progressive failure procedure is employed with maximum stress criterion,
Hoffman criterion and Tsai-Wu criterion. Two displacement-loading cases are
considered. The first and ultimate failure loads, maximum extension displacement,

locations and modes of failure are estimated and compared with experimental data [92].

i1



Chapter 2

Development of finite element models

In this chapter, the development of two super finite elements is presented. Superelement
1 is a 15-node superelement which is composed of two types of elements. The first type,
called element E1, is an 8-node 3D isoparametric elements. There are six elements E1 in
the superelement 1. The second type, called element E2, is a 4-node 2D-isoparametric
laminate elements. There are three elements E2 in the superelement 1. The assembly of
these two types of elements (E1 and E2) to make the superelement is done by the pseudo

element technique suggested herein and the static condensation procedure.

Superelement 1 does not take the twist in the yarn into bconsideratvion. To improve the
element connection and to fully consider the characteristics of geometric and material
properties of twisted yarn, superelement 2 is developed. Superelement 2 is similar to
superelement 1 except that elements E1 aré replaced by element E11, which is a 16-node

isoparametric 3D elements. Element E11 takes the twist of the yarn into account.

Superelement 1 does not take as much computer space and time and can be used for
problems such as vibration study. Superelement 2 takes more computer space and time

but can produce more accurate stresses. Detailed development of these elements is shown

below.



2.1 Superelement 1

The TWF composite is composed of three sets of yarns, which intersect and interlace
with each other at 60° angles. As shown in Figure 2.1, the entire fabric can actually be
obtained by assembling many unit cells. There are many ways to identify a unit cell in the
structure of Figure 2.1. One type of unit cell is shown in Figure 2.2 (a). Repeating the
unit cells can reproduce the fabric. Figure 2.2 (b) shows the procedure of reproduction of
4 (unit cell) by 4 (unit cell) fabric. In Figure 2.2 (a), W} is the yarn width, W, is the larger
bridging distance between two yarns, W3 is the smaller bridging distance (W3 can be
calculated from W, and W,, W3 = W,-2xW tan(n/6)), t, is the yarn thickness and t; is the
resin layer thickness. These four geometry parameters (W1, Wy, ty, and t;) were measured
from the microscopic photograph of the TWF composites. With these four geometry
~ parameters, the geometry of the unit cell can be determined. The volume and weight of

the unit cell is also calculated approximately as

V0 = 6w (w, + wy)r, 12+ 3w’ (21, +1,)/sin(z/3)

Gy = 6w (w, + wdt, 0, 12+3w’ (2,0, +1,0,)/sin(z/3)

where p, is the density of the yarn of TWF composites and p is the density of the resin.

This unit cell is also used as a superelement in the finite element development. Close
examination of figure 2.2 shows that there are two types of structures in the unit cell. One

type of structure has only one yarn thickness (labeled E1 in the figure) and the other type
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has two-yarn thickness (labeled E2). Finite element El is developed to model the
structure with one yarn thickness and element E2 is developed to model the two-yarn
thickness structure. There are six of E1 elements, and three of E2 elements in the unit cell
(superelement). The E2 structure has three layers. The top and bottom layers consist of
yarn materials. The orientation of the fibers in the top tow is different from the
orientation of fibers in the bottom tow. In between the top and bottom yarns is the matrix
material. As can be seen from the cross section view of the unit cell, structure E1 changes
elevation as it bridges the two structures E2. Note also that due to the trapezoidal shape
of E1, there is a twist in the yarn in E1 (Figure 2.3). Element E1 will involve composite
lamina characteristics. Element E2 will be developed based on the general layerwise
laminate theory [64,65] and has the ability to solve for interlaminar stresses and for
boundary stress distribution with consideration of transverse deformation. The suitable
displacement fields will be assumed in element E2 which can fully describe the real
stress fields in composite laminated plate, i.e., stress fields associated with thickness

direction are allowed to be discontinuous between laminae.

The superelement 1 is developed by as.sembling the six elements El and the three
elements E2. These superelements are then assembled to make the structure of the triaxial
composites. As can be seen, the TWF composite will have complex stress and
deformation status because of the weaving structure and material anisotropic
characteristics. Even when the TWF composite is subjected to pure tension, the yarn will
bear a combination of tensile; compression, shear, bending and torsion. The pure and

torsion shear will exist at the crossing areas between yarns and will play an important
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role in fabric failure. The above-mentioned factors will have to be taken into account in

the development of finite element model.

Cross over part

yarn part

Figure 2.2 (a): A unit cell (superelement)
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Figure 2.2 (b): Repeating unit cells into a fabric

2.1.1 Element E1

Before stating the development of element E1, the geometry of the single yarn (tow) part
is firstly analyzed. The yarn part is bridging between the top layer of one crossover part
to the bottom layer of another crossover part. Referring to Figure 2.3, the elevatioﬁ
difference between points 5 and 6 is the same as the elevation difference between points

8 and 7. However, since the length of the element segment 56 is shorter than the length of
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element segment 78, the angle of elevation o is greater than the angle of elevation . As
such, the top and bottom surfaces of the element shown in Figure 2.3 are not flat. Rather
they are curves, indicating the twist that exists in the element. For the development of

element E1, this twist is neglected for simplification.

The material properties of the single yarn part vary at different points of the part. The
stress-strain relations in common Cartesian coordinate system x,y,z (Figure 2.3) can be

written as:
Gij = Qijk](x’ y:z)ekl ’ (i7j7k91 = X7 y,Z)

An approximation is required to obtain the material properties for the single yarn part.
The yarn part can be considered as to consist of many same-thickness strips along the y
direction and that are parallel to xz plane. In each strip the fibers are parallel to the top
and bottom lines of this strip, analogous to an unidirectional lamina. The orientation of

_ the fibers can be different from one strip to another, However, since the rate of twist

(a-B) of the yarn part is small, the value of Q,,, approaches closely that of q,, which is

evaluated at the strip (y=0) of yarn part. Therefore, as a first approximation, we have

Qi = Qi -

With Q,,, simplified as above, an 8-node 3D isoparametric element is applied directly on

the yarn part, the procedure of which can be seen below.

17



Figure 2.3: Geometry and coordinate of yarn part

The displacement field and geometry of the element are given respectively by

N

Uu.

8 H
vi= Y N(ERO, p=[NYd,} @1
w = w,
X s Xi
yr=> N(ENOIy, 2.1.2)
i=1 N
Z Z.

1

where &,nand { are natural coordinates. The shape functions in terms of the natural

coordinates are

N:(En,0) = %(l +EENL+MMYA+LL), (i=12,-8) (2.1.3)

And u;, v; and w; are nodal displacements of node i in the element Cartesian coordinate

system. The number of nodes is shown in Figure 2.3. Nodal displacement vector is
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{dex}z[ U Ug, Ug, Uy, Vi, Vi Vi, Vi, Wi, Wy, Wi W,

(2.1.4)
Ug, Ug, Uy, Ug, Vs, Vg, Vg, Vg, W, W, Woy Wy ]T
The strain-displacement relations can be expressed as
4 3
EXX u,X
Eyy V‘)’
8ZZ W Z
= = [BJd,,} (2.1.5)
€, V,+tw,
€, u, +w
L Exy Uy TV

The equilibrium equations are derived using the principle of virtual displacements in the

absence of body forces as:

Icij&ijd" = ITiSUidS - fpﬁi&lidV (,j=x,y,2) (2.1.6)
Ve Se Ve )

Substitution of Eq. (2.1.1) and Eq. (2.1.5) into Eq.(2.1.6) yields,

111 111 : T1
( []folv Jld&dndcj{ }+( [T J|d§dnd§j{del}— [INTT, pds | 2.1.7)
1~1-1 1-1-1 . Se T3
Eq. (2.1.7) is written in short form as
Mel]{ael}+ [Kel]{del}z {fel} (2.1.8)

where
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[Mel]{’jl JoINT [N]JIdédndCJ

1

(BT [Q][B]Jldédndcj

and p is the mass density of the yarn. Tj is the component of external force. IJ | is the

determinant of Jacobian matrix as follows

X‘}; X X,C

lJ{=y@ Yan Y
Z,g Z Z,C

~ Before assembling into the superelement, Eq.(2.1.8) needs to be transformed into an
equation in the superelement coordinate system OX YZ;. The transformation matrix can
be sought as follows. Assume that the direction angles of element coordinates xyz and

superelement coordinates X;YZ, can be expressed as

cos™ (X, X)) cosT(X,-Y,) cosT'(X,-Z,)
[a‘ij] =|cos™ (3, '>_—(so) cos™ (¥, .?s()) cos™ (J, - s0) (2.1.9)
' XSO ’ YsO) cos_l (_2-0 : ZSO)

NI

cos™'(Z, ) cos”'(Z,
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where X, = (1,0,0), Y,, = (0,1,0) and Z, = (0,0,1) are the unit vectors of superelement
coordinates. X,,¥, and Z, are the unit vectors of element coordinates. They all are

expressed in the axes of the superelement coordinate system.

We can easily obtain transformation of nodal displacements in two coordinate systems
[T.] o
fad=lrbd =" ] fd.} (2.1.10)

where {Eel} represents node displacement vector in the superelement coordinate system.

[ 8]
[Sw—
=
@]
—
w
[—

[c.] [c,
[C21] [CZZ]
[C,,] [C,] [Cy]

[T,]=

cos(ct;;) 0 0 0
0 cos(a;; 0 0
[Ci' ] = ( U)
! 0 0 cos(o;) 0
0 0 0 cos(t;;)

Using Eq. (2.1.10), the FE equation of element E1 in superelement coordinate system can

be obtained as

([TJ[ME,][TBJ){&H T K I . = [T, T {E ) @2.1.11)

2.1.2 Element E2

The crossover part is the 3 layers laminate with internal resin layer. A 4-node 2D-
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isoparametric laminated element of 3 layers is applied for crossover parts. This element is
a 3D element. 2D-isoparametric refers to 2D-isoparametric technique used in xy plane
integration of finite element formula, see Eqs (2.1.23). There are 12 DOFs at each node,
numbering of which is shown in Figure 2.4. The internal layer is an isotropic resin layer
that can be used to simulate the relation between yarns at crossovers. Formulae of
element E2 are derived using the general layer-wise laminate theory by Reddy [64,65].
This theory accounts for a desired degree of approximation of the displacements through
the laminate thickness, allowing for piecewise representation of displacements through
individual laminae and allowing for possible discontinuities in the slopes of the
deflections at the interfaces of two individual laminae [66-70]. Since the displacements
are expressed in this theory as product of functions of variables x and y and functions of
variable z (see Egs (2.1.12)), the 3D integration of elastic energy can be changed into
product of 1D integration and 2D integration. That can reduce calculation greatly in
numerical integration. The formulae of 4-node 2D-isoparametric laminated element are

derived below.

Figure 2.4: Geometry and coordinate of crossover part

[39]
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Assuming that displacement field has following forms
u, (x, Y, Z) = Uj (X, y)CDj (Z)

u (x,y,2)=V,(x,y)®;(z) (j=1234) (2.1.12)
u,(x,y,2) = W,(x,y)®,(2)

where the tensor summation convention is used here and in following derivation.
Repeating indices implies summation. ®j(z) are linear global interpolation functions

associated with the jth node along thickness and are given by

(Dj(z)z{(p(zj—n(z)=(z—zj_1)/(zj—zj_1), z, <251z (2.1.13)

0@ =(-2.)/z~2,),  z;Sz257,

where ¢, are local linear Lagrange interpolation functions associated with node m of

the kth layer.

The strain-displacement relations and constitutive equations are given respectively by
_1 2.1.14
Eij -—E(ui,j“}‘uj'i) ( L )

Oy = Qiuén (2.1.15)
where subscript ‘,” denotes the derivative with respect to x;.
The equilibrium equations are derived using the principle of virtual displacements

J‘GijSSUdv = J.TiSuids - IpﬁiSuidv 4,j=x,y,z) (2.1.16)
Ve Se Ve



Substitution of Eqgs (2.1.14) and (2.1.15) into Eq (2.1.16) leads to

1

J-EGUS(uM. +u;)dv = I’Eﬁuids - Ipﬁiﬁuidv (i,j=x,y,2)(2.1.17)
Ve ' Se Ve

Substituting Eq. (2.1.12) into Eq. (2.1.17) leads to long and complex equations. One
term, as an example, is derived as follows.

J.GXXSuX,de = J.GXXS(M(Dj(Z)jdV = J.Gxx aés—Ué(iy—)(I)j(z)dv
Ve Ve X

aX Ve

Qe

y Zi4l
= J‘aSU—J(X’y.Z( J XX J( )dzldg jaSU (x Y)( J-GXX(I)J(Z)dZ}dQ .[M NiXdQ
aX ‘A t=l 4,

In the above, t denotes the layer number. Z (t=1,2,3) is z coordinate between layers.

To aid in the presentation of the governing equation (2.1.17), the following are defined:

I = i[ZT(MW )dZ}

Z

NI = i Z‘:f(ck@j)dz} (2.1.18)

=t} 4,

R LT )
Nj = Z ILGH a_zjjdz}

=1} 4,

Substituting Eqs. (2.1.12), (2.1.14) and (2.1.15) into Egs. (2.1.17) yields



U, oV oW
—n

N = AL s AL S BILW, YBELY, + AR S
. w W . am Up o OV,
Bf(lsz +Af<lxz a A{dxy a +Ail(lxy a
(2.1.19)
O 10 S \ AR, _ L OW_
Nf(l :Cfdxx a Cf(lyy a Dfdzzw +Df<lszm+Cf<lyz ay +
. L OW. U, . 9V,
Dildszm+Cfdxz aX kixy a +Ci'dxy a
where
3 _ZIH
A= | ,Ezss@j@m)dz}
=1 o
- 3 —ZI-H @
B.lldrs = Z J‘ (Qgisq)) d )dZ
l=1LZs
) 3 | Zisl @
Ci:::s=2{ j(Q&JES . jdz}
t=1{ ¢,
- 3 Ziel d@ dq)
Dif =Z{ J(Qiﬁs " de} (2.1.20)
t=1| 2,

where j,m=1,2.34,and k,L,1,s=X,y, 2

Substitution of Eq (2.1.12) into Eq (2.1.17), followed by integration with respect to the

thickness coordinate z, yields
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[l1"0,80; + 1"V, 8V, + ImW, W, o +

Qe
. 90U, . 9oV, . IOW, [~ . JOW.
j[ NI — NI L NI 4| NSV, +NJZL
o ox 7oy 0z R oy
(2.1.21)
~. . JOW. . 90U, . 9OV,
+| NIOU, + N —L |+ NI —J 4+ NI —1 | QO
! ox Y Oy ¥ oox

= [[tosu;+T,@8V, + T,0,5W kis
Su

where €2, represents the 2D projection of element E2 onto the xy plane shown in Figure

2.4.

Substituting Eq. (2.1.19) into Eq. (2.1.21) yields .

1]
4 4 LT 4 & — W lvrim ks
> [lou; &v, sw 1V, e+ [(6{0, ) [a B0, ho
j=1 m=1Qe jmyx =1 m=1Qe .
"W
(2.1.22)
4 qu) il
=> [l8u; 8V, W HT,®;1d
=l su
T,®,
where
[ A jm jm jm jm jm jm jm jm m )
A XXXX A XXyy B XXZZ B XXyz A XXyz B XXXZ A XXXZ A XXXY A XXXy
jm jm jm jm jm jm jm jm jm
A yyxx A yyyy B yyzz B yyyz A yyyz B yyxz A yyxz A yyxy A yyxy
jm jm jm jm jm jm jm jm jm
C ZZXX C zzyy D zz22 D 22yz C z2yz D ZZXZ C 2ZXZ C zzZXy C zzXy
jm jm jm jm jm jm jm jm jm
C yZXX C yzyy D yzZZ D yzZYZ C yzyz D YZXZ C yZxz C yzxy C yZxy
jm [ _ jm jm jm jm jm jm jm jm jm
[H ] - A yzXX A yzyy B yz72 B yzyz A yzyz B YZXZ A yzXz A yzxy A yzxy
jm jm jm jm jm jm jm jm jm
C XZXX C XZYy D X272z D XZyz C XZyzZ D XZX2Z C XZXZ C XZXy C XZXy
jm jm jm jm jm jm jm jm jm
A XZXX A xzyy B XzzZ B Xzyz A Xzyz B XZXZ A XZXZ A XZXy A XzXy
jm jm jm jm jm jm jm jm jm
A Xyxx A Xyyy B xyzz. B Xyyz A Xyyz B Xyxz A Xyxz A Xyxy A Xyxy
jm jm jm jm jm jm jm jm jm
L A Xyxx A Xyyy B xyzz B Xyyz A Xyyz B XyXz A XyXz A Xyxy A xyxy |
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W.’V.’ J,U.’ b 2
Yooy T ox T oy T ox

— 4 _[oU; av, oW, oW, au; av,T
{UJ}: a ,—a—,
X gy

Since element E2 is a parallel quadrilateral, 2D isoparametric element technique is

applied to produce shape functions. Let

Uj =S (i’n)ug
V, =SV, (i=1234) (2.1.23)
W =S'Emw;

X= Si (é,n)xi

, , (2.1.24)
y=S"(¢&n)y'

where S'(&,m) are shape functions. I is the node number of element E2, j the layer

number. (xi,yi) denotes the coordinates of node I in the coordinate system of element E2.

Let
Vi=lu,v,wT (2.1.25)
=l v 2 02wl wd et T (2.1.26)
Using Eqgs. (2.1.23 to 2.1.26) leads to
{0 }=Is¥a,} (2.1.27)

Vi=[rKa,} (2.1.28)

where



s 9S> 98 9S* 0 0 0 O o o0 0 o0
dx odx oOx ox S’ 98 oS’ oS’ 0 0 0 0
0 0 0 0 3y ay dy dy ¢ ¢ g g
o 0o o o O 0 0 0

st s2 s g+ O O 0 0
0 0 0 0 3S' 39S 9S° s
Sl=l o o o o O 0 0 O 5 9 3y 9
st s s s+ 0 O 0 0 0 0 0 0
o o o o O o0 0o o 9S 098 98 os'

oS' oS* oS’ 9s* ¢ o o o 9x dx dx X

0 0 0 0 ox ox ox ox O 0 0 0 |

S''s* s s 0 0 0 0 0 0 0 O
[R]I=f0 0 0 0 S' s> s s 0 0 0 0
00 0 0 0 0 0 0 S s s s

Finally, Eq. (2.1.22) can be expressed as the following matrix form

P B I MR
! RI'Z|R] RIIZIR] [RT|*[R 2&2+
1 RITIR] RFER] | &
| Symmetric RT [I“4 IR] A,
ek g g e
11 sTiH2 ]S S H2[s sTE2ls Az
” STEes) (STl [s] 5 o[ @12
| Symmetric ST [H‘M IS] A,
[RT{E}
_| (JRT{RH
ol [RT'{E}

[RT{E}



' 0 0
where [F]=0 ¥ 0

0 0 I

Eq. (2.1.29) can be written in short form as

M, s (K B b = o) (2.1.30)

where

—

Symmetric [R

{ Flatfs) sIfaefs] sTE*]s] ST E]s]

And {E}= [Tl(I)j,Tzq)j,Tﬂ)j]T. Ti (I =1, 2, 3) is component of external force. |Jl is the

determinant of 2D Jacobian matrix as follows




In the same way as element El, before assembling to superelement, we need to seek the
transformation matrix to transform Eq.(2.1.30) into an equation in the superelement

coordinate system OX,YZ,. Assume that the direction angles of element coordinates xyz

and superelement coordinates XY Z; can be given by

cos' (X, - X) cos(XyYy) cosTHR,Zy)
[(xij]z cos™'(J,-X,,) cos (Y, Y,) cosT (T, ?SO) (2.1.31)
cos™(Z, X)) cos(Zy- Y,) cosT(Z,Zy)

where X, = (1,0,0), Y, = (0,1,0) and Z_ = (0,0,1) are the unit vectors of superelement

coordinates. X,,¥, and Z, are the unit vectors of element coordinates.

Transformation of node displacements under two coordinate systems can be given by

] o o0 o0
fd,)=Ir,.fd..}= 8 ] [ﬁe ] 8 {d..} (2.132)

o o0 o [1]

where {Jez } represents node displacements in the superelement coordinate systems.

cos(0t;) 0 0 0
0 cos(a; 0 0
)= 2
i 0 0 cos(t;) 0
| 0 0 0 cos(ot;)
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Finally, the FE equation of element E2 under OXsYZs can be given using Eq.(2.1.32) by

(T T (T I e = T ) (2.133)

Before assembly to a superelement, for convenience to assemble, the DOFs of each node
will be grouped together. The DOFs order of Eq.(2.2.22) will be arranged according to

the following
d, =[v', v, v?, v (2.1.34)
where V' =[ul,ub,u},ui,vi,vh, vi,vi,wi,wh, wi, wi]. V'is the DOFs vector of node i.

Element E2 built using the general layer-wise laminate theory is really a 3D laminate
element. It can be thought of as a combination of 3 overlapped 8-node 3D linear eléments
with 3 DOFs at each node, as shown in. Figure 2.5. 4 nodes distributed along the
thickness direction at a corner of the overlapped elements are viewed as a- node of
element E2. In this way, the 3 overlapped elements can form an element E2 with 4

imaging nodes, 12 DOFs at each node.

In this assembly procedure, the use of the imaginary node helps in facilitating the the
assembly of the elements within the plane of the structure (i.e., without having to take

into account the nodes in the third direction during the assembly process).

The above assembly procedure, however, does not produce any economy in the
numerical calculation. This is because in order to determine the stiffness matrix for the

element. full integration for the 3 directions has to be done. In order to reduce the amount
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of numerical integration, layer-wise procedure as proposed by Reddy [64,65] is used. In
this procedure, the shape function is assumed to be a product of two functions: f(x,y) and

g(z). By this separation, the integration effect is reduced significantly.

{uy, vi, wi}

{ug, va, wa) {ur, vi, wi}
{uz, vz, wy}

{u2, v2, wa} {us, v3, w3}

{u3, v3, w3} {ug, v, wWs}

{us, v, w} @

{u4, va, Wa}

{uy, ua, 3, Wy, vy, V2, V3, Ve, Wi, Wa, W, W, )

12 DOFs at one imaging node in element

Figure 2.5: Combination of 3 overlapped 8-node linear elements into E2

2.1.3 Assemblage of elements into superelement

As stated before, element E1 is an 8-node 3D element with 3 DOFs of each node (u,v,w),
and element E2-is a 4-node 2D-isoparametric laminated element with 12 DOFs of each
node. How are they assembled into a superelement? The pseudo element technique is
presented herein for the assemblage of elements. First of all, El element will be
expanded. into a pseudo element like element E2 by artificially adding pseudo DOFs and
.by rearranging all the DOFs of E1. Figure 2.6 shows element E1 in an imaginary box that
looks like element E2. The element in this figure is similar to the element in Figure 2.4 if

the empty space is included. This modified element E1 is called the pseudo element. The

32



nodes of this element are called the pseudo nodes and the degrees of freedom (DOFs) of

this element are called the pseudo DOFs.

Figure 2.7: Assemblage of elements

The following is an example of how to add the pseudo DOFs to form the pseudo node 1
of pseudo element. Refer to equation (2.1.34) for element E2. Along the same sequence
shown in Equation (2.1.34), the sequence of the DOFs at node i of the pseudo element E1
can be written as: {0, 0, uj, us, 0, 0, vy, vs, 0, 0, wy, ws]” where 0 represents pseudo DOF.
Similarly for node II of the pseudo element, the sequence éf DOFs can be written as: [us,

us, 0, 0, va, vg, 0, 0, wa, wg, 0, 0]. According to this way, stiffness matrix of element E1
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is expanded. The elements at rows and columns in expanded stiffness matrix and load
vector of pseudo element corresponding to the pseudo DOFs are placed with zeros. They

have following form.

600 0 0 00 O 0 00 0 0 (0] (0
00 O 0 00 O 0O 00 O 0 -] 0 0
00 k, ky 00 ks ky 00 ky ky |y f,
0 0 ky ky; 00 ks kpp 00 Kigo Kz 0| ug fis
00 O 0 00 O 0 00 O 0o -0 0
00 O 0 00 O 0 00 O 0 --1|0 0
00 ks kyyy 00 kss kyy; 00 kyg kgp - jvip=9fsy¢
0 0 kyy k3 00 ks kg, 000 ko Kygo || Vs fiz
0 0 O 0 00 O 0 00 O 0O -0 0
0 0 O 0 00 O 0 00 O 0 |0 0
00 ke k3 00 ko5 kg 0 0 Kgy Ky | W, fy
0 0 kyy kyy 0 0 kyg; ki 00 Ky Kyor || Ws £y

where details on stiffness matrix of element E1 can be referred in the DOFs order of Eq.

(2.1.4).

As such, this pseudo-element has 4 nodes with 12 DOFs at é_ach node like E2 element.
The pseudo variables will correspond to zero stiffness. Secondly, the superelement can be
thought of as being constructed of one kind of element E2 and the assemblage is
conducted according to the usual assembling method with the element and node number
shown in Figure 2.7. In addition, there is another advantage in this method, replacing 3D
node numbering by 2D node numbering in assemblage of superelements into the TWF
composites. This will greatly reduce the work and the complexity of FE assemblage

procedure.
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After the assemblage, the superelement has 18 nodes with 12 DOFs at each node and has
a sum of 216 DOFs, 36 DOFs of which are pseudo DOFs located at nodes 3,4,9,10,15

and 16.

Note that pseudo DOFs on boundaries of the TWF composites will lead to singularity of
stiffness matrix and must be removed before solution. Pseudo DOFs within the TWF

composites are not a concern because they will disappear automatically after assemblage.

2.1.4 Condensation of DOFs within superelement

In Figure 2.7, nodes 1, 7 and 13 are located within the superelement. The DOFs on these
internal nodes are not coupled with the DOFs of other superelements after assemblage
into the TWF composites. These internal DOFs should be condensed to make the
superelement model more efficient. In this study, the 36 DOFs on internal nodes 1,7 and

. 13 can be eliminated by the static condensation procedure [71] as follows:

Let the equations [K]{d}={f} represent the superelement equations. The DOFs {d} can
be partitioned so that {d}=[d, d.]?, where {d.} are boundary DOFs to be retained and

{dc} are internal DOFs to be eliminated by condensation. Thus [K]{d}={f} becomes

kl’T kl’C dl’ fl'
= (2.1.35)
kCI’ kCC dC fC
The lower partition is solved for {d.}

@ b=tk G Ko - (2.136)
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Next, {d.} is substituted into the upper partition of Egs. (2.1.35). Thus

(e ] =D T 7 [ DA = {8 =T M T (2.1.37)

condensed [k] condensed {f }

The superelement is now treated in standard fashion; that is, the condensed [k] and the
condensed {f} are assembled into the structure, boundary conditions are imposed, and
structural DOFs {D} are computed. Thus {d;} becomes known, and {d.} follows from

Eq. (2.1.36).

Finally, Superelement 1 becomes a 15-node superelement with 12 DOFs of each node.

2.2 Superelement 2

As stated in section 2.1, the yarn part is a twisted lamina and has complex geometric and
material properties. In Superelement 1, as a first approximation, the yarn part is simply
modeled by an 8-node 3D isoparametric element (named E1) with the average modulus

Qi - Obviously, this model has some difference from the real yarn part. First, the

connection between E1 and E2 forms an angle and easily leads to stress concentration.
Second, since there are different material properties at different points on the twisted yarn

part, the average modulus used in Superelement 1 can also result in some errors. Hence it

is necessary to improve Superelement 1 and to develop a new FE model.

In Superelement 2, to take into account the twisted characteristics of the yarn part, a 16-
node 3D isoparametric element (named E11) is developed for the yarn part to improve
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the connection. The material properties at any point of yarn part are formulated by space
projection technique and used in element E11. Hence this model can reflect more truly

the characteristics of the geometry and material properties of the yarn part and give more

accurate results.

2.2.1 Transformation of coordinates at any point on a single yarn part

Since the single yarn part is a twisted unidirectional lamina, its material properties vary at
different points of the yarn part. Hence it is necessary to set up constitutive equations of

the yarn part before deriving FE formulas of element E11.

it 3
el o — -
(a) Yarn part (E11) : (b) Unit cube

Figure 2.8: Projection of unit cube into yarn part

Assume that a single yarn part can be obtained by projection of a unit cube in space O&n
€ into space oxyz, as shown in Figure 2.8. The geometry of the yarn part can be described

using the following equations
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x =x(&n,0)
x =yEmn, 0
z=12(&n,0) (2.2.1)

With the coordinates of 16 nodes shown in Figures 2.9 and the shape functions of Eqs
(2.2.9), above equations are easily set up using Eq. (2.2.7). Naturally, the curved mid-

plane of the yarn part can be formed from projection of the mid-plane &n of the cube ({

=0) and expressed by
x=x(@En,L=0)
y=y(En.{=0)
z=2(EM,C=0) | (2.2.2)

For a lamina, one of its material principal axes is along fiber direction and the other two
lie in the cross section of the lamina perpendicular to the fiber direction. The orientation
of the material principal axes at each point of the lamina is same. For the yarn part, it is a
twisted lamina in the TWF composites and its mid-plane is a trapezoid curved plane.
Hence the orientation of its material principal axes is different at each point of the yarn
part. That leads to the fact that there are different material properties at different points of

the yarn part.

Consider the material principal axes s, t and r of point H on the mid-plane, shown in
Figure 2.8 (a). Axis s coincides with the tangent of the fiber MN at point H. Axis r is
normal to the mid-plane at point H and axis t can be determined from axes s and r, using
the right hand rule. Since the width of the yarn part is basically same, front and rear

planes AA’BB’ and CC’DD’ can be thought of as being parallel. So the fiber MN
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through point H would lie in a cross-section plane EE’FF’ through point H, which is
parallel to two side planes AA’BB’ and CC’DD’. That means that the line mn (Figure 2.8
(b)) mapped into fiber MN (Figure 2.8 (a)) is parallel with natural axis &. Accordingly,

the material principal axes s, t, r at point H on the mid-plane can be given as follows:

Two tangent vectors of mid-plane of the yarn part at point H along natural axes &, 1

a, = (X,g(g = 0),Y,§(C = O),Z,g(c =0))

by = (X, (£ =0),y,({ =0),2,({=0)) (2.23)

Note that a, and Bn are not perpendicular to each other.

Unit vector of axis s : So =17 §=12,
5]
Unit vector of axisr :
B i j k
- _ T - _ = B _
ro—l}—‘, T=a,xb, =la; a; ag
b, by by
Unit vector of axis t :
i ] k

|
If—rl

et

With the material principal axes s, t, r of point H, the direction angles of axes (s, t, r) of

point H and element coordinate axes (x, y, z) can be determined by
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cos'(5, - Xy) cos™' (5, Y,) cosT' (5, Z)
[ocij]z cos™ (1, Xy) cosH(t,+§,) cos”'(T, - Z,)

cos™ (T, -Xy) cosT' (T, F,) cosT'(F, -Z,) (2.2.4)

where unit vectors of axes x,y,z are denoted by
Xo=1 0 0), =0 1 0), z,=(0 0 1)

Strain transformation matrix between these two coordinate systems can be written as

fet=THe,. }

2 2 2 7]
Ci Cpz Ci3 C12C13 CiiCi3 Ciifr2
2 2 2
Ca1 Cy Cas C2Co3 €€ C21C2
2 2 2
[T] _| S €32 Ca3 C3,C33 C3(C33 C31C3y

20,C51  20yCy  2C5Cy;  (CypCa3 +CpCy)  (CoiCa3 +CaCsy)  (€5,C5 +Cp0Cq))
2¢)c5;  20,C5  2€,C35  (CppCyy +C13Cyy)  (€1)C55 +C15C5) (€€, +C5C5))

12€,1Cy;  2€15C0  2€5Cy;  (C1pC3 +C13Cx)  (€4Cp3 +C15C5)  (CCop + C12Cq) |

where ¢; = cos(0y;) .

Finally, 6 by 6 constitutive matrix at point H in element coordinates oxyz can be obtained

as

[Q]=[TT[q]T] (2.2.5)

where [q] is the constitutive matrix of unidirectional lamina made up from the yarn. It
should be noted that [q] remains the same from point to point in the twisted yarn, whereas

[Q] changes from point to point. The determination of [Q] can be done at as many points
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as one wishes. However, for the numerical solution here, the determination of [Q] is done

at the Gauss integration points.

(a) Yarn part (E11) (b) Unit cube

Figure 2.9: Projection of unit cube into yarn part

2.2.2 Element E11

- With [Q] from equation (2.2.5), a 16-node 3D isoparametric element is set up for the

yarn part, as shown in Figure 2.9. Details about its formulas can be seen below.
The displacement field and geometry of the element are given respectively by

u

u 16 i
vie= Y NiENDY v, b= [NKd} (2.2.6)
w i=1 Wi
X 16 X
yr= ) NEnONy, (2.2.7)
z = Z.
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where &, 1 and { are natural coordinates. u;, v;, and w; are nodal displacements of node i

in the element Cartesian coordinate system. The number of nodes is shown in Figure 2.9

(a).

The shape functions in terms of the natural coordinates are given by

T
{d}=[u1,v1,wl,u2,vz,wz, """ sUig, Vigs Wi ]

1 1 1
NEND =2 E+ E-DE-DN-DE+D
N,(E.0) = ——;—(& P ——i—)(&—nm “DC+D)
N, (En.0) = §<é+ DE +%)(&— DM -DE+1)

N,En.0) = —%(& FDE +-;-)(§—%)(n ()

No(E1.0) = —%(5%)(6——;—)(6—1)(77—1)(4—1)
No@En.0) = §<§+l)(§ —%)(5—1)(77 -~ -1)
N (&m0 =—%<5 P +%)(§ ~D =D 1)

1 1
Mo ) = (E+ D+ —;-)(f - D=1 -D

1
Ny (&0 =—g@%x&—%xé—1)<n+1><t;+1)

1 1
N;(En0)= g(i + (- 5)(5 -DH+DE+D

N6<&,n,C)=—§<§+ 1)(§+%)(§—1)(n+ DG +1)
1 1 1
N EMD = (E+DE+DE-M+DE+D
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1, 1 . 1
N =—(E+)E-)E- -
16(EN.0) 6(§+2)(§ 2)(& DM+DEC-1)

' 1
N (E1,0) = —~(E + DE - 2)E- DM+ DE 1)
1 3 . 12 2.2.9)
N0 =€+ DE+IE-DM+DE-D

1
NuEMD) = ——é—(&+ D @(&—%)m )

and (x;, i, zi) are coordinates of node i in the element coordinate system. The coordinates
of node 1, 4, 5, 8,9, 12, 13 and 16 are obtained easily in terms of superelement geometric
parameters, shown in Figures 2.9 (a) and 2.2. The coordinates of node 2, 3, 6, 7, 10,11,14
and 15 can be obtained using following procedure. The coordinates of node 2, 3 should
be chosen so as to make curve 1234 become a segment of the curve of sine function
sin(t) (-n/4< t <m/4) and to make curve 1234 tangent to corresponding lines at the
connection nodes with. element E2, aé shown in Figure 2.10. The coordinates of othér

nodes can be determined in the same way.

Figure 2.10: Connection of E11 and E2

The strain-displacement relations are given by
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Exx ( u,x
8)’)’ V'Y
€ %Y
JPal ) Mo L [BYd} (2.2.10)
Syz V‘Z + W;
€, u, +w
kﬁxy Lu +v )

The equilibrium equaﬁons are derived using the principle of virtual displacements in the

absence of body forces and specified tractions

J%Sgijdv = J.Ti&lids - jpﬁiSU;dV G,j=x,y,2) (2.2.11)
Ve Se Ve

Substitution of Eq. (2.2.6) into Eq.(2.2.10) and (2.2.11) yields,

T,

111 111
{ j j o[N J|d§dnd§) +£ j j J’p Jldidndgl{d}— j[N]r T, bds | (2.2.12)
1-1-1 1-1-1 Se T3
"Eq. (2.2.12) can be written in short form
[Mel]{del}-l- [Kel}{del}: {fel} (2213)

where T is component of external force. |J| is the determinant of Jacobian matrix as

before.

Before assembling into superelement, Eq.(2.2.13) should also be transformed into the
equation in superelement coordinate system OX Y Z;. Assume that the direction angles

of element and superelement coordinate systems can be given by



cos™ (X, - Xyp)
[ocij]= cos (7, - X,) cos” (T
cos(Z, - X)

(2.2.14)

where 5(50 = (1,0,0),\_{50 =(0,1,0) and Zso =(0,0,1) are the unit vectors of superelement

coordinates. X,,¥, and Z, are the unit vectors of element coordinates.

Transformation of node displacements in two coordinate systems is given by
{del} = [Tel]{c_lel}z dlagon[[C] 8x48{ae1} (2215)

where {Hel} represents node displacements under superelement coordinate systems.

cos(cy,;) cos(0y,) cos(ay;)
[C]=|cos(a,) cos(a,,) cos(oy)
cos(0ty) €os(0ly;)  €os(Qy;)

Using Eq. (2.2.15), the FE equation of element E11 under superelement coordinate

system can be given by

1z, T M M p O T T e = [ T (2.2.15)

2.2.3 Assemblage of elements into superelement and DOFs condensation

Six 16-node 3D isoparametric elements Ell and three 4-node 2D-isoparametric
laminated elements E2 will be assembled to a superelement (Superelement 2) by the

pseudo element technique. As we know, element E2 has 4 nodes, each of which has 12
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DOFs, arranged in following order, [u;, up, us, Ug, Vi, V2, V3, V4, Wi, Wa, W3, Ws]. Element
E11 has 16 nodes, each of which has 3 DOFs in following order, [u,;, v;, w;] for node 1.
We shall now apply the concept of the pseudo element technique. The DOFs of E11 will
be arranged in new order to make El1 be 8-node pseudo element, éach node has 12
DOFs, 6 DOFs of which are pseudo DOFs that are added in the same order as the node
numbering in element E2. Of the 8 nodes, 4 are at the corners and the other 4 are on the
sides of the element. For example, in element E11, node 1 has following DOFs, [0, O, uy,
ug, 0, 0, vy, vo, 0, 0, w1, wo]. For node 4, we have [ug, uiz, 0, 0, v4, vi2, 0, 0, wy, wyo, 0, O].
For node 5, we have [us, u;3, 0, 0, vs, vi3, 0, 0, ws, w3, 0, 0], and for node 8, we have [0,
0, ug, ugs, 0, 0, vg, vis, 0, 0, wg, wig] etc. So the stiffness matrix of element E11 is
expanded from 48 by 48 matrix to 96 by 96 matrix. Therefore, in assemblage of
superelement, node numbering can be performed in 2 dimensions and elements E11 and

E2 can be easily assembled into a superelement.

After assemblage, this superelement has 42 nodes and 504 DOFs, shown in Figure 2.11.
However éome nodes or DOFs can be removed by coﬁdensation technique. Nodes within
superelement, 1, 2, 3, 15, 16, 17, 29, 30, 31, and nodes on boundary of element E11, 5, 6,
9, 10, 13, 14, 19, 20, 23, 24, 27, 28, 33, 34, 37, 38, 41, 42, have nothing to do with
connection with other elements. Therefore, above 27 nodes or 324 DOFs were eliminated
by the static condensation procedure as stated before. Finally, a superelement
Superelement 2 is constructed with 15 nodes or 180 DOFs. That will reduce calculation

greatly in analysis of the TWF composites.
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Figure2.11: Assemblage of Superelement 2

2.3 Conclusions

Two finite element models (Superelement 1 and Superelement 2) have been developed
for prediction of mechanical behavior of TWF composites. Superelement 1 is a 15-node
“superelement constructed of six identical 8-node 3D isoparametric elements and three
identical 4-node 2D-isoparametric laminate elements. Superelement 2 is similar to the
first element except that this element takes into account the geometric and material
properties of the twisted yarns. The assembly is done by the pseudo element technique
suggested herein and static condensation procedure. The availability of these elements
allows for the analysis of complex structures of the triaxial fabric. Superelement 1 can be
used for the vibration analysis with some economy of computer space and time.
Superelement 2 can be used for detailed stress analysis and for strength prediction. Though

these two models are developed for the TWF composites, the ideas of their construction
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can be applicable for analytical models and other kinds of elements used for other kinds
of textile composites. The core of these ideas is the space projection technique, i.e., any
complex geometric object can be formed from simply geometric object through the
projection of one space to another space. For the TWF composites, the twisted yarn can
be formed using the space projection from simple unidirectional lamina. Also the
complex constitutive relation of the yarn can be obtained easily in same way. Their
application provides the ability to analyze the textile composites with complex geometric

and constitutive relation.

Valuation and application of Superelement 1 and Superelement 2 in mechanical behavior

of the TWF composites will be presented in a subsequent chapter.
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Chapter 3

Verification of the Finite Element Models and

Elastic Constants of TWF Composites

Two elaborate finite element models are developed for the TWF composites and these are
presented in Chapter 1. This chapter presents examples using the finite elements
developed and experimental work to obtain results for comparison purposes. Some
examples are provided for the verification of the accuracy and usefulness of these finite
elements. One example deals with the TWF specimens subjected to loading along an
axial yarn direction. The other example deals with other TWF specimens subjected to
loading transverse to the axial yarn direction. Effects of the width and length of ihe
sample are examined. The experimental work itself required special consideration. Non-
contact laser extensometer method was used for the deformation measurement. The

significance and meaning of the results are discussed.

3.1 Experimental Work

Most of the experimental work [72] was carried out by Mr. Paul Ouellette. It is presented

here for comparison and research integration. Simple sheets of TWF composites (fabric
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and cured resin) were supplied from YLA Corporation. Table 3.1 lists the geometric
parameters of the unit cell measured from the microscopic photographs of the TWF
composites. Table 3.2 gives the fiber and matrix properties for the fiber volume fraction
Vs = 0.695. Table 3.3 shows the effective elastic properties of the impregnated yarn

obtained by using the composite Strength-Of-Materials approach [73].

Table 3.1: Geometric parameters of the TWF

(measured on the samples supplied from YLA Corporation)

Geometric parameters Values

Yarn thickness ty, (mm) 0.07

Resin thickness t, (mm) 0.001

Yarn width W1 (mm) 0.85

Larger bridging distance W2 (mm) 1.10
*Smaller Bridging distance W3 (mm) 0.1185
*Unit cell’s height W4 (mm) | 2.755
*Unit cell’s width W5 (mm) 3.182
Fabric areal density (g/cm2) | 0.0158

* The starred quantity can be calculated using the non-starred quantities, which are

measured.
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Table 3.2: Elastic properties of fibers & matrix

(provided from the manufacturer specification sheet)

Material EL(GPa) Ep(GPa) Grr(GPa) G (GPa) ViT

(gm/cm’)
Carbon Fiber 500.0 40.0 24.0 14.3 0.26 2.10
Epoxy Resin 35 3.5 1.3 13 0.35 1.17
Table 3.3: Elastic properties of the impregnated yarn of TWF composites
. EL E’r GL’I‘ - p
Material (GPa) (GPa) (GPa) VLT \sui Vf (gm/cm3)
carbon/epoxy  338.57 12.40 5.61 0.287 0.437 0.695 1.8164

Tensile tests were performed. A total of thirteen specimens were cut from sheets of the

TWFs which were square with dimension of about 300 mm by 300 mm. Specimens were

nominally 300mm by 50mm, the cut being made through the centers of the hexagonal

openings. Aluminum alloy gripping tabs, two at each end, were bonded to the specimens.

The tests are all quasi-static, uniaxial tensile tests (loading speed is 0.2 mm/minute). The
specimens were held using hydraulic wedge grip, and pulled in tension in the direction of

the specimen (long) neutral axis. Figure 3.1 shows a photograph of the specimen in the

testing machine.
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Figure 3.1: Photograph of the TWF specimen

One of the challenges in the experimental determination of the elastic properties of the
TWF materials is the measurement of strains. Since the material contains holes that are
larger than the fiber yarns, placing electrical strain gages will only allow the
determination of very local strain values and these are not representative of the
“averaged” properties of the material. To overcome this problem a non-contact
measurement using laser extensometer was used. The laser extensometer used is an MTS

L.X300. For this, a gage length needs to be set up. As shown in Figure 3.1, two pieces of
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reflective tape are positioned on the specimen at a convenient distance apart (from 8mm
to 81lmm). The laser extensometer scans the tape separation distance 100 times per
second. The laser extensometer can be set up to scan along different directions. To
identify the different relevant directions related to the measurement using laser

extensometer, the following angles are defined:

e 0 is the angle between the 0° yarn line and load line.

e (. is the angle between laser scan line and load line.

e [3is the angle between another scan line and load line.

Figure 3.2 shows the definition of these angles.

Figure 3.2: Definition of different orientations for laser scan
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During the tensile tests, the separation between the reflective tapes and applied loads
were recorded and stored on disks. The strain is calculated by dividing the change in tape

separation by the original distance between the tapes.

The stress is determined by dividing the load by the cross section area. The cross section
area is obtained as the product of width and thickness. Due to the ondulation of the TWF
there can be many cross section areas. This is due to the fact that at some location, the
thickness consists of only one yarn thickness while at other locations, the thickness
consists of two yarn thicknesses. Therefore there can be four different thicknesses: those
corresponding to one yarn thickness, two yarn thicknesses, the average (obtained by the
weighted average of the one-yarn thickness and two-yarn thickness) and the nominal
(obtained by measuring the TWF sheet using a micrometer). The width is obtained by
direct measurement on the sample using a micrometer. The nominal cross section area

based on measured thickness ar_ld measured width is used here.

Two-different types of test were carried out. In one type, the loading direction is along
the direction of one yarn type (this is referred to as the 0° yarn) i.e. © = 0° In these
specimens, there are eighteen 0° yams- (or tows). The properties obtained using this
method are called the longitudinal properties. In the other type, the loading direction is
transverse to the 0° yarns, i.e. 8 = 90°. The properties obtained are called the transverse

properties.

Tensile moduli were determined from the slope of the linear portion of the stress-strain
curve. It should be noted that strain-stress curve is not linear. Figure 3.3 shows a typical
strain-stress curve for the TWF composites when loading is along the longitudinal
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direction. This curve was obtained from specimen C4 (Table 3.4). The initial slope is
smaller than the slope at larger stress. This can be explained by the straightening of the
ondulation of the yarns. The yarns become stiffer as they are more and more straightened.

For comparison with finite element results, the initial modulus is used.

TWF C4 (MODULUS)

6.00E+08 -
5.00E+08 -
4.00E+08

3.00E+08 +

STRESS (Pa)

2.00E+08 -+ y =1.13E+11x - 3.11E+07

2 — -
1.00E+08 + R* = 9.89E-01

0.00E+00 L L L L § )
ooEHoY T T T d

_g'%h+08 ( 0.001 0.002  0.003 0.004 0.005 0.006

STRAI

Figure 3.3: Non-linear stress-strain behavior of the TWF in the longitudinal direction

Longitudinal properties

Table 3.4 shows the longitudinal Young’s moduli of the TWF specimens. The measured
modulus values of various specimens distribute between 27.87 GPa and 37.87 GPa.

Average modulus is 32.24 GPa. The numbers indicated above are for the initial portion of

the modulus value.
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Table 3.4: Measured longitudinal Young’s moduli of the TWF specimens

Specimen# Strength(GPa) | Ultimate Strain (%) | Modulus (GPa)
B2 2.577 0.58 33.05
B4 2.581 0.60 30.92
C1 2.463 N.A. N.A.
C2 2.610 0.59 34.89
C3 2.364 0.57 28.42
C4 2.184 0.52 3121
D1 1.868 N.A. N.A.
D2 2.169 0.51 33.38
D3 2.434 0.61 27.87
D4 2419 ' 0.66 35.00
El 2.607 0.58 33.71
Fl 2.489 0.54 37.87
G1 2.360 0.60 28.27

Average 2.394 » 0.58 32.24
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Table 3.5: TWF test transverse to zero degree yarn

(50 mm wide unless otherwise noted)

Specimen# Strength (Pa) | Ultimate Strain (%) | Modulus (GPa)
B1 1.066E+08 5.135E-03 2.29E+01
B3 9.616E+07 4.411E-03 2.08E+01
B5 1.143E+08 5.415E-03 2.25E+01
B6 1.097E+08 6.284E-03 1.96E+01
B7 1.175E+08 6.446E-03 1.66E+01
Group Ave. 1.089E+08 5.538E-03 2.05E+01
Group Std. Dev. 8.233E+06 8.409E-04 2.54E+00
Group C.O.V. (%) 7.56 15.18 12.42
E3* 7.743E+07 N.A. N.A.
E4* 1..172E+08 5.233E-03 2.33E+01
ES* 1.071E+08 5.175E-03 2.34E+01
Group Ave. 1.006E+08 5.204E-03 2.34E+01
Group Std. Dev. 2.068E+07 4.076E-05 7.07E-02
Group C.0.V. (%) 20.56 0.78 0.3

* Nominal width of 43 mm.

Transverse properties

Table 3.5 shows the results from the transverse tensile tests. Two types of specimens
were used. Specimens of series B have width of 50 mm while specimens of series E have

width of 43 mm. Specimens with larger width show smaller modulus (20.5 GPa) as
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compared to specimens with smaller width (23.4 GPa). This can be explained by the fact
that the stiffness is provided by the off-axis yarns when these yarns are connected to the
grips (Figure 3.9). This distance between two connective yarns is about 3.18 mm (Figure
3.7). Increasing the width of specimen from 43 mm to 50 mm increases the width by 7
mm. The addition of 2 more 0° yarns requires an increase in width of 6 .36 mm. As such
an addition al 0.64 mm (7-6.36=0.64 mm) does not add any more off-axis yarns. This
extra 0.64 mm increase in width effectively decreases the modulus due to the process of

calculation.

In the above explanation, the length of the specimen is kept fixed. If the length is
variable, then this should also have an effect on the modulus of the specimen. This is
because for a certain width, shorter specimens would have more clamped yarns (a
clamped yarn is a yarn that has both ends clamped by the grips) than longer specimens.
As such, short specimens would tend to have larger stiffness. Since both width and length
may have effects on the modulus, the proper parameter may be the aspect ratio (length
over width) of the specimen. The effect of this aspect ratio can be studied more easily

using finite element modeling to be presented in the subsequent section.

Poisson’s ratio measurement

In general, we define the ratio Pe.op = €a/ €p , Where € is strain, o is the direction along
which a first strain is measured, and B is the direction along which a second strain is

measured. Let the angles be measured counter clockwise from the (vertical) load
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direction. Assume a yarn makes an angle 6 with the (vertical) loading direction. (See

Figure 3.4) Then the other two yarns make angles of (0 +/- 60) degrees with the (vertical)

loading direction.

6=0
LOAD S—— LOAD
0° -
\
N
a=9 T T
B=0

Figure 3.4: The general test configuration for Poisson’s ratio.

(The configuration on the right shows the particular case of interest used to find the.
- Poisson’s ratio of the Triax fabric when the fabric is loaded in the direction of a 0° tow,
i.e., when 6 = 0°. So far, only tests with 6 = 0° have been conducted)

Keeping 0 fixed, we can measure a series of ratios, pewp , describing the TWEF
deformation. We can also vary 6 producing a series of ratios for each TWF test
orientation 6. If a tensile load is applied to the specimen, with o = 90° and B = 0° we may

identify the ratio pggoo Wwith the Poisson's ratio vg for the specific orientation, 6, of the

TWE.

We can only measure strain in a single direction during a test. Therefore, we must relate
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the strains that are used to compute the ratio using the stresses (i.e., the loads divided by

the nominal TWF cross-sectional area) over many independent tests. Since we want an
overall view of the behavior over an elastic range, we use the slopes (as shown below),

where the subscript "1" refers to the loading direction.

Eg o = Slope of 0y vs € (this is not a usual modulus, but rather merely the slope of o vs
€q) Eop = Slope of ©)vs €g (this is not a usual modulus, but rather merely the slope of

o1 Vs €p) Po.wp = - Eo/€p = [(OVEeq) / (C1 /Egp)] = Eo p/Eoa

For 8 = 0°, o = 90°, and B = 0°, we can use specimens C4 and C5 as examples. Both were
tested by loading parallel to the 0° yarns. C4 was tested monotonically to rupture, with
the strain measured in the loading direction, i.e., § = 0°. CS was tested monotonically to
rupture, with the strain measured transverse to the loading direction, i.e., 0. = 90°. Figures
3.5 and 3.6 show the test results. A number of strain ratios (in this particular test
configuration, we may say Poisson’s ratios) can be calculated depending on where the ©
vs € slopes are measured. If we measure the slope for all the data (plot at top right in
Figure 3.5) we have, Eoo = 44.4 GPa from specimen C4. If we measure the slope not
going through the origin (plot at bottom right in Figure 3.6) we have Eqgo = -80.54 GPa
from specimen C35; thus we report a Poisson’s ratio of pogon =- 44.4/(-80.54) = 0.55

(which may be identified with Poisson's ratio for the TWF in test orientation 6 = 0%). If

we use other slope values, the Poisson’s ratio would be different.

Recall that o, is the load (in the vertical direction) divided by the cross-sectional area of

the specimen. The cross-sectional area can be the net area or the nominal area or some
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other measure of the area, but the area chosen must be consistent and explicitly specified

if comparisons to other reported material properties are to be made.
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1500 | 200E+08 1 ¥ =4.44E+10x - 1.226407 Lo
- e FP = 9.89E-01 : |
z T 1505408 +
£ 000 | g f L
o @ 1p0E.08 | l ;
S 500+ g .
- £ 500E:07 | |
0 K ; t | | ;
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Figure 3.5: Test results for specimen C4 tested monotonically to rupture

(strain measured in loading direction)

61
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Figure 3.6: Test results for specimen CS5 tested monotonically to rupture

(strain measured transverse to loading direction)

3.2 Finite Element Analysis

3.2.1 Comparison of numerical results with experiments

In Chapter 1, there were two finite elements developed for analysis of the TWF

composites: superelement 1 and superelement 2. In superelement 1, the connection

between two crossover parts is modeled as a straight segment with no twist.

Superelement 2 is developed based on superelement 1 with improving element

connection and fully considering characteristics of geometric and material properties of
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twisted composite yarns. Superelement 1 can be used for the vibration analysis with some
economy of computer space and time. Superelement 2 is better for detailed stress analysis
and for strength prediction. In this section, these two superelements are evaluated by
modeling the experimental specimens. The schematic of the superelements is shown in
Figure 3.7. Superelements are used to model the two loading cases: case 1 and case 2.

Case 1 is for longitudinal loading and case 2 is for transverse loading (Figure 3.8).

=0.85 mm
W4=2.755 mm

NAVATN

WS5=3.182 mm

W1

Figure 3.7: Schematic of Superelement 2
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Figure 3.8: Two cases of loading
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Figure 3.9: Finite element model for case 1
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Figure 3.9 shows the FE model for the model in case 1. This FE model has 26
superelements along X direction (71.6 mm long) and 6 superelements along Y direction

(22.65 mm wide). These FE model dimensions are taken much smaller than the actual
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specimens (300 mm long and 50 mm wide) because of the computer memory limit.
However, this FE model can still model the experimental specimens well, because it was
found that the Young’s moduli and Poisson’s ratios calculated using the FE model are not
sensitive to the size of the FE model as long as the aspect ratio of the specimen is greater

than 3.5. This will be presented in later sections.

Accordingly the FE model of TWF panel was selected with length L. and width W.
Length L and width W refer to the dimension of the panel in X and Y directions
respectively. As shown in Figure 3.9, at region B of the FE model, the deflection in Z
direction w of all the nodes is fixed (w = 0) and the displacement u in X direction is
assigned a value of -1 mm to simulate displacement tension load. At region D,
displacements w and u of all nodes are fixed (w = u = 0). Displacement v in Y direction
at node 1 is fixed (v = 0) so as to remove the rigid body motion of the FE model. Note
that due to the jagged nature of' the elements, there is no clear line where loads are
applied or where the constraints are fixed. Rather, there is a region within which all
nodes would be subject to the samé condition of loading or fixity. Fdr example, within
region B, all nodes that fall within this region would be subject to the same uniform
displacement as mentioned above. Young’s modulus and Poisson’s ratio of the TWF

were determined respectively by

where F is tension force loaded at region B of the panel in X direction, h is the nominal

thickness, W is the nominal width of the TWF panel and ¢; is the strain along X
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direction. Subscripts 1 and 2 denote the X and Y direction respectively. In calculation,
the effective elastic properties of yarns in Table 3.3 were used. Force F is obtained by
adding reaction forces in X direction at all nodes at region B. Strain €; = 1 mm/L and &, =

Av/W, where Av is width change at a certain section of the panel.

For case 2, the FE model is shown in Figure 3.10. The FE model has 6 superelements
along X direction and 26 superelements along Y direction. As shown in Figure 3.9, at
region A of the FE model, the deflection w of all the nodes is.fixed (w = 0) and the
displacement v in Y direction is assigned a value of -1 mm to simulate displacement
tension load. At region C, displacements w and v of all nodes are fixed (w = v = 0).
Displacement u in X direction at node 1 is fixed (u = 0) so as to remove the rigid body
motion of the FE model. Young’s modulus and Poisson’s ratio of the TWF were

determined respectively by

E _F/(Lh) v '=_s_1
2 82 ’ 21 82

where F is tension force loaded at region A of the panel in Y direction. Force F is
obtained by adding reaction forces in Y direction at all nodes at region A. Strain &; = 1

mn/L and €, = Au/L, where Au is length change at a certain section of the panel.
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Figure 3.10: Finite element model for case 2
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Table 3.6: Predicted and measured TWF properties

Modulus E, Poisson’s ratio vy, Modulus E, Poisson’s ratio vy,
(GPa) (Gpa)
Experiment 32.24 0.55 20.5 -
Standard deviation 5.63 - 2.54 -
Se2 30.01 0.58 26.55 0.56
Sel 36.88 0.51 33.61 0.46

Note: Se denotes short of superelement.

The Young’s modulus and Poison’s ratio evaluated from the FE model prediction and

from experimental measurement are summarized in Table 3.6. Considering the

experimental values in Table 3.4, for Young’s modulus E1 in 0° yarn direction, the

modulus value from Superelement 2 and Superelement 1 fall within the range of scatter

of experiment values. Superelement 1 gives the value close to the upper bound of the

range of the experimental values. Superelement 2 gives the value close to the average of

the experimental values. For transverse modulus E,, the modulus value from

Superelement 2 is closer to the average of the experimental values than Superelement 1.’

For Poisson’s ratio vj, the ratio value from Superelement 2 closer to the experiment than

Superelement 1. The agreement is within 6%. The above shows that Superelement 2 is

better suited for modeling the behavior of the TWF panel.
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3.2.2 Determination of the deformations

The detailed deformation of the TWF structure is complex. Figure 3.11 shows the
deformation of a sample loaded in the x direction and Figure 3.12 shows the deformation

of the sample loaded in the y direction.

Figure 3.11: Deformation of sample when loaded along the tow direction
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Figure 3.12: Deformation of sample when loaded transverse to the direction of a yarn

In Figure 3.11, the sample is fixed at region D and loaded at region B. Loading is
therefore along the direction of one set of yarns. The thin lines represent the undeformed
configuration and the thick lines represent the deformed configuration. First examine the
yarns along the loading direction. These yarns extend along the direction DB. They also

shift from outside toward the inside of the sample. Note that this lateral contraction is not
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symmetrical. If the orientation of the sample is vertical with D at the bottom, the
contraction of the left 'yarns is more than that of the yarns on the right hand side. This is
due to the unsymmetrical geometry of the yarns included in the sample. Width effect is

therefore can be important. This topic is discussed in a section below.

Considering now the yarns that make angles of +60° with the loading direction. For
clarity of terminology, if the configuration of the sample is such at that DB is vertical
-with D at the bottom, we call the yarns as one o’clock and eleven o’clock yarns. The one
o’clock yarns rotate in a counterclockwise direction whereas the eleven o’clock yarns
rotate in a clockwise direction. This rotation can make the contraction of the sample to be
a function of the space variable along the length of the sample. The determination of the

Poisson ratio therefore would depend on the space variable.

_ Table 3.7: Poisson ratios at different sections along the length of the sample.

Section location X (m) Poisson’s ratio V12
1.0407°-3 0.49695
4.2222°-3 0.57174
7.4037°-3 0.58832
1.0585e-2 0.55448
1.3767e-2 0.37103
Average 0.51650
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Table 3.8: Poisson ratios at different sections along the width of the sample.

Section location Y (m) Poisson’s ratio vo;

0 0.33094
-2.7553%3 0.49346
-5.5105%-3 0.55127
-8.2658°%-3 0.54440
-1.1021e-2 0.47693
-1.3776e-2 0.34852
Average 0.45759

Considering the above, the Poisson ratios at different sections along the length of the -
sample were determined. They are shown in Table 3.7. The average Poisson ratio is

obtained from the above values to be 0.52.

~ In Figure 3.12, the sample is fixed in the C region and loaded in the A region. Again the
thin lines represent the undeformed configuration and the thick lines represent the
deformed configuration. If AC is along the vertical direction, it can be seen that there is
bending in the horizontal yarns, particularly those close to the fixed end. Similar rotations
of the off-axis yarns are also observed. It is clear that the width and length of the sample
have influence on its deformation. The values of Poisson ratios at different sections along

the length of the sample are shown in Table 3.8. The average value of the Poisson ratio is

0.46.
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3.2.3 Effects of panel aspect ratio on elastic constants

The TWF is a special woven structure with holes. As such, the constraint end and loaded
end of a sample made of this méterial may not have effect on all the yarns of the sample.
For example, when loading is along one set of yarns (for example the 0° yarns), not all
ends of the off-axis yarns are clamped. Some off-axis yarns may ride along without any
of their ends clamped by either the constraint region or the loaded region. Some other
yarns may have one end clamped and the other end not clamped. Some yarns may have
both their ends clamped. As such, the values of the modulus and Poisson’s ratio obtained
from experiments and finite element models may depend strongly on the aspect ratio of
the sample. This effect needs to be investigated before meaningful results can be
obtained. In the following, the effect of length and width of the sample for the two

loading cases 1 and 2 will be examined.

(1) Effects of panel length on elastic constants

In this section we will investigate the effects of panel length on elastic constants. Firstly
consider case 1. Four panels are selected with 6 by 6, 10 by 6, 20 by 6 and 26 by 6,
respectively. Table 3.9 gives the effects of panel length (in X direction) on Young’s
modulus E; and Poisson’s ratio vj;: These results are plotted in Figure 3.13. It can be
seen that as panel length increases, the modulus E; increases and approach an asymptotic
value. As the length changes from 6 unit cells to 26 unit cells, modulus E| changes from
29.85 GPa to 30 GPa, which is 0.5%. This can be considered negligible for this structure.
Therefore, it can be said that the modulus E; is not sensitive to panel length or boundary

location. However, the effect on Poisson’s ratio vy, (average) is more significant.
g
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Poisson’s ratios vi, obtained at various locations along X direction are shown in Figures
3.14, 3.15, 3.16 and 3.17 for the panel of 6 by 6, 10 by 6, 20 by 6 and 26 by 6,
respectively. At the regions close to load region B and boundary region D, since the
yarns are directly loaded or restrained, the Poisson’s ratio values are smaller. At the
region where the yarns are not loaded nor restrained, the Poisson’s ratio vi; can be
considered more correct. It can be seen that for a sample width of 6 unit cells, the panel
length has to be at least 10 unit cells to provide sufficient gage area for a meaningful

Poisson’s ratio. The calculated Poisson’s ratio v, can be taken to be 0.58.

Table 3.9: Effects of panel length on modulus E; and Poisson’s ratio vy, in case 1

Panel size Aspect ratio Young’s modulus Poisson’s ratio vy Poisson’s ratio Vs
(L/W) E; (GPa) (average)
X by 6 ! g
6 1.0000 29.870 0.59 0.52
10 1.6667 29.948 0.59 0.55
20 3.3333 30.003 0.58 0.56
26 4.3333 30.014 0.58 0.57
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Now consider loading case 2. Four panels with 6 by 6 (6 unit cells along X direction by 6
unit cells along Y direction), 6 by 10, 6 by 20, and 6 by 26 are taken respectively. The
effects of panel length (in Y direction) on the modulus E; and the ratio v»; are given in
Table 3.10. Figure 3.18 shows the effects of panel length on modulus E,. For a change of
sample length from 6 unit cells to 26 unit-cells, the rhodulus E; changes from 28.3 GPa to
26.5 GPa or 7 %. Figures 3.19, 3.20, 3.21 and 3.22 show the change of Poisson’s ratios
vy along Y direction for 6 by 6, 6 by 10, 6 by 20, and 6 by 26 panel respectively.
Different from case 1, the modulus E; is sensitive to panel length. It could be seen that
for a sample width of 6 unit cells, the panel length has to be at least 10 unit cells to
provide sufficient gage area for a meaningful Poisson’s ratio. The calculated Poisson’s

ratio v»; can be taken to be 0.56. It is interesting to note that there is no significant
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difference between vy, (0.58) and vy (0.56) even though there is some difference

between E; (30.01 GPa) and E, (26.55 GPa).

Table 3.10: Effects of panel length on modulus E; and Poisson’s ratio v; in case 2

Panel size Aspect ratio Young’s modulus Poisson’s ratio vy Poisson’s ratio Vo
6 by X (W) E; (GPa) (average)
6 1.0000 28.309 0.55 0.46
10 1.6667 27.322 0.58 0.50
20 3.3333 26.687 0.57 0.52
26 4.3333 26.551 0.56 0.53
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Figure 3.18: Effects of panel length (Y direction) on Modulus E2
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(2) Effects of panel width on elastic constants

In this section, consider the TWF panels of certain length with various widths and study
the effects of panel width on elastic constants. Also consider two loading cases. For case
1, the TWF panels have the dimensions of 6 unit cells in length and X (X =4,6,8,---,24)

unit cells in width. For case 2, the panels have X (X = 4,6,8,---,22) unit cells in width and

6 unit cells in length.

Table 3.11: Effect of width on modulus E; and Poisson’s ratio v;; in case 1

Panel size Aspect ratio (L/W) Young’s modulus E; Poisson’s ratio Vi,
6 by X (Gpa)
4 1.5000 29.262 0.5742
6 1.0000 29.870 0.5883
8 0.7500 30.205 0.5711
10 0.6000 30.415 0.5584
12 0.5000 30.558 0.5505
14 0.4286 30.661 . 0.5453
18 0.3333 30.799 0.5388
20 0.3000 30.847 0.5367
22 0.2727 30.887 0.5350
24 0.2500 30.920 0.5336
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First consider case 1. The change of Young’s modulus E; and Poison’s ratio vi; as a
result of panel width is given in Table 3.11 and plotted in Figures 3.23 and 3.24. It can be
seen that as panel width becomes larger, E; increases and appfoaches a value of 32.2
GPa. For Poisson’s ratio, vi» reaches maximum at 6 by 6 and then decreases and

approaches a value of 0.53.

Secondly consider case 2. The effect of panel width on elastic constants E; and vy, in
case 2 is shown in Table 3.12 and plotted in Figures 3.25 and 3.26. Same as in.case 1, as
the panel width increases, E; increases and approaches a value of 32.2 GPa. Vi

decreases monotonously and approaches a value of 0.5.

Table 3.12: Effect of width on modulus E; and Poisson’s ratio v, in case 2

Panel size Aspect ratio (L/W) Young’s modulus E; Poisson’s ratio Vo)
Xbyb (Gpa)
4 1.5000 25.710 0.5558
6 1.0000 28.309 0.5513
8 0.7500 29.640 0.5382
10 0.6000 30.447 0.5279
12 0.5000 30.988 0.5206
14 0.4286 31.374 0.5154
18 0.3333 31.889 0.5085
20 0.3000 32.070 0.5061
22 0.2727 32.217 0.5042
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Figures 3.13 and 3.18 show that by keeping the width the same and increasing the length,
the modulus E; is not affected while E, decreases. Figures 323 and 3.25 show that by
keeping the sample length the same and increasing the width, both moduli E, and E
increase. This is because increasing the width would increase the number of clamped

yarns, particularly the off-axis yarns.

For a fixed width of 6 unit cells, when the length increases from 6 to 24 unit cells, the
aspect ratio L/W increases from 1 to 4. For a fixed length of 6 unit cells, when the width
increases from 6 to 24 unit cells, the aspect ratio L/W decreases from 1 to %4. The
variations of E; and v, with aspect ratio are shown in Figures 3.27 and 3.28. Variation of
E, and v,; with aspect ratio are shown in Figures 3.29 and 3.30. Figures 3.27 to 3.30
show a kink in the curve and there are two property values for the same aspect ratio.
These results are shown here to illustrate that there can be anomalies in the results for
samples that are too short. When the sample is too short, the behavior is not
representative and these samples should be avoided. The results obtained show that for

meaningful results, the aspect ratio L/W should be at least 3.5.
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3.2.4 Effects of panel size on elastic constants

Figure 3.7 shows that the size of a unit cell (superelement) is slightly more than 3 mm. A
sample of width of 6 unit cells and length of 26 unit cells is about 22.65 mm by 71.6 mm.
This size is small compared to actual dimension of a test specimen (about 50 mm by 300
mm). The effect of the size of sample on the elastic constant results is discussed here.
TWEF panels of certain aspect ratio with various sizes are investigated for two loading
cases. For case 1, three panels of 26 by 6, 34 by 8, and 42 by 10 are chosen with close
aspect ratios and their aspect ratios are 4.33, 4.25, and 4.2 respectively. For case 2, three
panels of 6 by 26, 8 by 34, and 10 by 42 are selected and they have close aspect ratios,
which are 4.33, 4.25, and 4.2 respectively. Table 3.13 shows the effects of panel size on
Young’s modulus E; and Poisson’s ratio vy, in case 1. Table 3.14 shows the effects of
panel size on Young’s modulus E, and Poisson’s ratio vy; in case 2. It is observed from
Tables 3.13 and 3.14 that panel size has almos_t no effect on Poisson’s ratios, provided
that the size is at least 6 unit cells in width and the aspect ratio is more than 3.5. Panel
size has more effect on the modulus E; than on the modulus E;, but this effect is little.

That means that the elastic properties are not sensitive to panel size.
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Table 3.13: Effects of panel size on Young’s modulus E; and Poisson’s ratio v, in case 1

Panel size Aspect ratio Young’s modulus Poisson’s ratio vy
(L/W) E, (GPa)
26 by 6 4.33 30.010 0.58
34 by 8 4.25 30.259 0.59
42 by 10 4.20 30.403 0.59

Table 3.14: Effects of panel size on Young’s modulus E; and Poisson’s ratio v»; in case 2

Panel size Aspect ratio Young’s modulus Poisson’s ratio vo;
(L/W) E, (GPa)
6 by 26 4.33 26.550 0.56
8 by 34 425 27.671 0.57
10 by 42 4.20 28.320 0.58

3.2.5 Discussions

Boundary constraints affect the deformations of TWF panels in extension. At the area
close to the boundaries, the transverse deformations of panels are resisted due to w =0 at
the boundaries. This effect is called the boundary resistance effect. This resistance makes
Poisson’s ratios at this area smaller than other areas of panels, as shown in Figures 3.14-
3.17. This effect also contributes to increasing Young’s modulus. As one moves away
from the boundaries, this effect is reduced quickly. On the other hand, the boundaries

make the yarns twisted during the extension of panels (see Figure 3.11). This effect is
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called boundary twist effect. Twisting yarns contribute to the transverse deformation and
Poisson’s ratio of panels. For a short panel, the resistance effect plays a more dominant
role. For a long panel, the twist effect is more dominant. This is why the curve in Figure

3.24 first goes up and then turns down.

3.3 Conclusions

In this chapter, a series of experiments were done to obtain the tensile elastic constants of
the TWF composites. Finite element models (Superelement 1 and Superelement 2)
developed in Chapter 1 for the TWF composites were also used to provide results for
comparison with experiments. From the experimental and analytical results,
Superelement 2 is better suited to predict the elastic properties of the TWF composite
than Superelement 1. It is also clear that the finite elements provide a rigorous approach

for the determination of elastic chStants.

From the experiments, it can be seen that the TWF composites exhibit nonlinear behavior
of stress-strain relation. The initial sloée of the stress-strain curve is smaller than the
slope at larger stress. That means at different loading levels, the TWF composites have
different moduli. This can be explained by the structural adjustment during loading. This

structural adjustment comes from the straightening of the undulation of the yarns. The

yarns become stiffer as they are more and more straightened.

There are inherent limitations in the experimental approach. One limitation is the ability

to account for the approximate thickness and width to be used for the extraction of the
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elastic constants. It is not obvious which thickness and width should be used in the
calculation of the cross section area. In this respect, the finite element modeling should
provide more accurate results. The use of the laser extensometer certainly is a step
forward from the use of strain gage. However, there is uncertainty in the measurement of
the transverse strain due to the low value of the deformation and also due to the limitation

of the resolution of the laser system.

The numerical results show that there is definitely an effect of the size of the sample on
the elastic constants. These results indicate that an aspect ratio L/W of at least 3.5 should
be used and sample size should have a width of at least 6 unit cells. Using these
approaches, the elastic constants f01_r this material system were found to be E; = 30 GPa,
E; = 26.5 GPa, v1,=0.58 and v;;=0.56. These values may differ if one were to use

different fibers, different yarn sizes and yarn spacings.
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Chapter 4

Thermal Deformation Behavior of TWF

Composites

In many demanding applications, including aerospace and automobile industries, one is
interested in maintaining the shape of parts and lowering the mismatch between parts
over a temperature range. So thermal deformation behavior of material is one of the most

important mechanical properties of concern.

In this chapter, the thermal deformation behavior of TWF composites is modeled using
Superelement 2 proposed previously. Thermal Expansion Coefficients (TECs) of TWF
composites are evaluated. Effects of the aspect ratios and size of panels on the TECs are

studied.

4.1 Finite element Model

The TWF composite is composed of three sets of yarns, which intersect and interlace
with each other at 60° angles, as shown in Figure 4.1. The entire fabric can actually be

obtained by assembling many unit cells. A unit cell is shown in Figure 4.2, The TWF
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composite will have complex deformation status because of textile structure and material
anisotropic characteristics. Even when the TWF composite is subjected to pure tension,
the yarn will bear a combination of tensile, compression, bending and torsion. The pure
and torsion shears will exist at the crossing areas between yarns and will play an

important role in fabric failure.

Yek

Ys
\,\
Cross over part

W1

yarn part

Figure 4.2: A unit cell (superelement)

In this chapter, thermal deformation of the TWF composites is investigated using
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Superelement 2. Nodal forces of Superelement 2 due to thermal effects are formulated in
this section. The thermal force vector of element E11 (as indicated in Figure 4.2) can be
added into the force vector of Eq. (2.2.12) in Chapter 1. The thermal force vector of
element E2 can be added into the force vector of Eq. (2.1.29) in Chapter 1. With these
thermal force vectors, Superelement 2 can be used for thermal deformation analysis of

TWF composites. Details of nodal forces of Superelement 2 due to thermal effects are

presented below.

Formulas of elemental nodal forces due to thermal effects:

(1) Element E1 (single-layer element):

Virtual work due to thermal strain {€g}:

W= [5le} {oy)av = [ole} [oReav = 5{aT ([BT [0Ye, Jav) (4.1.1)

where {gg} is thermal strain matrix and {d} is nodal displacement vector.

Let W, = 5{d V{P.,}, the thermal force vector of element E11 can be given by
{PTcl }= J'[BIT[Q]{SO }dv 4.1.2)

(2) Element E2 (three- layer element):

Virtual work due to thermal strain {€o}
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{Wra = [8ef o, Jav = [8ef"[Qle, v (4.13)

Consider strain vector:

4 4 4
= 1= J0,}=> {0 sk} (4.1.4)
=1 = =l
where j is layer number of laminate element E2. Matrix {®;} and [S] can be found in
Chapter 2.

0.} 0U; 3V; o AW, AW, U v T @15
j_ax’ay’j’j’ay’j’ax’ay’ax o
{Aj}=[uﬂ,u?,u?,uj,vﬁ,v?,vf,v‘j‘,wz,w?,w?,w?]r . (4.1.6)

o 0 0 0 0 0 0O 0 O]
0 &, 0 0 0 0 0 0 O
do.
0o o0 — 0 0 0 O
- dz -
{® )= 4D (4.1.7)
0 O 0o —2 o, 0 0 0 O
dz
do.
0 0 0 0 = o, 0 O
dz
0 0 0 0 0 0 0 &, 9D,
so that
Wed= 2 [8a, ST @, '[N, Jav
=y
g (4.1.8)

=3 3 [ola, FIsT'« jcp I [QHe, kizde

=1

q]:r
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Let {al=[aT AT AT AT, w., =8{AV{P,,}, the thermal force vector of element

E2 can be given by

{PTel }:

4.2 Thermal deformation of TWF composites
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4.1.9)

In thermal deformation analysis, the following geometry and material properties of TWF

composites are used. Table 4.1 lists the geometric parameters of the unit cell measured by

checking the microscopic photographs of TWF composites. Table 4.3 shows the effective

elastic properties of the impregnated yarn obtained by using the Strength-Of-Materials

model (SOM) [73] and using fiber and matrix properties of Table 4.2 and the fiber

volume fraction Vi = 0.695. Table 4.4 gives TECs of fibers and matrix of TWEF

composites. Table 4.5 gives the TECs of impregnated yarns of TWF composites obtained

by using the Rule-Of- Mixtures model [73].
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Table 4.1; Geometric Parameters

Geometric parameters Measured values
Yarn thickness (mm) 0.07

w1 (mm) -~ 0.85

w2 (mm) 1.10

Table 4.2: Elastic properties of fibers and matrix

. Grr p
Material EL (GPa) Eg (GPa) (GPa) Grr (GPa) VLT (gm/em®)
Carbon Fiber 500.0 40.0 24.0 14.3 0.26 2.10
Epoxy Resin 3.5 3.5 1.3 1.3 0.35 1.17
Table 4.3: Elastic properties of the impregnated yarn of TWF composites
‘ Er Er Grr p
Material \% v \Y%
(Gpa)  (Gpa)  (Gpa) LT B ' (gm/em®)
Carbon/epoxy 338.57 1240 '5.61 0.287 0.437 0.695 1.8164
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Table 4.4: Thermal expansion coefficients of fibers and matrix

Material (pp?r(;OC) or (ppm/°C)

Carbon Fiber -0.7 10.0

Epoxy Resin 63.0 63.0

Table 4.5: Thermal expansion coefficients of the impregnated yarn of TWF composites

Material (ppgf/o 0) ar (ppm/°C)

Carbon/epoxy -0.40 23.75

4.2.1 Thermal deformation

Thermal models

The thermal deformation of the TWF panel is investigated using four models. Each
model consists of a rectangular panel.'Th.e size of the panel is determined by the number
of unit cells shown in Figure 4.2 along each side of the rectangle. Each model has a
different constraint condition. The reason for using these models is to investigate the
effect of the different constraint conditions on the thermal behavior and also to determine
the Thermal Expansion Coefficients (TEC) for the sample where applicable. It should be
noted that many other constraint conditions were investigated but these could not provide
useful information for the determination of the TEC. These four models are described as

follows:
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Figure 4.3: Model 1

Figure 4.4: Model 2
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Figuré 4.5:.Model 3

Figure 4.6: Model 4
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Model 1:

For model 1 (Figure 4.3), a node (node M) at top left corner of the panel is fixed (u=v =
w = 0), and at another node N of the top right corner of the panel, the displacements in Z
and Y directions are set to zero (w = v = 0). This constraint condition fixes the two nodes
along the direction of one tow and let the other nodes free. This model will be used to

determine the TEC along the direction transverse to the tow direction (Y direction).

Model 2:

For model 2 (Figure 4.4), a node (node M) at top left corner of the panel is fixed (u=v =‘
w = (), and at another node O of the bottom left corner of the panel, the displacements in
Z and X directions are set to zero (w = u = 0). This model fixes two nodes along the
direction transverse to the tow direction. It will be used to determine the TEC along a

direction parallel to a tow (X direction).
Model 3:

For model 3 (Figure 4.5), node P is fixed (u = v =w = 0) and v = w = 0 at all the nodes in
area A of the panel. This constraint arrangement is similar to the case of Model 1 except
that all points in region A are constrained (u = w = 0) rather than just one point. This

model will be used to determine the deformation of the triax panel.

Model 4:

For model 4 (Figure 4.6), u = v =w =0 at node P and u = w = 0 at all the nodes in area B

of the panel. This model is similar to model 2 except that all points in region B are
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constrained (u = w = 0) rather than just one point.

Samples of different sizes will be developed. Figures 4.3, 4.4, 4.5, and 4.6 show these
four models for 6 by 6 panel fespectively. Symbols ‘*’ and ‘0’ represent the positions of

two fixed nodes, u = v=w =0 at node ‘*’ and w = u = 0 at node ‘0’.

Thermal deformation results:

Some products made of TWF composites, such as satellite antenna, need to work in a
large temperature range from much lower than room temperature to much higher than
room temperature. Hence it is necessary to investigate the thermal deformation behavior
of TWF composites in this situation. For this caiculation, we assume that the TECs of the

fiber and resin stay the same through the thermal deformation process.

Figures 4.7 and 4.8 sth the front and isometric views of the thermally deformed
configuration of 6 by 14 panel ( 6 unit cells alohg the X direction and 14 unit cells along
the Y direction) using Model 1. The temperature loading is an increment of 100 °C. The
undeformed configuration of the pane‘l is plotted in thin lines and the deformed
configuration is plotted in thick lines. The panel is twisted as shown in Figure 4.7. In
Figure 4.8, it is observed that the panel bends up and the left side of the panel bends more
than the right side. The thermal deformation of the panel is a combination of extension,
bending and twisting. Therefore, the panel has different TEC values at different

locations.



-0.015 -

Y (m)

-0.02 [RE4
-0.025 i &S

-0.03 | / b/ 2, _
IR
| "\'%“\,\

0 5 10 15
X (m) x 10°

Figure 4.7: Thermally deformed configuration of 6 by 14 panel using Model 1 (Front)
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Figure 4.10: Thermally deformed configuration of 14 by 6 panel in Model 2 (Isometric)
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Figure 4.9 shows the front view of the thermal deformed configuration of 14 by 6 panel
in Model 2 due to the temperature increment of 100 °C. Figure 4.10 shows the isometric
view. Different from Model 1 shown in Figures 4.7 and 4.8, the panel bends down as

shown in Figures 4.9 and 4.10. The panel also has a twist.

Discussion:

The deformation behavior as shown in Figures 4.7 to 4.10 shows that the TWF is not
symmetric. This may appear to be erroneous at first sight. However, close examination of
the composition of the material along the thickness direction shows  that indeec} the
material is not symmetric with respect to its mid plane. Figure 4.11 shows the
configurations of four types of cross-sections of the TWF panel. The right hand side view
shows two cross-sections of the panel along X direction, i.e., cross-sections C-C’ and D-
D’. From geometric viewpoint, these two sections are symmetric in thickness direction.
But the top and bottom layers of three-layer parts have different material properties
because the upper tow and lower tow have different fiber orientations. Hence the TWE
panel is, in effect, unsymmetrical in thickness direction along X direction. This will lead
the panel to bending along X direction due to thermal loading. The bottom view shows
two cross-sections A-A’ and B-B’ along Y direction. The section A-A’ is symmetric in
geometry but unsymmetrical in material properties. The section B-B’ is unsymmetrical in
thickness direction because both geometry and material properties are not symmetric in
thickness direction. Therefore, the TWF panel is also unsymmetrical in thickness

direction along Y direction. The panel will also bend along Y direction subjected to
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thermal loading. This is why the panel will bend due to thermal loading.

===
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Cross-section C-C’
[

9.546 mm

Tve U

-
Cross-section D-D’

B B B= H X

Cross-section A-A’

Cross-section B-B’

Figure 4.11: Cross sections of triaxial woven fabric composites

Effect of different constraint conditions:

The following presents the thermal deformation of the panels subject to the constraint

conditions in Model 3 and Model 4.

Figure 4.12 shows the front view of the deformed configuration of 6 by 14 panel due to
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increments of 100 °C and -100 °C. Figure 4.13 shows the isometric view. Figures 4.14
and 4.15 show the views along Y direction and along —X direction respectively. Thin
lines show the un-deformed configuration of the panel at room temperature. Dashed lines
show the deformed configuration of the panel due to the temperature increment of 100
°C. Thick lines show the deformed configuration of the panel due to the temperature
increment of —100 °C. Due to the temperature increment of 100 °C, the panel bends
upward and the end of the panel deflects to 0.012 m on the right side and to 0.014 m on
the left side as shown in Figures 4.10 and 4.12. The left side of the panel deflects more
than the right side (Figure 4.14). The panel twists a little to right side as shown in Figures
4.12 and 4.14. For the temperature increment of —100 °C, the panel bends downward as
shown in Figure 4.13 and the panel end reaches the deflection of —-0.012 m to —0.014 m.

The panel twists a little to left side as shown in Figures 4.12 and 4.14.

It can be seen that the mode of deformation of the TWF is similar when using either
- Model 1 or Model 3. However, the magnitudes of the deformation are different for each
model. The above presentation shows that the thermal deformation is different for each
constraint condition. The calculation for the TEC will be‘based on the constraint
condition that gives the lesser amount of constraint (Model 1 as compared to Model 3).

Model 1 will therefore be used to determine the TEC of the TWF in a later section.

Figure 4.16 shows the front view of the deformed configuration of 14 by 6 panel due to
temperature increments of 100 °C and —100 °C in Model 4. Figure 4.17 shows the
isometric view. Figures 4.18 and 4.19 show the views along —Y direction and along —-X

direction respectively. Different from Model 3 as shown in Figure 4.12, the panel bends
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downward with a temperature increment of +100 °C and reaches the deflection of ~0.007
m to —0.014 m (the right side of the panel deflects more than the left side), as shown in
Figure 4.18. For an increment of —100 °C, the panel bends upward and has the deflection
of 0.007 m to — 0.014 m (the right side of the panel also deflects more than the left side).

Similar to the argument made before, Model 2 will be used to determine the TEC along

the X direction.
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Figure 4.12: Thermally deformed configuration of 6 by 14 panel in Model 3 (Front)
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Figure 4.13: Thermally‘@eformed configuration of 6 by 14 panel in Model 3 (Isometric)

X{m) -3

Figure 4.14: Thermally deformed configuration of 6 by 14 panel in Model 3

109



Figure 4.15: Thermally deformed configuration of 6 by 14 panel in Model 3

(view along —X direction)

-

Figure 4.16: Thermally deformed configuration of 14 by 6 panel in Model 4 (Front)
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Figure 4.17: Thermally deformed confié‘lml)ration of 14 by 6 panelvi(r;)l Model 4 (Isometric)
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Figure 4.18: Thermally deformed configuration of 6 by 14 panel in Model 4
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Figure 4.19: Thermally deformed configuration of 6 by 14 panel in Model 4

4.2.2 Apparent Thermal Expansion Coefficients (TECs) of TWF composites

In this section, TECs of TWF composites are calculated using the thermal deformation
model. The apparent thermval expansion coefficient is defined to be similar to the regular
thermal expansion of conventional material. The two models .(models 1 and 2) are
considered, as shown in Figures 4.3 and 4.4 for an example of 6 by 6 panel. Model 1 is
used for calculating the Y direction TECs. Model 2 is used for calculating the TEC along

the X direction.

For evaluating TEC in Y direction, the strain in Y direction is determined between two
points denoted by ‘0’ and linked with a dashed line, as shown in Figure 4.3. The strain in

Y direction is given by



where Av is the increment of displacements at the two points in Y direction. L is the
distance between the two points. For an example of 6 by 6 panel, as shown in Figure 4.3,

there are totally five pairs of points (Aa, Bb, Cc, Dd and Ee). The five strains in Y

direction can be determined as follows

With these five strains, corresponding five TECs of 6 by 6 panel in Y direction can be

determined by
o, =¢ /AT (i=yAa, yBb, yCc, yDd, yEe)

where AT is temperature change. The Y direction TECs of other panels can be

determined in the same way.

In Figure 4.4, two points denoted by ‘x’ and linked with a dashed line are used for the

strain and TEC in X direction. The strain in X direction is given by

where Au is the increment of displacements at the two points in X direction. L is the
distance between the two points. For an example of 6 by 6 panel in Model 2, as shown in
Figure 4.4, there are totally 6 pairs of points (Aa, Bb, Cc, Dd, Ee and Ff). The

corresponding six strains in Y direction can be determined as follows
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where u; is average displacement in X direction at point i.

With these five strains, corresponding six TECs of 6 by 6 panel in X direction can be

determined by
o, =€, /AT (i=xAa, xBb,  xCc, xDd, xEe, xFf)

where AT is temperature change. The X direction TECs of other panels can be also

determined in the same way.

Model 1

First consider Model 1. The Y direction TECs at different locations of a panel are
| investigated. The TECs of square panels with different sizes are compared. Figure 4.20
shows the Y direction TECs at different locations for the square panels of 8 by &, 10 by |
iO, 12 by 12, 14 by 14, and 16 by 16. In Figure 4.20, it is observed that the Y direction
TEC values at two sides of the panels are different, as seen previously in Figure 4.7. As
the size of the panels increases, the Y direction TECs at the left side become larger while
the Y directions TECs at the right side become smaller. The center parts of these curves
remain approximately constant. This value may be taken to be the Y direction TEC since

it seems to be unaffected by the size of the panel. It has the value of oy =—4.8x10° °C™".

Figure 4.21 shows the Y direction TECs at different locations of the panels of 3 by 8, 8
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by 10, 8 by 12 and 8 by 14 using Model 1. It is observed that aspect ratios of panels have

effects on the Y direction TECs. The 8 by 8 panel has almost the same TEC at its central

TEC of the left side part is greater than the one of 8 by 8 panel and the Y direction TEC
of the right side part is less than the one of 8 by 8 panel. These curves also go through a
common point. At this point, the Y direction TEC «y = —4.8x10°® 0C'l, which can be

considered as the representative Y direction TEC of panels of 8 by n, ( n,=8,10, ----).

The same situation is also observed for other panels. For the panel of m by m (m=6, 8,
10, --+-), the panel has almost the same TEC at its central area. For panel m by ny ( ny=
6,8,10, -----), when ny is greater than m, the Y direction TEC of the left side part is greater
than the one of m by m panel and the Y direction TEC of the right side part is less than
the one of m by m panel. In addition, these curves go through a common point, at which
the Y direction TEC is the representative value of the Y dimension TECs of the panel and
~ that is unaffected by the dimension of the pvanel in Y direction. It is important that these
representative Y direction TECs of the panel of any width are very close, as shown in
Figure 4.20. Therefore, we can conclude the equivalent Y direction TEC of panels oy = —
4.8x10° °C'. With the Y direction TEC and panel aspect ratio, the thermal deformed

configuration and the Y direction TEC of panel can be evaluated approximately.

Model 2

Model 2, as shown in Figure 4.4, is used for the X direction TECs of panels. The effects
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of panel length (X direction dimension) or aspect ratio on TECs of panels are
investigated. Figure 4.22 shows the X direction TECs at different locations of the panels
of 6 by 20, 8 by 20, 10 by 20 and 12 by 20 respectively. It is observed from Figure 4.22
that these curves coincide with each other at the centre part. That means that there is little
effect of panel length or aspect ratio on TECs of centre parts of panels. From the centre
part of these curves, we can obtain the mean value of X direction TECs o, = -6x10° °C

! It can be considered as the equivalent X direction TEC of panels.

————— % 16by 16 |- - -
—— 14by 14

TECs of Y direction (/C°)

X (m)

Figure 4.20: Y direction TECs of square panels in Model 1
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Discussion:

If one were to take the constant values in Figures 4.20 and 4.22 to be the representative
TEC values for the triax, then We have o, =-6.0 x 10'6/°C, and oy =-4.8 x 10 /°C. Both
of these values are negative. The reason for this is because the coefficient of expansion of
the tow is negative. Both the contraction along the x and y direction are larger than the

contraction of a tow (-0.4 x 10-6/0C). This is due to the bending effect of the triax.

4.2.3 Thermal deflection of TWF composites in Z direction

As can be seen from previous discussion and also from Figures 4.8 and 4.10, TWF panels
bend when they are subjected to a temperature increment. The amount of bending
depends on the size of the panel and also on the boundary conditions. Howéver it would
be convenient to define some coefficient to characterize this behavior, and also to obtain
some values for the characterizatién of the behavior of the TWF panels. In this section,
the deflections of the panels with Model 4 due to the temperature increment of 100 OC are
studied. Figure 4.23 shows an example of 6 by 6 panel with model 4. At all the nodes at
region B, displacements u and w are imposed to be zero(u=w=0),andu=v=w =0 at
node P. Node P is located with the symbol “*’ in Figure 4.23. For an example of 6 by 6
panel, there are 6 pairs of points (Aa, Bb, Cc, Dd, Ee, Ff). Each pair of points is used to
calculate deflection. For instance, the deflection of 6 by 6 panel at line Aa is obtained by

calculating the difference of Z direction displacements between points a and A as:

Waa =W, - Wy 4.2.1)
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By averaging the deflections at these six lines, we can obtain the average deflection Wy,

of 6 by 6 panel. The average deflections of other panels can also be calculated in the

same way.

Table 4.6 gives the average deflections of panels of n, by ny (n, ny=6,8,10,12, 14)in
Model 4 due to the temperature increment of 100 oc. Ly is the average distance between
the pairs of points. From Table 4.6, it is observed that increasing the dimension of the
panel in Y direction (i.e., increasing ny) affects the average deflections of the panels very
little, only by 0.8%. Hence, the effect of n, on the average deflections of the panels may
be neglected. We only need to consider the panels of ny by 6 and to investigate the effect
of ny on the average deflections of these panels. Defining a new parameter 3, called the

bending thermal coefficient as the average deflection Wy, divided by L,’, i.e

B=W,_ /12 (4.2.2)

Values of parameters [3 are plotted against the number of superelements along X
direction ny in Figure 4.24. It can be seen that 3 value varies linearly with the number of
superelements n,. From this observation, we can propose the following engineering

formula to evaluate the average deflections of any sized panels in Model 4 due to thermal

effects.
W, =—(pn, +qQ)L2AT  (n,,n, 26) (4.2.3)

where Wy, is the average deflection of the panel of n, by n, due to the temperature

increment of 1 °C. AT is the temperature increment (°C). p and q are the material
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constants. For this particular study, p and q have values of -4.375x10” and 1.250x10°

respectively.

Y (m)

X{m)

Figure 4.23: Model 4

Table 4.6: Average deflections of panels of various aspect ratios in Model 4

n, by 6 (m)

Ny L, (m) n,by 8 (m) | nsby 10(m) | ncby 12 (m) | n, by 14 (m)
6 | 1070 6 ag0ax10 [O2TETI0 ) 6 3632x10 | 6.3493x10¢ | 63TEXI0
g | 22270x10 -1.6840x10'f '1'68131*10- 1.6772x10° | -1.6736x107 | T16705%10°
1o | 286331071 5 4071510 [FH0XI0 | 5 4e23x107 | 3.4751x10° | HA08EX10
12 | 34998}07 | 2906x10° [O276710 1 6 2600x107 | -6.2491x10 | “62380%10°
14 | A0 o7gw10? [1O22X107 | ) 6007x107 | -1.0206x1072 | “1O18EX1O
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Figure 4.24: Parameter [3 versus ny

4.3 Conclusions

- The thermal deformation behavior of TWF cémposites was studied using finite element
model (Superelement 2). It is demonstrated that the TWF composites are a special woven
structure with holes and without any symmetric planes. Therefore the material bends and
twists in addition to expansion or contraction when subjected to thermal loading. As such

it is difficult to characterize the Thermal Expansion Coefficient for the material.

It is also difficult to find suitable boundary constraints for the finite element models so
that the effect of the size of the panels does not enter into the analysis. Many different
constraint conditions were attempted. A few constraint conditions were found where the

size effect of the panel was minimized. These constraint conditions were used to
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determine the thermal deformation behavior of the triax composites. It was found out that

the apparent Thermal Expansion Coefficients remain constant within a certain region of

the panel. These may be taken to be the representative TEC for the material.

With the above understanding, the following conclusions can be made:

1)

2)

3)

4)

The TWF composites are not symmetric in thickness direction. Hence, their thermal

deformation includes bending besides contraction (expansion), shear, and twist.

For the square panel of m by m (m=6, 8, 10, ----), the panel has almost the same Y
direction TECs at its cenfral area. For the panel of m by ny ( ny = 6,8,10, --+*), when ny
is greater than m, the Y direction TEC on the left side of the panel is greater than the
Y direction TEC of the right side. In addition, the TEC curves go through a common
point, at which the Y direction TEC may be taken to be the representative value of

the Y dimension TECs of the panel ( oy = -4.8x10° 0C'l).
The apparent X direction TEC of panels is o, = -6x107° °C.

The average out-of-plane deflection (deflection in Z direction) of the panels divided
by L. is found to vary linearly with the dimension of the panels in X direction (ny).
An engineering formula (Eq. 4.2.3) is proposed for evaluating the average Z direction

deflections of any sized panels in Model 4 due to thermal effects.
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Chapter 5

Finite Element Modeling of a Membrane

Sector of a Satellite Reflector

Due to their extremely light weight with good stiffness and strength, single layers of triaxial
woven fabric composites have been used to make communication satellite reflectors.
Special super-finite elements have been developed for the analysis of these lightweight
materials. These super-finite elements are used for the deflection and stress analysis of a
membrane sector of the satellite reflector subjected to lateral pressure. Due to the
significant differénce ih the size of the satellite structure (order of meters) and the size of
the super-finite elements (order of millimeters) it was not possible to model the satellite
structure using the super-finite elements and computer facilities available in most labs
(personal computers). In the process of finding a solution to this problem, a special
similitude behavior for the deflection of the curved panels made of triaxial fabrics was
discovered. Using this behavior, the deflection of a large size reflector panel (order of

meters) can be analyzed using models in the millimeters size range. Stresses in the triax
reflector model were also calculated. However, no special similitude behavior was

obtained for the stresses.



5.1 Introduction

Communication satellite dishes incorporate a parabolic or circular curve into the design
of their bowl-shaped reflectors. The parabolic curve has the property of reflecting all
incident rays arriving along the reflector's axis of symmetry to a common focus located at
the front and center. The parabolic antenna's ability to amplify signals is primarily
governed by the accuracy of this parabolic curve. The spherical antenna creates multiple
focal points located at the front and center of the reflector, one for each available
satellite. The curvature of the reflector is such that if extended outward far enough along

both axes it would become a sphere.

The ART EM reflector is a mesh spherical antenné of the communication satellite [74]. It
is constructed of ribs and membrane surface, as shown in Figure 5.1. The membrane
surface is a part of a spherical surface between two inner and outer circles. The sphere
radius is about 2820 mm. Its outer periméter diameter is about 1450 mm and inner
perimeter diameter is about 508 mm. The entire membrane is divided uniformly into 12
sectors by ribs. Each membrane sector is a 30° degrees angle part of the spherical surface.
Figure 5.2 shows detailed reflector diﬁensions. Compared with ribs, the membrane

sector is a very weak load-bearing structural part. It is necessary to investigate its

mechanical behavior.

The ribs and membrane surface of the ART EM reflector is made of the triaxial woven
fabric (TWF) composites. The reason for this construction is due to lightweight, and also

due to the facility to allow air to escape through the holes during launching. This air
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escape reduces significantly the air impact, which significantly reduces the loading on the

structure.

Inner Circumferential Rib

Outer Circumferential Rib

Reflecior Mentbrane

Figure 5.1: EM reflector bottom view

‘The TWF composite is a woven fabric. It is composed of three sets of yarns, which
intersect and interlace with each other at 60° angles. Figures 5.3 and 5.4 show the
schematic of the single layered triaxial woven fabric structure and also a representative
unit cell. The thickness of a tow (yarn) is 0.14 mm. The width w, is about 0.85 mm. The
distance w; is about 1.10 mm. This gives the total side dimension of a cell of about 3

mm. The presence of holes in the structure presents special challenge for the analysis of

these triax structures.

One approach to this problem would be to obtain average pr'operties of a representative
unit cell in the structure and use these properties for the analysis of the whole structure.

There are a variety of analyses for analyzing plain-weave composites. These differ in
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both geometric approximation and assumption about stress and strain distribution. Many
of these are concerned with the micro-mechanics, stiffness averaging, and
homogenization [75]. Following similar approach, a previous investigation using
equivalent energy principle was made where averaged properties of a representative unit
cell of a single layer of triax were obtained [76]. A comprehensive survey of the different
techniques for the homogenization of the microstructure was also given in reference [76].
The results obtained give upper bounds and lower bounds for the moduli and Poisson
ratios. Compared with experimental values the upper bound of the Young’s modulus
show reasonable agreement but the shear moduli did not show good agreement. Also
these averaging procedures cannot provide facilities to calculate the stresses required for
strength prediction.
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Figure 5.2: Reflector dimensions



To address these concerns, special finite elements were developed for the analysis of
structures made of a single layer of triax woven fabric composites. The development of
these special super-finite elements was described in Chapter 2. Basically the super-finite
elements model the whole unit cell as shown in Figure 5.4. The super-finite element
consists of many smaller elements assembled together. There are two different types of
these smaller elements. One type represents a single thickness part and the other type
represents a cross-over part. This cross-over part has two yarns crossing over each other.
The resin layer between these cross-over yarn part is also modeled in the super-finite
element. As such, the shear stress in the adhesive layer can be calculated. These super-
finite elements were validated by analyzing rectangular panels to -obtain mechanical
properties. These properties compared well with experimental results. Effects of different
parameters such as sample size, sample width Were also investigated (see Chapter 3). The
remaining question is how to use these super-finite elements for the analysis of a real size
satellite structure made of triax fabric. The challenge is due to the large difference in size
of the satellite structure (dimensions in thousands of millimeters) and the size of super-
finite elements (dimensions in millimeters). Each of the super-finite elements has 15-
node with 12 DOFs at each node. To model a 1000 mm by 1000 mm panel, it will require
about 90,000 super-finite elements. This size problem is beyond the capacity of most

personal computers. A similitude law is necessary to handle the problem.

In this chapter, the stress analysis of a membrane sector of ART EM reflector subjected
to pressure is performed using the super-finite elements. This chapter presents the finite
element model, the deformed configuration and the values and location of the maximum
stresses of the membrane sector. A special similitude law was also discovered for the
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deflection calculation.

Ys

Cross over part

Wi

yarn part

Figure 5.4: A unit cell (superelement)

5.2 Finite Element Model

One pie sector (out of twelve) as shown in Figure 5.2 was considered for analysis. A
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pressure P = 200,000 Pa is applied on its inner surface (concave side). Since ribs
surround the membrane sector, ribs’ effect on the sector must be taken into account.
Compared with the ribs, the membrane sector is much weaker in stiffness. So the
membrane sector can be assumed as being clampéd on its boundaries. For a short
expression, the term ‘super-finite element’ will be replaced with the term ‘element’ in

following statements.

Through the automatic meshing program, the membrane sector is discretized into 10,603
elements and 96,269 nodes. Since there are 12 DOFs at each node, 96269x12 unknowns
need to be solved for this problem. This will require a computer with the ability to handle
96269x12 by 96269x12 matrix. The computer should have at least 96269x12 X
96269x12x32 bits memory because calculation must be performed in double precision
condition. Even if some memory-saving skills are considered, it still is a. large-scale
problem that needs much more merﬁory and can hardly be proceséed n ha current personal
computer. Therefore, fhis prdblem needs to be simplified before a solution can be
obtained. As we know, for _continuum and homogeneous problem, one may reduce the
size of the object with similitude law and solve the problem of the size-reduced object to
obtain the solution of the full-scale problem. But for the TWF composite, this strategy
does not seem to be suitable. If the structure of the TWF composite is reduced in size, the
unit cells built for it also need to be reduced in the same proportion. The number of the
unit cells of size-reduced structure is still the same as one of full-scale structures. Since
the element is set up on modeling a single unit cell, that means that the number of
elements is not reduced in finite element model of the size-reduced structure. So the

similitude law is not suitable for accurate solution of the TWF composite. We have taken
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a different approach, that of studying different sizes of similar shape sectors and

extracting from the results a similitude rule.

Table 5.1: Different size sectors

Parameters Full size Model size with scale A
Yarn thickness t At
Yarn width wl . - wl
Hexagon hole side length w2 w2

Dimension and curvature

radius of sector L AL

In this chapter, we make an approach by solutions of several size-reduced membrane
sectors. Membrane sectors of sizes 1/12, 1/ 10 and 1/8, 1/7 and 1/6 of full scale are
studied. These different sized models are shown in Figure 5.5. The applied pressure is
still P = 200,000 Pa. Yarn thickness is reduced in the same proportion as the scale of the
model, but the planar dimensions of the yarns are kept the same. This means that the
planar dimensions of the finite elements are kept the same, while the thickness of the
finite elements is reduced in proportion with the size of the model. Figure 5.5 shows the
plan view of the sectors of different sizes. The curvatures of the models of different sizes
are also reduced proportionally. This means that smaller sized models have smaller
radius of curvatures. Coordinate z has the same common origin at 0 for all sectors. Table

5.1 gives the summary of the different size for the model.
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5.3 Numerical Results and Discussions

Table 5.2 gives the geometric parameters of the unit cell (the unit cell is same as
Superelement 2 in Chapter 2) measured from the microscopic photographs of the TWF
composites. The thickness of the yarn in Table 5.2 is for the full scale structure and it is
reduced proportionally for the smaller sized models. Table 5.3 lists the fiber and matrix
properties for the fiber volume fraction V¢ = 0.695. Table 5.4 shows the effective elastic
properties of the impregnated yarn obtained by using the composite cylinder assemblage

(CCA) model. These data are used for finite element models.

Table 5.2: Geometric parameters

Geometric parameters Measured values
Yarn thickness t (mm) 0.14
Yarn width w1 (mm) _ 0.85

w2 (mm) ' 1.10

Table 5.3: Elastic properties of fibers and matrix

Material E. (GPa)  Er(Gpa) Gur(Gpa) Grr(Gpa) YLt (gm/ﬁ:m3)

Carbon Fiber 500.0 40.0 24.0 143 0.26 2.10

Epoxy Resin 3.5 35 1.3 1.3 0.35 1.17
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Table 5.4: Elastic properties of the impregnated yarn of TWF composites

EL ET GLT

. p

Material (Gpa) (Gpa) (Gpa) VLT VTT Vi (gm/cm’)
YSSUADSS 33857 1240 561 0287 0437 0695  1.8164
carbon/epoxy

0

1/ /
Centerline

1/1

1/8

1/7

1/6

Yz

Figure 5.5: Different-size sectors
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Figure 5.6: Mesh of 1/12 sector (Front)

5.3.1 Finite element Models

Figures 5.6 and 5.7 show the finite element mesh for a sector of 1/12 scale. There are 88
elements and 868 nodes. The boundary conditions are assumed to be clamped all around,
i.e., the displacements of all nodes outside red lines in Figures 5.6 and 5.7 are set to zero.
Figure 5.8 shows the finite element mesh for a sector of 1/10 scale. There are 130

elements and 1264 nodes. The meshes for other sector scales are similar.
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Figure 5.7: Mesh of 1/12 sector (Isometric)
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Figure 5.8: Mesh of 1/10 sector (Front)
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5.3.2 Sector deflection along the centerline Oz

The lateral deflections at the nodes (along the Oz line) for the 1/12 scaled sector are
shown in Figure 5.9. The deflection is O at two ends due to the clamped boundary
conditions. The deflection is increasing as one moves away from the larger side of the

sector to the smaller side of the sector. This occurs because the reflector is a shell with

curvature.

The deflections for other scaled sectors also follow similar shaped curves. The
superposition Qf the deflections for all sectors is shown in Figure 5.10. The origin O in
Figure 5.10 corresponds to the origin O in Figure 5.5. It is interesting to note that apart
from end conditions and local variations, the deflection for all five scaled sectors fall
along the same line. The ampiitude for the local variations is about 0.6 x 10 m. It is
important to remember that the thickness of the yarn for each scaled sector is also
reduced by the same proportion. This means for the 1/12 scaled sector, the thickness of
 the yarn is /12 where t is the thickness of the full scale sector. For the 1/10 scaled sector,

the thickness of the yarn is t/10 etc.

The deformed configurations for the 1/12 scaled sector and the 1/10 scaled sector are

shown in Figures 5.11 and 5.12.
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Figure 5.10: Deflection of different-scale sectors on their centerlines



Figure 5.11: Deformed and undeformed configurations of 1/12 sector

Figure 5.12: Deformed and un-deformed configurations of 1/10 sector



Deflection (m)

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0
nodes along center line (m)

Figure 5.13: Predicted defection of full-scale sector along its centerline

5.3.3 Similitude observation for deflection

The appearance of the common straight line begs for a similitude observation. An
equation for the straight line can be obtained by using the coordinates of two points.
Point P;(-0.04 m,10.9 x 10 m) and point P2(-0.01 m, 6.4 x 10* m) on the curve are used
(note that the first argument in the parenthesis represents the position along the Oz line

and the second argument in the parenthesis represents the deflection at that point). The

following equation is obtained:

v=-0.0150z+4.9x107 + 6 (1)

where v is the deflection (m). z is the coordinate distance from O as shown in Figure 5.5
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(m). O represents the magnitude of the local variations, which in this case is £0.6 x 10"
(m). Equation (1) is plotted as shown in Figure 5.13. This equation is not valid close to
the clamped boundaries. The range of validity of this equation for the full scale model

can be -0.38 m <z < -0.03 m.

5.3.4 Explanation for the deflection behavior of the triax panel

The coinciding of the deflection at the center line of triax panels of different scales is
intriguing. In order to explain this behavior, supplementary investigation was carried out.
There are a few parameters that enter into the situation. These consist of the trapezoidal
shape of the reflector panel, the curvature of the panel, and the triax material itself. Each

of these parameters is examined separately to determine the reason for the behavior.

Effect of the trapezbidal shape

To determine the effect of the trapezoidal shape, a rectangular panel with cylindrical
curvature made of triax was modeled using the super-finite elements. Figure 5.14 shows
the full-scale configuration of this panel (t;= 0.14x10™* m, R,= 0.07239 -m). All edges of
this panel are clamped. Two different scales of this panel were énalyzed with the same
superelement planar size as in Table 5.2. One is full-scale and the other scale is 0.8. The

relative dimensions are as follows:
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a, = Aq,

b, = Ab,
R, = AR,
t, = A1

where subscripts 1, 2 refer to model 1, model 2 and A is the scale factor, equal to 0.8.

The centerline deflections for the two models are shown in Figure 5.15.

It can be seen from Figure 5.15 that apart from the edge effect, the center line deflections
of both panels are the same. The deflection is constant along the center line because of
cylindrical bending. Therefore, this case exhibits the same behavior as in the curved
trapezoidal panels is observed in Figure 5.10. The trapezoidal shape is therefore not an

effect.

L

Figure 5.14: Rectangular triax panel with cylindrical curvature
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Figure 5.16: Center line deflection of trapezoidal triax panels of different curvatures
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Figure 5.17: Deflections of isotropic sectors along the centerlines

Effect of curvature of the panel

To investigate this effect, trapezoidal triax panels of the same overall planer dimensions
and same thickness but with different radius curvatures were analyzed. The dimensions

for the different models are as follows:

a, =a,
b, = b,
R, = AR,
L, =1

In the above dimensions, subscript 1 refers to a model that is 1/12 the full scale reflector

sector. The scale factor A studied is 1/1 and 1/4. Figure 5.16 shows the center line
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deflections of these models.

It can be seen from Figure 5.16 that the smaller is the radius of curvature the smaller is
the center line deflection. This should be expected. The dependence on the radius of

curvature is therefore normal.

Effect of the triax material

To investigate the effect of the triax material, two additional studies were made.

(1) Panels made of isotropic material:

First panels of the same trapezoidal shape, dimensions and curvature as the triax panels
studied before, but made of isotropic material (E = 30.56 GPa and v = 0.3) were
analyzed. Shell elements in ANSYS software were used for this analysis. Two different
scales (full and half) were examined. The full scale has the same dimension as the
reflector sector. The center line deﬂectibns of these panels are shown in Figure 5.17. It
can be seen that the half scale model has half the deflection as compared to the deflection

of the full scale model. This follows the similitude law as described in a following

section.

(2) Flat triax panels subjected to bending:
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Flat triax panels of different dimensions were analyzed. The dimensions of the panel are

as follows:
a, = Aa,
b, = /u?l
R, = AR,

t, = At

where the subscript i refers to the smaller scaled model. The scale factor A takes on
values of 10/10, 8/10 and 6/10. The results are shown in Figure 5.18. From this figure,
the center deflection of the smaller model is smaller than the center deflection of the

larger model.

If one were to use the general equation for the deflection of an isotropic rectangular flat

plate subjected to bending, one has [77]:

4

5 =%e_

EP
where a is the side of the square, q is the pressure, E is the Young’s modulus, t is the
thickness and o is a shape factor for the rectangle. The Poisson ratio is already

incorporated into the factor c.

From the above equation, if the dimensions of the plate are reduced proportionally (for
both ¢ and ¢), the deflection & would be proportional to the length scale. This means that
for a half scaled model, the deflection would be half that of the full scale model. This is
the case for the isotropic curved trapezoidal plates results as shown in Figure 5.17 above.

Examining the results in Figure 5.18 shows that the ratios between the deflections for
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different models are as follows:

-5
O _ 5x107m 0.30
b, 165x107m

-5
Oy _ 10.5x10_5m — 064
0, 165x107m

The above ratios do not agree with 0.6 and 0.8 as would be expected from the similitude

law. Therefore the material effect needs to be taken into consideration.

Using the triax super-finite elements, flat triax panels subjected to uniaxial in-plane
loadings were analyzed. The displacements were used to calculate the apparent Young’s

moduli and Poisson’s ratios (the procedure was explained in Chapter 3). The results are

shown in Table 5.5.

Table 5.5: Change of Young’s moduli and Poisson’s ratios with triax thickness

Triax thickness | Young’s modulus | Young’s modulus Poisson Poisson
(mm) E; (GPa) E; (GPa) ratios vy, ratios vy,
0.14 30.56 26.69 0.58123 0.56451
0.07 37.00 3242 0.52126 0.50328
0.035 41.03 - 35.63 0.48620 0.46767
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Figure 5.18: Deflections of TWF square plates along the centerlines

From Table 5.5, as the thickness of the triax decreases, the Young’s moduli increase and
the Poisson ratios decrease. Since the Young’s moduli increase and the Poisson ratios
decrease, the deflection of the thinner models would be reduced accordingly. This

explains the lower ratio between the deflections in the above equation.

The behavior as shown in Figures 5.10, 5.13, and 5.15 are therefore unique to triax
materials and maybe also to some other materials made by textile process. This behavior
can be considered as a discovery from this work since the author believes that this
behavior has not been reported before. This behavior was proven very useful for the

determination of deflection of large panels made of triax materials such as in satellite

structures.
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Figure 5.19: Centerline of yarn on unit cell

5.3.5 Stress distribution of yarns of unit cells in central area of the sector

The, TWF composites support loads mainly by yarn extension in fiber direction. Hence it
is necessary to inQestigate the étress distribution of the yarns in fiber direction. In this
section, stress distributions along yarn centerline in central areas of different scale sectors
afé investigated. Consider 5 different scale sectors with scales 1/12, 1/10, 1/8, 1/7 and
1/6. For each sector, a yarn of a unit cell (super-element) in central area of the sector is
selected. The super-element numbers 50, 72, 114, 159 and 218 are selected respectively
for the reflectors 1/12, _1/10, 1/8, 1/7 and 1/6. The location of super-element 50 is shown
in Figure 5.6 and that of super-element 72 is shown in Figure 5.8. The yarn orientation on
each super-element is shown in Figure 5.19. The stress distributions along the yarn
centerline of these unit cells are calculated and plotted together in Figure 5.20. In Figure

5.20. s refers to the relative location of the point on the yarn centerline, at which the
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stress ol is evaluated. 0-2 corresponds to a-b in Figure 5.19. 2-4, 4-6 and 6-8 are
corresponding respectively to b-c, ¢c-d and d-e in Figure 5.19. From Figure 5.20, it is easy
to find that all the stresses o1 along b-c and d-e (crossovers) remain the same value of
about 1.5 GPa for different scale sectors. The corresponding stress of the full-scale sector
should also be about 1.5 GPa. Along a-b and c-d, the stress ¢1 varies greatly. But there
are some special points at which the stress values basically keep the same for these 5
different-scale sectors. At point s = 0.6 of a-b (see Figure 5.20), the stresses are about 1.2
GPa. For c-d, at point s = 4.4, the stress value is about ~0.2 GPa. At point s = 5.6, the

stress value is about 3.7 GPa. We can speculate that the full-scale sector also has these

characters.
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Figure 5.20: Stresses o of yarn centeﬂines of unit cells of 5 different scale sectors

5.3.6 Maximu_m stresses

Figure 5.21 gives the locations of maximum stresses Cimax, O2max and Gjomax Of the 1/12
sector. o) represents the normal stress along fiber direction, o5 is the normal stress along
transverse direction and o3 is the shear stress. Table 5.6 gives the locations and values of

maximum stresses. In this table, se denotes super-element and e denotes element number. -
Orientations of elements in super-element are given in Figure 5.19. The element natural

coordinates in the table give locations of maximum stresses in the element.

Figure 5.22 gives the locations of maximum stresses Cimax, O2max and Gj2max Of the 1/10
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sector. Table 5.7 gives the locations and values of maximum stresses.

Figure 5.23 gives the locations of maximum Stresses Oimax, O2max and O1omax Of the 1/8

sector. Table 5.8 gives the locations values of maximum stresses.

In above three examples, there are some characters in common. All maximum stresses
appear in areas near boundaries. Maximum stresses always exist at the transition between
a single thickness area and the crossover area such as a, b, ¢, d and d in Figure 5.19. Oomax
and o12max are located at same location. For this load case, the yarns of the sectors mainly
" bear tension loads. Failure probably starts at these transition areas with the damage in

tension mode.

Table 5.6: Maximum stresses in the 1/12 sector

Maximum Stress
(GPa) Glmax='354-49 ) szax=-3.5540 . C12max=-1 7796
-354.49 272508 72.508
-2.3780 -3.5540 -3.5540
Stresses (GPa) -4.2558 -2.8819 -2.8819
(G1, G2, 03, O3, 01, | 4 5197 1.6963 1.6963
C12)
3.6877 4.0379 4.0379
0.27907 -1.7796 -1.7796
Location (se, e, layer) | (83,6, 1) (83,3, 1) (83,3, 1)
(0.90618, (-0.90618, (-0.90618,
Element natural
-0.90618, -0.90618, -0.90618,
coordinates (£,n,5)
0.90618) 0.90618) 0.90618)
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Table 5.7: Maximum stresses in the 1/10 sector

Maximum Stress (GPa) O 1max=-303.33 Oomax=-3.7244 O 12max=-1.6064
-303.33 -51.237 -56.307
-2.0356 -3.7244 -3.2587
Stresses (GPa) -3.5401 -5.6891 -2.6794
(041, O3, 03, G13, 023, C12) 3.4341 -3.9775 1.2802
2.8232 12.451 3.5072
0.28237 -1.2136 -1.6064
Location (se, e, layer) (124,6,1) (115, 1, 1) (124,3,1)
(0.90618, (-0.90618, (-0.90618,
Cf;fé‘l‘;:t‘eﬁgflg . -0.90618, 0.90618, -0.90618,
0.90618) -0.90618) 0.90618)
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Table 5.8: Maximum stresses in the 1/8 sector

O1max=-284.37

Maximum Stress (GPa) O2max=4.4567 C12max=1.9973
-284.37 162.82 162.82
-1.8757 4.4567 4.4567
Stresses (GPa) -3.2591 3.7927 3.7927
(o1, 02, O3, O13, G23, O12) 2.8256 -1.0783 -1.0783
2.4735 -4.9419 -4.9419
0.26829 1.9973 1.9973
Location (se, e, layer) (180,6, 1) (190,7, 1) (190,7, 1)
(0.90618, (-0.90618, (-0.90618,
Cif;?;:;rs‘?&“;alg) 10.90618, 10.90618, 10.90618,
0.90618) 0.90618) 0.90618)
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Figure 5.21: Locations of maximum stresses in the 1/12 sector
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Figure 5.22: Locations of maximum stresses in the 1/10 sector
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Figure 5.23: Locations of maximum stresses of 1/8 sector

5.4 Conclusions

In this chapter, the mechanical behavior of a sector of the reflector subjected to uniform
pressure is studied by modeling several different-scale sectors using Super-finite
elements. Using this approach, it is possible to determine the deflection along the
centerline of the full-scale sector using the deflection of the reduced scale sectors. A
special scale law was discovered for the deflection behavior of triax composites. This
special scale law is very useful for the deflection determination of large panels made of

triax. The scale law may be applicable to thin structures made of other types of textile
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composites. This can be a subject of future research.

The stress distribution of yarns in central areas of the sector is presented. The maximum
stresses are presented. The stress distributions are complex and it is not possible to derive

a similitude rule even though some areas of constant stresses are observed.
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Chapter 6

Progressive Failure of Triaxial Woven Fabric

(TWF) Composites

In this chapter, progressive failure of Triaxial Woven Fabric (TWF) composite panels
subjected to uni-axial extension is studied numerically and experimentally. In numerical
study, TWF panel is discretized respectively using linear and nonlinear Super-Finite-
Elements proposed here. Tensor polynomial progressive failure procedure is employed
with maximum stress criterion, Hoffman criterion and Tsai-Wu criterion. Two
displacement-loading cases are considered. The first and ultimate failure loads, maximum
- extension displacement, locations and modes of failure are estimated and compared with

experimental data.

6.1 Introduction

Progressive failure analysis can predict the initiation and growth of damage and is
essential for evaluating the performance and reliability of TWF composite structures. It is
recognized from progressive failure simulation that TWF composite structure can

develop local failures or exhibit such local damage as matrix cracks, fiber breakage,
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fiber/matrix debonds, and delaminations under normal operating conditions, and that
such damage can contribute to the ultimate failure of the structure. The ability to predict
the initiation and growth of such damage is essential for predicting the performance of
TWF composite structures and developing reliable, safe designs that exploit the
advantages offered by TWF composites. Progressive failure simulations can reduce
testing requirements in composite structures. Progressive failure analysis is a feasible tool

for predicting failure in composite structures.

There are a lot of studies on plain-woven fabric composites. Most of the studies on such
composites have focused on predicting their thermo-elastic properties as seen in Chapter
1. Studies relating to prediction of their strength and failure modes are relatively few [80-

83].

In this chapter, progressive failure of TWF composites is studied numerically and
experimentally. In numerical study, TWF panel is discretized respectively using linear
“and nonlinear Super-Finite-Elements proposed here. This nonlinear Super-Finite-
Elements are actually Superelement 2 proposed previously but with consideration of
large displacements. In analysis, lamina damage modes such as matrix cracking, fiber-
matrix shear failure, and fiber failure are modeled by degrading the material properties.
Tensor polynomial progressive failure procedure is employed with maximum stress
criterion, Hoffman criterion and Tsai-Wu criterion. Two displacement-loading cases are
considered. The first and ultimate failure loads, maximum extension displacement,

locations and modes of failure are estimated and compared with experimental data.
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6.2 Experimental Work

Tensile tests were performed for strength and Young’s modulus of TWF composites.

Details on this experiment were stated in Chapter 3.

Strengths were determined from the stresses when ultimate failure occurs. Tensile moduli
were determined from the slope of the linear portion of the stress-strain curve. It should
be noted that strain-stress curve is not linear. Figure 6.2 shows a typical strain-stress
curve for the TWF composites when loading is along the longitudinal direction. This
curve was obtained from specimen C4 (Table 3.4). The initial slope is smaller than the
slope at larger stress. This can be explained by the straightening of the undulation of the

yarns. The yarns become stiffer as they are more and more straightened.

Table 3.4 shows the longitudinal strength and Young’s moduli of the TWF specimens.

The measured strength values of various specimens distribute between 216.9 MPa and

 261.0 MPa. Average modulus is 239.4 MPa.

Table 3.5 shows the results from the transverse tensile tests. Two types of specimens
were used. Specimens of series B have width of 50 mm while specimens of series E have
width of 43 mm. Specimens with larger width show larger strength (108.9 MPa) as
compared to specimens with smaller width (100.6 MPa). This is because for a certain
length, wider specimens would have more clamped yarns (a clamped yarn is a yarn that
has both ends clamped by the grips) than narrower specimens. As such, wider specimens

would tend to have larger strength.
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6.3 Progressive Failure of TWF composites

Progressive failure analysis is based on the assumption that the damaged material could
be replaced with an equivalent material having degraded properties. The effects of matrix
and yarn failure are taken into account in accordance with state of stresses and failure
criterion. The TWF composite is a plain single layer woven fabric, as shown in Figure
6.1. It can actually be obtained by assembling many unit cells. A unit cell consists of 6
yarn parts and 3 crossover parts, shown in Figure 6.3. A yarn part is a single curved
lamina and a crossover part is constructed of three laminas (interlamina is a resin
lamina). So a lamina can be considered as a primary failure unit. Since a yarn part (a
single lamina) is very thin and does not have any traction on its top and bottom surfaces,
stresses 613, 023, O3 in material principal axes are very small in comparison with stresses
o1, G2, O12. Stresses o1, 02, 612 are expected to play important role in the failure of a yarn
part (a lamina). These three in-plane stresses are used in the selected failure criterion to
predict the failure of a yarn part (a lamina). For a crossover part with 3 laminas, there is
no traction on its top and bottom surfaces. For each lamina, stresses G3, 023, G3 in
material principal axes are very small in cbmparison with stresses 61, 6,, o12. Stresses o,
o2, and oy play important role in the failure of each lamina. They are used in the selected
failure criterion to predict the failure of each lamina. The lamina failure is said to have
occurred when the state of stress at any point within the lamina satisfies the selected
failure criterion. In analysis, the calculation of stresses is done at the Gauss points. For
element E1 (Figure 6.3), 4 by 4 by 2 Gauss points are applied for integration. Element E2

is integrated using 3 by 3 by 2 Gauss points for each lamina. When the state of stress at
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any Gauss point on a lamina satisfies the selected failure criterion, that lamina has failed.
The first failure refers to the situation at which one or more than one laminas fail first as
the load is increased. After the first failure, the progressive failure analysis is carried out
using tensor polynomial failure procedure [78,79,87]. In this study, for the development

of the strength model it was assumed that the TWF panel is initially free of damage.

6.3.1 Tensor polynomial progressive failure procedure

At each load step, Gauss point stresses are used in the selected tensor polynomial failure
criterion. If failure occurs at a Gauss point in a lamina, a reduction in the lamina stiffness
is introduced in accordance with the mode of failure that causes the changes in the

overall laminate stiffness. Following failure indices are used to determine failure modes.

H, =F0, +Fx1012
H, = F,0, + Fy,0; (6.3.1)

_ 2
Hy = Fg0y

Notations F; and F; in above expressions are defined in tensor polynomial failure
criterion. Failure indices (H;, Hy, Hg) represent the weight of various principal stress
terms in the tensor polynomial failure criterion and the largest H; term is selected to
represent the dominant failure causing stress and the corresponding mode of failure. For
example, if H; is the largest then o, is the failure causing stress and the corresponding
failure mode is fiber failure. Similarly, H, corresponds to the transverse mode of failure
(failure due to in-plane normal stresses transverse to the fiber direction) and He

corresponds to T, (in-plane shear) mode of failure. After the identification of the mode of
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failure, the corresponding elastic modulus of the failed lamina is reduced to a negligible
value. The fiber mode of failure corresponds to modulus E; and v; the transverse mode

of failure corresponds to Ej, v2; and the in-plane shear mode of failure corresponds to

Gi2. An outline of the steps required is as follows:

(1) At each load step, calculate the stresses at the middle of each layer at each of the

Gauss points.
(2) Transform the stresses to coordinates of the material property symmetry.
(3) Compute failure indices, H;, H, Hg.

(4) If failure occurs reduce the appropriate lamina elastic constants to zero and

recomputed laminate stiffness and restart analysis at the same load step.
(5) If no failure occurs, proceed to the next load step.

(6) Final failure is said to have occurred when the TWF panel is no longer able to

carry any further increase in load.

6.3.2 Tensor polynomial failure criteria

The most general polynomial failure criterion, as proposed by Tsai (1984), contains

linear, quadratic and higher order terms of stresses and is expressed in in-plane type as

Fo, + F,0,+2F,0,0,+F, 0] + F,0: +F,0. <1 or H +H,+H,6<1(632)
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where F;, F;; (1, j=1,2,6) are the strength tensors of the second and fourth rank. 6, 6, are
the normal stress components; Os is the shear stress component in the principal material
directions 1 and 2 (the subscript 1 referring to the fiber direction). It is a
phenomenological failure criterion that predicts the imminence of failure but says
nothing about the mode of failure. It is the simplest presentation of the failure criterion
that can fit the data reasonably well. In view of the significant scatter of the failure test
data, cubic of higher order approximation are not employed. Particular cases of the above
criterion differ from one another by their strength tensors F; and Fj; (i, j=1‘, 2, 6). There
are various degenerate cases of this criterion such as maximum stress criterion, maximum
strain criterion, Tsai-Hill criterion, Hoffman criterion, and Tsai-Wu criterion, etc. In this
thesis, maximum stress criterion, Hoffman criterion, and Tsai-Wu criterion are applied in

progressive failure analysis. These criteria are introduced in detail below.

(1) Maximum stress criterion:

Maximum stress criterion (PMSC) is an independent failure criterion. It is based on the
fact that there is no interaction between modes of the failure. As for this criterion, the
failure 1s said to have occurred when stresses in principal material directions are greater

than or equal to the respective strengths. Tensor polynomial form of this criterion can be

obtained by using following tensor strength factors



Xf
1
k=
X X
1
Fs _F;

The remaining strength tensor terms are zero.

In the abové expressions, X;, and Y, are the tensile strengths

(6.3.3)

of the lamina along and

transverse to fiber directions. Xc and Yc are the corresponding compressive strengths. T

is the shear strength of lamina in planes 1-2.

(2) Hoffman criterion:

ol
Xl
1
F, _X,X ;
1
IT_'66_F;

The remaining strength tensor terms are zero.

(3) Tsai-Wu criterion:
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Xf XC K YC
1 1
Fo=yys Fcyp (6.3.5)

The remaining strength tensor terms are zero.

6.4 Linear Progressive Failure

6.4.1 Linear Finite Element Model

In this study, Superelement 2 is first used to predict the progressive failure of TWF
panels subjected to uni-axial extension. Linear progressive failure procedure flowchart is
shown in Figure 6.4 (a). vao loading cases are considered. The first and ultimate failure
loads, maximum extension displacement, locations and the modes of failure are estimated

and compared with experimental data.

Loading cases 1 and 2

In progressive failure analysis, the two loading cases (case 1 and case 2) are considered.

Case 1 is for longitudinal loading and case 2 is for transverse loading (Figure 6.5).

Figure 6.6 shows the FE model for the model in case 1. This FE model has 12
superelements along X direction and 6 superelements along Y direction. At region B of
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the FE model, the deflection in Z direction w of all the nodes is fixed (w = 0) and the
displacement u in X direction is assigned a value to simulate displacement tension load.
At region D, displacements w and u of all nodes are fixed (w = u = 0). Displacement v in
Y direction at node 1 is fixed (v = 0) so as to remove the rigid body motion of the FE
model. Note that due to the jagged nature of the elements, there is no clear line where
loads are applied or where the constraints are fixed. Rather, there 1s a region within
which all nodes would be subjected to the same condition of loading or fixity. For
example, within region B, all nodes that fall within this region wouid be subjected to the

same uniform displacement as mentioned above. Young’s modulus of the TWF were

determined by

E, = ) (6.4.1)

where F is tension force loaded at region B of the panel in X direction, h is the nominal
thickness, W is the nominal width of the TWF panel and & is the strain along X
direction. Force F is obtained by adding reaction forces in X direction at all nodes at
region B. Strain €, = u (X direction displacement of node at region B) /L. L is distance

between regions B and D, shown in Figure 6.6.

For case 2, the FE model is shown in Figure 6.7. The FE model has 6 superelements
along X direction and 12 superelements along Y direction. As shown in Figure 6.5, at
region A of the FE model, the deflection w of all the nodes is fixed (w = 0) and the
displacement v in Y direction is assigned a value to simulate displacement tension load.

At region C, displacements w and v of all nodes are fixed (w = v = 0). Displacement u in
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X direction at node 1 is fixed (u = 0) so as to remove the rigid body motion of the FE

model. Young’s modulus of the TWF were determined by

E, = (6.4.2)

Where F is tension force loaded at region A of the panel in Y direction. Force F is
obtained by adding reaction forces in Y direction at all nodes at region A. Strain €y = v

(Y direction displacement of node at region A) /W.

Geometry and material properties of TWF composites

In analysis, the following geometry and material properties of TWF composites are used.
Table 6.1 lists the geometric parameters of the unit cell measured by checking the
microscopic photographs of TWF composites. Table 6.3 shows the effective elastic
properties of the impregnated yarn obtained by using the Strength-Of-Materials model
(SOM) and using fiber and matrix properties of Table 6.2 and the fiber volume fraction
Vi = 0.695. Table 6.4 gives the strengths of fibers, matrix, and the impregnated yarns of

TWF composites.
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Table 6.1: Geometric Parameters

Geometric parameters Measured values
Yarn thickness (mm) 0.07

w1l (mm) 0.85

w2 (mm) 1.10

Table 6.2: Elastic properties of fibers and matrix

. Gur Grr p
Material EL (GPa) Er (GPa) (GPa) (GPa) VLT g m/cm3)
Carbon Fiber 500.0 40.0 24.0 14.3 0.26 2.10
Epoxy Resin 35 35 1.3 1.3 0.35 1.17
Table 6.3: Elastic properties of the impregnated yarn of TWF composites
: EL Er Grr Y
Material ooy (GPay  (GPa) T T VT (gmiem?)
Carbon/epoxy  338.57  12.40 5.61 0.287 0437 0.695 1.8164
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Table 6.4: Strength properties of impregnated yarn of TWF composites

Strength Yarn Matrix

roperties (MPa) (MPa)
X 3400 68.9
X | 3400 68.9
Y, 68.9 68.9
Y. 68.9 68.9
S 86.9 86.9

In Table 6.4, X, and Y, are the tensile strengths of yarn along the fiber direction and the
transverse to the fiber direction. X. and Y. are the corresponding compressive strengths.

S is shear strength of yarn in plane 1-2.

6.4.2 Results and discussion of linear failure analysis

Figure 6.8 shows the curves of nominal stress o and strain &, of 12 by 6 panel in loading
case 1 and experimental data. These curves are calculated using maximum stress
criterion, Hoffman criterion and Tsai-Wu criterion. Figure 6.9 shows the curves of

nominal Young’s modulus E, and strain g, of 12 by 6 panel in loading case 1. ‘

In Figure 6.8, it is observed that numerical results coincide well with the experimental
data at low loads. As load increases, the difference between them becomes large because

the experimental curve has a trend to be gradually stiffened. This situation can be
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explained by the straightening of the undulation of the yarns. The yarns become stiffer as
they are more and more straightened. This means that progressive failure of TWF panel is
a typical structural nonlinear behavior. The current progressive failure procedure is
unable to model this situation because the nonlinearity of the matrix and yarn is not taken
into account in this study. The current finite element model (superelement 2) used in this
study is linear element and do not allow for effects of large displacements and updating
structure in analysis. It is not suited for largely deformed structural analysis. It is unable
to describe this structural stiffening behavior of the TWF panel. That makes the
numerical solution more and more different from the experimental data as load increases.
Therefore, a nonlinear element model has to be developed to deal with TWF structural

stiffening problems.

In Figure 6.9, as load increases and some failures occur, Young’s modulus E, reduces a
little till ultimate failure occurs. At ultimate failure, Young’s modulus E, descends

quickly.

Figure 6.10 shows the curves of nominal stress oy and strain &, of 6 by 12 panel in
loading case 2, using three criteria. Figuré 6.11 shows the curves of Young’s modulus E,
and strain €, of 6 by 12 panel in loading case 2. In Figures 6.10 and 6.11, there is a small
difference between the curves obtained using three failure criteria. The differences from
case 1 are, first failure load and ultimate failure load in Y direction are much less than
ones in X direction, and those are only about a third as much as ones in X direction.
During loading after first failure, the modulus E, has a decline at nominal strain €y

=1.6x107 (see Figure 6.11). That is because there are more failures occurring at this load.
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6.5 Nonlinear Progressive Failure

6.5.1 Nonlinear finite element model

There is an essential difference in mechanical behavior (strain-stress curves) given
respectively by the linear results and experimental data (see Figure 6.8). The
experimental curve has a trend to be gradually stiffened. As load increases, Young’s
modulus gradually increases. This situation results from the straightening of the
undulation of the yarns. The yarns become stiffer as they are more and more straightened.
However, the curve from the linear results does not have this situation. As such, as load
increases, Young’s modulus from FEM gradually decreases. This is because
Superelement 2 is linear element and involves small displacement assumption. All
displacements and stresses are calculated based on originally undeformed undulated
~ yarns. As loéd increases, yarns are straightened more and more. But the displacements
are still calculated based on originally undeformed undulated yarns rather than the
updated structure. That results in the difference between the calculation and the
experiment. So Superelement 2 can only model the small deformation deviating from the
originally undulated yarns and cannot model the straightening of the undulation of the

yarns. That indicates that Superelement 2 does not exactly model the failure procedure of
TWF panels with effects of large displacements. Therefore, it is necessary to develop a

nonlinear element model to deal with large displacement TWF problems.

In this section, a nonlinear superelement is developed for large deformation analysis of

TWF composites. In this superelement, geometrical nonlinearity is considered. The
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stress-strain relations of yarns and matrix include the components of squared derivatives
of displacements. This superelement is applied on a unit cell. It is constructed of six 16-
node nonlinear isoparametric elements and nine 8-node nonlinear isoparametric elements.
A 16-node nonlinear isoparametric element is used to model a yarn part. Three 8-node
nonlinear isoparametric elements are combined together to model a crossover part. The
assembly is done by the pseudo element technique. After internal node DOF
condensation, this superelement has 15-node and 12 DOFs at each node. Details on
formula of 16-node nonlinear isoparametric element and 8-node nonlinear isoparametric

element can be seen in section 6.5.2.

In this nonlinear superelement model, large displacements and small strains are taken
into account. Total Lagrange description is applied. Newton iterative method is used to
solve for nonlinear algebraic equations. It is an iterative procedure of geometry update
and linear solutiqn. In analysis, loading and boundary constraints are imposed by using
- Lagrange multiplier method. It is noted that this superelement is actually Superelement 2

with consideration of large displacements.

In nonlinear progressive failure analysis, two displacement-loading cases are considered
(see Figure 6.5). The geometry, material properties and strength of TWF composites
listed in Table 6.1, 6.2, 6.3 and 6.4 are used. The geometrical nonlinearity of the matrix

and yarns is taken into account and the model updates the geometry of the TWF panel at

each load step. Nonlinear progressive failure procedure flowchart is shown in Figure 6.4

(b).
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6.5.2 16 node nonlinear isoparametric element for a yarn part

A total Lagrange formula is used. Large displacement and small strain are considered.

(1) Displacement fields

=[Na}

T < =
[
T
=
W_J‘\
¥ =

*
=

where

(2) Nonlinear strain-displacement relations

(6.5.1)
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where {8L} is linear part of strain. {EN} is nonlinear part of strain.

(6.5.3)

{eL}=§[B,.J{d,.}=[B1{d}
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First and second variations of the nonlinear part of strain are given by

ey t=[H6{g} (6.5.5)

ey t=olHble} (6.5.6)

where
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(3) Total potential energy:

(6.5.7)

(4) First and second variations of total potential energy:

(a) Linear part:
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U, =4 fle.lolle b= a4 faT ol e 659
U, = a{d}f[ J[BP[Q][B]dvj{d} 659)

U, = 5{d}’[ 1 [Q][B]dv}é‘{d} (6.5.10)

(b) Nonlinear part 1:

Uy = J.{SL}T [Q]{gN}dV (6.5.11)

Uy, = Ié{gL}T [Q]{gN }d""’ I§{€N }T [Q]{“:L}dv

(6.5.12)

- slaf (4 T Il sk Jah ot 4 I Tl

52UN1 = JJ{SL }T [Q]d{gzv }dv + J5{5N }T [Q]é{gL }dv + J‘é-z{gN }T [Q]{gL }dv
- a{d}f[ fis [QJ[H][swvja{d}+ a{d}f[ JisT T [QJ[Bwv]a{d}w.s.ls)
+old }T[ 5Tz, 1[le]dvja{d}

where
{UL } = [Q}{EL }
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(c) Nonlinear part 2:

1 T
Uy, =7 Jlen ) [ONey Jav (6.5.14)
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where
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(6.5.17)

From second variation of total potential energy, tangent stiffness matrix can be obtained

as follows

j[B]T[Q][B]va+

v

fleT [Ql[H][s]dvj [ fisT [H]T[Q][B]va ( fis o, ToTsk

v

[sTaT [Ql[H][s}dv} [ 5T, 1LQ][s]dv}

L\V v

(5) Finite element equilibrium equations and Newton iterative formula
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With element stiffness matrix and tangent matrix, finite element equilibrium equations

and Newton iterative formula can be given as follows

(a) Finite element equilibrium equations:

[kKa}={p}

where load vector {p} is obtained from work variation & w=5{d} {p}.

(b) Newton iterative formula:
I&," fadm}={p}- k"]
fa}={an}+{par

Convergence criterion:
faam {adm™ }< e

where m is iterative number. E is a small positive value.

(6.5.19)

(6.5.20)

(6.5.21)

(6.5.22)

A cross part is constructed of three layers. Each layer can be modeled by 8 node

nonlinear isoparametric element. Formulas of 8 node nonlinear isoparametric element are

similar with ones of 16 node nonlinear isoparametric element. In above formulas, if

number 16 is replaced with number 8, we will obtain 8 node nonlinear isoparametric

element for any layer of a cross part.
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6.5.3 Results and discussion of nonlinear failure analysis

Figure 6.12 shows nonlinear response curve (stress ox vs strain &) of 12 by 6 panel in
loading case 1 and expeﬁméntal curve. This response curve is calculated using the
nonlinear finite element (named NFE) without consideration of failure criteria. It is seen
that the response curve has a stiffened trend like the expefimental curve. As load
increases, the panel is gradually stiffened and its Young’s modulus increases gradually.
The response curve coincides very well with the experimental curve. That shows the

nonlinear FE suggested here can fully model the real deformation process of TWF panel.

Table 6.5 lists the progressive failure results of 12 by 6 panel in loading case 1 and
experimental data. In Table 6.5, first failure load is load intensity (i.e., nominal stress o)
applied on the panel when the first failure of the panel takes place. Ultimate failure load
is maximum load intensity the panel can bear. Location of first failure includes the
number of three items: superelement (Se), element (El), and layer. Those indicate at
which superelement, at which element, and at which layer first failure occurs. The
elements of a superelement are numbered as shown in Figure 6.3. Mode of first failure is
failure mode when first failure happens during loading. As stated before, there are three
failure modes. Failure mode 1 is fiber failure because o is the failure causing stress.
Failure mode 2 corresponds to the transverse mode of failure (failure due to in-plane

normal stresses transverse to the fiber direction), failure model 6 to 1> (in-plane shear)

mode of failure.

Figure 6.13 shows the curves of nominal stress oy and strain g of 12 by 6 panel in

loading case 1 and experimental data. These curves are calculated using NFE with
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maximum stress criterion, Hoffman criterion and Tsai-Wu criterion. It is observed that
different from linear results (Figure 6.8), in entire loading procedure these curves have
good agreement with the experimenf curve. The ultimate failure loads obtained using
three failure criteria are closer to the experimental failure load. For mode of first failure,
they are all the transverse mode of failure. The first and ultimate failure loads using
Hoffman and maximum stress criteria are less than the ones using Tsai-Wu criterion. The

latter one is closer to the experiment.

Figure 6.14 shows the curves of nominal Young’s modulus E. and strain & of 12 by 6
panel in loading case 1. It is observed that there is big difference between linear and
nonlinear results. As load increases, Young’s modulus E, gradually increases to some
value and then decreases. At ultimate failure, Young’s modulus E, begins descending
quickly. In Figure 6.13, the TWF panel behaves almost linearly up to its maximum load
carrying ability and then loses its load carrying ability quickly. That means before
- ultimate failure, the TWF panel can still work like before first failure occurs. The TWF
panel strength should be decided by ultimate failure rather than first failure. From Table
6.5, it is estimated that ultimate failure load is about 2 times as much as first failure load.
If ultimate failure load were considered to determine the strength in TWF structural

design, great potential TWF load carrying ability would not be wasted.
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Table 6.5: Nonlinear progressive failure results of 12 by 6 panel in case 1

Failure First failure Location ‘of first Mode of | Ultimate failure
Criteria load (N/m2) failure (Se, El, Layer) | first failure load (N/mz)
Hoffman | 8.0227x10’ (37,5, 1) o, 1.7718x10%
PMSC 1.0376x10° (13,4, 1) o, 1.8996x10°
Tsai-Wu | 1.2837x10° (13,4, 1) o, 2.3609%10°
Experiment - - - 2.394x10°

Table 6.6: Nonlinear progressive failure results of 12 by 6 panel in case 2

Failure First failure Location of first Mode of | Ultimate failure
Criteria | load (N/m?) | failure (Se, El, Layer) | first failure | load (N/m?)
Hoffman | 3.3937x10’ (7,7, 1) o, 7.4361x107
PMSC | 3.3937x10’ (7,7, 1) o, 7.4518%107
Tsai-Wu | 3.3937x10’ (7,7, 1) o, 7.4518x10’
Experiment - - - 10.89x10’

Figure 6.15 shows the curves of nominal stress oy and strain &, of 6 by 12 panel in
loading case 2, using three criteria. Figure 6.16 shows the curves of Young’s modulus Ey
and strain g, of 6 by 12 panel in loading case 2. Table 6.6 lists the nonlinear progressive
failure results of 6 by 12 panel in loading case 2. In Figures 6.15 and 6.16, there is a
small difference between the curves obtained using three failure criteria. For first failure,
they are all transverse modes of failure. Initial load step shares the same value and

ultimate load step has a little difference. The ultimate failure load is about 3.1 times as
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much as the first failure load. Compared with experiment data, there is round 20%
difference for ultimate failure load (See Table 6.6). After first failure load, the TWF
panel still has great potential load carrying ability. The difference from case 1 is, whether
first failure load or ultimate failure load in Y direction is much less than ones in X
direction, only about a third as much as ones in X direction. During loading after first
failure, the modulus Ey has a decline at nominal strain &, =1.5x107 (see Figure 6.16). It is
because there are more micro-cracks occurring at this load. That leads the modulus E, to

begin an obvious decline at this load.

6.6 Conclusions

Progressive failure of TWF panels subjected to extension loading is investigated
numerically and experimentally. In numerical study, TWF panel is discretized
respectively using linear superelement 2 and nonlinear Super-Finite-Elements proposed
here. Hoffman, maximum stress and Tsai-Wu failure criteria are used to predict the
failure load and failure mode. There are several conclusions that can be drawn from the

analytical and experimental results.

(1) Numerical results from the nonlinear super-finite-element model coincide with the
experimental data. It appears that the nonlinear super-finite-element model along with the

progressive failure procedure suggested herein are feasible for the failure analysis of

TWF composites.

(2) The curve of nominal stress vs. strain of TWF panel has a trend to be gradually
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stiffened. Young’s modulus changes during loading. As load increases, they gradually
increase and then decrease quickly because of ultimate failure. This situation is proven by
the experiment and the nonlinear failure procedure. This situation can be explained by the

straightening of the undulation of the yarns. The yarns become stiffer as they are more

and more straightened.

(3) The linear failure procedure is unable to model this situation because the geometrical
nonlinearity of the matrix and yarn is not taken into account. It is not applicable for the

failure analysis of TWF composites.

(4) In numerical study, it is found that there is a small difference between the curves
obtained using three failure criteria. Tsai-Wu criteria may give better results than

Hoffman and Maximum stress criteria.

(5) Before ultimate failure, the TWF panel can work like before first failure occurs.
~ Ultimate failure load is about 2 to 3 times as much as first failure load. After first failure,

the TWF panel still has great potential load carrying ability.
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Figure 6.1: Triaxial woven fabric
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Figure 6.2: Stress-strain curve of the TWF in the longitudinal direction
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Figure 6.3: A unit cell (superelement)
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Figure 6.4: Program flowchart of linear and nonlinear failure procedures
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Chapter 7

Contributions and Suggestion for Future

work

In this thesis, following have been developed:

® Two finite element models (Superelement 1 and Superelement 2) are developed
for prediction of mechanical behavior of TWEF composites. Nonlinear finite
element model is also developed. Actually it is Superelement 2 with

consideration of large displacements.

® FElastic constants of the TWF composites are evaluated using a series of
experiments and finite element analysis. The effects of sizes and aspect ratios of
TWF panels on their Young’s modulus and Poisson’s ratio are studied using

finite element analysis.

® Thermal deformation behavior of TWF composites is modeled using

Superelement 2. Thermal deformation behavior and Thermal Expansion
Coefficients (TECs) of the TWF composites are evaluated. Effects of the aspect

ratios and size of the panels on the TECs are studied.

® The mechanical behavior of a sector of the reflector subjected to uniform

194



pressure 1s approached by modeling several different-scale sectors using Super-

finite elements.

® Progressive failure of the TWF composite panels subjected to uni-axial
extension is studied numerically and experimentally. In numerical study, TWF
panel is discretized respectively using linear and nonlinear Super-Finite-
Elements proposed here. The first and ultimate failure loads, maximum
extension displacement, locations and modes of failure are estimated and

compared with experimental data.

This above-mentioned research work can also be checked in a few publications [88-99].

Following future works are suggested:

® Develop practical experiment schemes to verify thermal deformation behavior

and to evaluate Thermal Expansion Coefficients (TECs) of the TWF composites.

® Develop hybrid superelements to give more accurate stress distribution of the

TWF composites subjected to loads.
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