Meta—CLI Configuration Model .

for Network Device Management

Rudy Deca

A Major Report,
in

the Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science

Concordia University
Montreal, Quebec, Canada

January 2003
(©Rudy Deca, 2003

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20787-1
Our file Notre référence
ISBN: 978-0-494-20787-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Meta—CLI Configuration Model
for Network Device Management

Rudy Deca

The astounding Internet revolution brings more and more new and sophisti-
cated technologies and services, like : MPLS, VPN, QoS, RSVP, DiffServ, VLANs,
bandwidth-on-demand, VoIP, etc. Moreover, the sheer number of elements in a net-
work is skyrocketing. For instance, an ISP may have to deal with hundreds of routers
and thousands of interfaces. The diversity and heterogeneity of the network elements,
domains, hierarchies, routing technologies, services and management policies gives yet
another dimension to the problem.

This manifold complexity poses new challenges to the network engineers and spe-
cialists. The error-prone and slow manual device configuration process involves risks
like bringing the elements or the systems into undefined states or rendering them
unreachable from the rest of the network and is ineffective when faced with the net-
work’s fast-growing size and heterogeneity. In this context, an integrated fabric of
high- and low-level, complementary approaches is demanded, involving global- and
domain-level, business policies, automated configuration, combined with outsourced
policies, filtering techniques, fine-grained instance- or device-specific configuration
approaches and policy error and conflict avoidance and resolution mechanisms.

The report presents a configuration model which translates the manual command
line information into meta-CLI constructs and allows the manipulation and composi-
tion of configurations, features, services and parameters, in order to facilitate service
activation, support, invoking and monitoring, policy integration at different abstrac-
tion levels, allow better control, validation and verification, optimisation, operational
efficiency and a more reliable, scalable, flexible and cost-effective configuration of the

network resources and traffic.

i

Acknowledgements

First of all, I would like to thank my mentor and co-supervisor from the Université
de Québec & Montréal, Dr. Omar Cherkaoui, for his generous patience, invaluable
step-by-step guidance and support especially in the domains of telecommunications
and internetworking.

I wish to give all my gratitude and credit to my mentor and co-supervisor from
the Concordia University, Dr. Gregory Butler, for his exigent perspective, inspired
advices and valuable guidance especially in the fields of software development and
methodology.

Last but not least, I would like to mention Mr. Elmi Hassan for his support when
I was using the network devices at UQAM’s Networking Laboratory. In addition, I
wish say that I had the privilege of using the equipment and documentation of the

Laboratoire de Téléinformatique.

v

Contents

1 Introduction - 1
2 The Problem 10
3 State of the Art 19
4 Meta—CLI Interface 41
5 Meta—CLI Model Concepts 49
6 CLI/Meta—CLI Modelling 88
7 Case Study: VPN Service Configuration 98

8 Conclusions 122

List of Figures

Figure 4.1 ..ottt it iitittietitiennsenanenennanns page 42
Figure 4.2 ... vttt i it e iia ittt page 43
Figure 4.3 ..ot i ittt i ittt i i, page 47
Figure 4.4 ...ttt tittisetrrarieettannnnenns page 48
Figure 4.5 ...ttt it ittt page 48
T = T 700 page 72
Figure 5.2 ...t it ittt it i page 73
Figure 5.3 ...ttt ittt iiitisetrtieeetrtnnneneans page 73
Figure 5.4 ..ot i it i ittt e page 74
Figure 5.5 ..o i i it i it e page 78
Figure 5.6 ..ottt ittt page 79
Figure 5.7 .ottt it i it it it e i a e page 79
Figure 5.8 ..ttt i it e e it a e, page 81
Figure 5.9 .. ittt i i it i, page 83
Figure 5.10 ...uiiinniiiiiii ittt eiaaieianaaaaans page 84
Figure 5.11iiiiiiiiiiiiiiiiii i iiiiiiiiiiieiitiitienaas page 85
Figure 5.12 ...ttt ittt ittt i, page 85
Figure 5.13 ...ttt ittt itititestettneaeernnnnaanns page 86
Figure 5.14ottt iitiiiiitieeretteneannns page 86
Figure 5.15iiiiiiiiiiiiiiiiiiiiiitiiiiiiiittestreratennennns page 86
Figure 7.1 ..o ittt ittt taiieeeranananaaanns page 100
Figure 7.2 ..o i i i i i i ettt page 101
Figure 7.8 ..o i i i ittt i ittt ettt page 102
Figure 7.4 .. i i it i ittt et ettt page 103
Figure 7.5 . oo i i i ittt page 104
Figure 7.6coiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieetteenanananns page 105

vi

Figure 7.7 «.uiiiiiiiiiiiiiiiiineietiiiissreesssissenaenseaaas. page 111

Figure 7.8 ..ttt ittt it titnseeenaerannannns page 112
Figure 7.9 ...t i it i i i it et page 112
Figure 7.10 ..ottt ittt ittt etieanessanennansanns page 113
Figure 7.10 ... iiiiiiiiiiiiieitneeenansosaserneseoesasnassnans page 113
Figure 7,12 .. i i it ittt tiaseia e page 114
Figure 7.1 .. oottt iiiiiieiietierennteentessnassanns page 114
Figure 7.14 ...ttt ittt itnieteeaneetnsasnannaaas page 115
Figure 7,15 ..ot ittt ittt ittt page 116
Figure 7.16oiiiiiiiiiiiiiiiiiirneiieeentasenntessasancannns page 117
Figure 707 . i i it i ittt e it ettt page 117
Figure 7.18 ..ttt ittt ieieiietsinetsatieransacannss page 118
Figure 7.10 ...ttt ittt iiieineciastnntstaaas page 119
Figure 7.20 ...ttt ittt ittt iieitanasnannnnns page 120
Figure 7,21 .. i ittt ittt it page 121

vii

List of Tables

1 Lo) L page 45
Table 5.1 ..ottt ieeetttasstrsesasasasacsasassasaas page 67
Table 5.2 ...t it it tiieteterntetantasnannns page 67
Table 5.3 ..o i i i ittt page 68
Table 5.4 .. .iuiiitiiiiiiii it itieeesteatasroereasssaasnsscnannns page 69

viii

Chapter 1

Introduction

The exponential growth of the Internet has revolutionised society and technology
and is one of the most interesting and exciting phenomena in networking. Two
decades ago, the Internet, which is the biggest network of networks, or internetwork,
was a research project that involved a few dozen sites and few people had access to
a network. Today, the Internet has grown into a production communication system
that reaches millions of people in all the countries in the world [8] and computer
communication has become an essential part of our infrastructure and culture [21].

Networking is used in every aspect of business, including advertising, production,
shipping, planning, billing, and accounting. Consequently, most corporations have
multiple networks. Schools, at all grade levels from elementary through post-graduate,
are using computer networks to provide students and teachers with instantaneous
access to information in online libraries around the world. Federal, state and local
government offices use networks, as do military organizations. In short, computer
networks are everywhere (8].

According to Network Wizards [47], as of year end 1996, the Internet linked over
60,000 networks, 9.5 million computers ! and 35 million users in 150 countries [21].
However, the size is not as surprising as the rate of growth. The Internet has experi-
enced exponential growth over two decades, i.e. has been doubling in size every nine

to twelve months.

!There were 162 million, in July, 2002 [47].

New and sophisticated technologies and network services, like : MPLS, VPN,
QoS, RSVP, DiffServ, VLANs, bandwidth-on-demand, VoIP, etc. are available on
the Internet and other networks.

In order to deal with the ever-increasing network management exigencies and to
perform configurations in a constantly changing system, some new models, mecha-
nisms and tools are required, to simplify, structure and abstract the configuration

process.

1.1 Network Configuration Problems

Some preliminary definitions are necessary to set up some aspects of the termi-
nology used in this chapter.

An internetwork is a collection of individual networks, connected by intermediate
networking devices, that functions as a single large network. Internetworking refers
to the industry, products and procedures that meet the challenge of creating and
administering internetworks [12]. The Internet is a network of networks, linking
computers to computers sharing the TCP/IP protocols [12].

The problems posed by the network configuration may be expressed in terms of
network complexity and from the point of view of the means to manage this com-

plexity.

1.1.1 Network Management

In this paragraph we shall expose some main issues related to the network man-
agement.

When speaking of network management, we have some more terms and notions to
define from the beginning. A configuration is a set of parameters in network elements
and other systems that determine their function and operation.

A network service is the behavior or functionality provided by a network, network
element or host [34]. A service involves: functions to be performed, information

required to perform these functions and the information made available by the element

to other elements of the system. Examples of policy actions might include relegating
the packet to best effort service, dropping packets, reshaping the traffic, or marking
non-conforming traffic in some fashion [36].

A network policy is a set of rules to administer, manage, and control access to
network resources [34]. Policy can be used to configure a “service” in a network or
on a network element/host, invoke its functionality, and/or coordinate services in an
inter-domain or end-to-end environment.

The policy-based management is the practice of applying management operations
globally on all managed elements that share certain attributes [24].

The complexity of the network has several aspects:

e number of elements : routers, switches, gateways, firewalls, etc. For instance,

the ISPs manage networks with hundreds of routers and thousands of interfaces;

e fast growing number and quality of the services demanded and deployed on the

networks;

e heterogeneity of the composing elements, domains and hierarchies, policies and

decision mechanisms; and
e the immense number of configuration commands and parameters.

In this context, configuration management has to tackle multiple challenges: con-
flicting services, domain policies and overlapping domain hierarchies, opposite effects
of business and domain policies and fine-grained, instance-specific configurations, mul-
tiple domain or element policies, multiple intra-domain sources of policy creation,
antagonist effects of outsourced and provisioned policies combination, possibility of
incompatible feature compositions, capable of bringing network systems or elements
into weird, indefinable states and possibly rendering them unreachable, the need for
error detection, avoidance and resolution mechanisms, for validation, verification and

automation of the configuration process.

Due to the network size and heterogeneity, the traditional ways of configuration
using the command-oriented configuration approach and, in particular, by sequen-

tially entering the commands, can create a bottleneck effect.

1.1.2 Command—Line Interface Limitations

The Command-Line Interface (CLI) is the basic means to configure the network
devices and consists of sequences of commands. These commands are text sequences
containing parameters and values, keywords, options and command switches that are
input by the user at the command line to the operating system of the network device.
Based on this commands, the state of the device changes according to the service or
policy intended by the user.

Some of the major network device vendors like Juniper, Nortel and Cisco compa-
nies provide the best-known CLIs used in the networking industry [37] [38].

There are several drawbacks encountered when using the CLI:

sequential operation of the CLI commands;

e context, argument and result dependencies of the commands, which may create
problems when a context, a parameter or another command are not entered

correctly during or before the command execution;
e default configuration information is not stored in the configuration files;
e default values are not known by the user;

e default values vary for the same command according to some options or switch

parameters;
e there may be no default for a command or parameter;
e context-dependent meaning of some commands, options and parameters; and

e the huge number of commands, options and parameters

1.2 Aim

The aim of this paper is to provide a solution to the problems posed by the trans-
lation of the configuration data into higher-level user interfaces that give the user
leverage over the manifold complexity of the network resources and traffic configura-

tion.

1.3 Motivation

The need for a business-oriented management requires high-level approaches and
modelling techniques, expressed in more functional and service- and policy-based user
interfaces. Since one of the main means to perform the configurations is the CLI, the
problems posed by its utilisation need to be solved in order to facilitate the global
task.

The configuration file is a text representation and the result of the device configu-
ration. It is a simple representation of the state of the device, which does not reflect
the entire information of the device. If we try to change the parameters or commands
directly in these files, we risk messing up everything, because of the CLI complexity,
which cannot be summarised by a simple text file. The file text does not have the
means to interact in depth with the device, it is just a snapshot.

A configuration process involves both service- or policy-specific information and
instance- or device-specific information. The business-oriented network-specific con-
figuration has a coarse granularity, involving sets of commands, whereas the instance-
and device-specific information has a fine granularity, involving parameters and com-
mands. Thus, for the latter case, we would need to access and process individual
parameters in a text file. Thus, changes in the text of the file should be verified by
means of complex algorithms and the resulting overhead would limit the efficiency of

this approach.

This shows that we need to construct a high-level model. A data model is, basically,
the rendering of an information model according to a specific set of mechanisms for

representing, organizing, storing and handling data. It has three parts [34]:

e 3 collection of data structures such as lists, tables, relations, etc.;

e a collection of operations that can be applied to the structures such as retrieval,

update, summation, etc.; and

e acollection of integrity rules that define the legal states (set of values) or changes

of state (operations on values).

An information model is an abstraction and representation of the entities in a
managed environment, their properties, attributes and operations, and the way that
they relate to each other [34].

Such a model would reflect all of the inherent complexity, architecture, commands
and parameters of the device and will be directly accessible to the user and will work
with the configuration files, just like the CLIL.

At the same time, a higher-level approach would provide sequences of commands
that belong to the same context, configure or activate a service or a feature, or rep-
resent a provisioned or outsourced policy. A function of the high-level model is to
eliminate some of the drawbacks encountered when using the CLI and the configu-
ration files. For instance, such an interface would spare the user the struggles with
the order and values of numerous options and parameters, the changing syntax of the
commands, confusions over the meanings of some commands, options and parameters
and focus instead on tasks, services, features and policies.

A higher-level approach would also offer more structural coherence and a better
combination of complementary techniques and methods, like the combination between
the provisioned and outsourced policies, the policy-specific and the instance-specific
configuration information, etc. As a consequence of the structuring and abstrac-
tion effort captured by a higher-level configuration model, the management policies
would become more efficient, reliable, optimised, and the networks would be easier

to upgrade, extend and support newer technologies and services.

6

1.4 Contribution of the Report

The report proposes a business-driven, goal-oriented configuration management
solution for the configuration of the network resources and traffic. The major focus
falls on some main network elements like the routers and LAN switches. Based on their
CLI, a configuration model is defined and its properties, attributes and operations
are explained.

The meta-CLI model is conceived to eliminate some of the drawbacks of using
CLI commands and to facilitate high-level, goal-oriented manipulations of the con-
figuration data. The model abstracts the CLI commands, modes, architecture, and
contexts and creates the framework for high-level constructs that allow the creation,
application, combination and validation of services and configuration features at net-
work and domain level, and provide a means for business-driven network management.

At the same time, the model retains all the flexibility and diversity of the CLI
commands, allowing fine-grained access and manipulation of the configuration data
like, for example, the instance- and device-specific configuration information. A
graphical user interface translates the CLI commands into meta-CLI structures that
are easier to manipulate, conserve the CLI architecture, contexts and modes and
give easy access to their options and parameters for manipulations and compositions
required during the configuration process.

The model takes into account the hierarchical architecture of the CLI modes and
contexts, the sequential character and the dependences of the CLI commands, the
way in which the default values of the commands and parameters are dealt with by
the startup and running configuration files, etc. The model proposes the following

approach :

e the CLI commands are translated into meta-CLI structures and the network
device configuration files are organised into tree constructs, which are easy to

manipulate;

e the hierarchic structure, the modes and contexts of the CLI are modelled such

that the dependencies and the CLI complexity are hidden by the model, while

7

the configuration process functionality and goal-oriented capability are facili-

tated and enhanced by the model’s user interface;

e the services and configuration features are translated into tree structures called

capsules;

e the business-driven management is performed at a high level, through compo-

sitions between the device configuration constructs and configuration capsules;

e this composition enables a fast, reliable, simple configuration process, since it
eliminated the CLI commands dependencies, the low-level struggle with the
syntax and quasi-infinite set of commands, parameters and values of the CLI;

and

e the granularity of the CLI commands is preserved; thus, the options and pa-
rameters are directly accessible through instance- or device-specific operations,
which enable the high-level balanced coordination of the network-specific and

instance- and device-specific configuration information.

The trees of the Meta-CLI Model provide structures that contain all of the in-
formation complexity of a network device configuration and allow both the device-
and instance-specific information manipulation through vertical, intra-configuration
(intra-entity) operations and the policy-based management through horizontal, inter-

configuration operations.

1.5 Layout of the Report

Chapter 2 presents the main features and problems of the command-line inter-
faces, configuration contexts and files.

Chapter 8 presents a couple of solutions to the problems mentioned in the
previous chapter.

Chapter / presents the functionality of the Meta-CLI-based interface.

Chapter 5 establishes the Meta-CLI Model, presents the architecture, structure,
rules and operations that apply to the configuration of the network devices.

Chapter 6 analyses the characteristics of the CLI and discusses the issues of the
translation of the CLI commands into meta-CLI constructs.

Chapter 7 illustrates the use of the Meta-CLI Model in a concrete example. The
services for MPLS and VPN are configured in a network using and composition
features provided by the Meta-CLI Model.

Chapter 8 concludes this report with an outline of its contributions.

Chapter 2

The Problem

Some of the most relevant aspects of the CLI limitations will be exposed in the
following paragraphs, since they are the basis of our analysis and design for a meta-

CLI model.

2.1 Size of the CLI

Some of the major network devices vendors like Cisco [2] and Juniper [37], have
created an extremely diverse line of routers and other network products. The CLI
is the unifying thread that runs through their product line : virtually all of their
products run it. This is both a great advantage and disadvantage. On one hand,
when you are familiar with one of the vendor’s devices, you are reasonably familiar
with them all. Someone using a small ISDN router in a home office could look at
a configuration file for a high-end router at an ISP and not be lost. He might not
understand how to configure the more esoteric routing protocols or High-end network
interfaces, but he would be looking at a language that was recognisably the same.

On the other hand, this uniformity means that just about everything has been
crammed into CLI at one time or another. CLI is massive — there is no other way
to say it and it has evolved over many years. The CLI is an extremely powerful and

complex operating system with an equally complex configuration language. There

10

are many commands, with many options and if you get something wrong, you can
easily take your company offline [19].

For instance, the command reference for Cisco IOS 11.3 is in excess of 1,000
pages. Cisco Systems Inc. publishes a software command summary for each of the
IOS versions and these books are as thick as the New York City telephone directory
[20]. The “Cisco IOS Software Command Summary” (referred to humourously as
the “pocket guide”) is 8.5” x 11" and approximately 900 pages long and it is just
a “summary”, not a fully detailed manual {18]. Moreover, there are probably over
100,000 pages of documentation of the Cisco IOS. The number of configurable options
is downright daunting [18]. To put it mildly, finding what you need to know is a
challenge [19].

2.2 Hierarchy of Modes and Contexts

One of the confusing things about working with a router is the notion of a com-
mand contert. Most commands are legal only in limited situations [19]. The configu-
ration modes and sub-modes provide the contezt in which certain commands are legal
and others disallowed. It is one way that the CLI tries to prevent you from making
mistakes when configuring a router [19]. For instance, the Cisco routers offer, by de-
fault, two levels of command access : non-privileged mode (in Cisco terminology user
erec mode or simply (user mode) and privileged mode (in Cisco terminology privileged
exec mode).

The user mode is where you get when you first connect to the router and it does
not allow you to edit or view configurations. The show commands are limited to a
few basic levels. From the user mode you can get to the privileged with the command
enable. In the privileged mode you can edit configurations. From the privileged
mode, you can access the global or configuration mode with the command configure
terminal. In the global mode the commands enter directly into the router’s configu-

ration and do not require any specific context.

11

From the global mode you can enter several modes, like: the interface mode, the
sub-interface mode, the line mode, the router mode, the named access list mode,
etc. (You return from these modes to the configuration and global modes with the
commands exit and end or Ctrl+Z, respectively.) Each one of these modes has its
own prompt on the command-line but it does not have it in the configuration files
[19]. Thus, the configuration files do not provide the context information.

Even more, the command-line prompt gives sometimes only limited and generic
information. For example, the prompt for the interface (conf-if)# is one and the
same for any interface, and we know that a router can have tens of interfaces.

Another context (called command context by [19]) is for interactive use. The user
does not need to be in the configuration mode in order to give commands for this
context. The commands in this context are not entered into the router’s configuration

and cannot be included into a configuration file that you upload.

2.3 Dependencies of the CLI Commands

There are a couple of dependencies that add to the complexity of the CLI archi-
tecture [27):

e context dependency;
e argument dependency; and

e result dependency.

2.3.1 Context Dependency

In this dependency relationship, the execution of a command is conditioned by
the context in which it is executed. This context is reached by means of executing a
hierarchically “superior” command and expressed by a specific prompt string.

For example, consider the following Cisco IOS command sequence that sets the

IP address of a router’s serial interface 0 :

12

Router (config) # interface Serial 0

Router (config-if) # ip address 131.119.251.201 255.255.255.255.0

Here, the command:

Router (config) # interface Serial ﬁ

will get the user into interface Serial 0 where he/she can then enter interface-specific

commands like :

lRouter (config-if) # ip address 131.119.251.201 255.255.255.255.0

2.3.2 Argument Dependency

In this kind of dependency, a command’s success depends on the correct number
and sequential order of its options and parameters. For example, in the following

command, (which generates a default route into an OSPF routing domain):

default-information originate always metric 20 metric-type 1 level—q

the argument level-1 is mandatory and, in consequence, its absence will fail the

command 1.

2.3.3 Result Dependency

The execution result of some command may be one of the following :

e error report string and prompt string, which means that the command failed for

Some reasoln;

e request for additional input, which shows that the system is pending awaiting

for some additional input; and

e prompt string, which shows that the execution was successful.

10On the contrary, arguments like: metric X X, metric-type Y are optional — which shows that

the command’s syntax may vary.

13

The success or failure of a command execution determines which schedules of sub-
sequent commands should be executed. The decision requires sometimes additional
command-line inputs for which the configuration workflow will be pending.

For example, when performing an exit command on a Juniper router, we en-

counter the following command dependence :

admin@host # exit
The configuration has been changed but not committed

Exit with uncommitted changes ? [yes, nol (yes)

which shows that an additional input is required because there are uncommitted

configurations.

2.4 CLI Commands Ambiguity

The CLI is not user-friendly; it has a cryptic command-line interface with thou-
sands of commands, some of which mean different things in different situations {19].
The command-line interface is not graceful and is sometimes confusing or ambiguous:
many commands do not do what you think they should, and the same command
verbs can mean completely different things in different contexts. (This inconsis-
tency is probably a natural result of evolution at an extremely large company with
an extremely large number of developers, but it does not make life any easier.)

For example, in the Cisco I0S, the default-information originate command,
which is available in the router submode, has different meanings, according to the

value taken by the protocol switch that follows the router command [22].

e when used for the BGP:

— syntax:
*x default—-information originate
* no default-information originate

— meaning:

14

* allow (or not) the redistribution of network 0.0.0.0 into BGP;

e when used for the EGP:

— syntax:

* default-information originate
* no default-information originate

— meaning:
* explicitly configure (or not) EGP to generate a default route;

e when used for the IS-IS:
— syntax:

* default-information originate [route-map map-name]

* no default-information originate [route-map map-name]

— where:

* route-map map-name : (Optional) Routing process will generate the

default route if the route map is satisfied;

— meaning:
* generate (or not) a default route into an IS-IS routing domain;

e when used for the OSPF
— syntax:

* default-information originate [always] [metric metric-value]

[metric-type type-value]l level-1 | level-1-2 | level-2

[route-map map-name]

* no default-information originate [always] [metric metric-value]

[metric-type type-value]l level-1 | level-1-2 | level-2

[route-map map-name]

— where:

15

x originate: Causes the Cisco IOS software to generate a default ex-
ternal route into an OSPF domain if the software already has a default
route and you want to propagate to other routers.

* always: (Optional) Always advertises the default route regardless of
whether the software has a default route.

x metric metric-value: (Optional) Metric used for generating the de-
fault route. If you omit a value and do not specify a value using the
default-metric router configuration command, the default metric value
is 10. The value used is specific to the protocol.

*x metric-type type-value: (Optional) External link type associated
with the default route advertised into the OSPF routing domain. It
can be one of the following values:

- 1 — Type 1 external route

- 2 — Type 2 external route
The default is Type 2 external route.

*x level-1: Level 1 routes are redistributed into other IP routing proto-
cols independently. It specifies if IS-IS advertises network 0.0.0.0 into
the Level 1 area.

x level-1-2: Both Level 1 and Level 2 routes are redistributed into
other IP routing protocols. It specifies if IS-IS advertises network
0.0.0.0 into both levels in a single command.

* level-2: Level 2 routes are redistributed into other IP routing proto-
cols independently. It specifies if IS-IS advertises network 0.0.0.0 into
the Level 2 subdomain.

* route-map map-name: (Optional) Routing process will generate the
default route if the route map is satisfied.

— meaning:

* generate (or not) a default route into an OSPF routing domain.

16

2.5 Default Values

There are cases when the default value of a command differs according to the
subcontext: The command default-metric, which is used to configure the default
metric has different default values in different contexts: router rip, router bgp, router

igrp, router eigrp, router ospf 2.

2.6 Configuration Files

An important part of working with a network device is the ability to retrieve,
review and save configuration files. It is important to know how a device is config-
ured in order to manage it. A network device maintains two different configuration
files : the startup-config and the running-config, which store (in the NVRAM
and RAM) the configurations loaded at startup and currently being used, respec-
tively. The changes made to the router take effect immediately and are made into
the running-config file. These changes are alsoc made in the startup-config file only
when they are manually saved [18].

The configuration files only show the “deviations” from the base configuration. If
a change of a value shows up in the configuration file, the value has deviated from the
base setup [18]. Thus, a lot of configuration information is not explicitly presented
in the configuration files.

For example, a Cisco router has Finger services listening on the router even
though Finger does not show up in the configuration file. The reason there is no
entry in the configuration files is that 7OS enables Finger services by default. You
would not get an entry in the configuration file unless you disabled F'inger services,

because having the service disabled is a deviation from the default setup.

?Besides, as in the previous example, it has also different parameters, when applied to various IP

routing protocols (BGP, RIP, IGRP/EIGRP, OSPF).

17

2.7 Negating Commands

The CLI uses a simple syntax for deleting commands, which consists in adding
a mno in front of the syntax that was used during the command creation, as the
example in paragraph 2.4 shows. This command can have sometimes unexpected
results, in the sense that it does not do what you think it should do. For instance, this
command can have a greater effect than predicted. For example, we might create a

filter preventing anyone using Telnet to connect to the host located at 200.200.200. 1

lRouter(config)# access-list 101 deny TCP any 200.200.200.1 0.0.0.0 eq 23|

The command :

IRouter(config)# no access-list 101 deny TCP any 200.200.200.1 0.0.0.0 eq 231

would negate not only the previous one, but every filter associated with access list
101. This infringes upon the basic rules of a user interface regarding the usability of
the undo type of operation, because you cannot just undo only what you did. The
logic behind this is that you cannot delete a specific entry but you can delete just the

whole group. (In fact, the latter command is equivalent to:

[Router (config) # no access-list 1011

because it ignores the subsequent parameters in the previous command.)

18

Chapter 3

State of the Art

Several approaches have been proposed for the policy-based configuration manage-
ment of the network devices. One way involves the network management protocols
and their information databases, like SNMP/MIB and COPS/PIB [29] [30] [31] [32].
Another way is based on the CLI and the transmission of the CLI commands with
protocols like Telnet, SSH, etc.

These approaches have both their strengths and weaknesses. Thus, the capabil-
ities of SNMP version 1 are over-passed by the Internet growth, whereas its subse-
quent versions did not have an impact on the Internet community. However, SNMP
MIB-based solutions have been provided that use scripts to materialise management
policies. The methods that control network devices using the CLI have a mainte-
nance problem, since the changing CLI commands syntax requires modifications in
the implementation.

The problem with most of these approaches is that they rely on pre-defined con-
figuration templates or models they lack the versatility and power of the CLI and

restrict the variety and freedom of the user’s configuration strategy.

3.1 COPS/PIB

An alternative to SNMP, the COPS protocol suggested by the IETF, although

has valuable features like:

19

e transaction management;
e security; and
e object-oriented message format.
has also drawbacks, like [27] [33]:
e its Policy Information Base (PIB) has been standardised more slowly;

e its SPPI (Structure of Policy Provisioning Information) language has been in-

completely defined;

e it is unclear whether more complex PRIDs (Policy Rule Instance Identifiers),

which identify all instances, are legal;

e there are no contert mechanisms for the instances, as in SNMP; Thus, each

instance of a rule class can exist once.

e the PIBs do not support evolution, because the install/remove/notify operations
are bound to a MIB class (which corresponds to a MIB table) and the COPS-
PR protocol only transfers sequences of values. Thus, changes like addition of

an element to a class (table) requires to completely redefine the whole table;
e there is no algorithm that can automatically translate between PIBs and MIBs;

o the advantages of COPS/PIB over SNMP/MIB do not outweigh the importance
of a single, consistent and coordinated management approach, based on the

existing SNMP; and

e it has not been widely accepted by network device vendors.

20

3.2 The Cabletron Solutions

Method and Apparatus for Defining and Enforcing
Policies for Configuration Management in
Communication Networks

The method and apparatus proposed by Malik et al. [25] [26] use the templates
for generating configuration records of network devices of a selected model type. A
database of models is provided, each model representing an associated network device

and including attribute values for the parameters of the associated network device.

3.2.1 Configuration Templates

Templates are used to screen a model in order to retrieve values for each of the
attributes and create a configuration record.

The configuration records may be stored in the configuration manager or other
storage device, and/or transferred to the preexisting model database for use by a

network management system in reconfiguring the associated network devices.

3.2.2 Database Models

The models of the database represents an associated network device and includes
attribute values for the parameters of the device. A configuration manager accesses
a set of model types, éach model type having an associated set of attributes. The
configuration manager creates a template by selecting a model type and one or mode
attributes from the associated set of attributes and then screens the selected model
with the template to retrieve the values for each of the attributes in the template
from the attribute values in the database, to create a configuration record for the
model. The configuration model can then be stored, modified, transferred to a model

and/or displayed to a user on a user interface.

21

3.2.3 Model Types

A “model type” is analogous to a “class” and the term “model” to an “object” in
object-oriented terminology. Thus, the models are implemented as software “objects”
containing both “data” (attributes) relating to the corresponding network entity and

one or more “inference handlers” (functions) for processing the data.

3.2.4 Configuration Records

More specifically, the configuration manager enables a user to create configurations
with a template. A template is a list of attributes for a device of a certain model type.
When creating a template, the configuration manager provides the user with a list
of all readable/writable and non-shared attributes for a model type (which includes
the specific device). The user then selects the attributes needed for the template
which, depending on the purpose of the template, might include a single attribute
(port status, for example) or dozens of attributes.

The configuration manager then captures the values of the attributes listed in
the template, by retrieving the values from the network management system model.
The template functions like a filter, blocking out unwanted attributes (IP address,
for example) and capturing the values of those attributes found in the template.

The resulting configuration created with the template contains the attributes from
the template and the values collected from the model. The configuration may be

stored in the configuration manager or in another storage device.

3.2.5 Operations on Models

The operations on models are :

e capture, that stores all attribute/value pairs, obtained by interrogating the
selected models through a template. That is, the value of only those attributes

that can be found within the template are obtained by interrogating the model;

22

e load, which places the values of the attributes listed in the selected configuration

into selected models; and

o verify, which compares the model’s actual attributes/values with the attribute/value

pairs of a configuration.

The data in the database may be used for generating topological displays of the

network, showing hierarchical relationships between network devices, isolating a net-

work fault and reviewing statistical information.

3.2.6 Implementations : Spectrum and Spectrograph

An implementation of a network management system is the “Spectrum” product

of the Cabletron company. A user interface associated to this network management

system is the “Spectrograph”, which provides a highly graphical multi-perspective

view into the network model. This user interface enables the navigation through a

landscape in which cables, networks and even rooms show up as icons that indicate

the health and performance characteristics of those elements. These icons can be

further queried for additional information.

3.3 Policy-Based Management MIB

The approach [24] defines a portion of the Management Information Base (MIB)

for use with network management protocols in TCP /IP-based internets. In particular,

this MIB defines objects that enable policy-based configuration management of SNMP

infrastructures.

The SNMP Management Framework presently consists of five major components:
e An overall architecture;

e Mechanisms for describing and naming objects and events for the purpose of

management;

e Message protocols for transferring management information;

23

e Protocol operations for accessing management information; and

e A set of fundamental applications and the view-based access control mechanism.

3.3.1 Architecture

The main concepts of this component are :
e the policies;
e the management stations; and

e the elements.

3.3.1.1 The Concepts of the Architecture Component

3.3.1.1.1 Policies. The policies are intended to express a notion of:

if
0 (an element has certain characteristics)
then

(apply operation to that element)

The policies take the following normal form:

if

(policyCondition)
then

(policyAction)

A policyCondition is a script that results in a Boolean to determine whether
or not an element is a member of a set of elements upon which an action is to be
performed. A policyAction is an operation performed on an element or a set of

elements.

3.3.1.1.2 Management Stations. A management station is responsible for dis-
tributing an organization’s policies to all of the managed devices in the infrastructure.
The pmPolicyTable provides managed objects for representing a policy on a managed

device.

24

3.3.1.1.3 Elements. An elementis an instance of a physical or logical entity and
is embodied by a group of related MIB variables such as all the variables for interface
#7. This enables policies to be expressed more efficiently and concisely. Elements

can also model circuits, CPUs, queues, processes, systems, etc.

for each element for which policyCondition returns true

execute policyAction on that element

Each unique combination of policy and element is called an ezecution context.
Within a particular execution context, the phrase “this element” is often used to refer
to the associated element, as most policy operations will be applied to ”this element”.
The address of “this element” contains the object identifier of any attribute of the
element, the SNMP context the element was discovered in, and the address of the

system on which the element was discovered.

3.3.2 Policy-Based Management MIB—Defined Objects

Whereas many device characteristics are already defined in MIBs and are easy to
include in policyCondition expressions (ifType == ethernet, frCircuitCommit-
tedBurst < 128K, etc.), there are three missing areas: roles, capabilities and time. In
order to meet today’s needs, the Policy-Based Management MIB defines MIB objects

for this information.

3.3.2.1 Roles

A role is an administratively specified characteristic of a managed element. It is a
selector for policies, to determine the applicability of the policy to a particular man-
aged element. Roles in this model are human defined strings that can be referenced
by policy code.

Policy scripts may inspect roles assignments to make decisions based on whether
or not an element has a particular role assigned to it. The pmRoleTable allows a

management station to learn what roles exist on a managed system.

25

3.3.2.2 Capabilities

The capabilities table allows a management station to learn what capabilities exist

on a managed system.

3.3.2.3 Time

Managers may wish to define policies that are intended to apply for certain periods
of time. This might mean that a policy is installed and is dormant for a period of
time, becomes ready, and then later goes dormant. Sometimes these time periods
will be regular (Monday-Friday 9-5) and sometimes ad-hoc. This MIB provides a

schedule table that can schedule when a policy is ready and when it is dormant.

3.3.3 Policy Execution Environment

The execution environment has a terminology defined and a procedure executed in

several steps.

3.3.3.1 Execution Environment Terminology
The memo [24] defines a terminology for the concepts:

e the active schedule.
A schedule specifies certain times that it will be considered active. A schedule

is active during those times.

e the valid and ready policy.
A wvalid policy is a policy that is fully configured and enabled to run. A valid
policy may run unless it is linked to a schedule entry that says the policy is not

currently active.

A ready policy is a valid policy that either has no schedule or is linked to a

schedule that is currently active.

e the precedence group.

Multiple policies can be assigned to a precedence group with the resulting be-

26

havior that for each element, of the ready policies that match the condition,

only the one with the highest precedence value will be active.

e the active execution context.
An active execution context is a pairing of a ready policy with an element that

matches the element type filter and the policy condition.

e the run time exception.
A run-time exception (RTE) is a fatal error caused in language or function

processing.

3.3.3.2 Elements of Procedure for the Execution Environment
There are several steps performed in order to execute policies in this environment:

e Element Discovery;
e Element Filtering; and

e Policy Enforcement.

3.3.3.2.1 Element Discovery. Sometimes various attributes of an entity will
be described through tables in several standard and proprietary MIBs — as long as
the indexing is consistent between these tables, the entity can be modeled as one
element. For example, the ifTable and the dot3Stats table both contain attributes
of interfaces and share the same index (ifIndex), therefore they can be modeled as
one element type.

The element type registration table allows the manager to learn what element
types are being managed by the system and to register new types if necessary. An
element type is registered by providing the OID of an SNMP object (i.e., without the
instance).

Agents may configure elements for whom discovery is optimized in one or both of

the following ways:
e The agent may discover elements by scanning internal data structures; and

27

e The agent may receive asynchronous notification of new elements.

When an element is first discovered all policyConditions are run immediately and
policyConditions that match will have the associated policyAction run immedi-

ately.

3.3.3.2.2 Element Filtering. The first step in executing a policy is to see if
the policy is ready to run based on its schedule. If the pmPolicySchedule object
is equal to zero, there is no schedule defined and the policy is always ready. If the
pmPolicySchedule object is non- zero, then the policy is ready only if the referenced
schedule group contains at least one valid schedule entry that is active at the current
time.

If the policy is ready, the next step in executing a policy is to see which elements

match the policy condition.

3.3.3.2.3 Policy Enforcement. For each element that has returned non-zero

from the policy condition, the corresponding policy action is called.

3.3.4 The PolicyScript Language

Policy conditions and policy actions are expressed with the PolicyScript language.

PolicyScript is intended to be familiar to programmers that know one of several
common languages, including Perl and C. PolicyScript is nominally a subset of the
C language.

If the returned value of a policyCondition is zero, the associated policyAction

script is not executed.

3.3.5 Index information for “this element”

The PolicyScript code provides two mechanisms for getting the components of
the index for “this element” in a convenient way, so that they can perform SNMP

operations on it or on related elements.

28

The two mechanisms are :
e the $n token; and

e the ec and ev functions.

3.3.5.1 The $n Token

For all OID input parameters to all SNMP Library Functions (but not OID utility
functions), the token $n (“$” followed by an integer between 0 and 128) can be used in
place of any decimal sub-identifier. This token is expanded by the agent at execution

time to contain the n’th subid of the index for the current element

3.3.5.2 The ec() and ev() Functions

The ec() and ev() functions allow access to the components of the index for “this

element”.

3.3.6 The Library

A standard base library of functions, registered with the name pmBaseFunctionLibrary,
is available to all systems that implement the specification.

The library contains four types of functions:
e SNMP library functions;

e Policy library functions;

e Utility functions; and

e Library Functions.

3.3.7 The Schedule Table

The policy schedule table allows control over when a valid policy will be ready,

based on the date and time.

29

A policy’s pmPolicySchedule variable refers to a group of one or more schedules
in the schedule table. At any given point in time, if any of these schedules are active,

the policy will be ready and its conditions and actions will be executed as appropriate.

3.4 X-CLI and Wise <TE>

Another approach used by the network administrators for the network manage-
ment uses software systems implemented on CLI commands of the network devices.
Those systems have a software component written in a script language which
translates a policy into a sequence of CLI commands which are sent to the network

devices using some transmission protocol, like Telnet.

3.4.1 Overview

The X-CLI [27] is a CLI-based solution which eliminates the dependency of the
policy translation on the CLI command syntax, thus separating the software from the
CLI syntax. X-CLI was proposed as a module of the Wise< TE> policy management
server for traffic engineering using MPLS, VPN and QoS, developed at the Electronics
and Telecommunications Research Institute in Daejon, Korea [28].

Administrators apply policy rules (by means of a GUI), which are delivered,
through a network management transmission protocol and some proxy, to the net-
work devices, where they are translated and materialised into CLI commands. X-CLI
is an XML wrapper API for CLI, which defines the syntax of the XML template to
represent a group of CLI commands and provides the means to load the template,
pass arguments and send generate CLI commands to the network devices.

X-CLI takes into account three dependency types encountered in the set of CLI

commands, namely the hierarchical, argument and result dependencies.

30

3.4.2 XML Representation of CLI Commands

The concept of XML template, which corresponds to the function in general pro-
gramming languages like C++, represents the hierarchical, argument and result de-
pendencies between the software and the CLI command syntax and separates the

software implementation from the policy-to-CLI translation.

3.4.3 XML Template

An XML template is loaded into the memory by the X-CLI API and materialised
into a sequence of CLI commands by passing the required arguments. The XML
template is an hierarchy of <cli> </cli> tags which have attributes that express
the CLI commands dependencies and are described in the DTD (Document Type
Definition) of the <cli> tag: tag, command, promptl, prompt2, error, always, ainput,
ainresponse. The containment relationship between the <cli> tags expresses the

hierarchical dependency.

3.4.4 Attributes of the <cli> Tag

The purposes of the above-mentioned attributes are succinctly described below :

tag : uniquely identifies the <cli> tag;

e promptl: a string sent by the server to the client before the latter starts sending

the message (to the server);

e prompt2: a string sent by the server to the client to stop the latter’s sending

the message;

e command: a stringified CLI command, containing “required” or “optional” key-

words and “$”—prefixed formal arguments;
e error: error notification string;

e always: flag indicating that a CLI command can be executed in spite of the

execution failure of the previous CLI command,

31

e ainput: request for the additional input; and

e ainputresponse : response for the “ainput”.
p P p

3.4.5 Monitor String

The monitor string is a regular expression-like string that may appear between
<cli> </cli> and analyses the response sent by a network device to a CLI command
execution. The results are “pattern-matched” with the monitor string by convert-
ing the latter into an NF'A (Non-deterministic Finite Automaton) and are accessed

through output parameters.

3.4.6 X-CLI API

In order to facilitate the implementation of the connection pooling mechanism and
relieve the overhead of including the connection procedure in every XML template,

two template types are provided:

e DCPF (Device Connection Procedure File)

e CLIF (CLI File)

The DCPF is a login procedure-dedicated template, whereas the CLIF'is a normal
CLI command template. The X-CLI API loads the template and parses it into a
tree topology of CLI C++ objects, then sends the materialised XML template to the
network device and processes the response with a monitor string. The XCLI class
has a set_argument () and a send () in order to materialise and send the template.

The results of the materialisation is a sequence of instances of the CLI_transformed
C++ class which basically includes all the CLI class attributes and has an additional
attribute BTEF (Branch Target for Ezecution Failure) to represent the result depen-
dency. Every materialised CLI command has two possible branch targets, which are

chosen according to the following scenario:

e if it is a success : the branch target is always the next materialised CLI com-

mand; and

32

e otherwise : the branch target is the next sibling CLI command.

3.4.7 Wise<TE>

Wise< TE> is an integrated server system that incorporates with a MPLS-based
ISP backbone, and provides management, verification, analysis and optimization func-
tions for MPLS TE with network operators. Since Wise< TE> not only manages
LSPs (Labelled Switched Paths) and traffic trunks, TED (Traffic Engineering DB),
per-LSP traffic statistics, network topologies, routing protocol information and path
computation algorithms (SPF & CSPF) but also performs link/node failure simula-
tion and global usage optimization, the system can play critical role for real-world
deployment of MPLS TE.

Wise< TE> works on typical Uniz systems, and currently can manage Cisco and
Juniper routers. For the sake of inter-module communication, CORBA technology
is utilized. A RDBMS and a LDAP server are required to efficiently manage var-
ious network information. A Java-based GUI provides an integrated management

environment.

3.5 The Intelliden Products

Intelliden Corporation provides solutions and tools for business-driven device man-
agement, which eliminate the error-prone manual configuration and automate the
configuration process [41]. This approach enables the implementation, monitoring

and enforcement of business policies in the network and network-based applications.

3.5.1 R-Series Software Suite

Intelliden’s R-Series software suite [35] features a patent-pending configuration

workflow solution, which:

e automates the device configuration (thereby dramatically reducing the number

of manual configuration errors);

33

e can control different devices from different vendors (using the same Web-based
GUI or XML over Java API, which significantly reduces the complexity in man-

aging heterogeneous devices);

e presents a single common interface rather than multiple device-dependent in-

terfaces;

e guarantees the integrity if the configuration process: if the configuration rules
are violated, the R-Series software suite discovers those changes made outside

of its control,;

e creates audit trails and reports which help discover bad logic and misconfigura-

tions before damage is done;

e simplifies the version control by using multiple versions of a configuration of a
device that are stored in a directory. A former configuration is recorded as a

previous version;

e has a common repository, specifically, a master directory which contains policies

that determine the end-user rules.

3.6 The Directory Enabled Networks (DEN) and the
Directory Enabled Networks — Next Generation (DENng)

The Directory Enabled Networks (DEN) has been proposed by the Distributed
Management Task Force Inc. [48].

DEN (as well as DENng) is described [42] [43] [44] [45] [46] as a network and
service management approach and a holistic method to manage services according to
business policies. It consists of an object-oriented information model, a mapping to
several data models and is based on systems and networking standards — including

path and bandwidth issues.

34

3.5.2.1 Object—Oriented Information Modelling

The DEN uses object-oriented techniques. Thus, it:

e abstracts the networks, subnetworks, devices, ports, users, applications, loca-

tions and services as objects that are modelled into classes;

e uses a combination of standard-based directory and object-oriented data mod-

els;

e uses the object-oriented information modelling to represent management entities

in an environment and their inter-relationships;

e contains relationships that model the dependencies between the managed ob-

jects of the system;

e equates different functionalities from different devices to each other and to ap-

propriate classes of services; and

e abstracts different vendors’ policing and shaping mechanisms with different

command syntaxes and side-effects.

3.5.2.2 Intelligent Services and Intelligent Networks

DEN views the network as a provider of intelligent services rather than a collec-
tion of individual interfaces, it abstracts the network into a set of intelligent services,

changing it into an intelligent network. Thus, DEN:

e offers an alternative to current management approaches like SNMP and CLI,
which mostly view a large-scale network as a collection of individual interfaces
to the thousands of disparate routers, switches and other network devices, and
which offer no service concept, but rather lets the administrator work on indi-

vidual interfaces;

e transforms the network — from a set of "knobs” affecting the traffic — into a
"service-oriented network” (i.e., a set of services available to, and used by, the

application);

35

e enables network interoperability: applications with different GUI, running on

different platforms and using different APIs, can share and re-use data;

e allows the end users to: (a) use a same set of services no matter when, where
and how they log on to the network; (b) have a personalised view of the network,

according to their job, rank and role in the company.

e models the network (as a whole), as opposed to the "silo approach” to provi-
sioning, which concentrates on activating a particular service (without regard
to other services already deployed over the network) and: (a) can send you into
an endless loop of configuring one service only to harm another; (b) can mean
device-configuration conflicts (a single device can have multiple, competing con-

figurations).

e constructs an intermediate layer of network services that can be mixed and

matched in building-block fashion;

e provides two things for that purpose: (a) an abstraction layer that enables
the application to request network services (rather than using commands on
a device-by-device basis); (b) a policy framework that allocates to each appli-
cation the appropriate network resource and adjusts to the changing business

environment;

e equates different commands and operations present in different devices into a

common set of commands that can be assigned to different classes of service;

3.5.2.3 Layered Policy Models
DEN enables the policy-based network management. On this account, DEN:

e defines also a set of data models which describe how to implement the informa-

tion models into repositories like directories and relational databases;
e is built as a set of layered models, where each layer has its level of abstraction;
e provides:

36

— an extensible information model, which: (1) translates the semantics and
behaviour of the objects into “middleware”; and (2) defines a “framework
of classes” that can represent: the current state of the (managed) object,
the settings that can change the object’s state and the policies that control

and apply the settings to the objects; and
— a set of data models.

assigns policies to respond to business rules to automatically control device

configuration and prioritise network services;
defines a single repository that contains archived device configuration files;

has a directory that logs new devices to the network and performs network

moved, adds, changes and deletes;

maps business rules and service level agreements (SLAs) to a common set of

policies (which automate the process of end-to-end network management);

has as its top-most layer the Policy Core Information Model (PCIM), (described
by RFC 3060), which defines:

— a common structure and representation of policy, that is independent of

technology;

— the semantics of policy through a set of classes and relationships, that
represent a policy in the form of a condition clause and an action clause;

and

— a set of extension models, each focused on a specific technology (e.g. QoS

and IPsec).

the policies are contained in a continuum of policies, which is a set of inter-
related policies (rather than just one), corresponding to different policy ab-
straction layers, tailored to specific domains of users (e.g. business and systems

administrators who talk in business terms, as opposed to network programming

37

developers, who talk in terms of “WFQ queuing parameters” and “WRED
thresholds”).

3.5.2.4 Policy Mapping and Language

There are six constituenciés, or levels, that define DEN’s policy mapping and

language:

e the business view, which is concerned with the implementation of the processes,

guidelines and goals and often takes the form of SLAs;

e the system view, where the administrator translates the business requirements

to system operation;

e the administrator view, technology- and device-independent, which translates
the overall requirements into a networking-specific form (avoiding to choose a

specific technology, like the Differentiated Services — DiffServ, etc.);

e the administrator view, technology-specific and device-independent, which trans-
lates the third level into technology-specific implementation (e.g.: include de-

vices that can handle DiffServ and devices that cannot);

e the device-specific view, which translates the chosen implementation into a

device-type-specific form; and

e the instance-specific view, which takes into account the software version and

memory configuration and develops a network device-specific configuration.

3.5.2.5 Finite State Machine

DFEN has a combination of layered policy models that intersects with the user,
resource and service models, to construct finite state machines that represent the
full life-cycle of the device management and control network configurations. In this
context, policies are used to control when, where, who and how the configurations are

changed, by modelling these changes as state transitions in the finite state machine.

38

3.5.2.6 Architecture

DEN’s conceptual architecture features several constituents, among which the

following may be mentioned:

the intelligence is distributed among various components of the managed sys-

tem, using Policy Decision Points (PDPs) and Policy Enforcement Points (PEPs);

multiple PDPs are necessary for different applications from different vendors.
(For instance, a logon policy: logging into a network requires several functions
like: IP address allocations, user- and group-specific QoS and security treatment

allocation.) A PDP can provide control over one or multiple functions;

each PEP can have different capabilities (e.g.: a firewall, a router and a content

switch);

middleware is used to implement the semantics and behaviour. The static por-
tion of the business rules are stored in the directory, whereas the dynamic
portion (involving relationships between entities, resource allocation, etc.) is

stored and implemented in the middleware;

a publish/subscribe bus enforces the intelligence distribution among the system

components;

policy prozies interface the legacy components (that use SNMP or CLI, for
instance, and that the PEPs understand), to the policy systems;

there are a policy language and policy protocols of the system;

the domain knowledge consists of a logical repository, constructed from many

specialised repositories like the directory and the relational database systems;
policies are stored in repositories; and

a policy console provides the graphical and programmatic interface for defining,

editing and managing policies;
a broker is used for policy translation.

39

3.5.2.7 Objectives and Benefits

Several objectives and benefits of the DEN approach can be mentioned:

o simplify IP device configuration — which leads to increased operational efficiency

and lower management costs;

e ensure that consistent policies are applied to all network elements — which brings

optimisation benefits, like:

— automatically obtain bandwidth without disrupting other services;

— router optimisation: establishment of SLAs with customers that give pri-

ority to certain types of delay-sensitive traffic;

— content optimisation: disk mirroring is used to make copies of information
in order to save customer data during system outages. Disk mirroring
admits small delays and is thus provided as a service and supplied with

appropriate policies that prioritise it.

e reduce the gap between the network devices’ functionality and the services re-

quired by the applications — which leads to faster service creation.

40

Chapter 4

Meta—CLI Interface

4.1 The Text Challenge

The network device configuration is done by means of CLI, through commands,
which are string sequences, given as input to the system. The constraints and checks
that enforce the syntactic rules and other CLI information come as a response to the
input text. This “reactive” or “interactive” approach leaves it to the user to search in
a big pool of commands, parameters and values and find the seemingly right ones, in
view of a configuration task. In the case of configuration files, the problem is more
complex. The files, rather than store all of the commands executed on an equipment,
store some of the latest executed commands and parameter values, more exactly,
those, which are a “deviation” from the standard default state of the system.

Since the configuration file is a text file, it could be edited manually, offline (like
in figure 4.1) but, in this case, the only way for it to be checked for correctness is to
be loaded into the device as the running configuration. This trial-and-error approach
is risky and error-prone, since the CLI interactive checking is not performed.

As a consequence of the textual nature of the commands and files, the parameters
in the configuration files cannot be uniquely and securely identified, accessed and
manipulated. The interaction with the text in a configuration file would not

be much safer as, but it would certainly be more dangerous than, performing cut-

41

Service

Device
Configuration
Record

* | Composition

CLI Configuration >

Device
Configuration
Record +

Figure 4.1: CLI-Based Configuration Process

and-paste in a Latin text without knowing the grammar. Using the CLI to access

parameters is not a best solution either, considering its context-dependent nature.

4.2 The Idea of the Meta—CLI Interface

The idea of the configuration model is simple. Instead of interacting with the
device’s information by text-only commands and files, we can translate the commands
and the files or other records into abstract structures, do the configuration, add or
activate services according to our goals and using the rules of composition provided

by the abstract structures and reconvert the configuration result into commands and

configuration files or registers (figure 4.2).

4.3 Goals and Features of the Meta—CLI Interface

In this way, we achieve several goals :

e the abstract structures are specially designed to do some checking for us “ac-
tively” rather than “reactively”, i.e. it could “suggest” us a list, menu, etc. of

current choices, instead of responding negatively to wrong inputs;

e using the configuration files for configuration compositions becomes more fea-

sible because less risky and error-prone, more transparent, and direct;

42

Service

Conversion Meta-CLI
Capsule
* | Composition
Device Conversion|. Retroversion Device
Configuration »1 Construct Configuration Construct + > Configuration
Record Record +

Figure 4.2: Meta-CLI-Based Configuration Process

e the abstract interface provides us with CLI-specific information like :

— commands’ or sub-command’s context, mode or sub-mode;

list of context-specific commands;
— command for accessing contexts;
— commands’ syntax, parameters, arguments, options, keywords; and

— parameters’ default values, legal values, etc.

e the abstract structures provide a means to uniquely identify, access and securely

manipulate the parameters; and

e the abstract structures allow entity manipulations, in which the elements of the

entities match automatically and are composed individually.

4.4 Meta—CLI Topology

The proposed model uses the tree topology, which is a common, universal topology.
In this way, the model may be used in conjunction with other tools and models and

has a wide potential are of applicability. Many topologies, including the networks,

43

may be “transformed” or “converted” into tree topologies and manipulated by means

of this model.

4.5 Meta—CLI Interface Concepts

The abstract structures are tree-like, model-specific, structures and have several
hierarchical levels. The command tree puts the parameter information in the inner
nodes and leaves and thus ensures unique identification, access, matching and com-
position of the command information. The context tree maps the context or mode
hierarchy of the CLIL. In this way, the abstract structures have a “twofold” tree-like

aspect. The trees have several hierarchical levels :

e clement;
e branch; and

e entity.

We can extend this hierarchy by adding the data level, which is a sub-element level
that deals with the type, value, etc., ignoring the element’s linkage (i.e. parent and
children), and the network level, which is a super-entity level that maps the network
into an tree, where the domains are descendants and the backbones are ancestors.

The element is a node in a tree that translates a command name, parameter,
argument, option or keyword into node’s data and the relationship with the rest of
the command components into descendant elements (“children” nodes). The element
can have zero or more descendants under control and can a parent that controls it.
The elements are the smallest tree-like unit in a tree and have a recurrent nature,
since the descendants may have their own descendants and the ancestor may have its
own ancestor.

The ancestor and descendant properties are transitive and thus, by way of recur-
rence, we can deal with branches. The top element of a branch controls its elements.

The topmost element in an entity with many branches is its root. The root has the

44

Tree

Meta-CLI | Level Branch Entity
Tree Type Element Command | Context | Capsule | Construct
Tree Tree
CLI Concept Command Name/ | Command | Context/ | Service Device
Parameter, etc. Mode Config File

Table 4.1: CLI/Meta-CLI Modelling Concepts.

entire entity under control. Thus, the element and the entity are the extreme levels

of the branchings. The entity can be a device entity, called construct or a service

entity, called capsule.

The construct translates the collection of configuration information of a network

device, available in some record as, for instance, a configuration file.

The capsule

translates the collection of configuration information of a Internet service, policy or

feature. We have thus the following translation relationship between the CLI concepts

and the Meta-CLI Model concepts, as shown in table 4.1.

4.6 Stages of the Configuration Process

The Meta-CLI-based configuration process consists of the following stages:

e the device configuration information, stored in some record, for instance, in a

config file and containing command instances, is read in;

e the Meta-CLI tool has some lists of command definitions and context depen-

dencies, default values, etc. (please refer to figure 4.3)

e the Meta-CLI tool thus identifies the commands and their contexts from the file

or record and accesses the parameters’ values;

45

the Meta-CLI tool has a collection of generic, predefined command trees that
translate the command definitions and another collection of generic predefined

context trees that translate the names of the commands specific to each context;

the model converts the actual command instances from the device configuration
record into actual tree instances, obtaining thus the construct, based on the
generic command and context trees and taking into account the parameters’

values from the command instances of the device configuration record; .

the service is a predefined module or group of commands, that is provided by

the tool interface and selected and customised by the tool user;

as in the case of the device configuration record, the Meta-CLI tool uses its
command definitions and context-dependencies lists to identify and put in place

the commands and their parameters’ values;

with the aid of the generic command and context trees, the information from the
previous step is converted into effective trees and the capsule is thus obtained.
Not all of the capsule’s information might be in place, depending on whether
more specific information must be added individually, later on, for each instance

or device;

the composition and manipulation process is performed in the Meta-CLI with

the construct and capsule, resulting in some value-added construct;

the value-added construct is retroverted into a device configuration record through
a process that basically inverts the direction and sequential order of the steps
and operations performed during the conversion process (i.e. the first five steps

described above);

based on the collections of generic command and context trees, the model recog-
nises the tree instances of the construct and identifies the parameters, command

names and contexts in the tree; and

46

e with the aid of the command definitions and context-dependencies lists, the
effective information from the tree instances is retroverted into CLI command

instances and stored in a device configuration record, such as a configuration

file.
Command &
Context
Definitions
Default &
Legal Context
Parameter Information
Values

Figure 4.3: Command and Construct Definitions

Schemata of the translation process involving the construct and the capsule are

depicted in figures 4.4 and 4.5, respectively.

47

Interactivel
Displayed
Informatior]

Device

Configuratiof Construct
Record < :—r—j——: >
ranstation Tree
Instances

Generic
Command & Command
Context Context
Definitions raes.

Figure 4.4: Construct Translation

Capsule

Conversion

Generic
Command & Lommand &
Context Context

Figure 4.5: Capsule Translation

48

Chapter 5

Meta—CLI Model Concepts

5.1 Overview

The configuration model proposed by the Meta-CLI Model places the information
into tree structure models and defines operations to retrieve, modify, add and remove
data. The Meta-CLI models have an architecture that contains several hierarchical
levels: the data (which resides within the node), the element (consisting of a node
and its links towards its children), the branch and the entity. Yet another perspective
has three structural layers: value, linkage and element layers.

The access and manipulation of the data is based on the identification and match-
ing mechanisms. The information is accessed by query operations and modified either
directly within the configuration (i.e. intra-entity) or through inter-entity composi-
tions (which involve two or more configurations).

A composition algebra or language is further defined, that describes the compo-
sition operations that can be applied to different levels and layers of the proposed
configuration model. These operations are the “vectors” or “immediate means” of the
configuration that must be outlined on a higher level of the configuration model based
on the business rules, policies, services and functions that concur to the configuration
process, and using these formal “means”.

The compositions are described for the node elements — since they are the basic

constituents of the configuration model’s tree structures — but they are recurrently

49

applicable to branches and entire trees. The composition operations are explained

for the three layers and illustrated with examples.

5.2 Rationale

The problems mentioned in chapter 2 can be solved by means of a structured
configuration model that allows the composition of the features and services the with
the device configuration information. As mentioned in section 2.2, the configuration
files do not provide the context information that the command-line offers. There is
no prompt and no syntax checking of the commands in these files. The default values
are not stored in the files. Thus, we must know the syntax and the default values of
the commands before editing them in the files and this requires a structured model
and a set of rules for the structured, policy-based configuration.

In order to manipulate and control the configuration information, we need to store
and organise the data according to a logical, structured model. The CLI commands
and structure must be abstracted and modelled in order to obtain a specific data
organisation that allows the composition of the configurations. An important feature
of the model is that it can store information about the context, the syntazx, the

effective and default values of the parameters.

5.3 The Tree Data Structure and the Meta—CLI

Model’s Configuration Tree

The Meta-CLI Configuration Model trees (in short, trees) are based on, but are
different from, the tree data structures. The tree data structures are generic data
structures, whereas the Meta-CLI trees are modelling structures and are specific to
the Meta-CLI Model. Since there are differences between them, we need to stress
out the difference. The trees are particular types of trees, or potions of these trees.

Some features of the trees have been used and refined in order to accommodate the

50

translations of the CLI commands, context-dependencies, default and legal values and
all of the rest of the relevant CLI configuration information.

Therefore, there are certain similarities and differences between those structures,
and we shall highlight some of them. The Meta-CLI Model tree refers generically
to an element, a branch or an it entity. There is a functional difference between
the tree structure notion of node and that of element, in the Meta-CLI Model tree:
essentially, the latter has more features and functionality than the former. Some of
the differences are enumerated below.

Thus, the element (of an tree) has a recurrent potential and controls its descen-
dants, whereas the node does not have these features and is just an element of the
tree. If the element’s recurrence is used, the descendants contained in a branch
are involved (accessed, modified, manipulated, etc.). The data, element, and branch
levels are implemented at the node level.

The tree data structure has nodes and each node contains an object. Finding a
node is based on identifying the object. When changing the node contents, i.e. the
object, we also change the means to recognise it. More specifically, the node’s object
is included in the path of the children. Even if we keep an id for the node unchanged,
changing the value of another field of the object, changes the path of the children.

Besides, the tree functionalities (at node and root levels) are insufficient for our
purposes. The Meta-CLI Model adds recurrence to its logic, enabling in-depth, or
multi-level, control and manipulation of the data. Speaking in terms of trees, the
Meta-CLI Model is based on branch manipulations, i.e. the information is dealt with
from an element, through its descendant elements, up to all its leaf elements.

The Meta-CLI Model takes the tree structure and adds an immutable type to the
node. The changes are only made to the object’s value. The Meta-CLI Model may
allow cycles, e.g. when a command like router brings the user from the config into
the router context, whereas the command exit sends him/her back from the router
context to the config context.

The possible existence of multiple contexts for an element brings in the spotlight

various virtual functionalities. For instance, the same data may be referenced rather

91

than being copied in different contexts. This feature may be used for integrity

verification and consistency checking.

5.4 Architecture of the Meta—CLI Model

The Meta-CLI Configuration Model has a multiple level hierarchy and a layered

structure.

5.4.1 Hierarchical Levels

The hierarchy levels are the data, the element the branch and the entity levels
(according to the number of elements involved and whether the links are ignored or

taken into account):

e the data level — deals with the data inside an element, i.e. the type and ef-
fective value and, in subsidiary, with the default value and the value range or

enumeration;

e the element level — on top of the element’s data, deals with its descendant

linkage, 1.e. the elements that are its direct descendants;
e the branching level — deals with hierarchies or branches of elements; and

o the entity level — deals with global configuration entities that have an identity
and represent translations of device configuration files or services, policies and

configuration features.

5.4.1.1 Data Level
The data-level includes the following :
e type, which is a string and is immutable;

e effective value (in short, the value) which may be a string, a numeric value or

other data type and can be set or reset during the configuration process;

52

e default value, (in short, the default which is an immutable value, to which the

effective value is, occasionally, reset; and

e value range or enumeration, specify the legal values that can be assigned to the

effective value (and which include the default value).

~

The type and value are the basic data information, whereas the rest are auxil-
iary. Compositions involve the basic data, whereas the auxiliary data help in the

configuration process.

5.4.1.2 Element Level

There is a subtle distinction between node and element: the element includes the
node and its links to other elements. A link is a hierarchical relation between two
elements, and involves an ancestor (“parent”) and a descendant (“child”) element.
The ancestor element controls its direct descendants, i.e. it can change them (but
not vice-versa).

According to the existence or non-existence of the ascending or descending links

of an element, we can classify the elements into :

o edge elements, which can be further divided into:

— roots, which lack ancestors;

— leaves, which have no descendants; and

e core elements, which have both ascending and descending links.

The element is a tree en miniature. It is inherently or potentially recurrent. Since
it has control only over the descendants, it can be considered the basic functional
component of the branchings and trees from the two levels presented in the following
paragraphs. If the operations applied on the element are effectively recurrent, the
control of the element extends to all of its direct and indirect descendants. In terms
of visual representation, it represents an upside-down tree, since the top element is the
ancestor. In written representation, it stretches horizontally, with the top element on

the left-hand side and its descendants indented on the right-hand side.

53

5.4.1.3 Branch Level

The branch level can be obtained from the previous level, the element level through
element recurrence.

The branching accounts for the element and its direct and indirect descendants.
To be more accurate, we may distinguish it form the more restrictive branch, which
is a branching that reaches the leaves. The indirect descendants are related to an
element through chains or sequences of descendant relationships.

The lineage of an element represents a chain of ancestors, starting from the root.
A path is a chain of data, starting from the root and tracing down the links of an
element. If the descendants of an element have different types, their link in the path
may omit the value. If the data do not uniquely identify some elements, the linkages
may be used to differentiate between the paths of the descendants. This issue is
further discussed in the Identification section. The path can be absolute, when it
starts from the root, and immediate, when it contains only data from the element’s

parent. The immediate paths that compose an absolute path are separated by slashes

(/),eg :

Routerl:/configure/interface/FastEthernet:’2/1’ |

The absolute path and the branch of an element are somewhat complementary :
the former reaches through the element’s lineage towards the root element, whereas

the latter reaches through the descendants towards a leaf element.

5.4.1.4 Entity Level

The tree level can be obtained from the previous one, by starting from the root
and thus encompassing the entire tree.

We deal at this level with hierarchic, tree structures that are identifiable entities
containing all the related elements descending from a root. There are two kinds of

entities:

94

e the device configuration construct, (or, in short, construct), which translates a
device configuration file and other configuration information (default values,

“showed” i.e. displayed information, etc.); and

e the encapsulated service, policy or feature structure, (or, in short, capsule) which

translates a service, policy or configuration feature.

There is no structural distinction between the construct and the capsule. Thus,
the capsule may be considered a special case of construct, more specifically, an in-
complete configuration (in the sense that it could not be translated back into a valid
configuration file). The capsule lacks the basic features, commands and contexts
contained in the construct and its role is to add or modify the features on the con-
struct. Therefore, the distinction is solely functional. Thus, we may use a construct
instead of a capsule and vice-versa.

The interaction between the construct and the capsule is asymmetrical, namely
the capsule will usually modify the features inside the construct rather than vice-
versa. Since we are finally interested in the resulted construct, the terminology in

centered on the construct and its metamorphosis.

5.4.2 Layered Structure

There are two structural layers within the higher levels (the elements, branches,
entities), according to whether the values are changed or the descendant links are
added or removed. Since these two layers may be overlapped, we get actually three

structural occurrences:

e a value layer, in which the values of the elements are modified,;

e a linkage layer, in which child elements are deleted from, or added to, the parent;

and

e an element layer, in which the value layer and the linkage layer manipulations

are simultaneously performed, i.e. the layers are overlapped.

59

The structural layers correspond to the hierarchy levels. For instance, a value-
layer operation does data-level manipulations (on data, elements, branches and enti-
ties), whereas a linkage-layer operation does branch-level manipulations (on elements,

branchings and trees).

5.5 Syntax of the Meta—CLI Model

We may express the Meta-CLI Model using the concepts of formal languages.

5.5.1 Data Level

On the data level, we have :

<data> ::= <type> <value> <default> [<range>| <domain>ﬂ

where :
e <type> is a string;
e <value> is a string;
e <default> is a string;
e <range> is an (ordered) pair of numerals; and
e <domain> is a string or numeral enumeration
The node has several mandatory fields like the value and the default, and other

optional fields, like the range or the domain :

5.5.2 Element Level

On the element level, we have :

[<element> 1:= <data> [; <e1ement>*)|

where :

56

e <data> is the element’s data;

the square brackets ([...]) show that the sequence <element> x* is optional;

the semicolon (;) represents the (descendant) link; and

the asterisk (*) shows the multiplicity.

We do not need to represent the ascending element, since this is represented in

the parent’s linkage, as a descending link.

5.5.3 Branch Level

On the branch level, we have :

l<branching> ::= <data> ; [<element> | <branching>] *}I

where :
e <data> is the top element’s data; and

e <element> is a descendant element.

5.5.4 Entity Level

On the entity level, we have :

<entity> ::= <construct> | <capsule>
<construct> ::= <name> <branching>
<capsule> ::= <name> <branching>

Here, the branching starts at the root.

5.6 Representation of the Meta—CLI Model Con-
cepts

The trees may be represented in a graphical way, based on their architecture.

57

5.6.1 Element Representation

An element can be represented in compressed, condensed or in expanded form. For
better visualization, the three representations may be preceded by different icons,

like: “+7, “x” and “-”, respectively.

5.6.1.1 Compressed Representation

The compressed representation of an element will display, say — when clicked, on

one line, the type and value of the element:

+ <type>: <valueﬂ

5.6.1.2 Condensed Representation

The condensed representation of a form will display, on a line, the type and value

of the element and of its descendants :

X < type >< value > [< type >< value >}

This representation is important because the user condenses, say — with a double
click, the tree, in order to see all the parameters on one line. Thus he/she sees the

command tree just like a CLI command on the command line.

5.6.1.3 Expanded Representation

The ezpanded representation gives full freedom to access individual parameters.
It displays on a line the element’s fype and value and, on subsequent lines, tabulated,

the descendant elements :

- <type>:<value>
- <type>:<value>

- <type>:<value>

58

The expansion of an element may be performed in different degrees, depending
on whether its descendants are represented compressed, condensed or expanded. We
may wish to expand only the direct links, a few or all of the indirect links, along the

branch stemming from an element.

5.6.2 Branch Representation

The branch representation does not critically differ from the element one, except
for the descendants aspect: the branching condenses or expands the indirect descen-

dants too, rather than just the direct descendants, as the element.

5.6.3 Entity Representation

The entity’s representation uses its <name> and its (compressed, condensed or

expanded) root element:

[<name> L:/ <e1ement>]j

5.7 Identification and Matching

5.7.1 Element Identification

An identifier of an element is a sequence of strings that uniquely identifies the
element. The types, values, paths and indices are used during the identification

process, according to the concrete situation and the kind of operation to be performed.

5.7.1.1 Identification Modes

On one hand, according to whether the path is taken into account during the

identification, we can have two identification modes:
e path-free, when the absolute path is not part of the identifier; and

e path-based, when the absolute path is part of the identifier.

99

For instance, the identifier ip address:’1.1.1.1’ may occur in several paths of
a construct: router, address-family, etc. On the other hand, several data may be

required by the identifier, in order to ensure more accuracy.

5.7.1.2 Identification Levels

According to the means utilised for the query (element’s type and value, linkage,

absolute paths) we can have several possible identification levels :

e type-based, which takes into account the type of the element;
e data-based, which is based on type and the value of the element; and

e clement-based, which checks the type, the value of the element and involves
supplementary means of recognition, such as (the types and values of) specific

descendant elements and/or indices '.

The path-free identification is used for intra-entity operations. The type-based
identification is used for leaf elements. In this case, we compose the values of these
elements. The data-based identification is used for parent elements because we usually
want to change their descendants and keep their values unchanged.

The element-identification is used for the same purposes as the type identification,
when the absolute path, type and value do not provide a unique identification to the
elements. In this case, the type and value of additional descendants provide the
identification uniqueness. The immediate path of an element is provided by its

ancestor’s identifier.

5.7.2 Element Matching

The elements’ identifiers are compared in order to find out whether they match
or not and to apply the appropriate operations. Two elements match when their
respective identifiers are equal. Two identifiers are equal when the corresponding

strings that compose those identifiers are equal.

Indices are meant for recognition rather than matching.

60

According to the identification types involved, we have several modes:
e path-free; and
e path-based.
and levels of matching:
e type-based;
e data-based; and

e clement-based.

5.8 Classification of the Configuration Operations

We may speak of a configuration process that involves and modifies configuration
entities by means of configuration operations.

The operations can be classified in several categories:

e gquery operations, where match-based element collections are selected;

o direct intervention operations, where trees are directly modified (elements are

added, removed, values are set, etc.); and

e composition operations, where trees are combined.

These categories interact and superpose throughout the configuration process.
For instance, we can match trees and obtain element and construct pools that we

modify by means of compositions (i.e. set values and add or remove elements).

5.8.1 Query Operations

The query operations are based on element matching, involve an identification
condition, require selected trees and result in element selections or existence confir-

mation. According to the type of matching, the result of a query may be a selection

61

of a single element or a collection of elements. The modifications performed by the
other types of operations (direct manipulations and compositions) may take place

during the search operation.

5.8.2 Direct Operations

In this category we may have direct, interactive operations like : the creation,
deletion, permutation (reordering), etc. of descendant elements, value setting, type
change, object-contents display, etc. There is a close relationship between the match-
ing and the type change and whether the elements are leaves or core elements, more
specifically, the factors involved in this relationship should be compatible within the
configuration operation.

Thus, we usually match the types and values of core elements without changing
them, when we recurrently search through the elements of a tree and match the
types and modify the values of the leaf elements. Conversely, if we change the core
elements’ values, we should be aware that the identifications used by the queries might

be affected and need to be adjusted accordingly.

5.8.3 Composition Operations

In this category, the query and direct operations are performed sequentially on
elements found along the branches of the composing elements or constructs. The

composition operations are covered in the next section.

5.9 Types of Composition Operations

Operation can be classified according to different criteria:
e hierarchical levels;
e structural layers; and

o number of entities,

62

involved.

5.9.1 Hierarchical Level Classification of the Operations

From the point of view of the number of levels on which the changes are performed,

there are four categories of operations, which correspond to the hierarchical levels :
e data-level operations, which are performed on the value of an element;

e clement-level operations, which are performed on the value and linkage of an

element, non-recurrently;
e branch-level operations, which are performed at element-level, recurrently; and

e entity-level operations, which are performed on the elements of an entity.

5.9.2 Structural Layer Classification of the Operations

The configuration operations can be classified according to the structural layers

involved:
e the value-layer operations, which are performed on the value layer;
e the linkage-layer operations, which are performed on the linkage layer; and

e the element-layer operations, which are performed both on the value and the

linkage layers.

There is a strong connection between the value and the linkage operations. Thus,
a value operation can reset a value of an element, i.e. can set the effective value to the
default value and a linkage operation can remove the element because its value is set
to default. It should be mentioned that, in CLI, the configuration files contain the

commands that represent “deviations” of the system from its default configuration.

63

5.9.3 Classification of the Operations According to the Num-
ber of Operands

According to the number of operands (entities) involved in the composition op-
erations, there are two kinds of operations : inter- and intra-entity configurations.
The inter-entity configurations refer to the compositions that take place between two
or more entities, while the intra-entity configurations refer to the data manipulations
that take place within a configuration or capsule entity.

The inter-entity configuration compositions may be considered horizontal because
they involve similar elements from different constructs and capsules, whereas the
intra-entity operations may be considered vertical, since they involve different ele-
ments from the same entities. Furthermore, usually the inter-entity configuration
operations implement policy- or service-based configurations whereas the intra-entity
configuration operations perform device- and instance-specific configuration opera-

tions.

5.9.3.1 Inter—Entity Operations

These operations act at all the hierarchical levels and may take place between two
or three entities. In the former case, an entity, usually a construct, plays both roles
of an operand and of the result of the operation, whereas in the latter case, the result
of the composition performed with two operands is placed in a third configuration
entity.

When dealing with two operands, we can also use a shortcut notation. Thus,
since an entity is both operand and result, and we do just one manipulation, we can
condense the assignment symbol (=) and the other operation symbol, for example

the generic value composition symbol (x) like in C, C++ and Java:

(A=AxB) <= (Ax= B)

From the two-operand compositions, between a capsule and a construct, there is

just a step to the three-operand compositions. The conceptual focus falls on the

64

two-operand compositions since from their combinations can be obtained the three-
operand ones. Suppose, for instance, that we perform some operation (x) on three

operands; then :

(A=B+C)<= (A=B;Ax= C)

5.9.3.2 The Intra—Entity Operations

The intra-entity operations are performed within an entity and basically do the

following:

e change the value of one or more descendants (by means of a composition oper-

ation);
e remove an element and its branching; and
e create and add a new descendant to an element.

Unlike direct operations, these composition operations require recurrent search
and matching, and therefore, they need as input an element and a value.
For instance, we can edit a new element and compose its value with the elements

of another entity or branch .

5.10 Composition Algebra

The element-level operations will be tackled in this section since the element is
the basic, central concept in the Meta-CLI Model. The other level operations are
deductible form this one and do not need further attention. Thus, the data level is
illustrated by the walue-layer operations, the element level corresponds to the non-
recurrent element-layer operations, the branch level corresponds to recurrent core
element-layer operations and the entity level corresponds to the root element-layer
operations.

The names of the operations have been chosen such that they express the compo-

sition interaction from the construct’s perspective (rather than the capsule’s).

65

We shall further discuss the three layers of the element-level composition opera-

tions: value, linkage and element layers.

5.10.1 Value-Layer Operations

As already mentioned, the value-layer operations concern the data level.
The value operations compose the values of the leaf elements, whereas the core
elements’ values serve just for identification and matching. Value operations are

generally symbolised by an asterisk (x) :

« = [x|+] <>/ =]

5.10.1.1 Overview

In the tables 5.1 and 5.2, is presented a summary of the definitions of several value
operations (). The table is not exhaustive. The sampled operations are not always
independent, i.e. an operation might be obtained from a combination of others. In the
choice of these operations the usefulness and implementation feasibility have played
a major role.

The symbols have the following meanings :
e A and B represent two (matching) elements whose descendants are composed,;

e @ represents the default value of an element (which, in its turn, maps the
parameter or command default value; we make the assumption that both ele-
ments are supposed to have the same defaults; if the default values are different
or unknown, we can use a hypothetical default value thereby preserving the

validity of the operation definitions); and
e ¢, B and 7y represent non-default, distinct values of the elements.

We assume that the forms A and B have similar types and we compose their
values. For the case when they have different values, the symbols used for these

values are distinct (@, (), whereas a common symbol was used (vy) if they have equal .

66

values. The case when both effective values are equal to the default value (®) is
simple (because the result is a default value, for any operation) and has not been
presented in the tables.

Table 5.1 presents the exclusive addition (X), the symmetric addition (+) and
the identical selection (-), and table 5.2 presents the subtraction (/), the conservative

addition (>) and the substitutive addition (<) and assignment (=) value operations.

Operand Operation
Element | A| B || AxB|A+B|A-B
al| p)))
Value | v | v ® Y Y
al® o a ®
| B g g @

Table 5.1: Definitions of the exclusive addition (x) symmetric addition (+) and

identical selection (-) value operations.

Operand Operation
Element |A| B | A/B|A>B|A<B|A=B
al B «a « g g
Value | v | v P ¥ ¥ ¥
ald o a o ¢
|| @ B Y Y

Table 5.2: Definition of the subtraction (/), conservative addition (>), substitutive

addition (<) and assignment (=) value operations.

5.10.1.2 Precedence Symbol

A value composition operation can be locally preempted by a value of an element,

using a precedence sign ($), according to the table 5.3 (A and B are the operand ele-

67

ments and a and b are their values, respectively). The functionality of the precedence

Operand || Operation

Element | A | B AxB
$a | b a
Value | a | $b b
$a | $b axb
a | b axb

Table 5.3: Definition of the precedence operator ($).

operator may be extended from the use within leaf elements to other levels, by means
of recurrence.

For instance, it can be applied to core elements. Thus, the precedence sign used
with a core element’s value, will indicate the precedence operation for all its leaf de-
scendants. The core element’s value is not composed and does not need a precedence
status.

When used at the root, the precedence nears the behaviour of the value assignment
(é). The precedence preempts the value operations, because it’s more “local” and

“manual”, whereas the value operations are more “general” and “automatic”.

5.10.2 Linkage-Layer Operations

Linkage-layer operations are complementary to the value operations within the

element. Linkage operations are generally symbolised by a small circle (o):

o= [@l®lo|o|=]

Some of them are not “stand-alone”, i.e. they need to be composed with some

value operation in order to be applied to the configurations.

68

5.10.2.1 Overview

In the table 5.4 is presented a summary of the definitions of several linkage oper-

ations.

The symbols in the figure have the following meanings :

e Aand B : two (matching) elements whose descendants (“links”) are composed,;

e 3: the (operand) element’s link has a match among the other element’s descen-

dants; and

e 3 : the element’s link does not have a match among the other element’s descen-

dants.

Table 5.4 presents the symmetric addition (@), the ezclusive addition (®), iden-

tical selection (®), subtraction (@) and assignment (=) linkage operations.

Operand Operation
Element |A| B | A®B|AQB|AOB|A0B|A=B
3|3 3 = A 3
Link |3|3 | 3 A 3 A
A3 3 3 3 ! 3

Table 5.4: Definition of the symmetric addition (), exclusive addition (®), identical

selection (®), subtraction (@) and assignment (=) linkage operations.

5.10.3 Element—Layer Operations

Element-layer operations are, in fact, compositions of value and linkage opera-

tions. These compositions are commutative because the two kinds of operations are

independent and decoupled.

In this case, both the value and the linkage of the changing element are affected.

Element operations are generally symbolised by the pair of symbols that represent the

(+,0) &= (o, %)

69

value and linkage operations: a small circle and an asterisk (x, o), or by a superposed

symbol (®).

(x,0) <= (®)

Specific value and linkage operations can be composed and applied to the operands.
In this case, the generic symbols for value and linkage operations from the previ-
ous notation will be replaced by the specific value and linkage operation symbols.
For example, the combination between the value symmetric addition and the linkage
symmetric addition is written: (+,®). In the case of the element assignment, we
may suppress the ® from the & symbol without major risks of confusion, in order to

simplify the notation, since this symbol is used very often.

We can write a three-operand composition between B and C and assigned to A,

thus :

A=B(+,8)C

We can write ? a two-operand composition between A and B, thus :

A three-operand operation can be decomposed into two two-operand operations.

For instance:

[(A=B +0C) < (A=B; A x0=C)

5.11 Composition Examples

5.11.1 Examples Background

In the subsequent sections we shall exemplify the operations of the Composition

Algebra.

?In order to avoid the confusion with the notations used for argument functions (e.g. as in:

f(z,y)), we will omit the braces “(...)” and the coma (,) from now on (consequently, the previous

statement looks like this: A = B +& C).

70

We shall use the neighbor (OSPF) (lisco I0S command, which is used in the
router context to configure OSPF routers interconnecting to non-broadcast networks

(23] (the no form should be used to disable this feature). The command syntax is:

neighbor ip-address [priority number] [poll-interval seconds]
[cost number]

no neighbor ip-address [priority number] [poll-interval seconds]

{cost number]

where :
e ip-address is the interface IP address of the neighbor;

e priority number (optional) indicates the router priority value of the non-
broadcast neighbor associated with the IP address specified. The default is
0;

e poll-interval seconds (optional) indicates the poll interval. The default is

120; and

e cost number (optional) assigns a cost to a neighbor The default is the cost of

the interface, based on the ip ospf cost command.

We map it into the element:

neighbor:<ip-address>
- priority:<priority_number>

- poll-interval:<seconds>

- cost:<cost_number>

We see that, the neighbor element has three descendants. We make the assumption
that a construct, A, and a capsule, B, have such descendant elements. Since we may
have several neighbors and neighbor commands, the identifier includes the value of

the neighbor element.

71

5.11.2 Value-Layer Operations Examples

The value operations are “stand-alone”, i.e. they can compose elements with or

without combination with linkage operations.

5.11.2.1 Assignment

w*

The assignment symbol is: “=". An expression like “X = Y” means that the
(direct and, if recurrent, indirect descendant) leaves of the left-hand element (X) are
assigned the values of the corresponding leaves of the right-hand element (V).

Suppose that the construct A and the capsule B have the following shapes 3:

A: - neighbor:’131.108.3.4° B: - neighbor:’131.108.3.4°

- priority:XXX - priority:YYY

Suppose we performed the following assignment:

(A: / neighbor: 131.108.3.4') = (B: / neighbor: 131.108.3.4) (5.1)

The neighbor:’131.108.3.4’ is an element identifier and will not change, whereas
the XXX and YYY are leaf element values and should be composed. No matter whether
the values of XXX and/or YYY are O (i.e. the default) or not, the latter replaces the

former and we obtain the configuration for A depicted in figure 5.1:

A: - neighbor:’131.108.3.4°

- priority:YYY

Figure 5.1: Construct A.

5.11.2.2 Additions

There are several ways to add information to a configuration. Thus, if the cap-

sule’s (non-default) data preempts the router’s configuration (non-default) data, the

3The symbols XXX and YYY are just the place-holders for any (0 or non-zero) values.

72

addition is called substitutive (or “overriding”), if — on the contrary - the router’s
configuration data is preserved despite the capsule, the addition is called conservative
and if none of the non-default data is retained and the default value is set instead,
the addition is called symmetric.

The ezclusive addition is mentioned mostly for its potential use in combined com-
positions. It acts based on the consensus principle and sets to default an element’s

effective value if the (non-default) effective values of the two operands differ.

5.11.2.3 Symmetric Addition

Let us tackle the non-default value cases, first. Suppose we have the construct A

and capsule B, depicted in figure 5.2.

A:

neighbor:’131.108.3.

priority:1

poll-interval: 180

4’ B:

neighbor:’131.108.3.4°

priority:2

poll-interval: 180

Figure 5.2: Entities A and B.

If we perform the composition :

(A: / neighbor;'131.108.3.4") +

(B: / neighbor.'131.108.3.4")

we obtain the following configuration for A:

A: ~

neighbor:’131.108.3.4°

priority:0

poll-interval:180

(5.2)

We see that none of A’s and B’s values is retained when non-default unequal

values are composed. Now, let us tackle the default value cases. Suppose we have
a construct A and a capsule B showed in figure 5.3: If we perform again the

composition expressed by 5.2, we obtain the configuration for A showed in figure 5.4.

73

A: -

- priority:1

- poll-interval:120

neighbor:’131.108.3.4° B: -

neighbor:’131.108.3.4’

priority:0

poll-interval:180

Figure 5.3: Entities A and B.

A: -

neighbor:’131.108.3.4°

priority:1

poll-interval:180

Figure 5.4: Entity A.

If we consider just the addition (+) alone, i.e. without assignment (=) to either

of the operands, we see that it is symmetric indeed (or commutative) *:

[A+ B < B+ 4]

5.11.2.4 Conservative Addition

We use the same cases as in the previous paragraph. For the non-default value

cases we use the initial A and B depicted in figure 5.2, section 5.11.2.3 (page 73).

If we perform the conservative addition between A and B :

(A: / neighbor: 131.108.3.4") >=

(B: / neighbor: 131.108.3.4")

we obtain the following configuration for A:

A: -

neighbor:’131.108.3.4°

priority:1

poll-interval:180

(5.3)

We see that A conserves its values when non-default unequal values are composed.

For the default value cases, expressed in figure 5.3, section 5.11.2.3, if we per-

form the conservative addition (equation 5.3), we obtain the same results as for the

symmetric addition, i.e. A has the configuration expressed by 5.4.

4This quality is evident in table 5.1.

74

If we apply the conventions stipulated for symmetry in the previous section (5.11.2.3),
we can see that the conservative addition is an asymmetric operation. This feature

is evident in table 5.2 5.

5.11.2.5 Substitutive Addition

This operation mirrors the conservative addition. Thus, we shall see that A’s
value is “overridden” by B’s value when non-default unequal values are composed.
With the A’s and B’s non-default values depicted in figure 5.2 in section 5.11.2.3, if

we perform the substitutive addition between A and B:

(A: / neighbor: 131.108.3.4') <= (B: / neighbor: 131.108.3.4") (5.4)

we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°
- priority:2

- poll-interval:180

For the default value cases, expressed by (A.2) and (B.2) in section 5.11.2.3, if we
perform the composition 5.4, we obtain the same results as for the symmetric and
conservative additions, i.e. A has the configuration expressed by 5.4.

If we apply the conventions stipulated for symmetry in section 5.11.2.3, we can

see that the substitutive addition is an asymmetric operation.

5.11.2.6 Exclusive Addition

With the A’s and B’s non-default values showed in figure 5.2, section 5.11.2.3, if

we perform the ezclusive addition between A and B:

(A: / neighbor: 131.108.3.4') x = (B: / neighbor: 131.108.3.4") (5.5)

5The reason why the order of the operations in tables 5.1 and 5.2 and the order of the examples

differ is that the tables group the symmetric and asymmetric operations, respectively. In plus, for
a better visualisation, with the exception of the assignment operations, the symmetric symbols cor-
respond to symmetric operations, whereas the asymmetric symbols correspond to the asymmetric

operations.

we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

priority:1

poll-interval:120

We see that A’s effective value is set to the default value when non-default (equal
or unequal) effective values are composed.

For the default value cases, expressed in figure 5.3, section 5.11.2.3, if we perform
the composition 5.5, we obtain the same results as for the symmetric and conservative
additions, i.e. A has the configuration showed in figure 5.4.

According to the symmetry conventions stipulated in section (5.11.2.3), we can

see that the substitutive addition is a symmetric operation.

5.11.2.7 Identical Selection

With the A’s and B’s non-default values displayed in figure 5.2, section 5.11.2.3,

if we perform the identical selection between A and B:

(A: / neighbor: 131.108.3.4") -= (B: / neighbor: 131.108.3.4') (5.6)

we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- priority:0

- poll-interval:180

For the default value cases, depicted in figure 5.3, section 5.11.2.3, if we perform

the composition 5.6, we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- priority:0

- poll-interval:120

We see that A’s effective value is preserved when it’s identical with B’s correspond-
ing value. According to the symmetry conventions stipulated in section 5.11.2.3, the

identical selection is a symmetric operation.

76

5.11.2.8 Subtraction

Subtraction is somewhat complementary to the identical selection, because the
former sets to default the (non-default) value in case of equality and preserves the
rest, whereas the latter does just the opposite (i.e. preserves the value in case of
equality and sets the rest to default).

With the A’s and B’s non-default values displayed in figure 5.2, section 5.11.2.3,

if we subtract B from A :

(A: / neighbor: 131.108.3.4") /= (B: / neighbor: 131.108.3.4") (5.7)

we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- priority:1

- poll-interval:120

For the default value cases, expressed by 5.3, section 5.11.2.3, if we perform the

composition 5.7, we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- priority:1

- poll-interval:120

We see that A’s effective value is reset when it is identical with B’s corresponding

value. As expected, this operation is asymmetric.

5.11.2.9 The Precedence

Let’s take a random value operation, for instance the symmetric addition (+). We
shall set A’s priority to have precedence, by appending the dollar sign prefix ($) to
that particular value 6.

Suppose we have a construct A and a capsule B depicted in figure 5.5. If we

5The poll-interval parameter has no precedence and serves just to emphasize, by contrast, the

case illustrated by the priority parameter.

77

A:

neighbor:’131.108.3.4°
- priority:$1

- poll-interval:180

B:

neighbor:’131.108.3.4’
- priority:2

- poll-interval:240

Figure 5.5: Entities A and B.

perform the symmetric addition (as in the expression 5.2):

(A: / neighbor: 131.108.3.4") += (B: / neighbor: 131.108.3.4')

we obtain the following configuration for A 7

A: - neighbor:’131.108.3.4°

- priority:1

- poll-interval:120

We see that none of A’s priority prevailed over every other possible value (B’s

value or the default value normally resulting from the symmetric addition).

5.11.3 Linkage Operations Examples

Since the some of the linkage-layer operations are not “stand-alone”, but must be
separately explained in this section, we make the following convention: we compose
a generic value operation (*) with the specific linkage operation that is presented and

represent only the latter one, based on the following formal artifice:

(*,0) == (o)

where the generic linkage operation symbol (o), is a “wildcard” for any linkage

operation (&, ®, ©, @, =).

5.11.3.1 Assignment

The symbol for the linkage assignment is “=”. An expression like X = Y means
that the stray (direct and indirect descendant) elements of the left-hand element (X)

are removed and descendants of the right-hand element (Y) copied instead to X.

"The poll-interval default value is 120.

78

Suppose that the construct A and the capsule B are such as depicted in figure 5.6

8

We perform the following assignment:

A:

neighbor:’131.108.3.4°

- priority:XXX

- poll-interval:VVV

B:

neighbor:’131.108.3.4°
- priority:YYY

- cost:UuU

Figure 5.6: Entities A and B.

(A: / neighbor: 131.108.3.4") = (B: / neighbor: 131.108.3.4') (5.9)

and obtain the configuration for A showed in figure 5.7.

A: - neighbor:’131.108.3.4°

-~ priority:ZZZ

- cost:UUU

Figure 5.7: Entity A -

We see that, as in the previous example, the descendant leaf element priority
remains in A with yet undecided value, whereas, unlike the previous example, the
poll-interval element is copied from B to A.

The linkage assignment is not a “stand-alone” operation, it relies on a comple-
mentary value operation to compose the values on the value layer. Thus, the value
of the “place-holder” ZZZ is either XXX or YYY, depending on the value operation that

is composed with the type assignment, i.e. ZZZ = XXX xYYY °.

5.11.3.2 Symmetric Addition

We shall use the same cases as in the previous section (please refer to figure 5.6

in section 5.11.3.1). In order to illustrate the cases expressed in the first two rows of
8The symbols UUU, VVV, XXX and YYY are just the “place-holders” for (default or non-default)

effective values.
SWritten more formally: (A: / neighbor | priority) * = (B: [neighbor | priority)). For an

example of such a composition, refer to section 5.11.4.

79

the table 5.4 we perform the following symmetric addition:

(A: / neighbor: 131.108.3.4") &= (B: / neighbor: 131.108.3.4") (5.10)

This operation has a different behaviour depending whether it is used in combi-

nation with a value operation or as a stand-alone operation.

5.11.3.2.1 When used in combination with a value operation When per-

forming the operation 5.10 ' we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°
- priority:ZZ7Z

- poll-interval:VVV

- cost:UUU

where VVV = XXX xYYY.

We see that descendants from both elements are retained and the common de-
scendants are composed by means of the (generic) value operation. The result
is predictable, if we speak just in terms of the linkage operation, because it is a
symmetric operation. Regarding the value, the matter is decided by the effective

value operation that hides behind the generic symbol (¥).

5.11.3.2.2 When used as a stand alone operation When performing the

operation 5.10 !! we obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- priority:XXX

priority:YYY

- poll-interval:VVV

- cost:Uuu

In our specific example, this command tree does not represent a valid neighbor

command. However, the behaviour of the stand-alone symmetric operation might be

0Tn this case, the generic value composition () is implied.
U1n this case, there is no generic value composition () involved.

80

useful in intermediate operations. For instance, one of the priority siblings might
be pruned later, according to some algorithm or schedule using a linkage subtraction
operation.

Besides, there might exist other contexts, commands or sub-commands, that admit
sibling elements.

For instance, the command network, which configures the network which the
routing process is responsible for or, when used in the no form, removes an entry
from the list of networks. The command has the following syntax, for IGRP, EIGRP
and RIP protocols [23]:

Router (router) # network network-number

Router (router) # no network network-number

where network-number represents the IP address of the directly connected networks
12

Suppose that the construct A and the capsule B are such as depicted in figure 5.8

and we perform the stand-alone symmetric addition expressed by (5.11).

A: - eigrp:’109’° B: - eigrp:’109’

- network:’131.108.0.0° - network:’192.31.7.0?

Figure 5.8: Entities A and B.

(A: / eigrp: 109") &= (B: / eigrp: 109') (5.11)

We obtain the following configuration for A:

A: - eigrp:’109°
- network:’131.108.0.0°
- network:’192.31.7.0’

Since it cannot choose between the two values network-number, in the absence of
the value operation that would do that, the lAinkage symmetric addition keeps both of
the network elements, which suits us, in this example, because we wanted to create

a list of network addresses for the FIGRP protocol.
2for other protocols, like BGP or OSPF, the command has a slightly different form.

81

5.11.3.3 Exclusive Addition

Using the same cases as in the previous section (figure 5.6 in 5.11.3.1), we perform

the following ezclusive addition operation:

(A: / neighbor: 131.108.3.4") ® = (B: [neighbor: 131.108.3.4")

and obtain the following configuration for A:

A: - neighbor:’131.108.3.4°
- poll-interval:VVV
- cost:UUU

The ezclusive addition is a symmetric operation. The distinct elements are re-
tained by this operation whereas the common features are discarded and consequently,

no value operation is further needed. In other words, this operation is “stand-alone”.

5.11.3.4 Identical Selection

Using the same cases as in the previous section (figure 5.6 in 5.11.3.1), we perform

the following identical selection operation:

(A: / neighbor: 131.108.3.4") ®= (B: / neighbor: '131.108.3.4")

and obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- priority:ZZZ

The ezxclusive addition is symmetric. This operation and the previous one are
complementary, since now, the distinct elements are discarded by this operation
whereas the common features are retained and consequently, a value operation is
further needed.

The symmetric addition is obtained from the combined effect of the identical

selection and the exclusive addition.

82

5.11.3.5 Subtraction

In order to illustrate this operation, we shall use the same cases as in the previous

section (figure 5.6 in 5.11.3.1). We perform the following subtraction :

(A: / neighbor: 131.108.3.4") @= (B: [neighbor: 131.108.3.4)

and obtain the following configuration for A:

A: - neighbor:’131.108.3.4°

- poll-interval:VVV

Obviously, the subtraction is asymmetric. The distinct elements of the left-hand
side operand are retained by this operation whereas the others are discarded and
consequently, no value operation is further needed. In other words, this operation is
stand-alone.

It is interesting to mention that the ezclusive addition can be obtained by applying
twice the subtraction, once with the operands in order and once with them in inverted

order.

5.11.4 Element—Layer Operations Examples
5.11.4.1 Assignment

The element-layer assignment is composed of the value assignment and the linkage
assignment.

Suppose that the construct A and the capsule B look like in figure 5.9. We

A: - neighbor:’131.108.3.4° B: - neighbor:’131.108.3.4°
- priority:XXX - priority:YYY
- poll-interval:VVV - cost:UUU

Figure 5.9: Entities A and B

perform the following assignment :

(A: / neighbor: 131.108.3.4') = (B: / neighbor: 131.108.3.4") (5.12)

83

and obtain the following configuration for A:

A: -

priority:YYY
cost:UUU

neighbor:’131.108.3.4°

Thus, the linkage assignment operation gives a similar result as operation 5.9
(please refer to figure 5.7) and the value assignment decides the value of the priority
element, as the value assignment operation (5.1) in section 5.11.2.1 (please refer to

figure 5.1).

5.11.4.2 The Value Conservative Addition and Linkage Symmetric Addi-

tion Compound

Obviously, there are many possible combinations between the value and linkage
operations that have been presented. We shall take just an example to illustrate the
operation composition.

Suppose that the construct A and the capsule B are such as depicted in figure

5.10 and we perform the following compound operation:

A: - neighbor:’131.108.3.4° B: - neighbor:’131.108.3.4°
- priority:1 - priority:2
- poll-interval:VVV - cost:UUU

Figure 5.10: Entities A and B.

(A: / neighbor: 131.108.3.4") > &= (B: / neighbor: 131.108.3.4")

(5.13)

and obtain the configuration for A depicted in figure 5.11.

The value of the priority is obtained according to the value conservative addition
that was illustrated in section 5.11.2.4 at page 74 (refer to operation 5.3). Suppose
that the construct A and the capsule B are such as depicted in figure 5.12.

If we perform the operation expressed by 5.13, we obtain the following configura-

tion for A:

84

A: - mneighbor:’131.108.3.4°
- priority:1

- poll-interval:VVV

- cost:UUU

Figure 5.11: Entity A

A: - neighbor:°131.108.3.4° B: - neighbor:’131.108.3.4°
- priority:1 - priority:1
- poll-interval:VVV - cost:UUU

Figure 5.12: Entities A and B.

A: - neighbor:’131.108.3.4°
- priority:1

- poll-interval:VVV

- cost:UUU

which is similar to 5.11, obtained in the previous case.

Suppose now that A has the following values :

A: - neighbor:’131.108.3.4°

- priority:0

- poll-interval:VVV

and we perform again the operation expressed by 5.13, we get the following values
for A:

A: - neighbor:’131.108.3.4°
- priority:1

- poll-interval:VVV

- cost:UUU

which is again similar to 5.11.

If we use the values for the construct A and capsule B depicted in figure 5.13,

the resulting A has the shape :

85

A: - neighbor:’131.108.3.4° B: - neighbor:’131.108.3.4°

- priority:1 ~ priority:0

- poll-interval:VVvVv - cost:UUU

Figure 5.13: Entities A and B.

A: - neighbor:’131.108.3.4°
- priority:1

- poll-interval:VVV

- cost:UUU

in which we find again 5.11.

Obviously, if both values involved in the value composition are equal to the default
value, (which, in the case of the priority parameter, is 0) we get the effective value
equal to 0 as the result.

For instance, if the construct A and the capsule B are those depicted in figure

5.14. the resulting A has the shape depicted in figure 5.15:

A: - neighbor:’131.108.3.4° B: - neighbor:’131.108.3.4°
- priority:0 - priority:0
- poll-interval:VVV - cost:UUU

Figure 5.14: Entities A and B.

A: - neighbor:’131.108.3.4°
- priority:0

- poll-interval:VVV

- cost:UUU

Figure 5.15: Entity A.

86

5.11.4.3 Other Compound Operations

Several considerations regarding the composition of value and linkage operations

into element operations may be relevant:

there are many operations and consequently many more potential combinations

among them,;

the configuration composition is typically asymmetric, i.e., usually an entity

(the capsule) changes another entity (the construct);
some operations are dependent, i.e. they can be obtained from the others;

while independent operations are useful from axiomatic perspective, some de-

pendent operations may be convenient for the user;

usually, it is less risky to add than to remove information. For instance, an
additional information may be ignored, while a missing one may cause problems;

That’s why, we defined more additions than subtractions, etc.;

we can pre-configure some sets of services, policies or configurations and switch

between them, mask parameters, etc.;

there are some functional similarities and correspondences between the some
value and linkage operations, as their respective names may suggest, which
might be successfully combined into a convenient and effective operation system;

and

a balance must be set between the symmetric and the asymmetric operations.

There are specific combinations of value and linkage operations that seem to

be better suited for the configuration process. For instance, the value and linkage

additions can be combined into useful element operations. Nevertheless, we can use

other combinations, according to our purposes.

87

Chapter 6

CLI/Meta—CLI Modelling

There are several CLI features that must be taken unto account in the CLI/Meta-
CLI modelling. The modelling process is not cast on fixed rules, it involves a degree
of creativity and is specific to each configuration command, feature or service. The
modelisation is based on the syntax, semantics and behaviour of the CLI commands.

The process of modelling the CLI information depends on, and must be adapted
to, the concrete type of CLIL. In the following paragraphs we shall illustrate some
aspects of this procedure with examples from the Cisco I0S.

There are several levels of the modelling process from CLI to meta-CLI :

e the command level, which deals with the command and its options, switches,
parameters and their values; access to this information requires fine-grained
modelling structures and is necessary especially for and corresponds to the

instance-specific configuration component;

e the contezt level, which deals with the commands opening a context, mode or

submode and the group of commands belonging to that context; and

e the service and configuration record level, which deals with the commands and
information that belong to a service or a device configuration record and corre-

sponds to the policy- and service-specific information.

88

6.1 Command-—Level Translation

The CLI commands are translated into Meta-CLI tree structures. The purpose of
translating the parameters and arguments into a tree is to enable fine-grained access
to the information in order to implement services and policies and to perform the
instance-specific configuration operations. If the command information does not
need to be addressed individually, the command can be taken as a whole, translated
into an element and dealt with directly at context-level.

At this level, there are several specific issues that involve both creativity and the
existence of some translation patterns or rules. The following sections will highlight

some of these issues.

6.1.1 Command Definitions and Instances and

Generic and Concrete Structures

Since we can have several occurrences of a command, there should exist a corre-
sponding generic structure, which is a like a class structure or a template and cor-
responds to the command definition and concrete structures, which are like instance
structures and correspond to the command instances. The name of the command is
mapped into the top element and the parameters, switches or options are added as
descendant elements of the first element or of its descendants.

The keywords of the parameters will be the types of the descendant elements and
the values will be element effective values. The shape of the tree must take into the
account the dependencies among the command’s parameters, with the elements that
control the others as ancestors and the controlled elements as descendants.

We may take into consideration, as an example, the network area command,
which defines the interfaces on which OSPF runs and the area ID for those interfaces
[19]. (To disable ISPF routing for interfaces defined with the address wildcard-mask
pair, the no form should be used.). The context of the command is router.

The syntax of this command is:

89

network address wildcard-mask area area-id

no network address wildcard-mask area area-id

where :

e address is an IP address;
e wildcard-mask is an IP-address-type mask; and
e area is the area that must be associated with the OSPF address range;

A (concrete) instance of this command would look like this:

IRouter (router) # network 131.119.0.0 0.0.0.255 area 01

which defines the interface with the address 131.119.0.0 0.0.0.255 on which OSPF
runs and associates area 0 to it.

The translation of the network area command definition into a generic structure
will be as follows: the element from parameter area will be added (as a descendant)

to the network element, whose value is represented by the address wildcard-mask!.

- network:<address> <wildcard-mask>

- area:<area-id>

while the instance of the network area command would take the following shape:

- network:’131.119.0.0. 0.0.0.255°

- area:0

6.1.2 Command Negation

Usually, the syntax provides a negation of a command, starting with the word no
and continuing with the command’s name and the (mandatory) parameters (e.g. no
network address wildcard-mask area area-id). In this case, this name, using the
tilde wildcard (7) is assigned to the effective value of the top element. For instance,

if we negate the previous command, we get the following tree :

!'The angular brackets (< ... >) designate tokens (placeholders) that must be replaced with actual

values, when the command actually occurs during the configuration process.

90

- mnetwork:no 7 ’131.119.0.0. 0.0.0.255°

- area:0

The tilde represents the “shorthand” notation for the type of the element.

6.1.3 Independent Parameters

If the parameters are independent, they should be translated into sibling elements.

For example, the neighbor (0SPF) command translation, presented in section 5.11.1:

neighbor ip-address [priority number] [poll-interval seconds] [cost number]

Here, the priority, poll-interval and cost are mutually independent param-
eters and we can translate them into siblings; thus the command definition maps to

the following generic structure:

~ neighbor:<ip-address>
- priority:<priority_number>

- poll-interval:<seconds>

- cost:<cost_number>

6.1.4 Dependent Parameters

If there is a dependency between options or parameters, they should be linked to
each en cascade, so that the link showed the hierarchical relationship between them.
Let us consider the Cisco I0S command offset—~1ist, which is used in the router
mode, to add an offset to incoming and outgoing metrics to routes learned via RIP.
(To remove an offset list, the no form of this command must be used.) The command

has the following syntax:

offset-list {access-list-number | name} {in | out} offset [type number]

no offset-list {access-list-number | name} {in | out} offset [type number]

where :

91

access-list-number — name, is the standard access list number or name to be
applied;
in or out, applies to access list to incoming or outgoing metrics, respectively;

offset, is the offset to be applied to metrics for networks matching the access

list;
type (optional), is the interface type to which the offset list is applied; and

number (optional), is the interface number to which the offset list is applied.

In the following example of an offset-1list command, the router applies an offset

of 10 to the router’s delay component only to access list 21 [23]:

[offset-1ist 21 out 10]

In the next example, the router applies an offset of 10 to the routes learned from

Ethernet interface O :

[offset-1list 21 in 10 ethernet 0]

In this command, each of the parameters “refines” or “restricts” the information

given by the previous parameters. For example, an offset list with interface type and

number (which are optional), will take precedence over a list without interface and

type number. Thus, we have cascading dependencies of the parameters:

the interface type and number, if any specified, applies to the offset;
the offset applies to a direction; and

the direction (in or out), applies to a specific access list.

The translation into an tree should therefore organise this information into a

hierarchical way; for instance the offset-1ist command would be translated thus:

- offset-list:21
- direction:in

- offset:10

- interface: ’Ethernet 0’

92

6.1.5 Parameter Translation

A parameter may have various representations within the command. The com-

mand translation should provide a means to deal with all these situations:

e there exist both a keyword and its value;

For example, in the neighbor (0SPF) command translation, presented in sec-
tion 5.11.1 (pages 70 and subsequent) the parameter cost has both a keyword
and a value. In this case, we translate the parameter into an element whose

type is the keyword and effective value is the parameter value;

e there is no keyword but there exists a value;

For example, in the offset-1ist command instances exemplified in section
6.1.4, at page 92, the offset has no keyword but the value 10 is indicated;
in this case, the corresponding element will have its effective value set to the
value specified by the command and the type of the element will be set to some
string, which may be suggested by the command definition; for instance, in this
command’s translation at page 92, the type offset was created to accompany

the value : 10; and

e there is a keyword but no value;

If the keyword is an alternative, (like in and out) in the offset-1list command
at page 91, it may be treated as a value in the previous case; in the tree shown

at page 92 it was coupled with the string direction.

6.1.6 Command Name Translation

The command may start with several keywords in a row; in this case they may be
placed in the same element (as its type). For instance, the command ip address,
which is valid in the interface mode and sets the IP address of an interface (or removes

it when used with the no form) and has the following syntax:

93

ip address ip-address mask [secondary]

no ip address ip-address mask [secondary]

where :
e ip-address represents the IP address;
e mask represents the mask of the associated IP subnet; and

e secondary (optional) specified that the configured address is a secondary ad-

dress.

starts with two strings: ip address. These will be translated into the fype and the

two strings ip-address mask can be translated into the value of an element.

6.1.7 Parameter Permutation

The translation should handle various situations encapsulating the commands
into the tree. This encapsulation should allow some degree of freedom of expression
but keep the equivalence of the commands and tree intact, so that conversion and
retroversion would happen without information loss or distortion.

Thus, for instance, the order of the arguments and parameters may be per-
muted within the tree, if necessary. We may take as an example the command
ip access-group, which is used in the interface mode and assigns an access list to
an interface in a specific direction - in or out (to disable an access-group command,

the no form should be used). The syntax of the command is :

ip access-group access-list [in | out]

no ip access-group access-list [in | out]

where :
e access-list is the number of an access list; and

e in or out is the direction. Each interface can support only one access list in

either direction.

94

We can set the command’s element to the value of the second parameter and keep
the first value as the value of its descendant. We can call the former “access-list”
(therefore, the type is access-list):

Assuming a concrete command:

Router (config-if) # ip access-group 10 in

we can map it to an element in the following way:

- 1ip access-group:in

- access-list:10

In this way, we manipulate the element according to a type (in or out) rather
than a number (the access-list value).

As mentioned in chapter 4, the generic structures representing the CLI commands
must be pre-defined in the program. When a configuration file is read in, the effective
values must be set to the corresponding values found in the configuration and thus
the structures are instantiated. The (immutable) default and range or enumerated
values must pre-exist in the generic structure.

The program must parse and recognise the commands and extract the options,
parameter, and argument information from the commands and place it into the cor-

responding tree elements.

6.2 Context—Level Translation

We deal at this level with groups of commands in which the first one changes the
context or mode in which the configuration process is performed (the interface (e.g.
interface Ethernet 0), router (e.g. router ospf 109), line, etc. commands)
whereas the rest of the commands are specific to that context or mode (for example,
ip address command within the interface mode). The context-specific commands
should be translated into trees that are descendants of the context-changing com-
mand, more exactly, of its top element.

Thus, we have two kinds of trees descending from the same top element of the

context-changing command tree :

95

e command’s own tree containing the parameter information; and

e trees representing the context-specific commands.

As mentioned in chapter 4, the context-level Meta-CLI tree must pre-exist and
translate into branches all of the generic context-specific commands. When such a tree
is instantiated, the branches that translate existing commands will be instantiated
(i.e. kept and filled with corresponding information), whereas those who represent

non-existing commands will be deleted.

6.3 Lineage Aggregation

If some of the instances of the same command have one or more similar elements
and paths, these can be unified into the same ancestor and lineage. We may consider
as an example the command access-1list (standard), which defines a standard IP
access list and has the following syntax (to remove standard access-lists, the no form

is used):

access-list access-list-number deny | permit source [source-wildcard]

no access-1ist access-list-number

where:
e access-list-number, is the number of the access-list, from 1 to 99;

e deny (default) or permit, denies or permits, respectively, access if conditions

are matched;

e source, is the number of the network or host sending the packet, in dotted-

decimal format or keyword any as an abbreviation of the source and wildcard

0.0.0.0 255.255.255.255; and

e source-wildcard, are the wildcard bits to be applied to the source, in dotted-
decimal format or keyword any as an abbreviation of the source and wildcard

0.0.0.0 255.255.255.255.

96

For instance, the following access-list:

Router (config) # access-list 110 permit 10.0.1.0 0.0.0.255

Router (config) # access-list 110 permit 10.0.2.0 0.0.0.255

allows access for only those hosts on the networks 10.0.1.0/24 and 10.0.2.0/24 and
implicitly denies all other accesses.
According to the above-mentioned considerations, this access list can be translated

into the following tree :

- access-list:110

- permit:’10.0.1.0 0.0.0.255°

- permit:’10.0.2.0 0.0.0.255°

The contexts have an tree hierarchy. However, the context-changing commands
that allow the transition of the user’s configuration control from one context to the
other do not have an tree hierarchy because they can have opposite effect, i.e. they
can invert the context hierarchy. More specifically, commands like control+Z, end
or erit do not have parameters and are, in general, implied by the configuration files.
Therefore, they should not cause problems to the translation of context-level groups

of commands.

6.4 Device Configuration Record—Level Translation

At this level, the context-level trees are combined into trees that represent device
configuration files and services that should be composed with these configurations. If
some elements on the trees are descendants of more than an ancestor, these elements
may be accessed from different roots and along different paths. This can be the case
with instance-specific information.

A construct or a capsule can get alternative trees, which may be used for config-

uration validation and verification.

97

Chapter 7

Case Study: VPN Service

Configuration

Configuration of the Services for Virtual Private
Networks (VPNs) Using the Meta—CLI Model

7.1 MPLS and VPN Services Outline

In this chapter, we shall illustrate the use of our model to activate a MPLS/VPN
service, which provides us with a good example that allows us to make our case. A
VPN service ! consists of multiple sub-services (e.g., the configuration of MPLS, an
IGP for connectivity, and a BGP for route advertisement), and, since there is no

single CLI command available for its activation, it requires multiple CLI commands

[46).

7.1.1 MPLS Description

The Multiprotocol label switching (M PLS) is a versatile solution to address the

problems faced by present-day networks-speed, scalability, quality-of-service (QoS)

LSometimes it is considered a superservice.

98

management, and traffic engineering. MPLS has emerged as an elegant solution to
meet the bandwidth-management and service requirements for next-generation

For Internet protocol (IP)-based backbone networks, MPLS addresses issues re-
lated to scalability and routing (based on QoS and service quality metrics) and can
exist over existing asynchronous transfer mode (ATM) and frame-relay networks [9].

The premise of multiprotocol label switching (MPLS) is to speed up packet for-
warding and provide for traffic engineering in Internet protocol (IP) networks. To
accomplish this, the connectionless operation of IP networks becomes more like a
connection-oriented network where the path between the source and the destination
is pre-calculated based on user specifics.

To speed up the forwarding scheme, an MPLS device uses labels rather than
address matching to determine the next hop for a received packet. To provide traffic
engineering, tables are used that represent the levels of quality of service (QoS) that
the network can support. The tables and the labels are used together to establish an

end-to-end path called a label switched path (LSP) [10].

7.1.2 VPN Description

Private networking involves securely transmitting corporate data across multiple
sites throughout an entire enterprise. Creating a truly private corporate network
generally requires an intranet. A wvirtual private network (VPN) is one means of

accomplishing such an implementation using the public Internet [11] [39].

7.2 Configuration of an MPLS/VPN Application

We will illustrate the use of the Meta-CLI with the following example. We suppose
that a service provider needs to provide virtual private networking services to two local
Intranets via MPLS.

One Intranet, known as the RED VPN, will have a 10MB Ethernet connection
to the provider. The subscriber owns a router and plans to use the provider as the

default gateway to their headquarters facility. The other Intranet, known as the

99

BLUE VPN, will have a 100 MB connection to the provider. The subscriber and the
provider are using overlapping private address space.

This is allowed because once an interface is configured as part of a VPN, it is
removed from the global routing table. Each VPN will have its own virtual route-
forwarding instance, resulting in secure transport across the MPLS cloud. Multiple
OSPF routing processes are required in order to exchange topology information be-
tween the subscriber and the provider. The provider runs an internal OSPF routing
process to exchange reachability information among other MPLS peers. The details

of this example are depicted in Figure 7.1.

Provider Core LSR A

10.10.20.0/24 10.10.30.0/24
(5 u
Provider Edge
\\LSR s /
()
RED VPN
10.10.60.1 10.10.70. 1 RED VPN
10.10.60.0/24 10.10.70.0/24
Customer Edge Customer Edge
LSRD LSRE
10.10.40.0/24 BLUE VPN BLUE VPN 10.10.50.0/24

Figure 7.1: MPLS VPN Configuration Example.

Since the MPLS may be also regarded as a service per se, and pre-exist, we shall

consider has already been set up 2.

by enabling ip cef and configuring tag-switching ip on the interfaces

100

7.3 The Addition of VPN Services

We start with the configuration files described in the figures 7.2, 7.3 and 7.4).

1
Yersion 12.1

éostname A

ip subnet-zero
ip cef
1

interface Loopback0
ip address 10.10.10.1 255.255.255.265
no ip directed-broadcast

!

interface Ethernet 1/0
no ip address
no ip directed-broadcast
shutdown
no cdp enable

'

interface Ethernet 1/t
no ip address
no ip directed-broadcast
shutdown
no cdp enable

!

interface FastEthernet 2/0
ip unnumbered loopback0
tag-switching ip

t

interface FastEthernet 2/1
ip unnumbered loopbackO
tag-switching ip

[}

router ospf 10
network 10.0.0.0 0.255.255.255 area 0

ip classless
no ip http server
1

no cdp run
1

line con 0
exec-timeout 0 O
transport input none
line aux 0
line vty 0 4
password cisco
no login
1
end

Figure 7.2: LSR A config file.

The router configurations that need to change are B and C.

7.3.1 DB’s Configuration

We shall first map the B configuration file into the configuration construct de-
picted in figure 7.5. The services to be added are depicted in figure 7.6. We
construct the capsule VPN containing the features of the Red and Blue VPN services
to be added, as represented in figure 7.7. (Instead of b.b.b.b, which indicates an IP

address data type, we shall leave an empty space.)

101

1
Yersion 12.1
#ostname B

ip subnet-zero
ip cef
1

interface Loopback0
ip address 10.10.10.2 255.255.255.255
no ip directed-broadcast

]

interface Ethernet 1/0
no ip address
no ip directed-broadcast
shutdown
no cdp enable

]

interface Ethernet 1/1
no ip address
no ip directed-broadcast
shutdown
no c¢dp enable

i

interface FastEthernet 2/0
ip unnumbered loopback0
tag-switching ip

[}

interface FastEthernet 2/1
ip unnumbered loopback0
tag-svitching ip

1

router ospf 10
network 10.0.0.0 0.255.255.265 area 0

ip classless
no ip http server
1

no cdp run
]

line con 0
exec-timeout 0 O
transport input none

line aux 0

line vty 0 4
passvord cisco
no login

!

end

t
Yersion 12.1
%ostname C

ip subnet-zero
ip cef
1

interface Loopback0
ip address 10.10.10.3 255.255.255.255
no ip directed-broadcast

i

interface Ethernet 1/0
no ip address
no ip directed-broadcast
shutdown
no cdp enable

[}

interface Ethernet 1/1
no ip address
no ip directed-broadcast
shutdown
no cdp enable

]

interface FastEthernet 2/0
ip unnumbered loopbackO
tag-switching ip

!

interface FastEthernet 2/1
ip unnumbered loopback0
tag-switching ip

)

router ospf 10
network 10.0.0.0 0.255.255.265 area 0

ip classless
no ip http server
!

no cdp run
!

line con ¢
exec-timeout 0 O
transport input none

line aux 0

line vty 0 4
password cisco
no login

!

end

Figure 7.3: LSRs B and C config files.

We perform now several policy-based, inter-configuration operations, followed by

several instance- or device-specific, intra-configuration operations.

Policy—-Specific Operations

In the first two steps, we copy the trees responsible for the creation of new VPN

not exist in the latter one.

7.3.1.1 B’s First Operation

routing tables and address families, from the capsule to the construct, since they do

We perform the following composition operation:

(vpn: [/ configure [ipurf) copy to (b: [ipcef)

102

' '
Yersion 12.1 Yersion 12.1
l;xostname D gxostname E
ip subnet-zero ip subnet-zero
ip cef ip cef
! !
interface Ethernet 1/0 interface Ethernet 1/0
ip address 10.10.40.1 255.285.255.0 ip address 10.10.50.1 255.255.285.0
! !
interface Ethermet 1/1 interface Ethernet 1/1
no ip address no ip address
no ip directed-broadcast no ip directed-broadcast
shutdown shutdown
no cdp enable no cdp enable
! !
interface FastEthernet 2/0 interface FastEthernet 2/0
ip address 10.10.60.2 255.255.255.0 ip address 10.10.70.2 255.255.265.0
! !
interface FastEthernet 2/1 interface FastEthernet 2/1
no ip address no ip address
no ip directed-broadcast no ip directed-broadcast
shutdown shutdown
no cdp enable no cdp enable
1 1
router ospf 20 router ospf 20
network 10.0.0.0 0.256.255.255 area 0 , Thetvork 10.0.0.0 0.255.265.255 area 0
ip classless ip classless
no ip http server no ip http server
! !
no cdp run no cdp run
! !
line con 0 line con 0
exec-timeout 0 0 exec-timeout 0 0
transport input none transport input none
line aux 0 line aux Q
line vty 0 4 line vty 0 4
password cisco password cisco
no login no login
! !
end end

Figure 7.4: LSRs D and E config files.

corresponding to the CLI commands ip vrf Red and ip vrf Blue which create two
new VPN routing tables called Red and Blue, respectively. The above-mentioned
operation copies the tree ip vrf from the capsule VPN as a sibling of the tree ip cef
of the construct B. Thus, the B construct will take the shape presented in figure 7.8
(for the sake of the clarity, we will compress (symbol: +) the elements that do not
change or are simply copied from an operand to the other and expand (symbol: —)

the elements whose descendants have changed in value or number).

7.3.1.2 B’s Second Operation

Next, we perform the following composition operation:

(vpn: [/ configure [address family) copy to (b: /[configure | router)

103

: terminal
12,12

- configure
- version :
- hostname : b _
- ip subnet-zero :
- ip cef : ~
- interface
- Loopback : 0
- ip address :
- ip directed-broadcast :
- Ethernet : '1/0°
- ip address :
- ip directed-broadcast :
- shutdown_ : no_~
- cdp enable : ~
- Ethernet : '1/1’
- ip address : no ~
- ip directed-broadcast
- shutdown_: ~
- cdp enable : no ~
- FastEthernet : 22/0°
-~ ip unnumbered : ~
- type : loopback
- number : 0
- tag-switching ip : ~
- FastEthernet : ’2/1?
- ip address :
- ip directed-broadcast
- shutdown_: no_~
- cdp enable : ~
- router
- ospf : 10
- network
- address & wildcard mask
-_area :
ip classless :
ip http server :
cdp run : no ~
line
- type : aux
- line number : 0
- type : vty
~ line number : O
~ ending line number : 4
~ password : cisco
~ login : mo ~
- type : console
- exec timeout
- minutes : Q
- seconds : 0
- transport input :

: no

no

none

'10.10.10.2 255.265.255.0°7

'10.10.20.1 255.265.255.0’

’10.10.60.1 255.285.255.0"

: ’10.0.0.0 0.255.255.2565°

Figure 7.5: B construct.

This operation adds the address family element from the capsule VPN to the

construct B as a sibling of the element address family and which adds the following

features to B:

e configure the address family for VRF Red and Blue (address-family ipv4

vrf Red, address-family ipv4 vrf Blue, respectively);

e redistribute the routes from OSPF to BGP Red VPN routing table (redistribute

ospf 17);

e disable summarisation (no summary);

e redistribute the static routes (redistribute static);

104

ip vrf Blue

rd 65051:1
route-target export 65051:1

route-target import 65051:1

interface FastEthernet 2/1
ip vrf forwarding Blue

P :Efﬁgggo-1 router ospf 20 vrf Blue
route-tai'get export 65050:1 netyork 10.0.0.0 0.265.255.265 area 0

route-target import 65050:1 redistribute bgp 655600 metric-type 1 submets

interface Ethernet 1/0 router bSPh5559° .
ip vrf forvarding Red no synchronization

—fami i no bgp default ipv4-unicast
address—family ipvi Vrf Red neighbor b.b.b.b remote-as 65500

redistribute static connected neighbor b.b.b.b update-source loopback 0
exit address-family address-family ipv4 vrf Blue
address-family vpnv4 redistribute ospf 20
neighbor b.b.b.b activate no autosummary
neighbor b.b.b.b send~community extended exit address-family

Figure 7.6: Red and Blue VPNs commands.

redistribute the connected routes (redistribute static connected);

configure the address family using VPN IPv4 prefixes (address-family vpnv4);

activate IBGP neighbor (neighbor a.a.a.a activate); and

forward VPN extended attributes (neighbor a.a.a.a send-community extended).

which brings the B construct into the state showed in figure 7.9.

7.3.1.3 B’s Third Operation

In the following three operations, we will compose the symmetric addition (+) for
the values with the (linkage) addition (@) for the connectivity of the elements.
First, we associate the Ethernet:’1/0’ interface with the Red VPN with the following

composition operation :

(b: / inter face /| Ethernet: 1/0') +@®= (vpn: [inter face / Ethernet: 1/0)

This composition performs a symmeiric addition (+) of the values of the similar
descendants and a (linkage) addition (@) of missing descendants of the element Eth-
ernet:’1/0’ from the capsule VPN to the element Ethernet:’1/0’ of the construct B,

which results in the B construct depicted in figure 7.10.

105

7.3.1.4 B’s Fourth Operation

Similarly, we associate FastEthernet:’2/1’ interface with the Blue VPN, with the

following composition operation :

(b: / inter face | FastEthernet: 2/1') +@&= (vpn: [inter face | Ethernet: 1/1")

This composition performs a symmetric addition (4) of the values of the similar
descendants and a (linkage) addition (@) of missing descendants of the element Eth-
ernet:’2/1’ from the capsule VPN to the element FastEthernet:’1/1’ of the construct
B. It results in the B construct represented in figure 7.11. The two previous
compositions add the feature from the CLI commands ip vrf forwarding Red and ip

vrf forwarding Blue, respectively.

7.3.1.5 B’ Fifth Operation

Next, we perform the following combination :

(b: [/ configure [router) +@®= (vpn: [configure [/ router)

This composition performs again a (value) symmetric addition (+) of the values of
the matching elements and a (linkage) addition () of missing elements from the
capsule V PN’s element router to the construct B’s element router. This composition

corresponds to the following features and CLI commands :

e enable routing process 20 for the Red VPN (router ospf 20 vrf Red);

specify the network directly connected to the router and the OSPF area mem-

bership (network 10.0.0.0 0.255.255.255 area 0);

redistribute BGP routes and inject BGP routes into OSPF as typel routes
(redistribute bgp 65500 metric-type 1 subnets);

enable BGP routing for autonomous system 65500 (router bgp 65500);

disable synchronization : (no synchronization);

106

e specify the IBGP neighbor and autonomous system number (no bgp default

ipv4-unicast);

e add an entry to the BGP neighbor table (neighbor z.z.z.z remote-as 65500);

and

e force the router to use the IP address assigned to LoopbackQ as the source

address for BGP packets (neighbor z.z.z.z update source loopback 0).
The shape of the resulting B is presented in figure 7.12.
Device-Specific Operations

We have finished the policy-based operations with regard to B and proceed now

with the interface and device-specific operations.

7.3.1.6 B’s Sixth Operation

We set the address of the neighbor to the appropriate value wherever it occurs in
the router and in the family address contexts. For the router context, we perform

the following operation :

(b: / configure [router /.../ ip address) = '10.10.10.3’ (7.1)

In operation 7.1 the notation /.../ represents a wildcard for any relative path
between the element router and the element ip address. The element router is
uniquely determined, since it has an absolute path indicated and is the only element
of this type within its context, whereas the element ip addressis not uniquely specified,
since it has a generic path. In this way, all the descendants of type ip address of the
element router match the identification of the operation 7.1 and will be assigned the
value '10.10.10.3".

We have here an occurrence of a device-specific operation, where a search and
multiple matchings followed by assignments take place within the same construct.

In fact, the assignment is a value assignment and if we wanted to be more precise

107

and restrictive, we could use the value assignment (=) symbol instead of the element

assignment (=). The shape of the B construct is displayed in figure 7.13.

7.3.1.7 B’s Seventh Operation

We repeat the previous operation for the address family context:

(b: / configure | address family /.../ ip address) = 10.10.10.3'

and obtain the B construct showed in figure 7.14.

7.3.2 (C’s Configuration

Now, we have finished the feature comppsition for LSR B and start the it for the
LSR C. To speed up the procedure for LSR C, we can use LSR B rather than the
V PN capsule and then change some IP addresses where necessary.

We map the C' configuration file into the configuration construct presented in

figure 7.15.

Policy—Specific Operations

7.3.2.1 C’s First Operation

We have already added the services to the B construct and we can use it as a
template to add these services to C too. However, we have to take into account that,
whereas the policy-specific information is correct, the device- and instance-specific
information for C must be configured separately, where appropriate. This specific
information will be set straight shortly.

We perform the following composition between B and C:

(c: /[configure) >@®= (b: [configure)

This composition performs a conservative addition (>) of the values of the match-

ing elements and a (linkage) addition (&) of missing elements from the capsule VPN’s

108

element con figure to the construct B’s element configure. (The conservative addi-
tion (>) preserves always the non-default effective values of the B construct.) We get
the C construct depicted in figure 7.16. We see now the advantages of using the
Meta-CLI Model composition approach. The constructs are interacting in an intelli-
gent way, in which each parameter is carefully considered and the relevant old values
are not simply overridden by the new values. In this way, the policy configuration
does not interfere with the device-specific information, when this is not required and

there is already some pertaining information in place.
Device—Specific Operations

We have finished the policy- and service-oriented operations with regard to C and

proceed now with the instance- and device-specific operations.

7.3.2.2 C’s Second Operation

We set the addresses of the neighbor to the appropriate value wherever it occurs

in the router context.

(c: /[configure [router /.../ ip address /) = '10.10.10.2’

We get the C' construct into the state described in figure 7.17.

7.3.2.3 C’s Third Operation

As in the previous paragraph, we set the address of the neighbor in the address-

family context:

(c: [/ configure [address family /...[ip address /) = '10.10.10.2'

As in the case of the B construct, the above-mentioned operations find all the
occurrences of descendants of the elements router and address family, respectively, of
the B construct that match the type: “ip address” without regard of their paths and
assign them all the same value: 10.10.10.2. We obtain the C construct depicted in
figure 7.18. The configuration constructs for the B and C' will look like in figures

109

7.19 and 7.20 3. We can see that, during the configuration process of LSR C,
we needed just one service- or policy-based, inter-entity operation, rather than five,
as in the case of the configuration of LSR B, whereas the device-specific, intra-entity
operations which were setting the neighbor’s IP address, were similar for the two
cases.

The device-specific operations were necessary since there was no information in
the constructs for the neighbors’ IP addresses. All the other specific information,
like the IP addresses of the interfaces, was preserved in LSR C after the infusion of
information from LSR B, due to the correct selection and usage of the value operation,
which was, in this case, the conservative addition (>).

In the FastEthernet:’2/1’ interfaces, there are a couple of default value elements
that will not show up as commands in the configuration file : no shutdown, cdp enable
and 1p directed broadcast. Finally, the configuration files for the LSRs B and C will
look like in figure 7.21. The network has now the Red and Blue VPNs configured.

3To compact the figures, long lines, like those containing the IP addresses, etc., have been broken

in two.

110

VPN : i 3
- configure : terminal
- hostname : vpn
- ip vrf
- name : Red
- rd : '65050:1°
- route target :
- direction : import
- route target ext community : ’65050:1
- route target -
- directlon : export
~ route target ext community : ’65050:1’
- name : Blue
- rd : '65051:1’
- route target
- direction : import
- route target ext community : ’65051:1’
- route target -
- direction : export
- route target ext community : ’'6505651:1°
- interface
- Ethernet : '1/0°’
- ip vrf forwarding : Red
- interface
- Ethernet : '1/1°
=~ ip vrf forwarding : Blue

- router
- ospf : 20
- vrf : Blue
-~ network)
- address & wildcard mask : ’10.0.0.0 0.255.255.255’
- area : 0O
- redistribute

- protocol : bgp
- process id : 65500
- metric type : 1
- _subnets : ~
- bgp : 65500
- synchronization : no
- bgp default ipv4-unicast : ne
~ neighbor
- 1ip address

_ - remote as : 65500
- neighbor

- 1p address
- update source : loopback 0
- address-family

- ipv4
- unicast
~ vrf : Blue,
- redistribute
- protocol : ospf
- process id : 20
- auto-summary : no ~
- ipvd
-~ unicast
- vrf : Red
- redistribute A
- protocol : static
~ redistribute
- protocol : connected
- vpnv4d
- neighbor
- ip address
. ~— activate : ~
- neighbor

- ip address
~ send-community : extended

Figure 7.7: VPN capsule.

111

- configure : terminal
- version : ’12.1’
- hostname : b
- ip subnet-zero
- ip cef : ~
- ip vrf
- name : Red
- rd : ’65060:1’
- route target :
- direction : import
- route target ext community : ’65050:1’
- route target -
- direction : export
- route target ext community : ’'65050:1’
- name : Blue
- rd : ’65051:1’
- route target :
- direction : import
- route target ext community : ’65051:1’
- route target -
- direction : export
- route target ext community : ’65051:1’

interface
router
ip classless

- ip http server : no ~
- cdp run : no ~
+ line

I ++

Figure 7.8: B construct, after the 1st operation.

- configure : terminal
- version : ’12.1’
- hostname : b
- ip subnet-zero
ip cef
ip vrf
interface
router
ip classless
ip http server : no
cdp run : no ~
- address-family
- ipv4d
- unicast
- vrf : Blue
- redistribute
- protocol : ospf
- process id : 20
- auto-summary : no

|+ o+

- ipv4
- unicast
- vrf : Red |
- redistribute i
-~ protocol : static
- redistribute
- protocol : connected
- vpnv4d
- neighbor
- ip address
. - activate
- neighbor
- ip address :
- send-community : extended
+ line

Figure 7.9: B construct, after the 2nd operation.

112

- configure : terminal
- version : ’12.1°
- hostname : b
- ip subnet-zero :
- ip cef
+ ip vrf
~ interface
+ Loopback : 0
- Ethernet : '1/0°
- ip address : ’10.10.20.1 255.255.255.0°
- ip directed-broadcast -
- shutdovn : no
- cdp enable :
~ ip vrf forwarding : Red
+ Ethernet : ’1/1’
+ FastEthernet : '2/0’
+ FastEthernet : ’'2/1’
+ router .
- ip classless :
- ip http server : no
- cdp run : no ~
+ line

Figure 7.10: B construct, after the 3rd operation.

- configure : terminal
- version : '12.1°
- hostname : b
- ip subnet-zero
- ip cef :
+ ip vrf
- interface
Loopback : 0
+ Ethernet : ’1/0°
+ Ethernet : '1/1’
+ FastEthernet : ’2/0’
- FastEthernet : ’2/1’
- ip address : '10.10.60.1 255.255.255.0°
- ip directed-broadcast -
- shutdown_: no_~
- cdp enable :
- ip vrf forwarding : Blue
router
- ip classless
- ip http server : no ~
- cdp run : no ~
+ line

+

+

Figure 7.11: B construct, after the 4th operation.

113

- configure :

terminal
- version : '12.1°
- hostname : b
- ip subnet-zero
- ip cef : ~
+ ip vrf
+ interface
- router
- ospf : 10
- network
- address & wildcard mask : '10.0.0.0 0.255,255.255°
- area :
- ospf : 20
- vrf : Blue
- network
- address & wildcard mask : ’10.0.0.0 0.255.255.255°
- area :
- redistribute
- protocol : bgp
- process id : 65500
~ metric type :@ 1
- _subnets : ~
- bgp : 65500
- synchronization : no ~
- bgp default ipv4-unicast : no ~
- neighbor
- ip address :
. - remote as : 65050
- neighbor
- ip address :
- update source : loopback 0

ip classless : ~

- ip http server : no
- cdp run : no ~
+ line

Figure 7.12: B construct, after the 5th operation.

ip classless

ip http server :
cdp run : no ~
address-family
line

no

+ 4+ 1

- configure : terminal
- version : ’12.1°
- hostname : b
- ip subnet-zero : ~
- ip cef : ~
+ ip vrf
+ interface
- router
- ospf : 10
- network
- address & wildcard mask ’10.0.0.0 0.255.255.255’
~ area :
- ospf : 20
- vrf : Blue
- network
- address & wildcard mask : 210.0.0.0 0.255.255.255’
- area :
- redistribute
- protocol : bgp
- process id : 65500
- metric type : 1
- subnets : ~
- bgp : 65050
- synchronization : no ~
- bgp default ipv4-unicast : no ~
- neighbor
- 1ip address : ’10.10.10.3’
. - remote as : 65050
- neighbor
- ip address : '10.10.10.3’
- update source : loopback 0

Figure 7.13: B construct, after the 6th operation.

114

- configure : terminal
- version : '12.1°
- hostname : b
- ip subnet-zero
ip cef : ~
ip vrf
interface
router
ip classless
ip http server : no
- cdp run : no "
- address-family
~ ipvéd
- unicast
- vrf : Blue
- redistribute
- protocol : ospf
- process id : 20
~ auto-summary : no ~

I +4+ +

- ipv4
- unicast
- vrf : Red
- redistribute i
- protocol : static
- redistribute
- protocol : connected
- vpnvd
- neighbor
- ip address : '10.10.10.3°
- activate -
- neighbor
- 1p address : '10.10.10.3’
- send-community : extended
+ line

Figure 7.14: B construct, after the 7th operation.

115

- configure : terminal
- version : ’12.1’
- hostname : ¢
- ip subnet-zero : ~
- ip cef :
- interface
- Loopback : 0
- ip address : ’10.10.10.3 255.2565.255.0°’
- ip directed-broadcast : ~
- Ethernet : ’1/0°
- ip address : '10.10.30.1 255.255.265.0°
- ip directed-broadcast -
- shutdown : no_~
- cdp enable : ~
- Ethernet : ’1/1?
- ip address : no
- ip directed-broadcast : no
- shutdown_: ~
- cdp enable : no ~
~ FastEthernet : ’2/0’
- ip unnumbered : ~
- type : loopback
- number : 0
~ tag-switching ip : ~
- FastEthernet : ’2/1°
- ip address : ’10.10.70.1 255.2565.255.0’
- ip directed-broadcast -
- shutdown_: no_~
- ¢dp enable
- router
~ ospf : 10
- network

- addressoh wildcard mask : ’10.0.0.0 0.255.255.255’

i -_area :
- ip classless

- ip http server : no
- cdp run : no ~

- line
- type : aux
- line number : 0
- type : vty

- line number : O
- ending line number : 4
- password : cisco
- login : no ~
- type : console

- exec timeout
- minutes :
- seconds : 0
- transport input : none

Figure 7.15: C construct.

116

- configure : terminal
- version : 712.1’
- hostname : ¢
- ip subnet-zero
- ip cef : ~
+ ip vrf
- interface
- Loopback : 0
- ip address : ’10.10.10.3 255.255.255.0°
- ip directed-broadcast -
- Ethernet : 1/0’
- ip address : ’10.10.30.1 255.255.255.0°’
- ip directed-broadcast -
- shutdovn_: no_~
- ¢dp enable : ~
- ip vrf forwarding : Red
+ Ethernet : ’'1/1’
- FastEthernet : ’2/0’
~ ip unnumbered : ~
- type : loopback
- number ; 0
- tag-switching ip : ~
- FastEthernet : ’2/1!
- ip address : '10.10.70.1 255.255.255.0’
- ip directed-broadcast -
-~ shutdown_: no ~

- cdp enable :
- router
+ ospf : 10
+ ospf : 20

+ bgp : 65050
+ address-family
- ip classless : ~
- ip http server : mno
- cdp run : no ~
+ line

Figure 7.16: C construct, after the 1st operation.

- configure : terminal
- version : ’'12.1°
- hostname : ¢ ~
- ip subnet-zero :

- ip cef : ~
+ ip vrf
+ interface
- router
- ospf : 10
~ network
- address & wildcard mask : ’10.0.0.0 0.255.255.255°
- area : 0
- ospf : 20
- vrf : Blue
- network
- address & wildcard mask : ’10.0.0.0 0.255.255.255’
- area : 0
- redistribute
- protocol : bgp
- process id : 65500
- metric type : 1
- subnets : ~
~ bgp : 65050

- synchronization : ne
- bgp default ipv4-unicast : no ~
- neighbor
- ip address : ’10.10.10.2’
- remote as : 65050
- neighbor
- ip address : ’10.10.10.2’

- update source : loopback 0
address~family
ip classless :
ip http server : no
cdp run : no ~
line

+ 1+

Figure 7.17: C construct, after the 2nd operation.

117

‘- configure : terminal
- version : ’12.1’
- hostname : c
- ip subnet-zero : ~
ip cef : ~
ip vrf
interface
router .
address-family
- ipvd
- unicast
- vrf : Blue
- redistribute
- protocol : ospf
- process id : 20
- auto-summary : no ~

|4+ 4+

- ipv4
- unicast
- vrf : Red
- redistribute i
- protocol : static
- redistribute
- protocol : connected
- vpnvéd
- neighbor
- ip address : ’10.10.10.2’
. - activate : 7
- neighbor
- 1ip address : ’10.10.10.2’
- send-community : extended
- ip classless -
- ip http server : no
= cdp run : no ~
+ line

Figure 7.18: C construct, after the 3rd operation.

118

configure : terminal
- version : ’12.1°
~ hostname : b
- ip subnet-zero
- ip cef -
- ip vrt
name : Red
- rd : "66050:1"
- route target :
- direction : import
- route target ext community :
’65050:17

- route target
- direction : export
-~ route target ext community :
’65050:1°
- name : Blue
- rd : "65051:1" _
- route target :
- direction : import
- Toute target ext community :
'65051:1°
- route target
- direction : export
- route target ext community :
’65051:1’
- interface
- Loopback : 0
- ip address
’10.10.10.2 2565,255.255.0°
- ip directed- broadcast :
- Ethernet : ’1/0°’
- ip address : °’
’10.10.20.1 255.255.255.0°
- ip directed-broadcast :
- shutdown_: no_~
- cdp enable :
- ip vrf forwarding : Red
- Ethernet : 1/1’
- ip address : mo ~
- ip directed-broadcast : no
- shutdown_: ~
- cdp enable : no ~
- FastEthernet : 2/0’
- ip unnumbered : ~
- type : loopback
- number : 0
- tag-switching ip :
- FastEthernet :2/1?
ip address : ’
’10.10.60.1 255,255.255.0’
= ip directed- broadcast :
- shutdown_: no_~
- cdp enable
- ip vrf forvarding : Blue

- configure : terminal

- version : 12.1
- hostname : ¢
- ip subnet-zero
- ip cef : ~
- ip vrt
- name : Red
- rd : "65050:1"
- route target :
- direction : import
- route target ext community :
’65060:1°

- route target :
- direction : export
-~ route target ext community :
’650580:1°
- name : Blue
- rd : "65051:1"
- route target :
- direction : import
- route target ext community :
'650561:1’

- route target :
- direction : export
- route target ext community :
'65051:1"
- interface
- Loopback : 0
- ip address HE
0.10.10.3 255.255.255.0"
- ip dlrected broadcast :
- Ethernet : 1/0°
ip address :
710.10.30.1 255,255.255.0’
- ip directed-broadcast :
- shutdown : no_~
- cdp enable
- ip vrf forwarding : Red
- Ethernet : ’1/1’
- ip address : no
- ip directed-broadcast : no
- shutdown _: ~
- cdp enable : no ~
- FastEthernet : ’2/0’
~ ip unnumbered : ~
- type : loopback
- number : 0
- tag-switching ip :
- FastEthernet : ’2/1°
ip address : '’
'10.10.70.1 255,255.255.0°
- ip directed- broadcast :
- shutdown_: no
- cdp enable
- ip vrf forwarding : Blue

Figure 7.19: B and C constructs, after the compositions.

119

- router
- ospf : 10
~ network
-~ address ? ildcard mask

- area : 0

- ospf : 20
- vrf : Blue
- network
- address0&0v1ldcard mask :

0.255.2565.2565"

- area : 0
- redistribute
- protocol : bgp
- process id : 65500
~ metric type : 1
- _subnets :
- bgp : 65500

~ synchronization : no

- bgp default ipv4-unicast : no

= neighbor

- ip address ’10.10.10.3"
. - remote as : 65000
- neighbor
~ ip address : '10.10.10.3’

- update source : loopback 0
- address-family

- ipv4
- unicast
- vrf : Blue
- redistribute
- protocol : ospf
- process id : 20
- auto-summary : no ~
- ipv4
- unicast
- vrf : Red
-~ redistribute .
- protocol : static
- redistribute
- protocol : connected
- vpnvé
- neighbor
- ip address *10.10.10.3°
. - activate -
- neighbor
- ip address ’10.10.10.3"
- send~community : extended

- ip classless
- ip http server : no
- cdp run : no ”

- line

- type : aux
- line number : 0

- type : vty
- 11n9 number : O
- ending line number : 4
- password : cisco
- login : no ~

- type : comsole
- exec timeout

- minutes

- seconds : 0
- transport input : none

w
10.0.0.0 0.255. 255 255’

- router

- ospf : 10
- network
- address k wildcard mask
710.0.0.0 0.255. 255 255°
- area : 0
- ospf : 20
- vrf : Blue
- network
- address & ulldcard mask :
'10.0.0.0 0.255.255.255°
- area : 0
- redistribute

- protocol : bgp
- process id : 65500
- metric type : 1
- _subnets -
- bgp : 65500
- synchronization : no
- bgp default ipv4-~unicast : no
- neighbor
- 1p address ’10.10.10.2°
- remote as : 65500
- neighbor
’10.10.10.2’

-~ ip address
- update source : loopback 0

- address-family

- ipvd
- unicast
- vrf : Blue
- redistribute
- protocol : ospf
- process id : 20
- auto-summary : no
- ipv4
- unicast
- vrf : Red
- redistribute .
- protocol : static
- redistribute
- protocol connected
- vpnv4
- neighbor
- 1p address *10.10.10.2°
. - activate : ~
- neighbor

- 1ip address : ’10.10.10.2’
- send-community : extended
- ip classless
- ip bttp server : no
- cdp run : no

- type :@ aux
- line number : 0
- type : vty
- line number : 0
- ending line number : 4
- password : cisco
- login : no ~
- type : console
- exec timeout
- minutes : 0
- seconds : 0
- transport input : none

Figure 7.20: B and C constructs, after the compositions (continued).

120

'
Yersion 12.1

éostname B

ip subnet-zero
ip cef
1

ip vrf Red
rd 65050:1
route-target export 65050:1
route-target import 65050:1

ip vrf Blue
rd 65051:1
route-target export 65051:1

route-target import 65051:1
'

interface Loopback0
ip address 10.10.10.2 255.255.255.255
no ip directed-broadcast

1

interface Ethernet 1/0
ip vrf forvarding Red

ip address 10.10.20.1 255.255.255.0
]

interface Ethermet 1/1
no ip address
no ip directed-broadcast
shutdown
no cdp enable

'

interface FastEthernet 2/0
ip unnumbered loopbackQ
tag-switching ip

!

interface FastEthernet 2/1
ip vrf forwarding Blue
ip address 10.10.60.1 265.265.255.0

!
router ospf 10
network 10.0.0.0 0.255.2565.255 area 0

router ospf 20 vrf Blue

network 10.0.0.0 0.255.255.255 area 0
redistribute bgp 65500 metric-type 1 subnets

]

router bgp 65500
no synchronization
no bgp default ipv4-unicast
neighbor 10.10.10.3 remote-as 65500

neighbor 10.10.10.3 update-source loopback 0
'

address-family ipv4 vrf Blue
redistribute ospf 20
no autosummary
exit address-family

1
address-family ipv4 vrf Red

redistribute static
redistribute static connected
exit address-family

1
address-family vpnv4
neighbor 10.10.10.3 activate

neighbor 10.10.10.3 send-community extended
'

ip classless
no ip http server
1

no cdp run
'

line con 0
exec-timeout 0 O
transport input none
line aux 0
line vty 0 4
passvord cisco
no login
!
end

!
Yersion 12.1

éostname C

ip subnet-zero
ip cef

{

ip vrf Red
rd 65050:1
route-target

route-target

export 65050:1
import 65050:1
t

ip vrf Blue

rd 65051:1
route-target

route-target

export 65051:1
import 65051:1

!

interface Loopback0
ip address 10.10.10.3 255.255.255.255
no ip directed-broadcast

'

interface Ethernet 1/0
ip vrf forvarding Red
ip address 10.10.30.1 255.255.255.0

[}

interface Ethernet 1/1
no ip address
no ip directed-broadcast
shutdown
no cdp enable

1

interface FastEthernet 2/0
ip unnumbered loopback0
tag-switching ip

!

interface FastEthernet 2/1
ip vrf forwarding Blue

ip address 10.10.70.1 255.265.255.0
i

router ospf 10
netvork 10.0.0.0 0.255.255.255 area 0

router ospf 20 vrf Blue

network 10.0.0.0 0.265.255.255 area O
redistribute bgp 65500 metric-type 1 subnets

1
router bgp 65500

no synchronization

no bgp default ipv4-unicast

neighbor 10.10.10.2 remote-as 65500

neighbor 10.10.10.2 update-source loopback 0

]
address-family ipv4 vrf Blue
redistribute ospf 20
no autosummary
exit address-family

!
address-family ipv4 vrf Red

redistribute static
redistribute static connected
exit address-family

1
address-family vpnv4
neighbor 10.10.10.2 activate
neighbor 10.10.10.2 send-community extended
!
ip classless
no ip http server
!
no cdp run
1
line con Q
exec-timeout 0 0
transport input none
line aux 0
line vty 0 ¢
password cisco
no login
1
end

Figure 7.21: LSRs B and C config files, after the compositions.

121

Chapter 8

Conclusions

The Meta-CLI Model provides a simple solution to the text-only configuration
commands and files, which confers universality and scalability.

The arduous task is to translate the CLI commands and context dependencies,
etc. into Meta-CLI trees, but this overhead might be cost-effective when considering
the resources wasted for manual configuration of thousands of interfaces for an ISP
network and the major risks due to potential configuration errors, when dealing with
overlapping domains and policies, multiple, scheduled configurations, etc.

The Meta-CLI Model uses the tree structures, which are a common, universal
topology. This means that, mutatis mutandis, the model might be adapted for dif-
ferent other applications in various domains, like the Model Checking and Feature
Interaction.

The tree data structures are well implemented in some of the main programming
languages, like: C, C++, Java, Python, etc. This provides a valuable framework for
the easy implementation and development of the Meta-CLI Model.

The Meta-CLI Model’s algebra has a degree of autonomy and generality that may

allow for its adaptation and usage for other domains of application.

122

Acronyms and Abbreviations

API
BGP
BTEF
CLI
CLIF
COPS
COPS-PR
CORBA
CPU
CSPF
DB
DCPF
DiffServ
DEN
DENng
DTD
EGP
EIGRP
FTP
GUI
IETF
IGRP
IP

ISP

I0S

Application Programming Interface
Border Gateway Protocol

Branch Target for Execution Failure
Command-Line Interface

CLI File

Common Open Policy Service
COPS Usage for Policy Provisioning
Common Object Request Broker Architecture
Central Processing Unit
Constrained Shortest Path First
Data Base

Device Connection Procedure File
Differentiated Services

Directory Enabled Networks
Directory Enabled Networks, next generation
Document Type Definition

Exterior Gateway Protocol
Enhanced IGRP

File Transfer Protocol

Graphical User Interface

Internet Engineering Task Force
Interior Gateway Routing Protocol
Internet Protocol

Internet Service Provider

Internetworking Operating System

123

ISDN Integrated Services Digital Network

IS-IS Intermediate System-to-Intermediate System
LSP Label Switched Path
MIB Management Information Base

MPLS Multiprotocol Label Switching

NFA Non-deterministic Finite Automaton
NVRAM Non-volatile Random Access Memory
LAN Local Area Network

LDAP Lightweight Directory Access Protocol
OID Object Identifier

OSPF Open Shortest Path First protocol
PCIM Policy Core Information Model

PDP Policy Decision Point

PEP Policy Enforcement Point
PIB Policy Information Base
PRID Policy Rule Instance Identifier
QoS Quality of Service

RAM Random Access Memory
RDBMS Relational Database Management System
RFC Request for Comments (published by the IETF)

RIP Routing Information Protocol
RSVP Resource Reservation Protocol
RTE Runt-time Exception

SNMP Simple Network Management Protocol

SPF Shortest Path First
SPPI Structure of Policy Provisioning Information
SSH Secure Shell

TCP/IP Transmission Control Protocol/Internet Protocol

124

TE
TED
T1
VLAN
VoIP
VPN
WFQ
WRED
XML

Traffic Engineering

Traffic Engineering DB
Technician’s Interface

Virtual Local Area Network
Voice over Internet Protocol
Virtual Private Network
Weighed Fair Queuing
Weighted Early Random Detect
Extensible Markup Language

125

Bibliography

(2l

[3]
[4]

(8]

(9]

Craig Zacker. Networking : The Complete Reference. Osborne/McGrawHill,
2001.

Toby and Anthony Velte. Cisco : A Beginner’s Guide. Osborne/McGrawHill,
2001.

CLI Definition. http://whatis.techtarget_com/definition/0,,sid9_gci213627,00.html.

Cisco Systems Inc. Internetworking Terms and Acronyms Book.

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ita/ita_book.pdf.

Cisco Systems Inc. Using the Command Line Interface.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cger /fun_c/-
feprtl/fcui.htm.

Jakob Nielsen. Ten Usability Heuristics of a User Interface Design.

http://www.useit.com/papers/heuristic/heuristic_list.html.

Wipro Technologies. Building Cisco-style Command Line Interfaces.

http://www.bitpipe.com/data/detail?id=1024659156 47&type=RES&x=1753866860.

Douglas E.Comer. Computer Networks and Internets with Internet Applica-

tions. Third Edition, Prentice Hall, 2001.

International Engineering Consortium. Multiprotocol Label Switching (MPLS).
http://www.iec.org/online/tutorials/mpls/.

126

[10] International Engineering Consortium. Generalized Multiprotocol Label

Switching (GMPLS). http://www.iec.org/online/tutorials/gmpls/.

[11] International Engineering Consortium. Intranets and Virtual Private Networks
(VPNs).

http://www.iec.org/online/tutorials/int_vpn/.

[12] UC Berkeley - Teaching Library Internet Workshops. What is the Internet, the
World Wide Web, and Netscape?.
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/WhatIs.html.

[13] Cisco Systems Inc. Introduction to Internet.

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm.

[14] Cisco Systems Inc. Internetworking Technology Handbook; Introduction to
LAN Protocols.

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introlan.htm.

[15] Cisco Systems Inc. Internetworking Technology Handbook; Introduction to
WAN Technologies.

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introwan.htm.

[16] Cisco Systems Inc. Internetworking Technology Handbook; Routing Basics.
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/routing.htm#xtocid2.

[17] Brian Hill. Cisco : The Complete Reference. Osborne/McGrawHill, 2002.

[18] Chris Brenton, Bob Abruhoff. Mastering Cisco Routers, 2nd edition. Sybex,
2002.

[19] James Boney. Cisco IOS in a Nutshell. O’Reilly, 2002.
[20] Joe Habracken. Practical Cisco Routers. Que Corporation, 1999.

[21] Harry Newton. Newton’s Telecom Dictionary. CMP Books, 2002.

127

22]

23]

[24]

[25]

(26]

[27]

28]

[29]

Cisco Systems Inc. Internetworking Technology Handbook; Routing Basics.
http://www.cisco.com/univercd/cc/td/doc/product /software/ios112/sbook /-
siprout.htm#xtocid2423731.

Cisco Systems Inc. Cisco IOS Solutions for Network Protocols. Macmillan Tech-

nical Publishing CMP Books, 2002.

Steve Waldbusser, Jon Saperia, Thippanna Hongal. Policy Based Management
MIB.

http://www.ietf.org/internet-drafts/draft-ietf-snmpconf-pm-11.txt, 2002.

Rajiv Malik, Steve Sycamore, Bill Tracey. Method and Apparatus for Configu-
ration Management in Communication Networks.
ftp://ftp.snmp.com/snmpconf/CabletronPatents/5832503.pdf, United states
Patent : 5,832,503; 1998.

Lundy Lewis, Rajiv Malik, Steve Sycamore, et al. Method and Apparatus for
Defining and Enforcing Policies for Configuration Management in Communica-
tion Networks.

ftp://ftp.snmp.com/snmpconf/CabletronPatents/5832503.pdf, United states
Patent : 5,832,503; 1998.

Byung-Joon Lee, Taesang Choi, Taesoo Jeong. X-CLI : CLI-based Management
Architecture Using XML. Asia-Pacific Networks Operations and Management
Symposium (APNUMS), 2002, Jeju Island, Korea.

Electronics and Telecommunications Research Institute, Daejeon, Korea. Wise
< TE > : MPLS Traffic Engineering and VPN Management System: Wise <
TE/VPN >.

www.etri.re.kr/e_etri/intro/newtech/etri21c_14.html, 2002.

J. Case, M. Fedor, M. Schoffstall, J. Davin. rfc1157 A Simple Network Man-
agement Protocol (SNMP), RFC1157.

128

[30]

31]

32]

[33]

[34]

[35]

[36]

[37]

www.kblabs.com/lab/lib/rfcs/1100/rfc1157.txt.html, 1990.
(www.cis.ohio-state.edu/cgi-bin/rfc/rfcX XXX .html).

J. Case, K. McCloghrie , M. Rose, S. Waldbusser. Introduction to Community-
based SNMPv2, etc. (RFC1901...RFC1908), 1996.
www.cis.ohio-state.edu/cgi-bin/rfc/rfcXXXX.html.

Carnegie Mellon Software Engineering Institute. Simple Network Management
Protocol.

http://www.sei.cmu.edu/str/descriptions/snmp.html.

K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Re-
ichmeyer, R. Yavatkar, A. Smith. COPS Usage for Policy Provisioning (COPS-
PR), RFC3084.

www.fags.org/rfcs/rfc3084.html, 2001.

J. Saperia, J. Schonwilder. Policy-Based Enhancements to the SNMP Frame-

work.

www.ibr.cs.tu-bs.de/vs/papers/policy-tr-00-02.ps.gz, 2000.

A. Westerinen, J. Schnitzlein, J. Strassner, M. Scherling, et al. Terminology for
Policy-Based Management, 2001 RFC3198.
http://www.fags.org/rfcs/rfc3198.html.

Intelliden Corporation. Intelliden > Products.

http://intelliden.com/product/.

S. Shenker, J. Wroclawski. Network Element Service Specification Template,
1997. RFC2216.
http://www.fags.org/rfcs/rfc2216.html.

Thomas M. Thomas II, Rajah Chowbay, Doris Pavlichek, Wayne W. Downing
ITI, Lawrence H. Dwyer III, James Sonderegger. Juniper Networks Reference
Guide : JUNOS Routing, Configuration and Architecture. Addison-Wesley,
2002.

129

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

48]

[49]

James Knapp. Nortel Networks : The Complete Reference. Osborne/McGraw-
Hill, 2000.

Cisco Systems Inc. Configuring a Basic MPLS VPN.
http://www.cisco.com/en/US/tech/tk436/tk428/technologies_tech_note-
09186a00800a6c11.shtml.

BONSALI Dictionary of Latin Botanical Terms.
http://www.cyber-north.com/bonsai/latdic.html.

Intelliden Corporation. http://intelliden.com/news/.

Intelliden Corporation’s White Paper. The Business Case for Business Driven
Device Management.

http://intelliden.com/files/ WPBDDM.pdf.

Intelliden Corporation’s White Paper. Using an Information Model to Achieve
Better Network and System Management.
http://intelliden.com/files/ WPInfoMod.pdf.

Intelliden Corporation’s White Paper. The Value of Standards.
http://intelliden.com/files/ WPStndrds.pdf.

Intelliden Corporation’s White Paper. The VPN Dilemma.
http://intelliden.com /files/ WPVPN.pdf.

Intelliden Corporation’s White Paper. The Power of Directory Enabled Net-
works (DEN).
http://intelliden.com/files/ WPPowerDEN.pdf.

Network Wizards. http://www.nw.com.
Distributed Management Task Force Inc. http://www.dmtf.org.

TeleManagement Forum. http://www.tmforum.org.

130

