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- This report describes a 'VAX implementation of the progrémming

) ' ’
language Algol W using the technique of attribute grammars. The ;reporﬂ
consists ' of two paiﬁs. The first part describes the attributé grammars

° [

and the compiler udsed to translate the source program to the

intermediate language Janus. The setgnd part describes the translation

. /
from Janus to assembly code and the extWasions made to Janus to'make - it

more suitabke foxg compiling Algol W. .
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1 Attribute Grammars '

o
'] . "

The most widely .used method to describe programming languages in the
past has.been the use of context-free grammars(CFG) [@ho??]. Althougﬁ
théy are §uf§iéient to describe the context free syntax, most programming

languages have context-sensitive syntax such as the relationship that

must nold between the declaring and applied occurrences of identifiers.

s

Such constraints are typically imposed using a set of rules written in

\.“

English. ‘ .

v

An alternative apprbach is to define the language using an attribute
grammar[Waite84]. Attribute grammars extend the power of CFG's by

allowing. context-sensitive cofistraints to be defined which specify the

3

N ! . .
relationship between a phrase and its context.

§
]

An attribute grammar‘is a context free grammar which has been extended
to define the context sensitive constraints. Eacg symbol in the graﬁmar
has associaFed with it a set of attributes which represent attributes of
the language construct. Each production in the grammar may contain an
attribute funciion which specifies the relationship between the

-

attributes and thus only the values consistent with the context-sensitive

constraints will be allowed. The attribute functions take the place of

the semantic functions in a conventional compiler which, check the
consistency of A}he synthesized attributes with their environment. The
advantage is tﬁsz the semantic functions are specified in the grammar and

not separately in the body of the compiler.
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* Consider the grammar for

block(~> dec] : ‘'begin'[-Db simpdec(bn -> déql, "end".

-
'

simp_dec(bn -> declare(bn,type,name)] : simp_pype[gH> type],
id[—) name].

’

In these two productions tﬁé left and right.sidefjare seperated by a
colén. The symbols enclosed in square brackets are the attributes for the
praductions. Attributes on the 1eftiside of the arrow are inherited

.
attributes and those on the right are derived or synthesized attriputes.
Inherited aﬁtributes on the left side and derived attributes on the right
side of the production are the ining occurrences, that}is their y&&des

are pgésed into the production. erived attributes on the left and
inherited attributes on the right are called applied occurrences and take
théir values from the defining aE}ributes, The following is a parse tree

for the block degiaration, with the direction of attribute flow shown by

the arrows.

> block[->dec]
' N

bn '

! dec

v Co ! )
simpdec{bn -> declare(bn,type,name)]

! 1

‘
- S D S Lo B PD Cemn s t=m

type  -——=(=mo .
, - Ty !
simp_type[->type] name
) ST !
begin[~>bn] integer '4d'[->name] 'end'
, ~ - .

In the above declaration 'ba' is the block number for thé declaration and

is inherited from the context.. The type and name are derived -from the

» -
<

-
-l - '
¢

L AR

»

1

[
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phrase itself. The attribute function declare uses the values of the
attributes, bn, type and name, to declare the ‘variable. Thus declare is
an applied attribute and the others are defjining attributes. Perived

attributes rhove up the tree while inherited attributes move down the

tree.

The reason for using attribute grammars is not only to cembine both
the syntax and semantics into one formalism but also to be able to
automatically gener3te a compiler from the language -specification. The

attributes used to defime a translation of a language will be such things

as data types, symbol tables, operator types and instructions

representing the translation. . o

1.1 Attribute Evaluation

The evaluation of applied attributes can only be carried out when the

values for all of the defining attributes, on which the applied

octurrences depend, are known. Thus if the block number were not known

until the end of the block, in which the declaration is made,A"then the

-

evaluation of the declaration would have to wait until the entire block

had been scanned. One method is to build the entire parse tree and then

[y

recursively move up and down the tree attempting to evaluate attributeg.
If all the dependencies for a particular attfibute function are satisfied
) ’ N

in a production then the attribute function can be evaluated and the

applied attribute set to the computed value, This is continued until all

the attributﬁ; have been evaluated. If it is ﬁpssible for the value of an

attribute to depend on itself then the grammar has a circularity and the

sentence which causes this cycle cannot be evaluated using the grammar.

-3-
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1,4 Pre-Specified Traversal _Strat_ggies” .

£

Given an acyclic'at%ribute grammar the only constraint on -evaluatién

.

order of attribute functions is that the dependencies must be satisfied.

~ . L 4

Ev%}uation of an attribute fuhction, with unsatisfied dependencies, can

be avoided if an evaluation order is specified, which never attempts to
evalute an attribute “before the dependencies are satisfied. In this way
there will be no wasting of time by attempting to evaluate a function,

failing, and then having to store the necessary information to complete
- ! ¢
the evaluation later 4, .

3

.
One possible strategy is to evaluate the functions just before a
s : 4

reduction is made, in a bottom up parser. To insure that all the defining

attributes are known at this time, it iﬁ,shfficient, but not necessary,
. Re

to  have a grammar which consists of only derived attributes. Since all

v

: _— .
the information 1is contained in the phrase about to be reduced it is

agsured that the attributes will have values. It is obvious that the

R . .
-grammar is acyclic because the attribute flow is always upward in a tree,

which 1is an acyclic graph.- Thus a grammar consisting/of only derived
attributes is guaranteed to have the property that it can be evaluated in

a single left to right pass.
. \

3

: .
It is always possible to remove inherited attributes from a grammar by

a method known as hoisting. This technique moves attributes up the parse

tree until the inherited attributes, on which the applied attributes

depend, become derived attributes. At this point. the applied attribute
N4
T

which depended on the inherited attribute can be evaluated.

b

"
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Thus the attribute function for a declaration could be moved up to the

production for a block at which point the block number would be a derived

3

attribute:
block[-)declare(bn type, name)] "begin'[~>bn],

simp_ﬁec[¥>type;name], -
"and". *
block[->declare(bn,type,name) ] R “ \ ‘
) ! ] ' ' »
! ' pa
! . N - ! . )
bn type name
! '
r simp type{->type] R '
! . ) fv
'begin'[->bn] integer ) - 'id! [ >name] "end"

Yy '

Thus, just before the above reduction is to be mdde, the values of'all
' - ™
the defining attributes used in the declare function are guaranteed to

be known, because the terminals and nonterminals for the production .are

now on the parse stack. In this example 'begin' is a terminal and the
"value of its attribute is supplied by the lexical analyzer by keeping

track of the number of begins and ends already seen.

4

Il

. a
1.3 Parser Generator -

'
»

.

" The parser generator uséd takes as its input 4he specification of .- a
programming language iﬁ?’a'BNF extended wich‘%ttributes and attribute
functions. The output is a set of LR(l) parsing tables; _along with
ihstruétions for the attribute evaluator. The instructions, for attrgbuCe

evaluation, are responsible for moving attributes around the parse tree

v

o : S 5.
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and calling attribute functions. Thus the parser generator automdtically

r .

constructs a program, which when given a correct sentence, can parse it and

determine its meaning.

D
@\ ~

When an attribute function is about to be called the interpreter will

24

check that all of theoargum?nts are known and!' if they are, it calls the

appropriate function with them. If there are one or more unknown

=~ ’ ‘ - ) , )
arguments then the interpreter cannot call the, function but will havesjo

.

wait until they are known. This involves storing = values on a dependency

- N - t
list. When an atrribute on a dependency list becomes known, then another
L4

attempt is made to evaluate the attribute function. Thus the interpreter
: L4

may make .many attempts at evaluating an attgibute function before it:-

,succeeds. This 1is the reason a pre-specified evaluation order, vwhichf

‘guarentees that the values are known, is imbortant. 5
/ ) i ’ .
2 Algel W Implementation ) . . -
: E7 ,

N [}

The ;Algol W translator transforms the source text into the

interme¢iate language Janus in two passes. A least two passes are needed

a

because declarations are allowed to follow applied occurrences,

The translation copld accomplished by writing a grammar and specifying.

5 . ' ! o :
that the attributes be galculated in two' passes over the structure tree.
The first pass would evaluate the declarations which would then be used

by the Second pass. o ..
b ' .

It was decided, for reasons of simpliciﬁy‘ to use two grammars and to

v

write the result of the first pass out to file §tore’and have pass 2 read

SR . :‘l

- 3 .
-6- . L .
- N N N
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it in and process it with another. grammar. The attributes calculated in .

©

the firqf pass are representéd by a symbol table.
. ’ g .
The first pass processes declarations and transforms expressions jyto

postfix form. The second pass, using the symbol table buily in the first

pass, translates the postfix code to Janus code.

A . .

The gramnfars for both passes use only derived attributes. °‘The reason
for this is that it is obvious that all the dependency constraints will
be satisfied before an attribute function is invoked-and that the grammar

is acyclic. ,

%

I1f an dttempt, to evaluate an attribute function fails because one of
the . attributes_is not knowh, this is flagged as a compiler error since ™
. R ,

v ‘ o~
the grammar has been” designed so that this cannot occur.

2.1 Compiler:Overview

¢

The Eompiler consists of five modules each of which is responsible for

a particular function,

The modules are: ’

® . -

1) OUT.PAS ) < rgsponsible for output ‘ .
2)'STRINC:PAS gtring manigulaéion ,
3) VALUES\PAS data struc£ures and reference. counting
4) CALL.PAS égL;igu;e funétion'evalugtdg |
SSIPARSEaPASI lexical énalysis and parse tablé

interpreter and control
# i .
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~ The first pass is responsible for procéssing declarations and

- transforming expressionS'gp postfix form.

A

The files use& by the'first pass are:

-3

i) TABLES.PAT the parse tables and att;ibute evaluation
. tables i

2)  STPREE.DAT the‘ standard prelude containing® pre-
declared routines

3) 6A$§INPUT the source program to be parsed ’ ‘

4) PAS$OUTPU1 * the listing file and error messages

5)  OBJECT.DAT the postfix t;anslation

6)  SYMFILE.DAT the' symbol tabl

7)  BLOCKTAB.DAT  the block nesting table =« -

~

The attribute grammar for this pass describes the context-free syntax
° e L]

of Algol W and specifies the translation to.postfix code., The two main

* attributes which are moved around are the translation ‘to postfix and the

symbol table. . S ' o

A

A block nesting table is also constructed which gives the block number

§

A9

of the surrounding block for each block in the program. Whenever a blodk .

is entered an attribute function is called to give the block number. As a

side- effect, this function call stacks the current block number and -

a &

enters the block number' and its surrounding block number in the block

table. On leaving a block the surrounding block number replaces. the

of
Y

éurrent block number.

v e
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2.2 Declarations

-, . ) 1
As declarations are processed, entries are made in the symbol table

and, in some cases, a string is generated for the second pass tp read.
’ 4.

¢ N ‘ .
The information, entered in the symbol table, includes the name of the

>

object - being declared, the block number, a unique number used for

-~

identifier generation, and, in the case of procedures, records and

references other information concerning parameters, fields and ‘record

”

classes.

N

Simple " variable declarations result in entries being made in the

symbol table but do not produce any translated string.

3

Array and procedure declarations nat only enter information in the

symbol ‘table but also result inxg'translated string. Array declarations

3
>

must be carried over into tﬁl(second pass because they can ’ contain

ke +

expressions which cannot be. evaluated at complle ‘time.  Thus. array

v
¢

declarations are executable. Only’the number of dimensions and the type .
' * \

5

of element,is‘known at compile time.
~ i ’
For procedure declarations the body of the procedure must be passed on

-
1

but the formal parameter list is be stbrgd in the symbol tabie,

2.3 Standard Prelude . . .

The entlre program is enclosed by a fictitious block, bearing number
»

zero. This block contains a11 the pre-defined. functloné such as sin, cos,
.trunc amd round. The declarat1ons for the standard prelude are - actually

in® 5 file called STPREE,DAT which is read before processing thg source

El

text.

<



‘The postfix translation and the symbol table are the two attributes of
interest in the first pass. The partial translation and symbol table are
. 4

derived attributes of all nonterminals. When a reduction is performed

Pl

the tables, which contain the declarations for the production being

reduced, are merged and the strings, resulting from the translation,

2

L -

are concatenated, The translation prbcess terminates when the finale
reduction to the distinguished nonterminal PROGRAM[ ~>str,env] 1is
--pa££9rmad. At this point the postfix translation, - the symbol table and

T

the block nesting table are written out to file store.

Since the first pass is not concerned with the meaning of the program
" to be translated, different features of the ianguage which have ideﬁtical
syntactic descriptions can all be handled by a single grammér rﬁle. For *
instance array references and procedure calis wigh parameters are
tréated identically by the translator. The distincfion will be made on

the second pass with the aid of the symbol. table.

2.4 Postfix Translation

?

The translation of expressions from infix to postfix is performed
*

whenever a'reduction is performed involving infix operators.
' ’

term[ ->combine(envl,env2), conc(strl,str2, "div")]
term{->envl,strl], "div ,
factor( >env2 str2]. . !

The environments, envl and env2, which represent declarations, are
12

”

combined and. the strings representing the term and factor are
congatenated followed by the operator div.

Thus the expression

"~

. " -10-
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A+B*C
would become

ABC* 4

Control : structures such as if then elﬁe. case statement and goto

statements are not transformed and appear in the same form in the
J L , \

- translation as in the source.

2.5 Pass II N

'

This pass uses the symbol table and block table built in the First
p;ss to translate the postfix string to‘ﬁhe intermediate languagg Janus.— ~

The files uéed in this pass are: - N

/

1) TABLES2.DAT  the parse’'tables and attribute tablés

2) SYMFILE.DAT the symbol table from the first pass
» 3) OBJECT.DAT the postfix translation from the. first pass
. and '

the output of the second pass oo

4) PAS$OUTPUT any error messages are appended rto this
file

5) BLOCKTAB.DAT  block nesting table

* 2.6 Internal Representation .

e
The most important attribute is the one which represents the object

code. Since this attribute is a derived attribute of the start symbol it
. .

is important to find an efficient representation in terms of space.

“Most of the string will be made up“of keywords with less than 307 being

other than Janus reserved words. To avoid storing the same string many



times each keyword is stored only once and a pointer to it.is used in its

place in the translation.

As in the first pass, all the attributes are derived and the translation is
| . )
B ¥
formed by concatenating the translations together. The attribute functions
construct a translation, given as input derived attributes which contain the

translations of the sub-phrases and the typing information, ‘and constructing

the translation. Unlike the first pass, . in which the translation does not rg7'

order nonterminals, the second pass may re-order the nonterminals in ﬁﬁe
. - /
translation. Thus it 1is not possible to emit the tramslation at every

reduction but it is neccesarry to store érbitrarily large sections//bf the
translation until all remaining translations involving the sub-phrfases are
simple postfix. The ‘second pass starts by reading in the symbof and block

‘tables, from the file store, and storing them in the named Qata structures
symbol_table and block_table respectively. Record class declarations are also
4/
stored in a list called d.finition table when the symbol/table is read in.
/

This is used to produce all the record mode deflnitlons fheeded in by the Jénus

translator.

2.7 Declaration Processing S ’

The dgecond ~pass then proceeds to read the translation resulting from the

/

first pass. When a block is entered an attribute function is called, with the

\ " ]
block number as an argument, which will find all the variable declarations
in/‘the block just entered and produce: a string consisting of Janus

declarations for them. If the block entered was a procedure

a )

-12-
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declaration then declarations for result and value result parameters
. are produced along with code to load the variable with the initial value

in the case of value result parameters.
4

Array deélarations are‘emitted when the translated striné3for them is
encountered. A dope vector for them is déclarea which consisté‘of a base
pointer and as many lower bound stride bairs as there are‘-dimensions.
Code is then emitted which initializes the doﬁe vector, grabs a section
of the stack sufficient for. the array, ard sets the base pointer to point

to it.

2.8 Expression Translation -

THe translation from postfix code to Janus proceeds by simulating the
execution of tﬁe> program on a stack machine and producing theé Janus
instructions to push operands onto a stack and then operating on them.
The resulting atnributgg from thé reduction are the string containing
Janus code that performs the operation and an attribute which describes
the result. In this way the type of the intermediate result is known to
any other productions which e it.

expression[-)apply(op.érgl,argZ,typel,typeZ).
‘ coerce(typel,type2,0p)] :
< . variable[->argl,typel], - -
W variable[->arg2,type?],

operator[->op].

\d

The wattributes typel and type2 give the type of  the operands
including whether they are on the stack or mist™be.put there. If an
argument is- a simple Qariaﬁle then the type will ipdicate this and will

contain all the information needed to reference it. If an arguments is

-

=13~
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not simple operand but is an intermediate result then argl or arg2 will
be a String which is the translation to calculate its value and put it on
the stack. If it .is a simplé variable then the string will be empty. he *
function apply will take the arguments and builds a translation for the
entire operat&on. The function coerce will use its parameters to
determine the type of the result and return an attribute with ;ﬂfﬁrmation
describing it. .
. . . . >
The translation of A B C * +, assumuing A, B and C are integers,
would be: ‘ .
load int disp n al.
load int disp n a2,
load int . disp n.a3.
mpy int.
add int.
- Here al, a2 and a3 are compiler generated unique identifiers for A, B

and C “respectively. The disp n indicates the display level for the

variables, with O for the,outermogt level.

| Tge attributg function coerce would return an attribute indicating
that the result type is integer and that it is on the stack. If the
operands had been of different types then the apply function would have
placed the appropriate conversions between the operands and the coercion
would have returned a value consistent with the result.

2.9 Parameter Passing

Algol W supports six different parameter passing mechanisms. They are

value, value result, result, name, procedure and formal array. In

addition to these a seventh has been added, which is pass by reference,

o -14~



For result and value result paramaters the address of the parameter is
passed to the called procedure. The called precedure uses this address to
modify the parameter at the end of the call and in the case of value result

it initializes a local variable with the value of the actual parameter.

Formal array parameters have ﬁot been fully implemented. They can only
accept entire arrays of the same rank as the declaration and not subarrays.
They ‘are implemented by passing the address of the dope vector and the base .
- address 'which are then copied to a local versions. All references. to ‘the
actual parameter are then through this new dope vector to the original

array.

-

Name parameters requiré the address of the variable at thé time of
reference, not at the time it was passed, which, in-thg case of array
elements, may change betweep successive accesses. To implement this, a
’ procedure called a thunk has to be constructed which will return the
address of the variable. The entry point to the thunk is pessed to the
called procedure instead of the address of the variable. The . called

procedure calls the thunk whenever it needs to know the address.

-

Since name parameters are SO expensive to use it was decided that it
would be wuseful to implement the less expensive mechanism of passing by
reference, which is wanted anyway.

Pass by reference simply passes the address .of a variable to the
. 3

. -15-
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' K .
called procedure, which uses it to reference the variable. ({

Procedure parameters are implemented by building a procedure, which

has as its body the actual parameter. The 'reason the prdcedure; closure

not be g procedure but a statement. For instance the following program is

) /
/

/

rid ’

begin
procedure foo(procedure pl);pl;

foo(  begin
integer al,a2;
writeon(al,a2);
end.)
end.

Y

Thus a new procedure must be built which has the same effect as executing
the statement and its closure passed as the actual parameter.

2,10 Global and External Procedures.

The “Algol W implementhtion allows for procedures to be compiled
seperatly and, the object modules produced, liﬁked'together. The syntaf“

of an external/global procedure declaration is:

procedure_heading: "global"!"external", [procedure_body].-
Procedu%e body 1is not p;esent ;f it is a external declaration as it is
.Qefined elsevhere. | |
The procedure heading in the declératton gives the name of the

procedure and the types of the formal parameters.

If it is a Pascal procedure which is being linked then it is important

LY h]
(25
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-

#hat the correct formal types be used as Paécal does not support all’ the

passing mechanisms of Algol W.J

S

—fzgé§gal usually expects the address of the variable to be passed unless
Y o) : .
‘the formal declaration uses the attribute Ximmed, in which case call by

value is assumed. If real paramefers are to be passed they must always be

either call by reference, call by result or call by value result. The

reason call by value is not allowed is that Zimmed parameters are not

allowed to exceed 32’§its by VAX Pascal.

2.}1 Input Oﬁtput System

LS

Janus does ﬁﬁot define any’I/O routines so these must be supplied- by

.

external procedure calls. ' -

/

The routines are fo be‘uséd as‘if they were declared with the
following procedure headings:

# RESULT LEFT ON THE STACK.
BEGIN INT .DISP O GETINT_S,
PAREND INT DISP O GETINT_S.

#RESULT LEFT ON THE STACK.
BEGIN REAL DISP O GETREAL 3.
. PAREND REAL DISP O GETREAL_S.

# STRING OF LENGTH P1 READ INTO THE LOCATION P2.
BEGIN DISP O GETSTR_S. . oL T ,
PARAM INT DISP O PI1. ST A
PARAM ADDR DISP'O P2. - > o
PAREND DISP O GETSTR §.

# Pl IS OUTPUT.

BEGIN DISP O PUTINT S.

PARAM INT.DISP 0-P1. - _

PAREND DISP O PUTINT $. : _—

L -17-

§



Svqet o~ L -

-

Jon
do it

f

# P1 IS OUTPUT.
BEGIN DISP @ PUTREAL $.
PARAM REAL DISP 0 P1.

_ PAREND DISP O PUTREAL_§. . |
# STRING STORED AT P1 OF LENGTH P1 IS OUTPUT.
BEGIN DISP O PUTSTR_S.
PARAM INT DISP O PI, « ‘
PARAM ADDR DISP O P2. :
PAREND DISP O PUTSTR_S.

2,12 Optimizations

o

At present the translator is rather slow and some rather simple
optimizations may improve(its per formance considerably.
The translator takes about 32 CPU seconds to perform the initializations

for both passes. 'If the initializations were embedded in the compiler in

the form of constant declarations then no time would have to be spent doing

initalizations.

In the first pass it would certainly be possible to emit the translation

LY

immediately 'upon reduction because the'gtranslation scheme is simple

-

postfix. That is-the order of the non-terminals in the translation is the
'same as in the grammar. Thus instead of concatenating~ strings the

translator could call an output function. to emit the translation.

+

g

2.13 Conclusions

The compilgr described uses only attribute gramméfs to transform the

source text into intermediate code. This is unusual. Although attribute
& .

grammars have been used in the ﬁasp they are not usually used in the

* .

synthesis of object code . i

[}

;Because the translation is specified by the grammar it was found that

4
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/

many changes that had to be made to correct errors could be ,made in the

. .

grammar with no need to recompile the rest of the compiler. This resulted in

a much faster turnatound time in the deveIopment‘than otherwise would have

o
's
been the case with a conventional design. Coa .
- 3 N 7
f . .
» .
L} .
I
]
) .-
¥
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3 Janus implementation

This part of the report describes the implementation of a compiler

Sl ‘o
for the intergpediate language Janus. It describes the structure of the

v

compiler and the files used by it. The extensions made to Janus, and "¢

.their implementation, are plso described.

3,1 The Janus Macliine

—~~
The Janus machine presents a low level machine in which instructions

v 3

operate on primitive data types but also allows features useful for

implementing ‘high level languages such as procedure calls, array

referenting, record structures and address manipulation[Waipe?S]. The

language is sufficiently restricted so as to permit an efficient
implementation  and yet sophisticated enough to permit an easy

transformation from high hevel languages. ’ o
’%’ . - ; \kj

Central to the Janus machine is the Eperand,stack. This structure may

hold operandg or intermediate results and 1is the destination of-

arithmﬁftc operations. Since Janug was designed to bgu:implemented

'?fficiently on many machines, not-only those with stacks, it has certain
i’ ' )

propertieg which enable the translator to know the depth of  the stack at

§

any time. Thus it is)possible to implement the operand 'stack using

registers. To ensure that the stack depth is always known, the stack is’

emptied on blqgk entry and ex}t and at any occurence of a label. Thus it
is not possible to have the stack grow indefinitly by looping with a jump

»

statement,

~20-
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3.2 Janus Exteﬁsione

“’7

Jahus has heen extended with three features to simplify granslation

-

from Algol W,

' FREE2E blocks were introduced to overcome the problem of having the

operand stack empty every time a label is encountered. Without the

“ B
ability to keep the operand stack intact after .a branch the
implementation of conditional expressions requires an inefficient
sequence of stores and *loads. To overcome this problem a new construct

was introduced, similar to blocks except that the operand stack is marked

4 ~
instead of being voided on entry. In addition an, explicit breek, command

.

is allowed which causes control to transfer to the instruction following

THAW instruction. Whén the block is left, either with a break or by

. N
falling through the THAW, the mark is moyved back to the position it had

_on entering the, FREEZE block. The syntax of FREEZE is the following:

FREEZE sy@boll

(code. element eol}*

THAW symbol N ' ‘ \
. ‘ et N !

3.3 Garbége Collection

-

f \ N . . )
AlgoI‘W.reqdires that records be stored on a heap and does not require

-~ ]

.the progremmer to explicitly freé them when he no longer needs them. To

prevent .the system from making unreasonable storage demands some means of

re-using étorage, which has become iflaccessible, must be provided. Thus

-21-
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- function at the approprite times. o . >

the problem of garbage collection arises.. ' . «

a

Janus provides a heap for storage which does not obey a stack

> oka

diséipline. It also - provides grab and free operations which will get

~

blocKs of memory and return them to the free storage pool. A garbage

a

-collector could be written which managés the heap and calls rthe free

e ——
v //_,r T

-
-

- —

w/

Instead of doing this it was decided to,augment the Janus machine ‘with

" features which would free the programmer from the geed to write his own

garbage collector and instead use built-in feagures of Janus.

N
M

., ' '
w To do this it was necesgﬁry to introduce a new data typé and
.\ .“ . : .
instructions to manipulate them,

.The new‘d;taatypes are ppinters to records which will be allocated on -
the heaél A new ;gcord mode defi{giion was also introduced which informs
the translator that the record is %oing to be allocated space. on the )
heap the §Ynt§;'bf which is: , L )
' o | e l
COLLREC - SYMBOL EOL ‘
nrecord layout '
COLLEND SYMBOL EOL : | S : i | ' “"?;
This defines SYMBOL as a record mo ich is.to be allocated on ,tﬁe A

heap,

s

"The pointers are declared using the new primitive type COLLECT, yhich
tells the translator that 1t,pdiﬁts to something on the heap .so the

garbage. collector knows where td‘find it.

’

=22~
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To create a record on the heap the ALLOC statement is executed which .

-~

5

specifies the record mode and the collect mnde object which is to point to

it. The generated -code from this statement will. check that space of

sufficient 'size for the record is allocated and the tag field in the record '

is sét to the appropriate record class. If the collect mode object is -

already pointing at a record on the heap then the translator checks that it

-

N LY - ~ [ o hy
is of the.correct*tlass and generates an error condition otherwise.
B » '¥‘ o
At  present storage is not reclaimed when the heap storage is ‘exhausted
\< . ' , w
——__but s system call is made to get another iblock of memory.
-~ 7

a
-

- - o
The syntax of\Janus has been extended to allow procedure declarations to

>

be properly nested—~ This was done because it is necessary to construct

procedures’ when processing procedure parameters which are either call, by

v f

name or procedure. Thus it is not necessary for the high level language

o

translator to unravel the block structure. . ‘ T ZV’)////

o
.

., + 3.4 Compiler Structure ‘ BT L : . LN

‘The compiler uses a récursive descent parser written in Pascal. It taKes
+ ’ M ) [ I ,
as 1its 1input Janus code and éroduces VAX " assembly code suitablevcfor

N
*

input to an.assembler.
S 4 - -

s
cy
(I

™ . . ‘
The compiler consists of four modules which are:

P L , ’

R Name | Furiction [ .
. . N\ ) N i [y
~ . 4 1) . SYMTAB.PAS symbol table ‘managment
| P ;o 2 2
)2)‘ CODE.PAS | code generation .
/ . B * ‘:‘ -1‘ .7 : N A '

! t .
. . , ,
, . , . )
. . *

N . . - h s

' 23 . '

, . - . .
N ' . *
.
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3) LEX.PAS lexical analysis

4)1. PARSE.PAS recursive descent parser

SOURCE FILE : .
. R —— -— > LISTING FILE

[ ' ‘ (LISTING.DAT)
v ! “
LEX.PAS ~=ewccceew~ae> PARSE.PAS ————u- > SYMTAB.PAS
. 1 .
! !
! !
N . v ; . '
FILE OF KEYWORDS CODE.PAS > OBJECT FILE. oot .

(KEYWORDS . DAT)

3.5 Lexical Analysis

¥

LEX.PAS is reépg&siblé,for reading the source text apd providing the

parser with tokens. The lexical analyzer is coded.as a  finite state

- . _ v ,
machine, which models the lexical structure of Janus,

’

The lexical analyzer is called by the parsing routine- whenever it
needs another token. The lexical analyzer then scans the input and gets

the next token. Depending on the typedcgktokén different things are

returned to the .parser. The following are the possible categories of

token: 3 e . . \
'\
1) Janus keyword including '+', ''=', "', 'Yy [0,
|:]! and '.' s

2); Literal constant (integer , real or cha;ég{er)

.

3) Identifier - : ' -’ -
If it is not obvious that a token is not a keyword then the lexical

analyzer searchs an array, ©built at initalization time from

KEYWORDS.DAT, of reserved words and if it is found then the code for the

- | >
24—
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keyword is returned. If the token is not found then the token must be an

identifier and the character string representing it is returned.

, The lexical analyzer is also responsible for producing a listing file,

LISTING.DAT. .

3.6 Symbol Table

The ' task _,of...storing and retrieving information about pxogrémmer
“ ‘ -

declared objects is handled by the module SYMTAB.PAS. The only interface

to.thié module is through the two routines DECLARE and LOOKUPNAME.

Because all identifiers must be distinct the symbol table can be very
simple. Thus it is‘possible to use the identifier itself as the key into

14

" "the symbol table.

DECLARE takes one parameter, a variant record desrcibing the thing to be

declared' and places it in the symbol table.

LOOKUPNAME will, given the name of an‘identifieno return a pointer

into the symbol table for the entry. \ : '

3.7 Parsing . _ : v

the routines, in the other modules, at the appropriate tihes:

The parser has one routine for each nonterminal, N, in the grammar
which parses the phrase for N by matching the terminals in the production

with those in the input and then calling the appropriate routines for the

The module PARSE.PAS is the cefitral controlling routine which calls



subphrases, based on the next token.
N
Most of the routines simply gather informatien which is passed back to

the callihg[ routine via parameters. After having gathered the neé&éd

information, some of the routines call a routine in the code generator

.
-

with the appropriate parameters set, to emit code.

3.8 Code Generation

’ ?

The code generator.consists of a register allocator and procedures

for constructing activation records, setting .the index register,
addressing operands and emitting instructions for operations. .

The registers are grouped according to function as follows:

L3

RO -R1 : RO- passes the current addressing environment to

called procedures. RO and Rl are used to return

values from functions .
R2 - R3 : Base and index registers for the Janus machine.
R4 -~ Rl1 : General operand addressing registers.. Each .
' register can contain the address of the start of
. ' an activation record, or, in the case of
procedure parameters, it can be set to the
argument pointer for the procedure.
R12 : Argument pointer.
R13 : Frame pointer. ’
Rl4 : .Stack pointer. -
R15 : Program counter.

3.9 Operand Addressing

Operands can be stored in .one of five places:

)

%

1) In the activation record for a proceWure.

o 0
ot

4
’
7

~26-¢
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2) On the operand stack. c
3) At a static location.

4) In parameter storage.

5) On the heap.

Depending ofh” where an operand is located different information is

needed to access it.

» “

For an operand 'within _ an activation recdyd and for paraneter

storage, the display level and offset are needed. ' .

Heap storage is accessed using a collect modes variable as a pointer

: '
to it. .

The address of static storage can be determined at assembly'gime and

symbolic addresses are used in this case. ‘ ' '

.

A

In addition to the above categories, storage can be based, can be

»

indexed; and can have a field selector if it)is a field of a. record. ’

hd o

When a storage lécation is to be accessed ghe register allocator is
calied. If the storage category indicdtes the variable is either in an
activation record or is a parameter then the register allocator checks to
see if one of the registers R4 - Rl1 contains the address of the begining

of. the approprite data segement. If it finds that nq register contains
* -

the correct address then it must ‘emit instructions to place it there. If.

none of the registers are available then one is picked and its contents

replaced with the address needed.

-t
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3.10 Activation Records

The activation records contain the local variables for procedures

'along with “gnformation to access the activation records of surrounding
procedures. , .
The form of the activation record for DISP N is:
| ' AA
“FP: ! -- ! rooaf -
FP + 4 ! DISP O ADDRESS R !
FP + 8 ! DISP 1 ADDRESS oo
! ! !
! ! 1e
= ! ! ) !
! .
! !
e DISP N ADDRESS - ! .
! ! - !
Pt TOP of STACK ADDRESS - !
! ! - . J
Lo TOP of STACK ADDRESSES 1
- ! for ! -
! ! FREEZE BLOCKS !
! ! ! *
! ! ' ¢
! ! ! DIRECTION '
1 ! ! OF ™
' ! - ! GROWTH
! ! STORAGE FOR LOCAL VARIABLES ! !
Te> ! VALUE OF FP ! !
! -! v
! !

OPER;ND STACK

The activation record contains pointers to all the activation records
for proceduresvthat surround it. These are needed to reference variables
which are not logal to the current procedure.

The TOP of STACK ADDRESS contains the address of the toé of the
operand stack when it is empéy.' This is needed when the operand stack is
voided at’a label or and on block entry and exit. The value of the
frame ~pointer is used when a jump instruction transfers control out of

the  current procedure and must restore the correct - addressing
\ ' "
. _ .

- . -28-
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Thg TOP of STACK ADDRESSES, for the freeze blocks, are d;ed to store

the address of the top of the operand stack on entry to a FREEZE BLOCK.

. : , a
When the FREEZE' is exited the stored TOP of STACK ADDRESS is wused to

L 1

replace the current TOP of STACK ADDRESS.,

When a procedure is called it expects the frame pointer of the

statically énclosing‘ procedure to be in RO. Using this address, the
called procedure copies as many display elements from the .procedues

activation record as are needed. ° 'N

A

The stack péinter is tQEQ_decremented by an amount sufficient to

. La
accomodate the local variables, the top of stack pointer and the freeze

thaw stack tops.

L4

3.11 Parameter Passing

All parameters for procedures are passed by pushing them onto the

étack and then using the argument pointer to access them. When a

Sgrameter that is not local Lo the current procedure is to be accessed,
\ .

tﬂen the static chain is searched backwards to the approprite’\activation

Eécord. From this the stored argument pointer isgietqieved.aﬁd its value,

placed in one of the registers R4-R11. i

4

3.12 Collectable RecoYds

When the Janus translator processes collectable record mode

.y <
definitions it stores a record class number with its definition in the.

©

kS
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symbol table. At the end of translating the program the symbol table is

searched and all the collrec mode definitions found, Witﬁ,these a table

-3

is built which associates the record class with a set’ of ;ffsets. The
.offsets are the locations; inside the record, of all collect mode
objectsT These ar® needed by the ‘garbage collector so it ..can trace
through the heap during garbage collection. In addition, the size of the

record 1is stored which is used when alloéating space on the heap for the

N hY
record, |
) - ¥

3.13 Data Representation - <
- ,

Primitive data objects occupy the following number of

bytes:
'BOOL and CHAR : . One byte.

" INT, COLLECT and ADDR Four bytes.

REAL, PROC :  Eight bytes.
Composite mode objects occupy space equal in size to the
sum of its components. All storage is packed and the keyword

allign has no effect on the storage allocated.
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‘ 3'16 Conclusions

The Janus compiler described has a. simple structure ‘Afit* does not 'aitempt

to berfqrm any optimizations.

Using Janus as an intermediate language allows ‘the front end of thee

compiler to deal only with the structure and semntics of the program to be
Ly ’

compiled. JThe frontend makes no asSupmﬁions about the underlying machiné

architecture\but simply generates Janus code. The advantage to splitting the

compiler into~two parts, one machine-independent and the other very machine
v ¢ ' \ .
dependent, is that implementing the compiler.on a different machines requires

only the writing of another Janus translator.

©
4

The ease of implémentation was helped by the extensive instruction set -of

i

the VAX. In most cases Janué instructions required only,ohe or two assmbly

instructions. — o

N 4
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) . .
-Appendix 1 : Algol W to Janus Translation.

a

v ¥
The following translation illustrates the

FREEZE blocks in conditional expressions.

begin ,
integer max , a, b ; g

°

max 1= if a ~ b then b else a;

*“

start algolw.

begin main ml . '
parend main ml ' '
space int disp O all .
space int disp 0 al2 .~
space int disp O al3 .
freeze f16. ~ ' - K
load int disp Q" al2*. o - o
load int disp O al3
rlt int . o

cmp (n) bool m true .
Jmp ne r al4.

load int disp O al3 . ’

break f16. : -

loc .alé, -

load int disp O al2 .

break f16.

thaw f16, .

store (n) int disp O all .

end main ml . -
finish algolw. ’ 0 )

o

é

use of

i)



' 'Kppendix 2: Janus to Assembly Translation.

-

X): ) start algolw.
. def int m al7 a int 20.
‘\\ def int m al6-.a int 10.
. begin main ml.
parend main ml .
space int disp’0 all .
space int disp 0 al2 .
begin int disp’l 'al5 .
- param proc disp 1 pl3 .
param int disp 1 plé .
parend int disp 1 al5 .
. - rcall addr param pl3 .
rcend addr disp’'l pl3 .
base addr . .
-~ “1¢ad int based . -
\ load int param plé .
) add int .
- end int disp } 'al5 .
: loal int m alb . .

- + store (n) int disp O all ,
. . load int m al7 . o
.. store (n) int disp 0 al2 .

rcall r putint$ .
rcall int r al5 .
begin. addr disp 1  pl8.
Qﬁi;end,disp 1 .pl8. '
setloc addr disp 0 all .
end addr disp 1  pl8, . v
proc disp 1  pl8. :
rarg proc . ~
load int disp 0 al2,.
rarg int . ' .
- rcend int r pl5 . e
rarg int . ' o
rcend r patint$ .’
rcall  r newline .

¥

rcend r newline . N
’ end main ml >
- 7 . finish algolw, . -
- " ..title algolw
.entry  algolw , "m<ré>
brw ‘ start " '
. . labl: = . )
) * “brw lab2 . 4 , -
‘ lab3: : - )
" -movl 12(r12)%r0 ’ o

calls *  #0,@8(r12)
R addk&, "#0,sp

-

=34 .
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pushl
movl
movl
movl
addl3’
movl .
ret
.entry
subl3l
movel
subl3
movl
movl
movl
brw

1ab2;
movl
movl
movl
movl
movl.

. %rw

lab5:
movl

: 4
moval
movl .
ret
.entry
subl3

- movel

subl3
movl
movl
movl
brw

labé4:
movl
mo¥al
movl
movl

‘movl
S

Sills
addl2
pushl
movl
calls
addl2
movl
calls
addl2
Sexit_s
Jet
start:
calls

B 'ro . *
(sp)+,r3 - , . . . -
O(r3),-(sp) ' Lol

4(rl2),-(sp) . ‘ . ‘
(sp)+,(sp)+,~(sp) \ . “ s

(sp)+,r0 )
all . “m<r3,r4,r5,r6,c7,8,r9,r10>

#4,sp,sp g

#av'a(ro)o(sp)

#20,sp, sp
. fp,(wp)

SP:-S(fP) . .

599‘12(fp) .

lab3 . .

#10,-(sp)
-4(fp),ré
(sp)+,4(r4)
#20»‘(59)\
" (sp)+,8(r4)
lab4

-4(£p),ré : .
- She

- 4(rd),-(sp)
(sp)¥,r0 7

pl8 *m<r3,r4,r3,r6,r7,r8,r9,r10> .
#4,3p, sp . .
#6,-4(r0),(sp) ) :
#20,sp, sp

fp.(sp) SO q ¥
sp,-8(£p) .

sp,~12(£p) ‘ '

lab5

fpr‘(SP) e

18 ,2(sp) '
-E?Eg),rd ‘ N - ‘ “

B(ré4),-(sp).
£p,r0° L
#0,al5 . v s ’
- #12,sp B
r0 \ C
fp,r0 N J .
#0,putint$ ATE T , "
#4,sp N
fp,r0 c ‘ ' . -
#0,newline '
"#0,sp

#0,ml !

n=35= ’Q



ret
.entry
subl3
movl
movl
movl
calls:
calls
brw
ends

#28,sp,sp.
fp,(sp)
sp,-4(£fp)
sp,=-8(fp) -

#0,initSawio

"-4#0,initgar-
labl -
algolw

o2

-

»

" l.
»

A

S ml  <"m<r3,ré,r5,r6,r7

,8,r9,r10>



