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; o ‘D}le to,the facts that current optical reagers have limited

e et

capability-in the recognition of handprinted chizicters and the
' v H

: - wide variety of apt-matrix alphanumeric designs oYfered by
display manufacturers, an iterative method was developed to

! producé an optimurﬁ set of distincti;re hgmd'pr"int 29%X 39 models

for rel&a{ble optical character Yecognition and the most legible

T P set; of 5 X7 matrix médels for computer output systems.
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A total of 90 different handprint and 12} dot-matrix
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- models were investigated in this thesis..  The models were’

compiled from an extensive survey of over 30 different hand- ' “

e ot

writing and computeAr ou‘qpuE systems. = Eight quantitative

measurements were used in the process of successive elimindtion .
' . . b i .

* of undesirable models.
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- « INTRODUCTION B

-

Continuing advances in electronic technoldgy and the

v

steady reduction in equlpment costs have resulted in the

proliferaﬁof man-machine communlcatlon devices. There

A

are many coffiercial devices which can automatically recognize

machine-—printed characters at _high speed with low error rates,

not to mention there are aZ}.so‘ many computer output, systems

euch as CRT "s,’ thermo-printers and high-speed printers which

are widely used. Due to the advantage of eliminating the

expensive and error prone process of data transcription, s

©

oonsuierable interest has /been developed recently in the
automa’cic recognition of handwrkltlng. Although some OCR
Ipachine can read multi-font and mixed. font characters, most
of them have very fx::’t?mited caﬁbi,lities in the- reading of .

handprinted characters. -On the other hand, the problem of

legibility of dot—matrix characters arises with the increasing -

usage of compoter output systems. This "thesis describes an
iterative method aimed e.t establishing an optimum set of hand-
print models so that a high.rec é;n‘tion rate can be acﬁieved
using current OCR equipment. It .is also the purpose- of this
thesis to determine the most legible set of dot-matrix charac-

n

ters for computer output systems.
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Chapter 1 describes the procedures of tl]e iterativ@_ .

" method and each of the eight quantitatlve measurements nsed

J.n,. the process.
°y W

includingis‘om,e of those: employed to develop the ‘OCR-A font B

Various dlstance and :%formatlon funet’mns,

[16)., are discussed. - , - - . o

* -~ ' \
-

1 . . . L . .

S ¢ " .« o * - N
Chapter 2 provides a brief introduction to the need of :

'}

reliable recoglnhition of handprint_characters. Each of the o ) ’

four elimination rules and the 12 iterations used in the o !

. process of eliminating undeswrable models from a set of ®

-alphanumeric handprin’p'models e discussed. The original [ -

L‘\ o

“set of 90 2939 alphanumerlc and the final optlmum set of *
t I v - \

36 models are presented. e : AN
. N .
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Chapter 3 presents a brief discussion on/the legibility

;problém and the ne of an opt‘:imum ‘dot~matrix character set,
z Ly ] . 1

‘for co.mpute‘r output- systems. The four eliminatioh rules and® . -
12 J.terations used in obtaining the most legible set of dot- -

matr:.x charQ!:ters are discussed B,ch the origlnal get of ’ Coa

121 alphanumerlc and the f"nal set oﬂ/ﬁ/Sx'? clot-matrlx e e
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I ~ s CHAPTER { ITERATIVE PROCESS -

1.1 INTRODUGTION

In this chapter we will discﬁss the iterative technique

. _ used in ‘obt‘aining the most distinct set of 5x 7 dot-matrix

‘ characters among a set of 121 alphanumeric characters for the
computer output systems (Chapter 3) and finding an optimum set

| of 29x 39 matrix characters ‘among a set of 90 handprinted
charactefs for reliable optical character recognition (Chapter 2).

Eight \different quantitative measurepents were made when

applying the itérative‘v process to eliminate I:ndesirable nf)dels
(characters and modéls will be used éyno‘nymousiy in this thes‘is).

These measureEnent.s were obtained from the ave‘rage values of the

following functions:
- " 4) Similarity Punction, ..
Y
‘ 2) Hamming Distance, ' v ‘l’/

3) Linear Correlatipn'Funqtidc)n,

4) Cross Corzl-ela‘cion\ Function, . )
N ’ 5) Information Content, | \ A ' 1 )
| 6) Entropy, ' ’ . L%
7) Nearest Neighbor Distance-i, \

8) Nearest Neighbor Distance-2,

. S By using the above functions, measurements were made
betwéén each character and the remaining characters in the set.

These measurements were summed and averaged. The averages {or

[

Y
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{o
sums) of different models of the same symbol (e.g., the symbof
"B" has 3 models B1, B2, and B3 in the original set of 9Q 29X
39 handprint characters as shown in Figure 1.) were compared.
Thosemodels rated as "undesirable" by all (100% ruPe) eight
“ ' o

quantitative measurements were éiihinated from the' corpus.
‘Measurémenté were computed again for‘the remdining set of
"Lharacters.' This "pruning" process continued until the 100%
‘rule could not be applied any longer. Then the 87.5% rule‘
(for a majority of 7 againgt 1) was used and the elimination
process continued until this rul%:?ouldinot pe applied Q?y
longer.  Successive rules includé&‘the 75% (for a majority of
6 against 2) and 62.5% (for:-a majority of 5 agéinst 3) rules.
The remaining set of characters became smaller and smaller as
the iterative process éontinued. The last 36 alphanumeric

« \
models were coqgidered as the most distinct set of matrix

characters. o

1.2 NOTATIONS : : *

Since.the same eight quantitative measurements and iter-
ative process were used fo} two different sets of data of
different sizes Sa’get of 121 5% 7 matrix models and .a set of
90 29 X39 matrix models), for simplicity, the following nota-
tions would be used throughout the remaining qeétions of this

chapter: ~ \ i

e AU S SN
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S :
c, D:
Cij :
NC ‘< ]
N -
s(e) :
s(c,*)
N(C,*)
T <
Y
P .
T

.

- The set of all character models being investigated

in each stage of the 'iterative process. The total
number of models in the character set S can be

divided into 36 different symbols (26 character

~symbols from A to Z afid 10 numeric symbols from O to.

-

9). . ) |
Any two models in the character set S. Each of the
char?cter models in the set § is coded into an mx n
N
The i-th column and j-th row ce}l of the character

=1 if the ijeth‘bell is “occupied"

matrix of m columns and n rows.

model C. C.

1]
and Cij = 0 if it‘is not "occupied",
The number of matrix cells occupied 'by the model C.
The number of models in the character set S.
The subset of character set S without the model C.
v . ‘ 3
The subset of S without all models belonging %o the

same symbol indicated by the model C. @',
The number of character models in the subset S(C,*).

T is an mx n density matrix, where T.

. i3 indicates the

number of times the ij-th cell being occupied by all .

models of the character set S.

P is an mx n probability matrix, where
. n- m g;/
- 'Zx [

I is armn mxn matrix, where Ii;)

. = -

logy Piy o
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1.3 SIMILARITY FUNCTION

'The SimilarityoFunction A(C;D) measures'the number of

matrix cells common to both character models C and D. It can

¥

be expregsed by the equation

: . .My, n .
, ale,d) = = = (C;. .A. D ) where
; = = i i
1 3=t _
-~ - 1, if the ij#h cell is occupied by
\ Cij .A. Dij = ’\Poth models Q and D,

- . | F]
0O , otherwise.

The smaller the value of A(C,D) is, the less the "common area"-

.is shared by character models C and D and therefore thé less ~
“the degree. of "similarity" hetween models C and D.

%he Similarity Function can be used to obtain two measure-
ments wHich,-in turn:’cdn be used to indicate the desirability
among models of-fhe same symbol in‘the set S.

- _-(a) By using Similarity Function{ we can calculate the total

sum and éﬁerage of the geasurements between each character model
C and the remainiﬂé models in the set S (i.e., models in the

subset S(C) ):
. 9

( SUM(AND,C} = A(C,D) and
) . De s%ci ' ;

AVE(AND,C)

sum(Amb,c) / (ﬁ -1) .

A larger value of SUM(AND,C) (and hence AVE(AHD,C)) indicates

thal~the total qp&mOn area shared by the model C and all the

; %en%?ning nodels in the character set Siis larger and therefore

A ]

¢

’

-
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~ less desirahle. Coniereelj, a smaller value of‘SUM(AND 6)44

. (and hence AVE(AND, C)) indicates that the common area shared

l; ‘ by the model C and all the remaining models in the chgracter
sét is s;;ller.and therefore qorqydlstlnctlve and desirable.
Consequently, among models of the same symbol, the one gith

the smallest value of AVE(aAND,C) is preferred.

(b) By using Similatity Function, we can calculate the total
sum and average of the measurements between each character

/ .
model C and\¢he remalhlng models of dlfferent symbols in the

set S (i.e., models in the subset S(C,*)):

/ SUM{aND,C,*) = Z A(c,D) and
/ Des(C, ") - | '
H

- , , . ' , -
. ‘
AVE(AND,C,*) = SUM(AND,C,*) / N(C,*) .

'Similarlf, a smaller value of SUM(AND,C,*) (end hence AVE(AND,
;1C,*)) indicates‘that the common area shared by the model -C and
’Qr’all cha:acter models of different symbols is smaller. )
Therefore the smaller the value of SUM(AND,C,*) (and hence
AVE(AND,C,*)) tﬁe more distinctive and desirable the model C
is against all models of different symbols. ~ Cepnsequently,

among models of the same character symbol, the one with the
N ]

j shallest value of AVE(AND,C,*) is preferred.

!

L 4

Both measurements AVE(AND,C) and AVF(AND C,*) could be
used for evaluatlon of models in our 1terat1ve process. Slnce
consistent results were obtainéd from these two measuremenﬁs,

only the measurement AVE(AND,C,*) was used in the itérative

M ) ¢ A e g TR T SO T




‘process.' ‘ _
Table‘1 illuétrates the results of the operations AVE(AND,
. @) and AVE(AND,C,*). to the thfee character models B1, B2, and
B3 of the same symbol "B" (in Figure 1) durlng the .Pirst iter-
atlve process of 90 29X 39 character models from which we ,
concluded that the charactervmodel B3 is the mqgst ( and B is

the least) desirable model among the three.'

.Mgasufemen§s
AVE(atD, -) | AVE(AND, ,¥) AN
B 157,55 154,52 )
Models | B2 135.72. 135.16 . ° .
B3 118.64 .' 115.95 1 ' ‘

[

\ Table 1: The measurements of the three “B"
29X 39 character models in the '
A : first iteration.

N \' N L

1.4 HAMMING DISTANCE

i" A verv slmple error-detecting and error—correct1ng encod-

ing method has Veen devised.by Hamming (2] . This method is

based upon the concept of "distance" betJan code wo;ds andf 

can be used to‘ﬁytect the "devlrablllty" of character madels.
The Hammlng qutance X{C,;D) measures the number of

uncommon matrix cells between_ayy two models C and D in the

character set S. It can be expressed by the equation

— -




{and hence AVE(XOR,C)) indicates that the ‘common area shared

ij +XOR« Dyy). vhere

- 1 , if models C and D afenuqequal at"

Cyyq .X(;R. Dys =

]

the ij-th cell,

. 0. y otherwise. W

Obviously, the larger the value of X(C,D) is, "the greater theh'
"difference" is between the two models C and D.

As is in the case of the Similarity Function,;the Hamming
Distance can be applied to ogtain two measurements which,'in

turn, can be used in the evaluation of the "desirability" of

.

character models of the same symbol:
(a) By applying Hamming Distance, the total sum énd average

of the measurements hetween each character model C and the
~

1
PRRIOIRPPER A LR L

“

remaining models in the set S (i.e., models in the subse }) i

are given by' ’ # é
‘ ' - 3.

SUM(XOR,C) = ET—_ Xx(c,D) and g

. DE S(C) . i

_ i

{

AVE(XOR,C) =‘SUM(X0R,0) / (N - 1‘) .

A smaller value of SUM(XOR,¥) (and hence AVE(XOR,C)) indicates )
that thé total common area ‘akared by the model C and all ) C
remaining character models in tRke st S is larger and hence is

less desirable. Conversely, a largér value of SUM(XOR,() ‘ -

by the model C and all remaining character models in.the set
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o
is smaller and therefore the model C is more_"distinct" from
the remaining models in the set. Conséquently, among models

of- the same chafacter symbol, the one with the largest value

of AVE(XOR,C) is preferred.

3 ’ . " / -
(v) By applying Hammi&g Distance, the total sum and average
of. the measurements between each character model C and the
remaining models of different symbols in the set S (i.e., i )

models in the subset S(C,*)) are given by

7

]

'SUM(XOR, C, *) X(¢,D) * »and

Dé s(C,*)

AVE(XOF,C;*)

il

SUM(XOR,C,*) / N(C,*) . .

Similar1§, a larger value of SUM(XOR,C,*) (and hence AVE(XOR,

' C,#%)) indicates that the commén area shared by the model G and
all character models in the set S(C,*) is smaller: Therefore,
a large; value of AVE(XOR;C;*) indicates that the model C is.
more‘"distinct" against all models of different symbols and -
thus ‘more "desiragle". Conseqﬁently, among models of the same
character symbol, the one with the largest‘va}uq of AVE(XOR,C,*)
is preferred. \

Since both measurements AVE(XOR,C) and‘AVE(XOR,C,*)
pfbducéd‘cdnSisteﬁt resqlis, here again,aonly measurement -
AVE(XOR,C,*) was used in the iterative process. . | ‘

, Here again, Table 2 presents the resglts‘after applying

the operations AV§§XOR,C) and AVE(XOR,C,*) to the three models

Bt, B2, and B3 (in Fisﬁre 1) during the first iterative process
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from)which we concluded that the character model B3 is the most:

( and B1 is the least) desirable model among the three.

’ Measdréﬁents
. ' . AVE(XOR, ) AVE(XOR, ,*%) “
B1 348.45 352.52. o
Models |B2 367.39 ‘ 370.23 o
" Cles | 40847 411.64

" Table 2: The Hamming Distance measurements of the
three "B" character models in the first
iteration.

1.5 LINEAR CORREIATION FUNCTION

The Similarity Function A(C,D) discussed in section 1.3
measures the number of matrix cells "common" to both character
models C and D. The smaller fhe value of A(C,D) is, the more

. J:ACIis distinct from D. The function A(C,D) can be modified to
obtain a new measurement LA(C,T) by taking into consideration
of the 'various degrees of misalignmeﬁt ang stroke width
variation of models. The measurement LA(G,D), cailed linear
correlation function, is obtained by dividing the Similarity
Function A(C,D) by thf arithmetic mean of the number of cells
S e
A(c,D) / C(Ny + Np) / 2) 1 ,

N

= 20AEDN/ Ny +N) ) ;.

"occupied" by models C and D, i.e.

La(C,D)

i

1

e e e L e e

ﬁaﬁi"ﬁi&&hﬁhﬂﬂm e —




where NC and ND are the numbers of matrix cells occupied by

models’'C and D respectively. The measurement‘LA(C,D) gives
us a normalized area correlation between the pair of models C
and D. it is clear that LA(C,C) = 1 for any model C.

By using the Linear Correlation Function .LA(C,D), a

- magnified-sum of the measurements between each character model

C and all models in the set S is .given by p
SUM(LA,C) = ( => _ 7A(C,D) .)v N
D€ S,
y .
¢

where N is the number of models in the character set S. Thus,

the average of this sum is .

. AVE(IA,8) = SUM(LA,C) / N C
\ , .
== 1a(e,D) = =>_ 2( A(C,D) / (Mg + Np) ).
DEeS Des e
-Obviously, a smaller value of AVE(LA‘,U) indic’ates that t‘he
normalized common area shared by the model C and all character
models in the entire set S5 is smaller. Consequentl&, among,
models of the same character symbol, the one with the s‘mail'est
value gf' AVE(LA,C) is preterred. For instance, as shown in

Table 3, the character model B3 is the most {and Bt Mis the

least) desirable nodel among the three "B" models.

¥,
AVE(LA, ) ' .
B1 47.24 . " Table 3: The Linear Correlation
B2 42,40 ‘. measurements of,.the' 3
B3 36.89 & "B models.
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1.6:, CROSS CORRELATION FUNCTION

By taking into consideration éhe.degree'bf misalignment

- and stroke width variation of chargcter models, anotheér measure-
ment CA(C,D) can be obtained by normalizing the Similarity
Function A(C,D). The measurement CA(C,D), calleé cross corre-
lation funcfion, is obtained by taking the square of the quotient
of the Similarity Function A(C,D) and the algebraic mean of the

nunber of cells occupied by models C and D.  That is,

.cale,p) = ( A(c,Dp) / (NC-ND)1D/2 )2 / )
/ . . ’
= (2(6,0) )2/ (Ngemy) Lo

The measurement CA(C,b) gives us a o%;glized area correlation
between the pair of models C and D. It is clear that ca(c, C)=1
for ény model C. ‘ \ y

By using the Cross Correlation Fuhction ca(c,p), a magﬂified
sun of the measurements betwegn each character model C and‘pll

<

models in the set S is«giyen by

SUM(CA,C) = ( =__ ca(¢,D) )-N E &
. « DE'S . &

where N is the number of models in the :-character set S. Thus,q

the average of this sum is given by.

AVE(CA,C) == SUM(CA,C) / N ’ B

== _calen) =2 _((Ale,0) )2/ Ny .
De S De S : o . ’

—
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*he first iteration we concluded that the character model B3 is,a

~ 1.7 - INFORMATION.CONTENT AND ENTROPY' - S ©o

‘message svmbol is the negative of the logarlthm of the probabi-

-explained that if we wgﬁe to a591gn gumbers relating to the 1

%

-4~

» ) :
Similarly,.a smaller value of AVE(CA,C) indicates that the
P 7

normalized common area shared by the.moqél C and all character

models in the entire set S is smaller. Consequently, a model '

)

*'with smaller value of AVE(CA,C) indicates that' it is more

"distinct" agginst all mbdels in the character set S. _?herefore,,‘
among models of the same character symbol, th&“gne with the
smgllqst value of A;E(CA,CY is preferred. - Epr instance, agﬁ

gpéwn ih Table 4, by applving tﬁe measurement AVE(CA,C) to the
three models B!, B2, and B3 of chgracter "B" (in Figure 1) during

the most (and B! is the least) desirable model among the three.
! ' °

] ¢ o

v ' q
. ' \\\ AVE(Ca, )’ h :
$ Bi ”\ < 26.42 / | o
. . \ - Q N
g Cl B | - "

20.96

B3 T 16.36
\ ) , . .
I} ? N - \\ 0 ) - i ) l

A\

Table 4: The Cross Correlation measurements  °
of the three "B" models in the - .

- e ‘ , first iteration.
. g‘ - ’ v

~ Ve

-

Ingels [5 defined that "the 1nformat10n content of a

lity that this symbol Wlll be emitted from the source." . He

~
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information carried by statements, it would be natural to*assign
4 AN e
. a smail number %o common everyday’ statements such as "Hello",

o "How are you?" aﬁa a large number to unusual items such ag the
announcement of the bombing»of.the Pearl Harbor. -

.want to denote .information content of é statement AQ a function
I

that is decreasing in numerigal f@lue as th ﬁrobabiliby of

occurrence is increasing [17]. .. ,y;;g

o » .

The information measure is a logarithmie function that
; .

depends upon the uncertainty, or probability of occurrence,

associated with the message symbol. if a particular

< . .

message symbel sij were to occur with 65ability pij y We would

say/that the information content associated with this symbol is

defined as .

A
. o I(Sij) = lo%2 Ps j
- . - "w » . ‘

In the determination of the optimum setg\of’S)(7 matrix
A7)

phéracters.for comg\fer output systems and of 29x.39 handpr{ﬁ;\kj

matrlx characters fo¥F

‘bits . - ™

le optical requnltlon, the concept

of information content was used to obtain the following two

measuremnénts: ' . - S

Consider a set S of N character models is being inyesti-

gated. Each model is. coded into an mx n matrix of m columns

and n rows. - In each stage of the iterative process, an mXn
density matrix T is obtained by counting the number of times

the 1J—th cell- being occupied by all N character models.

Thus the densltv matrix T 1nd1catds the dlstrlbution of. the

Thug we would

.
T . et .

e . e
- (Ve
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entire set of character models currently being investigated.
Next, an mx n probability matrix P is obtained by calculating
the probability of occurrence for each ce1l ¢ the density
matrix 7. ‘That is, ‘ - .
) b ‘
m- - \
Pig= Ty /(2 2 %,)
J 1 . T 11
i=1 J—l - ﬁ*

=]

-

for each ij-th cell of P and P, indicates the probability of
- . V o *

"occupancy" of the ij-th cell. Finally, an mxn information™

' watrix I is obtained-by

I, o= - logyP; 4

13 .
% 4 <

L .

for each ij-th cell and Iij'indicqtes'the information content

of the ij-th‘celi of the entire set of character models. ¢
For each model C in-the set 8, the following two measure-

-

.ments are'then,obtained:

1.7.1 INFORMATION CONFENT IMFASUREMENT -

m n

INF(C) > 1(113'01’) - :

I

i=1 j= J , -

This is a measure of the information carried by the cells

of the model C based on the distribution of the entire set of“
character models under investigation. In view of the above
diccussion, ip is éléar=that-among models of the same symbol,
the_one with the smallest value of INF(C) is preferred.

“




&
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1.7.2 ENTROPY MEASUREMENT -

From the above discussion and our, knowledge of logarithms -

kil

we should suspect that the information‘measure is additive, ‘
i.e.,, if we have two items Wi would expect the average infor-
mation of the combination to bé‘ﬁhe sum of the information of

the individual items, weighted in accordance with their proba-

bility of occurrence. In general, if s, and S, occur with

4

probability Py and Py respectively, we have as the individual

1 N
information content - 1og2p1 aéa - logZPQS . The average
[ 2 B <
information of the combination would then be e
H(s,,s,) = 'py(-log,p,) +-D,(-log,p,) . v

The Tfunction H is termed the average information content (o;\-~\\\\\

entropy) of the source consisting of itens s, and s In

2 .
‘viea of the above discussion, we then obtain the entropy

measuremefh

END(C) = pS S ( BT

P H
i=1 j=1 1) 1) 1] )

ftr each model C in the character set €, Thus, -the entropy

measurement ENT(C) is the weighted average of the information

content per cell of the character model C. Therefore, among

" g >

models of the same symbol, the one with the smallest value of

ENT(C) is preferred. For iastance, as shown in Table 5, by

applying the measurement INF(C) and ENT(C) to the thgis/mﬁﬁélsx ' *
- /////////, | - AJ;

\\ ~
B

N .

- oy e aoriian 4 4
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B1, ‘B2, and B3 of character "B" (in Fiéhre 1) during the first
§ iteration we concluded that the model B2 is the most (and B‘.

is the least) desirable model,among the three with respect %o

the "Information Content meésyrement INF(C) andxmodel B3 is the
: mosg (aﬁd Bi is the least) desirable model with respect to the

]

Entropy measurement ENT(C).

‘ INF( ) ‘ 1 oewe( c )
& . . )
4 B1 %660.56 Bl 5.347
= |B2 | 3502.25 ’ B2 4.641
B3 3660.45 B3 ‘4.151
: o
. &7 5(a) | 5 (b)
"~ Table 5 (a): The Information Content measurements
: - . of the fhree "B" models in the first
'/ -iteration.
C (b): The Entropy measuréments of the three
] "B" models in the first iteration.
1.8 NEAREST NEIGHBOR DISTANCE /

/

/

In this section, two*pew distancg measurements -will he s

discussed. These two measurements could be used to distihguish
l
the "desirability" of different character models.

Consider two mx n character models C and D. For each

ij—th cell of the model C, a "nearest cell distance” d(dgj,b)

- ! ﬁ
‘e

can he obtained by comparing the nearest distance between the




LY

cell C.

. =29~

“and cells odcupied by model D:

ij
0, if C =0,
d(C..,D) = , ' '
i3 min k-1)%+(2-3)2 | » o} 1 ¢, \oO.
1£k<m {(.") e a¥0 ) 157

A

Obviously, a larger value of the nearest cell distance d(CiJ,D)”

indicates a larger distance between the cell'Cij and the "“near-

It is clear that

! .

Two distance neasyrements

est cell" occupied by the model D.
,D) ¥ a(D

d(Cij in general.

"between models C 2nd D can be obtained by the folloﬁing formulae:

MID1(C,D) = ( i; i( d(cij,n)°)1/? ) / Ng +
~3=17 3= '
N _’C) )1/2 ) / ND ’
and . *
Q”‘ n £ 'n 1/2
MID2(C,D) = ( > > d(C, ,D)}/Ny + d(njL ,C)/N )
T oi=t j=1 J i=1 j=i j

L

I3

-where NC and'ND are the number of cells occupied by the models

C 'and D respectively. _ Clearly, betﬁ MID1(C,D) and MID2(C,D)
are distance measurements, and MID1(C,D) =‘M191(D,C) and

MID2(C,D) = MID2(D,C). '
| ‘The meaéuremeﬁ%iMID1(C,D), called the Nearest Neighbbr

‘Pisténce—1, is obtained by adding the normalized sum of the

O At e P

e

A e i apmn & o, # .
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is more di'stinguishable than the pair I2 and 14. Therefore

~30~

Iy ~

Bquare roots of the nearest cell distarice a(Cy 40) for all ij-th.

*

cells of C and the ndrmalized sun®of the square roots of the

nearest cell distance<d(])ij,c) for all ij-th cells of D.

Therefore, a;rger value of MID1(C,D) indicates that the pair
C and,D is more distinctive. Consequently, amon'g models of the

same symboi,. the one with the largest value of Miﬁ‘1(C,D) is
\ .

preferred. ' : - )

The measurement MID2(C,D), called the Nearest Neighbo

Distance-2, is obtained by adding the. normalized sum of d( j,DT‘

for all ij—;th cells of C and the normalized sum of d(Dij'C) for

\ .
all ij-th cells of D a?xd then taking the-square root of the N
result. - Similarly, a larger \vélue; of MID2(C,D) indicates the

pair C énd D is more distin.c‘cive. Consequently, among models

of the same symbol, the one with. the largest value of MID2(C,D)

is preferred. L

For exanple, consider the three 5X 7 character models I1,

I2, and'L1 in Figure 2. It is not difficult to calculate the

i »’"nearest cell" distances between the pair I1 and Lfi. The
\ .

results are shown in Table 6. T’he/ nearest neighbor distances - 1
between the pair I1 afqd L1, and between the pair I2 and 11 a;'e‘
presen'ted in Tagle T. Since the two nearest neig'hbor distances
between the pair I{ ‘;nd L1 are grea‘i‘erb tha.rixk the corresponding 1

distances between fhe/ﬁéir 12 and L1, thus the pair I1 and Lf

bl

o

) 5
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theé pair I! and Ll is considered more desirable between the two

-pairs.

e v e

I2 . A

Figure 2 The three . 5% T character models

~

01 4 90 1 0 0 0 0
0 0 4 C O . 2 0 000 0
0 0 4 0 O - 4 0 000
0 0 4 0 O 4 0 0 0 O
0 0 4 0O ‘ 4 0 0 0 O
0 0 1 00 3{ﬂ> 2 0 0 0 O
0 0 0Q O 1t 0 0 0 1] -
6(a) - ., - & (b)

Table 6 (a): Thed value in the ij~th cell of the matrix

indicates the nearest cell disfance of the

cell I1ij with respect to the model L1 ,

(b): The value in the ij-th cell of the matrix
. indicates the nearest cell distance of the

cell.L1ij with respect to the model It .

12 \ Table 7: The nearest neighbor

MID1

L

4 2,0 « distances hetween I1,Lt
\

2.0 and between I2 and 11 .

5 : B
e \
.
.
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/ ! .
The total sum and average of the nearest neighbor distances
between each character. model C and the remaining'médels of

different symbols are given by

MmIind(c,D) , .
DGShL*) , co

SUM(M'D1,0;*5 / N(C,¥)

SUM(MID1,C,*)

I

AVE(MID1,C,*)

SUM(MID2,C,*) = ::;EE::::MIDZtL D) and -
‘ D e S(C,*) -

AVE(MID2,C,*) = SUM(MIDZ2,C,*) / N(C,*) .

Ciearly; a larger value of AVE(MID?1,C,*) (or AVE(MID2,C,*) )
indicates that the model is more "distinct" againét the models
of different symbols. Consequéntly, amoﬂg models ¢f the same
symbol, the one<w1tL the largest value of. AVE(MID1 C,*) (6r
AVE(MID2,C,*) ) is preferred. For instance, as shown in Table
8,‘applying the two Nearest Neighbor Distance measurements to -
the three modefls B1, B2, and B3 of character 43" (in Figure 1)
during the first iteration we cénéluded ?hat m&del B3 is th
most (and B1 is the least) desirable modél among the three w’tﬁ
-respect to the measurement AVE(MID1,C,*) and model B2 is the
most (and B1 is’the leas%)‘desirable model with respect to'the'
measurement AVE(MfD2iC,*)




- ’ I

- c | avE(MIDY, %) ‘AVE(MID2,  ,*)
B1 4,32 1 Bt 5.10
B2 475 7 | B2 5:%3 ,
. | B3 © 499 7 .| B3 5,25
s 8 (a) , 8 (b)

A
+ \ ’

‘ Table 8 (a): The results obtained by applying the
measurement AVE(MIDYI, ,*) to the three
" WB" models during the first ite;ation;
(b): The results obtained by applying the
measurenent AVE(MID2, ,*) to the three
- | "B", models during the first iteration.

' . 4

1.9 CONCLUSION

During each stage of the iterati\;e process; eight di‘fferevn‘t
quantitative measurements AVE(AND,C,*), hAVE(XOR,C,*),Q AVE(1A,C),
AVE(CA,C), INF(C), ENE(C), AVE(MID},C,*), and AVE(MID2,C,*) were
made between eachecharactex; nodel C and the z:emaining models in
the character set (or the remaining models of different symbols).
The measurements of different models of the same symbol were
compared among themselves. The models ?:'ated as "undesirable"
by a‘y/: '100°/a rule) eight measuremepts were eliminated from the
" eorpus. MePasurements vere computed agaa{n for;' the remainir}g

set of models. This "pruning" process gontinued until the

100% . rule could not:be applied nj longe?®. Then the successive

87.5%, 75%, and 62.5% rules were used in the same manner.

. N

AT |l I
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The last 36 alphanumeric models were considered as the most .
distinch set of matrix characters. For instance,‘ as shown in
_ Table "9, after the first iteration for the set of 90 29 % 39

chgracter models, model B! was eliminated from the three models

2

of character "B" in Figure 1.

"~

Measurements | Hodel B!  Model B2  Model B3
AVE(AND, ,*) 154,52 133.16 115.95
) AVE(XOR, ,*) 352,52 370,23 411 .64
AVE(LA, ) 07,24 42.40, " s6.89 |
AVE(CA, ) 26.42 . 20.96 16.36
INE(. )| 3660.56 | 3502.25  3660.45 |
END( ) 5,347 4.641 4.151
AVE(NIB1,,*) 4.2 4.75 4.99
AV‘E(MID2:,*) 5.10 5.33 5.25~
¢ .
/ Table 9: Tr;e eight quantitativee measurements of .
the three "B" models.
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I/- CHAPTER 2 RELIABLE RECOGNITION OF HANDPRINT DATA-

2.1 INTROD(JCTI% , J
A

Durini; the last two decades, optical character recognition
(OCR), an essentially new field in technology, has come into
being and has been nurtured intensively. The principal impetué

to the development of OCR has bee;x given by the need to cope
N :

"

with an enormous,fiood 'of paper generated by an expanding tech-

nological society. When the numbers of bank 'checks, commercial

JSforms, government records, credit-card imprints, and pieces of

thail to be sorw accounted reach several biilion each week,-
¥ ' ‘ .

man requires the help of his machines. Other pressures arise

fnom the desire to index and retrieve literature referenceés,
automatically, _to have machine translation between languages,
and to provide sensory prostheses'for the blind. Finally there
is ,the purely intellectual challenge t'o find ways to make ma-~

chines replicate the functions of humans.

Character recognition systems generally fall into- two

categories. First, there are those that recognize only machine

_printed characters, and second, there are those that handle data

printed (or written) by hand. The firs;t class is conceptually
féirly simple, since the data to/ bg recognized is essentially
invariant. Thus,;a simple template matching scheme can be the
basis'for reading machine prints. In fact, such systems have

reached commercial practicality and are currently in use,

~
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In recent years, considerable interest has. been 'developea

in the automatic récognition of h'andwriting, not only‘ because

’it is a very challenging probiem{ bu‘t also because it has many
apractigal applications, in particular, the advantage of

,eliminatir?g the expeﬁsive and error-prone process 6f data™

, ~
transcription. : ' - . -

N

Although séme bCR machines can I;ead multi~-font and mixed
font"c/haracters, most of them have very limited capabilitie.;x
in .the reading of handprinted charactér§. Since each wrQiter
has his/her own style of writing, there is little doubt that
handprints are less tracta‘ble’{ than multi-font characters.

The difficulty of handprint recognition was illustrated wvery
clearly by Neisser and Weene [8] who showed that the ,hﬁman
r"ecognition rgte: of a selected. samp].‘e“ of ‘about 650 relatively
unconstrained handprint charaéters was only about 95.9%
correc't. In another experiment conducted by Suen [1'2] s 30
subjects were'instructed to Handprint as quicicly and carefully
as possgible for recognition by another group of 30 subjec;ts.
A more. encouraging recognition rate ( D> 98% correct ) was
achieved. THis indicates that simple instruction can improve
the quality of characters significantly. This fac:t ,' plus the
sensitivity ,Z:" O%R to print degradation and document mutilation
(suen [13]), idicates that in order to attain a reliable |
recognition rate ( < 0.1% error ) for use in commercial appli-

cations, some kind of constraints must be imposed on the writer

when entering the data. One simple solution to achieve a high
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. recdgnition rate by using currént OCR equipmént is to deﬁyelop
a standard such that the person entering the data can write in

a ‘style as close as bossible to thé given standard (Suen [1 1] ),.

In view of the above, an iterative method was deve) oped
to produce an optimum set of alphanumeric models so that a
high recognition rate could be achieved using cﬁrrent OCR

equipments, : s

2.2 DATA COLLECTION

) In the preparation of the optimum set of handprint alpha-
numeric models for reliable recognition, an ex‘bénsive ‘review -
-of the handwriting syst'ems té.ught in elementary schools and in "~
-OCR' applicat?.ons. was conducted/by Suen [10, q12] . In this/
investigation, more than %0 different handwrit‘i%g ’sys.tems were
studied and the ANSI handprint standard was also examined. |
As a result, 90 handprint alphanumeric models (as shown in -
Figure 3 ) were chosen. ©Each model was zcded into a 29X 39
matrix. Based on the ccncept of majority rule, a FORTRAN'
program was written to calcuiate the eight quantitative measure-
ments ‘of each model. Madels &f the -Same ch‘az-'acter symbog. were

ranked and those undesirable ones were eliminated by an

iterative process. * ‘ -
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- Figure 3:° Tle 90 29%39 handprint models.
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2.3 ELIMINAY ION PROCEDURES

O] N

A total of 90 handprlnted alphanumerlc models (as shown in
. 'Flgure 3) were chosen and used 1n an 1terative process., in
each sgage of the iterative process, eight quantitative meaéure- ’
ments were made and compared anong - different models of the same
symbo Those models rated as "undeqn'able" were el minafed by

A

100% 87.5%, 75%, and . 62.5% elimmatlon rules accordingly.

n . £ -

2.%5.1 THE $+00% ELIMINATION RULE

§
<

M‘ The\100% elimination rule was used in the first two itera-
tions. In each of these two iterations, the eight quantitajtiye
"measurerents of different models of the same symbol were compared C°
amdn}g\ themselvgs and those models rated as uxide?irable by;all
measurements were éliminated from the set.
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A total of 11 alphanumerié‘models were eliminated after
the first iteration. They are designated as models Bi, C1,”
01, 02, P2, R2, 82, W3, X2, 63, and 81 in Figure 3. For~
insté&rice, as shown in Table 9L'the model B1 was eliminated
_after the first iteration because it was rated as undesirable

»
against the model B2 by all eight measuremenis. Due to a

very large amount of computing time used and the fact that the

pair of character model O1 and numeric model O1 and the pair
of character model 02 and numeric model 02 are exactly the

‘same, we decided to drop character models 01 and 02 after the

/
Tirst iteration ard use one of the nymeric models 01 and 02 as

character "O" later.

1
‘

After the second iteration, six-more alphanumeric models
were elimimated from the remaining set of 79 models. They
are designated ag models n2, 61, G2, 63, Ml, and 4% in Figure

For instence, as 'shown infTable 10, the first three models of

‘v

3.

character "G" were eliminated because the models G1 andgGé were

rated as undesirable against the model G4, and model G3 was

rated as undesirablecégainst model (5 by all eight measurements.
’

Thus thezgzwere only 73 alphanumeric models remaining after the

application ot the 100% eliMination rulel%

i
l
I

|
t

-

LY

N
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Measurements | Model G1 Model G2 Model G% Model G4 Model G5

~

1

AVE(AND, ,#) | 109.85 11548 116.62  90.18 - 100.26
AVE(XOR, ,*) | 335.09 349.23  363.55 | 349.45 372.28
AVE(LA, ) | 41.61  41.72  41.06  36.27  37.05
AVE(CA, ) 21.23 20.87 20.39 16.06 16.30

INF( J 12651.87 2909.16 3104.55 2483.97 2921.29
ENT( )| 3.977  4.186  4.256  13.318  3.693
AVE(MID1,,*) 5.14 &5.22 5.15 . 5.62 5.34
AVE(MID2, ,*) 5.61 . 5.74 5.64 5.83 5.64

-

Table 10: Measurements of the five "G" models in the

. - gecond iteration. .

>

2.3.2 THE 87.5% ELIMINATION RULE

The 87.5% elimination rule was used in the third to seventh -
! ° ~ 7 N \
iterations. In each of these iterations, the-eight quantita-

tive measurements of different models of the same symbo1 were

compared among themselves and those models rated as unde51rable e
by a majority of 7 against 1 were eliminated from the set.

e
remaining set of 73 models after the third 1+era%1on. They

A total of 6 alphanumeric models were eliminated from the . . ‘
. are des1gnated 23 modelq E3, F3, 12, 14, 74, and 03 in Figure 3.
For instance, as shown in Table 11, the third model E3 of the : {

character "E" was eliminated because it was rated as undesirable ‘
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against the moddel E2 by a majo;iﬁy of 7.to 1. Since the shape
of model E1 is “desirable” we decided to keep it for another

iteration even though it could be eliminated in this iteration.

[

il Neasurements Model Et . Model E2 ~ 'Model E3|.
.. AVE(AND, -, %) 128.41 . 121.97 " 134.70
' | AvE(xoR, %) 338.84 333.73 ° 350.27
favea, ) 44.88 43.99 45.15
AvE(CA, ) 24.60  ©  23.81" 24.86
| I ) 3076.36 290439+ 3317.42
Ao e ) | 4.699 4.436, 4,902
| ' ¥ AVE(MID{,,f) | - 5.55 \6.20  5.26
’ AVE(MID2, ,*) \ 6.20 y 6-:90 . 5.94
Table 11: Measurements of the three "E" models in
\ the third iteration. o

Afte{ the fourth iteration, 7 more alphanumeric models were
eliminated from the remaining set of 67 podéls by the 87.5%
eiimination rulé., They are designatqd as*médels A2, Et, F1,
I2, K2, K3, and 22 in Figuge 3. From the remaining two mogelsn
, ' 01 aﬁd 02 of the numeral "O" we decidéd to designate the numeric

model 02 as character "0" and the nodel 01 as the number "zero".

The choice'waé'decided upon the desire to use the syanaard

-

\

symbol 01 for the nﬁmber'"zero". ‘ .
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After the successive rifth, sitth and seventh iterations,
Y

additional seven w(Gs, M3, ~w1/,\11, 32, 51, 72), five (D3, 83,
< Z21, 42, 62) and oﬁe (561.) alphanﬁmeric models were eliminated
k by the 87.5% elimination rule. Thus a total 6f 26 models vere
eliminated in this stage; The remaining 47 models are shown.

3
in Figure 4.

A

Figure 4: The :remaining 4T alphanumeric models

. ‘after the 87.5% elimination rule.:
’ ‘ A
‘ r
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2.%.% THE 75% ELIMINATION RULE  _

The 75% elimination rule was used in the eighth and nineth <»J/
iterétion;. In each of these two iterations, the eight quan4
titative measurements of different models. of the”same symbol.
were coampared among,themselves and those models rated as un-
desirable by a majority of 6 against 2 were eliminated from the
set. ' -

A total of 4 alphanumeric models ( three models B2, U3,
83,after the eighth and one model 92 after the nineth iterations)
were eliminated by the 75% rule. The numeric model 92, as
shown in Table 12, could not be eliminated by the 75% rule in
the eighth iterg&ion (a majority of 5 against 3 between models
91 and 92), but it was eliminated by the 75% rule in the‘nineth
iteration. This fact indicgtes that the ?easurements or a
model are affected by the models elliminated. Therefore the

- iterative tecknique is effective,
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Measurements | Model 91 Model 92| | Measurements | Model 91 Model 92
AVE(AND, ,*) | 61.16  77.27 [ | _60.14  75.07
AVE(XOR, ,*) | 394.49  370.27 391.12° 369.26
AVE(LA,. )| 26.08 + 31.16 ) | 26.14  30.81
AVE(CA, ) 8.99  12.73 )1 T 9.13  12.63
INF( )| 2521.85 2517.17 ) | 2515.87 2518.88
. l .
ENT( )| 2.445 2,961 | | EN®( )1 2.471% 2.956
AVE(MID1, ,*) 7.06 8.37 | | AVE(MID1,,*) 7.09 8.46 |
AVE(MID2,,*) |  6.97 , 8.91 || avE(umz,,%) | 7.00  8.94
12 (a) ‘12 (b) r
Tablé 12 (a): Measurements of the two "9" models
' ¢ after the eighth iteration.
{b): Measurements of the two "g" monls_ 4

after the ninth iteration.

2.3.4 THE 62.5% ELIMINATION RULE & RESULTS .

3

The 62.5% elimination rule was used in the tenth to twelfth

iterations.

In each of those iterations, the eight. quantitative

measurements of different models of the same symbol were compared

among themselves. and those models rated as undesirable by a

majority of 5 against 3 were eliminated from the ‘set.

A total of 7 alphanumeric models (4 models J1, W4, 33, 73

M2, U2 after the twelfth iterations) were eliminated from the

H

/

o4 T AR N § A
I -A!Q'd??‘\ﬂ&yrn‘m_i’r_m’: T

—after the téntn, one model Y| after the eleventh, and -2 models
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reraining set of 43 models during'those stages. The remaihingl“

+ 36 models, as shown in Figure 5, are considered to be the most
distinct handprint éharacters. " Although these 7 alrhanumerwc
models could be ellnlnated altogether by the 62.5% rule aT+er
the tenth 1teratlpn, we deq1de§ to do it by two more iterations
s0 that the}?esirability of the nodels could be examined more

closely.

{

Figite 5: The 36 most distinct handprint ,
. ‘ models : ‘

’

Al B3 Cc2 )| E2
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to 7.against 1 in the eleventh iteration.

\
I

Y2 z2 13 . 2 3t .43 52 64
' ::;”’ rléifi . i :;;Ei ~::EE§ 2 5555; '4i;i’
Y & - 82 91 . 01 .
.o, .

-For instance,las shown in Table 13, the desirahili{y of models

' Y2 against ¥1 was 5 to '3 in the tenth iteration, it increased

fhis indicates that

the desirability of model Y2 has inproved after the elimination
of models J1,'W%=§11\3Fd 73 in the tenth iteration.

¢

Measurements|Model Y1 Model Y2| |Measurements|Model Y1 Model Y2
AVE(AND, ,*)| 43,49 43.54 | |AVE(AND, ,*)| 45.43 44.00
AVE(XOR, ,*)| 363.78 369.68 | |AVE(XOR, ,*)] 362.22 ~g71.oa
AVE(LA, )| '22.39  21.58 | |AVE(LA, . )| 23.47  22.07
AVE(C3R, ) 8.37 7.89 | |AVE(CA, ) 9.07 °  8.31
INF( )]1868.85 1939.65 | |INF( )| 1852.40 1935.13
ENT( )1 1.808 1.822 | |ENT( )1 1.878 1.845
1Y
AVE(MID1,,*) 8.99 9.09 | |AVE(MID1,,*) 8.63 8.70
AVE(MID2,,*)| 8.23 8.68 | |AVE(MID2,,+*) 7.99 8.35
13 (a) ‘ 13 (b)
Tablg 1% (a): Medsuremepis of the two "Y" models in\
. the tenth itergtion. ‘
(b): Measurements of the two "Y" nodels in

the eleventh iteration.
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13

In sections 2.3.3 and 2.3.4 we have seen dases tﬁat-the
desirability of a model iipreases as the number'of‘tﬁe models
in the set decreases. This, natﬁrally, leads us to wdndgr
whether the iterative process ig necessary. We might ask.
whether the same 36 most distinct'characters could he obtained, -
in the first iteration, by the same majority rules.
Unfortunatély, as shown in Table 14, this is not fhe case, -
Comparing the two models 82 and 8% of the number "8", the
desirability of model B2 against model 83 was 3 to 5 if the °©
first iteration, 6 to 2 in the third @teration, 4 to 4 in the
seventh and 6 tb 2'in the eight iterations. Thus if the

majority rule were uséd in the first iteration, then *the model

83 would 5e chosen instead of‘model 82. ! This indicates that

i

the iterative process is necessary and it should’be used as
many times as possible tb obtain‘bettﬁékresults.

At Tirst sight, one might think that AVE(AND, ,*) and
AVE(LA, ) are linearly dependent.‘ However, AVE(LA, ) varies
with @he number of points occupied by each model, thus it is ‘
not linearly dependent on AVE(AﬁD, ,*) as demonstrated in

Table 14 (a). Similarly we can also say about other méasure-’

ments.




First Iteration

Third Iteration

Measurements | Model 82 Model 83 | Model 82 Model 83"
AVE(AND, ,*) | 103.05 111.86 96.35 109.21 .
AVE(XOR, ,¥) 387.44 421.80 393.42 419.70
AVE(IA, ) 35.67 35.20 33.56 34.85
AVE(CA, ) 15.48" 14.02 13.81 14.02
INF( )| 3145.34  3711.47 | 3162.37  3697.59
ENT ( ) 3.663 3.973 3.528 4.008
AVE(MIDY, , ¥) 4.7 4.84 5.07 5.02
AVE(MID2, ,*) 5.07 5.26 5.33 5.473

14 (a)

| Measurements

Seventh Iteration

Eighth Iteration

Model 82 Model 83 Model 82 Model 83
AVE(AND, ,*) 94.43 105.02 92.67 105,20
AVE(XOR, ,*) | 392.57 423.39 396.42 423.36
AVE(LA, )| ¢33.92 34.53 133.34 34.60
AVE(CA, ) 14.53 13.99 14.03 14.07
INF( )| 3149.41  3694.11 | 3160.76  3693.20
ENT( ) 3.580 4.003 3.526 4.008
AVE (MID1, ,%) 5.19 5.21 5425 5.23
AVE (MID2, ,*) 5.52 © 5.65 5,66

‘Table 14 (a): Measurements of the two "8" models in

B

K

14 (b) '

5.56

‘.

v

the first and third iterations.

(b):

the seventh and elighth iterationms.

Measurements of the two "8" models in
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CHAPTER 3 OPTIMUM MATRIX CHARACTER SET'
FOR COMPUTER OUTPUT SYSTENMS .
. . o '

‘
’

(\V 3.1 INTRODUCTION

In recent years, matrix characters, especially the 5x 7 font,
have widespread use in computer output systems such as CRI'S,
theérmo-printers and high-speqﬂ printers (McLaughlin [7] ). This
is due to the incréasiﬁg.usage of digital devices, the steady
cost reduction in computer output sysfems, the flexibility of
N ) pgint and graphical presentat&gp and the ready availébility of ,
matrix ghé}acter generators in IC chips. As matrix characters
become more widely used; their legibility become imperativéj v

Legible characters dq not only provide better reading, they also

- play a vital role in arplications such as aerosipace operations
-

where penalities for common misreading errors could he catastrophiec. }

The "dot" matrix characters used in the computer output ' '

systems are quite different in appearance from their conventional Ce

n

r

!

"stroke" counterparts in that stroke characters are composed of . f
' i
cqntinuodS'line segments., 1t has been regognized for’some time i
that certain characteristics of stroke alphanumerics affect their . . f
relative legibility. Much research has been underta%en to |

ascertain which stroke font is the most legible under certain

conditions YCbrnog and Rose [1] ). However, it has not been -

'satisf%gtorily demonstrated thét the conclusions from stroke font
[s] = j
research are directly transferable to dot-matrix fonts. ! ]

¢




not a great deal of effiort has been speht in thebde§elopment'
T

3

» ' »

In view of the wide variety of dot-matrix alphanumerie -
designs ‘used or offered by broadcasting companies ai1d display
manﬁfacturprs” many experiménts with:human subjects have Been
conducted by several researchers ( [2, 4, 6, 9, 15]) to

investigate the legibility of those deaigﬂ%. Unfortunately,

of evaluation methods which could be used to measure the dis-
tinguishability (and hence the legibility) of those dot-matrix
designs (Suen et al, [14] ).

3

In view of the above, ‘an evaluétion tdﬁhnique for a get of

121 5% 7 alphanumeric models was investigated in this research.

s

-

In this investigation, the eight quantitative measurements
discussed in chapter 1 were used in an iterative process to

determine the most distinct set of 5 %7 matrix characters for

. -\ :
computer output systems. ‘

o

3.2 DATA COLLECTION - - ; ‘ ' : o

In the determination of the optimu@tset of 5«7 dot—matrii
characters fo; éasy distinctioﬁ, an extensive review of wvarious ;
coaputer systems was conducted. In this invest%gation, more
than %0 different systems (inclﬁding those models developed by
Huddieston, 1971) were examined. They coﬁpriséd models

1 -

generated by leading manufacturers of ROM matriéeg, matrix

o [

printers, CR7's and a variety of computer terminals. Altogether,
121 different models c¢f the 36 alphanumeric matrix symbols were

gfsembled.“ They comprised 78. models of letters and 43 models .
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‘5 X7 matrix models.
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3.3 ELIMINATION PROCEDURES

vl

A total of 121 alphanumeric 5x 7 matrix models (as shown
N , A o
. ~in Figufe,E) were ccmpiled and used in an iterative process.

sIn each stage.of the iferative process, eight quantitative - -~

measurements were made and compared among different models of
the Same symbol.' Those models rated as “undesirahle" were
eliminated by 100%, 87.5%, 75%, and 62.5% elimination rules

!
accordingly.

3.3.1 . THE 100% ELIMINATION RULE

v v

The 100% elimiﬁéti%n rule was used in the first thrég)
iferaﬁions. In each of these iterations, the eight gquantita-
tive measurements of differeht models of the same symbol were
compared among themselves and thosg models rated as undesirable

by all measurements were eliminated from the set. : -

A total of 36 alphanumeric models were eliminated after
the first iteration, They were designated as models A2, A3,

' ' A4, C1, D1, D3, Gt, G2, G5, G7, 68, J2, J4, M1, P1, P4, S2, 83,

T2, W1, Y2, 11, 12, 14, 21, 22, 23, 31, 32, 33, 61, 62, 91, 92,
94, and 03 in Fig;re 6. For instance, as shown in‘Tabie 15,
the modél C1 was eliminated frcm the set of 4 chgractér "gn
models because it was rated-és "uqdesirable" agaigstimodel Cc2
by all eight measurements; but the remain;pg'3 models #f "C",

could not be reduced further by the 100% elimination rule.

/
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| Measurements |[Model C1| Model C2| Model C3 | Model. C4
AVE(AND, ,*) | 8.08 7.53 8.39 T.45
AVE(XOR, ,*) | 12.03 12.13 13.40 12.28 .
AVE(IA, )| 69.98 67.80 | 67.89 | 66.99 -
AVE(CA, ) | 45.25 42.82 | 41.74 42.51
INF( ) | 59.61 54.83 72.72 55.02 -
ENT( ) | 2.487 2.313 2.627 2.297
AVE(MIDY,,*) |, 1.16- | 1.25 1.169 | 1.27
AVE(MID2,,%) | 1.30 1.39 1.28 1.39

Table 15: Measurements of the 4 character "C"
nodels in the first iteration.

Five more character models I{, I2, I4, 02, V3 and one numeric ‘
model 01 could be glimidated after the first’ite;at;on. :

model 02 of character "O" énd the model 01 of ndéeréi non vere
kept far aofew more iterations due té the common difficulty in

distinguishing the character "O" from the numeral "O". Ve

 decided to keep the character models I1, I2, I4 and V3 for one

or two more iterations because their shapes were considered to

be quite pleasing and also because we would like to use as many

‘iterations as possible in obtaining the most distinct set of

alphanumeric models. 4 5 ) ‘

A total of 4 alphanumeric models were eliminated from the
remaining set of 85 models arTter the seccnd iteration. They
were designated as models 14, Vé, V3 and 43 in Figure 6.

Ngte that the models V2 and 43 were eliminated in the second

" &
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iteration but could not be elimind%gy in the ?irst'iteratidn
by| the same 100% rule. This clearly indicates the effective-

néss of the itdrative process.

After the third iteration we discovered'that no more

1

' alﬁhanumeric models (except models I1,'i2,_02 and 01) could be

eliﬁinated by the 100% rule. Thus it was time to decide the
faﬁe\qf the models It and 12. Up to tﬁat point, there were '
three\models I, 12, 13 of'éhe character'"I? and two models

13, 15 or the numeral "“{" rémaining in tre set of 81 modelsfm
If ‘we eliminated models I1 and I2 by using the 100% ruie,

then iﬁ:the end we had to use model I3 for the character "I" °
and theretore model 13-for the numeral "1" due to “the simila-
rity between modei;*13 and'15, Obviously, they were not
de§irabi§ because tpeip similar shapes and the'difficulty in
distinguishing %hem. Since the "desirébiiity" between the
remainingtiwo 9odels 13 and 15 of the numeral "1" was 4 agaiﬁsf
4 in each of the first three'iterations (as shown in Teble 16),
" thus the obvious solution jo the problem was to elininate the
model {3 from the two "1? models and model I3 from the three
"I" models. fherefore fhere were only%79 alphaﬁumeric models

remaining at the end of the third iteration. ©

\
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’ ﬁ@St iteration

- 2nd iteration®

3rd iteration

}QModel Model

Measurements Model Model Model
13 15 13 13 15
/(’r . » : 0; * L]
AVE(aND, ,*) | 2.60  2.53 2.60 2.57 2.52
AVE(XOR, ,*)| 18.15 17.28 | 18.02 18.15 17.25
AVE(LA, )| 27.64 29.89 | 23.39 23.12 24.30
AVE(CA, ) 9.30  12.13 8.%3 8.09 9.8t
INF( Y] 46.70 40.02 | 45.82 46.18 40.01
ENT ( )| 0.906 0.868| 0.934 0.920 0.859
AVE(MIDY,,*) | 2.12  2.16 2.14 2.15  2.16
AVE(MID2,,*)1 1.89 1.84 1.90 1.90 1.83
Table 16: Measurements of the two "1" models in

the first threes iterations.

4 -
4
\d

\

3.3.2 THE B7.5% ELIMfNATfZ RULE

M

] v\y Qe
The 87.5% elimination rule was used in the fourth to

geventh iterations.

quantitative neasurements of di

I

In each of these iterations,

the eig?t
ffdrent models of the same

o

symﬁoi were compared among themsel and those models r;{ed'

as undesirable b& a majority of 7 agéiniy 1 were eliminated

from the set.

A total of 14 alphanumeric mcdels were elimiZ

nated from the remaining set of 79 models after.the fourth

&»

S

-®
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iteration. They were designated as models C2, E3, Fé, G9, N2,
'N4, N5, W3, 34, 51, 52, 55, 73 and O1 in Figure 6.  For
instance, as shown in Table 17, the model C2 was eliminated }rom
the set of character "C" models because it was rated as un—..

desirable against the model C4 by a majority of 7 to 1.

v

Measuvedents | Model C2 = Model C3 - Model C4
/ .

[ 4 .

s e

 AVE(AND, ,*) 7.42 13T
AVE(XOR, ,*) 12.54 12.64
AVE(La, ) 55.23 54,72
AVE(CA, ) | 34.61 34.50
INF( ) | 55.22 ' 55.34
ENT( ) 2.277 : 2.266
AVE(HID1, ,*) 1.26 1.28
-AVE(MID2, ,*) 1.39 ‘ 1.39

)

Table 17: Measuremeﬁts of the remaining.three

g modgls in the fourth iteration.
h

-

After the successive fifth, sixth and seventh iterations;
seven (B2, D2, E1, F1, M2, V4, 04), éix/&CB, 12, U2, w4, 36, L
;53) and four (02, 22, 42, 72} alphanumeric models wereAeliﬁi— /
nated successively by .the 87.5% rule. Thus a total of 17’ |

mog;is were eliminated dhring thesé stages. The remainiﬁg 48

models could not be reduced further by the 87.5% rule.
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3.3.3 IHE 75% ELIMINATION RULE

. The 75% elimination rule was used after the eighth
iteration. In the eighth iteration, the eight quantitative

measurenents of different models of the -8ame symbol were

compared among themselves and.those models rated as undesirable

by a majority of 6 against 2 were eliminated from the set.

. Only two alphanumeric models N3 and 37 were eliminated. . For

instance, as shown ain Table 18, the model N3 was eliminated
from.the remaining 2 wmodels 317 character "N" because it was'
rated as undesirable against the model N1 by a majority of 6.

4
to 2. The remaining 46 alphanumeric models could not be

I

reduced further by the 75% rule. They are presented in Figure

7.
' -
4§ Measurements | Nodel NI Modef* N3| i
AVE(AND, ,*) 7.78 8.04
"AVE(XOR, ,*) | 15.74 15.22
AVE(La, ) | 50.49 52.16 <
AVE(CA, ) 29.79 - 31.15 :
o | INF( ) | 84.86 83.61 |
o Eee o -] 2.731 2.802
' avE(MID, *) | 1.32 1.3 4
AVE(MID2,,*) | 1.36  1.37 | . N
] <

[y
.

Table 18: Iv?éasure'ments of the remaining
two "N" models in the eighth
iteration. '
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Figure 7: The remaining 46 alphanumeric models

after the 75% elimination rule.
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3.3.4 THE 62.5% ELIMINATION RULE & RESULTS

The 62.5% elimination rule was hs;e‘d in the ninth to the '
twelfth iterations. In each of these iteration'é, the eight

quantitative measurements of different models of the same

symhol were compared among themselves and those models rated
as undesirable by a majority of 5 against J were eiMiﬁated

1

'from the set. : .-

After the successive nir{th, tenth, eleventh and twelfth ¢
iterations, .four (J1, P2, X2, 76), three (66, 74, 81), one . :

( 75 ) and two (G4, Q1) alphanumeric models were eliminated ' .

' succesafully by the 62.5% rule. Thus a 1/"otal of 10 models - ~ ‘
. ; . ) ;

#ere eliminated daring those stages. Tl}’e remaining 36 . f
"4

i

alphanuineric nodels , as shown in Figure 8, are considered to

be the most distinct set of models. Al'H;hough those 10 )
models could be elm;l.nated altogether by the 62, 5% rule after = .- }
-the ninth 1teration, we decided to do it b&few more iterations ;

so that the des:.rability of the models could be examined more _—

closely. For instance, as shown ‘in Tablg 19, the desirability

'df' models 71 against 75 was 5 to 3 in ther ninth iteration, it |
( ‘Gécreased to the rate of 4 against 4 in the tenth iteration

and then increased 'to the rate of 5 agalnst 3 in the®?eleventh

iteration. ' V T

B
- N 3
4
R .-
. .
R .
i} - 4
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2
t

: 9th iteration | 10th iteration | 11th iteration
Measurements | Model  Model | Model Model | Model . Model

71 (CENN LT 75

AVE(AND, ,*) | 5.02  5.19| 4.97 5.15 | 4.95 5.16
AVE(XOR, ,*) | 15.64  15.31 | 15.72  15.36 | 15.70  15.27
AVE(LA, )| 42.17 42.87| 41.86  42.39 | 40.90  42.14
AVE(CA, ) |'®1.14 21,03 20.87 | 20.05 —20:69-|~
INF( )| %5.14 55.41 54.70 | 55.65  54.60
ENT( Y| T 1,755 . 1.793 | 1.732 1.792
AVE(MIDY,,*) | 1.60 1.60 1.63 | 1.60 1.63
AVE(MID2,,*) | 1.56 1.55 1.58 | 1.55 1.59

Table. 19: Measurements of the two "7T" models.

3.4 DISCUSSION . -

The last 36 alphanumeric models resulting from the '
iterative process in this study are cons}.dere’d to be the most-
distinct models among the ordiginal set of 124 models. Upon
inspection the shapes "of the last 36 models, we realize fhat
model O1 of characte?}‘ "0" and model 02 of numeral "O" are not
‘very distinctive. This is due to the fact that the former was
selected from-a set of 'twc; characfer "0" models '01 and 02 while
the latter was selected among a set of four numeral "O" mﬂode,ls "
01, 02, 03 and 04 (as shown in Figure 9). Since the iterative
- process was applied to médels of the samé symbol, we might be.

Yo
able to obtain a hetter result if we had treated the models of

. . ¢
character "0" and numeral "O" as one symhol at the beginning

L]

of the iterative process.

@




9 (a) - e

Pigure 9 (a): The two models of character "O"
(b): The four models of numeral "O"

Récen’ély, an experiment using human subjects was conducted

by Suen and Strobel [15] to determine the most legible set of

matrix characters for computer—man communications. A set of

122 stimuli hwa‘s used 1;1 the experiment. Their set of stimuli
contains one "less model of character "I" and one more model
each of character "Y" and n;me:r:al "9" than the alphanumeric
set used in our stgdy. The results show that there are some
discrepancies bétwee}z che optimal set selected in their expe-

riment and the ‘optivmum set selected by our investigation.'

The discrepagcies can be attributed to the fact that humans

are not well adapted to making precise\me/asurement‘s of a dis-—

" played character. Thus it is hardly surprising that the
s‘stin;uli used in their experiment are identified by subjects

based on features which are taught at school and which can be

recognized without making precise measurements. The discre-

pancies could a2l1so be attributed to the procedure used in their




k]
7
? vyt

e Dy

A‘“;i‘

[ - .
experiment where the stimuli were \presented in random order.

Thus the subjects could not compare the desirabil\ify among

e 7o
vaar

modéls of the same symbol. We believe that a better assess-
meht could %e obtained by investigating models of the two

optimum sets in another experigent.

bl
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APPED&(: PROGRAM FLOWCHART

’

START

AD IN cumcmE/
MODEILS

I CALCULATE THE NUMBER|

OF CELLS "OCCUPIED"
BY EACH MODEL

»
7

CALL SUBROUTINE "MINID"
T0 CALCULATE THE TWO .
NEAREST-NEIGHBOR-DISTANCE
MEASUREMENTS BETWEEN TWO |
[MODELS - : : CALCU'LAJ,E THE
L ,l HAMMING~
= DISTANCE
BETWEEN TWO
MODELS

[ 4

.
~ -

. \.

CALCULATE THE

SIMILARITY~ :

| FUNCTION BETWEEN
W0 MODELS




CALCULATE THE

s CROSS~CORRELATION FILE | y,
, ‘ e - ‘ -
CALCULATE THE DENSITY, CALCULATE TAE LINEAR-
’ : PROBABILITY AND ° CORRELAT XON MEASURE-
' INFORNATION MATRICES MENT BETWEEN TWO
S HMODELS /
. ’3 - ‘s ! 3 w N ‘
. , o

PRINT OUL RESULIS it
' AND -
/ ___DISPLAY ALL MODELS
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'SUBROUTINE  MINID '
| .
| ) - -

[ .'("ENTER INT?;) ' | : - o
l/ ' MINID - , 3
X / ’ . -
| [SET J¥IAG = O] . e

: : ~— ‘

- O

o~ —— - oo —_ S ant S A

« , ,

FIND AN OCCUPIED |

CELL IN MODEL BB S
: WHICH CAN BE USED| - .
. ' 70 CALCULATE THE : .

- “_ . |IWO NEAREST-CELL { - s

‘ DISTANCES. STORE . e

. THE_RESULTS . 4
) ic - A" ' E
. . . ;
. / . ~ - ; ( ) )
) ' e T - ” £
TS ——— - e




'SUBROUTINE ~ MINID R "\t

e o
| T

, ‘  *| INTERCHANGE THE % |
- MODELS AA AND BB C g
1
| . |
) NO
/ !
‘1
CALCULATE THE TWO | -
' NEAREST-NEIGHBOR- . | SET JFLAG = 1
DISTANCE MEASURE-
MENTS . _ .
) AN
" (BxIT FROM MINID ) - * 1




