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ABSTRACT

Analysis of Crack Problems in Thre#e-Dimensional

Elastic Solids Using New Results in Potential Theory.

Edgar Karapetian, Ph.D.

Concordia University, 1993

The strength and life-time of the structural components
and materials in general largely depend on the presence of
cracks or other defects. When structural components are
subjected to external loads in engineering application, that
results in a triaxial state of stress in the member,
particularly in the vicinity of a «crack. Successful
prediction of fracture behaviour depends on the
effectiveness of the stress analysis and therefore the
solution of the three-dimensional crack problems plays an
important role. In view of this, the thesis is aimed at
analysis of three-dimensional mechanics of solids containing
cracks.

In the area of three-dimensional fracture mechanics,
investigations on the possible determination of the complete
solution, namely, full space of the elastic field, are very
scarce. There are only a few complete solutions, which are
mainly based on a very complicated mathematical approach,
namely, the use of various integral transforms and special

functions expansions. Despite these achievements, there was



no general method for solution established, and each problem
would require special consideration. As a consequence, even
in those rare cases, when the complete solutions were
obtained, the final results for the elastic field often were
presented in terms of difficult infinite integrals with
Bessel functions, which were of limited practical use and
inconvenient for consideration of more complicated problems.

This thesis presents new fundamental complete solutions
to different types of problems, which previously would not
have been attempted. The method used to obtain these
solutions is based on the new results in potential theory
for the circular crack geometry, which were recently
reported in literature. Along with the applications of those
results and their further development, this work presents
new method of solution with regard to another type of crack
geometry, namely, the half-plane. The main advantage of the
method used to obtain these solutions 1lies in its
generality, which makes it possible to consider a vast
variety of three-dimensional crack problems, including
interaction problems. The exact solutions have been obtained
in closed form and in terms of elementary functions, which
makes it possible their immediate physical interpretation
and practical use. This suggests that the approach used in
this thesis is a powerful tool for investigation of

three-dimensional crack problems.
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CHAPTER 1
INTRODUCTION, BACKGROUND AND OBJECTIVES

1.1 GENERAL

The study of fracture mechanics is based on the
assumption that all engineering materials contain
preexisting defects and flaws in the form of cracks, voids
or inclusions which have a deteriorating effect on their
strength and hence a material will fail eventually under
excessive applied 1load. In order to have a correct
estimation of the life-time of a structural component under
external loading, it is important to know the stress
distribution caused by the presence of cracks.

Conventional failure mechanisms can be roughly
classified as ductile on the one hand and brittle on the
other. For ductile fracture, associated with yielding or
plastic flow ©before breakage, the defects such as
dislocations, grain boundary spacings and precipitates tend
to distort the crystal lattice planes. Brittle fracture,
which takes place before any significant plastic flow
occurs, originates at larger defects such as inclusions,
sharp notches or cracks. It should be clear that a material
may behave in a ductile or brittle manner, depending on the
temperature, rate of loading and other variables present.

Thus, any material is characterized as ductile or brittle



based on the ductile or brittle state of fracture behaviour.
Usually, the 1loading of a cracked body causes inelastic
deformation and other nonlinear effects in the neighborhood
of the crack tip. In nmaterials, exhibiting brittle
behaviour, the amount of inelastic deformation in the
vicinity of the crack tip is negligible compared to the
crack size and other length parameters of the body. In such
cases, the theory of 1linear elastic fracture mechanics
(LEFM) is sufficiently justified to address the problem of
stress distribution in the cracked body. The present study
is focused on the determination of stress and displacement
distribution of some new fundamental problems in LEFM.

The foundation of the contemporary theory of fracture
was made by Griffith (1921) [1) in his systematic study of a
size effect on the strength of solids. However, long before
1921, a number of results had appeared which gave evidence
of the existence of size effect. Even Leonardo da Vinci
(1452-1519) made tests to determine the strength of iron
wires. He found that for wires of constant diameter the
strength had an inverse relationship with the length. In the
19th century a few analogous experiments were conducted and
it was established that the strength of a short iron bar is
higher than that of a long one of the same diameter. After
the First World War a series of tests were conducted on
notched-bar specimens at the National Physical Laboratory,
Teddington, England. The results obtained showed that the

work at fracture per unit volume decreased as the specimen



dimensions were increased. A reasonable explanation of these
results can be attributed to the fact that all structural
components contain flaws which have a deteriorating effects
on the strength of the materials. The larger the volume of
the material tested, the higher the probability that large
cracks exist which reduce the material strength.

To design for structural reliability under these
circumstances, an engineer needs to know how and when the
crack might grow further and run, with the component
ultimately breaking apart. When cracks do suddenly run, the
outcome is often dramatic and sometimes catastrophic. A
series of examples of serious in-service failures were
presented in very recent article by Sinclair (1993) [2]. The
collapse of Kings Bridge in Melbourne, Australia, in 1962;
the Point Pleasant Bridge in West Virginia in 1967; an oil
rig disaster in the North Sea in the 1late 1970s; ships
breaking virtually in two, including a U.S. tank barge in
1972 while in dock in calm seas; train accidents, including
an express train derailment in the United Kingdom in the
1970s; and commercial aircraft crashes of de Havilland
Comets in the 1950s and of DC-10 in 1979.

Although the frequency of such failures is decreasing
as a result of better design, inspection and maintenance,
the preventive activity and cost has not diminished. A 1983
survey shows that the expenses associated with fracture only
in U.S. are $119 billion per year and they are not likely to

decrease due to massive advances in some engineering fields



like: aerospace, transportation and nuclear power
generation. In all, fracture mechanics is going to play an

important role in engineering for years to come.

1.2 BRIEF BACKGROUND AND LITERATURE SURVEY

Crack problems in the mathematical theory of elasticity
are of two distinct kinds. The first group of problems
concerns the determination of the stress fields governed by
the equations of idealized plane strain or plane stress. The
first mathematical solution of a stress field in a 1linear
elastic infinite flat plate weakened by an elliptical hole
and subjected to uniform tension (Fig.1.1) was done by

Inglis [3].

Fig.1.1 Elliptical hole in an infinite plate.

As a result of his solution the maximum stress o vas
max

given by the product of the applied stress o, with the



stress concentration factor k, i.e.
oz o (1+2va/p) = ok , (1.1)

where a is the major semi-axis of the ellipse, and p is the
radius of the curvature.
From the engineering design point of wview it should be

required that

o <o |, (1.2)

where o, is the yield stress of the material comprising the
plate.

Neuber [4] used methods similar to Inglis’ solution to
find the stress concentrations for different profiles which
would be approximated by elliptic and hyperbolic curves.
These solutions were verified by experimental results
obtained by methods of photoelasticity and represented
valuable information for engineers. This information is used
mainly for *“he consideration of influences of repeated or
cyclic loading applied to the shafts with fillets and
keyways.

Although the solution given by 1Inglis was the
pioneering work, interest in such calculations appear to
stem from Griffith’s [1] paper. Griffith made use of Inglis’
calculations, where he considered the case in which the
minor semi-axis of the ellipse b=0, i.e. when the ellipse

degenerates to a straight line. For this reason a crack,



which in two-dimensional diagram is represented as a segment

of a straight line, is called a Griffith crack (Fig 1.2).

Fig.1l.2 Crack in an infinite plate.

In this case p-0, consequently k becomes unbounded and
o . Joes to infinity, regardless of any applied stress
greater than zero and hence the cracked plate has to fail.
However it is not the case, and in order to overcome this
difficulty of physically impossible infinite stresses
Griffith proposed an energy criterion for fracture
consisting of the following. The crack will spontaneously
propagate under the action of applied load only if the total
energy of the system will be decreasing, namely, when the
energy release rate, as a result of the crack extension,
will reach or exceed the rate at which work must be done in
order to form a unit of new surface. The strain energy

release rate of the Griffith crack of length a is defined

by:



_ 1
G =353 - (1.3)

where W is the strain energy.
The Griffith criterion for failure was that the crack
will propagate when the applied tension reaches the value

given by the equation
d
35 (W-U)=0 , (1.4)

where U is the surface energy of the crack. Griffith
expressed U in terms of a "surface tension" ¥ as U=4ya.

Hence, using (1.3) the Griffith criterion becomes
G =27 . (1.5)

From Inglis’ solution of the problem of the elliptic
hole in an infinite plate under tension, Griffith obtained

the following expression for the strain energy release rate:

ozna(l-va)

G = E . (1.6)

And the Griffith criterion, namely formula (1.5), leads to
the following relation for the critical stress producing

fracture:

27E 1/72
g = B ————— . (1'7)
¢ [na(l-vz)]

Westergaard [5,6]), developed a semi-inverse method

based on a complex representation of the Airy stress



function suitable for a class of two-dimensional problems
including the <case of cracks. Williams [7], using a
power-series solution, obtained the singular symmetric and
antisymmetric crack tip stress field. However, the general
application of the singular stress field was first
recognized by Irwin [8,9], who introduced the concept of the
stress intensity factor (SIF), which measures the strength
of the singular stress field. Since then, a vast number of
publications have appeared in the literature concerning
solutions of crack problems with emphasis on the SIF. Irwin
proposed an approach based on the following. If the tensile
stress o is exerted on the faces as|x|=a+da of the slightly
enlarged crack, then the work done to close up the crack to
its original 1length a must be equivalent to 4y8a for a
brittle solid. He also suggested that in case of a partially
brittle solid the plastic strains, which will develop at the
tip of the Griffith’s crack, will not result in significant
loss of accuracy in the calculations. In view of this Irwin
replaces 2y by a constant Gc called crack driving force.
Thus, the work done by the forces which are applied to the
crack edge over an infinitesimal distance of &a equals the

energy release rate and is:

da
G = lima—i o u dx. (1.8)
¢ da-0 yy

0

If the SIF is defined as Kl, then



K
1

O = —, (1.9)
Y ovax

The asymptotic behaviour of the crack opening displacement

(COD) near the crack tip is

2
- 4(1-v7) /=X
uy —F K1 5 x<0. (1.10)

In the case, when the crack tip has moved through the

distance éa the expression in (1.10) can be rewritten as:

2
_ 4% Sa-x
u o= 2t K/ 5 - (1.11)

The substitution of (1.9) and (1.11) in (1.8) and evaluation

of integral, which turns out to be equal msa/2, results in

1T ( 1-1)2) Kf

Gc=__E_— . (1.12)

The energy criterion assumes the propagation when G
equals a critical material value G or equivalently K,
equals a critical material wvalue K - Therefore a criterion

for reliable design would be

K1<K . (1.13)

ic

where K is the critical SIF called the material toughness.
The second group of problems deals with the
determination of the stress fields in a three-dimensional

body in which the crack is in the form of, say, a flat disc.



In the three-dimensional case the strain energy release rate

of a disk-shaped crack of radius a is defined by:

_ 1 oW
The Griffith criterion, formula (1.4), can be written

in the same form, but with the difference that now the
surface energy U=2na21. It can be observed that with this
value of U and G given in (1.14), the Griffith criterion
will have the same form as in (1.5).

The first wovk in this regard is associated with the
name of Sack [10]}, who was treating a crack as a limiting
case of an oblate spheroid. He obtained the solution for a
penny-shaped crack subjected to uniform internal pressure.
Sack has shown that in the presence of a crack of radius a

the free energy of the solid changes by an amount:

2
_ 8(1-v") =23
W = 3 ca” . (1.15)

Therefore the strain energy release rate is given by the
equation

4 (1-v%)o’a

G = nE L]

(1.16)

The application of the Griffith criterion (1.5) gives the

critical value of the applied tension, namely,

1/2
o = |3ET__|7° 1.17
[Za (1-v2)] ( )

10



Comparison of formulae (1.7) and (1.17) shows that the
critical tensile stress of the three-dimensional model
differs from the plane strain Griffith result by factor m/2.

Furtier, using the theory of Hankel transforms, Sneddon
[11] gave the stress and displacement fields around a
penny-shaped crack in an infinite solid subjected to a
uniform tension normal to the plane of the crack. Segedin
[12] has studied a problem, when the solid is loaded by a
uniform shear parallel to the crack plane. Green and S$neddon
[13] found the stress distribution near an elliptical crack.
A thorough study of three-dimensional crack problems is
given in Sneddon and Lowengrub [14] and Kassir and Sih [15].
A vast amount of work exists on three-dimensional crack
problems and it will be more appropriate to make references
later on in forthcoming chapters in direct relation to the
present research.

In the present work an account is given of solutions in
the mathematical theory of elasticity relating to
three-dimensional crack problems. The method used here is
due to Fabrikant [16,17] and based on new results in
potential theory. The applications of that method in this
work have different characters; they vary from the direct
use of the already known results to their further
development. In general it has allowed the solution to
problems which were not considered before, thus, most of the
results presented here are new. A brief, but comprehensive

description of this method will be presented in Chapter 2.

11



1.3 OBJECTIVES OF THE PRESENT INVESTIGATION

The main objective of this work is the further
development of the new method in application to different
configurations of cracks, new types of loading, as well as
some studies of contact problems. This purpose will be
achieved by:

1) Succinct description of the method used, namely,
integral represenéation for the reciprocal of the distance
between two points in polar coordinate space, introduction
of the #£-operator and investigation of its properties.
Combination of the f-operator and Abel’s type operator leads
to a new two-dimensional integral equation which can be
solved exactly and in closed form.

2) Consideration of new problems of penny-shaped crack
subjected to 1linear tangential and normal 1loading.
Particular solutions to be obtained for transversely
isotropic and isotropic solids.

3) Obtaining of the Green’s functions for the external
circular crack problems which has not even been attempted in
the literature. It is of great value to express these
functions in terms of elementary functions, since this would
allow their use as a basis for solving more complicated
cases of specific distributed loading, interaction problems
etc.

4) Using the limiting case of solutions obtained for the

internal circular crack to obtain the relevant solutions for
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a half-plane crack subjected to normal and tangential point
force loading.

5) Development of a new direct method of solution for
half-plane crack and punch problems, based on already
different integral representation of the reciprocal of the
distance between two points in cartesian coordinate space,
as well as a new type of ¢ - operator. Investigation of the
properties of ¢'- operator and indication of its differences
from the one introduced previously.

6) Consideration of general weight functions for the
penny—-shaped crack in transversely isotropic and isotropic
bodies. The closed-form solutions for the elastic field of a
penny-shaped crack coupled with the reciprocal theorem will
be used to derive closed-form expressions in terms of
elementary functions for the crack opening displacements and
stress intensity factors of a penny-shaped crack loaded by
an arbitrarily located force. A general outline will be made
for the similar type of problem of interaction between an

external circular crack and arbitrarily located point force.

1.4 PRACTICAL IMPORTANCE OF THE PRESENT INVESTIGATION

Even though the problems treated in the present study
are idealized, all the results of the problems investigated
can be used for the stress analysis of the various bodies
with cracks, provided that the crack size and dimensions of

the body are in proper relation to each other, namely,
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1) For the problems of internal circular crack, which will
be considered in Chapter 3, the size of the crack should be
small in comparison with the dimensions of the body.

2) For the problems of external circular crack, which will
be considered in Chapter 4, the region connecting two half
spaces should be small in comparison with the crack faces
covering the region z=0%.

3) For the problems of semi-infinite crack, which will be
considered in Chapter 5, the practical significance is in
their applicability to any real crack where the distance
from the point of application of force to the crack boundary
will be much smaller than the radius of curvature of the
crack boundary.

The very fact that a great amount of effort has been
spent by many prominent researchers on the determination of
the stress distribution in three-dimensional bodies with
cracks is a clear indication of the fundamental importance
of the present investigation. However, despite the success
in obtaining analytical solutions to some main stream
problems, there were many limitations. In most of the cases,
solutions were dealing with the determination of the stress
and displacement field in the plane of the crack. Only a few
of the problems were solved for the complete field of
stresses and displacements, while even in those cases the
results were expressed in terms of complicated integrals.
The ability to have a complete solution, especially when it

can be obtained in closed form and in terms of elementary
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functions, shows the fundamental importance of the present
investigation.

1) By using the complete solution and implementing the
reciprocal theorem, the more complicated problems of
interaction between crack and external arbitrarily 1located
loading may be considered. This will be done in Chapter 6.
2) The results of a complete solution can be used for the
consideration of other complicated problems such as:
interaction between cracks or interaction between punches
and cracks.

3) The present investigation is of paramount importance
for the future development of the boundary force method
which will allow the solution to problems of cracked bodies
of finite dimensions. The simple idea with its guite
difficult implementation has a very essential precondition,
namely, a complete solution to the field of stresses and
displacements.

In this regard it will be quite appropriate to mention
the article by Atluri ([18]. It is shown there, how the
systematic generic procedure was developed for the
evaluation of the required derivatives of potential function
and subsequent determination of the "VNA" complete solution.
The implementation of the "VNA" solution in conjunction with
the Finite/Boundary element method should allow one to solve
the problem of finite body with crack (or multiple cracks)
by using the iterative procedure.

Finally, in Chapter 7 the conclusions and
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recommendations for the future investigation based on the
present fundamental work will be given along with the short

description of the above-mentioned boundary force method.
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CHAPTER 2
DESCRIPTION OF THE METHOD

2.1 INTRODUCTORY REMARKS

The three-dimensional crack problems can be formulated
as mixed Boundary Value Problem (BVP) in potential theory
for the half-space z=0. The term "mixed" is used to
distinguish these types of problems from the "uniform"
problems when the conditions prescribed over the boundary
are of Dirichlet, Neumann or Dirichlet and Neumann type. The
exact solution to the uniform BVP of linear elasticity for
an infinite layer can be obtained with help of Hankel
integral transform.

The mixed BVP are the most difficult to solve, due to
the very fact that the conditions prescribed over the
boundary are of different type, namely, the potential is
prescribed over a part of the boundary and its normal
derivative over the remaining part. For example, if the line
of division of the boundary conditions is a circle, it is
convenient to apply the same Hankel transform for the
solution of these problems. However, this method will not
anymore result in an exact solution in terms of quadratures
as it was in the case of uniform problems. It only allows to
bring the problem to the so called "dual integral equations"
which are in turn, after special consideration, reduce to a

Fredholm integral equation of the second kind, which allows
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an effective numerical solution.

At the same time, it must be indicated that the mixed
BVP are among the most important in various engineering
applications, such as problems of contact and fracture
mechanics, electromagnetics, diffusion, etc.

Basically, two categories of methods for solving mixed
BVP can be specified. The first one requires construction of
a Green’s function, after which each particular solution can
be presented in quadratures. The second one comprises
various integral transform methods.

Hobson [19], for example, has constructed the Green’s
function for a circular disc and a spherical bowl by using
toroidal coordinates t, o, ¢. The potential function V at
the point (t,19,:¢,) external to the disc, which on the disc
takes the values v(t,¢), was expressed by a very complicated
integral. He had to use a quite ingenious method in order to
find the potential function for v=const. and v=ux, where u
is constant.

The integral transform method, involving dual integral
equations, was originated, probably by Weber (1873) and
Beltrami (1881) and «continued by others. Significant
achievements in the systematic application of the method to
various problems are due to Sneddon [20,21]. Some quite
remarkable results were obtained by Ufliand [22]. Despite
this success, the use of integral transforms generally
indicates the inability to solve problems using elementary

means.
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Thus the Green’s function approach is the most general,
the main obstacle being the inability to directly derive
results, which were instead usually constructed by some
ingenious considerations. In contrast, the integral
transform method allows a straightforward derivation of the
results, but it is the least general, since each particular
problem has to be solved from beginning to end.
Non-axisymmetric problems involving various interactions
(several arbitrarily located charged discs, interaction of
punches and cracks, etc.) are extremely difficult to solve
by the integral transform method.

The main objectives for the development of the new
method were an inconsistency between various solutions to
the problems in Potential Theory and the way those solutions
have been obtained. That 1is, the solution was quite
elementary, while the method used was very complicated,
involving various integral transforms or special functions
expansions. Fabrikant [16,17] found a new method, which is
in fact able to solve difficult mixed BVP in an elementary
way. Not only could this new method more easily solve the
problems already solved by other methods, but it also
possessed the following advantages and benefits:

1. The method can solve non-axisymmetric problems as
easily as axisymmetric ones.

2. Solutions are exact and in closed form and expressed in
elementary functions (very easy for numerical calculations).

3. It enables one to treat analytically non-classical
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domains.

The major advantages of the method comprise two things.
First, the derivation of explicit and elementary expressions
for the Green’s functions, related to a penny-shaped crack
and a circular punch. And second, an investigation of
various interactions between cracks, punches and external
loading. All this allows the solution to some problems which
were not even considered before.

The solution is called complete, when -explicit
expressions for the field of stresses and displacements are
defined in the entire space. The new method allows one to
obtain a complete solution (important in the investigation
of various interaction problems), while the majority of the
crack and indentation problems solved previously were

evaluating the elastic field in the plane of the crack only.

2.2 INTEGRAL REPRESENTATION FOR THE RECIPROCAL OF THE

DISTANCE BETWEEN TWO POINTS

The integral representation for the reciprocal of the
distance between two points located in the plane z=0 was
given by Fabrikant [16] and it was a crucial starting point
for the development of the new method, since this quantity

is very important in potential theory. It is given as

1 1

R'™ [p2+ pe- 2pp,cos (¢ - dJO)J“*“”2
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2
min(p P A[ 6 - ]m"dm
2 mu PPy’ °

= £ cos— ' ' (2.1)
m 2 J [(pz_ @2)(P§- mz)J(1+uwa
0

where u is a constant and -1i<u<i.

Here the following notation is introduced,

2
Ak, y) = 1 -k . (2.2)

1+ k? - 2kcosy

Introducing a new variable

n(e) = [(p°-c®) (p2-c®) 1P/, (2.3)

expression (2.1) may be rewritten as

[+ +]
~u
n an
1 - % congJ 7 - (2.4)
R+ 7
0

The integral in (2.4) can be evaluated by using the

following formula from Gradshtein and Ryzhik [23)

[0<%<n+1,p:0,q:0].

T c"'de  _ 1 [g]"‘“ F[IEH]FE"“‘%]

!
(p+qa:t.) n+1 tpn+1 I'(1+n)
0
thus proving the identity in (2.1)
It can be deduced from (2.4) that in the particular

case when u=0, the integral in (2.1) can be evaluated as

indefinite, resulting in a very important representation
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2

J [pp 199 ] L [(p —3) 2 (p z_mz)uz:l
=- =tan .
(p*

1/2 2 2,172 R R
(P,

—a:)

—m)

(2.5)

All the results above are related to the distance
between two points in the plane 2=0. They should be
generalized to represent
1= 1 . (2.6)

Rl lp2+p§-2ppocos (¢_¢o) +zzJ {1+u)/2

The observation shows that representation (2.1) remains
valid if p and p, are formally substituted by arbitrary
guantities 21 and 22. They need to be chosen so that

p2+p§—2ppocos(¢-¢o)+za = ef”:'”;ea“sw‘%) . (2.7)

This leads to two equations,

= 2,2 _ 2,2, .2
2182 = PP, 81+£2 =p +p0+z . (2.8)

The solution will then take the form

r -r
fl(po,p,Z)%{[(p+po)‘°‘+z2]’ [(p- p)+z2]“2} L2

2 14
(2.9)
r +r
fa(po,p,z)=%{[(p+p )%+2°1"%+ [(p-p,) +z2‘]“2}___2 2
(2.10)
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vi
Fig.2.1 Geometric description for Q and ¢ .

Hereafter the following abbreviations will be used:

t () = ¢ (a,p,2) , £ () = ¢ (a,p,2) . (2.11)

¢ =t(a,p,2) , ¢, =t(a,p,z) - (2.12)

Note the limiting properties

lim el(ac) = min(a,p) , lim Zz(m) = max(a,p) . (2.13)
z-0 z2-0

In view of the properties above, the representation

(2.1) can be generalized

1 1
1+u 2 2 2] (1vu)r2
RL™  |p%+ pi- 2ppcos(0 - @) + 2|
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£ Py)? A[-p—g—z-,cp -¢o]a:"da:
RReh e e L RIS

Formula (2.14) simplifies when u=0

1 1
Ro [ 24 ps— 2ppocos(¢ - ¢o) + ZZJUZ

2
1 Po’! A(pzo,(p - ¢o]dcc

]
=2 .
=7 J; [[ef(po) _ ma] [‘:(Po) _ mz]Jx/z

(2.15)

Again, it can be noticed that the integral in (2.15) may be

evaluated as indefinite:

J A[b‘;—:,(ﬁ - ¢o]da:
[ pg) - «®[e20p,) - )1

PR | G LR |

0 0

(2.16)

thus, giving another quite important representation in
(2.16) .

By a simple change of variables, another series of
useful formulae can be obtained from those given above,
however they will not be discussed here, since the aim is
not to give the variety of all very important integral
representations, but to make an introduction of an essential

part of the new results obtained in potential theory.
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2.3 ¢ = OPERATOR

The ¢-operator may also be called the Poisson operator,
since it was introduced by Poisson for solving the
two-dimensional Dirichlet problem for a circle. It is

defined as

2n

£(K)E(9) = 3= juk.cp—%)fwo)d% : (2.17)
0o

where A (.,.) is defined by (2.2).

The following properties of the ¢-operator are valid

£(k)¢(k,) = £(kk) , lim £(k)f = f . (2.18)
k=21

These properties are widely used in various transformations

and are essential to the method.

2.4 POINT FORCE SOLUTION AND CLASSIFICATION OF MIXED

BOUNDARY VALUE PROBLEMS

By giving the point force solution the necessity to use
the above integral representations and others which were not
presented here, but can be found in Fabrikant [16], can be
justified. The suggestion for the classification of BVP will

naturally stem from the point force solution. The surface
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displacement field for point loading of a transversely

isotropic half-space z>0 can be given as follows:

1 T,lg T _ P
u = 2G1 gt -2-G2 o Ha g (2.19)
_ T p
w = Ha Re[a] + H-}i ’ (2.20)
' here
q = pe1¢ - poel¢o . (2.21)

Here P is the normal force, T=Tx+iTy is an introduced
complex tangential force and the overbar indicates its
complex conjugate value. Tangential and normal displacements
are denoted by u=ux+iuy and w respectively. The elastic
constants H, «, G1 and G2 will be defined later, since they
are not the main issue here.

Expressions (2.19) and (2.20) are widely used for the
integral equation formulations of various mixed BVP for an
elastic half-space.

By suggesting the following classification of mixed BVP
two types of internal and external problems can be
specified:

Internal problem of type I: the normal displacements are

prescribed inside a finite domain S, f-he normal traction is
given outside the domain S, while the tangential tractions
are known all over the plane z=0.

External problem of type I: the normal traction is
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pPrescribed inside S, the normal displacements are given
outside, while the tangential tractions are known all over
the plane z=0.

Internal problem of type 1II: the tangential displacements

are prescribed inside S, the shear tractions are given
outside, while the normal traction is known all over the
plane z=0.

External problem of type ITI: the shear tractions are

prescribed inside S, the tangential displacements are given
outside, while the normal traction is known all over the

plane z=0.

2.5 GENERAL SOLUTION FOR MIXED BOUNDARY VALUE PROBLEMS IN

ELASTICITY

The elastic half-space has proven to be a useful
mathematical model for the consideration of various contact
and crack problems in finite bodies, provided that the
domain of contact or the crack size is much smaller than the
characteristic dimension of the body. A general solution in
terms of three harmonic functions is presented for the case
of transverse isotropy.

For a transversely isotropic elastic body, where the
plane z=0 is parallel to the plane of isotropy and which is
characterized by five elastic constants AU’ the following

stress-strain relationships are satisfied:
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du au

= X - . ow
o= A ax t (Au 2A66)6y + A, 3z
du du
= - X Y w
7,= (A, ZAse)ax * Anay t AyEz 0
du du
=A - ¥ v
o= Ry ax * R ay + By 3z
r 9dU au du

= X4 ¥ = _vy , v
txy— Aaak ay + ox ] ’ tyz AM[ 8z +6y] !

du
_ [ 6w x
T Pl x5z ] ) (2.22)

The equilibrium equations are:

acrx atxy a'czx 31:” aay aryz
% ay+ 3z =~ 0 Bx +ay * 5z =0
at aT éo
Zx LYz L __Z _ . (2.23)

ax 3y 32

Substitution of (2.22) in (2.23) yields:

2 2 2 2

a u d u_ 8 u ] uy 82w
A +A +A +(A -A )s—= +(A, _+A )7:7—=0,
1 a2 66 ayz 44 872 11 667 X0y 13 s’ ox8z
azuy azuy azuy o%u_ 52w
A +A +A +(A -A )z +(A _+A )z:——===0,
66  4y? 11 6y2 44 822 11 667 dxoy 13 “a'dxoz
2 2
2 2 2 a"u a™u
Au [i—‘:' + é'_Vzg]-*.Aaaa Z +(A44+A13) [axa; * 8 a;]=°'
ax ay 8z b 4
(2.24)
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Introduce complex tangential displacements u=u + iuy and
ﬁ=ux-iuy - This will allow the reduction of the number of
equations in (2.24) by one, and one can rewrite these

equations in a more compact manner, namely,

2

1 d"u 1 2— oaw _
2(A11+A66)Au + A44 622 +§.(A1 1-}\66)A u + (A13+A44)A3_Z- - 0'
8°w . 1 )
+ . = —_—A u =
A44Aw 2\33622 + 2(A13-1~A“)¢,32(Au+ Au) 0.

(2.25)

Here the following differential operators were used:

2 2
d 3 8 . 8

A = — 4 — ' A= — + j— '
ax2 6y2 ox ay

(o)

= _ Y
A= Ix 1‘59- ' (2.26)
and the overbar everywhere indicates the complex conjugate
value. Note also that A=AA.

It may be verified that equations (2.25) <can be

satisfied by

<’9F1 6F2
u = A (F1+ F2+ 1F3) ’ W= mooa + m, 57 ¢ (2.27)

where all three functions F, satisfy the equation (Elliott
(24])

2
c‘iFk

AF, + 75 =0, for k=1,2,3. (2.28)

az®

Introducing the notation zk=z/7k, for k=1,2,3, the function
Fk=F(x,y,zk) may be called harmonic. The values of m and v,

are related by the following expressions (Elliott [24])
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A +m (A _+A ) m A
44 k' 13 44 kK 33 2

= =y~ , for k=1,2
A, mALa ARTTRL k

Au 172
7,= ( O ] ] (2.29)

Introduce the following inplane stress components:

co=0+0 , Oo=o0-0+2it , T =T _+ it . (2.30)
1 x y 2 Xy xy z zx yz

This will simplify expressions (2.22), namely,

_ _ —_ -— 8w _
o= (A“ A66) (Au + Au) + 2A13 37 ! c,= 2A66Au '
_ 1 - - aw _ du
O'z— 3 A13(Au + Au) + A33 3z ! tz— A44 [—a-—z- + AW] . (2.31)

Now there are only four components of stress, instead of
six, as it was in (2.22). The substitution of (2.27) in
(2.31) yields:

2
_ 3 2 _ 2 2 _ 2
0‘1— 2A66 -a—z-é {I:'I1 (1 + m1)73]F1 + [72 (1 + m2)73] Fz} ’

_ 2 .
o= 2A66A (F1 + F2 + 1F3) ’

2
_ ] 2 2
cz— 1\‘M 8_22 [(1 + ml)zr1 1"1 + (1 + mz)a'2 Fz]

= - A“A[(l + ml)F1 + (1 + mz)Fz] '

t=2a A2

. oD 33 [(1 + ml)F1 + (1 + mZ)F2 + 1F3] . (2.32)

Here the fact that each F satisfies equation (2.28) was

. . . 2_ -
used, along with the relation: A v -A .M A44(1+mk), (for
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k=1,2) which is an immediate consequence of (2.29).
Expressions (2.27) and (2.32) give a general solution,
expressed in terms of three harmonic functions Fk. It is
very attractive to express each function Fk through just one

harmonic function as follows:
Fk(XIle)=ckF(xIYIzk) ’ (2'33)

where zk=z/7k, and c, is an as yet unknown complex constant.
As will be shown further, this is indeed possible. All the
results which will be obtained in this work are valid for
isotropic solids, provided that for isotropy

1-v° E _1+v

1T By 0 APRGTaamy ¢ FeRE

(2.34)

where E is the elastic modulus, and v is Poisson’s ratio.
The following identities and elastic constants will be

used throughout:

mm=1, (m-1)/(m+ 1) = 2mA _H(y - 7,) . (2.35)
172
H = (71 + 72)]}‘11 o = (Al‘l 33) - A13
= _ a2, ! A (v, t7) '
21!(A11A33 A13) 11 %1 2
13
B=zx— + G =B+y7,H, G, =8- v, v H . (2.36)

44

2.6 DEFINITION OF STRESS INTENSITY FACTOR

The stress intensity factor is one of the indicators of
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problems leading to failure by fracture, like J-integral,
crack opening displacement and strain energy density factor,
and it is widely used in fracture mechanics in the design of
machine and structural elements. In section 1.2, it was
shown how the <concept of the SIF with regard to
two—-dimensional crack problems was gradually developed.
Kassir and Sih [15] expressed the local stress field near
the crack front in a form analogous to the two-dimensional
case in terms of three SIF which are independent of the
local coordinates, and are dependent only on the crack
geometry, the form of the loading and the location of the
point along the crack border. This result is fundamental in
analyzing the fracture behavior of cracks and provides
uniform expressions for the liocal stresses under various
geometrical and loading conditions where only the values of
the SIF differ.

The coefficients KI, Kz and K3 are the opening-mode,
sliding-mode and tearing-mode SIF. They can be found from
the stress components in terms of the wvariables p and ¢ as
follows:

For the case of internal crack

172

K,= lin [ (p-a)' %0 (p,9,0)], (2.37)
p-a

K,= lin [(p-a)'"*t_(p,$,0)1, (2.38)
p-a

K= lin [ (p-a)""z, (0,4,0)]. (2.39)

pa

For the case of external crack



K= lin [(a-p) "% _(p,¢,0)], (2.40)

p-a
K= lin [(a-p)"""z_ (p,4,0)], (2.41)
p-a
: 172
K3= lim [ (a-p) t¢z(pr¢ro)]° (2.42)
p-a

For the case of semi-infinite plane crack the stress
intensity factors K, K, and K, can be obtained as usual
from the appropriate stress components on the plane z=0 in

terms of the variables x and y as follows:

K= lim [VX o (x,Y,0)], (2.43)
x>0

K= lim (VX T (*¥,¥,0)], (2.44)
x=0

K= lim (VX T _(%,Y,0)]. (2.45)
x-30 yz

Formulae (2.37-2.45) are widely used for determination
of the SIF. However, some alternative formulations for SIF
definition will be presented in the next subsection and

their importance and convenience will be underlined.

2.6.1 ALTERNATIVE FORMULAE FOR DEFINITION OF STRESS

INTENSITY FACTOR

Despite the fact that formulae (2.37-2.45) have already
found their true place in applications, it can be noticed
that there are some 1limitations in formulation, since in
order to evaluate them the stress components must be known.

For some interaction problems, as will be discussed in
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Chapter 6, the use of the reciprocal theorem necessitates an
alternative formulae for SIF definition. They are defining
the SIF directly in terms of displacement components as

follows, (Fabrikant [16]):

K= -1 1im [_‘ﬂ&'_‘pl_] , (2.46)
1 4mH 1/2
p»a t(a-p)
a G1e'1¢u + G2e1¢u
K,+iK = - — 1im ——5 | (2.47)
n(Gl-GZ)\/Za p-a (a"=-p")

where H, G, and G, are transversely isotropic elastic
constants defined in (2.36), u is an introduced complex
tangential displacement and u=ux+iuy.

The importance of (2.46) and (2.47) stems from the
known fact that in the solution of an interaction problem by
means of the reciprocal theorem, there is a need to
determine the unknown displacements on the plane 2=0.
Subsequently, having at hand the displacement components,
the SIF may be evaluated. Formulae (2.46) and (2.47) are
also convenient, since they are as simple as the the
expressions given in section 2.6 and may be used depending
on whether the expressions for displacement components look
more simple than the expressions for stress components. And
finally, they can be used as an alternative formulae for
verifications. It may be noticed that formulae (2.46) and
(2.47) are defining the SIF for transversely isotropic
solids, but with help of expressions given in (2.34) and

(2.36) they can be used as well for the isotropic case.
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Since the definition of the T component given in
(2.30) contains both x- and y-components, so will the
expression for the SIF: K=Kx+iKy. If the expressions for the
radial and tangential components are required, the following

relationship has to be used

C . i¢
tz£+ 1tyi— (tzp+ 1t¢z)e . (2.48)

Hence, according to (2.38) and (2.39) the expression for the

combined mode 2 and mode 3 SIF will become

K, +iK = lim [ (p-a)'%t e'l¢]
p-a z

) (2.49)

Thus, formulae (2.46), (2.47) and (2.49) will be widely

used for evaluation of the SIF in the present work.

2.7 SUMMARY

In this chapter a short description of the method of
Fabrikant [16] applicable to the solution of
three-dimensional crack problems was presented. All its
advantages over the previously existing methods were clearly
emphasized. The forthcoming Chapters 3, 4, 5 and 6 will be
solely devoted to the application and further development of
this method in connection with the solution of a wide
variety of crack problems. Some attention to the solution of

contact problems will be given as well.
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CHAPTER 3
INTERNAL CIRCULAR CRACK PROBLEMS

3.1 INTRODUCTORY REMARKS

In this chapter a complete closed form solution in
terms of elementary functions for two different internal
circular crack problems which are of mixed BVP type are
presented. Explicit expressions are derived for the stresses
and displacements in both transversely isotropic and
isotropic full space weakened by a penny-shaped crack. The
first problem will deal with the case of a linear normal
load applied to the crack faces. The second problem is a
non-axisymmetric linear shear load.

As already mentioned in the introduction, Sack [10]
first obtained the solution for a penny-shaped crack
subjected to internal pressure. His method could be adopted
for the case of a variable internal pressure, but the
calculations would probably be rather cumbersome. Even in
the case of constant pressure, the expressions obtained for
the components of stress do not yield numerical results
easily. Also, the choice of an oblate spheroidal coordinate
system makes the interpretation of the results somewhat
difficult. However, this work has attracted significant
attention from scientists. The majority of the crack

problems solved subsequently presented the elastic field in
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the plane z=0 only. There are just a few publications with
the complete solution for an axisymmetric problem with a
penny-shaped crack, where the explicit expressions are given
for the stresses and displacements everywhere in the elastic
space. For example, Elliott [25], solved the problem of a
penny-shaped crack in a transversely isotropic body under
uniform pressure. The same problem, but for the isotropic
case, was solved by Sneddon [11]). They both used integral
transform methods.

A completely different approach, used by Fabrikant [16)
and based on the new results in potential theory, allowed
him to solve both above-noted problems. As it was indicated,
his results were essentially in agreement with those of
Elliott and Sneddon, except for some misprints noted by
Fabrikant. Some further analysis of the comparison of the
later case led to the discovery of an additional misprint in
Sneddon’s solution, which is noted subsequently.

Westman [26] presented two examples by giving a
complete solution to the mixed boundary value problem for a
circular crack in an isotropic body, where the conditions
were prescribed interior and exterior to a circle and were
mixed with respect to wuniform shear and tangential
displacement.

There has also been some research on the solution for
an elliptical crack problem. An example is the remarkable
work of Kassir and Sih [27]. Though the final results were

given only for the case when z=0, this work indeed presents
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the complete solution to the problem of an elliptical crack
in an isotropic body subjected to uniform shear loading and,
as the authors indicated in the limiting case for a circle,
the results are in agreement with those of Westman [26].

Chen [28] gave a formal method for the solution of an
elliptical crack in a transversely isotropic elastic medium
under uniform shear stress applied to the crack faces. It
was accomplished by using the assumption that the
displacement discontinuity at the crack surface is of an
elliptical nature. An attempt to extend the same method for
the case when the stress distribution at the crack surface
is described by a linear polynomial resulted in a rather
large amount of manipulative work.

Despite the fact that some axisymmetric problems were
successfully considered before, there are no complete closed
form solutions in terms of elementary functions to the
problems of a penny-shaped crack subjected to a 1linear
normal or shear loading applied to the crack faces. The
material presented in this chapter follows the work by
Karapetian [29,30].

As was shown in Chapter 2, the expressions (2.27) and
(2.32) give the general solution for mixed BVP in elasticity
expressed in terms of three harmonic functions. Therefore
the solution to the above stated problems comes down to the
determination of those functions. However it was mentioned
there, that it is possible to express each function Fk

through just one harmonic function as given in (2.33).

38



3.2 ELASTIC FIELD OF INTERNAL CIRCULAR CRACK UNDER LINEAR

NORMAL LOADING

Consider a transversely isotropic elastic space
weakened by an internal circular crack of radius a in the
plane 2=0 and with linear normal loading applied to the
crack faces. The cylindrical coordinates (p,¢,2) will be
adopted to 1locate points inside the half space 2z>0. The
problem under consideration, due to its symmetry, may be
reduced to the external mixed boundary value problem for a
half-space and can be reformulated as follows.

Let a transversely isotropic elastic half-space occupy
z20, (Fig.3.1). The shear traction “cz=0 over the plane z=0.
The normal displacement w=0 outside the circle p=a, while
the linear normal Jloading az=-po(p,¢) is given inside the

circle.

CRACK FACE

y Y Bpe)

Fig.3.1 Internal circular crack under linear normal loading.
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The mathematical statement of the boundary conditions is:

T = o, for 0 =p < o, 0= ¢ < 2 ,
w=20, for a=p < o, 0= ¢ < 2 ,
o= —popcos¢, for 0 =<p <a, 0= ¢ < 2m . (3.2.1)

3.2.1 POTENTIAL FUNCTIONS

The conditions in (3.2.1) can be satisfied by a
representation in terms of one harmonic function. For this

type of problem, according to (2.33) the functions are:

Fl(z)=c1F(zl), Fz(z)=c2F(zz), F3(2)==0. (3.2.2)
Expressions of the type 1='1 (z) and :F‘(zl) , etc., everywhere
should be understood as F1 (x,¥,2) and F(x,y, 21)

respectively. The substitution of (3.2.2) and the 1last of

expressions (2.32) in the first condition (3.2.1) yields:
c1=-c271/m172 ’ (3.2.3)

The function F can be represented as a potential of a simple

layer, i.e,

F(p.¢,Z)EF(z)=JJ‘§—’% ' (3.2.4)

S

where w stands for the crack face displacement w(x,y,0),

R(M,N) is the distance between the points M(p,¢,z) and
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N(r,y,0), the integration is taken over the crack domain S.
Expression (3.2.4) satisfies the second condition

(3.2.1) identically, due to the well known property of the

potential of a simple layer. Inside the crack the same

property gives:

oF

3z Fm=-2nw=-2nw(x,y,0) . (3.2.5)

Now expressions (3.2.2), (3.2.4), (3.2.5) and (2.27) give

the second equation for c, and c,:
—ngcl/wi-ngc2/72=1/2n . (3.2.6)

The constants c, and c, are determined from (3.2.3) and

(3.2.6) as
7 7,
€= - 2m(m -1 * = - 2n(m~1) ° (3.2.7)
The potentiél functions will be given by
71 72
F1(Z)=— m F(Z1), FZ(Z)=“ m F(ZZ) . (3.2.8)

The substitution of (3.2.8) and (2.32) in the last condition

(3.2.1) leads to the governing integral equation:

= 1 w(N)ds
p(No)—" mAJ J‘ R—(T‘I_;,_N) ’ (3.2.9)
S

where, as before, R(NO,N) stands for the distance between
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two points No and N, and both NO,N € S. The identities
defined in (2.35) were used.
The solution of the governing integral equation in

(3.2.9) is as follows, Fabrikant [16]

a @

o.9) - an J de Jo(po,mpﬁdpo 3.2.10)
wp’ = p L] - L]
mz(xa_ pz)pe (ma_ p§)1/z
p

It defines the normal displacements inside the crack
directly in terms of the prescribed normal loading.
The substitution of the last condition of (3.2.1) in

(3.2.10) yields

8 2
w(p,¢) = 5 Hpcosg p(a® - p°)*"%, (3.2.11)
The subsequent substitution of (3.2.11) in (3.2.4) will
result in

na 2 2,172 2
J cose, (a® = p2)'*pidp,a¢,
0

F(p,9,2z) = % Hp, . ) (3.2.12)
0

Ot N

The integral in (3.2.12) was evaluated, and the result for

the potential function F(p,¢,2) is

Hpon
F(p,¢,2) = —5— pcos¢ x(p,2) , (3.2.13)

where
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¢? #
x(p,z)=a(e§-a2)“2[15-‘ -12-2_‘]+sin" [%—] (4a°-3p°%+122%) .
2 2
a £ 2
2
(3.2.14)
The quantities % and % are defined as
1
L, (ap,2)=3 {1(pra)®ea®) o [ (pa)®+21"}
Lot (arp,z) =5 {L(p+a) ez 2 [ (p-a) 217} (3.2.15)

According to (3.2.8) the three potential functions are:

Hp0 71
F(2) = - — m-1 pcos¢ x(p,z.) ,
Hp ¥

= 9 __ 2
F (2) = & m-1 pcos¢ x(p,z,) ,

F,(2)

i
o

(3.2.16)

3.2.2 COMPLETE ELASTIC FIELD

The elastic field resulting from the normal loading can
be calculated by performing appropriate differentiation of
the potential functions (3.2.16), which had to be
substituted into the expressions (2.27) and (2.32). The
results of the differentiation of x(p,z), are given in
Appendix A3.2. The operators which are defined in (2.26) are
initially transformed into cylindrical coordinates and along

with the other operator, namely AZ, are presented below:
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_ . i¢(a ia - o-ie(a_ _ i a8

A=e [6p+756_]' A= [ap pa¢]'

A2 2i¢(a° 19 1 82 2i 3 2i a°
© 3,2 TP 2,72 23 ' p 3pog) ’

ap p- 3¢ p

2 2

A=§-—-2-+la—+1—2—2. (3.2.17)
ap® PP p? 5

The identities defined by (2.35) will also be used. The

elastic field is:

2 . ¢ 2
1 s - 2,172 1k 2

U=Hpozm :1 pcos¢ el? psin 1[[a—]-(ezk-a )?! 2—-[1+ 3 %]

k=1 k 2k 2k ZZk

2 2
et o s (@) - )]}
ezu 2k
(3.2.18)

4Hp 2 m 2
_ 0 k 2_p2 . 172(, a’]_ -1 a
W o=— pcos¢zm _1[(a elk) [3 - ] 3zks:m (—e ]] '

k=1 k ¢ 2k
2k
(3.2.19)
2 2
2 7 =(1+m )v¥ 2
k k’"3 2  2,1/2 1k 2 a
o .=8A Hp cos¢ — (& -a") [1+ = ]
1 66 0 kzl 7, (m =1) [ 2k 2;: 3 2 g2
2k 1k
- psin™! [ia—] , (3.2.20)
2k
L2 7 . L 2
_ 2i¢ k -1¢_ . . 2 __2,1/2 1k 2 a”
o= 2A66Hpoe l‘Zlm——-—k_l{(e ising) [(2Zk a”) 2;[1+ 3 .2 ]
B 2k
- psin'l[ a ] +cos¢ (82 -az)l/ze“‘[l - Z_af + 8 a’ )
Cox 2 T e2 3 2
2k 2k 1k
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- psin-l[za—]]} , (3.2.21)

2p 2 4 2
0 1 k+1 2 2,172 1k 2 a
o= cCos¢—- (=1)" 7, | (&L =a®) [1+ = ]
z M 3‘1 12 kZ1 u[ 2k zzu 3 2 —82
2k 1k
. -1 a
- psin [T_' ’ (3.2.22)
Zk]
2p 2 I
- "o 1 P T3 i¢ 2_,2 172 1k
T, I 7 =7 z (-1) 2e""cos¢(a ﬂk) - 5
1 "2 k=1 P =t7)
2k 1k
2 ,2 12( a° -1 a
+ U1-%k) [7;--3]+3zks1n [[—J ' (3.2.23)
14 2k
2k
where the notation
= =1 2, 2j1/2_ 2,212
%k= gk(a)—i {[(p+a) +zk] [(p a) +zk] } ' (3.2.24)

has been introduced along with a similar interpretation for

e .
2k

3.2.3 ELASTIC FIELD FOR ISOTROPY

To obtain the isotropic solution, a limiting form of
the transversely isotropic solution should be taken. For the

isotropic case the material parameters 11,72,73,m1,m2—)1,
2

. _l-V — - E

while H T and A44—A66——_2(1+v)'

isotropic limits are as follows:

Thus, the relations for the
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Llim i vy, _ (1-2v) f (2)+2f’ (2)

= f(z )= — ’
71+7291 W&y mk 1 k 2(1-v)

2(1-v)f(z)=-2f' (2)

r(z,)= 2(1-) ’

2
lim Z

(m -1)
71972—)1

1

2 2
7, (14m )7, £(z )= {1¥2V)E(2)42f’ (2)
7k(mk-1)

2
lim z

- ’
11—)72—)1 k=1 2(1 V)

2
lim 1 Y (-1)¥'y £(z,)= f(z)-2f" (2) ,
11-)12—)1 1 "2 k=

2

lim Y (-1 1)*'f (2, )=- 2f' (2) , (3.2.25)
70721 3(1 72 k=

1 2

where f’ (z) denotes the derivative of f(z).

Application of the above formulae to the results obtained in

(3.2.18-3.2.23) yields the following isotropic elastic

field:
..____(1+V)p° ig] 2 2 vl 2 a
U =——smgiPcose e 7| (E-a) T (1-2v) [1+ 5 _2_2]
) 2
2,2 2 .
a”(¢-a%)) . 0
8§ 1 1 2_ 2,172(5 "1
-3 TN J-(1-2v)p51n [7— ]+(1-2v)a(%-a ) [5 —
(e -e ) 2/ a
2° 2 i
I%
-2- l —]+(1 2v)sin” [%—] [%az- %p2+222]
£ 2
2
2,172(4 a° 2 . -1{a
+z (a? =) 3 =3 ~4|*427sin |t (3.2.26)
21 5
2(1+v)p0 2 1o o2
V= "3mE P°°S¢{(° =£) 7" (1-2v) [3_ ?]

2
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2a%(#2-a?)
-—1 |- (1--21))3zsin’1 2
02 (82-22) T
2'2 1 2
2p ¢ 2
_ %o 2__2,1/271 2 _a
0, =—F-Cos¢ (22 a’) 7 (1+2v) [1+ 3 2]+
2 [l
2
2 ef(a"’-e;") 4 az(ef-az) 4 aazz(£§+2f)
372 ,2.2 3 2 ,2.2 3 2 2,3
(82 81) (22-21) (22-21)

-(1+2v) psin™’ [%—]} .
2

po
2 2n

2_,2 2, 2,2 2
4 a =L 2 21(0, -81) 4 a (El-a ) _a
3 ,2 3 (82-22)2 3 2_j,2,2 3
2 1 2 1

e
-(1-2v)psin”} [%]} +cos¢[(£§-az) l’zz‘-[ (1-2v) [

2 2

a?‘] ga’2® 8 ° (6-P7) 35

2,,2 .2 3 2 -3
22(22-21) (ea-ei)

. . [
o =__e21¢{(e'l¢-isin¢) [(ez—az)uze—l[(l-m)) [1+%

2

a
1—2-—2

1

(3.2.27)

(3.2.28)

-(1-2v)psin"(%—]]} , (3.2.29)
2

2
2 2 1/221[ 2 a2 4 21
1- —_— 3

-a) e —_—
2 ] 3 82-82 22-82
2 1 2 1

2p, {
o =——cos¢{ (£

z T

£2 (a®-12) a®(ei-a®)
—_— —_— o+
2,2 3

2
(e2-¢2)
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2_2,,2,,2
a“z (22+21)
)3

2_,2
(82-21

(3.2.30)



4 2 .2 2 2,2
_2po i¢ 2 2 1201 |P 78722 4z7t,
T3 12e cos¢(a -e1 2 JENERE - (82-22)3

P (2 1) 2 1

2 ,2,1/2 a2 2a2 -1{a

-(a -81) [1-' -—2-] [3+ > 2) +3zsin (-2—-] . (3.2.31)
¢ L°=8 2
2 2 1

Here 81 and 22 are defined by (3.2.15).
3.2.4 DISCUSSION AND NUMERICAL RESULTS

The complete solution for displacements and stresses,
as can be seen from the above, is obtained in terms of just
two distorted length parameters 21 and 22 . Their
introduction, for the first time, was found in the work of
Fabrikant [16], where some frequently used relationships
between g(a) and ezuu are given. They allow the
three-dimensional distance between the point (po,¢o,0) on

the surface of a half-space and the interior point (p,¢,2)

to be written in two-dimensional form, as follows:

P +p2-2pp cos(¢-¢ )+z°
_ 2 2 - -
= (P )+ (P ) =28 (p )¢, (p)cos(¢=9¢ ) ,

_ 2 2 .2, 2,2
where, & (p )¢, (p))=pp, + Ll (P )+ (P )=p"+p_+2". (3.2.32)

Since the point force solutions are given in terms of
inverse powers of the distance from the point force to an
interior point, the need for use of these parameters in

developing closed form solutions to half-space problems
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arises naturally. The solution for distributed loading can
be obtained by quadrature. The ability to write the
three-dimensional distance in a two-dimensional form allows
the integrals for the potential functions to be evaluated in
closed form expressions of elementary functions containing
El(a) and Zz(a) as parameters [e.g. see eg.(3.2.7), where
the argument a arises because of the limits of integration].

The expressions for the elastic field obtained here are
in compact complex notation. Their separation, which depends
only on the complex exponential ein¢ as a multiplying
factor, can be done in a simple manner by using Euler’s
identity.

It is important to point out that the expressions
derived here are easily evaluated anywhere in the half
space, for example, for z=0 the identities can be used, i.e.

lim El(a) = min(a,p) , lim Ea(a) = max(a,p) , (3.2.33)
250 z-0

where min(a,p) implies the minimum of the two values and
max(a,p) the maximum.

The surface values can be readily determined and be
verified with the boundary conditions of the problem. Since
the identities in (3.2.33) are equally valid for Bik(a) and
£2k(a), because 2z-50 implies zk=z/7k—)o as well, then on the
plane =2=0 the stress and displacement components for
isotropic and transversely isotropic cases are the same,

except for differences in elastic constants. Therefore the
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elastic field on the plane z=0 is presented here only for
isotropic case. In the results to follow, the first
expression of each component corresponds to the case of p<a,

while the second gives the result for p>a.

P, (1+v) (1-2v)

= i¢_ 22 12
u= AT [p cos¢ e 3a+ 2p],
p°(1+v) (1-2v) ig 2 2,172 a 2 a° . -1{a
u= STE pcos¢ e (p™=a”) 3(1+ 3 ;] -psin [3)
2
2 2,12(1 la . -1fa} (2 2 1.2
+a(p-a’) [5 -3 ;3]+51n [3] [-50. = 5P ]}, (3.2.34)
8p (1-—v)
W =———pcos¢ (a’~ p°)'? ,
w =0 , (3.2.35)
crl=-(1+ 2V)popcos¢ ’
2p _(1+2v) 2
_ Yo - 2_ 2,12 a 2 a
o, = vos¢[(p a’) p[1+ T 2]
p -a
-psin'l[%]] , (3.2.36)
02=0 '
2p (1-2v) .. . 2
o L2119, -1¢_ . _. 2_ 2,172 a 2 _a
o, = e {(e 151n¢)[(p a”) p[1+ 3 p?‘-az

2 2
-psin"1 [%]]+cos¢[(p2—a2)1/2 g[1- 2-‘1—2 + —g— za 2]
p P p°-a

-psin”[%]]} , (3.2.37)
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o _=-ppcos¢ ,

o —2p°c05¢ (p°=-a®)? &1+ 2 a’ -psin”' |2 (3.2.38)
z T P 3 2 2P p d e
p°-a
T =0 , for p > 0 (3.2.39)

It can be seen that the boundary conditions in (3.2.1)
have been identically satisfied. Also note that the first
expression in (3.2.35) is equivalent to the one obtained in

(3.2.11) (as it should be). And by taking into account that,

_1-v°?

nE !

for the isotropic case H there will be a complete
coincidence.

The evaluation of the opening-mode stress intensity
factor K, may be done by substituting second of the
expressions for o, obtained in (3.2.38) into the formula
defined in (2.37). It results in

4p a®

K,= _ cos¢ . (3.2.40)
3nv2a

It is interesting to note that the same result will be
obtained by using the alternative expression for the stress
intensity factor defined in (2.46) and the first expression
for normal displacement component defined in (3.2.35). As
may be seen the expression in (3.2.35) looks simpler than
the one in (3.2.38). Also it enables one to verify the
result in (3.2.40), which is in agreement with the result
given in Shah and Kobayashi [31].

At this stage of the discussion, the elastic field for
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transverse isotropy in the case of a slightly different
linear normal loading, namely, oz=-popsin¢, will be
presented. The reason for doing that is quite interesting

and important and the explanation will follow.

& 9, i¢ -1{ a 2 _ 2 1/"211: 2 a°
u=Hpoz -1 psing e psin [B—J-(ea-a ) e——(1+ 3 —-2—]
k=1 kK 2k 2k 2
2k
I 2?2
. 2 2,172(5 "1k 1 "1 . -1 a 2.2 1.2 2
ll:a(EZk a ) [-2- ? -2- 3 1—2-] +s1n (2:] ('3—0 -2-p +22k]]},
zk £
(3.2.41)
4Hp 2 m 2
_ o _ . k 2_p2  172(,_ a’]_ Lo-1 a
W o=— psm¢zm _1[(a Blk) [3 > ] 32k51n (e ]],
k=1 k £ 2k
2k
(3.2.42)
2 2
27 =-(1+m )y ¢ 2
. k k’'"3|,,2 2,1/2 1k 2 a
0. =8A Hp sing¢g — (& =-a”) [1+ = ]
166 0 k; 7, (m =1} [ 2k T, @ -2
2k 1k
- psin'l[e—a—-] , (3.2.43)
2k
2i¢ & 7, -i¢ 2 2,1/2 1k
02=—2A66Hpoe z-m (1e “"+icos¢) (£2k—a) B_[l
k=1 k 2k
2 a® -1{ a 2 2 l/zelk
+ 3 BT] - psin [Z_] +s1n¢ (EZR-a ) 2—[1
. 2k’ | 2k
2 2
2a 8 a . -1 a
2k 2k 1k
2p 2 {4 2
o_. 1 k+1 2 2,1/21k 2 a
O =——s1in¢— (=1)" 7 | (£ =a%) —[1+ = ]
z 0 v, kzl k[ 2 &, 3 e:k_ fk
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- psin™ -l,-“—] , (3.2.45)
2k
2p0 1 & kel i¢ 2,2 (172 :k
T 3w v =% Z(‘l) 2e7"sing(a-t ) 2.2 ,2
1 ‘2 k=t P (EZK-P“)

2 2. 1s2( a° -1 a
+ i[(a =) — = 3[+32z sin [—] . (3.2.46)

1k IE Kk Ezk

2k

Note: To obtain the stress and displacement components for
this problem some changes in expressions (3.2.18-3.2.23) had
to be done, namely, in real components w, o, O and in the
complex component T, everywhere cos¢ had to be replaced by
sing and sin¢g by =-cos¢, while in complex components u and
T the same replacements had to be done, follecwed by the
multiplication of each component by i.

Now, when the results for both cases of loading, i.e.
for -popcos¢ and -popsin¢ are Kknown, there arises quite
reasonable question. Why was the problem not solved from the
beginning, say for the linear normal 1loading such as
crz=-popei¢ ? It could be done, but the resulting elastic
field would have no meaning, since there is no way to
achieve (by any means) the separation of the components such
as u, o, and T, in order to obtain the correct answer. The
reason is, bacause they are complex (e.g. u=ux+iuy) and the
loading -popei¢ is complex itself. What this means can be
demonstrated by the following example for the u component.

If (3.2.41) multiply by i and then add to it (3.2.18), it

will result in
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., 2 7 14 2
u=Hpope21¢z — f—l [psin 1[£_¢3._]_(£§k_a2)1/2 735[14-% _c_z_]] .
k=1 "k 2k

(3.2.47)

It is a displacement component u for the case of the loading
az=-popei¢. After its separation (using Euler’s identity)
there should be ultimately a complete correspondence between
the real part of (3.2.47) and the whole (3.2.18), and the
imaginary part of (3.2.47) and the whole (3.2.41). The
observation shows that it is not the case at all. Thus the
conclusion is, that the solution tc the problem with the
linear normal 1loading such as -popei¢ will not give any
reasonable answer to the question of stress and displacement
components.

As a final point, recall the problem of a penny-shaped
crack in an isotropic body under uniform pressure, which was
mentioned in the introduction. According to Fabrikant [16]
(the notations used by Fabrikant, except for Poisson’s ratio
v, vere transformed into the ones used by Sneddon) the
expressions for radial and tangential stresses on the plane

Z=0 and p>1 should read:

>

Zp{ [ \ ]

0 1 [ 1 1[ 1 1 v =1 1)
o _=—g——-—|V|1l = =|+ Z|1 + =|[=(v + F)sin” |=]|} ,
r n 2 1/2 2

(p*-1) 2 2 PA}

=)
v

pr [ \ y]

_“Fo 1 ( 1 1[ 1 1, . -1(1)

o Vil + =|+ 5|1 - =—||=-(v + %) sin [—- .
¥ nl(pz_l)uz- o2 2 2 pJ}

(3.2.48)
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Sneddon [20] obtained: (for z=0 and p>1)

2p 7
(] 1 1 . =11
o= - (v + 3)sin [—] '
r o m _(pz__ 1)1/2 2 P ]
2p. [
0 2V 1 . ~1(1
= - + = = . 3.2.49
T (% 1)1? (v +3g)sin [P] ( )

The expressions in (3.2.49) are presented in reference [20)
at the end of page 495, with the only difference being in
the notation for Poisson’s ratio. It is done so, in order to
avoid any misconceptions, since Sneddon in his notation used
0 for both stresses and Poisson’s ratio. Sneddon also gives
an equation for [a -0

19] After evaluation of the

integrals in the brackets, it was found that, when p>1 the

~1/2
'

bracket has the value =-p 2(p°-1)7"%, and not - (p%-1)
as it is given there. With the correct value, namely
2%-1) 712,

and o, as defined by (3.2.48). Also, there is a missing

it results in the same expressions for o,

negative sign at the beginning of the right side of the
equation for [o —crﬂ]z -

Numerical computaticns were performed wusing (3.2.19,
3.2.21, 3.2.27 and 3,2.30) in order to illustrate the
influence of anisotropy and location on the normal
displacement and stress distribution. The numerical values
assigned to the elastic constants for a transversely
isotropic body were A“=A66=1, A“=150, A33=25, A”=56.25.

With the help of the identities given in (2.29, 2.35) and
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the following expressions

2 1/72
=Mt -—
7, Mt (M2 a/a )" M

2
(A, A_-A° =22 A, )
_V"M1%%33 13 13 44 (3.2.50)

'
2A11A4 4

the rest of the elastic constants may be easily deternmined.

Figures (3.2-3.5) illustrate the manner in which the
depth and the distance from the periphery of the crack
influence the displacements and stresses. Also it may be
noted the influence of anisotropy on planes close to the
plane z=0, which makes the wvalues of displacement and stress
in Figs.3.2 and 3.3 slightly less than the respective values
in Figs.3.4 and 3.5. Farther away from the plane 2z=0 they

are almost the same and tend to zero.

0.15 . : : ' .
0.1} i
005} 4

§ ) S—— RN .
005+ _
01} i
015 - - . : — !

p/a

Fig.3.2 Normal displacement distribution in transversely
isotropic body for different z: (—2z=0.0; -—2=0.1; -'2=0.5;
—-z=1.5).
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0.4} _-.Z=l.5 ‘:
0.2+ i
-
i

Fig.3 .3 Normal stress distribution in transversely isotropic

body for different z:

(—z2=0.0; --2=0.1;

--2=0.5;

-=2=1.5).

0- ‘5 L ¥ A i T
-2=0.0
o1} r& -
~z=0.1
.2=0.5
-z=1.5
0.05f - -
o . fniaena
N 0 - T
-0.05} .
-0.1
-0.15 . . . . ;
3 2 -1 0 1 2
p/a

Fig.3 .4 Normal displacement distribution in
(—2=0.0; --2=0.1;

for dAifferent z:

--2=0.5;
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ox
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Fig.3.5 Normal stress distribution in isotropic body for

different z: (—2=0.0; --2=0.1; --2=0.5; --2=1.5).

3.3 ELASTIC FIELD OF INTERNAL CIRCULAR CRACK UNDER LINEAR

SHEAR LOADING

Consider a transversely isotropic elastic space

weakened by an internal circular crack of radius a in the

plane z=0, with linear shear loading applied to the crack

faces. The word "linear" means that the magnitude of loading

is a linear function of the coordinates. The cylindrical

coordinates (p,¢,z) are adopted to locate points inside the

half-space 2z>0. The problem under consideration may be

classified as an external mixed BVP and can be reformulated
for a half-space.

58



Consider a transversely isotropic elastic half-space

z=z0, with the normal traction oz=0 all over the plane z=0. A

complex tangential displacement u=0 outside a circle p=a,

while the 1linear shear loading 'cz=—'c°(p,¢) is prescribed

inside the circle. The

boundary conditions is:

c =0, for
z

u=0 , for
T == [t?pel¢+t?1pe°l¢] ] for

mathematical statement of the

0sp<o,o , O=¢<2m ,
asp<eo , Os¢<2m ,
O=p<a , O=¢<2m . (3.3.1)

0 ] 0 .
Here T, and T, are any complex constants. Say ‘L"=A+.1.B,

1:(_’1=C+iD, where A, B, C and D are real.

The vector representation of the above-stated loading

is given below. Fig.3.6 represents the axisymmetric part of

¢

the 1loading, i.e. 'c(;pel

i¢

. o] -
part, 1i.e. T_pe .

b Y ;B},e“’b

and Fig.3.7 its non-axisymmetric

(£¢)

=< 1

Fig.3.6 Axisymmetric part of loading.
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Fig.3.7 Nonaxisymmetric part of loading.

This type of condition may occur as an auxiliary
problem when we have torsion of a cracked body, combined
with various thermoelastic non-axisymmetric problems of heat

flow.

3.3.1 POTENTIAL FUNCTIONS

It is known (Fabrikant [16]) that in the case of a

planar crack under arbitrary shear loading, the complete

solution can be expressed through the three potential

functions,
Fi= - mrmoT (A%, 4B, )
1 4n(m1—1) 1 1/ !
F= - 1 (AY +Ax_)
2 am(m_-1) XX, )
i —_ -
F= g7 (Ax,-Ax)) , where x=x(p,¢,2), k=1,2,3.  (3.3.2)

Here x 1is a complex harmonic function which is
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represented as:

2w a
x(p0,2) = [ [ In(R#+ 2) ulp, 86,8084, (3.3.3)
10 I}
where —[p p-2pp cos(¢— ¢;)+z‘°‘]"2 and u(po,¢0) is the

complex tangential displacement inside the crack.

Assume the existence of the expansion in the form

T(p,8) =), (pre™? , (3.3.4)
K=-t
where T is the kth harmonic.

It has been found convenient to introduce positive
harmonics as nM(p), where n=0,1,2,..., and zero and
negative harmonics as T o1 (p), where n=1,2,3,...

The solution of integro-differential equation which
defines the complex tangential displacements inside the

crack directly in terms of the prescribed shear 1loading is

given as (Fabrikant [16])

a @

n+1 de tn (p )pmadpo
n+1(p) - 2G1p 2n+2(a: p2)1/2 (a: p2)1/2
p
a @
2ne -(2n+1)p
n+1 da

+ 2G2p J 2n+2(m -p ) [ (mz_p(z))ixz n+1(p )p dp

o)

for n=0,1,2, ...

(3.3.5)
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a &

(P )P dP
- n-1 da -n+1
U (p) = ZGlp J m2n+2( 2. 1/2 J 2, 1/2

€ =p) (a? =Py}
p
a @
-1V z2=2n02 (P, )p dp,
+ 2G2pn-1|:J (fl: lia: 22111;:/32 az J nuz 90 4k (a2 p2)1/2:|
a” (e"=p7) (e”-p,)
P
(3.3.6)
where
a
K= a2 t"(a®-t?) 172 t)-(2n+1) £ % (t) {at
n— (a ) n+1( ) ( n 1 n+1
0
for n=1,2,3,...
(3.3.7)

Here the complex tangential displacement u is represented in

terms of its harmonics as:

®

u(p,¢) ___z (p)el(n+l)¢ +Z L ei(n-1)¢ . (3.3.8)

Utilizing the 1last condition of (3.3.1) in (3.3.5) and

(3.3.6) gives for u and u, harmonics the following results

_ 4 o _ =0 2_ 2,172
u, = 3(6T, =G, T)p(a"- p7)
2 2
G -G
_4 2 _0 2_ 2,172
u-i- 3 ——G_l-— 'C_lp(a p ) . (303'9)
It is interesting to note that the <t° harmonic

-1

generates not only the corresponding u_, harmonic but also
it can, in principle, generate the u, harmonic. In this

particular case, it turns out to be zero. If substitute
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‘t1=?ip in (3.3.5) for n=2, then it yields

|
o
.

2,172 2,172 (3.3.10)

a a:—o 3 2 2

3J de J’t P (48°=5p )dp
«° (a®-p%) (a? =P,)

p

According to (3.3.8), the tangential displacement will be

-G
u(P,¢)=%[(G"c G )el¢ G z_c(_xle ¢]p(a p2)1/2
1

(3.3.11)

The subsequent substitution of (3.3.11) in (3.3.3) will

result in

2

T a
x(P:¢,Z)=%I [1n(R +Z) (G T, —G T )el¢
00

+ 42 £° e‘l"’o] (a® pa)"zpzdp dé, - (3.3.12)

This type of integral obtained in (3.3.12) was already

evaluated (Fabrikant [16]) and hence y becomes

c2-¢?
-G
2_0

x(p.0,2) [ (606 e’ + ——G—r_le'”’]pl(p,z). (3.3.13)
1

where

I(p,2)=(a® ez)“z[ Za*+7p°- Ee -ai

2(8a’+ 4a°C+ 38:)]

15p°
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5
+ z(4d°-3p%+ 42%)sin™ (%-] - 16"2 . (3.3.14)
2 15p

The quantities 21 and 22 are defined as in (3.2.15).
According to (3.3.2), after application of the
differential operators defined in (3.2.11) the three

potential functions will take the form:

G, -G [ G, +G T
—- 1 2 (XY 1 2 . 8T
F= _—"—_12(m1-1) A[21+pap]+ ——Gl (Ccosz¢+Ds.1n2¢)pap '
G, -G | G +G 7
= 12 al 1 "2 . 5L
Fz— 5 =17 (ma-l) A[21+p%]+ T (CCOSZ¢+DSln2¢)pap ,
G +G G -G
=1 2 6T} _ "1 "2 . _ a1
F, 13 [B[21+p53] —G1 (Csin2¢ Dcosz¢)papJ . (3.3.15)

3.3.2 COMPLETE ELASTIC FIELD

The elastic field resulting from the shear loading can
be evaluated by performing appropriate differentiation of
the potential functions (3.3.15), which had to be
substituted into the expressions (2.27) and (2.32). The
derivatives of 1I(p,z) are given in Appendix A3.3. The
elastic constants and identities defined by (2.35) and
(2.36) were used in the results to follow. The elastic field
is:

2 1 G1+G2
ka-l Afl(zk)+ —Gi—[(Ccoszes + 051n2¢)f2(zk)
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G, -G

-1(Csin2¢ - Dcosz¢)f3(zk)]} - 2% ei¢{iBfl(za)+ Glz[(Ccosz¢
+ Dsin2¢)f3(z§ - i(Csin2¢ - Dcosz¢)f2(gﬂ]} ' (3.3.16)
2 m, G,*G, .
w=H7172kZ1————-——(mk_1)n[qu(zk)- g, (Ccos2¢ + 051n2¢)f5(zk)] '
(3.3.17)
16A_Hy 7 2 7-(1 + m )o°
_ T %6 %172 K k! %3
01 3 Z 2 -1 [AfG(zk)
k=1 wk(mk )
€,+G, .
- G1 (Ccos2¢ + D51n2¢)f7(zk)] ' (3.3.18)
16A_ Hy 7 L, 2
_ 66 1°2 21i¢ 1
7= 3 e Zm -1 {AfT(Zk)
K=1 K
G1+G
- —= 2[(0cosz¢ + Dsin2¢) £ _(z ) - i(Csin2¢ - Dcosz¢)f9(z)]
1 k
. G -G
- %73 e21¢{isf7(z3) - 1G12[(Ccosz¢ + Dsin2¢)f (z,)
- i(Csin2¢ - Dcosz¢)f8(z3)]} ' (3.3.19)
47 7 2
_ 172 k4
) k;< 1) [Afﬁ(zk)
G +G
- == 2(Ccos2¢ + Dsin2¢)f7(zk)] , (3.3.20)

1

¥,7,

_ i¢ 2 (_1))(4»1
W EEEy C L g Me
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G +G

+ ’Giz[(Ccosz¢+Dsin2¢)f“(zk)-i(Csin2¢-Dcosz¢)flz(zk)
4 ; G -G
_ .3 _1¢]. 1 2 :
T e {1Bfm(z3) + G1 [(CcosZcp + 051n2¢)f12(za)
- i(Csin2¢ - Dcosz¢)f“(zs)]} . (3.3.21)
Here
¢2
,
fl(z) = p(az- 8?)”2 —; - 3] + 3pzsin'1[%-] ' (3.3.22)
\ p 2
2 4 2,2
£ (2) =p(az-ez)vzl_”_l-;f_l_f%_“_‘m___e_e_‘-3]
2 5 15 15
2 1 ‘ pa p4 p4 p4 2
8 a 3 -1{a
+ 15 + 3P2s81n [2_] ’ (3.3.23)
[o] 2
2 4 2,2
1] a“? 4
2 2,17211 "1 1 1 4 1 8 a 3
£f (z) = p(a™= &) [—-—+——+-—- +-———-—-—]
1 2 5 5 15 2
3 2 p‘ p" p4
8 a° 3 -1{a
- 15 3 + 3P2sin [8_] ' (3.3.24)
o] 2
2
£,(z) = a(ez-az)"2[4-6-—;]-(§a2-2p2+4z"‘)sin" [%-], (3.3.25)
a 2
2 2
2 2,172 e1 221 2_ .. -1{a
a L 2
2
2 2,172 a® -1{a
f6(z) = (a"- 81) [3 - ] - 3zsin [T] ’ (3.3.27)
- 2 2
2
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- 2_ 2,172 1
f7(z) (a 21) 2(22_ 82)
pL= 5
2 2 2 2 2 2
£ (2) = (02_22)1/2[2 1 £1(£2+21X 1 21(3€1+4a )
8 1 2 2 2,,2 ,2 5 4
p (& -¢t) P
a 5
_8a 8 a” _3 tfa
’5‘7] 5 3 " 32sin [T] '
P P 2
2,,2,,2 2 2 2
£ (2) = (a2—22)“2[-3- 1 e +L) L1 ¢1 (3¢ +4a%)
9 1 2 2 2,,2 ,2 5 4
p(e -t)) P
Y
L N
5 5 a4 2 T )
o°) p* 2
£ (z) = 2psin”t(%)-(2-a?) 12 il 2 + 4.2
10 P [ 2 ) 3 2 2] !
\ "2 2 S/
2 1
£ (z) = Sln1a__(£2_21/2211__2_9_2+i a®
11 p ? 2~ ) I 3,2 3 2 2] !
2 2 4 =L
2 2 1
-1{a 2 2,1s2 el 2 a°
f12(z) = psin [7—] - (&€= a) [1 + 3 ——] ,
2 2

the notations 21 and 82 are defined in (3.2.15).

3.3.3 ELASTIC FIELD FOR ISOTROPY

(3.3.28)

(3.3.29)

(3.3.30)

(3.3.31)

(3.3.32)

(3.3.33)

The expressions for the stress and displacement field

for isotropy are now obtained by taking a limiting form of

the expressions

obtained before.

(3.3.16-3.3.21) for transverse

For

isotropy
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limiting forms of the sums for shear loading are given as:

lim & 1 ’
(A FE Z m-1 f(2)==f(z) - 2(1 ) £ (z)

lim i m, £z )={172V) £ (2)-2f" (2)
¥ v, 1 £ 7k(mk-1) K 2(1-v) !
2 2—(1+m 2
lim v, W 7g £z ) 2(1HV) £(2) +2£ (2)
g ’
T2 v -1 W& 7:(mk_1) k 2(1-v)

. 2
lim 1 k+1

- (=1)" "f(z )=- zf’'(z) ,

71—) 72—) 1 71 72 kzl k

lim 1 & (-nk?
71-) 72—> 1 ¥y, -7 (4

f(zk)=-f(z)—zf'(z) ' (3.3.34)
1 %2 k=1

where f’(z) denotes the derivative of f(z).

Using the expressions (3.3.34) along with the isotropic

1-1° A =p - F
nE ' 44 66 2(1+v)’

field for linear shear loading becomes:

v

limits /3—1+ H= the isotropic elastic

u =2 ,ITEV) ei¢{[(1-v)A + iB + 2_(_1_&(0 + iD)e zi¢]f:(z)

+ -;-[Af;(z) + %[(Ccoquﬁ + Dsin2¢)f;(z)
- i(Csin2¢ - DcoquS)f:(z)]]} , (3.3.35)
w o= ,11—;” {(I-ZV)Af;(z) + M(Ccosw + Dsin2¢) £, (z)
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- z[Af;(z) + -z—f-;(cCosch + Dsin2¢)f;(z)]} , (3.3.36)

Hln

g =

. {(1-v)Af;(z) + g-éf—:"'—)(moszga + Dsin2¢)f;(z)

Z
2

| |

Af;(z) - E%;(Ccosz¢ + Dsin2¢)f;(2)]} ' (3.3.37)
0;% e2i¢{[(1-v)A + iB]f;(z) + 2_2(._17;_‘1)_@ + iD)e“Ziqsf;(z)
%[Af (z) + —3—[(Ccosz¢ + D51n2¢)f ,(2)

- i(Csin2¢ - Dcosz¢)f;(z)]]} , (3.3.38)

N

o=1 z[Af;(z) - 52-(Ccos2¢ + Dsin2¢)f:0(z)] , (3.3.39)
t==2 e[ (a + iB) + =2 (c + ip)e219]¢’

Com 3=v )e £ (2)
2”[(00052¢ + Dsm2¢)f (z) - i(Csin2¢ - Dcos2¢)f (z)]

+ z[[A + E%;(Ccosz¢ + Dsin2¢)]f;(z)

- s2(c - iD)e21¢f:4(z)]} . (3.3.40)
Here
ez
f _ 22 1/2 2 -2 ._-1{a .3,
(z)= p(a ) ( 3 pz] pzsin [T;] ’ (3.3.41)
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4
o 2 2.1/2 1 4 . a
f (2)=(-a") —[2+ = ]-2p51n [——]
2 2 £ 3 g2 42 t,) "’
2 1
f'(z)~(£2—a2)“2 ¢ Vl_ 2 a° + 4 aZ] psin™! [a]
= T 5 = - JF |
3 2 A %
2 2 1
£ (2)=(£~a%)'"? e’ 1+ 2 &) psin (&
4 2 IR 3 —2) P ) '
2 2 2
2
2
. _ 2_ 212, 1) _,2 2 2 2, s -1{a_
fs(z)—a(ll2 a’) [2 3a2] (§a p +227)sin [e ] P

I
. e 2_21/21_1 _]_._1 12.-1a_
fé(z)— a(£2 a’) [2 2 + 3 )+ 5P Sin [ 2] '

f;(z)=(a2-ef) ”2(4-

2,172 4

f;(z)=-(a2—zf,1 -

2
2 2

22 £

4 . -1({a
3 ] 4zsin [T] '

24
1

2,,2 2,
p (&=L

1,2 2,2,,2, ,2
. 21,2 2172 Ei 16 8182 g ¢ £2(21+£2)
fg(z)_ﬁ(ez—a) €13 72 2.3 3 2_,2,3
2 (82-21) (82-21)
G aesoi(a
(82-22)2 "4J +4s1n ('Z:] '
2 N
-2 2 ,2 2,2
* 1,2 2 1/281 8 81(322-81)“ -21)
fm(z)=b-(82-a ) T3 2 2.3
2 (¢=-2£7)
- 2 1
]
_a b
3 (l‘;-lf)z
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(3.3.42)

(3.3.43)

(3.3.44)

(3.3.45)

(3.3.46)

(3.3.47)

(3.3.48)

(3.3.49)

(3.3.50)



22, 2 ,2 2 2,2
£ (2)=1(P-?)17? fl 16 LY (a-t) 4 t (2a-t))
11 P2 22 3 (22-82)3 3 (£2-¢2)2
2 1 2 1
e? I
8 1 4 "1 —~tf{a
+ E —2'—-5—'7- + 3 -3 +2] -251n (T] ’ (3.3-51)
o} (82—31) 2
£) (2)=X(P-a®) 12 G _o® ~4%42)-28in" (@ 3.3.52
12 p\2 22322-22 2 nf;' (3.3.52)
2 1 2
4 at’(a®-1?) 4at®
. — (A2 p2y172 1|16 2 10 1
£5(2)=(a"-8) T |”3 2_,2.3 2 2.2 ' (3.3.53)
2 (e5-27) (e--27)
2 1 2 17 4
] 3
. 8,2 ,21/2 1 a
f14(z)—§(a 21) e—' -_—, (3.3-54)

2 2 2
2 £ (£5-L7)
the notations 21 and 22 are defined in (3.2.15).

3.3.4 DISCUSSION AND NUMERICAL RESULTS

As in the previous problem the complete solution for
this non-axisymmetric problem is also presented in terms of
just two distorted length parameters ¢ and 22. The
expressions for the elastic field are in compact complex
notation and their separation can be done in a simple manner
by using Euler’s identity. With help of equation (3.2.33)
the surface values can he determined and verified with the
boundary conditions of the problem. The elastic field on the

plane 2z=0 will be presented here only for the isotropic

case. In the results to follow, the first expression of each
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component corresponds to the case of p<a, while the second

gives the result for p>a.

2 . '
8(1-v7) 1., i¢ 2 o _-i¢ 2_ 2,172
37E [[A + —-——1B]e + 35 T_,e ]p(a P) ’

o, (3.3.55)

(1+v) (1-2v)
6E

2 2 1 . 2
[A(Za -3p7) - 5—_-5(CC052¢ + D51n2¢)3p] '

(1+§1)IE(:1-212) {A[3a(p2— )2 + (26%- 3p2)sin'1[g-]]

2—_]_'1)-(Ccosz¢ + Dsin2¢)3p°sin’ [%]} ) (3.3.56)

2 2 2
8 (1+v) [A 2a =-3p _ 2:?_V(cCoszdi + Dsin2¢)———£——-——]:
(

3n az_pz) 1/2 (az_pz) 172
o, (3.3.57)
- 8(1-v) 1 ..).2i0 p° 2 o _2a®-3p°
3n [[A + 1-le]e (az_pz)x/z 2-v r-i(az_pz)uz ’
0, (3.3.58)
o, for p>0 (3.3.59)
_[t?pem + t‘_’lpe’m] ,

2 o i¢ o -i¢ 2_ 2.1/2 a 2a?
37 {[tle + T_e ][(p a”) 3[3 + > "2']

2,172

. S
- 3psin"[9]] + 2L P00 a } : (3.3.60)
P 3, 2
P’ (p°=a®)
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Thus, the boundary conditions in (3.3.1) have been
identically satisfied. Also, it should be noted that the
first expression in (3.3.55) is equivalent to (3.3.11), (if
the expressions for G, and G, given in (2.36), and that for

1-v° E

=A

nE ' A44 66=2(1+V)’ are

the isotropic case 71,72,15»1, H
taken into account).

The SIF K2 and K3 can be evaluated by using the second
expression for T, obtained in (3.3.60) and the expression

for the complex SIF for mixed mode II and III introduced in

(2.49). The result is

3/2

= (24a) 2 .
K2 __35___A + E:E(Ccosz¢ + Dsin2¢) ' (3.3.61)
3/2¢
_ (2a) 2(1-v) _ .
K3— T_B + —ET_T)—-(DCOSZ¢ C51n2¢) ’ (3.3.62)

Here again, as in the previous problem for normal loading,
an alternative expression for evaluation »of mixed mode SIF
can be used. The substitution of the first expression for
the tangential displacement component obtained in (3.3.55)
into formulae (2.47) will ultimately give the same result
as in (3.3.61) and (3.3.62).

In Figs.3.8 and 3.9 are prescnted the graphs of the
variation of the dimensionless stress intensity factor along
the periphery of the crack. The value of 1 was assigned to
the real constants A,B,C and D. It can be seen that when
¢=22.5° the sliding mode SIF }% has maximum value, and

greater the value of Poisson’s ratio the greater is SIF.
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At the same 1location on the periphery of the crack the
tearing mode SIF K3 has the same value regardless of
Poisson’s ratio. When ¢=67.5° the picture 1is changing,
namely, K2 becomes independent on Poisson’s ratio, while K,
reaches its maximum and the smaller is Poisson’s ratio the

greater is value for K. This phenomenon repeats itself with

the period of 180°.

3.4 SUMMARY

The importance of the results obtained in this chapter
consist of the following. First, a complete solution to the
problems when the loading prescribed on the crack faces are
linear functions (in the case of shear it had both
axisymmetric and non-axisymmetric parts) was obtained.
Secondly, the results are in closed form and expressed in
terms of elementary functions, which makes their numerical
evaluation very easy. In early publications (Sneddon [20],
Westman [26]), even for the case of constant loading, the
results were expressed in terms of integrals containing
Bessel functions, making their numerical evaluation
difficult. And finally, the ability to have a complete
solution plays an indispensable role for the consideration
of interaction problems.

The expressions for SIF, which were presented in
Chapter 2, have been used and provided an absolute exactness

for the final results.
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The results obtained in this chapter can be used in the
stress analysis of various bodies with cracks subjected to
bending and/or torsion.

In Chapter 4, the attention will be focused on the

analysis of external circular crack problems.
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CHAPTER 4
EXTERNAL CIRCULAR CRACK PROBLEM

4.1 INTRODUCTORY REMARKS

As mentioned earlier, the great majority of solved
crack problems deal with the stresses and displacements in
the plane z=0 only. There are just a few complete solutions
published: e.g. Sneddon [20], Elliott [25], Westman [26],
where explicit expressions are given for the field of
displacements and stresses for the simplest axisymmetric
problems (a circular punch and penny-shaped crack). The
explicit expressions for the field of displacements due to
an elliptical crack can be found in Kassir and Sih [15].
Knowledge of complete solutions 1is indispensable for
consideration of more complicated problems of crack
interactions, influence of external loads on cracks, etc. By
using the reciprocal theorem, many new results can be
obtained, 1like, for example, the stress intensity factors
due to an arbitrarily located force.

In Chapter 3, solution for two problems of a
penny-shaped crack was given. In Chapter 4 a new fundamental
solution to the problems of an external circular crack will
be presented. That is, all the relevant Green’s functions
will be given explicitly in terms of the elementary
functions to the problems of an external circular crack

under arbitrary normal and shear loading. A complete closed

77



form solution, with formulae for the field of all stresses
and displacements, to the problem of external circular crack
under arbitrary shear loading has become possible since the
recent discovery of a method of continuity solutions
(Fabrikant [32)). It was based on the use of the reciprocal
theorem to derive the continuation formula for the direct
relationship between the tangential stresses in the crack
neck in terms of the prescribed tractions t. This formula
allows one to obtain an exact closed-form solution in terms
of elementary functions to the governing integral equation
of an external circular crack in a transversely isotropic
elastic body. The solution to the governing integral
equation will be given by two different methods.

For the first time, a complete solution in terms of
elementary functions will be given to the two problems of a
transversely isotropic elastic space weakened by an external
circular crack subjected to an arbitrary normal and shear
loading. A complete field of displacements and stresses due
to a concentrated normal loading applied symmetrically to
crack faces is given for both transversely isotropic and
purely isotropic cases. The case of the isotropic body
weakened by an external circular crack is solved as a
limiting case of the transversely isotropic one. Some of the
results are given in a graphical form. In the case of a
concentrated shear loading applied antisymmetricaly to crack
faces a complete field is given only for the transversely

isotropic body. Part of the material presented in this
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chapter follows the paper by Fabrikant, Rubin and Karapetian
[33]. No similar results seem to have ever been reported in

the literature, even in the case of an isotropic body.

4.2 EXTERNAL CIRCULAR CRACK UNDER NORMAL LOAD: A COMPLETE

SOLUTION

Consider a transversely isotropic elastic space
weakened by a flat crack S in the plane z=0, with arbitrary

pressure p applied to the crack faces, Fig.4.1.

A\CRACK FACE 7 \4

\ M,
p T

Vol Loy

\! P(B,¢.)
Y

Y PE(L-P)3(¢:-4)
YZ

Fig.4.1 External circular crack under arbitrary normal load.

Due to symmetry, the problem can be formulated as
follows: find the solution to the set of differential
equations (2.24) for a half-space zz0, subject to the mixed

boundary conditions on the plane 2z=0:
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oz=-p(xIY)l fOI‘(X,y)ES; w=0, fOI‘(X,Y)éS,’
T =0, for ~w<(x,y)<w. (4.2.1)

z

4.2.1 GOVERNING EQUATIONS

The conditions (4.2.1) can be satisfied by a
representation in terms of one harmonic function. For this

type of problem, according to (2.33) the functions are:

Fl(z)=c1F(zl) ’ Fz(z)=c2F(zz) ' F3(2)=0- (4.2.2)

Expressions of the type F1 (z) and F (2‘1) , etc., everywhere
should be understood as F‘1 (x,y,2) and F(x,y, 21)
respectively. The substitution of (4.2.2) and the last of

expressions (2.32) in the third condition (4.2.1) yields:

c1=-c2’ar1/m1'zf2 ’ (4.2.3)

The function F can be represented as a potential of a simple
layer, i.e,
w(N)ds

F(P:¢:Z)EF(Z)=:J J R(M,N) ' (4.2.4)
S

where w stands for the crack face displacement w(x,y,0),
R(M,N) is the distance between the points M(p,¢,2z) and
N(r,¢,0), the integration is taken over the crack domain S.

Expression (4.2.4) satisfies the second condition

(4.2.1) identically, due to the well known property of the
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potential of a simple layer. Inside the crack the same

property gives:

aF
3z z=o=-2nw=—2nw(x,y,0) . (4.2.5)

Now expressions (4.2.2), (4.2.4), (4.2.5) and (2.27) give

the second equation for c, and c,:

-m]cl/yl—n5c2/12=1/2n . (4.2.6)

The constants c, and c, are determined from (4.2.3) and

(4.2.6) as
£ £
T Oy %~ T m@m 1) - (4.2.7)
The potential functions will be given by
7 £
F](Z)=" '21_[—(1“—1-_—17 F(ZI), F2(2)=- m F(ZZ). (4.2.8)

The substitution of (4.2.8) and (2.32) in the first

condition (4.2.1) leads to the governing integral equation:

N | w(N)ds
P(N)) 4n2HAJJ_—R(N0'N) ' (4.2.9)
s

where, as before, R(NO,N) stands for the distance between

two points NO and N, and both N,N e S. The identities

defined in (2.35) were used.
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4.2.2 GREEN’S FUNCTIONS FOR AN EXTERNAL CIRCULAR CRACK

Let a be the interior radius of the crack. The exact

solution of (4.2.9) can be found in Fabrikant [16] as

T o

2
2 p(p ?)  i(n
w—-ﬁH ————tan [ﬁ]podpodd’o ’ (4.2.10)
0 a

where

2,172

R=[p’+p.~2pp cos (¢-8,) 1'%, m=(p°-a®)'?(pZ-a")""?

(p o-a ) TJa .

(4.2.11)

The function F(p,¢,z), as defined by (4.2.4), must be
called the main potential function since both functions F
and F2 are available, once F is found. The substitution of
(4.2.10) in (4.2.4) allows to express the main potential

function as follows:

M o

F(p,9, ?S)--—H

O —_— N

JK(P,% 2ip, ®,)P(P,s9,) P, AP A%, , (4.2.12)
a

where the Green’s function K reads:

K(M,N )=K(p,¢,2ip +¢,)

T o

2
2 2
j J [‘/r /p -a]rdrdw (4.2.13)
R(N,N_ ) N ) aR(N,N) |R(M,N) ° T
0 a
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Here R(:,-) denotes the distance between respective points:
M(p,%,2), N(r,y,0), and No(po,¢o,0). Although the integral
in (4.2.13) is not computable in elementary functions, all
its derivatives can be expressed in elementary functions,
due to the fundamental integrals established in section 1.6

of Fabrikant [16]. It can be written:

9K __ 2m a5
3z R, N " [R(M,No)] ’ (4-2.14)
where

'=V£2—aan2-a2/a , (4.2.15)
]
2 0

and the contractions 21 and 22 everywhere stand for el(a)

and %(a) respectively, as they are defined by

2,172

b (£)=2{[ (p+t) *+2°] SR

-1 (p-t)3+2%)'%

L(E) =311 (p+t) 24271 P4 [ (p-t) 242717} (4.2.16)

Note that j tends to m, as defined by (4.2.11), for 2z-0 and

p>a. Expressions (4.2.12) and (4.2.14) allow one to write:

2M o®
95=-4HJ [ 1 __tan™ [—-——j——]p(p ¢ )p.dp d¢ (4.2.17)
3z R(M,N) R(M,N;) |7 o’ TolFo™ o™ o * o

0 a

The integral in (4.2.17), although 1looks difficult to
compute even for p=const/p2, can be expressed in elementary

functions for any polynomial loading. Using the equivalent
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representations through the f-operator (Fabrikant [16])

P ©
dp 2
8F dx P.9P, ( b's ]
<—=-81H £ pl(p..®) (4.2.18)
oz J (x*-p®)'"2 [ [p2-g® (x) 172 (PPo) " 0" 0
12 g(x)
1
Here
227172
g(x):x[l + — J . (4.2.19)
p =X

Using the change of variables x=%(t), t=g(x), expression

(4.2.18) can be rewritten as follows:

-] o0

de. (t) J p _dp e2(t)
3F__ 1 0 "o [ 1 ]
——=-8TH ¢ p(P., ). (4.2.20)
az J[pz_ef(t)]vz t(ps_tz)ue PP, 0
a

Since the function F vanishes at infinity, it can be written

from (4.2.20) in the form

2

F 06,28 HJdJ ¢ (t) J‘ P90, r[ef(t)] o )

P19,2)==8T Z p(p ,¢).
[pa-Ef(t) ]1/2 (pz_ta) 1727 PP 0

a

o

[+

(4.2.21)

One can proceed now with the remaining derivatives of
the Green’s function K, defined by (4.2.13). Differentiation

of (4.2.13) yields:

84



21T «
10 oi¥  _ [Vri-a®Vhi-a’
. . e "-re -1 0 rdrdy
AK(p,¢.z,po,¢o)-JJLr—ta“ [ aR(N,N)) }R(N'No) '
0 a

(4.2.22)

This integral can be computed by the following method:

2
_ dK
[2]

Thus the two-dimensional integral was replaced by a
one-dimensional integral. The integral in (4.2.23) can be

computed as indefinite, with the result

(pP=a?)1/? _
JA%dz{-"[%-tan“%- - - tan’— 2 m] (4.2.24)
q 0 () s (a -81)

Substitution of the upper and lower limits in (4.2.24), will

result in

(pz_az)va
2nfz - ) -
AR(p,,2ipy18,) = g tan 1132—' — - [tan 1 2 : 172
a-o ° s (a®-27)
2 2,172
-tan’lg‘ -tan’i(po-a ) 4.2.25
aj —a | (4.2.25)

where A is given by (2.26), j is defined by (4.2.15), and

g = pe—1¢_poe-l¢o , s = (ppoe-i(¢—¢°)_ a2)1/2 ’

_ —r a2y a2 - 2,172
RO—R(M,NO)—[p +p, 2pp0cos(¢ ¢0)+z ] . (4.2.26)
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The other derivatives, which will be needed for the complete

solution, are:

__@_2 K ( b,2; ¢ )=2n Z_t -1 ;)_ j 2"92 ) zz
822 P1@12iPy1 9, oan R 2 .2 82-22 2 d

R o/ z(R +37) ., R
(4.2.27)
pe ¢ - poei¢o (3
AK(p,¢,2ip,, ¢ ) =21 3 tan ['}:]2_]
R 0
(o)
3 pe1¢ -poel¢o pei¢
+ = .2[ _ - £ 2] , (4.2.28)
R +] R e -t
(p az)1/2 o ei¢o _
AZK(P:¢:ZIPO:¢O)=2"{_—:‘_T"—'[: + o-a ][tan"[ 2 sz 1/2)
qgs a s G
-1 (s z (3R--2%) : (p2-a®)'"*(a 32)”2 el%
o (] - e g« S
a’R] 0 q s (E-pp e 3 o’]
2 21i¢
- 2] [q - i ]
2 ~2|=p2 2,2, ,.2 ,2
R +3°LaR (E-8)) (p™-¢))
2 (Pema®)'? (pi-a®)!fa
+ zftan + ~ . (4.2.29)
3 a g 5%pe 1¢

This concludes the general solution to the problem of
an external circular crack subjected to an arbitrary
pressure. Formulae (4.2.14) and (4.2.25-4.2.29) are the main

results of this section.
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4.2.3 POINT FORCE LOADING OF AN EXTERNAL CIRCULAR CRACK

Consider an external circular crack opened by two equal
concentrated forces P applied in opposite directions at the

points (po,¢o,oi), p,>a (Fig.4.1) . Formulae (2.27), (2.32),
give a complete

(4.2.8), (4.2.14), and (4.2.25-4.2.29)

solution for the field of displacements and stresses in

elementary functions, namely,

u=2pp[ L f (z.)+ e (z.) | (4.2.30)
(4 _ml-l 1% m2-1 1+ %20 ) ! tes
2 M m, 7
’—"'T—IHP -ml——_qu(z1)+ mz"le(zZ)_ ' (4.2.31)
v ¥
7, = 22 {[ : 2 %—]fa(z1)_[ : 2 ;_?]fa(za)} ’
11 (11-72) (m1+1)3r3 1 (m2+1)'ar3
(4.2.32)
=3un p Lf (2. )+ —==f (2.) (4.2.33)
2 T 66 m1-141 m ~-1"a4'"2 ! e
c=—02 [y £ (2.) - ¥.f 4.2.34
= v £ (z)) v.f.(z) | (4.2.34)
n (71-72)
T=-> £ (z) - £ (z.) (4.2.35)
znz( _ )_s 1 5'“a ! e
11 72
where
i (pZ az)l/Z _ _
£ (2)=- él}‘;—tan 1%— - — [tan'1 5 f — -ta '12]
qbo ] s ( -21)
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-

2_ 2,172
—1(po-a ) ]
a ’

-tan (4.2.36)
1 s
f,(z)= ztan ’[%-] , (4.2.37)
o] [0}
. 2-p2 2
f (z)=-{% tan’l[l-] - J [22 - -z-—] , (4.2.38)
3 {RZ Ro z(R2+j2) £o-p° R®
0 2 1 0

2_.2 2_ 2172, 2_,2,1/2_ _1¢
_ Z(3Ro 2z )tan 1[%.]+ (po a ) (a 81)' ¢ Zoe 0 2 [ q
—2.3 — =2 52 ~1(-¢ ) 2 .2|=g?
Ro ) q s [81 pp, € 0] Ro+] qR0
p2921¢J ] 2, -1(p2_a2)1/2 (pz-az)l/za ( |
- +—tan + - ' 4.2.39
(£2-23) (p°-)d & ¢ g s’pet?

(4.2.40)

172
.

It must be noted that Rb=[p2+p§-2ppocos(¢—¢o)+z2] The

expression (4.2.34) for o, simplifies when 2z=0 and p<a,

namely,
2 2,172
(p~a)
a‘z= ?_2 2 _2,1/2 g 2 (4.2.41)
m (a°-p%) C[p +pg-2pp cOS (¢-0,) ]

Using the definition for SIF given in (2.40) the

following result may be obtained from (4.2.41)
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(pz_az)x/a
K= — P — 0 ) (4.2.42)
" (2a) / a?+p§—2apocos(¢-¢o)

It can be written for an arbitrarily distributed

pressure:

m o
1/2

(p2- P(P,19,)P,dP,49,
K = , (4.2.43)
a

172

n?(2a) a®+p2-2ap _cos(¢-¢,)

O t—— N

which corresponds to the well known result from Cherepanov

[34].
4.2.4 CONCENTRATED LOAD OUTSIDE A CIRCULAR CRACK

Consider a transversely isotropic space weakened by an
external circular crack of radius a in the plane 2z=0. Let a
concentrated force P be applied at an arbitrary point
(p,¢.,2) 1in the 0z direction. The <crack faces are
stress-free. The crack opening displacement and the opening
mode SIF K1 has to be found.

Consider the second system in equilibrium: two unit
concentrated forces Q applied normally to the crack faces in
opposite directions at the points (po,¢0,0i). Denote the
normal displacement in the space due to the forces Q by LAY
while W, is the crack opening displacement due to force P.
Note that the term "crack opening displacement" is used here

to denote the difference between the normal displacements of
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the crack faces. Application of the reciprocal theorem to

the two systems yields

Qw,=Pw_ (4.2.44)

which gives the crack opening displacement

m m

_2 1 2
wp(po’d’o)_ﬁﬁp[ml—lfz(zn +

_1fz(z2)] , (4.2.45)

m
2

with f2 defined by (4.2.37). The SIF can be determined by

w_(p ,9.)
_ 1 . p'Fo’%o
K1(¢o) =~ 8mH lim T 1/2
p sa (a-p )
0 0
m m
P [ 1 2
= L (2)+ —2f (2 )]. (4.2.46)
2(2a)1/2112 m1 176 ™1 m2 176 2
where
f6(z)=(2§—a2)"2/rf , r:=p2+a2—2pacos(¢—¢o)+za , (4.2.47)

The SIF vanishes as z tends to zero for p=a.
In the case of an isotropic body, expression (4.2.45)

transforms into

_ P 1-v -1(7
WplPyrdy) = —= { g ten [RL]

nu 0 ()
. ta-pa 2 2 .
- %[ zJ 2[ 2 2 EE ] - ES tan-l[JR_]] d (4.2.48)
RO+3°\ 28-¢ R R 0
0 2 1 0 ()

Here u is the shear modulus, and v is Poisson’s ratio.
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4.2,.5 SOLUTION FOR ISOTROPIC BODY

The solution for an isotropic body can be obtained as a
limiting case of the transversely isotropic solution,
subject to the conditions in (2.34). In the case of an
isotropic body, using the results from equation (3.2.25) and
the identities in (2.35), the formulae (4.2.30-4.2.40)

transform into

(p2-a?)1’?
u————P(:'H)) (1-2v)%[§—tan'l% - tan 2 =
nmE ato 0
2 2172 2 2
- L (et —E o - eanE)] e
s (az-ef) q R 0
2_ 2 2_ 2172, 2 ,2, 172
. 3 t-p _ 2 & (py=a’) " “(p™=E)) (4.2.49)
R2+42Lp%p2 g2 (Bz—p e-i(¢—¢0)) (22_22) e
0'd 275 0 1 PP, 2 1

o} R
(o}

i ) ' _ 22-p2 5
w_P(;w)f[Z(; v)+23]tan"RL _ "?Lz[: _ - Z‘..] , (4.2.50)
n°E 0 Ro+j 22-81 R

. . ez—p 2
5 (e [Grany - (=7 - 0]
n R o zZ(RO+j3%) =2t
(] 0 2 0

2 2 2_ 2
R -3z . . 2(&--p") 2
+ Z[ - 5 tan'lR-L t = g 2 [ 22 z 322 + l]
R’ 0 R(R+37) ' £5~¢
0 o' 0 2 1 o

je° [2 (p*+z°-a?) _ 1]

2, .2 2 2,2 2 2
(R+3%) (22-¢3) £2-e
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g =

+

2

92

2 2 2 2
23° [ﬂz-p E_Z] [22-p - ia.]]} (4.2.51)
2,.2,.2.2,2 ,2 2) (2 ,2 2 ! e
2®(RE+3%) %\ 202 3P W2-e2 R
i¢
(p2_02)1/2 p el o i
=P_2 (1-2v) | —— [% + 2 ][tan" =
n q s q s (CI S
_ Z(3R2"22) (p2_ 2)1/2
tan’lE] - 2 tan'l + Ztan?°
a —2.3 R —2 a
qaR, 0 q
2 2,1/ 2 ,2 i 2 2i
(pi-a®)! % (a-thp et [q R ]
_—2,,2 -1(p-¢ ) 2| = 2,2 2 2
g5t (22-ppe %)) RI+PGR]  (£2-e]) (07-1))
2 2.1/2 .
J— -1 2, 20,2 ,2 . - 2 2_,42
gstee ™ | L®e3HPE- 3TV ER (-t (07
2_ 2,172 i¢ 2_,2,1/2
(p,-a") (_2_ _ 2p e "o ] t(p7-t))
— - 2_ -1(¢-¢ ) 2 -1(9-¢ ) 2_,2
g G -ppge P (£f-ppemt 0N (4]
2 2.2 2 .2 2 2 2 2.2
—2.5 R 2,.2] =2,2 2 ,2 2 —2_.4
d R0 0 R0+j q R0 82—81 Ro q R0
R 4l (£2-p%) 1¢
i o ] , (4.2.52)
2 1 2 1
2 2 2 .2
520 PR R T o R I I Tt §
tan z tan
g Ry z2(R%+3%) W22 R R® Ry
0 Q J 2 1 Q 0
2 2
3 (2("2‘9) 32° 1]
2,02, .2 2,2 2
RO(RO+j ) 22—21 R0



. ie® (2(p2+22-az) - 1)
2, .2 2 2,2 2 2
(Ro+3°) (£5-¢7) -t
.3 22-p2 2 lz-pz 2
N §J 2[2 +Z_][?~ - E_] , (4.2.53)
22(R +j2) 82—22 2 22_22 RZ
0 2 2 1 0

2 2
L P { g [2 (¢,-p") 322]
2 2 2 2 2 2 2 2
n RO(R0+3 ) 22-81 R0

3 2_p° 2 i¢
27 2P 2(q _ ee’?
. L 2] (o2 _,2

2, 2.2 2
(Ry+37) M-8 IR, -
. 2 2 2,,2. ,2
jpel¢ ez—p 2z (£1+£Q 3z2q -1
T e a2l ,2.2 T2 2.3 | 5 tan R({ ' (4.2.54)
R0+j (ez-el) (82—21) Ro 0

This completes the solution to the problem of an

external circular crack under noriral load.

4.2,.6 NUMEFICAL RESULTS

Numerical computations were performed for the field of
normal displacements and normal stresses, with a Poisson
ratio of v=0.3. The field of normal displacements due to a
pair of concentrated forces applied at the crack faces in
opposite directions at the ©points (1.5a,0,0") and
(1.5a,0,0), is given in Fig.4.2 as a function of p/a for
different values of z. Similar data for the normal stresses

are presented in Fig.4.3.
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(=)}

Fig.4.2 Normal displacement distribution in isotropic body
for different z: (—z=0.0; --z=0.5; --2=1.0; +=2=1.5).
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Fig.4.3 Normal stress distribution in
different z: (—2z=0.0; --2=0.5; --:2=1.0;
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4.3 SOLUTION TO THE GOVERNING INTEGRAL EQUATION OF AN

EXTERNAL CIRCULAR CRACK UNDER ARBITRARY SHEAR LOADING

Here an exact closed form solution in terms of
elementary functions to the governing integral equation of
an external circular crack in a transversely isotropic
elastic body will be presented. The crack is subjected to
arbitrary tangential loading applied antisymmetricaly to its
faces. The solution to the governing integral equation gives
the direct relationship between the tangential displacements
of the crack faces and the applied loading. This makes it
possible to have a complete solution to the problem of an
external circular crack, with formulae for the field of all
stresses and displacements which will be given in the next

section 4.4.

4.3.1 GOVERNING INTEGRAL EQUATION

Consider a transversely isotropic elastic space,
weakened by external crack p=za, 2z=0. The crack faces are
subjected to arbitrary tangential loading t. It is necessary
to find the displacements of the crack faces. Due to
geometrical symmetry, the problem can be formulated as a
mixed one for an elastic transversely isotropic half-space

220, with the following conditions at the plane z=0:

T = rzx+ityz= -T(p,?) , for pza , O=¢<2m ,
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o=0, for O=p<eo , O=¢<2m ,

u = ux+iuy= o, for O=p=a , O0s=¢<2m . (4.3.1)

A direct relationship between the tangential stresses

)

in the crack neck t‘" in terms of the prescribed tractions

T reads:

21 o > >
(1) 1 Po~a
T (p,P)= - ———— { [ J—-—T(P +9 _)p dp do
2 0’70’ Fo"Fo "o
2 /aa_pz 5 2 R

271 .
G, [ [ YPi-a® T(p,.0,) (1401 €% %0
+ = JJ’ = — podpod¢0 , (4.3.2)
1 P,(1-C)
0 a
where
R2=p2+p§-2ppocos(¢-¢0) , = %ei(¢'¢o) . (4.3.3)

0

Here G, and G, are elastic constants defined in (2.36) and
the overbar everywhere indicates complex conjugate value.
Assuming that the following expansions exist
[+ ]

o)=Y T e, =TT @™,  (4.3.0)

k=-0 k=-m

expression (4.3.2) can be rewritten in a series form as

[+2]
2 2
n+1 pi-a*t__ (p_)p dp
r(”(p)=--2— P 0 n*l 0 0 o for n=0,1,2,...
n+1 n > 2 n+1( 2_ 2)
a®-p° o Po (Py=P
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(- -]
/22y
" (py=- 2 p"! [ J Po‘a -ne1 (P PLEP,
T R/ p3-p?)
, [ VAia’E, (b
+(2n-1)§—‘[ n:;d podpo , for n=1,2,3,... (4.3.5)
1 Py
a

The governing integral equation of the crack problem has

been derived in (Fabrikant [16]) as

1 [ J‘J‘ u a”‘ u ] _
- — G A =dS + G A =dS| = T . (4.3.6)
an(Gf'Gz) 1 R 2 R

Here S is the domain of the crack, and

. . a a a .8
u=u +iu , T=T +itT , A= + —, A=— +i— , (4.3.7)
x y zx yz Py ayz ox oy

The main value of the expressions (4.3.2) and (4.3.5)
is in the fact that the tangential stresses are now known
all over the plane 2z=0, so the solution of (4.3.6) can

formally be written as (Fabrikant [16])

2

“’(po '$,)

a
1 1
0

m
u(p, )= 5G1J
0

a
qr“’(po.rb )
P,dp, A4,

0

(o e N |

[+

qT (P, 9,)

———p,dp A9, . (4.3.8)
g R

a
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Here

a=pe?-p e'% , R°=q3 . (4.3.9)

In the next subsections will be given a solution of

(4.3.6) by two different methods.
4.3.2 FIRST METHOD OF SOLUTION

Equation (4.3.6) can be solved by direct substitution
of (4.3.2) in the first two terms of (4.3.8), then
interchange of the order of integration and computation of
the relevant integrals. It is interesting that all the
integrals are computable in terms of elementary functions.

There are four different integrals to compute. The first is

21 a 2
- J J rdrdy Poa 1
1

00

2. 2
\/pa+r2-2prcos(¢-w) VaP-r? Potr —2prcos (4 ,-¥)

(4.3.10)

This integral has been computed in (Fabrikant [16],

f.1.6.31), and the result is

02-a? /pz_az

2
_m _ 2 -1
Ix_ R 1 ntan R . (4.3.11)

The next integral to compute is
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2

Vpi-a®

pe -reiw rdrdy
1¢__ -1y
pe’ re x/pz+r2-2prcos(¢-qﬂ) \,/a;"-r2

O Y—— Q

n
0
1

x .

2, 2
ptr -Zporcos (¢O-lll)

Using the following integral representation

pel?
e'i¢

—relw 1

- lw
P —re ‘/pg+r2-2prcos (p-y)

r
_2{ e2i¢ [ei (¢"/”] nJ‘(2n+1) p?‘- (2n+2) «® e
n=0

2 pr
p ‘/pz_ma‘/ra

pr /pz_ma fr2_ g2

r
el(¢+¢1)J a:ada:
0

r

+ze21¢[ l‘¢ VH] J(2n+1)r2-(2n+2)¢2 > de }

‘/pz_mz‘/rz

Also making use of the expansion,

1 1 [r_] Ikleik(¢o-l/1)
(o]

p§+r2-—2porcos (¢o-w) p("i-r2 Koo \P

(4.3.12)

(4.3.13)

(4.3.14)

Substitution of (4.3.13) and (4.3.14) in (4.3.12), change of

the order of integration and following integration with

respect to ¥ and r yields
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[+ 4] i o
I= 2n{ J e21¢ [el(z;%)]" (2n+1)p;"-(2n+2)o:2 e
n 0 \/pz-azz\/pf;-azz

2
«“"da

® e2i¢o[e-i(¢-¢o)]n (2n+1)p3-(2n+2)a:2

PP
o ‘/pz_mz‘/pz_mz

+
oO—n
&~

2
n=0 po

0
n=0

a
2i¢ -i(p-¢ )\n _2n
- 2nz (2n+1)/p2—a2Je °[e °] ¢ de (4.3.15)
0

The change of the order of integration was made according to

the scheme

a r a a
Jdr Jdm=JdmIdr ' (4.3.16)
0 0 0 @

and the following integral was used

. (4.3.17)

a
J rdr - T
T ( pi-rz) \/az-r'z\/r'z-a:2 2\/p§-a2\/p§—ac2

Comparison of the term in curly brackets in (4.3.15)
with a similar term in (4.3.13) indicates total identity,
except for the 1limit of integration. Now performing the

summation in (4.3.15). The result is
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a

1 =sz{e2i¢[1+€-2(mZ/p2>]+e21¢o[1+E'2(“2/"2’]

2 (1-€) ® (1-€) °
0
a
2i¢ .\ da /2 219, (1+€)dx
-e 06[ -2m po—a P . (4.3.18)
p*-e*Vpi-a® Po Vp?-?(1-8)°
Here
£ = _a®_1g-6) (4.3.19)
o, . 3.

The interesting feature of the first integral in (4.3.18) is

that it is computable as indefinite:

J{ezi"’ [1+€_2 (mzlpz)] L2190, [1+€-2 (m/Po)] _ezicpoE\ de

2 =, 2
(1-€) (1-E) Ve e

. i¢ . - 2_ 2 /2 2
[eziq) _ 21pe” "o sin(¢ ¢0)]a:\/p a v/po @« . (4.3.20)

q(1-%) P2 (1-€)

By using (4.3.20), 12 can be expressed

ei® sin o
I- 2n{§— 5 -tan"g]+[ezi¢ _ 2lpe""o sin(¢ ¢o)] a®n }
R q(1-%) p°pg (1-t)
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vpZ-a?(1-)®

a
21¢
- 2m/pl-a® X J (“g)d“ , (4.3.21)
0
0

where

_ait-0y (4.3.22)

The second integral in (4.3.21) is also computable in
elementary functions, but it will not be done because it
will cancel out, anyway, with yet another integral to be
computed.

The next integral to be computed is

2_ 2 ezi¢o[1+ r_e-iu//-rpo)]
0 P

0

ma A
I= rdrdy
3 ‘/2 2 2 2 2 r -i(w-¢)2
oo VP +r-=2prcos (¢-y) a’-r- p, (1- p—o-e o ]

(4.3.23)

Using the integral representation given in (2.1) for its

particular case when u=0, namely,

r

1 -2 I A(e’/pr,¢=¥) g, (4.3.24)
n
x/pz+r2-2prcos(¢—W) 0 \/pz-aczx/rz—m?‘

were A is defined as in (2.2).
Substitution of (4.3.24) in (4.3.23), with the series

expansion of the term in brackets, leads to
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2 2 2

A(e?/pr, ¢~ w)dm[ Po=® 2i¢,

2
2 2 2
-a:\/r-a: Po

Il

o3

2
1%

a
[ rdray
o\éz—r

Ot— N

o]

r -iw-¢ "
xnzo(2n+1) {Bge 0 ] ]

a a
/2 0
4 P, -a* 21¢J da J rdr Z (2n+1)[ o-ite-¢, ]
2
P, 0‘/pz_2m‘/aa_ra‘/rz_mz n=0 Po
a
21¢ &2
=2nvp-a® & ), (2n+1) o l@-9)"_de
0 P
po ! 0 A
a
2i¢ =
=am/pl-a® &0 [ (1+€)de (4.3.25)
Po o VPP -a? (1)

Thus I, is equal and of opposite sign to the last term in
(4.3.21), and they will cancel out in the final
substitution.

The last integral to be computed is

[\8)

li

na
I J [ pef¢ -retw rdrdy
4 pe-1¢

00

1y
-re /pz+r2-2prcos (¢-y)

VpZ-ate 21¢ (1+-;—e i(w'¢o)]
0

0

va 2_r2pz [1--;—e

0

—- (4.3.26)
i(w-qbo)]
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Since the series expansion of the term in square brackets of

(4.3.26) has only positive harmonics in ¥, only the relevant

negative harmonics in (4.3.13) are needed:

r

21T a
2i¢ 1(¢-|/J) n 2 2
2 rdrdy e 2n+l1)p =-(2n+2 2n
] e (f ey et o)
00

/ p \/pz—a:?‘\/ra—mz

-2i¢ i r _iw-¢\"
e :Zo(2n+1) [p—oe o)] ]

Po
2 2 a 0
p--a 2i¢, i(p-¢ )yn 2_ 2
co— 0 e [e o] (2n+1) (2n+1)p°-(2n+2)«a e
p2e21¢ n=0 p2 PP, 2 2
0 p -
0

an2 21(¢¢ )z [ ?et 9% )] (2n+1)vp°-a® ___L_ln .

a(lt)

(4.3.27)

Now all four needed integrals are computed, and (4.3.2) can
be substituted into (4.3.8) and the result rewritten as

follows:

2

T
u(p, $) =56, [- = J
0o

2

It(p, ¢,)Pdp A0

=

Qe—— 8

2
1IG

o——— A

JI Pyr ;) podpod¢0]
a

104




n

+
(N
Q

N
o— A

2

M o
-5 {13, ,) 0, dp a6
n2 2 po' 0 po po 0

0 a

2

T o
GZ
P JJI4t(po.¢o)podpod¢o
1
0 a

2

—x P3P, 99,

oOt———mA

J‘t(P ' 9,)
a

T(Pyi9,)PAP AY, (4.3.28)

Q &——— 8
cln

Substitution of (4.3.11), (4.3.22), (4.3.25) and (4.3.27) in

(4.3.28) yields, after obvious simplifications

n

G
u(p,¢)= [
0

2

Here 7 and

0
G 2
t"(1+t
J [3ean™ (0, 4,) p,dr,34,
a

q(1-t)

T o .
G 24 i¢ . _
EEJ J[g—tan . azn [ ipe~ Yo sin(¢ ¢°)
0 a

- e2i¢]]?(po,¢o)podpod¢o . (4.3.29)

t are defined by (4.3.22).

4.3.3 SECOND METHOD OF SOLUTION

Since

the main result of the previous subsection
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(4.3.29) was never reported in literature, it is very
important to be sure of its correctness, so it makes sense
to rederive it by a different method. For this purpose the
series expansion of (4.3.8) and (4.3.5) can be used. Such an

expansion of (4.3.8) was given in (Fabrikant [16]), and is

u (p) =J1+J2+J3+J4 , for pza , (4.3.30)
where
o @ >
T, (P) Py dp
J1= 2G1pn+1J da J‘ n+1 0 ,
2n+2 / P . /a:z_ps

n
g (PYP AP,

2np2-(2n+1)ac m

n+‘l

(p)dp, - (4.3.31)

q
:N
+] @
=»iN

o—— 0

oY |8

[\
o]

;ja.
8
8 QA

Re)

n 2
-
0 po

Now the erpressions (4.3.5) has to be substituted in J, and

J,- The first substitution yields

a a -]
2G, J’m2n+2d J‘ , ent J vti-a®t_ (t)tdty dp
3 n+1 n n+1
P 2_ 2 2_ 2 (t p ) n/2_ 2
0 p-a @ a Py a Po¥P,~ %
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a
2G 2n+2 T . (t)tdt
= ! J“ de J nel . (4.3.32)
n+1
0 t

First, by changing the order of integration, J1 can be

transformed as follows

o [
+ de
J,=2G_p" ’J (p,) Py “dp, [
1 1 n+1
. 2n+2/2_2/2_2
a max(p,po)a: T -pve pO
® mln(p,po)
“1 2 «®"* 24
=26,p" J o1 (P00 “dp, . (4.3.33)
) 4 (ppo)amz /pz_ma /pz_mz

Here « was formally substituted by ppo/m.
Now the following scheme of change of the order of

integration will be employed

© mln(p,po)

P
dp0 da = J dpo
a

o]
O

. (4.3.34)

P
+Jd¢c
a

This means that (4.3.33) can be rewritten as

8 ———— 8
Q.
©

(]

a
e 24, [ T, (Po)P, 48R,
n¢1
0

2 n1 /2 2
ve'-a® . pM'Vpi-r
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(4.3.35)

It can be noted that the first term in (4.3.35) will cancel

out with J, in (4.3.32).

The transformation of J, with the help of (4.3.5) |is

given as
a a .
-
I = 2G, J «*"ac [ 2np°-(2n+1)a® {_ 2 P
4 “ne1 T p—
/2 2 n/2_ 2 2 2
o VP& g PoVP,TC Va “Po

+(2n-1)-(-;3

tn-l(tz_pcz)) 1

Vt?-a’T ., (t)tdt G. [ Vt%-a®t (t)
x J - J tdt] }dpo
a a

a [ o]
2G 2n 2 2
=- ZJ ¢ _de [2np2-(2n+1)a:2]{ J vt maz (¢
0 a

o]
1 G Vti-a®t  (t)at
1 2n-1 2 n+t
x [ + ——]dt + =
>3 /5 aa ac G1 £"
t=a" Vvt -
a
a ]
2G 2n T (t)dt
= MfJ «_dz [2np2-(2n+1)a:2]{ [ .
. pz_‘rz J & tz-a:?‘
+4]
2 2 G
1 t -a [~ 2
+ = J —“,T—[t-nn(t) + (Zn—l)(—;:'cnﬂ(t)]dt} . (4.3.36)
a

J2 can be transformed in the manner similar to that used in
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(4.3.33-4.3.34). The result is

a (]
26, o1 (P) AP,
ey J [2np2-(2n+1)m2]J -nel
n 2 2
o VP e a PoVPo™%

2
_ade

Voa?

(4.3.37)

[2np -(2n+1)¢ ]
n 2 2

2]
J’ —ne1 (Pl AP,
e Po¥Po™%

+

[\

7]

[\
p'—ﬁ'o

Again it may be noted that the first term in (4.3.36)
cancels out with the first term in (4.3.37).
Finally, expressions (4.3.32), (4.3.35), (4.3.36) and

(4.3.37), after substitution in (4.3.30) give

P ©
. (p)= 2G 2" 24 n+1(p )dp
ne1 (P nel /2_m2 n/2_.2
a VP e Po'Po
P 00
2G 2
2 a” da 2np -(2n+1)m
t — J - J - n T_.q (Py)dp,
a VPT Po po-m

-n+1

ae >3 azml tz_az[ G
-2G_vp'-a - (t)+(2n-1) 1(t) dt.
a
(4.3.38)

The first two terms in (4.3.38) are valid for n=0,1,2,...,
while the third term is used only for n=1,2,3,...
Now an expression will be derived, similar to (4.3.38),

for the negative harmonics.
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(P)= B +B_+B +B, , (4.3.39)

-n+1

where
[+ a
B = 2G pn—lJ da J -n+1 (P )p dp ,
1 1
2n-2 2 2 2
p x  ~-p a —po

BB= pn— > 3 o /3 > '
p - P, VP,~x
a a )
2G 2n-2 4. (2n-1)p_-2nz"_
B= =5 ey (PP, - (4.3.40)
P 2_ 2 n/2_ 2
o VP« r Po¥P," %

Substitution of (4.3.5) in B, of (4.3.40) yields

a o« o0
_ 26, g2 2ge | [Tone (B1AE G, [Vi?-a?=
B == — +(2n- l)G —T_,, (t)dt].
P . /pz_mz £n-2 /tz_mz : t
(4.3.41)

The expression for B1 can be transformed, as above,

a 00 P 0
2G szn 24 [ n“(p)dp J’zn 24 J ml(p)dp}
Opac apo'po anpa: x Po VP, ™%
(4.3.42)

Again, it can be seen that the first term in (4.3.41) and
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(4.3.42) will cancel out.

Substitution of (4.3.5) in the expression (4.3.40) for B,,

will result in

a [
2G_[ 2n-2 _ 2_, 2 T _(t)dt
B,=- n_me J[(Zn 1)t°-2na -(2n-1) /tz_aa] n+1 _ .
P VpP-a? Vi2-¢? t
a
(4.3.43)
Relevant transformation of B, in (4.3.40) gives
a ]
mZn 23 (2n- 1)p -2na?
T ,,(p,)dp,
G n z_mz
0 p a Po¥P,
P ®
(2n-1)p -2na®
T ., (p)dp, . (4.3.44)
n 2 2
a

-
a pO

Now, substitution of (4.3.41-4.3.44) into (4.3.39) yields,

after obvious simplifications

P 0
(p)= 2C (22" 2q [T_pay (Py) AP,
-t PP 2 2 n-2/2 2
a¥P T g Py VP,

(p )dp , for n=1,2,3,...

J(zn 1)p —an

n > > nﬂ
p VP, -a

Q{j—;ﬁb

@
(4.3.45)

For convenience, formula (4.3.38) is repeated again

111



-]

P
2G1 J ™ 2dg J n+1(p )dp
a

2 2 n 2 2
vpt-a® o p VP, -«

(p,)dp,

p /——_ -n+1

P ©
2G2 J «*"da J 2np° —(2n+1)ac
a

G
- g aJ o [m(p)+<2n-1)G MISILL

(4.3.46)

Expressions (4.3.45-4.3.46) give the series expansion
of (4.3.29). They are also useful for direct evaluation of
the integrals since the integrands are simpler than those in
(4.3.29).

The summation of (4.3.45) and (4.3.46) will be done in
stages. First of all, the sum of all terms with G, will be

computed

[o) 2T o« ©
H _G1J J Iz e-i(n-1)(¢—¢o)[ ccz) -1 T(py18,)PApdd,
1 m /2 =1 PP, 2 2
a p -’ 0 « P4
[o) 21 o o
. iJ de J JZ [_ﬁei@-(po)]"*‘ T(p,i®,) P AP, AP,
n Z_a:Z n=0 ppO 2_m2
a VP 0« Po
Gznpa 2 ¢-¢)da:m dp_d¢
X (/PP . 0-9, T(p,r®,) PP, 3¢,
= (4.3.47)
2_,2 2_,2
0 a P « Py
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Interchange of the order of integration in (4.3.47) and

subsequent integration with respect to « yields

21 o«
Gl 1 -1(n
H1= T itan [-ﬁ]t(po,cpo)podpodcpo . (4.3.48)
0 a
Summation of the second term in (4.3.45) and (4.3.46)
leads to
2mn P ) ©
G ; A(e™/pp,,¢-¢ ) da
_ 2 2i¢ ) 0
HZ—? Je 0 d¢({[ J [1
2_,2
0 a P @

siqe’e 0 sin(¢-¢ )-T(p., ¢ )p.dp
+ 0] 0 2 02, (4.3.49)

pp.(1-€) (1-E) (2,
(o}

It is reminded that £ was defined in (4.3.19).

The order of integration in (4.3.49) can be
interchanged and it can be integrated with respect to «. The
integral in question, though looking quite formidable, can

be integrated as indefinite. Indeed,

J A(mz/pp0,¢—¢o)[l | tigele o sin(¢-¢o)]d
ax
Vo -a?Vpi-a? PP, (1-€) (1-8)

2mg? /pz_mz

=-e21%9 tan™! R

gR
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2ie” .¢o sin(¢- ¢, Yavp -m\/ —m

- (4.3.50)
qpp (1-€) (1-€)

Utilization of (4.3.50) in (4.3.49) gives

2ipe".¢o a’nsin(¢- )
[qR ar’pl(1-t) (1-%)

bdl:s

]t(p ,6,)p,dp A, .

0“8

(4.3.51)

And finally, summation of the last line in (4.3.46) yields

2

114 .
21¢p —
Y e?*at(p_,9,)
3 mg'PT?
0]

4]
J pa_az[

° PPl (1-t)
a

G 21u¢¢
1+t
+ £ 28 ' (1+t) ‘c(po,¢o)]podpod¢o ) (4.3.52)
1 [ po(l-t)
The closed-form solution is
u(p,¢) = H+ H+H , (4.3.53)

and substitution of (4.3.48), (4.3.51) and (4.3.52) in
(4.3.53) proves it to be identical with (4.3.29).
The correctness of (4.3.29) can also be verified by the
computation SIF.
If the complex SIF is defined similar to the one

defined in (2.49), namely,
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K(¢) = 1lim [Va-pT(p,9)] = ei¢(K2+iK3) ' (4.3.54)

p-a

then it can be deduced from (4.3.2) that

2
-l¢
K +iK = -

3 a +p -2ap cos (¢-9,)

ot—3

J -a t(p 19,)P AP A9
a

2

sz—a2e21¢o[1 + %—e'l(¢"¢oq

M o

+G2JJ 0 T(p,,.)p,dp.dp

2 . ,

Gl pi[l +_g_e-1(¢-¢o)]z o’"0’'" o "0 "o
0 a po

(4.3.55)

According to formula (2.47), the same result can be obtained

through the displacement as

K2+iK = - a lim

n (Gf-G:) v2a p-a

2 2

[Giu(p,as)e‘w + Gzﬁ(p,cp)ei‘”J
p -a

(4.3.56)

Substitution of (4.3.29) in (4.3.56) should ultimately give
(4.3.55).

Thus the main result of this section, namely, formula
(4.3.29), was derived by two different methods. As it will
be seen in the next section this important expression will
play an essential role to obtain a complete solution of an

external circular crack problem under a shear load.
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4.4 EXTERNAL CIRCULAR CRACK UNDER SHEAR LOAD: A COMPLETE

SOLUTION

Consider a transversely isotropic elastic space
weakened by an external circular crack of radius a in the
plane 2z=0. Let arbitrary shear T, be applied to the crack

faces, as in Fig.4.4.

CRACK FACE

—~
hY y SN <7 <

\4) -
- *__X
< // _"—'9/1-1C—-_->
__._/'/
S Ty

Y

Fig.4.4 External circular crack under arbitrary shear load.

Due to symmetry, the problem can be reduced to the
mixed BVP for an elastic half-space 2zz0, subject to the

following conditions on the plane z=0:

z=—t(pl¢) ’ for asp<e , O=¢<2m ,
u=0 , for 0spsa , O=¢<2m ,
c =0 , for 0O=p<e , O=¢<2m . (4.4.1)
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4.4.1 FORMULATION OF THE PROBLEM AND SOLUTION OF THE

GOVERNING INTEGRAL EQUATION

The general solution through three potential functicns
Fk was already defined in (3.3.2) where xk(x,y,z) was
understood as x(x,y,zk), and zk=z/7k. As it may be noticed
from (3.3.2), the complete solution is expressed through
just one complex harmonic function x(x,y,z). This function

is related to crack surface displacements u by formula

2

T o
X(p,¢,2)= J Jln[\42+r2—2prcos(¢—¢)+z2+z]u(r,w)rdrdw .
0 a

(4.4.2)

The governing integro-differential equation, which
relates the unknown crack face displacements u to the
prescribed shear loading T, was given in (4.3.6). It is

presented here again with detailed description of its

parameters
1 u(N) 2 u(N) —
() [GaA” R(N,No)dsu + GA ” R(N,No)dsu] T(N,) -
1 2 S S

(4.4.3)

Here points N and N, have the polar cylindrical coordinates
(r,¥,0) and ﬂ%,¢0,0) respectively, R(N,N)) stands for the
distance between the two points, G, and G, are the elastic

constants defined in (2.36), A and A are the operators
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defined in (2.26), S is domain of the crack, in this
particular case it is the exterior of the circle p=a.

The solution of (4.4.3) was also given in section 4.3
(£.4.3.29). However, that same formula is given here again,

presenting the second integrand in a slightly different way.

It reads
2W o
s ¢_G1 1, -1(n G t? (1+t) do a
(Pr19)=7~ gtan [ﬁ] p= az(l_t)zn]r(po.tto)po P,a¢,
0 a !
2T o«
G i¢ Tl
+1t_?"[ JE-’C“'I[%] + B[t te o )1zp 0 )p,00,99,
R dle(1-t) p (1-F)Jd O OO oo
0

(4.4.4)

where 7 and t are defined in (4.3.22).

The substitution of (4.4.4) in (4.4.2) makes it
possible to compute the main potential function x which, in
turn, defines all three functions Fk in (3.3.2); and,
finally, the substitution of F in (2.27) and (2.32) will
give the complete solution for the field of displacements
and stresses respectively. Due to the complexity of the
integrals involved, the procedure ahead is very non-trivial,

and it will be described in detail in the next subsection.

4.4.2 THE COMPLETE SOLUTION

It does not seem possible at first sight to directly
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substitute (4.4.4) into (4.4.2), interchange the order of
integration, and compute the relevant integrals. Certain
properties of the integrands in (4.4.4) should be pointed
out which will prove useful in the computation of the
integrals involved.

Noting the following property

e ) - S
- afge () - 2t - =)

and introducing the notation:

N
B, (NoKo) = ryw, Wyten aR(N,N) |
cw‘rz—az\/pf‘;-a2 (rpoel ¥-9, +a?)
B (N,N) = Y r ’
2 0 rpoel(w'%) (rpoel(w'¢o)+a2) 2
rew-poel‘»o " \/x'z-aa\/pz-a2
B_(N,N) = v — tan
3 0 (re'lw—poe ld’o)R(N,NO) aR(N,NO)
a\/ra-azv‘pz—a2 eiw el¢o
+ — . v - . .
re” lw—poe'wo r (rpoe" 1 (w"‘po)-az) po(rpoel -0, _42

(4.4.6)

Here the points N and N, are characterized by the polar

cylindrical coordinates (r,y,0) and (po,¢0,0) respectively.
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The following property of symmetry holds

B (N,N) = B (N,N) ,  B,(N,N) =B, (N,N) ,

Ba(N’NO) = Bs(No'N) . (4.4.7)

Let R(M,N) denote the distance between the points

M(p,¢,2) and N(r,y,0). By using (4.4.5-4.4.6), it may be

written

as, _ ds,
JIA[BI(N'NO)-BZ(N’NO) ]m—,'ﬁ—)— =‘JIAB3(N,NO)W . (4.4.8)
S S

Here S is the domain of the crack. Integration by parts in

(4.4.8) leads to a very important property,

”[B1 (N,N)~B_(N,N ) ]A(m]dsu=-JIBa(N,NO)K[m]dSN .
s s
(4.4.9)

Two more properties can be obtained by application of A and

A to both sides of (4.4.9), namely,

[BI(N,NO)—BE(N,NO)]Aa[ﬁT%TET]dSN=-IJB3(N,NO)A[ﬁT%TET]dSR ,
s s
o
1 -2 1
[BI(N,NO)-BZ(N,NO)]A[—R(M,N)]dSN=-JJBa(N,NO)A [—————R(M'N)]dsn .
S s

(4.4.10)

Integration of both sides in (4.4.9) and (4.4.10) with
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respect to 2z will 1lead to similar properties for
In([R(M,N)+z] integrand. These properties make it possible to
avoid computation of integrals involving B, which look very
formidable, and compute instead the integrals involving
expressions B, and B,, which are more simple.

It can be inferred from (3.3.2) that it will be useful

to introduce the notation:

U= Ax + Ax , V=Ax - Ax . (4.4.11)

The complete solution, given by (3.3.2), (2.27) and
(2.32) will depend only on the first and second derivatives
of U and V. Since there is no need to evaluate integrals
involving B, due to the properties (4.4.8-4.4.10), all the
derivatives of U and V can be expressed through the two

fundamental functions, namely,

Ff'

L (M,N_) B, (N,N_)In[R(M,N)+z]ds, ,

L,(M,N_) FBZ(N,NO)ln[R(M,N)+z]dSN . (4.4.12)

Formula (4.4.4) can be rewritten in the new notation as

[\

rr

(7]
N

u(N)

]

::|_‘0

[131 (N,N ) - ? EZ(N,NO)]'C(NO)dSNO
* 1

rr

:‘O
o

B3(N,N°)?(N0)dsno. (4.4.13)

[
—
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The substitution of (4.4.13) and (4.4.2) in (4.4.11) and use
of the properties (4.4.8-4.4.10), will lead to the following

results

(2]

G -G
UM) = 1n 2 {x”[x,l(m,no) + EE fZ(M,NO)]t(NO)dSN

1 ]

G
2 -~
+ A”[L1 (M,N) + g LZ(M,NO)]‘C(NO)dSNO} ,

s
G1+G2 _ GZ _

V(M) = —= {-R J’[L1 M,N) -2 LZ(M,NO)]t(NO)dSN

1 [o]

S
G, _
+ A”[L1 M,N) - & LZ(M,NO)]r(NO)dSN . (4.4.14)
1 0

S

In order to find the field of displacements, only the A
and z - derivatives of U and Vv has to be evaluated; the
field of stresses will be completely defined by the second
A, z and mixed derivatives. All these derivatives can be
expressed in elementary functions, as it will be shown in

the next subsection.

4.4.3 THE GREEN’S FUNCTIONS

The results of previous section can be applied to
solving the problem of a tangential point force loading of
an external circular crack. The solution will give all the

Green’s functions related to the case.
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Consider an infinite transversely isotropic solid
weakened in the plane z=0 by an external circular crack pza.
Let two equal and oppositely directed tangential forces of
magnitude T=Tx+iTy be applied to the crack faces at the
points (p0,¢o,0i) as in Fig.4.4. Here it will be shown in
scme detail computation of the tangential displacement u,
which is defined by the first formula in (2.27), with the
functions F given in (3.3.2). From (2.27), (3.3.2),
(4.4.11) and (4.4.14) it can be deduced that only ALi, ALz'
1\2L1 and AZL2 need to be computed. Since both L and L, are
harmonic functions of (p,¢, z), computation of A can be
replaced by computation of -aa/azz. The functions Fk defined

by (3.3.2) can be rewritten in terms of U and V as follows

U, U, iv,
T mmen 0 N T wmmen B aw (4.4.15)

Here U, and V., are understood as U(Mk) and V(Mk), and the
point M has the coordinates (p,¢,zk), with zk=z/7k, for

k=1,2,3. From (2.27) and (4.4.14-4.4.15) it may be concluded
that

G

(7]

2
411 k=1 1

Z {%[Ll (M Ny + 52 f:e(Mk'No)]T
k

G
2 2 _
- A [L1 (M/N) + g, La(Mk,No)]T}
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G1+G2 62 G2 _
- = E;E[La(ma’No) = La(Ma,No)]T
+ AL (M ,N) - o N ) [T 4.4.16
L (M, N g, L_(M,N_) . (4.4.16)
The second z - derivatives of L, and L2 are computed in

formulae (A4.4.37) and (A4.4.11) of Appendix A4.4, the
quantities of AZL1 and A"’L2 are given in (A4.4.34) and
(A4.4.42) respectively. So, utilization of (Ad.4.37),
(A4.4.11), (A4.4.34) and (A4.4.42) in (4.4.16) gives the
complete field of tangential displacements in the whole
space weakened by an external crack and subjected to a pair
of tangential forces T applied at the points N, of the crack
faces. All the remaining quantities can be computed in a
similar manner, with all the necessary derivatives of L and
L, presented in Appendix 24.4. The final results are

GI-G2 2 1 G

G —
u= 2n kzlmk-l{-[gz(zk)+ af g7(zk)]T+[g16(zk)+ f;_;: ga(zk)]T}

G1+G2 G2 _ G2 _
o [92(23)- G, g7(23)]T+[g16(za)- G, ge(za)]T ’
1 1

(4.4.17)
2 & m, - Gz —
W=—7—TH'31125R€ z-\rl—n—:-ﬂ—w—[gl(zk) + g gg(zk)]T ’ (4-4.18)
k=1 k k 1
27,7 2 - G, _
o1=:Re{——-——2 12 Z(-l)“”[ — 12] [gs(zk)+-c-;3 g,o(zk)]},
(7 ,-7.)) k=1 7_(m +1) 7 1
1 "2 3 k k
(4.4.19)
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- G
4 =-ﬁA66H7 7 Z m —1{ _gs(zk)+ —? g13(zk)]T
- G - G
2 = 1
+ -g“(zk)-f c, g1a(zk)dT} - ;—;’:{[‘95(23)*' 'G-i' 5(2 )]
+[q (z)- % 17 4.4.20
_g“ 4! g, 912(23)_T ' (4.4 .20)
7Y 2 _ G, _
az=7ze{—2_‘——2——- Z(-l)m[gs(zkH 2 glo(zk)]T} , (4.4 .21)
n (71-72) k=1 1
7.y 2 k G
_ 1%2 (-1) [ 2 ]
T g (z)t g 9,2)|T
z 2"2(71-7 ) k2=:1 7, { 3' Tk G1 14° "k

G
+[g4(z3)+ & gls(za)]T} . (4.4.22)
1
Here Re stands for the real part of the expression to
follow, the elastic coefficients are defined in (2.29) and

(2.36) and the functions g are given by (for details see

Appendix A4.4)

+ ,(fﬂ-a_g)__[tan" {ﬁm] -tan! [g]]} , (4.4.23)
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1 (3
g,(z)= R—otanl[%—o] ' (4.4.24)

. : 2-p® 2
g,(2)= - Estani{%—] + aL.z z - - % , (4.4.25)
RO 0 z(Ro+j ) 22-21 R
2 2 2_ 2,172
z (3R -z%) : L c(pP,ma”)
o a1 {2 ) Zear (P« 2L
g | ar g R2+3°| R

— = = — 2,172
(22 21) ( -31) q s 21)

-1(s (Pz"az)l/z (az-cf) 1/2p0e1¢0 ael?

~tan™ (3] |+ — e - , (4.4.26)
s T X o -& i
: : i¢

=~ Q¢an |- (e _ 4

g.(z)= stan [R] t = .2[ 2_,2 2| ! (4.4.27)
R_ 0 R t) 2 -21 R

4 E g2 [0 (s
-tan —17 p— z 2o e !
(1-T) (1-%) a®-tt (a”=¢7)
(4.4.28)
— . 2_ 2-.1/2
£ 2 2i¢, 2 2.1s2 a 1)(a-pt)
98(2)"029 e " (p-a’) [(az_pa-f):vatan (ez_az) 1/2 ]
T (p-ti) 172
) _ , (4.4.29)
(a®-L2%) (a*-p°F) '
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=172 2 2,172
172 - 172 - t “(a -21)
+—————72 tan — 12 ~-tan T ' (4.4.30)
- a(1-%)

joe?E%? (a®+*E)

g, (2)= (4.4.31)

2 2 2T, 2 2 2
a®(a®-£3F) * (£2-22)

1
g,,(2)==
q

—2.3

4,,..2.2 4 2 2172
{3Ro+6z R -2 (p,-a”) )
a4 R,

~1 l _ §E -1
tan [Ro] tan [ )

~(p%-a?) 12| - 3(1—_§)1/2tan'1 a(1-¢)*"” + 28 & 4_p_£.__
Po —2 (22-a?)V? =
2

2 2i¢o‘ _

3pe s
* 0—4 [tan'i[ 2 Sa 1/2] - tan”’ [2]] - g_z[%
s / (a -81) s

p;ooe'l ‘¢'¢°)-€f P ps® \g P

. ip, 2 ,2
pe o . 3i¢g= .2 e T (p =L)) .
+ 0_ ][a- (az_ef)i/Z] +——-l—2 = p: 2q+zzg+ — : "2821¢ '
R +j 22—21 Ra ae

(4.4.32)

T 3 3i¢, 2 212 (ez-aa)”z a®+20%F
glz(z)=b—p e (Po'a ) 2 2 2 2 2 2 24—
(a°-£5E) (a"-p7E) [2] (a"-p"F)

a2+0%E 2(a2-€f) 3 1 (az_ 2E)1/2
P S tan™' |42 2P =L},

e 2, ,,2 2_,2¢ T
CE(L2-17) (£-7) (a-27F) | (a®-p°F)*2 (83-a%) '

(4.4.33)
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19(Pg=a®) 2 p® (4340%) (£3-a?)

3 2 2 2,52 2,372
a® g, (-pt) % (e2-p7)

2, 2 _g2.1/2
1/2 _ 172 t" " (a™=L))
_ st [tan 1[ £ ]_tan-l[ : ]]

pa(l-t)7/2 (1-t)1/2 a(l-t)”a

g,,(z)=-zt%pe

2 ,2
(£2-¢2)

a

_ 1 [2(1+t:)+ 6+9t

2 (1+t)
+
(1-t)°L p* p"’(l-t)] (az-ef)”z(l-t)a[ p*

6+9t 1+t 3
+ S - e 2] , (4.4.34)
p(1-t)  2-p®  -pit

=172
t

(1-%)

_(p =a”) =1/2
2'"0 I 3t tan™!
2 172

a l(l-‘E) >

F1/2, 2 ,2,1/2 2 ,2,1/2
eanct [t (a®-2) ”_ 1 [a.(a -t)) _

=172 -, 2 2 p2= -2-t
a(1-T) (1-F) a®-t5%

4_ .2, 2¢ 2_ 2,172
= pz(l +p°t) (L=-a")
+ a(l+t) ] + 2 2 } (4.4.35)

2_,2,1/2 2_ 2, .2 20,2 ,,2 52
(a™=£) (E,-p7) (£-p7E) " (£ -E))

o p2e21¢ (pz_aa) 172 (az—ef) 1/2fz(a2+£ff)
g..l2)= —
15 a®(e2-t%) (a®-2F)?

’ (4.4.36)

qR0 0

2 2 2 2,172
R +z . Lf(p.=a”)

g (z) =l{ 0 tan_l (.2_] —&Etan 1 [_._0._._..__]
16 a R -('i a

i¢
2 2.1/2|z]2 Po® 0 -1 s -1(s
_(po-a ) [: [: + 0_2 ] [tan (W] -tan [a]]

s|qg s

- ei¢o tan-l {a (1-'5) 172 ” + jaii"p (a- (az-ef) 1/2] }

po(l_-c-) 172 (ez_az)uz

(4.4.37)
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The absence of the function ge(z) from the list above is in
order to preserve in (4.4.17-4.4.22) the form of solution
used in (Fabrikant [16]) for a penny-shaped crack, where the
equivalent notation f ¢ Was used elsewhere.

Remember that the notations c,q,R,t,s,Ro,j are defined
in (4.3.3), (4.3.9), (4.3.22), (A4.4.29) respectively.

The identities should also be noted:

c1/2 ) F172 (az-if)uz (az-lf) 172
—1/2 5 ' -1z s * (4.4.38)
(1-%) a(1-%)

This means that the trigonometric functions which were
introduced in various formulae in different manner, are in

fact the same, for example

-61/2 3 E1/2 (GZ_Qf) 172
_—_——2 -tan
t

tan 1/ =172
(1-t) a(1-t)
_ -1 S - -1(s
=tan [———(az—ez)l/z] tan [a] ' (4.4.39)
1
Yet another example:
2 2172 =\ 172
-1f (a”=p't) - -1{a(1-0)
tan FENENYE tan [ FENEISE. . (4.4.40)
(22-a%) (¢2-a%)

Every function g, depends on the coordinate of the
field point (p,¢,2) and the coordinates (po,¢0,0) of the
point of application of the force T. The notation gi(z) was

used just to emphasize the fact, that z, (k=1,2,3) should be

129



substituted instead of A when using formulae
(4.4.17-4.4.22).

The expressions (4.4.17-4.4.22) simplify significantly
on the plane z=0. The results are: (the first corresponds to

the case when p<a, while the second to the case when p>a)

e ¢t a2
=1 ltan-l[."l] - 2 T4,
m|R R Gf aa(l-t) 2
+ G—;l:%—tan'l[g] + _-1%[ %ii:) - Eel¢?_ ]]T ’ (4.4.41)
aR al? p,(1-%)
) 1 3 (ps_GZ) 1/2 (pz a2)1/2 y .
W= -ﬁHafRe atan [ = ] + gs tan ((az_pa)“z]

0] I!—'
N

_ (az_ 2)1/2
[1 a7

(pa_az) 172 (p"-—az ) 172
_ 2 1 -1 0 0 -1{a
W= ﬁHaRe{ [atan [ 3 ] + qs tan ( s]
2 2,172
G, a(p;-a®) ]
+ &2 3 gstan‘[g) - éi O (4.4.42)
1 p.e o |s s
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2mHA, ¥, 7, —% 7,

G -ig 2 i
- & e t (1+%) (ol | (4.4.43)
1 a?(1-t) %(p®-a?) ]
1 1) ¢, =
o= = [2nA H'y 7, + ~ [gs(O)T + G_g12(O)T]
n 3/ 1
1 Gz—-
[2rtA Hy 7 - —] [g (0)T + 59 13(0)'1'] , (4.4.44)
3 1
c=0 , for p>0 , (4.4.45)

2,172 .
1 (p -a“) [ . iz. p2e21¢Ez(a2+p2E)T]

z "2 (az pz)ua 2 G1 az (aa_pzf)z
2,172 .
n® (a® p"’)"2 % p201-D)°
T = —T6(p—p0)6(¢—¢0) . (4.4.46)

The second and third mode SIF can be obtained by using
the expression similar to the one defined in (2.49). From

(4.4.46) it will be obtained

(p az)uz -ig
K2+iK3= 2 172 [ 2 2 £e
n°(2a) pta -2ap°cos(¢-¢o)
G, e -icg-¢ ’(pe i¢, , ae'i¢) =
T (e o - ae )2 i et

In the case of a distributed loading, the SIF are given by
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2” . 2 2.1/s2
K +1iK o-1¢ JJ’(p =a’) TPy 9,) P dp dd,
l =
2 * n (2a)1’2 fo} 2ta -Zap cos(¢-¢ )
0 a 0 0 0
2"m:‘:zuz 1(¢¢)
G, J‘ J(po-a ) "“(p,tae °)T(p, ¢,) P AP, d¢}
G— — — . (4.4.48)
p,(pe %0 —ae 1?2
0 a
It should be noted that (4.4.48) is in aqreement with
(4.3.2).

This completes the solution to the problem of external
circular crack under shear load. Formulae (4.4.17-4.4.37)

are the main new results of this section.

4.5 SUMMARY

In this chapter the fundamental solutions to the
problems of external circular crack under normal and shear
load have been presented. The complete solution obtained
here is of great value because it makes it possible to solve
easily many complicated problems which were not even
attempted before. For example, in Chapter 6 interaction
between an arbitrarily located horizontal force Q and an
external circular crack of radius a will be considered. The
solution will be obtained in an elementary way using the
reciprocal theorem.

Chapter 5 will deal with a new type of crack problems,
namely, semi-infinite crack where the infinite straight line

delineates the boundary conditions. It means that the polar
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cylindrical coordinate system which was used so far will be
replaced by the cartesian coordinate system. By means of new
developed concepts for the reciprocal of the distance it
will be possible to obtain all the relevant Green’s

functions to the half-plane contact and crack problens.
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CHAPTER 5
HALF-PLANE CRACK PROBLEMS

5.1 INTRODUCTORY REMARKS

In this chapter an intensive study of the problems of a
half-plane crack in a transversely isotropic elastic space
subjected to arbitrary normal and tangential loading will be
made. An exact closed form-solition will be obtained in
terms of elementary functions to the complete field of
stresses and displacements due to a point force 1loading.
Both transversely isotropic and purely isotropic cases are
considered. The transversely isotropic solution has not been
reported in the 1literature. The isotropic case was
considered by Ufliand [22] who used the integral transform
approach. A comparison with his results for the case of
normal loading shows an exact correspondence. Explicit
formulae are also given for the stresses and displacements
in the plane of the crack. For the case of shear loading a
comparison was made with the results presented in Kassir and
Sih [15], who gave an explicit expressions for stresses in
the plane of the crack and mixed mode SIF.

Though the semi-infinite crack in an elastic space
might look like a very artificial model to an engineer, this
is not so, and the range of applications of this model are
quite wide. Indeed, the model may be applied to any case

when the stress distribution in a cracked body is at
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question, with the distance from the loading to the crack

edge being small as compared to the crack edge curvature.
The practical importance of such problems to engineering is
the main reason why their solution is presented here.

The solution for the case of an isotropic body was
obtained by Ufliand [22], who used a very complicated
Kontorovich-Lebedev integral transform, which does not seem
to be applicable to the case of transverse isotropy. The
same problem was later solved by Kit and Khai [35], who used
the two-dimensional Fourier transform, with subsequent
reduction to the Riemann-Hilbert problem.

Also, for the problem of a half-plane crack under
normal load the same results will be obtained by two
alternative methods.

The material presented in the forthcoming sections 5.2
and 5.3 follows the work by Fabrikant, Rubin and Karapetian

(36,37].

5.2 HALF-PLANE CRACK UNDER NORMAL LOAD: A COMPLETE SOLUTION

The principal idea used in this work is as follows. A
half-planrne crack can be obtained from a circular one by a
limiting procedure where the radius of the circular crack
tends to infinity. Thus, if there is a complete solution to
a penny-shaped crack problem, a complete solution to a
half-plane crack can be obtained. As simple as the idea

might look, its implementation is not trivial.
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5.2.1 SOLUTION FOR A CIRCULAR CRACK

Consider a penny-shaped crack opened by two equal
concentrated forces P applied in opposite directions at the
points (p0,¢o,oi), p,<a. A complete solution for the field
of displacements and stresses in elementary functions, is
(Fabrikant [16]):

¥ 7
u=%HP[ 1f(z) + - —2of (2 )] , (5.2.1)

2 ml m
w=ﬁHP[ - 2(z ) + —— m 1 2(z)] ' (5.2.2)

_ 2P [ £ 1] v, 1]
o - =—|f (z2)~|———— - =—|f_(2.)} ,
! na(zl-vz) { (m1+1)7§ ¥l o3 [(m2+1)w§ ¥4 3 2

(5.2.3)
N A v 22 g (5.2.4)
EPRT L m -1 .(2) m -1 (2] ce
O‘zﬁ['lifa(zl) - 'szs(zz)] ' (5.2.5)
1 Y2
r=——13—-——[f (z.) - £ (z )] (5.2.6)
z nz(w -7 ) 5% 5+ 72 !
1 ‘2
where
(aP-p?)172 3 )
fl(Z)%[——_gtan-l[—?sTl—/;]- %—tanl[%—]], (5.2.7)
a s (& -a%) o o
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1 -1{h
f (z)==tan |2 5.2.8
2(2) =g [R] ! ( )

2 ,2
p —~L 2
f3(z)={- 2—3 tan-l{g—] + ’2‘ _ [2 ; - Z_Z]} , (5.2.9)
R, 0 z(R +h%) Lel-¢2 R
2_ 2,172 1¢ _
_(a po) poe 0 2 -1 S
f (2)=——— == T Zjtan |5
q s s q (£5-a")
z(3R§-z ) i (h (az-pf‘;)“2(22-a2)“2p0e1¢o
t —— 7 —tan [-R_] - — —2_,2 ~1(p-¢ )
d'R, 0 q s”[¢,-pp e 0]
2 2i¢
+ Zh 2[;2 - e 2] , (5.2.10)
R +h7lgrR.  (£-£) (¢ -p°)
i¢
£ (z)=- gstan'][%—] + zh Z[Fz’e =+ 9—2] . (5.2.11)
R 0 R +h"Le"=¢ R
() 0 2 1 )

Here the following notation was used:

R=[p"+pi-2pp,cos (¢-9,)+2°1"% ,  a=pe'®-pel® ,  (5.2.12)
t(a,p,2)=t = F{[ (p+a)*+2%)"*=[ (p-a) 2+2%)"%} ,
b,(a,p,2)=L,= F{[ (p+a)*+2°]"24[ (p-a) 2+2%)'%} (5.2.13)

h=Va2-£f\/a2-p§/a ' s=\/az-ppoei(¢'¢o) . (5.2.14)

5.2.2 SOLUTION FOR A HALF-PLANE CRACK
Let a Cartesian system of coordinates (x,y,z) be
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introduced. It is related to the original system of polar

cylindrical coordinates (p,¢,2z) by the relationships:
pcos¢=x+a , psing=y , 2=z , (5.2.15)

The transformation (5.2.15) shifts the coordinate system
origin to the edge of the crack as in Fig.5.1. Then if the
limit is taken as asw, a solution to the problem of a
half-plane crack in an infinite transversely isotropic body

will be obtained.

°
>

Fig.5.1 Generation of half-plane crack from circular crack.
The crack is being opened by two equal forces P applied
in opposite directions at the points (xo,yo,ot), X <0 as

shown in Fig.5.2.
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Fig.5.2 A half-plane crack under normal load.

Equations (5.2.1-5.2.6) give the field of stresses and
displacements at the point (p,¢,2) due to a concentrated
loading at the point (p0,¢o). In the limiting case a»x, both
p and P, tend to «, while both ¢ and ¢0 tend to zero. This
makes computation of the required limits non-trivial, and a
certain diligence is required in order to single out the
right expressions which would have finite 1limits. After
several trials and errors, the right combinations have been

found as follows:

2,2
4

lim [a 1] =1lim % [az-% [a2+ (x+a) 2+y2+zz- {a®+ (x+a) 2+Y2+zz

a-»w a-»w
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+2a[ (x+a) Z+y?11 %} 2 {a%+ (x+a) 2+yP+2°-2a] (x+a)2+y2]“2}"2]]

=1 i‘“{"“%& [x2+Y2+32‘{ [a®+ (x+a) +y®+2%1%-40°[ (x+a) ®+y°) } ”2] }
a->w

=lim -x-%‘a- [x2+y2+za-{ [ (x+a) 2+y2-a2 ] 42t
a-»»

4

2,.2,..2 2, .2 2
+222[(x+a)2+y2+a2]}“2] =1imd =x=% +§a+z +;[(x +y 42-2ax) +zz
a-yo a a

2
a

+2z2(x2+y2+2ax+2a2)]1/2}=‘/ 240% = 0° . (5.2.16)
1

Using the same procedure, one may derive

lim Za =vx+z%+x = 2; . (5.2.17)

The remaining limits are more simple to compute:

. aa-ps . aa-(xo+a)2-y§
lim 3 =1lim = =-2xO ’ (5.2.18)
a0 a-w

L& . a®-[ (x+a) +iy][(x +a)-iy ] . .
lim a =1lim m —-(x+xo)-1(y—yo) s 5.
a->mw a-w

(5.2.19)

By using (5.2.16-5.2.19), it may be deduced that
lim h=/—2xo[(x2+z")“z-x] =h', (5.2.20)

a->o
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\/az--p2 / 2X
(

lim 0= 0 =c . (5.2.21)
ase S xX+%p) =1(¥=¥,)

Taking into consideration that pe1¢= (x+a) +iy and
poe1¢o=(xo+a)+iyo it may be concluded that R, and q remain

invariant, namely,

R0=\/(x-x0)2~!~(y-yo)2+z2 ’ q=(x-xo)+i(y-yo) . (5.2.22)

And now the general solution for the field of stresses
and displacements in a transversely isotropic elastic space,
weakened by a semi-infinite flat crack occupying the region

x<0, will take the form

2 -7, 7 e

—-1—IHP_m1 f (z )+ f (2 )J ' (5.2.23)
2 -m1 m

W=EHP m, -1 2(z )+m -1 z(z) ' (5.2.24)

{ Y . ¥ .
%= = Jl[ , 2 %]fs(za)-[_-a—'i - %;]fa(za)} '

n(y —7,) (H(m +1) ¥ (m+1) 7,
(5.2.25)
4 v, v,
0'2=-ﬁHA66P[m - 4(z )+m = 4(z )] , (5.2.26)
P i . .
=~ |y f - y.f , 5.2.27
o.z n (71_7 ) _71 3(21) 72 3(22)] ( )
t=—P  [ez) - £z )] , (5.2.28)
z n (71_7 ) | 5 1 5 2
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where
172 .
f (Z)—[c tan’[s,] - ;—tan'l[g—]] , (5.2.29)
a 14 0 o
2
. 21 -1 h'
fZ(Z)T tan (ﬁ—] ’ (5.2.30)
0 [o]
. e 2
f (z)=-2% - tan” [g—] + 2“ — [. 2 - z—z] , (5.2.31)
() ° 2[Ry+(h )] e1+ea Ry
—=* 1/2 z(3R2-z ) d
f:(z)=f_—(§ - %] tan™ [i,-] —2—— tan™ [g—]
q ‘s q 22 q R (o}
V-2x ¢°
- —2 _ 4 ] , (5.2.32)
d s (L+5) R+(h) e(e+e)
f;(z)=-— q_3 tan'l[g—] + — h . 2[.1 -+ 9-2] . (5.2.33)
R 0 R+(h)°Le+e R

Formulae (5.2.23-5.2.33) are the main new results

obtained here.

5.2.3 ISOTROPIC SOLUTION

The solution for an isotropic body can be obtained as a
limiting case of the transversely isotropic solution,
subject to the conditions in (2.34). In the case of an
isotropic body, using the results from equations (3.2.19)
and the identities in (2.35), the formulae (5.2.23-5.2.33)

transform into
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u=-2212V) {(l:zvl[c tan™ [_g_:]i’z_ -I‘-ﬂ;—tarz'1 %—”

n’E q 2

2

_ E[ ZV“zxo Ro-z tan"i [E_]
— . 1/2 s e . 3

a (22) (22+s )(£1+£2) R0

za' [ . "o + p_'_]] ' (5.2.34)
R2+(h )2 n" (x%+2%)'2  R?

_P(1+v)f[2(1]i-v) +-zj]tan-l[%:]+ 2?2 [ X, v +—2;]]},

w
nlE R§+(h')2 h'(x%+z

2 L] .
o [21em 25 B (B) -2 (2 -
n R-R z[R+(h)“1%e +¢, R

. 2 2
x,[(h")*-K]

el S
Rz[Rs+(h')2] h' (x2+2%)12 Rf) [R§+(h')2]2 h' (x%+2%) 12

. 2 2
. 2 23 n'z X 2(R-27)
-2h vl ecmor by - , (5.2.36)
1+ 5 R0 Ro+( YTR2 (xX7+27) Ro

0'2=.I.’.5 (1~2v) [_g_ [% - _1-;]t:an'1 [§:
n q ‘g s 82

—'] 1/2— z (3R§-22) _ ']

“1/2
¢ n' 1 3g®, . -1(h’
+ _2 _ (l: —e - 2 Z . 2[_q2 e I T ]]"Z[ tan [—R—]
q(82+s ) R°+(h ) qRo 21 (21+22) Ro

S
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V2% (a-0"-° 2 2__2 .
22z 2x (q 22 s ) ) z" (3R ~2%) [ X, +h_]
TN A (e+)  FRR3+(R)?) ' (xP42P) 2 R?
2 *2 .2
[ ? X [(h) R, 2z°h° . n’ ][ q
IR+ (1) %)% (%427 V2 (R (n")%)® R+(n')? R’

1 ] 2z°h° [ qa .,  2x _ ]]}
* s 2 * 2{—.4 ,* 2, ®» s 3 e 2 e e » !
L +e)! R+(h)"\gr; (L) (&,+¢) (2))°(e,+2)
(5.2.37)
3 » . e
7 % {%tan-l {%;] "2 Rzihh' 2 [e'+2' ) :—
o (Ry¥(h ) "] +¢, o
b 2
2’ [ 2%, h‘] 22 ["o[(h )*-R;] h-]
+ +— |+ -
2 2 * 2 [ 3 * L ] 2 2 [ ] 2.2 L] - L d
Ry[Ry+(h) 1 th (e, +) R [RE+(R")*1%L n® (e +e))
* 2 2
2 . 2(R™-2%)
x [. 2. _ z_z]_ 2h z. 2[ '4x' g o4 ] ’ (5.2.38)
2 +2 RZ) R%+(h)%L(e’+e) R
12 0 o 172 0
2 . 2 X .
= {32§ tan” {h] TR Rgi h')? [h' Ziz ) -:_2]
L U o/ Ri[R:+(h")*1ln(x :
2 . 2 2 .
_[ x,2 [(h) -R.] 222h ]{g_ L, 1 ]
. 2 *2.2,.2, 2,1/2 2 * 2.2 2 , e
h [R +(h )17 (x"+2") [R+(h )" )R] € +e,
2 L
+—222—1.12[q—4+-—2.—3]} . (5.2.39)
Ro+(h) R, (£1+22)
This completes the solution to the problem of
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half-plane crack under normal loading.
5.2.4 DISCUSSION AND NUMERICAL RESULTS

Numerical computations were performed for the field of
normal displacements and normal stresses, with the Poisson
coefficient v=0.3. The field of normal displacements due to
a pair of concentrated forces applied at the crack faces in
opposite direction at the points (-a,0,0') and (-n.0,07), is
given in Fig.5.3 as a function of x/a for a set of different

values of =z. Similar data for the normal stresses are

presented in Fig.5.4.

25 v
20 -
-2=0.0
--z=0.5
~— ..z=l.0
- -2=1.5
FIs : -
~
o
~
Ja
= 10 - -
g
3
5 -
0 - R AT T N
-2 0.5 1 1.5 2

Fig.5.3 Normal displacement distribution in isotropic body
for different z: (—z=0.0; --2z=0.5; --2=1.0; +=2=1.5).
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‘. ! --2=(0.5
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15} Voo .
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig.5.4 Normal stress distribution in isotropic body for
different z: (—2z=0.0; =--2=0.5; --2=1.0; -=-2=1.5).

The problem of a half-plane flat crack in the case of
isotropy was first solved by Ufliand by means of
Kontorovich-Lebedev integral transform. He outlined the
general solution, but neither he nor any researcher after
him gave explicit expressions in terms of elementary
functions for the field of stresses and displacements. So,
full comparison of all results obtained here with his cannot
be done. It is shown below that the results of Ufliand,
which are available for comparison, are in exact agreement
with the ones obtained in this work.

According to Ufliand [22] (f.84.19), the Green’s

function is:
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. 2var sing
<b2= — tan —m—= ,
np P

(5.2.40)

where N is the applied force, p=¢?x+a)2+y2+z2, r=Vx2+y2,
X=rcosd, y=rsind.
Formula (5.2.40) can be rewritten in the notations used

here as follows:

2 1/2
b = P_z 112_ nl V2a[ (x* +Z ) _=x] (5.2.41)

m [¢] 0

The system of coordinates used here does not correspond to
the one used by Ufliand, so y and z has to be interchanged
everywhere.

The normal displacement component w has to be found
from the relation

2
26w = -2(1-v)<1>2+z§3 . (5.2.42)

Here v is Poisson’s coefficient and G is shear modulus,

_ E

=317

Substitution of (5.2.41) in (5.2.42) will result in

P(1+v) |[2(1-v) . 2 1 V2a[ (x2 +z"’)"2 x]
W= - > [ R + 3]tan

n E 0 R o
0
_ 22 a
2,172

R +2a[(x +27) " T=x] \/2a[(x2+22 172 x]\/x +z
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(5.2.43)

_ /2a[(x2+zz)“2-x]]}
R® '
0

Now, it is not difficult to show that the expression

(5.2.35) is in agreement with (5.2.43).

The correspondence between the complex tangential
displacements given in (5.2.34) and the tangential
displacements, which can be obtained by utilizing formula
(84.22, Ufliand [22]) can also be shown. After some
simplifications the <complex tangential displacements

according to Ufliand reads

1 a<I>0 a@o 1 3 6@0 a<x>0
N . 8 (o .0 e
u+iv 2G[6x + lay + 150 zaz(ax + lay ]] P (5.2.44)
where
z
Qo=(1-2v)th2dz + const . (5.2.45)
0

Since the integral in (5.2.45) is not computable Ufliand

resorted to differentiation of function d:o with respect to x

and y.
f& + i_&& - P ) (1-2v) [ va/2 lr,\/r+x + VX—-a-1y
6x 8y n® (x+a-iy) “Wx-a-1y Vr+x — vVx=-a-1y

-z -u/za(r—x)l
Rotan ___Ro } . (5.2.46)
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[2 2
Here r=vx +z°.

Utilizing formulae (5.2.23), (2.34) and the first formula of
(3.2.19), the expression for complex tangential

displacements will read

. af - (z)
u=ux+iuy= - %;ll[(l-zv)fl(z) + z-?;——] ' (5.2.47)
n

where f;(z) is defined by (5.2.29).
The structure of (5.2.47) is exactly the same, as that of

(5.2.44), provided that it can be proven that

= P ._ .
A% = ?(1 2v)f (2) . (5.2.48)

This would mean that Ufliand’s result (5.2.44) is exactly
equal to the one obtained in (5.2.34). Indeed, it can be
shown that the first term in (5.2.34), which is nothing else
but (P/nz)(1-2v)f:(z) is equal to (5.2.46). Remembering that

x=-a, y =0, it can be written

P «  _ P (1-2v) v-2a -1 V=(x=a)+iy
— (1-2v)f (2)= — — tan
i 1 L2 (xta-iy) {1’—_—'_x—a-1y \/(x2+zz) Ve

2

2
2 tan! \/Za[ (X" +2

172
) 'x]} ) (5.2.49)

\/(x+a) 2+y2+z2 \/(x+a) 2-i-y2+z2

Using the relationship between tan™! and 1n, namely,

-1, _ 1 1+it
tan 't = 31 n 1—_—R ' (5.2.50)
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it becomes an easy task to show that (5.2.49) is the same as
(5.2.46).

The expression for the normal stress oc_on the plane
z=0 due to the above-stated pair of concentrated forces can
also be presented here. By looking at the expression
(5.2.38) for o, it may be noted that some of the terms have
an indeterminate form as 2z-0, namely z/h'. In order to
evaluate an indeterminate form, all these terms must be
multiplied and divided by [(x2+zz)1’2+x]1/2. Once some
obvious simplifications are made and limit is taken it
yields
P a 1

2z nz X (x+a)2+y2

' (5.2.51)

which again corresponds to the result obtained by Ufliand
[22].

Unfortunately, neither Ufliand nor any other author
after him, have given any other explicit expressions which
could be compared with the present results.

The field of stresses and displacements in the plane
z=0, which 1looks much simpler than (5.2.23-5.2.28) and
(5.2.34-5.2.39) and might be handy for practical use, is
given below. In results to follow the first expression of
each component corresponds to the case of x<0, while the
second one to the case of x>0. Here are the results for

transverse isotropy:
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u = -PHa £,
q
—*.1/72
_ . 2PHa c -1(s
a
w=2PH1,n X
T m R R !
w =20, (5.2.53)
o= o,
X _\1/2
ZP[ 1 ]1 { o]
o = — - 2nA Ha|=|- —| , (5.2.54)
1 pely v, 66 gl X
o_= 2PHA a[—zﬁ- c ] ,
2 66 — ==
d qs
4PHA66a 2c c (=172 2\/-—xox 1 X 172
7S T (|=2 T T =t 5% =t S % ’
q q R™s R
(5.2.55)
o,= “P8(x-x)38 (y-y,) .
X 1/2
P 1 (_To
(Tz-— - -—2[ )—{—] ' (5-2.56)
n
T = o, for ~w<x<w . (5.2.57)
The isotropic case differs only by elastic constants,
namely,
u = - P(1+V) (1-2v) c
2nE — !
q
—*\1/2
g = - P(1+Vi(l 2v) g tan-l[%} ] (5.2.58)
nE q
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X 1/2
o = ML[- _0] , (5.2.60)

1 72 R2 X
o =P(1-2v)f2c _ ¢ ]
2 2 =2 - =
q qs
. _p(1-2v) [2_c _c ]tan'l [.S_-]1/2+ 2V-xcx +1 ( xo]uz
== 1= — 5% = 3| ™ x '
2 1 qz g =* 2X RS’ R? X
(5.2.61)
o= “P3(x-x)8 (y-y,) .,
X \1/2
P 1 [ o]
O = — —|= — , (5.2.62)
z na RZ X
T =0, for -o<X<o . (5.2.63)

In formulae (5.2.52-5.2.63) R2=(x-xo)2+(y-yo)2, and the rest
of the notations are defined as before.

The opening mode SIF can be obtained by using
expression defined in (2.43). Substitution of (5.2.62) in
(2.43) will result in

V=X

0

—_— (5.2.64)
2 2
Xo+ (Y-Y,)

K = .P_
1 2
n

It is of interest to note that the same result as in

(5.2.64) will be obtained by using the alternative
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expression introduced in (2.46), which in the case of

half-plane crack transforms into the following

K= —E _ 1im ¥ (5.2.65)

' 4(1-v%) x40 V=X
It is easy to check that the substitution of (5.2.59) in
(5.2.65) gives the same result as in (5.2.64). In Fig.5.5 is

presented the formula (5.2.64) in graphical form.

09

08f

07f

0.6

2/p

05f

2 3/
a

" 04}
03}
02}

IARY

Fig.5.5 Variation of SIF K along crack border.

5.3 HALF-PLANE CRACK UNDER TANGENTIAL LOAD: A COMPLETE

SOLUTION

The principal idea for the solution of this problem is

the same as in the previous case. The only difference is
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that here the results from the solution of penny-shaped

crack under tangential load must be used.
5.3.1 SOLUTION FOR A CIRCULAR CRACK

Consider a penny-shaped crack subjected to the action
of two equal concentrated forces T=Tx+iTy applied in
opposite directions in the xy plane at the points
(po,qbo,oi), p,<a. A complete solution for the field of
displacements and stresses in elementary functions, is

(Fabrikant [16]):

H G G
u= 771,72im;1{-[f2(z“)+ a_z. ?7(zk)]T+[f16(zk)+ Ef‘ fa(zk)]T}

1

G G
B - 2F T -2f T 5.3.1
+n{ I:fz(zs) G1 f7(za)] +[f16(za) G1 8(23)] } ! (5.3.1)
2 2 mk - G2 _
=-T-r- H?lwzﬂekzlm[fl(zk) + a: fg(zk)]T ’ (5.3.2)

27, % 2 G
¢ =Red —1 2 (-1)""[—1— - 1—] [f (z)+== . _(2) }
1 {n2(71-72)kz1 7:2;(mk+1) 7: 5' k" G 10 k]

@

2
=2 1 2F
o= nAasﬂ”l?szimk—l{ [fs(zk)+ G, fiS(ZR)]T

ny

G G
2 = 1 2 =
+[f11(zk)+ G_1 f12(zk)]T} T T2 {[-fs(za)+ 5: fxa(za)]T
3
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(5.3.4)

G
2 —
+[t‘“(z3)- oy flz(za)]T} ,

7.7 2 G

o =Re{—2 Y (-1)*"F (z)+ = F._(z)]|T} , (5.3.5)
z {n2(71-72)kz1 [ 5( k) G1 10" 'k ]
SELE ) (-l)kf[f (z )+ 2 7 (2 )]fr

z 2712(71"72)k=1 71« 3k G1 14" 'k

- G G

2 = 1 2 —

+_-f4(zk)+ E: fls(zk)]T} + ;;5{[f3(23)' E: f}4(za)]T

- G, _

+_f4(za)+ G_1 f15(za)]T . (5.3.6)

Here Re indicates the real part, the elastic constants are

defined by (2.36), and

1 (az_pz)vz -1 s pA -1th
f1(2)=g[—_-_s__ tan ?E;_Tz)m - -ITO- tan .12_0] ’ (5.3.7)
£ (2)=2- tan"[g—] , (5.3.8)

0 [o]
z -1(h h pz-zf z°
f3(2)=— -ﬁ-(; tan [-R—O] + Z(Rz+h2) [2:-8f - R—s] ’ (5-3.9)

2_ 2,172 ig¢
(a=p,) [Poe ° z]tan-1[ s ]

-S-Z a (e:_az) 172
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Z(3R§_22) B ] (a® pz)uz( 2_az)1/2poei¢o
o

2
- -1(¢-¢ )
q Ro qs [32 PP e 0]

2_21i¢
* ghhz[aqz - R 2] ' (5.3.10)
R,&#HGR,  (£5-) (£7-p°)

10p oi? - i9_) Jio
S et e Y e D

R R+h* R
) 0 o

(5.3.11)

2,1/2

2 3(2 -a”)
f—'(Z)_haz[zE ) 2t 2, 3 tan'l( 2 j 1/2]] '
s Zz-a t S (Ez—a )

(5.3.12)

2,172

£ (2) =1 (a®-p?) 1’2{_@:;_)1_/2 [tan'1 [—C_-i—l) " _tan™ [éﬁ%—] ]

2
p ]_ ]
1+ : 1f}, (5.3.13)
a [ g:_ppel(¢'¢o) }

2_p3y172 2_ 2,172
i¢ (a -po) {1 . -1 [a_] N a(Zz-a )
¢

f_(z)=-pe £sin —
i ’ (1-t) (E2-pp eT 9700

t
a

1/2
- 1 372 tan-I [a(; tl 1/2] ! (5.3-14)
t(1-t) (¢ -a

)

pet® 3£2-a’t)
fio(2)=- ' (5.3.15)
10 (e2-02) (£2-a°t)?

1 3R;+6R222-z‘
I, (2=

q

g tan™ [%-]-(a pz)l/z[z [_E_z _ P ”
R’ od =
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2 Zi¢o

P ) S )
s

3 (Fop) 172 " ) _1(a2_£f)1/2
B =2 (tan — .15z tan —T_Tz']]
q (¢-1) a(€-1)
. i¢ . ig 2_ 2, ¢
N hazelq‘)[Zpoe 0 2e1¢ 2 +[poe ) ) 3) (22 a )t]
ps® 5° P q 52 q Z:-azt
i¢,,2_ 2
3i¢ e " (&2-p%) 2
- 2h 2[§p§ 2 —2 - E'z.'g + 2921¢] ' (5.3.16)
Ro+h 22 El g Roq
2 ,2,1/2
Fuiyl/2 172 (a”=-¢7)
f.(2) =.'1..(‘12'p(2,) 1/2{3—(% [tan-l [:.1_] -tan™ [—:'1175]]
q q- C-1 a(C-1)
e21¢(a2—£f)“2 €§+p2 2p2(£:-a2)
- a(ez_ez) [82— 0 el(d) ¢0) (82 op ei(¢_¢o))2 + 1]
2 1 2 p 0 0

eltry i (a¥-1D)'F L,+20° 1, e
+P -t p a 1(3-¢) +2(= + —) '
q\&,-pp e 0) q
(5.3.17)
5 15 (£2-q%) 12 _
=—hla 1¢ -1 s _ 15
f,(2)="hi= pe 0[ — tan [—-—_2 = 1/2] 22
S (&-a®)
5 2% pet?(362-a%F)
+ -2 2 2 + 2 2— 2] 2 2 2 2—. 2 (5.3.18)
s (Bz-a t) (ez—a t) (22-21) (ez_a )
(a-p2) 172 a(f2-a?)17? 3(22-2%)
f (z)= 0 2 ] [ 2 t1
14 as(l-t) (ez_ef) (E:-ppoel(¢'¢o)) 1-
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ig-¢ 2,92, o 2
] - i (2
_ - - - /
22 PP € ] (1-t) (22 a”)
(5.3.19)
p%e? P [ (a*-p2) (£-a%)1' " (32-pp e} %)
f15(z)_ 2,,2 ,2 2 i(;-db ()) 2 ! (5.3.20)
t,(e,-t) (L -pp e 0')
2, 2 i¢
R +z pe o
f (z)=-]1 0 tan™! h +(a2-p2)1/2 z|'o
16 _ — R 0 =| =2
q Roq 0 S s
— = 4\ 172
- %] tan-l( 2 sz 1/2] + (C'i) [tan-l = 172
q (e -a”) q (C-1)
2_,2,1/2 . .
(a“=2£%) i¢ i¢, 2
- tan'— ‘“2]+ e ]-— & f‘; . (5.3.21)
a(T-1) P ps

Here the notations defined in (5.2.12-5.2.14) were used

along with the following

t=-‘-)£9 ei(¢'¢o) , c=L- ei(¢'¢o) . (5.3.22)
a® Po

5.3.2 SOLUTION FOR A HALF-PLANE CRACK
Let two equal concentrated forces T=Tx+iTy being

applied to the crack faces in opposite directions at the

] i id L3
points (xo,yo,o Y, xo<o as shown in Fig.5.6.
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Fig.5.6 A half-plane crack under shear load.

By using the same arguments as in the previous problenm
the general solution for the field of stresses and
displacements in a transversely isotropic elastic space,
weakened by a semi-infinite flat crack occupying the region

x=0, will take the form

HV 7 * G L] G LJ —_—
= :t zkzlmk-l-l{'[fz(zk) a—f (z )]T+[f16(zk)+ G_f fB(zk)]T}
. G . . . )
+?:B'{[f2(zs) af (2 )]T+[f16(23)‘ G—j fe(za)]'r} . (5.3.23)

Q'Q
[\

5 2, m -
W?lewzﬂckzl———(mk =177, [f1 (z) +

(z )] ' (5.3.24)

-

27 ¥ 2 G
o =Re{—12 Y|l _L - Lllif (2, )+ f 0(2,)
' {nz(v,-vz)kzn [wi(mkﬂ) 72][ ]

(5.3.25)

159



b n 73 1
[ Gz . 1=
+£,, (2= 5 flz(za)_T} , (5.3.26)
7.¥ 2 G
o =Re{—>2 Y (-1)*"|F(z)+ 2 F (z)]|T}, 5.3.27
. {n — W EAENE 2 ool )] ( )

+[f'(z )+ % £ (z )]T} (5.3.28)
4'\“3 G1 15 %3 ’ U

where functions f:(z)-f:G(z) are given in Appendix A5.3.
Formulae (5.3.23-5.3.28) are the main new results of

this section.
5.3.3 ISOTROPIC SOLUTION

The results for isotropy can be obtained as in the
previous problems by using the necessary limiting forms
defined in (3.3.34) along with the isotropic limits defined

in (2.34). Some additional 1limiting forms needed for
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isotropic solution are as follows

lim —= i (-1)“”[——1—-— - I—-]f(zk)

¥ -7, L 2 2
71972-& 1 "2 k=1 va(mk+1) L
=(1+v)f(z)+§f'(z) , (5.3.29)
1 2 (_1)k
lim —= Y f(z)=f(z)+zf’ (2) . (5.3.30)
71"72"1 1 72 k=1 7k

The final results are

u=1—lt:—lE){f:7(z)T+f:8(z)T+%[(t‘;7(z) +f;8(z)]T— {f;g(z)+f;o(z) ]T]}.

(5.3.31)
wﬁm{[f;gm-z[f;l(zm;z(z)]]T} , (5.3.32)
alﬁm{[f;o(m[f;3<z>+f;4(z>]]cp} , (5.3.33)
a;#{[f;(z)+f;2<z>]T+[f;3(z)+f;4<z)]-:f

I (GEERA ER AR L] Y (5.3.34)
—-w{ [f;3<z)+f;4(z,]T} , (5.3.35)

tz%z-{f;s(z) T+f;6(z)T+§[[f;8(z)+f;9(z) ]T+[f:o(z)+f:1 (z) ]'T‘] },

(5.3.36)

where functions t‘:7(z)—f:1(z) are given in Appendix B5.3.
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This completes the solution of the problem of a

half-plane crack under shear load.
5.3.4 DISCUSSION AND NUMERICAL RESULTS

In order to obtain K, and K, SIF it is necessary to
evaluate the wvalues of tzx(x,y,O) and ‘cyz(x,y,O) stress
components, because

K= lim (2x)"%c_ K= 1lim (2x)'%c . (5.3.37)
zZX 3 yz
x=>0 x>0

The obtained expression (5.3.36) for T component
provides these values, since tz=‘tzx+ityz. Moreover, it
should be noted that the notation for the tangential 1load
used here was in compact complex form, namely T=Tx+iTy,
where Tx is the shear load normal to crack edge and 'I‘y is
the shear load parallel to crack edge. Hence for the case of
the shear load normal to crack edge and applied at the

points (-a,o,o*) it gives

T 172
noavo= 23 [ 32— ] . (5.3
(x+a) “+y [ (x+a)-iy]
The separation of real and imaginary parts in (5.3.38)
will result in the stress components which are required for

determination of SIF, namely,

T 1/2 2 2
T (%,y,0)= -—’-‘[9-] ——1——[1 ¢ 2V (xta) 'Y] , (5.3.39)

Tl2 X (x+a) 2+y2 2-v (x+a) 2+y2
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T
JiF)

n

Thus, according to (5.3.37), (5.3.39) and (5.3.40) the

(E]mz‘“’ y(x+a) ) (5.3.40)

T (x,y,0)= =
yz X v [(x+a) 2+y2]2

result will be:

V2 T X
K= = 3:2 - (1t [%gﬁ]l:gg ' (5.3.41)
ma 1+d 1+d
V2 T
K3= 2 3:2 gzv d2 2 ! (5.3.42)
n“a (1+d%)

where d=y/a.
For the cese of the shear load parallel to crack edge

and applied at the points (—a,o,oi) formula (5.3.36) gives

iT 172
T (x,y,0)= —[2 1 - 2 1 . (5.3.43)
z [ ] [(x+a)2+y2 2-v [(x+a)—iy]2]

The separation of real and imaginary parts in (5.3.43)

results in

v Y (xX+a)
[(x+a)2+yﬁ2 ’ (5.3.44)

. (5.3.45)

T [_a_] 12(2-3v) (x+a) 2+(24v) y°

T _(%,y,0)= =
vz n® % (2-v) [ (x+a)3+y??

And the results for SIF are:
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=‘/§Ty 4v d

K - ! (503.46)
2 n2a3/2 2-v (1+d2)2
_ vz T, 1 2v )1-d°
K= —==5 R P 2! ° (5.3.47)
n a 1+4d 1+d%]

The formulae (5.3.39-5.3.42) and (5.3.44-5.3.47) are in
agreement with the results presented in Kassir and Sih [15].
It is noted that formulae (5.69b), (5.108a), (5.108b) in
Kassir and Sih [15] contain some misprints. Graphical
representations of K, and K, SIF for different values of
Poisson ratio are given in Figs.5.7-5.9.

It is interesting to note that with an increase of
Poisson ratio the maximum of the curve in Fig.5.9 switches
to a minimum. By calculation of the maximum of the function
in formula (5.3.47) it may easily be coacluded that when v<2

7

. 2 . .
we have only one maximum at d=0, and when V>3 this maximum
turns into a minimum and two other maxima appear. Their

split increases with v, namely,

(5.3.48)

This phenomenon 1is illustrated in Fig.5.9, where for a
transitional value of Poisson ratio, namely v=3, the curve
has generated an expected plateau-like maximum.

Another feature depicted in Figs.5.7 and 5.9 is that at

d=t1 the values of SIF are independent of v and equal to
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0.5. The justification for it can be found in formulae

(5.3.41) and (5.3.47).
From formulae (5.3.42) and (5.3.46), which are given in

Fig.5.8, it becomes quite evident that K, SIF due to shear

Tx normal to the crack edge is the same as K2 SIF due to

shear Ty parallel to the crack edge, regardless on value of

Poisson’s ratio. That is, some kind of reciprocity holds.

However due to the effect of the same Poisson’s ratio the
SIF attains double peaks at d=*0.577 and vanishes at d=0.
The phenomenon of reciprocity works for the other

coupled cases illustrated in Figs.5.7 and 5.9 only when

Poisson ration v=0.

l.s T L T T
1.6 ! ‘ n
. Poissonratio n
14} . 4
= -n=0.0
x 1.2} :’ :'.‘\ “\ ° h 7
t : 'I' ‘.I '. —n=0.2
-~ : " [
~ 1k -y V1 4
S VAN =0.4
" ; : ..n=0.
::N 08+ H N
x -n=0.5
06
04
0.2
otz i ) e
6 -4 -2 0 2 4 6

Fig.5.7 Variation of SIF K2 along crack border due to shear

'I‘x for different n: (—n=0.0; --n=0.2; -:n=0.4; --n=0.5).
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E'_" E-_: 0 25 o . . : _: . : , " "'n=0.3
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o~ N A :' \‘ o, '. \‘ '
NN A I S R S .n=04
"U "’d 0.2) ; ,'/ "l": o \.‘
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:N :n 015 | ! ! ‘:‘7 ::' :‘ X “ -.n-O‘S |
01} : .
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Fig.5.8 Variation of SIF K, along crack border due to shear
T , and variation of SIF K, along crack border due to shear

Ty for different n: (—n=0.2; -=-n=0.3; :-'n=0.4; --n=0.5).

1 . : ’ '
09}
08} - Paisson ratio n
07} - -n=0.0 i
S
= 06F -n=2/7
N 05 .n=035 §
“s
o~ -n=05
R 04
o
03 i
0.2
0.1 S )
0 : : . " . T
-6 4 -2 0 2 4 0

d
Fig.5.9 Variation of SIF K along crack border due to shear
Ty for different n: (—n=0.0; -=-n=2/7; --n=0.35; -n=0.5).
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The results obtained have shown that the theory
developed in (Fabrikant [16]) can be used in its 1limiting
case for solving the half-plane crack problem. The available
analysis of comparison has indicated that the results are in
perfect agreement. It is of interest to see whether a new
direct method for solving this type of problems can be
developed.

A separate mathematical approach can in fact be
developed for solving relevant mixed BVP of potential
theory. This new method is based on a different integral
representation for the reciprocal of the distance between

two points and will be presented in the coming section.

5.4 NEW METHOD FOR SOLVING MIXED B.V.P, OF POTENTIAL
THEORY, WITH APPLICATION TO HALF-PLANE CONTACT AND

CRACK PROBLEMS

A new method is presented for exact solution in closed
form of a mixed BVP of potential theory when the potential
is prescribed on one half-plane (say, y20, 2=0) and the
charge density distribution is prescribed on the other
half-plane (y<0, 2=0). The method is based on a new integral
representation for the reciprocal of the distance between
two points. Its substitution into the simple layer
distribution leads to an integral equation which can be
solved exactly, with no integral transforms or series

expansions involved. The general results are applied to
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solving a relevant punch problem and a half-plane crack
problem. A complete solution for the fields of stresses and
displacements is given in closed form and in terms of
elementary functions. The work presented in this section

follows the paper by Fabrikant and Karapetian [38].

S5.4.1 INTRODUCTION AND DESCRIPTION OF THE NEW METHOD

Consider the following problem: find a function

V(x,¥,2), harmonic in the space and vanishing at infinity,

subject to the boundary conditions on the plane z=0:

V(x,y,0)=u(x,y) for yz0 , =w<X<o ,
av
5§|z=0='2"0(X:Y) for y<0 , -w<x<o . (5.4.1)

As was mentioned before, this kind of problem has been
solved by Ufliand [22], who used the integral transform
technique.

A new method proposed here is based on the following
representation for the reciprocal of the distance between

two points N(x,y) and Noo%,yo), namely,

>}

. ) 2 A (2u-y-y ,x-x;)du 5.4.2
R " R A o
2 2 B )
VQx-xo) +(Y’Yo) max(y,y ) °
Here
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A% (a,b)= 2, (5.4.3)
a“+b

which stems from the work of Rubin [39] on fractional
integrals.

Introduce a new variable
n'=2Vu-y¢u-yo . (5.4.4)

It is easy to show that

. 2u-y-y * .
A (2u—y-yo,x-xo)= 2 - 2 271 *.2 gz
(2u-y-y ) *+(x-x))®  2[R*(n)?]

(5.4.5)
Substitution of (5.4.5) into (5.4.2) yields
[++]
1_ 2 an
ﬁ=ﬁ[7"fz ' (5.4.6)
R™+(n )
0

thus proving (5.4.2).

Everywhere in this section parameters with asterisk are
used for two purposes: 1) to emphasize the analogy between
the method used by Fabrikant [16,17] for the geometry of a
circle; 2) to show that in the case of a half-plane there
are certain differences as well.

The integral representation (5.4.2) is convenient for
solving problems in the upper half-plane yz0. In the

half-plane y<0, the following equivalent can be established:
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min(y.yo) .
1 5 J A (y+yo-2u,x-xo)du

n

(5.4.7)

Pl i

172

Vix-x )%+ (y-y,)? [(y-u) (v -u))

-0

Now it is necessary to establish an integral
representation for the reciprocal of the distance R, between

M(x,y,z) and No(xo,yo), namely,

= 1 ) (5.4.8)

\/(x-xo) 2+ (y-y,) 2+2?

$U||-'

0

Since the quantities y and Y, in (5.4.2) are arbitrary
they can be formally replaced by, say, e;(yo,y,z) and

2;(yo,y,z) , such that

= 1 , (5.4.9)

Vixmx )2+ (2 (v, ¥, 2) =L (Y, ¥, 2) 12

w|r-a

0

which requires that
. . / 2,.2
(Y ¥ 2) =t (Y, ¥, 2)= V(Y -y)"+2" . (5.4.10)

According to (5.4.2) and (5.4.7), it is necessary to define

Zz(yo,y,z) and E;(yo,y,z) in such a way that
€ (Y, ¥,0) = min(y,y)), &(y,,¥,0) = max(y,y,). (5.4.11)

It can also be required that A" in (5.4.5) stayed
invariant, namely, Z:(yo,y,z)+e;(yo,y,z)=yo+y. All these

requirements can be satisfied by putting

170



L) L] 1
L (yy) = L(y,,y,2) = 5[y+yo-/(y-yo)2+zz_ :

. 1 /A
&(Y,1Y,2) = 5[y+y0+ (Y=y,) +2°|

(5.4.12)

& (y,)

One can also define function q’(u), which is inverse to

both Zz(yo) and é(yo), in such a way that

9'1¢ (v,) 1=9° (£, (v,) 1=y,, namely,

. 2
9 (u) =u - (5.4.13)

Hereafter 2; is understood as E: (0,y,2) and t: (yo) denotes
q(yb,y,z), similarly for é, as they are defined in
(5 L] 4 . 12) L]

As before, it can be easily verified that

w

J A (2u-y—yo,x-xo)du

[(u=e (y,)) (u-¢ (y ))1"?
(yo)

1 _
R
[¢]

2

n
.

¢
2

1 (v,) ,
2 J A (y+yo-2u,x-xo)du
n

[(2; (y,)=u) () (y,)-u)]

=00

(5.4.14)

172 °

In fact, the integrals in (5.4.14) can be computed as

indefinite, namely,

A‘(Zu-y-y , X=X _)du .
J _ =2 -1 tan“[l‘—}gil] , (5.4.15)
[(u=t (y,)) (u=-¢_(y )] ° 0

where
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h'(w)= 2v-€ (y )Va-tl(y,) - (5.4.16)

The integral representations (5.4.2), (5.4.7) and
(5.4.14) make it possible to formulate and solve various
problems, as shown below.

5.4.2 PROBLEM OF THE FIRST TYPE

Let the boundary conditions on the plane z=0 be

V(x,y,0)=s(x,y) , for yz0 , -o<X<wo ,
av
z|z=0"0 7 for y<0 , -w<x<w . (5.4.17)

The question is to find the charge density distribution o
for y>0, and the potential V(x,y,z) in the whole space.

The potential may be presented as a simple layer

2] [+ o]
o(X,rY,)

V(x,y,2) = dxo dy&——jgr—— . (5.4.18)

-0 0
Substitution of the first representation (5.4.14) in
(5.4.18) yields

*
© g (u).
£ (2u-y-y_)o(x,y )dy

V(x,y,z) = 2J dul/ZJ O “‘2’ 0 (5.4.19)

e.(u-y) (9 (W)-y,]

2

Here the 2'-operator is introduced as
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-4

£ (K)yo(x,) = & J

ko(xo,-)dxo

2 ’

k>0, (5.4.20)
k2+(x—xo)

and the following rule for the change of the order of

integration was used:

© © © g.(u)
J dy0 du = Jdu deo . (5.4.21)
0 e;(yo) 2; 0

It is of interest to note that the f-operator presented in
section 2.3 had the property 2(k1)£(k2)=l’(klk2) and £(1)=1,

the new operator ¢ is different:

2'(k1)2'(kz)=2'(k1+k2) , £0)=1 . (5.4.22)

Substitution of boundary conditions (5.4.17) in (5.4.19)

leads to the governing equation

u

(o]
»
£ (2u-y~-y )o(x,y )dy
J du J 0 el s(x,y) . (5.4.23)
vu-y \/u—yo
Yy 0
Application of the operator
[+ ]
d J dy ,*
£ (y) (5.4.24)
d !
Yi ) vyey,
Y

1

to both sides of (5.4.23) gives
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Y, . ®
£ (2y, -y )o(x,y. )dy .
-2”J ir—j‘_ —— - gY’J‘f:Eiﬂf(Y)U(X,Y)- (5.4.25)
o yl-yo 1 Y=y,
Y

1

Here the following integral was used:

u
J__iif_=n . (5.4.26)
y

The next operator to apply is

Y
d i dy1 .
ay 2(—2y” ' (5.4.27)
2 5 Y,=y,

with the result

21’ (-y ) o (x,y,)

Y, @
day
d - a dy .
= € (-2y )——I—Lz (y)u(x,y) . (5.4.,28)
dYJ Y.-Y 1Y, |vy=y ’
2 1 y 1
1

The final result is

d
21 Y vy-y VYO‘Y1

Y (]
' ay, ay, .
o (x,y) =Y Q—J Ly ("2Y1)g?[ 20" (y )8 (x,y,) -
1
o ! .

(5.4.29)

The substitution of (5.4.29) back into (5.4.19) makes it
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possible to express the potential in the whole space through
its boundary values.

The first simplification yields

. . £ (y,) s (x,y,)dy
V(x,y,z):-%J du 2 [2u-y-29 (u)] d. [ 0 0 2.
Nu-y dg (w) J A4 _4*
22 g (u) Yo~9 ()
(5.4.30)

Introducing a new variable t by the relationship

u=£;(t,y,z), namely 't=g‘(u), expression (5.4.30) will take

the form
e (E)-y at " (v yo(x,y.)dy
V(x,y,z)=—%J 2 . :e’[ze;(t)-y-zt]g—tJ ! (o o,
el (t)=2](t) vy, -t
0 t
(5.4.31)

Here 2;(t) is used as an abbreviation of e;(t,y,z), and the
following formula of differentiation was used:

a;(t) L (t)-y

L (5.4.32)

e (t)=¢] (t)

The change of the order of integration in (5.4.31) yields

yo L -
dJ at [2 (2¢ (t)-y-2t)

1 (]
Vi(x,y,z)==1dy_{£ (y,) n N
"J °{ W mE el (-] (t)

0

x \/c;(t)-y]}u(x,yo) . (5.4.33)
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The integral in curly brackets can be computed exactly (see

Appendix A5.4), and the final result is

m R

o [+ <]

R

V(x,y,2)= -1—2 deoj%[ﬁg + tan'l[g—]jlu(xo,yo)dyo ' (5.4.34)

0
0 0 0

where h(t) is defined in (A5.4.2) and h is an abbreviation

for h(0), namely,

h = 2vy ¢ . (5.4.35)

o2

In the case of y<0 and 2z-0, formula (5.4.35) gives the
potential in the negative half-plane through its values in

the positive half-plane as follows

o] R

~

L+ ] s}
ov(x ,y,)dy
V(x,y,0)= 2? deoj,/ ; ° 20 °, for y<oO. (5.4.36)
© 0

It must be noted that R2=(x-xo)2+(y—y0)2.
5.4.3 PROBLEM OF THE SECOND TYPE

In this problem the boundary conditions on the plane

Z2=0 are:
AT +
T3 9z|z=0"0 (X/¥Y) ,  fOr -acx<w y>0 ,
V(x,y,0)=0 , for -w<x<w , y=0 . (5.4.37)

It is necessary to find function V(x,y,z) in the whole

176



space and o for y<0. In order to derive the governing
integral equation, the second condition (5.4.37) must be
used. Repetition of the derivation of (5.4.23) for y<o0,

results in

o u
£ (2u-y-y _)o' (x,y )dy
4f(x.Y)|ym= 2J du [ ° °o 9, (5.4.38)
vu-y vu-y,
0 0

By using integral representation (5.4.7), the potential in
the lower half-plane due to the charge distribution there

will take the form

y o -
. r £ (y+y_~-2u)o (x,y )dy
18 (XIY)IY<O= ZJ du J 0 9 ° . (5.4.39)
vy-u vy, -u
- u

Since the second condition (5.4.37) implies that wn'+v =0,

the governing integral equation will be

e

vu-y va-y,
0
0‘ -
£ (y+y,~2u)o (x,y )dy
=—2J du J 0 ¢ "9, (5.4.40)
vy-u vy, -u

The left-hand side of (5.4.40) can be transformed by using

two representations (5.4.2) and (5.4.7) as follows
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o u . ° P
J, du Jx (ZH_Y_YO)O‘ (X'yo)dyo _ de JZ (ZU‘Y—yo)du a#(x y )
= ’
vu-y Vu-y vutyvusy, i
5 o o 0 Y
0
© Y .
£ (yty,-2u)du} |
- dYO g (xlyo)
vy-uvy -u
0 ~w °
v o | . Yy (0] . -
=J u r (y+y,-2u)o (x,yo)dyo_-[ du J'ie (y+ty,—2u)o (x,y,)dy,
= 7, A e
o 0 e v

(5.4.41)

Comparison of the last two expressions of (5.4.41) leads to

0 0

J £ (y,~2u)o (x,y,)dy, _ ‘J £ (y,m2u)o (x,y )dy, (5.4.42)
vy,~u vy, -u
4] u
Application of the operator,
0
d du .
T J —— £ (2u) , (5.4.43)
u-u
A9
to both sides of (5.4.42) yields
[s2]
. - Y, £ (v,) |
n{ (v)o (x,8) = - e —yz:g— a‘(x,yo)dyo ' (5.4.44)
0

and finally,
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[+ ]
- _ i /Y, £ (y,~y) |
o (x,Y) lyo = T w7V Ty —Y_OT— o (x,y)dy . (5.4.45)
0

Expression (5.4.45) gives the direct relationship between
the charge distribution ¢’ in the upper half-plane and ¢ in
the lower one. Formula (5.4.45) can be rewritten without the

£'-operator as follows.

=

[ ] [++] .

- Yy, o (x_,y_)dy

o (X,y) = - %deJ -yi’ °; ° 2 . (5.4.46)
2 (x-x) "+ (y-y,)

Now the charge distribution ¢ is known all over the plane
Zz=0, and the potential can be found directly in terms of the
prescribed density o'. By utilizing (5.4.7), the following

expression for the potential can be presented

14 0

1 » -
£ (y+ty -2u)o (x,y )dy
V(x,y,2) = 2J du J 0 0T To (5.4.47)
vy-u vy -u
-® g (u}

Substitution of (5.4.46) in (5.4.47) dgives, after

simplification,
e o
£ (y+y,~2u)o’ (x,y )dy
Vi(x,y,2) = -2J du J o o _©° (5.4.48)
-0 y—u 0 Lyo-g'(u)
The positive counterpart, according to (5.4.19), will take
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the form

. T 2'(2u-yo-y)du .
Vi(x,¥,2) = ZJdYO J o (xlyo)

Yu-yvg' (u)-y

0 e;(yo
(2] e:(yo)'
4 (y+yo-2u)du .
= 2 dy0 o (x,yo) . (5.4.49)

y-uvy - (u)

0

The order of integration in (5.4.49) can be changed

according to the scheme

L L]

[ el (y ) Y o 21 ©
J dyo Jdu = Jdu J' dyo + Jdu J dyo . (5.4.50)
0 -—® 2: g.(u) - o

By taking complete potential as superposition V- and V', it
may be seen that (5.4.48) cancels out with the second term

in (5.4.50), so the only term left is

y © N
£ (y+y _-2u)o (x,y )dy
V(X,y,2) = 2[ du J 0 el Ml (5.4.51)
¢ y-ug.(u) VY,=9 (1)
1

One may also change the order of integration in (5.4.51) and

perform the integration with respect to u.

L]
o ¢ (y )

! °£'(y+yo—2u)du
V(x,y,2z) = Zdeo J o(X,Y,)

* Vy-wy -g° ()
1

o ¢
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[o4]

[»¢] f———
1 -1 2 yozz
dxo R tan ]
0
0

cr(xo,yo)dy0 . (5.4.52)

I
Fiv

0

-0
In (5.4.52) a symbol + with ¢ was no longer used, because it
is obvious from the limits of integration that o is related
to the half-plane y>0. In the plane z=0 formula (5.4.51) and

(5.4.52) simplify as

Y w
£ (y+ty -2u)o(x,y )du
V(x,y,0) = 2J du [ 0 0
vy-u vyt
0

0 u

[++] [+4]
2 1 -1 2 yoy

== dx0 R tan R a(xo,yo)dyo . (5.4.53)

-t 0

5.4.4 APPLICATION TO THE ELASTIC CONTACT PROBLEMS

Let it be necessary to consider a transversely
isotropic elastic half-space 220, characterized by five
elastic constants Aik, as described in section 2.5. A
semi-infinite smooth punch act on the boundary =z=0, y>O0,

while the rest of the boundary, namely, 2=0, y<0 is

stress-free. Assunme that the punch produces normal
displacement
w=w(X,Y) ., for ~no<X<w , yz0 . (5.4.54)

The other boundary conditions on the plane z=0 are
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c =0, for —-0n<X<w , y<o ,
T =t =0 , for ~0<X, <o . (5.4.55)

The governing integral equation of the problem is

[+4] [+ 4]
o (X, ,Y,)
H dxo __—TT_——dyo= wix,y) , ~n<X<o , y>0 . (5.4.56)
-0 0

Here H is an elastic constant defined in (2.36), and
R%=(x—xo)a+(y-yo)2. According to (5.4.29), solution of

(5.4.56) takes the form

y [+ ]
. dy . dy .
o(x,y)=- W D"t et oy S| 2 ¢(y yw(x,y).
2 Y 1'd ] o'fo
217 H \/y-y1 y1 \/yo-y1
0

1
(5.4.57)

The complete solution to the problem can be expressed

through two potential functions

Hy, Hy
ml_l F(zl) [ FZ(Z) =

2
m_-1
2

F1(Z) = F(zz) . (5.4.58)
Here zk=z/3&, k=1,2 and m and ¥, are elastic constants
defined in (2.29) and the main potential function F(z) is

defined as

F(z)EF(x,)r,z)=deoJln[z+VQx-xo)a+(y—yo)%+szo(xo,yo)dyo .
© 0

(5.4.59)
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By substitution of (5.4.57) in (5.4.59), one can easily
compute OJF/4z, which will coincide with (5.4.34). Further
integration of both sides with respect to z (see Appendix

B5.4) will give the main potential function F as

m H

[o0] o
1
F(x,y,2)= > JdXOJK(x,y,z; xo,yo)w(xo,yo)dy0 ' (5.4.60)
o 0

where

. 1/2
K(x,Y,2;%,,¥,)=- &tan” (g—]- L 29ee[—1—tan" [H— ]
0 o]

R szo viq 20;

(5.4.61)

Here Re indicates the real part, q=(x-gﬁ+d(y-yo) and the
other parameters are defined by formulae (5.4.12) and
(5.4.35).

The field of displacements and stresses was given
through the main potential function defined in (5.4.58) by
formulae (2.27) and (2.32).

In order to find a complete solution, it is necessary

to have the following derivatives of K, namely,

R
8K 4 0] -1(h
— = Z_{.—- 4+ tan [——] (5.4.62)
az Ra[ R0 ] !
)
R 2i£. 172 — Y12
AK = g;%; +tan4[§JJ— l:[l - [__2] tanq[—i1] } '
R ()} hg gq 21%
(5.4.63)
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R 2 L
e | R S
o h(R +h%) [R} & -t

(5.4.64)

R .
a - - 3zg| o -1(h z i q
3z0K = 5|;} +tan [ﬁ-—]] + l: + fJ ’

2 2 - *
R’ o h(R;+h%) [2(¢;-L)) R
(5.4.65)
R ) Y
2 2 -
R e 3] R e
R, 0 h(R_+h") [R_ £1-£2
. 1/2 - )1s2
+ ;3—5[% - [ l__] tan-l[—g—;] } - :'—1—;-—_:— . (5.4.66)
q 2y g 2122 gh (2 182+q)

The substitution of (5.4.62-5.4.66) and (5.4.60) in (2.27)

and (2.32) gives the complete solution.

5.4.5 APPLICATION TO THE HALF-PLANE CRACK PROBLEM

Consider a transversely isotropic elastic space
weakened in the plane z=0 by a crack y>0. The crack is
opened by normal stress ¢ applied to crack faces in opposite

directions. The boundary conditions on plane z=0 are

o= p(x,Y) , —o<X<w , y>0 ,
w=20, —o<X<w , ys0 ,
T=0, ~0<X,y<o ., (5.4.67)

z

The main potential functions in this case are
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7

® (x,y,2) = ¢ (2) = - m ®(z,) ,

Qz(x,y,z) = Qz(z) = - 5ET;§:IT @(zz) ’ (5.4.68)

where

@(z)E@(x,y,z)=]°dx0T W(x°';z)dy° . (5.4.69)
-0 0

The governing integral equation will take the form

w0 00
w(x_ ,y )dy
p(x,y) = - 12 Ade{[ °2 ° ° 555 ¢ (5.4.70)
4n°H [(x=%_) “+(y-y,)"]
-0 0

Here A is defined in (2.26).
Integral equation (5.4.70) is inverse to (5.4.53), therefore

its solution is

o
w(x,y) = %dexo ]dyo . (5.4.71)
00

Substitution of (5.4.71) in (5.4.69) makes it possible to
express the main potential function in terms of the

prescribed pressure as follows

[+ 4 «©
2
®(x,y,2)= EHdeoJK(x,y,z; X1 Y )P (%,,Y,)dy, (5.4.72)
© 0
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where

(5.4.73)

= tan

2¢_] dx dy,

K(x,y,2i %x,,¥))= R

8§ —— 8

Ot———— 8
Pl o]
o]

Various derivatives of K are mainly needed for the

fields of displacements and stresses. They are as follows

g’zi = - 21 tan™ [g_] , (5.4.74)
o] 0
2| z -1(h a5 |12
AK = — R—tan [R_] - ¢ tan = ' (5.4.75)
q () 0 =20
e'
2
8 X - an|Z tan(B] - h I | (5.4.76)
822 R’ Ry zR%+n?)|e’-° R?
[¢] [ [0} ] 1 2 0
g Ak = 2n|L tan [g—] T . - E—— (5.4.77)
R o) R4nl2(e]-f) R

—2.3
0

2 2

. =* Y172 2z (3R -2")
ANK = 271 E[l— + %] tan!|-Z2 - -— 9% _ tan™ (2—]
q d R

0o

vy e

01 _ _zh
q s (s'-2¢)) R2+n?

2

. R ” . (5.4.78)
QRS 4L(e,-t)

In expressions (5.4.62-5.4.66) and (5.4.74-5.4.78) the
values for E:, E; and h are defined by formulae (5.4.12) and

(5.4.35). The other parameters are defined as

s'=(y+y,) -i(x-x ) , a=(x-x ) +i(y-y,) .
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¢ =‘/ 2Y9 =/2y0 (5.4.79)
(Y+y ) +1 (X=X ) = .4,

and the overbar everywhere indicates the complex conjugate
value.

Consider, as an example, the action of a pair of normal
concentrated forces Pa(x-xo)a(y-yo) applied to the crack
faces in the opposite directions at the points (xo,yo,oi),
y,>0. According to formulae (2.27), (2.32), (5.4.72) and
(5.4.74-5.4.78), the complete solution for the field of
stresses and displacements 1in a transversely isotropic

elastic space is

2.7 v,

_a 1 . . B

u-n_HP_ml_lfI(zl) + mz-lfl(ZZ)_ , (5.4.80)
2 [ m1 . mz . -

w=ﬁHP_ml_lf2(zl) + r'n“z——lfz(zz)_ / (5.4.81)

2P 7 17 e 7, 17 .
N - e | - |z
Lty {[(’“ﬁl”i 7‘] > [(“‘2+1)7§ 72] T }

(5.4.82)
oot Pl iofl(z) + —2tl(2)) (5.4.83)
2 T e ml—l T m2_1 P ’ -4.
o = P -7 f‘(z ) - 7 f.(z )] (5 4 84)
2 131 2°3'72 ! -4.
o (y -7,) -
N : -f' f- 5.4.85
tz 2( - )_ 5(z1) 5(22)] [} ( 4. )
n 71 3'2
where
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—* Y1/2
f:(z)=%[c tan'l[ S '] - ;—tan'l[b—ljl , (5.4.86)
()

q -2¢ Ro
» 21 -1 (h
fZ(Z)—R—tan [-R—] ’ (5.4.87)
¢} ]
. 2z -1{h h 2: z°
f3(2)=- ‘—5 tan [R—] + __ﬁ - - —2 ’ (5-4.88)
R 0 z[R°+h%) |e- R
0 [+] 1 2 [o]

2 _2
Oz)

. . [ —* Y1712 z(3R
S e Y
q'‘s q k—zel q Ro o
2'yoe: zh ( q 1
t oot SISt ——| (5.4.89)
q s (s -221) Ro+h tho 422(82—81)
L ] - h s
£ (2)=- 93 tanl[g—] + — o+ q_2 . (5.4.90)
R0 0 Ro+h 2(¢ \ -82) R0

The results obtained in (5.4.80-5.4.85) are valid for
isotropic solids as well, provided that (2.34) and (2.35)
are used and the relevant limits are computed according to
the L’Hospital rule. The scheme which must be used is given

in  (3.2.25).
5.5 SUMMARY

The main advantage of the new method is its simplicity:
no integral transforms or special function expansions are

needed. All the analysis, including computation of

three-dimensional potentials is performed in closed form and

188



in terms of elementary functions. All the parameters used
have physical significance, thus simplifying further
investigation of the properties of solutions.

A comparison of the results obtained in this section,
namely formulae (5.4.80-5.4.90), with those obtained in
section 5.2, namely formulae (5.2.23-5.2.33), shows that
they are in perfect correspondence. Some differences in
expressions should be attributed to the choice of the
coordinate system and the definition of some of the
parameters involved.

The conclusion is that the method developed in section
5.4 and applied for the solution of mixed B.V.P. of
potential theory for a half space geometry, where an
infinite straight line delineates the boundary conditions,
in fact is possible and gives an exact, complete solution to

the stated problenms.
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CHAPTER 6
PROBLEMS OF INTERACTION BETWEEN AN ARBITRARILY LOCATED FORCE
AND CIRCULAR CRACK

6.1 INTRODUCTORY REMARKS

The concept of "weight functions" in two-dimensional
elastic crack analysis was first introduced by Bueckner
[40). His weight functions are elastic displacement fields
which equilibrate zero body forces and =zero surface
tractions but have a stronger singularity at the crack front
than normally admissible displacement fields. Subsequent to
Bueckner’s analysis, Rice [41] showed that weight functions
could be evaluated by differentiating with respect to crack
length the known displacement solutions for two-dimensional
crack problems. Rice [41,42] has also laid the foundation
for three-dimensional weight function theory based on
displacement field variations cause by a first order
variation in position of a crack front. However, in their
simplest interpretation, weight functions can be considered
as the stress intensity factors around a crack front caused
by an arbitrarily located concentrated force. Since their
inception, weight functions have played an important role in
fracture mechanics and a great deal of effort has been aimed
at evaluating weight functions for various crack geometries.

In the present study the focus is specifically placed

on closed-form solutions to weight functions for
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1

three-dimensional geometries. Perhaps the first weight
functions evaluated in closed form are the so called "crack
face weight functions" which are the stress intensity
factors when the concentrated loading acts on the crack
faces. Such solutions for half-plane, penny-shaped and
circular external cracks in isotropic bodies can be
extracted from the work of Galin [43], Ufliand [22], Tada,
Paris and Irwin (44] and Kassir and Sih [15)]. A few
additional solutions not present in this previous literature
can be found in more recent work suck as Meade and Keer [45]
and Fabrikant [16], for example. In these previous
solutions, lo.ding was generally either symmetric or
anti-symmetric about the crack plane. Thus one can superpose
solutions, say for symmetric normal loading and
anti-symmetric normal loading, to obtain the solution for
concentrated normal loading on one crack face only.

Though many solutions exist for crack face weight
functions for the crack shapes noted above, few closed-form
solutions were previously given for general weight
functions. The books by Tada, Paris and Irwin [44], Kassir
and Sih [15] generally summarized the known closed-forn
results for penny-shaped cracks and circular external cracks
when the point forces are located off the crack plane on the
axis of symmetry. The first general weight function was
probably given by Rice [46] who evaluated the tensile mode
weight function for a half-plane crack subjected to an

arbitrarily located force. However, the result was given in

191



integral form when the force direction was parallel to the
crack plane and analytically when the direction was
perpendicular to the plane. Recently, the derivation of the
general weight functions for the penny-shaped and the
half-plane crack have been given by Bueckner [47] for an
isotropic body. The analysis was extended by Gao [48] to the
circular external crack. In both of these analyses, explicit
expressions for the weight functions were given only when
the forces were located on a crack face (the crack face
weight functions).

In the present analysis, weight functions for the
penny-shaped crack are again considered. Use is made of some
recent results by Fabrikant [16] who derived closed-form
expressions for the elastic field of a penny-shaped crack in
a transversely isotropic body loaded by point forces on its
faces. These solutions, coupled with the reciprocal theorem,
are used to derive closed-form expressions in terms of
elementary functions for the crack opening displacement of a
penny-shaped crack in a transversely isotropic body loaded
by an arbitrarily located point force. Explicit closed-form
expressions are obtained for the general weight functions of
a penny-shaped crack in a transversely isotropic body by a
limiting procedure. The outline of a similar investigation
is done for the external circular crack where use is made of
the results obtained in Chapter 4. Such explicit expressions
have not been given previously, even for the isotropic case.

The work of the next section follows the paper by Karapetian
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and Hanson [49].

6.2 CRACK OPENING DISPLACEMENTS AND STRESS INTENSITY
FACTORS CAUSED BY A CONCENTRATED LOAD OUTSIDE AN

INTERNAL CIRCULAR CRACK

In this section an evaluation of crack opening
displacements and stress intensity factors in terms of
elementary functions for the problem of a concentrated load
outside an internal circular crack is given. The results are
obtained for ©both transversely isotropic and purely
isotropic cases. A particular case of a concentrated load at
a point on the normal axis is obtained and compared with the

previous analysis.
6.2.1 POINT FORCE LOADING APPLIED TO A CIRCULAR CRACK

Consider a transversely isotropic space weakened by an
internal circular crack of radius a in the plane z=0. Let
the crack be subjected to the action of two equal normal
concentrated forces P applied in opposite directions at the
points (po,¢0,oi), p,<a as shown in Fig.6.1(a). A complete
solution for the field of displacements in elementary
functions for z>0 is (Fabrikant [16])

v
m,

flfl(za)] , (6.2.1)

u =2HP arlf(z) +
m m1-111
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m m
=2 1 2
W —ﬁHP[mi_lfz(zl) + I_n—z—"-IfZ(ZZ)] ' (6.2.2)

where u=ux+iu and u, u, w are the displacements in the
y X y

X,Y,2z directions.

y P

V:

Fig.6.1(a) Point normal loading.

If two equal tangential concentrated forces T=Tx+iTy are
applied to the crack faces antisymmetricaly at the points
(p0,¢o,oi), P,<a, (Fig.6.1(b)) a complete solution for the

field of displacements in elementary functions for z>0 is

Fig.6.1(b) Point shear loading.
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Hy ¥_ 2 G G
u = ;t "Zm }1{—[f2(zk)+G—f F7(zk)]'r + [f16(zk)+—G—j t’B(zk)]T}

B G2 - G, =

+-T-[- [f2(23)-G_1 f7(23)]T + [f16(z3)_-q fa(zs)]T ' (6.2.3)
_2 g mk = Gz =

W =N H7172RC{RZIW[f1(Zk)+G—I fg(zk)]T} . (6.2.4)

Here Re indicates the real part and the functions f (z) are

given as
(a®-p?) 172 _
fl(z)%[ f_ tan™ > Sz — - %—tan'lg—;] , (6.2.5)
q s (ez-a ) 0
_1 -1(h
fz(z)—-ﬁ— tan [IT] ’ (6.2.6)
0 0
2 2,172
_ha2 3 t 3(22_ ) -1 s
£, (z) 2[_2 Tz 2, ;——tan [ 2 2 1/2]] '
s“ts ez-a t s (la-a )
(6.2.7)
1, 2 2 1s2](T-1)"? i1 )2 -1 (aa_ef)llz
f (2)==(a"-p)) —c—_)——[tan' [__——-—] -tan [ 3 ]]
q d ¢-1 a(g-1)
. 2 ,2,1/2
1¢p -(a™=L7) 2
- & [ (11 [1 + = pi(¢-¢ )] - 1] , (6.2.8)
p Zz-ppe (]
. 44 (a2 pz)ua . o) . a(ez_az):/z
9(2)" pe 3 TN T 2 1(p=¢ )
a 2 (1-t) (Zz-ppoe o)
1 -1(a(1-t) "2 ]}
- — = tan [——— , (6.2.9)
/2 2 2,172
t(1-t) (¢2-a%)
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2,2 i¢

R p,e o

f (z)== { e tan (E—]+(a2 pa)1/z[z[

16 - R -2
q Roq

- %]tan'l[ s ]+ (&= 1)Ua[tan 1
q

(e a2) 1/2 (-c-__l) 172
02-82)1/2 i¢ i¢ 2
—tan“( ! ]+ e "|. e hat (6.2.10)
a(T-1) ' P ps®

Here the following notation was used:

R =[p"+p°~2pp cos (¢=9 ) +2°1"2, q=pei¢-poei¢o , (6.2.11)
e (a,p,2)=t (a)=3{[ (p+a)*+z°]"*~ ((p-a)?+z®]"?},
e(a,p,2)=t, (a)=3{[ (p+a)*+2®]"*+ [(p-a)+2®]"?}, (6.2.12)
t=P0 ig-3,) , c=L eltd-¢y) (6.2.13)
a2 pO

h=va*-t%a*-p?/a s=Va®-pp '@ %o’ | (6.2.14)

An overbar indicates the complex conjugate value and the
transversely isotropic elastic constants are defined in

(2.36).

6.2.2 OPENING MODE DISPLACEMENTS AND STRESS INTENSITY

FACTORS

Consider two systems in equilibrium: let a concentrated

force Q, be applied at an arbitrary point (p,¢,z) in the Oz
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direction as shown in Fig.6.2(a), while in the second system
two equal concentrated forces P are applied normal to the
crack faces in opposite directions at the points (po,¢o,dﬂ
as in Fig.6.1(a). Denote the normal displacement in the
space due to the force P by W while v, is the crack
opening displacement due to force Q . Note zthat the term
"crack opening displacement" is used here to denote the

difference between the normal displacements of the crack

faces.

Fig.6.2(a) Arbitrarily located point normal loading.

Application of the reciprocal theorem to the two systems

yields

Pw0= Qw , (6.2.15)

which gives the crack opening displacement
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woz(po'd,o):%HQz[minllfz(zx)+fn%fz(zz)] , (6.2.16)
with f2 defined by (6.2.6).

Similarly, there can be considered two other systems in
equilibrium. The displacement v is produced by a
concentrated force Q=Qx+iQy applied at an arbitrary point
(p,¢,2) and directed perpendicular to Oz as shown in
Fig.6.2(b), while the tangential displacement u, is due to
the force P applied normal to the crack faces in opposite

directions at the points (p0,¢o,0i) as in Fig.6.1(a).

K4
Ty

Fig.6.2(b) Arbitrarily located point shear loading.
Application of the reciprocal theorem for Qx and Qy

separately will give the following crack opening

displacement
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2
Wox ( Pyr ¢°) —EHQfoe

_2
woy (Po ’ ¢° ) _ﬁHQyIm

with f defined by (6.2.5).

(6.2.17)

(6.2.18)

The SIF can be determined by using the formula defined

in (2.46), namely,

LTS
K (%)= &mm 81IH ;lga (a=p, y172 ’

and obtain K1 due to Qz, Qx and Qy as follows

Q 2 m
K = B - f(z) ,
1 21_[2 ( 2a) 1/2 RZI mk 1 2 k
Q (2 ¥ 1
K = x Re L_ £ (z) ,
1 2n2(2 )1/2 }Zl mk 1 1Y% ]
Q 2 7 . |
K = 4 Im f (z) .
1 21_[2 ( 2 ) 1/2 kaI Illk 1 ]

Here the functions f:(z) are given as

_ 2 (az_ez )1/2
» 1 |a -1 s k 1k

f . (z)== |- tan [ ]- /
1% [— ( 2 -2 1/2 Ri

q |s o 2)
(a2 I )1/2
. 1k
f (2 )= '
2 k 2
Rk
where
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(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)

(6.2.23)

(6.2.24)



Rk=[p2+a2-2pacos (¢-¢o) +zf ] “2,

q=pe1¢-—ael¢o , s=\/az-apei(¢'¢o) , (6.2.25)

2,172

[(pma)®+21 "%},

2.1/2_

= F{[(p+a)+2]

2.1/2 2,1/2

= FLp+a) 221 "%+ [(p-a)®+21"%} . (6.2.26)

6.2,.,3 COMBINED SECOND AND THIRD MODE STRESS INTENSITY

FACTORS

The solution for this case still can be obtained in an
elementary way by using the reciprocal theorem. However, it
will first be shown how the reciprocal theorem can be used
in the case of complex forces and displacements.

Consider two systems in equilibrium. The first one is
an elastic space weakened by an internal circular crack,
with two equal and oppositely directed tangential forces
'I‘=Tx+iTy applied at the points (po,¢o,ot) of the crack faces
(Fig.6.1(b)). The second system is the same space, with the
crack faces tractions free, and the horizontal force
Q=Qx+iQy applied at the point (p,¢,2) (Fig.6.2(b)). For
simplicity of the transformation to follow, it is better to

present (6.2.3) in a generalized form

u=AT +AT . (6.2.27)

Here A1 and 1-'&2 are the combined factors of T and T
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respectively.
The tangential displacements at the peint (p,¢,z) in
the x and y directions due to a couple of forces T, will be

respectively

(u),=TRe(A+A) , (w) = TIm(A+A) . (6.2.28)

X X
The similar displacements due to a couple of forces Ty are

(ux)Ty=TyRe[ (A-A) i]=-TyIm(A1-A2) ,
(uy)T=TyIm[(Al-AZ)i]=TyRe(A1—A2) . (6.2.29)

y
Denoting the tangential displacement discontinuity in the x
direction due to force Q as Ax. According to the reciprocal

theorem, the result is

(8,),=QRe(A+A)) . (6.2.30)

The remaining three equations are obtained in a similar
manner, and they are
(Ay)0x=-QxIm(A1-A2) r (B),=Q Im(A+A)), () =Q Re(A -A).

y y
(6.2.31)

The meaning of the notation in (6.2.31) is the same as in
(6.2.28~6.2.29). Summation (6.2.30) with the first

expression of (6.2.31) multiplied by i=v=1 yields

(A)Q= (AX)Q+ i(Ay)Q= Qx[x1+A2] ¢ (6.2.32)

x X X
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A similar operation with the second and the third
expressions of (6.2.31) gives

(A)Qy= (Ax)oy+ i(Ay)0y= Q[iA -iA)] . (6.2.33)

And finally, summation (6.2.32) and (6.2.33) results in

B, = (A)Ox+ (A)Oy= AQ +AQ . (6.2.34)
A comparison of (6.2.27) and (6.2.34) suggests that the
tangential displacement discontinuity at the point (po,¢o,0)
due to a tangential force Q applied at the point (p,¢,2z) can
be obtained by wusing the expression for tangential
displacements at the point (p,¢,z) due to a pair of equal
and oppositely directed tangential forces T applied at the
points (p0,¢0,0t), by way of substituting Q instead of T,
and by replacing the coefficient of Q by its complex

conjugate. Using this rule, from (6.2.3) may be obtained

Hy ¥ 2 G G _
Ao— 111 Zk;mkil{-[fz(zk)+ -G—jf,,(zk)]Q +[f16(zk)+ G—‘jfs(zk)]Q}

B G2 Gz —
+£ [fz(z3)- El—f7(z3)]Q +[f16(za)- G_lfa(za)]Q . (6.2.35)

Similar consideration can be made for two other systems
in equilibrium. The first system is an elastic space
weakened by an internal circular crack, with two equal and

oppositely directed tangential forces T applied at the
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points (py¢o,oi) of the «crack faces (Fig.6.1(b)). The
second one is the same space, with the crack faces tractions
free, and the vertical force Qz applied at the point (p,¢,2)
(Fig.6.2(a)). And again, for the transformation to follow,

present (6.2.4) in a generalized form

w = Re(BT) = z(BT + BT) . (6.2.36)

Here B is the combined factor of T.
The normal displacement at the point (p,¢,z) in the =z

direction due to a couple of forces T will be

- 1 T\ =
w =T 5(B+ B) = T Re(B) . (6.2.37)

The respective displacement due to a couple of forces Ty is

= 3 1o _ 8 = -
wTy— ir 5B - B) T Im(B) . (6.2.38)

If the tangential displacement discontinuity in the x and y
directions due to force Q, is denoted as A and Ay
respectively, then according to the reciprocal theorem, it

gives

(8),= QRe(B) , (4) = -QIm(B) . (6.2.39)

Summation of the first expression of (6.2.39) with the

second one multiplied by i results in

A, = (AX)02+ i(Ay)0= Q_[Re(B) - iIm(B)] = I_SQZ (6.2.40)

z z
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A comparison of (6.2.36) and (6.2.40) suggests that the
tangential displacement discontinuity at the point (po,¢o,0)
due to a normal force Qz applied at the point (p,¢,2) can be
obtained by using the expression for tangential
displacements at the point (p,¢,z) due to a pair of equal
and oppositely directed tangential forces T applied at the

points (po,¢o,0i). So, from (6.2.4) it gives

G,
Aoz= % Q Hy 1zz(m—_-l—)7[f (z, )+ 2 £, (z )] X (6.2.41)

The SIF of the second and third kind can be expressed
through the tangential displacement discontinuity as it was

defined in (2.47), namely,

a Gle'l‘po A+ G, el% A

K2+iK =- lim RVE
2n(G -G° )V a p, =a (a =P, )

(6.2.42)

Substitution of expressions in (6.2.35) and (6.2.41) in
(6.2.42) and subsequent proceeding to the 1limit will give
the desired results for the SIF.

For application of Q

Q¢ e % .
K= - Py {Zm -1 [G ¥ G, [-f:i(zk) * fA(Zk)]

2 o —e —e Gie l¢o . .
+ G+ G, [-fa(zx) + f4(zk)] + _C_.-‘-';---_G'_2 [fs(za) + fe(za)]
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Gzei¢o e e
+ 'g’i_—Gz [fs(za) + fs(za)]]} ' (6.2.43)

2 G e'l¢o
K== —— I ) oy |5 (’f;(z) +f‘(z)]
4n k= 1 2 k 1 k

-ig¢
2 _— — Gle 0 (] .
tev ¢ [-f3(zk) + f4(zk)]] + [————G e [fs(za) + f6(z3)]

1 2 1 2

Gei¢o
2 — —
+ g- ¢, [fs(za) + f6(23)]]} . (6.2.44)

For application of Qy

an 2, 4 Glie'i‘ﬁo . .
K= ~ Re — [-f (z)-f(z)]
2 4n2\/2_a kzlmk 1 G1+ G2 3' 7k 4k
Gaiei¢o . . T Glie'i¢o . .
el GLARSAR) | I el CUSEE A
Gziei¢o i L, \
t e (Fiz) + Tz (6.2.45)
an 2 4 Glie'l¢o . .
K= - Im — [-f(z)—f(z)]
3 4n2V2—a kzlmk 1 G1+ G2 37k 4 "k

Gziei'po . - Glie'i¢o . .
t8¥ G, [fa(zd * f.;(zk)] tleme [fs(za)‘ fs(zz)]
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Gziei¢o . .
+ -Gl—_-G—Z' [-fs(zs) + f6(Z3)] . (6-2.46)

For application of Qz

Qa 2 m .
K= - ——4Bn2‘/2_am k=1—_—(“‘u'1)7u [Glf,,(zk)
L] [ ] GZ__'
+ Gz(f,’(zk) + f(z,) + é—lfs(zk)]] , (6.2.47)
Qza 2 mk .
K3= - ————4[3"2‘/2_51," kZl (mk-l) 7, [G1f7(zk)
L] . Gz__-
+ Gz(f7(zk) + fa(zk) + a:fa(zk)]] . (6.2.48)

Here the functions f:(z) are given as

2_,2 172 2_,2 (172 .
£ (2 )_(a -t .\ % a(a™-t_ ) 3 pel(qb ¢,
3' %k R%a G1 o2 2 a(ez -apel(¢_¢o))
k 2k
2 2,172
3(E=a’) -1 s
- = tan |——2—1| , (6.2.49)
3 2 2,172
s (8. -a”™)
2k
2 2 2 ,2 172
£(z)=1 {Rk+z“ Y 7 tan’l[ s ]
R 2— S — 2 _ 2,172
R T W N ¢ 5 q (& ~a*)"

k
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_ 2_p2 172 . 2_,2 (172
_ (C-l)“z tan_l[(a Eik) ]- e1¢[a(a Zlk) _1]
3 a(T-1) 172 P 32
_ 2_,2 1,2 i¢ 2_,2 172
) %[(C—l)“a tan"[(a L) ]+ e Tp(a®=¢] )
G - - 1 (-
1 o a((-l)“2 a(e:k apel“p ¢o))
el¢ (a2-£1k)1/2
. [ _ ..1] ) (6.2.50)
2,2 172 2,2 ,1/2 .
f'(z )_(a 213) ) _G_2 a(a -213) 3 pel(¢-'-¢0)
53 Rza ) s® s® a(EZS-ape“d’-'po))
3 (22 a2)1/2
- = tan™ = (6.2.51)
s3 (22 2,172 ! e
23 )
2,2 2 ,2 ,1/2
. _1 R 42, (a™=t) 3z, -1 s
£ (z)== R%G a - —— tan e —g2) 172
g | ®? 54 (¢, -a%)
2,2 172 . 2 ,2 172
'q' a(f-l) 1/2 P EZ
G, (T-1) /2 » (az-efa)l/2 e1¢p(a2 2?3)“2
t g — tan = e 2 1(g=¢
1 q a(¢-1) a(£23 ape 0')
i¢ (aa_efa)vz
"5 [ a ‘1] ' (6.2.52)
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* = _a. -1 s
k 2k
» a -1 [ l . -1{a
f (2 ) = —tan [—————————]- —s1in L——]
8"k s3 (ezk_az)l/z a2 ZZk
ol(9-0¢ p(EZk ~a?) 172 N
Sz( zk pael(¢ ¢0)) '

where I&,q,s,ﬁk and %x are defined as in (6.2.25-6.2.26),

while

R= (p*+a ?-2pacos (¢~ ¢, )+22]1/2 C = g ei(¢-¢o) '
el3= %{[(p+a)2+zzll/2— [(p_a) +zz]1/2} ,
823= %{[(P+a)2+z§] 2 [ (p-a) +22]1/2} ) (6.2.55)

Thus the expressions (6.2.20-6.2.22) and (6.2.43-6.2.48) are
present all three modes of SIF in a transversely isotropic

body.

6.2.4 ISOTROPIC SOLUTION

All the results obtained before are valid for isotropic

solids subject to the conditions in (2.34) and (2.36),

namely,
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_(2=-v) (1+v)

=Y ., B=3Y, , e =2iiir)
nE TE 1 nE 2 nE

(6.2.56)

where E 1is the elastic modulus, and v 1is Poisson
coefficient. The 1limits were computed according to the

L’Hospital rule. The following scheme was used:

2 m ’
lim ) % £(z)= 2QzVIf(2) -2 (2) (6.2.57)
¥,07 o1 kzl(mk n g 2(1-v)
i 7y (1-2v) f(2) +2f’ (2)
lim X f(z )= - 2 , (6.2.58)
?féwzal k=Jnk 1 k 2(1-v)
i m (1-2v) £ (z) -2f' (2)
lim i 7 ey T wons f(z )= — ’ (6.2.59)
7,757,001 k=1(mk 1)7;( k 2(1-v)
i 1 2
lim — (2 )=-f(2)~57+=7 £’ (2) . (6.2.60)
7{972%1 k=1 1 k 2(1-v)
Here the following relationships were used
am1
lim mfﬂ., lim [a;]=2(l—v) . (6.2.61)

1197241 7£+72a1

and the symbol (') means differentiation with respect to z.
Application of (6.2.57) and (6.2.58) to the expressions
(6.2.20-6.2.22) will give K, SIF due to Q. Q and Qy,

namely,
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For Q2

2 2,172
_ &ty " 6.2.62
nvia

For Qx

Q (aZ_ 22)1/2
X 1 a8
K= - P (i) Re [£, (2)] . (6.2.63)

For Q
y

0 (az_ 22)1/2
y 1 L 1]
e = ( ) Im [fz(z)] . (6.2.64)
4mM"v2a (1-v

=
i

Here the functions fr(z) are given as

2 2—82
£(z)= 1 + T-l-_v z - pz_; (6.2.65)
R 20383
. 1 a -1 s pA
£ (z)= = [(1-2v) |[—2— tan [———] -2
2 q [ (az_ef) 1/2s (e:_az) 1/2 R2
2 2 2
2 p =t zt
+ 2 222 - . (6.2.66)
R°| RZ  ¢3-¢ (02-a?+8%) (£2-07)
2 1 2 2 1

In Fig.6.3 and Fig.6.4 are given graphical
representations of K~ SIF due to Q, and Qx forces
respectively, which are located at an arbitrary point in

space.
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N . .
80 Poisson ratio n=0.5 |
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M— "Z=O.4
N .2=0.577
~2=0.8
”U 60 : |
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[1']
s
o 40 4
(3]

Fig.6.3 K SIF due to force Q, at arbitrary point in space
for different z: (—2=0.2; -~-2=0.4; :-2=0.577; -~-2=0.8).

0.9 T v T y T
08~ : ' 1
07k "‘, Poisson ratio n=0.4 |
' \“ .‘_‘ ~72=0.2
o,‘ 06 _',\ :\‘ ) -z=04 -
2 \ . ..z=0 655
- ' . -2=0.8
Nx 0.5 -~ l\‘ “ .. ' 7
~ \‘ [
© .\ 2t
o~ h% E .
5 03 \“- “ -
0.2
0.1
0
-0.1 . * ~
0s | 15 2 25 3
pla

Fig.6.4 K SIF due to force Q at arbitrary point in space
for different z: (—2=0.2; --2=0.4; -:2=0.655; --2=0.8).
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If formulae (6.2.59) and (6.2.60) are applied to the
expressions in (6.2.43-6.2.48) then K, and K3 SIF due to Q.

Qx and Qy, will be obtained, namely,

For Qz
2 2,172
K, =- Qz:a ~t) we[(z-v)?"(z)+vf;'(z)+vf:'(z)+ %?:'(Z)],
gn®(1-v)v2a ?
(6.2.67)
. Q (a®-2%)17? v2

3 Im[(z—v)f;'(z)+vf;'(z)+vf:'(z)+ -b-:l;?:'(z)].

8n®(1-v)vZ2a

(6.2.68)
For Q

Q a 3 —_—ne —e 7 ] -7 }
K == m;m:ne{el%[g[fs (2)-F, () |+ o=y (B (@) -F; (z)]]

+e-i¢o[a;[f;'<z>-f;’<z>]+ 5y f;'<z>-f;'<2>]” '

(6.2.69)
Qa .
—_ X ig (v [z _F* v —s _F*
K= 4n2‘/2_alm{e O[E[fs (2)-f, (z)]+ W[f7 (z)-f, (z)]]
+e"1¢0[2;"[f;'(z)-f;'(z)]+ -————4%121)) (f;'(z)-f;'(z)]” :
(6.2.70)
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Qa .
— y 3 i¢ ViF —ee v —ee —ee
e 4n2\/§ERe{ - 0[2 [ @7 @)+ iy (o, (z)]]

+ie‘1¢o[2;"[f;'(z)+f;'(z)]+ z%_;‘_’_V).[f;'(z)+f;'(z)]]} :

(6.2.71)

Qa .
—_ -3 1¢ | v [z —ne v —o0 —.
K = 411;' Im{ ie O[E[fs (z)+f, (z)]+ YN {f_, (z)+f (z)]J

3

+ie'i¢o[¥[f;'(z)+f;'(z)]+ ﬁ{f—w[f;'(z)ﬁg'(z)]:l} )

(6.2.72)
Here the functions f:'(z) are given as
hdd a 2 a -1 S
f_(2)= =|(1-2v)|& - —— % ____ tan [—————]
3 SZ[ R2 S(QZ-Ef) 172 (2;-0.2)1/2
2,2 2
z Pt 552 zt,
BT Bl iersr S e M 1P=0. .2 2. ' (6.2.73)
R 22-81 R (ez-pae o) (22—81)

3
f4 (Z)= (1"'2V) {—"le_i/i[%tan-l [('TSZ—UE] -Sin-l [%—]]
- 2

a(a -81) s —a )
) zpazei(d’j‘po) . zgei(¢'¢o)
(az-ef) (li:-pael“p-(po’)s2 (Bz-pae:l (¢—¢o)) (2:-8‘?)
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Zzplzei(¢'¢o)
= i(;—db Y 2,,2 ,2 (6.2.74)
(ez-pae o) (82—£1)
2 ,2,1/2 2 ,2,1/2
Nl UM S s U 3
5 1-v R%a (2-v) (1-v) &2 52
2 2,172
- g _ 3G tan“[ = ] (6.2.75)
4 gy T e ’ LR
ez-apel“p ¢, &3 (Eg_az)uz
. , (02_23)1/2 3(£§-a2)“2 . -
f6 (2)= 1-v -2 - tan [ 2 2 1/2]
qga s (¢-a”)
_ 2R% +2° _ apel¢ 6.2.76
2 2 icg-¢ )| ' (6.2.76)
R Bz-ape 0
2 2,172, 2 ,2 2 ,2,1/20 2 ,2
£ (2) (a”=27) [p 2 272 , (a®=E)) [p -81[3‘12
z)= - +
7 2 2 ,2 2 2=y 2 2 ,2 2
R°a 22-81 R s“a 22—21 s
. . 2,,2 2,1/2
_ ape1(¢-¢o) ) 3a (ez-a ) cant s
¢ 1(¢-¢ ) 3 an 2 2,1/2
,-ape 0 s (¢,-a”)
222£:ape1(¢'¢o) 322£§a2
+ . + -
(PP-aper @)% (12-?)  s2(P-apel P9y (222 |
2 2 1 2 2 1
(6.2.77)
2_,2,1/2 2_,2
f"(z)= (a l’l) Zzz(Rz-zz) N R%+z2 P 21
8 -2 4 2 g2 ,2
qa R R 22-21
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3 (ez—a")“"‘ 32282

- - tan"[ 2 sz 1/2)+ 2 -1(p-¢ ) 2,2
s (Bz—a ) (lz—ape 0 )(82—21)
2_,2 _ - 2_,2
_ 2 P 21 s _ ael(d’ ¢o) _ Vv p 21
2=y 22-02| 924 e-i(¢-¢0) P 2=V |,2_p2
2 T\ 7ap 2 1
gee? (p*-22) 22°¢2Gpe’® )
+ 2_ 1(p-¢ ) 2,2, o2 1(-¢ 1,2 ,,2 ,2 :
(22 ape 0 )(22-81) (Zé-ape 0') (82-81)

(6.2.78)

In Fig.6.5 and Fig.6.6 are given K, and K, SIF due to
force Q. while in Fig.6.7 and Fig.6.8 are given K and K

SIF due to force Qx.

140 .~~ T T L] T T
120
- Poisson ratio n=0.2
. 100 -z2=0.2
o --72=033
\N . 7=(()).g
&80 o=
~
3]
<
o 60
[
(=]
o
40
20
M‘;‘—-.:.n
0 N N UMW‘.‘
0 05 1 15 2 25 3
pla

Fig.6.5 K, SIF due to force Q, at arbitrary point in space
for different z: (—z=0.2; --2=0.33; :-2=0.6; --2=0.8).
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-z=0.33
..2z=0.6
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Fig.6.6 K3 SIF due to force Qz at arbitrary

for different z: ~-~2=0.33;

0.5

(—2=0.2;

1.5
pl/a

++2=0.6;

point in space

"'Z=0.8) .

25

Poisson ratio n=0.0

-2=0.2
j-l=0.4

.2=0.6

-z2=0.8

Fig.6.7 K, SIF due to force Q at arbitrary point in space

for different 2z: -=2=0.8).

--2=0.4;
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Fig.6.8 K, SIF due to force Q at arbitrary point in space
for different z: (—z=0.2; =--2z=0.4; -:2=0.6; --2=0.8).

6.2.5 AXISYMMETRIC CASE AND COMPARISON WITH THE RESULTS

REPORTED IN THE LITERATURE

It is quite interesting to consider the particular case
of concentrated forces applied at the point on the vertical
axes z, namely the case of axial symmetry when p=0. In this
case the expressions obtained in (6.2.62-6.2.64) and

(6.2.67-6.2.72) will drastically simplify and reduce to:

For Q
Zz
0 (2a)1’2 . e
5= _—E——z__z_[l Y Iv ] ' (6-2.79)
4" (a"+27) a+z
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Q 2
z 2 1 -1{a 2za
K== (1-2v) - = tan (_] - —,
2 4n2(1—v)(2a)“?[ [a2+z2 @ 2 ] (a2+zz)2}

(6.2.80)
K= 0 . (6.2.81)
For Qx
Q cos¢ 2
K= — > (1-2v) [l tan™ [%] - zz 2]- gzaz 2["
an®(2a) '’ % (1-v) a a’+z (a®+2%)
(6.2.82)
Q_cos¢ 2
K= - — - o = 3(1—v)(1-2v)[§ tand[%]— zz 2]
21 (1-v) (2-v) (2a) a’+ z
2 2
+ 2a [2(1-1/2) o (Z-V)Z] , (6.2.83)
a®+ z° a’+ 2°

(1-2v)Q sing 2
K = x 0|3 - 32 gan!(2| + 2 ) (6.2.84)
3 2n2(2_v) (20.)3/2 a 2

For Q
y
= 2o Lan [3 ean(2) - o) 2zt )
1 4"2(20) 172 (l-V) a Z a2+22 (a2+22)2
(6.2.85)
Q sing 2
K= - Y 9 3(1—v)(1-2v)[3 tand[g]- 2 ]
2 2n°(1-v) (2-v) (2a)*? { a 2] o+ 2
2a° [ 2 (2-v) 2°
+ 2(1-v%) - -————-ﬂ , 6.2.86
a’+ 2° a’+ 2z° ( )
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(1-2v)Q cos¢ 2
y 2 [ -3z tan"[%} + -2 ] . (6.2.87)

372 2 2
a + 2

2n® (2-v) (2a)

All the results for the particular case, namely when
p=0, are in perfect agreement with the Xknown results given
in Kassir and Sih, [12]. In spite of this, the graphical
representations for the formulae (6.2.79-6.2.84) given in
Kassir and Sih [12] are not quite correct and there is a
reason to do them again and indicate some interesting
features depicted on the plots. In Figs.6.9-6.13 are given
graphical representations for the formulae (6.2.79-6.2.84).

For example the calculation of the maximum of the

function in formula (6.2.79) results in the following

relationship
_ v
2= [o (6.2.88)

As it can be seen from (6.2.88), when say v=0.5 the
value of z=0.577 is corresponding to the maximum of K1 SIF
as represented in Fig.6.9. It is interesting to note that in
Fig.6.3 at the point p=0, for the same values of v and z the
maximum of K SIF is identical to the one in Fig.6.9.

The calculation of the maximum of the function in
formula (6.2.80) have result in the same relationship as in
(6.2.88). In Fig.6.10 it can be seen that, when say v=0.2
the value of 2=0.33 is corresponding to the maximum of K,
SIF. And in Fig.6.5 for the same values of v and z at the

point p=0 the maximum of K, SIF is identical to the one in
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Fig.6.10. In Fig.6.6 it appears that regardless of the
values of v and z, at the point p=0, the K, SIF is
identically zero.

The calculation of the maximum of the function in

formula (6.2.82) results in
Z = wrye . (6.2.89)

And again, the similar discussion of Fig.6.11 and Fig.6.4
will indicate the correspondence of the maximum of K SIF
for the values of say v=0.4 and 2=0.655 as a result of
(6.2.89).

The analogous conclusions could be done for the rest of

the graphical representations.
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Fig.6.9 K SIF due to force Q, at a point on the normal axis
for different n: (—n=0.0; --n=0.2; -'n=0.4; -—-n=0.5).
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Fig.6.10 K, SIF due to force Q at a point on the normal
axis for different n: (—n=0.0; --n=0.2; --n=0.3; --n=0.5).
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Fig.6.11 K SIF due to force Q at a point on the normal
axis for different n: (—n=0.0; =--n=0.2; --n=0.4; '-n=0.5).
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6.3 CONSIDERATION OF AN INTERACTION PROBLEM OF AN EXTERNAL

CIRCULAR CRACK AND CONCENTRATED LOAD

The complete solution, obtained in Chapter 4 was of
great value because it makes possible to solve easily many
complicated problems which were not even attempted before.
As an example, the interaction between an arbitrarily
located horizontal force Q and an external circular crack of
radius a. will be considered. It is necessary to find the
SIF at the crack boundary.

The solution can be obtained in an elementary way by
using the same procedure as in section 6.2. According to the
rule obtained in formula (6.2.34) the tangential
displacement discontinuity at the point (p0,¢oﬁn due to a

tangential force Q applied at the point (p,¢,z) will be

Gx-Gz 2 1 Gz Gz —
A0= 2 kZimk-l -[gz(zk)+ E—lg7(zk)]Q+[g16(zk)+ E;ge(zk)]Q

G1+GZ Gz Gg —
=5 [gz(za)- G—1g7(z3)]Q+[gl6(z3)- G—ige(za)]Q . (6.3.1)

Here the functions gi(z) are defined in section 4.4.

The SIF of the second and third kind can be expressed
through the tangential displacement discontinuity as in
(6.2.42).

The limiting quantities, which need to be computed, are

as follows
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g,(2) (£-a*)'*
lim { } =2 , (6.3.2)
(

p a p az)vz

3E5/2 2_p2,1/2
lim ._g__.ﬂ_._ = .z_.. [ —— tan-l [_(f___l?____] —tan-1 [g'..)
p ~a (p a2)1/2 o3 (1-F )5/2 S ]
t [a(ad® z"')""— a(1+E ) }
+ -2 -F+ —"_|L, (6.3.3)
(1-€)% o*-£% (a®-22%) 172

2 2+ 1/2
, g,(z) 2id a L [(@®-p%E )
lim 2 2,172 = e 0 2 2=— 3/2tan 2,172
pal(p2-a?) (a*-p -a®)

t e (p 2)1/2

- p (6.3.4)
(a®-L%E ) (a®-p°F )

2,172

[ 9,602 (R+2°) (£2-d%) 2z
lin Lot = 2 - == -
p,a q q R® qga

(Pa)

. 2 2+ 172
e tan™ (ep ) + 2|2 & ae*% tan™! [9]
(az_pz-{_: )1/2 (ez_aZ)l/Z '§ q S
(a2-23)172 (2 -a%)V2e i¢
_tan-l[—-——sl—]]+ - [a-(a 22)1/2]} (6.3.5)
ps

Here the following notations are introduced

R = p2+a2-2pacos(¢-¢o)+z2, s = \/pael(‘ﬁ'd’o)»a2 ’

£ = ei0-0y

3 ' q = pei¢-aei¢o . (6.3.6)
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It is reminded that the overbar everywhere denotes the

complex conjugate quantity. Substitution of (6.3.2-6.3.5)

and (6.3.1) in (6.2.42) gives the required SIF. It would be

too cumbersome to write the final expression explicitly. A

significant simplification takes place when z=0. It can be

obtained from formula (4.4.41) of Chapter 4

2
A= _G_l .:':tan-1 [2] - Eg Ez._(.lj-_-f_)_ﬂ Q
Q TR R Gf az(l-f)z
G i¢ Tel?
Sl » 2ty - = o
ar alP p, (1-E)

2 2.1/2 2 2 =
pn B | S Pmad Ty G RO ]
p sa (ps_az)ne n a R: Gf az(l-E )2

+ o2
T

and its substitution in (6.2.42) yields

K +iK =

e-i¢o Q . G, ei¢(pe'i¢ + ae°i¢o)_
28 onPvaa '

2 . , 0
R? G p(pe'l¢ - ae'l¢o)2

with R%ﬂf+a2-2pacos(¢-¢o). The result (6.3.9)

to the half of the expression (4.4.47), as it
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(6.3.7)

(6.3.8)

(6.3.9)

corresponds

should be,



since it is one-sided 1loading of the crack. Further and
complete consideration of this problem may be done in a

fashion similar to the one of section 6.2.

6.4 SUMMARY

In this chapter the solution of two interaction
problems for internal and external circular crack have been
presented. Knowledge of complete solution to the internal
and external circular crack problems gives a powerful basis
for solving more difficult problems of interaction of
arbitrarily 1located forces with the crack. The complete
solution plays also an indispensable role for consideration

of interactions between cracks, etc.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 GENERAL

The investigation carried out in the present work was
directed towards the determination of fundamental new
results in the area of three-dimensional fracture mechanics.
The problems which were discussed can be separated into four
main types, namely:

1) Internal circular crack problens.
2) External circular crack problems.
3) Semi-infinite crack problems.
4) Problems of interaction.

The method described in Chapter 2 was used to obtain
the solution for these problems. However, it must be
emphasized that the present work also reflects somne
extension of that method and even development of the similar
new method for half-plane mixed BVP problems with
application to the crack and contact problems. The results
obtained in the present investigation clearly indicate that
there are broad prospects for this method with regard to
application and extension for the solution of different new
types of problems. The possibilities for future work will be

presented in the closing section.
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7.2 CONCLUSIONS ON INTERNAL CIRCULAR CRACK PROBLEMS

The problems considered in Chapter 3, namely, internal
circular crack under linear normal and linear shear loading,
are new. Previous considerations of general 1loading were
limited to a presentation of coupled integral equations with
respect to an unknown function still +¢ be determined.
Because of certain analytical complications, the researchers
would resort to the solution of the problems of a
penny-shaped crack under constant loading. But even in those
cases the final results were expressed in terms of
integrals, while the results given in Chapter 3 for yet more
complicated problems of variable loading are expressed in
terms of elementary functions. In fact the absence of any
results similar to those obtained in Chapter 3 makes it
impossible to do an analysis of comparison. However, a few
indications of both correspondence and discrepancy of the
present results with the already known available results
have been made. For example, formula (3.2.34) for the SIF in
the problem of linear normal loading and formulae (3.2.42),
(3.2.43) for the radial and tangential stresses in the
problem of constant normal 1loading. In the case of linear
shear 1loading, the problem considered comprised both
axisymmetric and non-axisymmetric parts of loading. As it
has already been mentioned, it is extremely difficult by
previously known methods to obtain the solution to

non-axisymmetric problems and as a result of it, it is not
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possible to find any solution similar to one considered here
in order to do a comparison.

It must also be noted that the results obtained in
Chapter 3 were both for isotropic and for transversely
isotropic materials. The elegant limiting procedure has made
it possible to obtain the solution for the isotropic case
from the transversely isotropic one. This consistence, i.e.
consideration of transversely isotropic and isotropic cases,
has remained through the rest of the problems presented in
this work.

The results obtained in Chapter 3 can be used in the
stress analysis of various bodies with cracks subjected to

bending and/or torsion.

7.3 CONCLUSIONS ON EXTERNAL CIRCULAR CRACK PROBLEMS

In Chapter 4 problems of external circular crack under
normal and shear loading were considered. The results
obtained there are new and of fundamental value. Their
novelty consists of the fact that the solution for the field
of stresses and displacements due to point force normal and
shear loading was given for the full space and in terms of
elementary functions. The results are of fundamental value
because now it is possible to consider even more complicated
problems such as: external circular crack under variable
normal or shear loading, like in Chapter 3, or the problem

of interaction between an external circular crack and

229



arbitrarily located forces, like in Chapter 6, etc.

It should be mentioned that the consideration of those
problems for the isotropic case was given first by Ufliand
[50] and then by Lowengrub and Sneddon [51]. However, their
solution was so complicated that it would 1limit them to
obtaining only some of the stress components in the plane of
the crack. Also, the approach in their solution was not
general and was restricted by the consideration of constant
loading, while in the general case would arise the same
analytical complications as in the case of a penny-shaped
crack. The present results have a general character, since,
formulae (4.2.21) or (4.3.45-4.3.46) enable one to consider
the problems of arbitrary loading.

Although it was not possible to compare the results
obtained, due to unavailability of similar results, one of
the main formulae, namely, (4.3.29) was derived by two
different methods and was also verified by evaluation of the
stress intensity factor.

It is important to indicate that the results presented
in Chapter 4 for stress and displacement components are
expressed in terms of elementary functions. For the problem
of normal 1loading, the solution was obtained for both
transversely isotropic and isotropic cases.

The results presented in Chapter 4 can be used for the
stress analysis of the various bodies with cracks, provided
that the region connecting two half spaces be small in

comparison with the crack covering the region z=0",
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Finally, it should be mentioned that the results of the

section 4.3 are applicable to the contact problems as well.

7.4 CONCLUSIONS ON HALF-PLANE CRACK PROBLEMS

An intensive study of semi-infinite crack piroblems was
made in Chapter 5. As in previous chapters, the results
obtained in Chapter 5 are new and have fundamental value.
The novelty consists of the coumplete solution for the field
of stresses and displacements due to point force normal and
shear loading. The fundamental value of those results was
laid in the section 5.4, where the new method for the
solution of relevant mixed BVP has been developed.

The complete solution to the elastic field for both
normal and shear problems was obtained by making an original
consideration of the 1limiting procedure, using the results
of the complete elastic field for internal circular crack.
This idea, which gave an exact solution, still may find its
application in the consideration of some other problen,
which will be mentioned in the very 1last section of the
Chapter 7. The comparison with some of the results available
in the 1literature has shown an exact correspondence. This
was given in subsections 5.2.,4 and 5,3, 4.

It is interesting that the same results were obtained
with help of the new development method in section 5,4,
namely correspondence of formulae (5.4.80-5.4.90) and

(5.2.23-5.2.33).
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The solution was obtained for both transversely
isotropic and isotropic cases and was expressed in terms of
elementary functions. Having a complete solution at hand
make it possible to consider the problem of interaction
between the crack and arbitrarily located forces.

The method proposed and developed in section 5.4 was
based on a new integral representation for the reciprocal of
the distance between two points. It led to the solution not
only for the crack problem but also for the punch problem.
The solution to the governing integral equations are of a
general nature, since they make it possible to express the
potential in the whole space through its arbitrary boundary
value as in formulae (5.4.33) or (5.4.52). All this
illustrates that the method enables one to consider some
other types of problems, for example, when the loading
prescribed on the crack faces is variable.

Finally, the new developed method proves that it is in
fact possible to make a consideration of crack problems with

geometries other than circular.

7.5 CONCLUSIONS ON INTERACTION PROBLEMS

Chapter 6 has shown how a complete solution makes it
possible to <consider more complicated problems of
interaction. One type of interaction problem, namely,
interaction between an internal or external circular crack

and arbitrarily located forces, was considered. The solution
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to those problems was obtained by using the reciprocal
theorem. In the case of interaction between an internal
circular crack and an arbitrarily located force, there were
obtained-closed form expressions in terms of elementary
functions for the crack opening displacement and stress
intensity factors for all three modes. The results were
obtained for both transversely isotropic and isotropic
cases. Such explicit expressions have not been given in
literature previously. Thus, the results are new and it was
not possible to make an analysis of comparison. Only for the
axisymmetric case results are available and reported in
literature; comparison of present results with those have
indicated an exact correspondence. It was given in
subsection 6.2.5. Also, was made a thorough graph-analysis
of presently obtained results which once again has
demonstrated their correctness.

The solution of the interaction proklem between an
external circular crack and an arbitrarily located force was
presented partially. The procedure was outlined and some of
the expressions which are necessary for the complete
solution were obtained. However, it should be indicated that
the complete solution is now readily available due to the
results obtained in Chapter 4.

Thus, the results of the problems considered in Chapter
6 have emphasized the fundamental importance of the complete
solution of problems investigated in this work and have

proven that they are in fact obtainable if the complete

233



elastic field is known.

7.6 IMPLICATIONS

In the previous sections the fundamental importance of
all the result: of the present investigation in terms of
their theoretical implications were emphasized. Now the
practical applicability of those results must be underlined.
In section 1.4 the practical significance of the problems
considered in this work was generally indicated. 1In
addition, it may be said that any further investigation of
the fundamental problems also have a practical application.
For example, the results of Chapter 3 can be used in stress
analysis of various cracked bodies subjected to bending or
torsion. Similar results may be obtained for external
circular crack under bending or torsion.

The results of stress intensity factors obtained for
all the problems considered are of practical significance as
well, since they are known as a failure criterion. In that
respect, the problems of interaction considered in Chapter 6
are of vast practical importance.

Finally, in section 1.4 it was mentioned that for the
development of the boundary force method for the solution of
the cracked bodies of the finite dimension, it is necessary
to have a complete solution to the three-dimensional
infinite crack problems. A brief idea of the method consists

of the following: Assume, that the solution to the problem
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of an infinite cracked body in interaction with arbitrarily
located force is known. Then, making imaginary cut along the
contour of the finite body from the infinite space and
applying to the boundary of that contour the unknown
distributed forces so, that to make the boundary
stress-free. This will result in an integral equation with
respect to those unknown forces. By obtaining its solution,

one can solve the problem of finite body with crack.

7.7 DIRECTIONS FOR FURTHER RESEARCH

A number of problemns, which are the logical
continuation of the present investigation, are given below:
1) For external circular crack the following problems may

be considered:

a) External circular crack under variable normal loading.
b) External circular crack under variable shear loading.
c) Crack opening displacements and stress intensity

factors caused by a concentrated 1load outside an

external circular crack.

d) External circular crack under antisymme' ic normal
loading.
e) External circular crack under symmetric shear loading.

The solution of the problems in d) and e) will make it
possible to obtain the results for one-sided loading of the
crack face by using the already known results of Chapter 4

and a principle of superposition.
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The same type of problems indicated in a)-e) can be
considered for the semi-infinite crack.

The fundamental problem may be considered for the
interaction of two non-axially symmetric penny-shaped cracks
in an infinite solid.

Similar to the problem of Chapter 5, namely the new
development method for half-plane mixed BVP, there may be
developed new methods for other geometries of crack, based
on the different integral representations for the reciprocal
of the distance between two points.

The list of problems may be continued, since much
remains to be investigated in the area of three-dimensional
fracture mechanics with the new approach which makes it
possible to determine complete solutions in closed form and

in terms of elementary functions.
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APPENDICES

APPENDIX A3.2

The results of differentiation of x(p,z), defined by

the equation (3.2.14), needed for the elastic field are:

e? I
2(p,2)=a(t az)”z[ls-—‘ -12 -2—1]
2 2
a L
2
+sin™? [%_](402_ 3p%+122%) (A3.2.1)
2
6| (£2-a?)1"2 2f1e 2 2] opsin [ A3.2.2
ap 2 Z 3 “z)7PSIn T - (A3.2.2)
2 [ 2
2
a?‘x 1,2 2.1s2 21 a® a® -1{a
2=5(£2-a) 2—[6 —12—2 +16 > 2] -6s1n [2—] ’ (A3.2.3)
ap 2 14 -t 2
2 2 1
2
2 2.1/2(a . -1
x_s[( - / [F -3]+3zs1n [%-]] , (A3.2.4)
) 2
a"x 1{a 1221/221’ 2 a°
=24 |sin” [—]- = (82-a?) —l1+ < ] (A3.2.5)
822 22 p'2 22 3 22 !
2 1
4
8°x — 2y 172 1
3poz 15 (a*~&) oo (A3.2.6)
p(&,-L))

Here 21 and 22 are defined by equation (3.2.15).
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APPENDIX A3.3

The results of differentiation of the function I(p,2),

defined by the expression (3.3.14), are given below:

4 2,2,.,3
2(8a +4a”87+3¢L))
1(p,z)=(a2-e2)"2[ia2+7p2- 1962 4%+ LI ]
1 3 31 2 2
15p
5
+z(4a2-3p2+4z2)sin'1[§—]- 16a , (A3.3.1)
2
2 15p
2 4
aI—p(aZ-—Ea)Vz[s— 25_1_ _4 f_l_ _16 a* _ 32 a‘]
a 1 2 5 a4 15 22 15 4
P P P p-t P
s
-6pz sin™ [‘z—]+ %g- a ., (A3.3.2)
: 3
2 P
2 4 2,2
2 14 ¢ a”t 4
Py oo ot + 22 1 26 D0 2z e
ap P p P P
-1 fa 32 o°
~-62Z sin (T]- —g ! (A3.3.3)
2 P
4 4 2,2
33I~1(a2-82)1/2 -16 21 - 48 ﬁ _ 64 @ 81
3 p 1 2,,2 ,2 5 4 5 4
dp p-(E-L)) P P
4 5
128 a 128 a
=5 —4:I+ 5 % (A3.3.4)
P P
e? e
aT_ _p2_.2y12(,"1 ., o1 . -1{a 2_., 2 2
gz (f,-a’) [15 5 —12-2 2]+51n [T]Ma 3p+12z7) ,
a e 2
2
(A3.3.5)

245



621 2 2,172 a2 -1{a
—2=8 (a -21) [—2 -3]+3z sin [T] ' (A3.3.6)
az 1 2
2
631 -1{a 1,2 2,172 81 2 a2
3_24 sSin [T]— —5(82"(1) F—[l"’ 3 3 2} ' (A3.3.7)
az 2 2 £°=¢
2 1
621 a,;2 2.1/2 Zf Bf -1a
m(ez-a ) [6——2 +4—2] =6p s1n [e—] ' (A3.3.8)
a £2 2
3 4
91 2=16%(02-Bf)1/2 — (A3.3.9)
dpdz p (L.=L))
2 1
331 1,2 2,12 81 a2 a2 1fa
(£-a%) —16-12— +16 -6 sin’ [—], (A3.3.10)
ap‘?az P2 £2 e? 02-¢° 82
2 2 1
2 2 2 2, 2 ,2 2, ,2
3'r —16 1(82-—02)“2 21 {21(521-4(1 ) _ 281 (a —el) (£2+£1)}
3 T 2'V2 [ 2 ,2.2 2 ,2.3 '
dpdz P 2 (82-81) (22-21)
(A3.3.11)
2,,2 2 2,,2 2
4 2 3a” (& -a") 4a” (L7 -a")
dp-dz (22—21) 22(22-21) (22-21)
(A3.3.12)
2,2, 2 ,2 2 2 ,2
641 1,2 2,172 21 42182(a -21) 21(20 -31)
5 —=16—(¢,-a") 7 2 2.3 2 2.2
dp 8z P 2 (22-81) (22-21)
33‘1‘
- e—————— Y (A303-13)
5p° (£5-t7)

Here 21 and 82 are defined in (3.3.15).
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APPENDIX A4.4

The computation of various derivatives of L and L, as

they are defined in (4.4.12) are presented here. The

simplest integral to compute is

B, (N,N,)
L= | = my 95y

S

2

o—— =

Jae - ’(rp elW-04) .02 \/rz-az/pz-azrdrdw
a

rpo(rp el(w ¢ o) +a? ) [r +p -2rpcos (¢- w )+z?]“2
(A4 .4.1)

Use the integral representation from Chapter 2, namely,

1 _ 1
R(M,N)

[(x*+p*~2rpcos (¢-y ) +27]"*

[¢+]
2 J A(pr/a?,¢-y)de
(

n 2 2 2 2, ,1/2 (Ad.4.2)
[(™=p") (g7 (x)=x7)]
L r)
Here
2 «
A (k,9) =—27K kI"1ei™ | for k<1 (A4.4.3)
1+Fk -2kcosz& k=~
82 (r) =% [\/(r+p) 2+zz+\/(r-p) 2+22J ,
22 Y172
g(a:)=m[1- 2] . (A4 .4.4)
c-p
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It is reminded that the function g is inverse to ¢, so that
g[ez(r)]=r. I1 can be transformed by substituting (24.4.2)

in (A4.4.1) and expanding B, in Fourier series

Z_az‘/pz—az[[aze-i(l/l‘¢o)]2 mZ (2n+1) [aze-l(w ¢ )]n}
n=0

3 rp rp,

-~
[

f
o 3
Qt—— 8

|
Q

; [%[ A(pr/a’ 0-y)de /erdrdw
[(a: -p*) (¢* (@) -r?) 1’
(r

¢

g(x)

p. - ' n+2
- 4 o3a J‘ de ,: J 2_a rdr]z (2n+1)[ -1(¢-¢o)]
Qa 2 p2

g (@) =-r

2 N
1+ —azp e 1(9-9)

2]
- Py Jg (x)-a [ 6-1(¢-¢0)] «p de
3 2 2 . 2
a , /mz_pz «p, [1 - ap e-1(¢-¢o)]

2 a:‘2po
2 ° 2_,2 2_,2 2, =
4 pz-a (x -21) (x -82) (x +£:2)
= TIE 3 T T 5 s a3 da . (A4.4.5)
a a” (e"-e") (" ~p")

2

The abbreviation 82 stands for 22(r), as it is defined in

(A4.4.4), and

(o)

n

(o
NI P

[\/(r+p) +2 +\/(r-p) +zJ , e=a2%ei(¢'¢o) .

0
(A4.4.6)

The following rule of interchange of the order of

integration was used in (A4.4.5)
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© o g(x)

(=]
[dr[dm= de | dr . (Ad.4.7)
a

]
2(r) ez(r) a

Now the computation of I1 has been reduced to an elementary
single integral. The integrand in (AR4.4.5) can be decomposed

into simple fractions

(a:"’-ef) (a:z-Z:) (e?+22) L, o 3E“—(£f+2§)€2-a2p2
=1 + +
2 (e2-E2 )2 2202 2 (mz_gz)
2 (Ez-ef) (Ez—ez)
+ . (Ad.4.8)

((CZ'—EZ) 2

Substitution of (A4.4.8) in (A4.4.5) finally allows to

compute
2 2 2 ,2,1/2
I=n Po~a £ z°(1+E) [1_ a ] _ f—[l- (a”=t)) ]
1 al (1-%) 2 (az_e;z)i/z € a

+

202 =, 3, 2, 2., 2 2 ,2,1/2
pt -t (a +p“+2°) +a [a(a -81) _1]+ 1 [aa—paf
t

E(1-5)° az-Eef

V2, 2 ,2,1/2
2 2= t " (a™-8))
- 2a _ 32t 2:| l:tan_l[ 1 ]

tT1-H)?  1-p¥ a(1-t)!’2

- tan|—EZ . (Ad.4.9)
(l-E) 172

It is reminded that t is defined in (4.3.22).

The next integral to be computed is
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J‘J’ZBZ(N,NO) a1
I =||————————ds = - . (A4o4-10)

1
2 RB(M,N) N 0z
S

Differentiation of (A4.4.5) with respect to z gives

2 2
_,Vp_—a 2,—2
L= 2HZC4 > J 2 —((: :e ;da:z 372
a . (”=€") " (" =p")

2

t

[2 2 F1/2, 2 ,2,1/2
p,~a I 4ES /2 L[t T e7-E))
2[tan

o 172
=272 -tan |———
al 1(1—5)5/ a(l-'f)l/z (I-E)Vz
2_,2,1/72
2 a(a=L’) =
L ] [ R T - el T (Ad.4.11)
(1-t) a —Elt (a —21)

Application of the operator A to the complex conjugate of

(A4.4.5) yields

24}
2 2 2 ,2,, 2 ,2 2,2
- JP, @ ig (x —81)(m -22)(cc +e7)
1,= Al =ne ———pe N e s s
a e (a"=e") " (a=p"7)
2
[+ 4]

2 2
_ZJ (a'z—az)(cczﬂ:zder —met P, i¢
e (c?—g?) (x2-p?) 372

2

8

- (€®=22) (®=2%) (cZ+€?)

x J ! 2 da -ZZZJ‘
m2(m2_c2)2(m2_p2)5/2 (mz
82 2

i"Po atz{[l_

(a:2+ez)da:
_cz) z(mz_ 2,5/2

P)

a ] [ a® , (1+t) (a®=-22%-p%)
2) 172

(a®-5)""% [p*¢ (1-t) °p?

=1 —_—
pe .
a
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+

) £172
x{tan

1 _[gzz_ 152° | aa-pzt] _ a 1+t
(1—t)‘p2 1-t t (az-ef)1/2 (1—t)2
a’ + 3z° _ az—pzt ]
et (a-0)%(e-p"t)  e(1-t) (22-p%t))

1 [ 2a° - 3(a2-pat) 152°t
02VE t(1-t)¥? (1-t)% 2 (1_t)7/i
2 2,1/2
(a 21) .

~tan”

a(l-t)“z

t1/2
(1—t)"/2 *

[1_

)

22
2

(A4.4.12)

Application of yet another A-operator to (A4.4.12) yields

_al¥ _ 4
IA-A Il—nc

0
2, 2
- ZZZAJ (e”+€")da }

=ne p‘e

[+ 4]
2_,2
Po

2_p2,,.2 ,2 2, 2
(x -21)(m -82)(m +£7)

da

i¢
— 3 P {AJ :
a 1
e

2

((CZ-CZ) 2 (mz_pa) S/2

2

(e®-£?)%(a®=p?)

2,572

[2_2, "
4 2 2i¢ Po~@ I3J (mz-az)(m2+cz)dm
a? 1 2 (c?-2) 2 (e2-p2?) 52

¢
2
0

(m2+cz)dm

2 2 2 2 2
22° (£2+¢7) (£2-a%)

2
- 152 l (mz_cz) 2 (m2_p2)7/2

The

2

integrals in (A4.4.

2 2,2,,2 2,572
L, (2-c®) % (107

13) are

2 ,2
(£2-%)

elementary,

}

(A4.4.13)

for their

evaluation can be used the indefinite integrals presented in
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Appendix B4.4. The final result is

I
4

+

2 2i¢

Vbi-azf 2p"t® (L24p7t) (£2-a%)*

=A2T1 =np“e

a3 lez(ez_pzt) 2 (ez_pz) 372 p2_p2)

2 1

2,2 2 2 2
ezt (1+t) (2p -381+a) .\ tz[l- a Y| g+0t-2¢2
pz(l-t)z(E:—pz):V?‘ (az-lf)uzi pz(l-t)3
- 2
a®(-6+t-18t%+8t?) . 2 (48+87t-38t°+8t7) | _ 3at, t
pit(1-t)’ pl(1-t)* p'(a®-2%)?
2 _2,2 2 2,172
15tz 82 (a -Bl) ) at 3(a2-p2t)
a(1-t)'p" (e7-p%t)  (a®-t)"*[p*(1-t) % (¢3-p%)
tzz[ 15 L _ 9+15t-4t? ) Lt 6a’
Pla-)’  pfa-t) (207’ ] pta-t) et
2 2 2] 172
15(a p3t) + 105tz4 tan! t _
(1-t) (1-t)*] (1-t)
y t1/2(a2_ef)1/2 -
tan e . (A4.4.14)
a(l-t) i

Integration with respect to z of (A4.4.1) gives

L
2

(M,No)=”BZ(N,NO)1n[R(M,N)+z]dsN
S

vbi-aa[(f+2)[zz-(ez-az)”?]iz

=n
a’ l 3(1-'-1':')2 !

+

E{(Qz—az)“z—z] (gz_iﬁ +a2] +a(p%E-20%) sin”! [9_]

1-t
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172

2_ 2
+ 20°(a®-p%t)"2sin™ [ (az"sz) —
(¢-p7t)

28372 az- € _ 24°
(l t)l/Z

e T2 (2 82) 172 /2
- __E:t_z tan™! -tan'|—X% ||, (Ad4.4.15)
(1-F) a(1-t)!’2 (1-€) 2

Indefinite integrals from Appendix B4.4 were used here.
Application of the A-operator to the complex conjugate

of (A4.4.11) yields

B_(N,N)
3] 2Y "o
A&” R(M,N) 25y

S

1¢‘/ -a I "(22+p2t) (22-a2)

2, 372

13(2 -p°t) % (¢2-p%)

=2nzt? pe 5
(£-¢7)
2 1

172 2,172
15¢ 172 can] g172 tap t ( 2)
pz(l_t)v/z (l-t)“z a(l-t)“z
- 1 [2(1+t) + _6+ot ]+ a [2(1+t)
(1-t)%L p? p%(1-t) (a®-5) % (1-t)2L p?
6+9t 1+t 3
+ — - T S 2] . (A4.4.16)
p(1-t) & -p t-p't

Yet another z-differentiation of (A4.4.11) results in

2({B_(N,N ) \/pz-azf —1/2 =172
5] 2 0 anx2 'O 3t -1 t
ZJJ R(M,N) ds,=2nt 3 71 Al v
8z ' a® |(1-F) (1-F)
S
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-1 -2-t

- tan

F1/2, 2 ,2.1/2 2 2,172
t 7 (a -21) ]:,_ 1 [a(a —81)

12 (1-%)°| a?-%

a(l-t)

+ (A4.4.17)

8 ,,2, 2= ,,2 2 172
a(l+t + pz(L, +pt) (L;-a")
(a

2 2, 172 2 2 2 2, 2 2 2
-t) (£,=P7) (L~ )" (82 L))

Application of the A-operator to the complex conjugate

of (A4.4.15) will result in

AJJEZ(N,NO) In[R(M,N) +z]dS

S
/S22 2 2 2 ,2
L Vpi-a 12 2(p=-L7)
=nt2pel¢ o3 > (e:_aa) 1/2 21 - — 13
a pt  pT(1-t)

2 23_(22__(12)3/2:l > 2
(2. (044 5] -2 (B-aty 2z |-22ze%t
3p% (1-t)° 2 Pt (1-t)°
2 2 2 2,172
) i Wz (a -81)(82-a ) az-pzt _ 22¢
PPty | [0° 2 (e2-p%) (1-t)*  (1-t)°
N z 3(a’-p%t) _ _2d° _ sz%t
PPre-6)1?[ (1-)® O (3
' 2 £172 (az_ez) 1/2
x [tan™ —t'-l—é ~tan™? 1/ . (A4.4.18)
(1-t) a(1-t)'’?

Application of yet another A to (A4.4.18) yields

2 —
A JJBa(N,NO)1n[R(M,N)+z]dSN
s
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=nt2p2e21¢

/p;-azf 5 (2:-02) as2

3 2 2 2 2
o* (30 (1-t)

[4+t+ 6t ]

1-t

3_ 2_ 2,372 2_ 2,172 2 2_ 2
. 8([2 (22 a’) ][t+ 8+t -2]+ 2(22 a”) _8_1 } 2(p £1)
3p° (1-t) (1-t)® p? (223 |* (1-t)°
2 2,172
+ a? _ az-pzt +4(22—a N 2(a2—p2t) - 2a° - a®
1-t t(1-t)2 p4 t(l-t)3 1-t (1-t)2
2- 2,172 2_ 2 2 2_ 2
+4(22a) ae*(l+ R ]-&- " +es(p e%)
f 18T anY Pt an? pRa-n !
2 2,172
L2, a(a-t)) 62°t _ 4(a’-p2t) N a®-p%t 2%t
p? a®-te? (1-t)* (1-t) 3 (1-t) % (1-t)°

[za(az_ez)x/z
N 1
4

2 2 2 2 2 ,2
1, 2a°-2p°t (a*-¢7) (22’31)]_ ?‘Z:I

2 2 2 2 2 2 2 2
p®(a*-te?) (-2 p? (a™te?) p
2 2,172
5 |30a%0%) _ 24 _ sz%t 1 ala=t) 1
(1-t) 2 T 63| |pt(1-t) p%(a®-te?) |2-¢
. 1 . z 15(a®-p’t) _  6a® _ 35z%t
p% (1-t) p're(1-t) 13 (1-t)? t(1-t)°  (1-t)°
t1/2 a2_£2 172 1
-1 ( 1) -1 gl/2
x |tan 5 -tan |- v . (A4.4.19)
a(l-t) !’ (1-t)

Formula (A4.4.19) looks too long, and a way to simplify

it was not found. On the other hand, the same result can be

obtained by the integration of (A4.4.14) with respect to z.

Such an integration can be performed by using the indefinite

255



integrals from Appendix B4.4, and at first glance it is too
long as well and includes various trigonometric functions.
Since (A4.4.19) contains only tan™' in the last line, then
it may be concluded that the coefficients of all the other
trigonometric functions should be zero. This simple idea led

to a relatively short result, namely,

AZHE?_(N,NO) 1n[R(M,N)+z]dS,

S
/[ 2 2 2 2,172 2
=nt2p2e2i¢ Po™@ !(Zz-a ) 35t 2 (a®-p°t) _ fl[?'_
a®> | o [202-t)° £(1-t) 2 (e2-p%)  p?(F
3 2 2,372
+ —35 ] + 2[z=(t,-an ] b (Bed?)V? 48+87t-38t°+8t>
(1-t)* 3p? 2 2% (1-t) *
2 2 3 2
+ [z__(ez_az)uzl [a (—6-:t-18t -:8t ) + 8:9t-2t3]
p t(1-t) p (1-t)
N z 15(a®-p%) _  6a® _  352°%t
Pt (1-t) 1'% (1-t)° t(1-t)®>  (1-t)°

x

t1/2 2 2,1/2
(a”-t)) £172
tan™! 1 -tan'|—% __ . (Ad.4.20)
a(l-t)”z (l-t)l/z

As it can be seen, (A4.4.20) is much shorter than (A4.4.19),
and except for the last 1line, looks totally different.
Direct numerical computations show that (A4.4.19) and
(A4.4.20) are identical, but there was not found a way to
reduce (A4.4.19) to (A4.4.20) or to reduce both to a third

expression which might be even simpler then (A4.4.20).
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It is of interest to note that (A4.4.20) was obtained
from (A4.4.14) by integration with respect to z. If now
differentiate (A4.4.20) with respect to z, it does not

result in (A4.4.14), it gives something very different,

namely,
A? —————BE(N'NO)dS
R(M,N) N
S
f2 2 2_ 2,172 2
crt2p2e210 Py~2 Ilz(iz—p ) 2 (a®-p°t) _ i 8
P 3 1 2,,2 ,2 2,,2 2 2|t
o | Pfer-t) [t (l-p%t)

2 2,1/2 2 2 2
, _ 35 ]_ 35¢ J_ z(t,-a) [ 4(a-pt)t,
P

(1-t)Y  2(1-t)* 82-¢® 2t (1-t) 2(2§-p2t)2

2 1

2

2 - 2 2 2,172 2 2,172
2 e ),
t

4 4 2 2 2 2
p (1-t) o e2-¢2 £2-¢3
- 2 2,172
. 48+87t-38t’+8t® [ H(57P) 1 fgi0¢-¢
2p%(1-t)* i 2-e? p?(1-t)°
2 2,172
+ a2(-6+t-18t2+8t3) - z(ez-a ) 6a’
pit(1-t)’ PE(e5-E7) (25-p"t) [t (1-t)°
_ 15(a®-p%t) . _352°¢| 1 6a®° _ 15(a’-p°t)
(1-t)° (1-t) '] p're(1-t))?[t(1-t)? (1-t)’
172 2 2,1/2
2 1/2 t" " (a"-L))
+ 1—053—""-—% tan™ —t—va ~tan™} L ) (A4.4.21)
(1-t) (1-t) a(1-t)

Again, numerical computations show that (A4.4.21) is
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identical to (A4.4.14), but it was not found a way to reduce
one to the other or to reduce both to a third expression

which would be simpler than both of them.

Application of the A-operator to 12 in (A4.4.11) gives

the result

ZB, (N,N_) jpetPTi? (a®+2°E)
Ml—F—as= 20—+ 1 — . (A4.4.22)

R (M,N) a“(a"-t)“(L5-L7)

s 1 2 1

Here j is defined in (A4.4.29), and the property At=0 was

used. Yet another application of A to (A4.4.20) yields

3 —_
A JJBz(N,NO)1n[R(M,N)+z]dSN

s
(22 3i¢\/p;-azf(E:-az)l/zl:Z(az-pzt) (2a°-p®t-E2)
=n pe 3 2 2 2 2 2 ¢ 2
| -2 |pPe(i-t) (£2-p7t)
2 2
(¢,-2a7) 55 8 35¢
+ 2 s T E” a a
P (1-t) 2p (1-t)
2 2,172 p 2
N (£-a) 140t _ _ 8(a-p%) ﬁ[ﬁ , _280 ]
Pt la-e)® ra-e)%(2p%) Pl Y T (1-yS

48+87t-38t°+8t>

2p%(1-t)*

+ 2 2 1- 2
- 82"21 \ p

4

’(Ez-az)l/a( Z(B:-az) ) 4[23_(£§_a;)m@]
3p

-2 [23_(2 z_aZ) 3/2]

2 3 4
”ez'az)VZJ-IM-”GH}%t -gst +16t
p (1-t)
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(82-02) 172

2= (=% V2] [48+36t-4t2 . az(-36+4t—36t2)]_l
2

pt(1-t)° pt(1-t)° e‘:-ef
2 2,172
, Slzmttmen ™ 2-1:] |:8+9t-2t2 . az(—6+t-18t2+8t3)]
pz 1-t pz(l-t)3 p4t(1—t)3
2 172
+z_[ 62>  _ 15(a’-pt) . _352°t a(a®-e3) 1
PPlea-v® - a-n'f[e**-te)) (o7 -t
I S DR S z 30a®  _ 105(a’=p°t)
£-6) eta-n] prea-6)1"%[e1-t)’ (1-t)*
5 ‘2 tvz(aa_ez)vz
+ 3_15£.15=_ tan!|—t | _tan? ! ) (A4.4.23)
(1-t) (1-t)'? a(1-t)'’?
Note that
i¢ iy
_ pe '-re
ARIRMAN+21 ge, Wy RO, W) 27
APLnR(M,N) +2]= (pe*?-re'¥) 2 (R(M,N) +2] '

R’ (M,N) [R(M,N)+2]?

. . 2 2
A3ln[R(M,N)+z]=(pel¢-relw)3 8R éM'N)+9ZR(M’N)+3§ . (A4.4.24)
R™(M,N) [R(M,N)+2]

Though Iﬁ(M,No) can not be computed, as it is defined
in (4.4.12), all its derivatives are computable. The

simplest to compute is (Fabrikant [16])

zB_(N,N )
J =JJ__1_____2_ds

1 R3(M,N) N

S
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z rdrdy
R’ (M, N)

. [(pa_az) (rz_az) ]1/2
—=tan” 0
R(v,N,) [ aR(N,N_)

]
O t———
Qt— 8

= —ﬁ’——tan“[ X (A4.4.25)

[ (pg-a®) (£7-a®)1'"
R(M,N)
0

aR(M, N )
The next integral to compute is
¢_. iV

i
J;”ﬂ*—a——r‘—a—al(N,No)dsN . (A4.4.26)
R’ (M, N)

The incegral can be expressed through J1 as follows

V4
J2=jAJ1dz , (Ad.4.27)
[+ 4]

and it can be computed in the same way as it is done in

(Fabrikant [16]), Appendix A4.3), with the result

T o
[(p2-a?®) (r®-a®)1V?) __i¢__ iy
_ 1 -1 0 pe "-re
J = ———tan rdrdy
JJR(N ( aR(N,N ) ] R® (M, N)
0 a

+ fﬁ_)__[tan*[___g__]-tan'l [é]” ) (A4.4.28)

Here the following notations were introduced
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S=\/pp0el(¢_¢0)-a?‘,

=R(M,N,) =Vo*+p7-2pp cos ($-9,) +2°,

j=\/p§—02\/ oi—az/a .

(A4.4.29)

-s_=x/ppoe-i(¢'¢o)-a2,

Integration of (A4.4.28) with respect to z yields

(pei'p—reiw) rdrdys

2
R(M,N) [R(M,N)+z]

[(pi-a?) (r®-a?)) ’2]

M o
1 -1

J JR_ (N, Ny an [ aR(N, N,)

0 a

[2_ 2 _
poaa ]+\/p(2)-a2 [Vl-f tan’! [%]

(£2-a?)

—Z—{R tan l— ~ztan~ [
-(-;— R

étan s 82)1/2]-tan'1[§]”} . (Ad.4.30)
Here the following indefinite integrals were used
tan™ [-——i_]dz = ztan™ [__5__]
2,172 2 ,2,1/2
J (a®-2) (a®-2%)
1 172
+ S|vI-C tan’! [a_(_()__] - sin™ [%—] . (A4.4.31)
2,1/2
(8 -a”) 2
172
fitan [g—]dz—R tan” [J—]ﬂ/p -a° [V -C tan” [a(l—(? ]
R R R 2,172
() L (¢,-a”)
A-F tan a(1-¢) 72 . _-1(a Ad.4.32
+vV1-{ tan (—'Taz?é] - S1ln [z;] ( 4. )

(&)
and the identities
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po(e5=a*Q) (£2-a®T)=a”22(R3+37%) ,

[22-pp et (9900 02 pp o 1(8-0) 142 p2452) (Ad.4.33)
1 0 1 [0} 1 0
It is reminded that { was defineu in (4.3.3). Application of

the A-operator to (A4.4.30) results in

21 o
i i 2_ 2 2 2, .1/2
J J(Pel¢‘relw)2[2R(M,N)+z]tanq {(p,-a”) (r"-a”)] rdrdy
R> (M,N) [R(M,N)+2]2 aR(N,N ) R(N,N )
0 a
R%+22 2 _2,1/2
= 'ZTH.{ 2 2 tanl[%-]‘—%ta 1 (p a) ]-(pi a2)1/2|:§[%
q{ dR, o/ q 5|3
i¢
ot ° -1 s -1(s
t - =l
"3 ][ = [<a2-ff)"2] can {a]
i¢ _ _7y 172 . i¢
- _01/2tan 1[0(; C; 1/2]] JGS [a-(az-ef)“z]} ]
po(l-C) (lz-a ) ps
(A4.4.34)

i¢
peTo i¢
AS = =—— , M-T=-—-S22_
s Py (1-C
= Zz-az)“zaei‘po - _i¢
afaa-g)tF ) o Y gpe
A tan [(l,z_az)l/—z B 1-T) 1212 -%) 1- 02_p2
2 P, (1=C) " (&,-aq 2"¢

2,2, 1/2 i¢ .
- (a™=t") pe’o —_ ig¢
A tan 1[ 2 j 1/2] - i(;— ) _,2 . + 22
(a”-e7)) ppoe' L) s
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o RJ[ . i¢
A tan ‘[%-] = 2°.2 ':e = - 9—2 . (Ad4.4.35)
] Ro+j £2—21 R

Application of yet another A-operator to (A4.4.34), results
in

2

R® (M,N) [R(M,N)+z]°

O Sy

J(pei¢—reiw) *[8R® (M,N) +9zR (M, N) +32°]
a

2 2 /2 2
< tan ‘/Po"a vi*-a rdrdy
aR(N,N) |R(N,N )
0 )
4 2.2 _4 2 2,172
_onm 3Ro+62 Ro-z can! 3 82 i (p —a”)
= = —— an R— - :_—ztan a
q q Ro 0 q
i¢
_Fy 172 _Fy 172 4p e "0
_(pz_az)l/z[_ 3(1-7) tan-l[a(l ) ) + 5[_8_ + =0
0 -2 2_ 2,172 = (=2 9 a°
q (£2-a?) 5\q 45
2 2i¢ i¢
3p’e 0 _ - \ (= peo
+ ————0_4 ][tan 1[————2 sz v-i tan 1[2]] - i—z[% + °_2 ]
= (a -21) 7 s \q s
2_,2,1/2 i¢ . - . ; i¢
s [(a 23) p,e o } ael¢] . 2jael¢{_1_ .\ e1¢ +p0e o]
ppoe'l'¢'¢o)—£f [ ] p§2 q P 52
. i, 2 ,2
. 3ig— 2 e " (p7=t)) .
" [a-(a2-23)1/2]+ 2] E[pg 2q + zzg + _ 1 _2e21¢ .
R0+j 22—21 Roq ap
(A4.4.36)

Differentiation of (A4.4.25) with respect to z leads to the

integral
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Q)IQ‘
N

ZB,(N:NO)
[

R*(M,N)

2T o
2 2 2 2

JJ - 2= ]tan'1 ‘/p°_a v*a rdray

R>(M,N)  R°(M,N) aR(N,N ) |R(N,N )
0 a

) . 12 2 X

=2n{ - Estan"[%_] + = .z]t, (Ad.4.37)

R0 0 z(Ro+j ) 82-21 R

Application of the operator A to (R4.4.25) yields

2T o«
’ 2 2 2 2
3z(pe -relw)tanq Véo_a Ve*-a rdrdy
RS (L) aR(N, Ny |R(N,N )
0 a
q -1(3 j Pei¢ a
= Ztan [R—] aiywe] e ialier IR (Ad-4.38)
Ro 0 Ro+j 82—21 R

Yet another application of A-operator to (A4.4.28) yields

rdrdy
R(N,NO)

aR(N,No)

. \/pi -a 2\/1'2-a2J
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_ (p aa)1/2 (a _g2 )1/2 ei¢o i¢
- taﬁ“[g]]+ [ Po - &2 ]}. (A4.4.39)

s° pp e 1'¢ ¢o)-£f P

The next integral to compute is AI1' and it gives from

(RAd4.4.9)
2 ,2,1/2
B_(N,N) =2 a(a =)
A Z__Lds = 2nt_pel¢(p2 a2)1/2 _l‘._ 1 - —-—._1___
R(M,N) N a3 ) 1-T a®-0%¢
1
S

—=1/2 =1/2
-+ ..._.__t_— I:tan-l [.__t_._.
3/2 172

) E“?‘( 22)1/2
-tan™
a(1-t)1/2

(1-t) (1-t)
(A4.4.40)
Application of A-operator to (A4.4.40), results in
, (N N ) pzezm(pz az)vz (az-ef) I/th(a 02 t_)
A —_——.ds zn - -
R(M,N) az(ez_ea) (aa_ng) 2
2 1 1
S
(Ad4.4.41)

Integration with respect to z of both sides of (A4.4.41)

yields

AZHBZ(N,NO)1n[R(M,N)+z]dsN

S
2 ,2,1/2
72 (P =10)
_ ?nt—2p2e21¢(p2 2)1/2 21 - 12 n
a (a"=€7t) (a"-p°t)
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(az_pz—t-) 372 2,172

2 2T, 172
- a tan-llle-Pt) || . (Ad4.4.42)
(2-a®)

Application of yet another A to (A4.4.42) gives

3
A ”BZ(N,NO)ln[R(M,NHz]dsN
s

—a (22—a2)1/2 s o
= 2n§—p3e31¢(p§-a2)“2 2 2i 2 _2r (; +§p 2—
(a —Elt) (a"=-p°t) 22 (a®=p~t)

+

a2+pzf 2(a2-£f) ]
+
2 ,,2_ ,2 2,2, , 2 ,2¢
eCE(LI-23)  (2-12) (o®-17E)

2 2—.1/2

—————3————tan”'iﬁillﬁl——]} . (A4.4.43)
2 2—.,5/2 2 2,172

(a-p't) (¢,-a”)

The following identity was used here

pel¢a2

A tan'l (02_p2-€) 172 .
2

2 2,172 : aZ_pZ-E) 172 (az_ef-{_—-)

(22_a2)1/2 2— 2
2 T+ 2Pt
(€,-a%)

22-¢?
2 1

(A4.4.44)
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APPENDIX B4.4

Here are presented some regular integrals that are used
throughout the work in Chapter 4 and are not explicitly

present in the tables.

2 2
J dex = - 1 tan! [—————b a _‘r] , (B4.4.1)
2

\/az-azz(bz—azz) bvbZ~a avb?~a®

[ da _ 2b%-q? -1 [b aa—atz]
- tan " |—

- 3, 2_ 2372
/az_mz(bz_mz)z 2b” (b"=a") . /ba_az
ava®-?

- YN > >3 ! (B4.4.2)
2b " (b"=a") (b"=a“)
[ /2 2
de = ! __tan™ a_a:_l} , (B4.4.3)
J /mz__pz(ma_az) o /pz_aa « /pz_az
[ da - - 1 tan"’ [a\/ccz—pz
2 2, 372 2 2 2 2, 372 ~
J(&®=p%) % (e®-a®) o (p°-a) /oo
- £ , (B4.4.4)
P (p?-a®) Va®-p?
J de - p2-40t2 tar,! [a»/acz-pz]
2 2,372, 2 2.2 3, 2 2,5/2
(®=p%) "% (a-a")* 207 (p°-a?) VP
2 2
- ey L , (B4.4.5)
(p"—a") | 2a" (" —a”) pz /a:z-p?‘
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J da - 1 tan™ ava®- 2]
2, 572 2 2 2,572
(6%-p%) % (a®-a®)  a(p-a®) oo
+ z [2_2+ 32- 12] , (B4.4.6)
3p° (p%~a®) VaP-p?\P P "¢ P

2,5/2 2,772

J da - 6ozz-p2 tan! [on/a:z-pz]

(®-p%) *"%(a®-a%)®  24°(p%-a?) oo
. p+4a _ 1 , _2a-3p°
(pP=o) ‘/‘— 2a°p%(p%-a®)  20%(e?-0®)  3p*(2®-p%)
(B4.4.7)

d« - - 1 tan! oz\/<c2-p2
2,772 2 2 2 2,772
(«®-p%) "% (e®-0?) a(p -

a

+ -
15p2(p2_a2)1/_—a:2_p2[(pa-az)(a:z-pz) (e®-p)*  p°(a®-p?)

- 10 _8 _ __ 15 2] , (B4.4.8)

J da _ p2-8012 nt [a\/a: -p ]
2,772 2 2 9/2
a:\/p -a?

(«®-p%) " (a®-a®)? 207 (p2-)

ava’-p* a

- +
2a2(m2—o¢2) (pz-aa) 4 15p2(p2-a2)2 /ma_pa (pz-az) (a:z-pz)

3 4 20 8 45
+ - - - =22 |, (B4.4.9)
(e®-p%)* p*(a®-p%)  p*(p%-0®) p (pz—aa)z]
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Below are presented some indefinite integrals involving

81 and 82 which were used in this work as well

Jtan'1 [cVaZ-ef] dz = ztan™! [cvaa—ef]

+

alp

(B4.4.10)

I:sin_l [%_] _ \/J.+c2 (a®-p?) sin~! [ av1+c? (a®-p%) ]] .
Vi+c?a? 1]

2 2

BJ

2
5 1+ca(a -

Here c does not depend on z.

\/E\/az-e‘f

avi-t

sin”!|¥2 P T a’-p°t }
5 . Veg—pzt

r 3
Jz"tan'l cVaZ-ef] dz = 5:;‘—tan'1 [cx/az—ef]
\

avl-t

o [\/E\/az-ef]
Jtan —_—dz

= ztan’ [

(B4.4.11)

+ Qvi-t| . o g__] _ Va?‘-pzt
2

%3

2
) }—{ p,—-—-z [_1 azpzcz :|+|:Pj ) 1+c2(a2-p2)

81(1+a2c2) 2 cz(1+a2c2)

2 2 2 2 3/2 [, 2, 2_2
+apc]sin-1[%_] + [1+c (a® p)} Sln—1[a 1+c”(a p)]}'
¢

2 2 2 2,372
1+a"c 2 c? (l1+c"a™) 1+c2(a2-2f)
(B4.4.12)
ViEva® 3 VEVa?-02 I ¢
2 -1 _ 2 -1 1 vi-t 2 .21 1
z"tan z = E—tan - fol —81 5
avl-t avl-t vt 1
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dz  ___. -ifa 2
==-sin [T] 3

Jr2-a?
|

2 2
2a“=¢ 2
az—Esz = 3 1\/Z:-az + g—-s

-1 fa
in [

r 5 (22_02)3/2 ef /82-0.2

z2dz . _2 + + Efsin
3a 2a 2
2 ,2
a“ =2
1
02—82
[ 1dz = = —sin 1[ ]+ av/ez-a2
2,2 [ 2
1-c 21 c 2
l-cda2 2 -1 ez-az
__p_tan _—1,
cz\/l--czp2 a\/l-czp2
z2 a%-0° 14
j‘ dz= /p2_£2 1 a p”(b-a”)
bz_ez 1|2 b4£
1 1
2 2,2 -1{a (8 a2)3/2
+[e_ +a —b]sin [_] g2
2 [ 2
2 3b

2 2 4 22
+ (b -a )(}g -a“p7) /bz_pz sin™
b

pvb

270

2

A [/—2

)

)

¢ 1 /ba_pz\

2_,2
-t
1

P

&)

(B4.4.13)

(B4.4.14)

(B4.4.15)

(B4.4.16)

(B4.4.17)

(B4.4.18)



Here b is a quantity which does not depend on z.

zzx/aa--li2 ? 2
1492 = /pz_ez 1 _p(1-t)
2 ,2 12t [
a -Elt 1
2 ) (82-a2)3/2
l e_ 2_ a . _-1{a 2
-+ t{2 +a T ]Sln [-e—] + 3a

2

, (B4.4.19)

2_ 2.2 f2 2
+ /az-pzt (1-t) (Z -pt )sin'l[ a-pt
at /Bi—pzt

2 6

J 2% (£24c%) (23-a%)az
2 2

q4 4 2

cp cp

c®=34® _ 202]
2 2, 2 2 2,572 2 ,2
g, (83-c%) 2 (¢2-p%) ¥72 (¢2-8%)

2_ 2
2 ¢"-a
x |Ve2-a“-acost L] |- E—|tcost[E]|- 2
2 [ 2 _4|2a [J 2
2 cp 2 282

Ve?-a?
=]

1

CZ(pZ_CZ)Z

2 2 2
c p°-c

2_ 2 2_ 2
+[3a -c” _ 4(a"-c )] [ /Ez_az -x/az-cztan'l[

2 (az-cz) 8:-02 1 -1 22“12
t = 2,2 22, tan
c (p—-c) 2(22-c ) 5 /az_cz A

+[2p2-a2+c2-2 (p2+c2) (pz-az) [lé- + 21 2]} [ ez—az
[y p -c

/2 2, -1 ‘22"12 1
- Va-ptan 4, 2 2.2
Jat_2) 1p* (p%-c%)

(p2+c?) (p°-a%)
p' (p%-c*)?

+

2 2
a®-p

[ L , [\/Zz-aZJ t2-a’
tan -
5 /a 2 _pz

: 2] , (B4.4.20)
2(¢-p%)
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a’dz _ Ezdz = 2 o512
12 (a-12 32 |, ,2 _2.3/2 2 []
2(‘1 - 1) (£-p7) P 2

2
2 2 2 2
2a4p2 _1[ £a-a ] ez-a
+ —-—————&—ta > ‘
22 /az_pz az_pz 2 (Bz—p )

_ ap a(a—p) o) -1{a
[ ) . ] &

ea_az

- (a-p)(zt —a’p®) _aztani[ 2 ]} )
o 2 2
a —-o
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2 2

[z s {F[ eafd - eos (1)

(az_ 2)3/2 . Vez-az
+ p2 tan , (B4.4.25)
P A
J Va®-22 (a®+£2¢) o 1[‘/22-& ]
dz = ——————tan" ————————
2_ 2 2_ 2 2 2_ 2 372
(22 21) (a 21t) (a"-p~t) /az-pzt
te, pz—ﬂf
+ . (B4.4.26)

(az-eft)(az-pzt)

All the integrals involving Q and ¢ were computed by

using the substitutions

2 2 2 2 2 2 2 2
_ a —81 fol -81 _ Ez—a ez-p
2 7 or 2 = 7 ,
1 2
¢2-p? 02-¢?
dz = - 2-1dat.  or dz = —=1d¢_ . (B4.4.27)
zel 1 zez 2
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APPENDIX A5.3

The functions referenced in formulae

are listed belovs.

-1 h'
tan [R_]
0

- . ¥J
£(2)=-% tan“[%-] . [ 2 _Z
R () 2[R +(h )] 21+€2
2 2
=* 172 2z (3R -27)
£ (z)=S [1— - —]tan'1 [s—] + -
4 — -_— - —2.,3
q ‘s q 22 q R0
‘/_2x0£2 N Zh' [qq _ 1 ]
—_— e . 2 * 2|—-_2 [ ] . .
q s (£2+s ) R0+(h ) R0 81(21+£2)
. n" h' 1
fs(z)=-{33 tan'l[R—] t = 2[, : * %]} ’
R o R+(h)“Le+t, R

. V-ZXOI 1
f(2)=——1—73
° a @
V=2
f;(z)— oI 1
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.28)

.1)

.2)

.3)

.4)

.5)

.6)

.7)

.8)



£ (z)= h (A5.3.9)
10

aq Roq o] s ) a s
f—. 172 -\ 1/2
+ _? 2]tan li;] - 33/2tan [ .) ] + g;[% -=
(s ) ¢, (a) ¢ s s dq
e ne - & L2
+[1_ _ _2_] i ]_ [ CHRPE G 2] , (A5.3.10)
- — — 2 . 2 * * — —
s q 82+s R0+(h ) £1+£2 q Roq
) VI, (32 ve: 1
f (z)= tan [ ] - [
12 3 (5)3/2 : £2+s' (x2+zz) 1/2
I 3
+ 2 + 30 (A5.3.11)
2, 2,172, ® -
(x"+27) (22+s ) q
. h" 15‘/;; (82 1s 5
F (Z)= tan Y — 8 _
| 13 = —=*,572 * 52
; s (s ) 82 (s ) s (22+s)
| .
| 2 h 12
‘ t—— 2] 2, _2.1/2,,*, =*.2 ' (A5.3.12)
(£2+s ) (x°+2°) (22+s )
. vV=-2X Ve. 1 2: 3
£ (z2)=—p {= 2-[ + 2,172 % _* +_-"]
14 s 22+s (x2+zz)1/2 (x2+z ) (£2+s ) s
3 i (sT)172
- —2_tan [_] , (A5.3.13)
(s) ¢
2
. \/-2)(022 )
£ (z)= - , (A5.3.14
15 (x2+zz)”2(2;+s)2
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APPENDIX B5,.3

Here functions which are used in the isotropic solution

(5.3.31-5.3.36) are presented.

* 2= (2-v)Ltan- (B
f”(z)—(z V)Rotan [O]

R
vz h' 3 Z; 172 » '§' 1/2 1
R 3[1 ‘{3] tan (-:] ] i svery G (B5.3.1)
s s s ¢ L +s
2 2
2, 2
R +2 . — 1,2
le( )%{ _ tan® [g‘] 'H-zxo[__Tz'ﬁ[é '%] tan’ (S—.]
al Ra 0 (s) s q 82
VR
+ = 1.]- E—} , (B5.3.2)
{ +s s
2
. 1 V-ZXO (s 172 o (h
£ =(1-2v)yg t 2|1 - Ztan  [%
19(2) ( V) q[(sﬁ)l/z a [B;] RO [RO)]
v I-2)(0 1 E. 1/2 Vﬂ;
M : [ tan’ [—:] - .] (B5.3.3)
v o5t s el ]
L h' h‘ §— 1
f_ (z)==2(1+p) |:§_tan"1 [—-J + —— + ______]
20 R; R, R2+(h )2 G 2(x2+za)1/2
v h' ]
+ 5= P ' (B5.3.4)
2=~V (x2+zz)1/2(£2+s )2
L ] h‘ h.
e oman [ () 2le 4 t)]
R o/ R+(h)°'‘R 2 (x°+2°)
(B5.3.5)
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15\/[;
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APPENDIX AS5.4

Here the derivation of (5.4.34) is presented. By using
the rule of differentiation under the integral sign, the

expression in curly brackets of (5.4.33) can be rewritten as

22(t>-y]-

(£,-L)Vy

L] [ ] . y » [ ]
£ (y +el~y)Ve -y J‘° at [2 (22 (t)-y+y -2t)
+ v
) e ()=t (t)

(A5.4.1)

Introduce rf[Q(t)] as it is defined in (5.4.16) and

transform it as follows

h' (e (t) 1=2V2] (v ) -] (0)VE (v )=L. (¥)

=2y - (22/4) =L, (£) (y4y,) +[ 2 (£)1°

—aVy-2 () -t (t) =22/ {4 [y-L] (£) ]}

=2\/P;(t)—t\/yo-t = h(t). (A5.4.2)

Here were used the identities

L ] [ ] L ] 2 » L 3
£(E)-t=y=£ (t), £ (t)L (t)=yt- -i—, g (¢ (t)]=t. (A5.4.3)

The derivative

Ve (t)-t 2;(t)-£: (t)+y -t

; ; (A5.4.4)
at -t 2l (t) -t (t)
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With help of the identity 2!;(t)-y+y0—2t=l’;(t)-—l’:(t)+y0-t,
the expression in square brackets of (A5.4.1) can be

preserited as

(e (E)=¢, () +y -t]Ve, (t) -y

[, (£) =8 (£) 141, (E) =] (£)+y_ ~t]% (x-x )"}

N 372
Vi (B -wy -t 22(y,mt) dh(t) = (as.4.5)

i 2 2,42 dt
Ve (£)-t[R2+h® (t) ] h®(£) [Rg+h(t) )

Substitution of (A5.4.5) in (A5.4.1) and integration by

parts yields (the ¢ operator is replaced by A')

AT (y 420 -y, x-x ) 1o (y -t)*"%n’ (t)
Yot2lmy,x=x,) ZZJ dt d_[ Yo ]
0

(e,-8)VY, vyt 5 [n® (t) (RP+h® () ]
yO
(y,~t)h’ (t) h’ (t)dt
==2z lim p > + z[ 5 >
g D) (RE+RZ(E)] ] 0(e) RO+ (8))
h(yo)
(y,-t)h’ (t)
=-2z lim 2 > 2,,2 + EE J [ 21 ) 12 ]dh(t)
ey, h2(t) [RZ+h% (t) ] Roh h(t)  RO+h’(t)
(0)
h(yo)
c2z tin TR a1 [222)
oy, hP(t) [R2+h%(t)] R h(t) Ry R,
° ° h (o)
z [1 1 -1{h
=21, Lo [—]] . (A5.4.6)
Rs[h F% Ro
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Here, for the sake of brevity, the notation h=h(0)

introduced, as it is defined in (A5.4.2).

Substitution of (A5.4.6) back into (5.4.33) proves
(5.4.34).

Note that the limit (teyo) in (A5.4.6) is infinite and
cancels out with the next term z/[Rsh(t)] for teyo.

There are noted also some other identities which might

be useful in various transformations

Vel (t)-yy-e (t) = Ve (t)-tve-t ()

= VT (t)-tvh (t) -y = Ve () -yl (-t = £,

y=Li(t) = & (t)-t , t-L](t) = L (t)-y ,
ae:(t) y-e:(t) 2;(t)—t
— = = . (A5.4.7)

e (t)-Li(t) & (t)-2(t)
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APPENDIX BS. 4

The details of integration, which result in expression
given in (5.4.61) are presented here.

The integral to be computed is

R
I = [Z_BI:H? + tan™ [g—]]dz . (B5.4.1)

R 0
(o)

Here are some derivatives and identities, which might be

useful in various transformations

[ ] »
?i - 2 622 2 dh _ Yo2
az LA ! a8z . . ’ az PR ’
2(0,-0) 2(0.-2)) h(e-07)
a . [h_] o _Ro | Y® L z| 2
[ 7
dz R R4n?|n(e’-’y R| RGh
[0 2 1
R2+h® = (22:-s')(2e:—§') = (2e;—ia)(ze;+iq) . (B5.4.2)

Proceed with integration by parts of integral in (B5.4.1).

It results in

R

I= JEQE - l;tanq[E—] + JQE g—tan’l[!}-—] . (B5.4.3)
2 R
Roh o} o 0

With help of (B5.4.2) the expression in (B5.4.3) may be

rewritten as:
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y zdz
I=- %_tan"[%-] + J e+ J z‘:z — . (B5.4.4)
o 0 h(e,-£) (Ro+h?) h(RZ+h?)

The change of variable of integration with help of the
expressions in (B5.4.2) will allow to transform the

integrals in (B5.4.4) into the following, respectively

yozdz dE;
——— Y, ,
h(ez'e1)(Ro+h )

/e_;(ze;-ia) (22;+iq)

J z2dz _ 2 [ ‘/e:dez _ y_J dez

h(RZ+h%) vyl (20-iq) (20 +iq) vy,

/e_;(ze;-ia) (2£;+iq)
(B5.4.5)

After substitution of (B5.4.5) in (B5.4.4) and some

simplifications it will become

de at
I = - l]i—tan'l(-g—] + 2 “ 2 + J 2 ] .
° 0 2vy, /e—;(ze;-ia) \/[;(22;+iq)

(B5.4.6)

The integrals in (B5.4.6) are elementary and it gives

22. 172
I = - Ltan [_g_] + —% ome| Ltan™ |2 |- (B5.4.7)
o (o] V2yo viq q

Finally (B5.4.7) allows to write the result of the definite

integral as
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