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ABSTRACT

ANALYSIS OF TALL BUILDING TUBULAR STRUCTURES
BY FINITE STORY METHOD

LiLin, Ph.D.
Concordia University, 1995

This research conceins the three-dimensional approximate analysis of tall building
tubular structures subjected to lateral loads. The complexity in the structural response of
unsymmetrical tall buildings always necessitates three-dimensional analysis. Efficient and

reliable approximate methods are therefore needed for the early design stages.

A unified approach, termed the finite story method, is presented for displacements
and dynamic properties of either symmetrical or unsymmetrical framed tube, core tube
and tube-in-tube structurcs. The method is based on the assumption that nodal vertical
displacements and rotations about the horizontal axes of the framed tube structure are
linear combinations of nodal displacement fields representing nodal displacement patterns
due to overall structural shear, bending and torsional deformations. Nodal displacemenis
are obtained by interpolating the components of overall deforn.ations which are described
by floor rigid body displacements. Thus, the principal unknowns in the overall analysis of
framed tube structures are reduced to five per floor. A unique condensed overall stiffness
matrix corresponding to floor horizontal motions and rotations about the vertical axis is

obtained, which ensures good solutions for both displacements and dynamic properties.

The core tube is modeled as a thin-walled beam represented by its extended

stiffness matrix. Reliable solutions for core tube torsional deformations, bimoments and

iii



warping stresses are obtained. The efficiency and accuracy of the method is demonstrated
in static and dynamic examples by comparing the results with standard three-dimensional

finite element analysis and other methods.

By linking the core walls, floor slab out-of-plane stiffness contributes to the lateral
load resistance of core tube structures. The additional effect of floor slabs in coupling the
core tube and the peripheral framed tube in tube-in-tube structures is studied by first
examining a one-story model. The present fini~ story method is then applied to analyze

tube- in-tube structures accounting for floor slab out-of-plane stiffness.
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Chapter 1

Introduction

1.1 General

Tall buildings are distinguished from other buildings, within an engineering
perspective, by the riles of structural design which are governed by the behavior under

lateral loads where the building’s slendemess becomes the dominate fac.or.

Various tall buildings are seen in cities around the world. Tubular structures have
been employed, deveioped and have become increasingly more popular for tall buildings
since the 1960’s. The basic forms of tubular systems are the framed tuoe, core tube,
tube-in-tube and bundled tube. The principle of design is to create a hollow cantilevered
box beam above the ground; thus, the lateral loads are mainly or completely resisted by
the facades of the cantilever. Compared with conventional frame or shear wall systems,
tubular structures are more efficient in saving materials and providing large open spaces.
Examples of well-known tubular structures are: the 110-story World Trade Center in New
York, in which the core tube was not designed to resist lateral loads, thus resulting in the
overall structural system acting as a framed tube; the 100-story John Hancock Center in
Chicago which is a column diagonal trussed framed tube and; the world’s tallest building,

the 110-story Sears Tower in Chicago which is a bundled tube [1-4].*

t Numbers in square brackets [ ] refer to the references listed at the end of this thesis.



The structural analysis and design of such tall buildings demand a great deal of
computational effort, since these involve a large number of elements and joints, load
distributions among components and interactions between components. In addition, if a
tall building does not possess coincident centers of stiffness and mass at each floor lying
on a common vertical line throughout the total height, response to transverse dyna:.c
loading becomes torsionally coupled. The resulting complexity necessitates
three-dimensional (3-D) structural analysis. The standard finite element analysis with
sophisticated theory and well-developed computer software is powerful in solving such
3-D problems. However, 3-D finite element analysis of tall building tubular structures
requires large scale computers and is very time consuming. Thus, it is not feasible for the
early design stages during which several design alternatives need to be studied and
wherein structures are modified frequently. This poses problems in practical design

calculations and has stimulated the search for simplified analysis procedures [5-8].

1.2 Existing approximate methods of tubular structural analysis

A tube-in-tube structure comprises the peripheral framed tube and the core tabe
interconnected by floor slabs. For each of these vertical components, various simplified
approaches have oeen developed for the structural behavior under lateral loads. Floor
systems acting as lintels in core tube structures have also been studied for the contribution
to the overall lateral load resistance. The following provides a brief overview of existing
approximate methods cf analysis concerning tubular structural displacements and
dynamic properties. These methods are examined in terms of the assumptions and
simplifications in the structural modeling. Addressed in order are the analyses of framed
tubes, core tubes, floor systems, and dynamic properties. The details of the more relevant
of these methods conceming different kinds of tubular structures will be given in

associated Chapters.



For symmetric framed tube structures, a method of hand calculation for the overall
resistance and deflection has been proposed in [9]. In this method, based on the existence
of the shear lag phenomenon, the overall lateral load resistance contributed by columns
and beams lying in the middle zone of the flange frame panels is assumed to be negligible.
The structure is thus approximated as a pair of equivalent channels for which the width of
the flanges is chosen, according to design experience, to be no more than either half of the
depth of the web frame panels or 10 per cent of the total height of the building. This
method is useful for quick estimation of the overall lateral load resistance and initializing

member sizes.

Another simplified approach for doubly symmetric framed tubes is the plane frame
analogy [10-14]. The method is based on the assumption that the out-of-plane stiffness of
frame panels is negligible, and the external lateral loads are considered io be resisted
mainly by shear in web frames and axial forces in the flange frames. These primary
reactions of the structure are modeled by an equivalent plane frame system in which the
major interaction between the flange and the web frames in the framed tube, namely the
vertical shear force, is simulated by fictitious members. This modeling enables framed
tube structures subjected to either lateral loading or torsion to be analyzed by 2-D frame

computer programs.

Similarly, simplified methods for framed tube analysis have been developed based
on the orthotropic membrane analogy [15-22]. This analogy assumes that the points of
contraflexure of beams and columns in uniform frame panels occur at the middle of these
members. The elastic material properties of the equivalent membrane are then determined
according to the principles of mechanics of materials [15, 16], vith the influence of shear
deformation in the finite-size joints included [17, 18]). The material propr.des of the
orthotropic membrane have also been determined using the finite element method [ 19}, in
which the effects of stress concentration and non-linear distribution of stress could be

included. The overall behavior of the equivalent cantilever box beam resulting from these

3



approaches has been analyzed by various methods, namely: a simplified method in which
closed-form solutions for stresses were derived based on assumed stress distributions [15,
16, 22]; the finite strip method [20] and; the finite element method [21] in which the

element stiffnesses are established based on the strains in a pure bending state.

An altemative approach for doubly symmetric framed tubes is the so-called
extended rod method [23]. The governing differential equation is obtained according to
Hamilton’s principle in conjunction with assumed displacement functions. These
displacement functions are given in terms of floor rigid body displacements, together with:
(1) a parabolic function representing shear lag in the flange frames for structures under
bending actions or; (2) the warping function adopted from Vlasov’s thin-walled beam
theory for structures under torsionai actions. Closed-form solutions for the structure’s

displacement have been obtained following this method.

It is seen that most of the aforementioned methods are limited to framed tubes
which are symmetric. Among these, the plane frame analogy [10-14], the finite strip
method [20] and the strain-based finite element method {21] can also be used for
tube-in-tube structural analysis. Besides these methods, tube-in-tube structures can also be
approached by means of computer programs for space frame structures, in which the core

walls are preliminarily replaced by equivalent sets of columns, rigid beams and braces,
[6].

Core tubes as the second basic form of tubular structure have received similar
extensive attention, particularly for structures subjected to torsion. Simplified approaches
for the torsional behavior of core structures can be classified [28] as open section or closed
section analysis. In the former the constraints provided by lintel beams or floor slabs are
considered by either appropriately modifying the St. Venant torsional constant [24-28, 30}
or by including the bimoments in the overall equilibrium equation [28, 31-35]. The latter

assumes that the lintels at floor levels can be replaced by a uniform continuum with



equivalent flexibility, thus allowing the effects of circulatory shear stresses and the shift of
the shear center due to the existence of the lintels to be included {28]. In addition, discrete
approaches have become popular with the development of computer techniques in recent
years. The general matrix method [36-39], the finite strip method [40] and various
specially developed finite elements [41-44] have been applied to the analysis of core tube

structures.

The third basic component of tube-in-tube structures, namely the horizontal floor
system, acts as braces in the core tube and also couples the core with the peripheral framed
tube, thus also contributing to the lateral load resistance [ 1, 6, 7]. The coupling effects of
slabs in symmetric cross-wall systems have been investigated both theoretically and
experimentally [46-49] and simplified calculations for the effective width of the slabs have
been proposed. In thcse, the floor slabs are replaced by equivalent vonnecting beams,
permitting the analysis of 3-D cross- ’all systems to be simplified tc the analysis of planar
wall systems after considering symmetry conditions. Additionally, the warping stiffness
contributed by floor slabs in core tube structures under torsion has been incorporated in
the overall equilibrium conditions by determining the bimoments in floor slabs
corresponding to a unit warping deformation [27], or by modifying the torsional constants
of the core tubes [30], for which different edge conditions of the slabs have also been

discussed [50].

The foregoing methods concern only static responses of tall buildings. On the
other hand, assessing the dynamic properties of multi-story buildings has also been an
important research topic. Stafford Smith and Crowe [55] have proposed a hand method of
estimating the natural frequencies of symmetric systems of rigid frames, shear walls or
combinations of these kinds of structures. The method is efficient and accurate in
predicting the fundamental frequency of free vibration. Employing the aforementioned
extended rod method [23] developed tor static analysis of doubly symmetric framed tubes,

Takabatake et al [56] extended the analysis to torsionally uncoupled free and forced
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vibration of these structures. In this study, the natural frequencies of non-uniform
symmetric framed tubes were obtained by the Galerkin method which yielded closed-form

approximate solutions for these properties.
1.3 Scope and objectives

As seen from the preceding Section, most of the available analytical techniques are
limited to only one form of tubular structure, either framed tube or core tube, although
tube-in-tube structures consisting of a combination of these are common in design.
Furthermore, the majority of the reported approximate approaches are confined to
symmetric structural behavior only. Simplified analysis of unsymmetrical tube-in-tube
structural behavior, particularly for torsionally coupled dynamic properties, has not been
developed. Similarly, the bending and warping stiffnesses of floor slabs in connecting core
walis have received extensive attention; however, in the case of tube-in-tube structures
with floor slabs linking the foregoing vertical structural components and transmitting
bending moments, little has been reported, although it has long been indicated [1] that the

coupling effect between the inner core and the outer framed tube needs be considered.

Thus, this research concerns the approximate 3-D analysis of tall building tubular
structures primarily under static lateral loading. The proposed method of analysis is
equally applicable to structures such as space frames and frame-shear wall core structures,
although attention is confined to framed tubes, core tubes and tube-in-tube structures. The
structures studied herein are of rectangular cross-section, while members may be ar-anged
unsymmetrically in framed tubes and the core tube may be located eccentrically within a
framed tube. Thus, the overall structural system may be unsymmetrical, but remains in the

linear elastic range. The structure is subjected to static loads applied at floor levels.

The objective is to present a consistent and unified approximate procedure for
three-dimensional tall building tubular structural analysis which is effective in: (1)

predicting static responses and dynamic properties of framed tube and tube-in-tube



structures which are either symmetric or unsymmetric and; (2) predicting structural
behavior under torsional actions or combined loading conditions of core tube structures
which are either open, closed or partially closed sections and; (3) estimating the

contribution of floor slabs to the lateral load resistance in tube-in-tube structures.

1.4 Thesis organization

The work presented in this Thesis consists of four parts: (1) a simplified
three-dimensional analysis procedure - termed finite story method based on nodal
displacement fields - proposed and applied in predicting static responses and dynamic
properties of framec tubes; (2) an extended element stiffness matrix for core tubes
modeled as thin-w~ 1ed cantilevers, obtained based on existing continuous approaches and
modeling core tube torsion and warping behavior; (3) the extension of the proposed finite
story method to analyze tube-in-tube structures and; (4) preliminary study of the coupling
effect of floor slabs in tube-in-tube structures. A literature review regarding each part of
the wark is given separately in asscociated Chapters. The computations are made
emplerinz both a computer program developed based on the proposed FSM and the
commercial finite element software NISA. As far as possible, results are also compared

with other published methods.

In Chapter 2, following a review of three existing simplified methods of ana.y«is,
the finite storv method (FSM) is proposed for framed tube structures. The theoretical basis
of the method, the concept of nodal displacement fields, and the overall anaiysis procedure
are presented. Numerical examples demonstrate the validity of the method. These involve
either symmetric or unsymmetrical structural systems under bending and torsion actions,

with natural frequencies and modes of vibration also determined.

Chapter 3 presents a simplified model for the core tube structures. This analytical

model is intended for subsequent use in the extension of the above finite story method to



tube-in-tubes. The characteristics of a core tube structure and its structural behavior under
torsion are described, and the existing research is briefly reviewed. To provide an
understanding of the warping behavior of core tubes, the concept and basic formulation of
thin-walled beam theory are described. The complete element stiffness matrix for core
tube structures modeled as thin-walled beams is given, with numerical examples of
symmetric and unsymmetric core tube structures subjected to ~oncentrated torque at the
top and uniformly distributed lateral load presented to confirm accuracy.

The finite story method presented in Chapter 2 is implemented by incorporating
the above thin-walled beam modeling of core tubes and, applied to the analysis of
tube-in-tube structures in Chapter 4. The floor slabs in this Chapter are assumed as
in-plane rigid diaphragms. Examples of syi'metric and unsymmetrical tube-in-tube
structures under torsion and lateral loading, respectively, as well as dynamic properties of
the unsymmetrical tube-in-tube are analyzed by both the finite story method and the finite
element method. Finite element method is employed for the purpose of examrining the
accuracy and efficiency of the calculations by the present FSM.

Based on the formulations of the FSM for tube-in-tube structures in Chapter 4,
Chapter 5 includes the modeling of out-of-plane stiffness of floor slabs in the analysis of
these structures. Existing methods of estimating floor out-of-plane stiffness are reviewed.
The coupling effects of floor slabs between the framed tube and the core tube are first
examined by analyzing a single-story model by the finite element method. The structural
modeling of floor systems in the finite story method is then presented. This is followed by
the numerical example of a 30-story tube-in-tube structure with a waffle floor system
subjected, separately, to lateral loading and torsion. The results are discussed with regard
to the coupling effect of floor slabs in this tube-in-tube structure and, the accuracy of the

present finite story method.

The conclusions obtained from this research, as well as suggestions for further

work, are given in Chapter 6.



Chapter 2

Framed Tube Structures

2.1 Introduction

In this Chapter, framed tube structures under lateral loads and their dynamic
properties are modelled. The structures and structural behavior under lateral loads are
described, and existing simplified methods are briefly reviewed. The finite story method
(FSM), an approximate method of structural analysis based on nodal displacement fields
for three-dimensional problems, is presented. The effectiveness of the proposed method is
corroborated by examples of space frame and framed tube structures subject to lateral
loads and torques; also presented are the free vibration analyses of both symmetric and
unsymmetrical structures. The calculatior:s are carried out by both the developed FSM

computer code and the finite element analysis software NISA.

2.1.1 Description of framed tube structures

A framed tnbe, Figure 2.1, is one of the basic structural forms of tubular systems.
It consists of closely spaced columns placed on the periphery of a building and rigidly
connected with deep spandrel beams at floor levels. This design creates a hollow tube with
perforated openings that are compatible with windows. The essence of the structure is to
make use of in-plane dimensions to reach the maximum flexural rigidity of the cross

section. The resulting large clear space inside the building makes the structure efficient



and economical. The inherent advantages of the structure allow it to be widely used in the

construction of buildings up to 100 stories.

Generally, the spacing between the peripheral column in the framed tubes varies
from 1.5 m to a maximum of 4 m. The spandre! beams monolithically connected to the
columns range from 600 mm to 1220 mm in depth, and 250 mm to 1000 mm in width [9].
In contrast to low rise building structures, the stiffness balance between the spandrel
beams and the columns is controlled by lateral drift limitations, not by strength
requirements. Khan [4, 9] has suggested that the column spacing and the proportioning of
the spandrels and columns could be optimized, with regard to stiffness of the structure
against lateral sway, by analyzing a substructure consisting of two columns cut at the

mid-height of stories plus the spandrel beam between the columns.

Framed tubes under lateral loads act as cantilevered boxed beams in which
bending moments are balanced by normal stresses in the cross-sections, with the
overturning moments acting on the building from lateral loads being resisted by axial
forces in the peripheral columns. However, their responses are more complex than that of
a simple closed box beam. The mode of the overall deformation is a combination of frame
racking shear and cantilever flexural bending. Which of these modes has greater presence
depends on the opening ratio and on the proportions of the spandrels and the columns of
the tube frame panels. Furthermore, the framed tube differs from a closed box beam in the
existence of shear lag, which is a result of the shear flexibility of the spandrel beams. The
latter in turn gives rise to column axial forces which are distributed nonlinearly over the
cross section, as shown in Figure 2.1. Unlike a closed box beam in which normal stresses
are distributed linearly in proportion to the distance to the neutral axis of the cross section,
the column axial forces near the comers are increased, while the column axial forces in the

central portions of frame panels are decreased.
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2.1.2 Existing methods of analysis

Three basic methods exist for the analysis of framed tube structures - plane frame
and orthotropic membrane analogies, and the displacement distribution factor method.
The latter was not developed directly for framed tube analysis, since it was intended to be
applied to the analysis of space frame and core-frame structures. Nevertheless, the finite
story method proposed herein shares the displacement distribution concept of the

displacement distribution factor method.

Plane frame analogy

Doubly symmetric rectangular framed tube structures under lateral loads, Figure
2.2a, can be analyzed by means of general two-dimensional (2-D) finite element programs
{10-14]. This approach assumes that the out-of-plane stiffness of frames is negligible
compared to their in-plane stiffness. Under symmetric lateral loads, a rectangular framed
tube structure behaves in such a way that frame panels parallel to the lateral loads, the
so-called web frames, mainly resist shear, while the flange frame panels perpendicular to
the loads respond in axial deformation to balance the external overturning moments. The
primary interaction between the web and flange frames is through the vertical shear at the
comners. These characteristics can be modeled by an equivalent plane system as shown in

Figure 2.2b.

In the substitute 2-D system of Figure 2.2b, the web frames and the flange frames
are connected at floor levels by fictitious members or beams which only transfer vertical
shears. Only one quarter of the original structure is analyzed because of symmetry. The
external load is applied on the web frame (AB), while the flange (B'C) is under the action
of vertical shear forces from the fictitious members. The vertical displacement at B and B’
are made to be compatible. The behavior of symmetrical framed tube structures under
pure torsional actio:is was also analyzed by an equivalent plane system [11, 13]. The floor

rotations can be solved from equilibrium and compatibility conditions of the plane frame
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system. This technique reduces substantially the computational work required in design

and has been accepted by design engineers.

Orthotropic membrane analogy

In this method, frame panels of a framed tube structure with regular span and story
height throughout are replaced by an equivalent orthotropic continuum membrane. The

structural analysis is then based on the resulting orthotropic membrane tube [15-22].

It is assumed that the points of contraflexure of the beams and columns are at the
middle of these members. Because the structure is uniform, only one segment between the
contraflexural points around a joint, Figure 2.3, is analyzed to determine the elastic
matcrial properties of the equivalent orthotropic membrane [15,16]. These properties are
so determined that a segment of the membiane which has the same thickness, width and
height of the rcpresented frame segment possesses the same axial and shear stiffnesses as
the frame segment. Moselhi, Ha et al. [17, 18] refined the model presented by Coull et al.
[15, 16] by including the constraint effect of the beam to the vertical deformation of the
column, as well as shear deformation in the finite-size joint. Khan and Stafford Smith [19]
have suggested analyzing the frame segment by the finite element method, so that stress

concentration and non-linear distribution of stresses could be taken into account.

The elastic modulus E, in the horizontal direction is considered infinite due to the
high in-plane rigidity of floor slabs. To obtain the clastic modulus Ey in the vertical
direction and the shear modulus G, of the membrane, vertical and horizontal forces are
applied to the top of the column and the top of the membrane segmeni. By equivalent axial
and shear flexibility, the required moduli can be determined {17, 18] from

Ph

ﬁ; = A]+A2+A3

gh _
G5 = A+ (A, +8.)
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where A, A, and A, are vertical deformations of column and beam segments; A, = the
deflection due to bending; A = = the member shear deformation; and Avj = the deflection
caused by shear deformation of the finite-size joint; t = the thickness of the equivalent wall

panels; h = the story height; B = the center spacing of columns.

By this technique, a uniform rectangular framed tube structure is transformed into
an equivalent orthotropic closed tube structure. The finite strip method and finite element
method are applied to analyze the substitute system [20, 21]. Based on the equivalent
closed tube and the principal behavior of a symmetric framed tube, Coull and Bose |15,
16] assumed that normal stress distributions can be approached by even parabolic
functions of horizontal coordinates in flange frames and odd parabolic functions of
horizontal coordinates in web frames. The governing differential equation was derived by
virtue of the principle of least work, and closed-form solutions for stresses in the
equivalent orthotropic membrane panels were obtained. Consequently, member forces in
the original frame panels were obtained by integration of stresses. Design curves for three
standard load cases - uniform, triangular and concentrated at the top - were provided for
preliminary calculations. Kwan [22] assu.ned independent cubic functions representing
normal stresscs in web and parabolic functions representing normal stresses in nange

frames, he also studied the effects of different parameters on the shear lag.

Distribution factor method

The distribution factor method simplifies structural analysis by reducing the
number of displacement unknowns. The method is based on the fact that nodal
displacements at floor levels are linear combinations of displacenient patterns due to
different forms of deformations of building structures. The concept of nodal displacement
distribution factors was initially proposed by Leung in 1983 [57] for plane frame
structural analysis, and further developed for three-dimensional analysis of space frames

and applied to analysis of core frame systems [58-60]. The displacement distribution
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factors represent nodal displacement patterns corresponding to unit floor slab in-plane
rigid body displacements. In the method, vertical nodal displacements and nodal rotations
about the two horizontal axes are obtained by interpolating the nodal displacement
patterns. The principal unknowns in a structural analysis are the coefficients of the
interpolation of these displacement patterns, the so-called mixing factors in [58] or
generalized coordinates in [60], plus floor slab in-plane displacements, i.e., displacements

in two horizontal directions and rotations about a vertical axis.

In the nodal displacement distribution factor method for plane frame structures
[57], the nodal vertical displacements and in-plane rotations at the kth floor of an N-story

frame are expressed as
vi = By

0.

$

.8, (i=12,..mz k=12,.,N)

where o, and B, denote distribution factors of node i at the kth floor; v, and 8, are termed
the vertical and rotational displacement parameters at the kth floor; m,. is the total number
of columns and; N represents the total number of stories in the building. The distribution
factors are preliminarily determined by analyzing three-story segments isolated from the
original plane frame, so that the displacement parameters are unknowns in the overall
structural analysis. The method was subsequently extended to analyze space frame
structures [58]. The nodal vertical displacements and rotations about the two horizontal

axes in a space frame are defined as

3
wi = 2 B
j=1
3
exa = Z axjiexjk
J=1
3
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where ij o, and o, are displacement factors (j = 1,2,3) of node i at the kth floor and;
W Oxj " and Gyjk are called mixing factors of the kth floor. Similai to the aforementioned
plane frame analysis, the distribution factors were preliminarily determined by analyzing
three-story substructures, and the displacement unknowns in the overall analysis were the

mixing factors of all floors.

The method was further extended [59] by introducing global distribution factors to
model the unevenly distributed column axial deformations away from the ground. Vertical
nodal displacements and rotations about two horizontal axes are given by

33
Z 2(:11 ku)“'"z Z(Bm 8%1)

1, L=1h=1

3 3 303

8, = Z Z x.u kl,lz) +IZ 2 (aﬁl,z;f’ﬁ,:)
—11,= 1= 1
3 3

0, = Z Z 111 k11)+2 z(ayxll Buz)

=1l=1

where a_,, o, and B‘. are the displacement distribution factors of node i at the kth floor
level, 8k 1,1, T€ generalized coordinates and, the superscript L denotes local and G denotes
global. It is reported in [59] that, with the combination of the local and global distribution
factors, the accuracy is improved for buildings having more than ten stories. However, the
global distribution factors are determined by .nalyzing the whole structure by the so
called two-level finite element method, which is not a simple job for tall building
structures. For an N story building, the total number of displacement unknowns is 2IN.
The method was refined in [60] by including floor out-of-plane rigid body displacements
in the distribution factors, and was applied to the case study of a 32-story core-frame
structure. The calculation of the global distribution factors is avoided in [60] and the
number of unknowns is reduced to either 12N or 15N depending on the choice of the

analysis scheme.
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Similar to the finite strip method [20] and the generalized coordinate method [61],
this method simplifies the analysis by reducing the number of unknowns, whereas it
differs from the preceding plane frame and membrane analogies in that the nodal
displacement patterns are determined by preliminary calculations instead of by certain
prescribed functions. It can be seen from the above that the number of unknowns is only
related to the number of stories in a building in this method, irrespective of the number of
nodes at the floor levels. Compared to standard finite element analysis, the required

computation is effectively reduced.

2.1.3 Characteristics of the present finite story method

By comparison to the distribution factor method described in the previous section,

the finite story method (FSM) proposed herein has the following characteristics:

(1) The vertical nodal displacements and the nodal rotations about the two
horizontal axes are defined as direct linear combinations of floor slab displacements
without additional generalized coordinates. Correspondingly, nodal displacement fields
are defined as nodal displacement patterns due to unit relative floor slab displacements.
The magnitudes of the nodal displacements are obtained by muliiplying each nodai
displacement field by the corresponding relative floor slab displacement and adding up all
components. Thus, the principal unknowns in a structural analysis are reduced to only the

floor slab displacements themselves, i.e. 5N for an N story building under lateral loads.

(2) For dynamic analysis, the coraputational effort in condensing out the unwanted
degrees-of-freedom is eliminated because the displacement unknowns in an overall
analysis are the floor slab displacements only. Generally, by assuming floor slabs to be
in-plane rigid, a full 3-D static analysis involves 3(N+n) degrees-of-freedom, where n
represents the totai number of nodes in the building. In order to obtain the natural

frequencies by this approach, a technique such as static condensation or the Guyan
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reduction method must then be employed to reduce the overall stiffness and mass matrices
to the 3N dynamic degrees-of-freedom. Thus, the number of degrees-of-freedom is
different in the static and dynamic analyses when employing the standard finite element

method (FEM), while this difference does not exist in the method presented herein.

(3) The continuity of nodal vertical displacements and nodal rotations about the
two horizontal axes at the floor levels along a building height is maintained in determining
the nodal displacement fields, thus permitting the irfluence of accumulated deformations
from the bottom to the top of a building to be included. The finite two-story segments
isolated from the building in determining the nodal displacement fields involve restrained
boundary conditions only for the horizontal displacements and the ro.tions about the
vertical axis, whereas conditions for the nodal vertical displacements and the rotations

about the two horizontal axes involve specified values (at ground level they are fixed).

2.2 Finite story method based on nodal displacement fields
2.2.1 Assumptions

Because rigorous analytical solutions for 3-D tubular structures are not feasible,
assumptions are always imposed on real physical systems to obtain analytical models
which are both capable of correctly representing the real systemns and are mathematically
manageable. It is conventionally assumed that structures are within the linear elastic stage,
so that structural responses under combined loads can be obianed by superposing
responses to individual load actions; floor slabs are in-plane rigid, out-of-plane stiffness is
negligible, and the building is fixed at the ground level. There are two additional
assumptions made herein. As in [57-60], relative nodal displacement patteras for vertical
nodal displacements and rotations about the two horizontal axes at floor levels
corresponding to floor slab displacements are assumed to be governed by the structural

characteristics of the immediately adjacent stories, with the influence of the loading
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conditions and deformatious of the indirectly connected stories assumed to be of little

consequence.

The second additonal assumption is that the floor slabs undergo rotations about
the horiz~ntal axes as rigid plates producing vertical nodal displacements that are linearly
distributed. This assumption is introduced in order to model cantilever action and also to
meet the rigid-body mode requirement fur the convergence of displacement fields.
Although sufficiently accurate for the calculation of lateral displacements and dynamic
properties of tall building structures, this assumption also implies that the shear lag feature
shown in Figure 2.1 is only reflected in nodal displacement fields corresponding to floor
slab in-plane displacements, but not included in the nodal displacement fields
corresponding to the out-of-plane rotations. Thus this limitation would need to be relaxed

if accurate inember forces are also expected in the analysis.

2.2.2 Theory of the method

Floor slabs are considered in-plane rigid, with horizontal nodal displacements u, v

and rotations 6, about the vertical axis at each floor level given by:

Uy = w=¥9,
vi = Vk+xlezk k = 1,2, ...,N (2‘1)
0.=9

zi zk

where x;, y; are the coordinates of node i at the kth fioor level and uy, vy and 6, represent

the kth floor slab in-plane displacements.

For the in-plane rigid assumption associated with equation (2.1), the total number
of degrees-of-freedom: in a standard finite element method becomes 3(N+n). Since the
number of nodes n of a structure is much larger theu the number of stories, the large

computational effort for tall building structural analysis is due mainly to the 3n

18



degrees-of-freedom. Obviously, reducing this effort in a 3-D analysis invokes the problem
of modeling the 3n nodal degrees-of-freedom, i.e. nodal verticel displacements and

rotations about the two horizontal axes.

Since the overall behavior of a building subjected to arbitrary lateral loads
invoives shear, bending and torsion simultaneously, depicting this response by rigid body
displacements of the floor slabs allows the vertical displacement and the rotations about

the two horizontal axes of an arbitrary node i at the kth floor to be expressed as

j=1
5 i=12....m
- )
6= 2 ol Dy k=12..,N 2.2)
j=1
5
= Dp,.
eyl. .Zlayl Dy,
j:

where
{Dy} = [Dyys - ’DkS]T = Lo vy 8y Oy eyk]T

in which uy,v,,0,,,0 , and eyk are the floor slab rigid-body displacements which
represent the generalized coordinates of the structure at the kth floor level; [Si(”, aff) ,
ay(-ii) (j=1,...,5) are the displacement distribution coefficients for node i at the kth floor
corresponding to generalized displacement coordinate Dy ; D, denotec the j type
displacement of floor slab k; and m denotes the total number of nodes of this floor. For all
the nodes at one floor level, the coefficients Bi(j), ag) , and a;{') represent the nodal
displacement fields of that floor. The physical meaning of these coefficients is exposed by
letting only one of the five generalized coordinates be unity, and constraining the other

four to be zero in equation (2.2). For instance, setting D, ,, D, 4, D, 4, D, 5 to zero, and

D, , to unity establishes the vertical nodal displacements at the kth floor as Bi(”. At the
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same time, the nodal rotations about the two horizontal axes x and y are a’fil) and a;il)

(i=1,2,...,m), respectively.

Theoretically, the present FSM is a two-stage interpolation. First, the infinite
degrees-of-freedom of structural members are interpolated from finite ones at element
nodes. This is standard in the FEM where displacements at nodes are the unknowns while,
for any point within an element, displacements are obtained through some given shape
functions. In the second stage, nodal displacements at each floor level are further
interpolated from generalized coordinates of that floor. Only the generalized coordinates
are the unknowns in an overall analysis, which are constant at floor levels but vary from
floor to floor. If nodal displacement fields are preliminarily determined, based on
equations (2.1) and (2.2), the total potential energy of a whole building structure will be a

function of the generalized coordinates, and by the total potential energy principle

N
Il = nk(DkI""’DkS) _
k=1 j=1,...,5
(2.3)
oIl
%E = k=12,...N

thus allowing all the generalized coordinates to be determined by 5N equations.

The method can also be visualized as a displacement transformation. The
displacement vector {d_i} in the local coordinate system of node i at the kth floor level is

transformed into {d;} in the global coordinate system:

{d;} = (T;]{d} 2.4)
where
{d} = [u; ¥ w. 6..0.80,.7

{d} = [ug v, 6, w; 6,6
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and [T,] is the coordinate transformation matrix which includes equation (2.1), and given
in Appendix III. Vector {d,} denotes the constrained nodal displacements in the global
coordinate system which are partitioned into two parts: the first - u,, v,, 9“ - represents

the rigid body displacements of the kth floor slab and the second part - w,, 9“, eyi .

contains the vertical displacement and the rotations about the horizontal axes.

The vector of generalized coordinates at the kth floor is also partitioned into two

parts
{D,} = I:chl Dyy Dy IDk4 Dks]T = [Du\ DkIZ,T 2.3)

Writing equation (2.2) in matrix form and comparing {d;} with {D,} lead to

dy Dy
di 152 Dy,
where [I] is a 3x3 identity matrix and [g;], [g,] are nodal displacement

transformation matrices. For the whole structure

d b,
(a7
d, 1722 py

in which
{D} = [D, D,;;)T = [D,, Dy, ..Dyy | Dyyy D DT
- 1 =1l 11 =21 "~ NI Hi =21 =Nl
T _ T
{d} = [d; d))" = ld}; dy;...dy; | d)y dyy...dp,l
where [G] is a displacement transformation matrix assembled from [g,] and [g,] of

all nodes. By energy conservation, the overall stiffness matrix corresponding to {D} is

obtained:
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[K*] = [G]T[K](G]

Ky +G1Ky + K 3G +GlKuGy  KpGy+ G1K Gy (2.8)
T hd T A
GaKy + GoK G, G KnG>

in which [K] is the overall stiffness matrix of the 3-D FEM corresponding to {d}. The
order is SNx5N for [K™] and 3(N+n)x3(N+n) for [K].

Because the second stage interpolation of equation (2.2) involves only vertical
nodal displacements and nodal rotations about the horizontal axes, a unique condensed
overall stiffaess matrix [K™"] of order 3Nx3N (corresponding to {D;} in equation

(2.7)) can be obtained from either [K ‘] or ‘K] of equation (2.8):

K] = (K, +Gl1K,, + K 5G, + GIK»G))
-1
— (K36, + GlTK'zsz) (Gngzcz) (Gngl + GgKZZGl) (2.9)

1
= Ky - K1,Kn Ky,

This ensures good solutions for horizontal motions, rotations about the vertical axis and

natural frequencies.

In natural frequency calculations, the inertial effects of the mass at the floor levels
are considered for the two componer.:s of translation and rotation about the vertical axis
only, with no contribution about the horizontal axes. Consistent mass matrices of beam
and column elements undergo the same displacement transformation as element stiffness

matrices.

2.2.3 Nodal displacement fields

Previously in equation (2.2), nodal displacement fields were defined as nodal
displacement pattemns arising from unit generalized coordinates. However, in order to

determine the nodal dispiacement fields approximately by analyzing two-story segments
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of the building, the displacement distribution coefficients; Bi(j) . ozﬁ) , aé{) are redefined
to represent nodal displacement patterns corresponding to unit relative generalized
coordinates. Figure 2.4 shows the definition of vertical nodal displacement fields B“) G=
1, 2, 3). With the definition ADy; = Dy, - Dy y;, it can be seen that the curve for g
represents the vertical nodal displacement pattern due to ADy =1 (Aij =0.0;j=2,3,4,
5), whereas that for B(z) is due to ADy, = 1 (ADy; =0.0; j = 1, 3, 4, 5), and so on. These
curves are obtained by analyzing a two-story substructure as shown in Figure 2.5. The
nodal displacement fields 0‘3) and ay(f) are defined in a similar way and represent

patterns of nodal rotations about the horizontal axes. Correspondingly, equation (2.2) is

modified as follows:

i kj
j=1 !
5 ¢ = 1,2,. , n
0= 2 alaD, (2.10)
j=1 k=12,...N

According to the first basic assumption, nodal displacement fields at the floor
levels are assumed to be determined primarily by the structural properties and load
conditions of adjacent stories. A two-story segment is therefore isolated from an original
building ir order to determine the nodal displacement fields at the kth floor. This process is
depicted in Figure 2.5, which shows that the bottom of the substructure starts from the
ends of columns immediately above the (k-1)th floor slab and the top of the substructure

terminates at the (k+1)th floor including the slab.

Certain boundary conditions are imposed on the two-story substructure according
to the definition of nodal displacement fields. At the top, a non-zero component of floor

displacement is imposed and the other floor displacements are restrained. At the bottom

23



level, horizontal displacements u, _,, v, _, and rotation 0 , _, about the vertical axis are
restrained while, for the other three de;rees-of-freedom (w, ex, 3] y) of each node,
computed displacement conditions are imposed. Thus, at the ground level conditions are
fixed and at the other floor levels nodal displacements at the (k-1)th floor from the
previous analysis of a two-story segment are input. The latter ir* oduce the influence of
the unevenly distributed nodal vertical displacements due to torsion and/or bending which
accumulated from the building bottom. At the same time, this also maintains continuity of

nodal rotations about the horizontal axes at floor levels.

Under the above boundary conditions, nodal displacement patterns corresponding

to unit relative generalized coordinates are the required nodal displacement fields which

are given by
. W,
B = D_l
kj
j exi ;
ag) = 5 j=1,23 @1
K i=12..m
ol) = i
yi ij

for j =: 4, 5, nodal displacement fields corresponding to 6,; and Byk do not need to be
computed since they are determined only by the nodal locations along the horizontal axes.
Thus the calculation of the first three nodal displacement fields is carried out from the

bottom to the top of a building.

It is to be expected that distinct changes in relative nodal displacement patterns of
a slender building structure will occur only when stories are encountered which have
appreciably different material properties, geometric properties or boundary conditions.
Thus, for buildings with setbacks the calculation needs to include the iransfer floor levels.

For uniform buildings, on the other hand, the results to follow show that acceptable
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solutions are obtained by calculating nodal displacement fields only at the first three floor
levels and applying the mean values from these to the other levels. Such results are

denoted by FSM* in the numerical examples.

The equilibrium equations for the above two-story segments are given by

d d

ksm kss d, 0
where {d_} represents the imposed displacements which include in-plane displacements
u,v, 9z at the (k+1)th floor level as well as all the nodal displacements at the (k-1)th floor
level; {f_,} denote the forces corresponding to {d,} and; {d;} contains the nodal

displacements w, Ox, Gy at the kth and (k+1)th floor levels. The latter »re obtained by

solving

[k J {d} = —[k, ] {d_} (2.13)

The number of equations in (2.13) is 3L+3, where L denotes the total number of
nodes at the kth plus (k+1)th floor levels. Three cases (j = 1, 2, 3) are calculated at the

same time in equation (2.13), so that {d;} is of order (3L+3)x3.

2.2.4 Overall structural analysis

For a 3-D beam element, equation (2.10) yields the nodal displacements written as

d; Dyy
| @19
d, D,

whereas for a 3-D column element
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D

d; k-2
{ } = (g, Dy 1 (2.15)
dj Dk

in which the transformed beam and column displacement vectors are

{dy}
{d})

and [g,], [g/] are transformation matrices of nodal displacement distribution

[u, vi 8, W 8 0,1y v, 6, w; 6, 6,17

xi yi T
[ugor vimn 051 Wi 6 O] v vy O Wi 8y eyi]

coefficients, given in the Appendix IV. Thus, energy conservation leads to the following
stiffness and consistent mass matrices for beams and columns corresponding to the

generalized coordinates at floor levels
*] = T *] — T
[k,*] = Lg,)" [k,] [gp) [k*1 = [g,)" [k [g,] 2.16)

me*] = [gp) T Im,) [g,]  [m*] = [g1T Im] 1g,] 2.17)

where [k,], [k., [my] and [m_] are the normal element stiffness and mass matrices
in the global coordinate system. In the famed tube, the deep spandrel beams are rigidly
connected to the columns. While the total length of each element is measured from center
to center of joints, the ends within the finite joints are considered to be flexurally
undeformable, and as the result, elements are with rigid arms at the ends. However, the
axial deformations of columns are still based on the total lengths of the elements. The
element matrices [kg], k], [my] and [m_] are obtained by the following
transformations:

[k, = [TITIR,T ko] [Ry] [TH)T
(2.18)

(k] = [TITIRIT k][R ITIT
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(T)T [mp) [T,)]

VARCAIYAL

[mb]
(2.19)

[m.]

in which [T] is the coordinate transformation matrix; [R] is the rigid end transformation
matrix; [k] and [mM] are element stiffness and mass matrices in element local
coordinates and; subscript b and c stand for beam and column, respectively. All matrices

on the right hand of above equations are listed in the Appendix I, II and III.

The equilibrium and dynamic characteristic equations for the building are built by
assembling the overall stiffness and mass matrices from the above element matrices to
yield

[K']1{D} = {P"} (2.20)

[K"]-w?[M*]] =0 @2.21)

where {P"} represents lateral forces and moments acting at floor levels, and o denctes
the natural frequencies of vibrations of the building. Nodal displacements corresponding

to {D} are obtained from equations (2.1) and (2.10).

The overall stiffness matrix and mass matrix can also be established by utilizing
the substructure technique, which will be more efficient in saving computer time if the

building is uniform over most stories. This procedure will be described in Chapter 5.

2.3 Numerical examples

To illustrate the validity of the simplified procedure proposed herein, four
numerical examples are presented. Each vras calculated by both the commercial FEM
program NISA and a FORTRAN computer program designed according to the present
FSM.
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2.3.1 Unsymmetric 20-story space frame

The 20-story unsymmetric space frame structure analyzed by Leung and Wong
[59] is employed. Figure 2.6 shows the plan layout of the structure. All members have
identical cross section 0.3x0.3 m; story heights are 5.0 m. Young’s modulus E = 210 GPa
and the shear modulus G = 80.8 GPa. Static response under lateral load of 1.0x10° kN,
which is applied at node 1 in the X direction at each floor level, and natural frequencies
and modes of vibrations are computed. Translational floor mass is 0.253x10* kg, with
corresponding mass momer of inertia about the vertical axis = .545x10° kg m?.

Floor in-plane displacements at node 1 and rotations about the vertical axis are
listed in Table 2.1 in comparison with results from 3-D FEM. The maximum difference
between the two solutions is 4.4% for displacement u. 1.3% for v, and 4.5% for rotation
0, Table 2.2 shows natural frequencies obtained by FSM and FEM. The first, second and
the third frequencies correspond to the first primarily translational modes of this
torsionally coupled structure in the two perpendicular directions and the torsion
dominated mode, respectively. The other three frequencies are associated with the
corresponding second modes of these vibrations. The maximum difference between the

two calculations is 6.2%.

The number of independent degrees-of-freedom (DOFs) in 3-D FEM is 48 at each
floor, with a total of 960, whereas in the present FSM, it is S per floor for a reduced total of
100. The CPU time is 126.5 sec, approximately one-half of the 242.8 sec required by FEM
for the above displacement and frequency calculation. Actually, the greater the number of
nodes at the floor levels, the more efficient the method becomes in terms of computer

storage and CPU. The following two examples demonstrate this point.

2.3.2 Small scale model of a 20-story framed tube
A small scale (1:30) model of a 20-story framed tube structure adopted from [62]

is studied, in which the behavior of the model under lateral load was tested. The plan
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dimension of the model is 494x667 mm, and the total height is 2.0 m. Figure 2.7 shows the
plan and elevation. A point load 1.5 kN was applied at the origin at the top level of the
model in the Y direction. Elasticity modulus E is 2.2x10* MN/m?, and Poisson’s ratio is

taken as 0.2 in the calculation.

Lateral displacements at floor levels are shown in Figure 2.8 in comparison with
results from FEM and experiment carried out by Pocanschi and Olariu [62]. The solutions
denoted by FSM* is obtained by calculating nodal displacement distribution coefficients
only at the first three floor levels, as described in Section 2.2.3. It is seen that the lateral
displacements obtained by the FSM and FEM are very close; the top drift is 31.5 mm by
FSM vs. 34.8 mm by FEM.

The shear forces in columns in the first and fourth stories are given in Figure 2.9,
Similar correlation as above is seen for column shear force distributions. It is also seen
that the plane frame action in the frame panels parallel to the load direction are well

predicted by the present method.

2.3.3 Symmetric 30-story framed tube

The 30-story framed tube structure from [20] is analyzed. Figure 2.10 shows the
plan layout of the building. Both the story height and the column spacing are 3.66 m.
Young’s modulus E = 0.239x10° MPa; shear modulus G = 0.99x10* MPa and; mass
density is 2.4x10° kg/m3. Geometric properties of members are listed in Table 2.3.
Translational mass and mass moment of inertia about the vertical axis at floor levels are
5.604x10° kg and 1.702x108 kg- m?2, respectively. Two static load cases, and natural

frequencies and modes of vibration are studied.

Load case one: The structure is subject to uniformly distributed torque of 720.6
kN - m/m. In the present FSM calculation, the uniformly distributed torque is replaced

by equivalent concentrated torques 2.637x10% kN - m applied at floor levels.
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Figure 2.11 shows rotations about the vertical axis. It is seen that the rotational
responses of the floor slabs are almost identical for both methods. The top floor rotation is
0.548x10™ rad by the present FSM and 0.557x10 rad by FEM, thus differing by only
1%. Figures 2.12(a) and 2.12(b) show column shear forces Fx and Fy in comparison with
results of FEM. Column 1 and 6 are in the frame panel parallel to the X-direction and their
values represent the envelope of Fx in the panel. Similarly, column 6 and 9 belong to the
Y-direction panel, and yield the envelope for Fy in this panel. It can be seen that the results
of the FSM solution agree well with those of FEM upon the whole, except that 17-19%
overestimation of shears for column 6 in the second story. Some discrepancy in the
topmost few stories can also be observed; however, since the shear in those stories is small

in magnitudes, the FSM results can be deemed as acceptable here also.

Shear forces of spandrel beams at floors 1, 10, 20 and 30 are shown in Figure 2.13
for a quarter of the building cross-section. Node 6 is a comer of the framed tube as shown
in Figure 2.10. Although shear forces in the bottom stories are most important, the results

indicate that very close agreement exists between the present FSM and FEM at all levels.

Load case two: Uniformly distributed lateral load of 2.0 kN per floor in the Y
direction is applied at floor levels. The building deflection is shown in Figure 2.14. The

maximum drift at the top is 0.480 m by FSM, and 0.495 m by FEM.

Figures 2.15 show the shear force (Fy) distribution in columns in the first and the
second stories. The corresponding bending moments about the X axis in columns in the
first two stories are given in Figure 2.16. It can be seen that the member forces in the first
story obtained by FSM agree well with FEM solutions, while in the second story greater
discrepancy appears. The reason for this discrepancy in member forces is attributed to the
approximatic.. in modeling shear lag which is included only in the shear deformation

mode in determining nodal displacement fields.
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Natural frequencies and vibration modes: Figure 2.17 shows the first 6 natural
frequencies and corresponding mode shapes obtained by both methods. The first three
frequencies correspond to the first modes of vibration ir the Y-direction, the X-direction
and rotation about the Z axis, respectively, The next three frequencies correspond to the
associated second modes of these vibrations. The tabular data for the frequencies show a
maximum difference 5.7% which occurs for the fundamental mode between the
calculatons by FSM* and FEM. As noted previously, results denoted by FSM* are
obtained by calculating nodal displacement fields only at the first three floor levels. This
additional simplification introduces no additional errors in either floor rotations or
member forces of the building under applied torque already presented in Figure 2.11 -
2.13, but further reduces considerably computer CPU compared with FSM which

calculates nodal displacement fields at every other floor in this example.

The CPU time required for the eigenvalue problem of this example by the present
FSM method (suppose nodal displacement fields have already been determined in static
calculations, so that the CPU for nodal displacement fields is not included) is 184.2 sec
about one-tenth of 1971.6 sec by FEM. To obtain the whole solution requires 489.6 sec by
FSM if the nodal displacement fields are calculated at every other floor level, compared
with 3456.3 sec by FEM. If the nodal displacement fields are calculated only three times
(solutions denoted by FSM* in Figure 2.17), CPU time is 271.6 sec, or roughly 8/100 of
that for FEM and 5/9 for FSM.

2.3.4 Unsymmetric 30-story framed tube

To examine application of the method in a more general case, an unsymmetrical
framed tube structure is created from the preceding example by modifying one of the
Y-direction panels, i.e. the left panel has fewer columns and the following changed

geometric properties: (a) for all columns - A=0.675 m?, I,(=3.7Ox10'2 m?, Iy=3.7()x10'2
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m*, J=1.72x10% m*; (b) for all spandrel beams - A=0.390 m?, 1,=5.33x102 m*,
I,,,=3.02x10'3 m*, J1=1.027x102 m*. The plan view of the structure is shown in Figure

2.18.

Although asymmetric in stiffness, the center of mass is located at the centroid of
the rectangular cross-section. Translational mass and mass moment of inertia about the
vertical axis at each floor level are 5.6x10° kg and 1.707x108 kg m?, respectively. Thus,
the structure is unsymmetric in the Y-direction along which a uniform!v distributed lateral
load Fy = 400.3 kN is applied at each floor level. In determining the torsionally uncoupled
nodal displacement patterns for the unsymmetric framed tube corresponding to floor
displacements in the FSM model, the origin of the local coordinate system of the
two-story segment is located approximately at x =4.11 min the overall coordinate system,

which is the shear center of a single story in this uniform building.

Figures 2.19 and 2.20 show fioor slab displacement components in the Y-direction
and rotations about the vertical axis, respectively. The results show that floor rotations by
FSM and FEM are almost coincident over the entire height of the building, although the
lateral displacements do not agree quite as well at the upper floor level. Comparisons of
the frequencies and actual mode shapes obtained by FSM and FEM are presented in
Figure 2.21, where it can be seen that good agreement is achieved for both sets of data.
The maximum difference in the frequency predictions is 5.9% and occurs for the
fundamental mode. The mode shapes shown refer to the floor origins and are normalized
in individual component veciors. A top view of the associated first 6 vibration mode
shapes is shown in Figure 2.22. Since the structure is symmetric in the X-direction, mode
shapes 2 and 5 are solely translational, whereas modes 1, 3, 4 and 6 are torsionally
coupled. Among the latter, it can been seen from Figure 2.22 that modes 1 and 4 are
dominated by lateral motion whereas modes 3 and 6 involve primarily torsional

oscillation.

32



By the present method, the number of independent DOFs for this 3-D
unsymmetrical structure is 150 in the overall analysis and 204 in determining nodal
displacement fields, contrasted with 3060 DOFs by standard 3-D FEM. The CPU time by
FSM is 397.6 sec, versus 2161 O sec for the FEM.

Although the foregoing examples represent space frame and framed tube
structures, the proposed FSM procedure can also be readily applied to other kinds of
structures, such as bundled tubes and tube-in-tubes with or without setbacks. For uniform
buildings, whether computation of nodal displacement fields is carried out at every floor
level or only for the lowermost three stories dose not produce any obvious differences in
the results for floor slab rotations about the vertical axis and natural frequencies, even

though it does have some influence on lateral deflections and member forces.

2.4 Summary

The finite story method (FSM), an approximate approach based on nodal
displacement fields, has been proposed for tall buildings subject to lateral loads. The
characteristics of the FSM are described in comparison with the displacement distribution
factor method, with which the present metho( shares the concept of distribution factors.
Additional assumptions to those general in tall building structural analysis, the analytical
modeling, and the procedure of the finite story method are also described. It is shown that
the condensed overall stiffness matrix corresponding to floor in-blane displacements (U,
V and 6,) obtained by the FSM is identical with that obtained by the standard FEM. In
general, compared with 3-D FEM the present method reduces storage requirements and
saves much computer time in solving equilibrium equations, condensing out DOFs and
extracting eigenvalues, although it doe take time in the determining nodal displacement

fields.
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The present FSM has been applied to the analysis of a space frame and several
framed tube structures undcr bending and torsion. These numerical examples demonstrate
that the present method is effective in predicting the static responses and the dynamic
characteristics of such structures. The computational work is significantly reduced for
determining displacements, natural frequencies and modes of vibration, making the

proposed procedure an attractive one for implementation on personal computers.

Before extending the FSM to the analysis of tube-in-tube structures, core tubes are
studied in the following Chapter. Based on a review of previous research on core tubes
under torsional actions and thin-wall beam theory, the core tube is modelled by a thin-wall
beam with equivalent closed section. This simplified model of core tubes is compatible
with the present finite story method, thus allowing the method to be applied to

tube-in-tube structures in later stages o this work.
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Table 2.1 Floor displacements of unsymmetric space frame

Floor FSM FEM
Level u 0, u v 0,
20 3.859 | -1.561 | 0295 | 4.035 | -1.580 | 0.309
19 3.800 | -1552 | 0293 | 3976 | -1.573 | 0.306
18 3732 | -1.538 | 0289 [ 3905 | -1.558 | 0.302
17 3.651 | -1.517 | 0285 | 3.808 | -1.535 | 0.296
16 3.555 | -1.488 | 0279 | 3.699 | -1.505 | 0.289
15 3.443 | -1451 | 0271 | 3574 | -1.467 | 0280
14 3314 | -1407 | 0262 | 3433 | -1.421 | 0270
13 3.168 | -1.354 | 0252 | 3275 | -1.366 | 0259
12 3.006 | -1.294 | 0240 | 3310 | -1.305 | 0247
11 2.828 | -1225 | 0227 | 2911 | -1.236 | 0233
10 2.634 | -1.149 | 0213 | 2707 | -1.158 | 0218
9 2.424 | -1065 | 0.196 | 2486 | -1.072 | 0.201
8 2.199 | 0973 | 0179 | 2251 | 0979 | 0.183
7 1959 | -0873 | 0.160 | 2001 | 0.878 | 0.163
6 1704 | -0.765 | 0.140 | 1738 | 0769 | 0.142
5 1436 | 0649 | 0.119 | 1461 | 0.653 | 0.120
4 1.153 | -0.526 | 0096 | 1172 | -0.528 | 0.097
3 0.859 | -0392 | 0072 | 0870 | -0.396 | 0073
2 0.554 | -0258 | 0.047 | 0557 | 0.257 | 0.047
1 0239 | -0.114 | 0.021 | 0239 | -0.113 | 0021

(Unit: deflection, m; rotation, rad)

Table 2.2 Natural frequencies of unsymmetric space frame (Hz)

Mode number | FSM FEM | Difference(%)
F=r— — —
1 0.586 0.551 64
2 0.598 0.570 49
3 0.707 0.675 47
4 1.786 1.712 43
5 1.815 1.736 46
6 2.139 2.045 46
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Table 2.3 Member properties ¢f 30-story symmetric framed tube

Member Arga Shear 2Area Moment c;f Inertia Torsion Sonsmm
(m®) (m”) (m™) (m*)
o [ gz | oam | 2000 | oseono
Somer | 674 | 0562 };:3:3;8:18:: 0.172x10"!
Toeam | 0368 | ig:.?‘;’g}:}gi 0.958x10°2
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Figure 2.1 Framed tube structure under arbitrary lateral loading
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Figure 2.22 Top view of vibration modes (FEM) for unsymmetric 30-story framed tube



Chapter 3

Core Tube Structures

3.1 Introduction

In the preceding Chapter, framed tubes under lateral loads and their dynamic
properties have been analy zed by the present finite story method. The method is based on
nodal displacement ficlds obtained from two-story segments and intended for approximate
shear, bending and torsion components of global deformations. The effectiveness of the
method has been demonstrated for static and dynamic examples of either symmetric or
unsymmetric framed structures. In order to extend the method to tube-in-tube structural
analysis, the core tube structural behavior under lateral loads is now studied. The aim of
this core tube analysis is to incorporate the analytical model ot the core tube with the
foregoing method for framed tube siructures, in order to apply the present finite story

method to the structural analysis of tube-in-tube systems.

Tall building core tubes under torsion fall in the general warp-restrained category,
and their structural modeling has been of great interest to both engineers and researchers,
[24-44]. In addition to a brief review of the characteristics of the torsional behavior of
thin-walled beams and the available literature on core tubes, the features of the present
matrix-based method are compared with other existing methods for core tubes. The
torsion and warping related stiffners coefficients of a core tube modeled as a thin-walled
beam are then derived based on available analytical solutions, from which the extended

story-wise stiffness matrix of the core tube is formed. The numerical results compare
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favorably with other solutions, including full finite element modeling, and demonstrate the

high efficiency and acceptable accuracy of the method.

3.1.1 Déefinition of thin-walled beam members

A beam or column is distinguished from other kinds of structural members in that
its cross-section dimensions are not of the same scale as that of length. Beam and column
members can be further cataloged into two kinds: one in which the two perpendicular
dimensions of the cross-section are of the same scale and; the other in which the
orthogonal dimensions differ greatly. The latter are referred to as a thin-walled beams. The

definition of such beams is therefore given by [63]

b/:210 /6210 (3.1)

where t is the thickness, b is the linear dimension of the cross-section, and / denotes the
length of the member. In this study, only straight thin-walled beams which are the most

common in tall building structures are studied.

3.1.2 Characteristics of core tube structural behavior under torsion

Tall building core tube structures are cataivgued as thin-walled structures due to
the large ratios of the building height to the linear dimensions of the cross-section, and of
the linear dimension to the wall thickness. In most cases, core tubes are perforated in rows
for access doors, which makes their structural bchavior more complicated than that of
thin-walled structures with completely open or closed sections. To model core tube
structures correctly, it is essential to recognize the characteristics of these structures in

response to loadings.

From a structural point of view, a core tube may constitute the only supporting

system of a building, or it may be incorporated with other structural components to form a
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lateral load resistant system. If a core tube is subjected to lateral loads and the resultant of
the loads is offset from the shear center, torsion will be induced. Unlike general cantilever
structures in which cross-sections remain plane after the structure has deformed, the core
tube responds to torsion actions with cross-sectional warping deformation, which may
induce corresponding stresses of a magnitude similar to those due to bending [37]. Thus,
warping behavior of these structural forms needs to be considered in engineering practice.
Other structural responses ~© a core tube under lateral loads, namely bending, shear and

axial deformations, are the same as for general cantilever structures.

The torque app..:.. on a core tube is resisted in closed sections by circulating,
wall-twisting and warping shear stresses and in open sections by wall-twisting and
warping shear stress only. In terms of torques, the external torque is resisted by St. Venant
torque and the so-called bending-twisting moment (warping resistance). The latter is the
torque component associated with warping deformation. Which one of these components
plays the most important role depends on the cross-sectional shape of the core tube. For
circular or regular polygon closed sections the bending-twisting moment is zero, while for
open sections the bending-twisting moment may assume considerable portions. A typical
concrete core structure becomes a partially closed tube structure due to penetrations for
door openings or service systems. When the penetrations are small and arranged in a
staggered manner, the overall behavior resembles that of a closed tube and the effect of the
openings may therefore be ignored in preliminary design. For cores with door openings
which occur in a vertical row, the effect of openings must be taken into account and both

St. Venant torque and bending-twisting need be considered in the equilibrium conditions.

3.1.3 Existing methods of core tube structural analysis

The modeling of core tubes consisting of alternating segments possessing closed

and open cross-sections is generally approached by assuming either open sections with

62



braces at the floor levels or equivalent closed sections [28]. For either of these structural
models, both continuous approaches and discrete procedures are available. Continuous
approaches derive the govemning differential equations according to equilibrium
conditions of the entire tube, and allow analytical solutions and hand calculations;
however, incorporating the core tube with exterior structural components becomes
inconvenient since the latter are usually treated by discrete formulations such as finite
element or matrix methods. The discrete procedures, on the other hand, are known to have
advantages in dealing with complex loading and boundary conditions, and also lend
themselves readily to computerized analysis of super-structural systems. These two kinds

of approaches are reviewed separately in the following paragraphs.

Continuous approach:

Extensive use of the continuous approach has been made in «all building core tube
structural analysis since late the 60’s. Rosman [24] applied Vlasov’s thin-walled beam
theory to analyze torsional behavior of perforated concretc core tubes. The study
concerned deflections, internal forces under different load cases, as well as periods of free
vibration of core tubes with doubly symmetric cross-sections. In this analysis, the lintel
beams at floor levels are replaced by equivalent laminas, and the structure is idealized into
a uniform closed shaft; however, the sectorial properties of the cross-section were still
determined according to open channel sections. Tso and Biswas [31, 32] presented a
three-dimensional method of analysis for non-planar coupled walls in which the bending,
shear, twisting, warping and axial deformations of the shear walls were considered. In the
analytical modei, the connecting beams are also replaced by a uniform connecting

laminas, and the sectorial properties are determined accordingly.

A typical structural model for core tubes proposed by Stafford Smith and Taranath
[37], and Heidebrecht and Stafford Smith [27], which was naturally developed from

two-dimensional analysis of coupled shear walls, is to consider these structures as
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consist.ag of opern section channel shear walls connected by lintel beams or slabs at floor
levels. The geometric properties of the cross-sections are based on the open channel walls,
whereas the warping constraint exerted by lintel bean s or floor slabs is taken into account
by incorporating the associated bimoments into the corresponding warping stiffness
coefficients of the walls [37], or modifying the St. Venant torsional constant of open

sections [30].

Most of the above methods are based on Vlasov’s theory established for open
sections, wherein the shear deformation in middle surfaces of the walls is not considered;
therefore, the accuracy of these methods may  questionable for cases with deep lintel
beams at the floor levels. Khan and Stafford Smith [28] examined the shift of the effective
shear center of open cross-sections due to the existence of lintel beams. It was shown that,
with increasing depth of the lintels, the shear center shifts and shear defo mations become
more pronounced. Rutenberg, Shtarkman and Eisenberger [30] described and compared
the merits and limitations of several continuous methods, including some models in which

shear d~formatons were also considered.

Discrete approach:

With the development of computer techniques, diccrete approaches for tall
building core tubes have become prevalent. In the standard finite element analysis, shear
wall panels can be modeled by plane stress elements or thin-shell elements, while the
undeformed cross-sections are modeled by means of rigid links or auxiliary beams at flcor
levels [6]. For core tubes with lin‘el beams, the lintel beams can bc replaced by an
equivalent continuum and treated as wall panels. In addition to the standard elements
mentioned above, some specially developed elements have also been reported. Examples
comprise a super-element which modeled the core tube in one story by a
three-dimensional subassemblage of two-dimensional shell elements [42], a strain-based

clement which spans several stories and which performed well in both shear and bending
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deformation modes [21], and a generalized thin-walled beam element in which both

displacement and strain fields were employed [43). The merit of the finite element method
is that it does not require nreliminary determination of the location of the shear centers,
nor do most of its applications require the calculation of the geometrical sectorial

properties of the cross-section.

An alernative discrete approach is the general matrix method. The warping
distortion of the cross-section is considered as an additional degree-of-freedom at joints of
«nembers, and the corresponding member stiffness coefficients are determined based on
Vlasov’s thin-walled beam theory. The derived member stiffness matrix was employed
with the transfer matrix method to exaniine core tube structural behavior in [37-39]. The
method solves tall building core tube problems by using recursive compatibility
conditions without assembling the overall structural stiffness matrix. Another approach
based on the genexral matrix method for core tube structures [36] modeled the core tube as
individual piers of core walls connected by lintel beams at floor levels. Because each pier
was idealized as a one-dimensional member at the shear center of the represented wall, the
ends of connecting beams were extended to the shear centers of walls. This was realized
by means of the in-plane rigid diaphragm assurnption for floor slabs in assembling the
story stiffness matrix. The overall structural stiffness matrix was obtained by assembling
story matrices. Compared with the finite element method, the matrix method provides
concise member stiffness matrices, but requires thin-walled beam theory as well as the

calculation of geometrical sectorial properties.

3.2 Concept and formulation of thin-walled beam theory
3.2.1 Warp-restrained torsion

For a thin-walled beam subjected to a uniform torque, if all cross-sections of the

beam are permitted to warp freely, the magnitude of warping and the lengths of
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longitudinal fibers do not change. Consequently, the shear stress distribution is the same at
all cross-sections, and no normal stress is produced. This situation occurs only if the
thin-walled structure is straight and without any longitudinal restraint. All longitudinal

fibres are still straight, but the cross-sections are warped.

If the support or load conditions do not allow a thin-walled bram to warp freely,
torsion becomes warp-restrained. In this case, the magnitude of warping varies along the
member axis, longitudinal fibres experience elongation or compression, and both normal
and shear stress are generated by the non-uniform warping of cross-sections. A typical
example is a thin-walled [ beam fixed at one end and subjected to a torque at the other. The
warping varies from zero at the fixed end to a maximum at the free end, while the two
flanges bend in opposite directions, thus giving rise to warp-restrained torsion being

referred to as bending twisting.

3.2.2 Sectorial properties of thin-walled beams

In his work on the behavior of thin-walled beams, Vlasov [63] introduced sectorial
properties of thin-walled beams in addition to the St. Venant’s cross-sectiona! properties,
which permittcd the analysis of warp-restrained torsion. The thin-walled beam theory has
been widely applied in the aerospace industry and the definitions of sectorial properties
have been generalized based on: V'asov’s original work of open sections, so that they are

valid for either open or closed sections [33, 64].

The sectorial coordinate of a cross-sections is the basic quantitv in thin-walled
beam analysis. In the cross-section shown in Figure 3.1a, C denotes the centroid of the
section; CX and CY are principal axes in the Cartesian system; Oy represents an arbitrary
pole in the CXY plane; M, located at the middle surface iz the origin; r is the
perpendicular distance from O, to M where the sectorial coordinate is to be determined

and; s is the curvilinear coordinate of the middle surface measured from the origin M;.
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Any point in the middle surface can be measured by the axia' coordinate z and the

curvilinear ~oordinate s. The sectorial coordinate ® at M is defined by

s

o(s) = jrds for open sections
0
S s 3.2
&) = jrds-—% Jd_ts for closed sections (3
0 é—t—

The first term on the right hand side of the sectorial coordinate for closed-sections is the
same as that for open-sections introduced by Vlasov. The thickness t can be a function of
s; Q is twice the area enclosed by the middle surface of the cross-section. For

open-sections €2 is zero.

Similar to the St. Venant geometric properties, there are sectorial properties which

are givea below:
I, = jtc—oyds, I &y = Jtiﬁxds
§ A

(3.3)

S5 = [1@ds, Iz = [i@*ds

N s
If the pole and origin are chosen to satisfy the following conditions
Sz =0, I, =0, Igy = 0 (3.4)

the corresponding pole and the origin become the principal pole ana the principal origin of
the cross-section. The prircipal pole coincides with the sh-ar center of the cross-section
and the principal origin is a point on the wall contour where @ = 0. Under these
conditions, I is the principal sectorial moment of inertia. The procedure for calculating

the principal sectorial moment of inertia [63, 33] is summarized in Appendix V.
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3.2.3 Basic assumptions and governing differential equation

The equilibrium conditions of elastic thin-walled beam théory are essentially
based on one fundamental assumption: the cross-sectional shape does not change as the
beam deforms. There are two approaches for warping displacements of thin-walled beams

under torsion: (1) Vlasov approach {63]

w(s,z) =w(0,2) - @ 62' | (3.5)
and (2) Umanisky - Benscoter’s approach [30, 33, 64]

w(s,z) =w(0,2) - @ (2) (3.6)

in which @ is the afore-defined principal sectorial coordinate, and w (0, z) is a constant.
Both are based cn the common assumption that the warping displacement pattern of a
section varies &3 the sectorial coordinate diagram of the section, while the magnitude of
the distribution varies along longitudinal axis of the member [33, 63, 64]. The two
approaches differ in the manner in which the magnitude varies. Vlasov considered that the
warping displacement varies along the longitudinal axis directly with the rate of the twist
angle 62' ; whereas Umanisky and Benscoter assumed it to vary as another function f3', the
so-called warping function. The latter allows shear deformation in wall panels to be
included, whereas in Vlasov’s thin-walled beam theory for open sections, the shear
deformation of the thin walls is neglected. Since tall building core tube structures consist
of segments with alternately open and closed sections, modeling the structural behavior
based on the theory for open sections may give erroneous results for the location of the
shear center [28] and, consequently, also for sectorial moment of inertia, rotation and

stresscs.

Based on the Umanisky - Benscoter assumption, the govcrring differential
equation of the thin-walled beam subjected to distributed torque m,(z) is established as

[30, 33, 64]
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Hm, (z) m," (z)

" -— 2 " —_ —_
92 (2)-a ez (2) El, G(1p+Jo)

(37

in which ©_ is the angle of rotation; primes denote differentiation with respect to
coordinate z along the member longitudinal axis; E = the modulus of elasticity; G = the

shear modulus; and

GWU,+J) GJ J +J
2 = .___o___c... = — - l— ¢ d
@ = b WEL H I+, (38)

in which J = J_+J, the torsional constant of the core tube given by the sum of the Bredt
and St. Venant constants, respectively; L is the tangent second moment of inertia; and p
is a dimensionless section constant, the so-called warping characteristic parameter
representing the warping performance [33]. For circular or regular polygon sections with
uniform thickness, i = 0 and the bending-twisting moment is also zero. On the other
hand, for open sections i = 1.0. It should be noted that the bending-twisting moment

increases as the value of | increases.

3.2.4 Solution for torsion related displacements and forces

For cantilever beams fixed at z = 0 and free at z = [/, and subjected to intensity

of distributed torque m, = constant, the solution of governing equation (3.7) is

usinh @z | 1-~cosh az az-pusinh az
\ % = Ot = Por g5 Bavt g7 — Mo
|
| m 2.2
- 2(;1 (1+a2z —cosh az) (39)
a
. , asinh az 1-cosh az
ﬁ = COSh aZ'BO__W—B‘T)O"'—Gj———'MZO
(3.10)

m, )
+Ea—éj—((1—2p.)az—smh az)
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GJ - usinh az sinh az
B = - ua -B'g+ cosh az-Bg,+ HoIh gz M,
(3.11)
ml
-— (1-2p+ cosh az)
a
M,(z) = M,;—m, z (3.12)

3.3 Thin-walled beam modeling for core tube structures

In this Section, the core tube in each story of a building is modeled as a thin-walled
beam element and represented by its extended stiffness matrix so that the core tube can be
incorporated into the finite story method (FSM) based on nodal displacement fields
described as in Chapter 2. The original structure with alternating open and closed sections
is replaced by one with equivalent closed section, with the thickness of the assumed
connecting continuum based on equivalent in-plane flexibility of the lintel beams as
formulated by Khan and Stafford Smiith [28]:

_ a1 G 1277

t, =h {lzle+ Ab:l (3.13)

in which Ay and I, are area and moment of inertia of the lintel beam, respectively; h is

the story height and; / denotes span of the lintel beam.

As a corollary to the assumption of an equivalent closed section, shear deformation
in wall panels and the warping characteristic parameter are included in the torsion related
stiffness coefficients. Thus, although the coefficients obtained in this study are based on
the governing equation for warp-restrained torsion of thin-walled beams with closed
sections, open sections can be viewed as a special case in which the thickness of the
equivalent membrane for lintel beams is zero and the warping parameter i = 1.0. The
method is therefore applicable to core supported structures with completely open, closed

or a mix of open and closed sections.
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3.3.1 Stiffness matrix of thin-walled beam element

From the cross-section warping distortion of thin-walled beams given by equation
(3.6), it is clear that at a specific section, w is proportional to the sectorial coordinate ®
with the factor (—f'). The latter is taken as a measure of warping, which becomes the
seventh degree-of-freedom at beam ends in addition to the usual six for solid beams. The

member force corresponding to the B’ is the bimoment B 5 which is defined by

B; = [®@-05dA (3.14)
A

where G is the normal warping stress and; A denotes the cross-section area of the beam.

To derive stiffness coefficients corresponding to twist and warping, consider a
beam only loaded at its ends i and j, i.e. m (z) = 0.0. Equation (3.7) becomes
homogeneous, and equations (3.9-3.12), expressed in terms of the end rotations 6;, 8;; end
torques M,;, M,;; bimoments Bz, and B(T,J and; the corresponding warping deformations

B, B'J, are given in matrix form by

(%) . 1 1 %)
B 1 = sinhal [-- sinh al 1-cosh al B
J a a i
;M Lo 0 coshal 1-coshal —% sinh al | ¢ ﬂ » (3.15)
GJ GJ
0 0 1 0
Ea_j Ho. 1 . fﬁ)ﬁ
| GJ | 0 2 sinh al = sinh al cosh al | G |

In the equation (3.15), by letting 6 _, B',, Ozj, B'j have unit values in turn with all
other displacements zero, member forces Mz, Bg;, M;;, and B can be obtained to yield

the required stiffness coefficients. The equilibrium equation in matrix form for the

warp-restrained member subjected to end torques becomes
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M, 6,
%a (k] B'i (3.16)
p—ri r .
sz 0,
Bg B
where
a . a .
ﬁs1nh al 1-cosh al —l-i sinh al 1 - cosh al

— Icosh al—E sinh al cosh al—1 Esinh al—1
[k,] = GJ a a (3.17)

£1—sinh al cosh al-1
(Symm) K

{cosh ah-%sinh al

GJ = GJ (3.18)

JZ —2cosh al+ E-I—S-M

and / is the length of element. The difference between the above form of matrix [k ] and
the corresponding torsion and warping related stiffness matrix derived for open sections is
the inclusion of K. For beams with open sections, u=1.0 and [k;] degenerates into that
based on Valsov’s theory for open sections. In cases of core tube structures with lintel
beams that are relatively deep, the shear deformation i:1 wall panels becomes significant.
Additionally, stiff lintel beams cause a shift in the shear -enter which also notably affects
the displacements and warping stresses [28]. Stiffness coefficients derived for open
sections are therefore less suitable in such situations, whereas the present stiffness
coefficients for closed sections reflect more realistically the foregoing effects of the lintel

beams.
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For a story-height segment of the core tube structure subjected to a combination of
bending, shear, axial and torsional loadings, the complete member stiffness matrix for the
warp-restrained condition is established in the coordinate system shown in Figure 3.2. The
origin O of the system is located at the shear center of the cross-section, which is alsu the
principal pole of the cross-section. Axes OX and OY are parallel to the principal axes CX

and CY. Point C denotes the geometric centroid of the cross-section.

The coordinate transformation from the principal axes to the member local axes is
based on the assumption that the cross-section is in-plane undeformed. Expressed in terms
of the displacement coordinates of Figure 3.2, the extended nodal displacement vector of
the element becomes

{d} = [ u; viw; 8,0,8, B, | uvw6,;6, 6B 1" (3.19)

The corresponding complete stiffness matrix for this member, extended from the

usual order 12x12 to 14x14, is given below:

(k] = {k“ k"] (3.20)

ki ki
where
‘ W
0 c
0 O C3 (Symm)
[kil = | 0 —c5—y,e3 er+yics (3:21)

¢ 0 x5 =xyc; cot xfc3
00 O 0 0 €10
0 0 O 0 0 €y €2
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-c; 0 O 0 —Cy4 0O 0
0 -, O Cs 0 0 0
0 0 -¢3 Yy, XCs 0 0
kil = | 0 —c5y,5 cq+¥2ey 0 0 0 (322)
s 0 —x,c5 Xy c9—x§c3 0 0
0 0 0 €10 "t
0 0 O 0 0 €11 €13
[— -
¢
0 o
00 ¢ (Symm)
(ki1 = | 0 c5=yse5 c+¥icy (323)
-4 0 x,65 —xy.04 c$+x?c3
0 0 0 10
U 0 0 €11 €12
in which
12E1 12E1 EA =
I l
4El, 4EI,
cs = 0.51c,, €6 = —5 ¢; = 0.5¢, cg = —~ 20
cg =0.5¢y, cm=_G—J§l sinh al, ¢;; = GJ(1-cosh al)
c;p = GJ (I cosh al-ﬁ sinh al), C13 = m(ﬁsinh al-1)

and x,. yg specify the location of the shear center O with respect to the centroid C.
Equations (3.20 - 3.24) are for core tubes which are uniform in each story. The stiffness

coefficients in equation (3.20) for shear, bending and axial deformations remain the same
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as those for ordinary beams, while the coefficients related to torsion and warping are from

equation (3.17).

3.4 Numerical Examples

Three illustrative examples are presented involving symmetric and unsymmetrical
core tubes subject to either torsional actions or lateral loads. The accuracy of the results
obtained by the present modeling is examined by comparing with reported other matrix
method solutions or with data generated using the commercially available finite element

software NISA.

3.4.1 Symmetric core tube subjected to concentrated torque at the top

Re-analyzed herein is the small scale model core tube studied earlier by Liauw and
Leung [38], and Gendy, Saleeb and Chang [43] employing, respectively, the transfer
matrix method wi** diiferent state vectors immediately below and above the lintel beams,
and generalized one-dimensional thin-walled finite beam elements with specially defined
displacement and strain interpolation functions for torsional behavior. This 20-story
structure is doubly symmetric and under the action of unit torque M, applied at the top.
Figure 3.3 shows the plan layout of the model. The story height = 62.2 mm, lintel beam
depth = 9.5 mm, and thickness of shear wall panels and lintel beams = 6.2 mm. Young’s
modulus E = 29.65x 102 MPa and shear modulus G = 11.03x102 MPa. The lintel beams
are replaced by an equivalent continuum with thickness of t; = 0.13 mm, resulting in the
sectorial coordinate diagram is shown in Figure 3.4 where the corresponding sectorial

moment of inertia I3 = §62 dA = 598x10'" mm® for the equivalent closed section.
A

The floor slab in-plane rotations 6, and the variation of bimoment B along the

building height obtained by the present model are compared with solutions from {38, 43)
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in Figures 3.5 and 3.6, respectively. Figure 3.5 shows that the agreement of rotations is
very close between the present method and that of {43], with a difference of 6.3% at the
top. Similar good agreement is also evident in Figure 3.6 for the distribution of bimoment
B; over the lower half of the structure. Over the uppermost portion, however, the present
method (whether story-wise or continuous approach) shows differe:r. behavior for the
bimoment. The solution denoted continuous approach is obtained according to the formula

& = WM, sinh a (L-12)/ (a- cosh aL) given in [33]. By this formula, the bimoment
distribution along the axis of the structure subjected to concentrated torque at the free end
is controiled by ihe funciion sinh a (L —z), in which L is the total length of the beam and
z is the axial coordinate. Thus, for z <L, the bimoment does not cross over the zero line
and, at the top of the structure, the bimoment under the given loading condition of this
problem should theoretically vanish, which are both correctly predicted by the present

method.

3.4.2 Asymmetric core tube under uniformly distributed lateral load

To demonstrate the performance of the present model for a core tube, with or
without lintel beams and undergoing flexural torsion in addition to bending deformation,
an asymmeiric 15-story core supported structure is considered. This structure has
previously been analyzed by Stafford Smith and Taranath [37] employing the assembled
stiffness matrix for the core treated as an open section, with the warping stiffness
contributed by the lintel beams added separately. The plan view of the structure and the
applied lateral load are shown in Figure 3.7. The story height = 3.81 m, lintel beam depth
= (0.457 m, Young’s modulus E = 2.76x 10* MPa and shear modulus G = 1.20x 10* MPa.
The lintel beams are replaced by an equivalent continuum with thickness of t; = 1.78 mm,
which leads to the sectorial moment of inertia Ig = 2.78x10% m® for the equivalent

closed section. Since the structure is modeled by end-loaded thin-walled subsystems, the
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uniformly distributed load is transformed into concentrated loads of 6.95 kN applied at the
floor levels (3.48 kN at the top) and passing through the geometric centroid O of the

centrally located core tube.

Floor rotations and bimoments along the building height are shown in Figure 3.8
and 3.9 and compared with solutions from [37], respectively. Since the analysis in {37)
modeled the core as open section constrained by lintel beams at floor levels, shear
deformation in the wall panels was not included. Presented also are the results obtained by
the FEM software NISA for the floor rotations 6, only, since the corresponding data for
bimoments B are not obtainable from such programs. In this FEM analysis, the core tube
is modeled by a quite fine mesh: 342 four-noded thin-shell elements per story, where the
3.05 m long and 0.457 m deep lintel beams are modeled by six 0.508 x 0.457 m clements.
The elements are formed by superimposing plane stress and thin plate behavior. These
elements have six degrees-of-freedom per node, but possess no rotational stiffness normal

to the element middle surface.

Examining the accuracy for the core with lintel beams, Figure 3.8 shows that the
rotation at the top is 3.53x107° rad by the present method, 2.95x10°? rad in {37] and
3.41x103 ral by FEM, yielding a difference of 0.9% between the displacement solutions
by the present model and NISA. In terms of computing efficiency, the number of DOFs by
NISA is 34848 in contrast to only 90 for the present meihod. It is interesting to note that
neglecting shear deformation, as represented by the results from [37], introduces only
8.7% error in top rotation in this example since the lintel beam is only 12% of the story
height, but the effect of shear will of course become more significant as the lintel beam
depth increases. On the other hand, analyzing this example as open section, i.c. withoul
lintel beams at floor levels, results in a much larger top floor rotation, i.e. 14.4x10°3 rad by
the present method, 12.8x1073 rad in [37] and 14.4x10°3 rad by FEM. Evidently, the lintel
beams constrain the torsional warping of the cross-section to increase significantly the

overall torsional rigidity of the core tube.

77



Figure 3.9 compares the bimoments obtained by the present model with those from
[37]. Since the magnitude cf normal warping stress G varies with the bimoment along
the longitudinal axis, the close match between the results observed in Figure 3.9 indicates
that the variation of 6 is well predicted by the present core model over the full height of

the structure.

The distribution of the normal stresses at the base of the structure for the case with
lintel beams is compared with the results from [37] in Figure 3.10, also with good
agreement. The final values are obtained by superimposing the stress components due to
bending and flexural torsion, which allows assessing the relative importance of the roles of
these separate deformation modes. As done previously in {37], inspecting the distributions
of the two stress components in Figure 3.10 demonstrates that the maximum normal stress
due t» warping is slightly more than double that due to bending in ihis example, thus
confirming the aforementioned usefulness of methods such as the present in identifying

the significance of warping in the total stress computations.

3.4.3 Man-uniform core tube under uniformly distributed torque

A non-uniform core tube under torque M, = 1.89x10% kN - m at each floor level is
analyzed. The cross-section is the same as in the example of Section 3.4.2 but with wall
thickness and the moment of inertiz of lintel beamns increased to 0.61 m and 2I,
respectively, in the first five stories. Figure 3.11 shows the elevation of the structure.
Material properties remain the same as before. This structure differs from that of [27] in
that the latter has a strengthened lintel beam (with moment of inertia = 4ly) at the top
level. The sectorial coordinate diagram of the lower segment (the first five stories) is
shown in Figure 3.12, which is obtained based on the equivalent continuum for lintel

beams with the thickness t, = 3.56 mm.
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Figure 3.13 shows the variation of floor rotations along the building height in
comparison with results from [27). It is seen that the rotations for non-uniform and
uniform: cross-sections agree quite well for the present model and that of [27]. At the top,
the floor rotation is reduced from 0.0165 rad to 0.0125 rad, about 24%, due to the
srengthening of wall thickness and lintel beams in the first five stories. Figure 3.14 shows
the corresponding comparison for bimoments. The discrepancy in the top few stories
between the two solutions for the non-uniform section in both Figures 3.13 and 3.14 is due
to the different lintel beams at the top level. Figure 3.13 also indicates that, by increasing
the wall thickness in the first few stories, the overall rotations are reduced nntably; in
comparison, the influence of increasing the strength of the top lintel beam is local and

limited to only a few of the uppermost stories.

3.5 Summary

A structural model based on the matrix method for tall building core tube
structural analysis has been developed. The modeling is an extension of the continuous

approach for core tube structures modeled as thin-walled beams.

The obtained analytical model is applicable to thin- walled structures with either
open or closed sections. For the latter, shear deformations in the middle surfaces of wall
panels are included. The thickness of walls can be changed story-wise but the shear center
of each story segment remains the same. Numerical examples confirm the reliability and
efficiency of this extended thin-wall beam model in comparison with finie element
modeling and other methods of analysis. With the same accuracy for warping deformation
and stresses as continuous methods achieved by the structural model for core tubes in this
Chapter, this model for core tubes will be incorporated with the present FSM in the next

Chapter to analyze tube-in-tube structures.
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(a) Sectorial coordinate at M based on pole O, and origin M,

(b) Negative sectorial coordinate

Figure 3.1 Definition of sectorial coordinate
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Figure 3.2 Coordinate system for thin-walled core element
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Chapter 4

Tube-in-Tube Structures

4.1 !ntroduction

In Chapter 2, the finite story method is presented for framed tube structural
analysis. The assumptions in the method, definition of nodal displacement fields and
procedure of the analysis were described To apply the FSM to the analysiz 0.’ tube-in-tube
structures, the core tubes are modeled by thin-walled beams, and the basic concept and

formulation of thin-walled beam theory aie reviewed in Chapter 3.

This Chapter extends the above finite story method by incorporating the modeling
of core tubes as thin-walled beam elements in 3-D analysis for displacements, natural
frequencies and modes of vibration of tall building tube-in-tube structures. Structures and
structural behavior under lateral loads are de: ribed. Existing simplified methods of

analysis are reviewed and the extended anaiysis procedure is presented. Numerical

tube-in-tube structure under lateral loading. The dynamic properties of the latter structure
are also computed in order to verify the effectiveness of the present analytical model for
response to dynamic loading. The results are compared with full finite element modeling
in order tc establish the accuracy and efficiency of the present FSM in modeling

tube-in-tube structural systems.
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4.1.1 Characteristics of tube-in-tube structures and their behavior

under lateral loads

The framed tube or the core tube may be used individually to resist all lateral loads;
however, it is common in design to place a tubular core insid: a peripheral framed tube.
The inner core tube and the outer framed tube are connected by floor slabs and perform as

a unit forming the tube-in-tube system, .50 referred to as hull-core structures.

Tube-in-tube structures are essentially shear wall-frame interactive systems, with
the outer framed tube possessing much greater stiffness than a conventional rigid frame.
There may be one or more core tubes located inside the frame tube; the area enclosed by
the core tube can occupy up to a quarter of the total plan area; and the overall system can
comprise a multiple of this basic tube-in-tube forms. Two typical examples are the
38-story Brunswick office building in Chicago, shown in Figure 4.1a, and the 64-story
Hope Well Tower in Hong Kong shown in Figure 4.1t.

Generally, the framed tube plays the dominant role in responding to external ioads
because of its much greater plan dimensions, while the core is flexural weak in overall
bending due to its usual proximity to the neutral axis. Similar to shear wall -frame systems,
the two different subsystems are tied together to perform as a unit in resisting lateral loads,
and the interaction between the core tube and the framed tube augments the lateral load
resistance of the whole system. Under lateral loads, shear is carried by the core tubes as

well ag by the in-plane rigidity of the frame panels, whereas the overturning moment ig

resisted primarily by the framed tube which responds in tension and compression of

columns and racking of spandrel beams.

Torsion in these systems occurs due to unsymmetrical structural arrangements or
lateral load distributions. Even a structurai system designed to be symmetric may behave
as an unsymmetric system due to various unforeseen factors such as variation in
construction methods and later changes made to the structural components [45]. If a

building structure is unsymmetric in one direction, the lateral displacements in that

94



direction are coupled with the torsional deformation. On the other hand, if the asymmetry
is in both perpendicular directions, the structural response will be torsionally coupled in
both directions. Only a three-dimensional (3-D) analysis is capable of predicting the

behavior of such systems.

4.1.2 Existing simplified methods of tube-in-tube structural analysis

Although extensive attention has been paid to simplifying the structural analysis of
framed tubes and core tubes separately, little research has been reported on simplified
procedures for tube-in-tube structures. Corit and Subedi [11] adapted the equivalent plane
frame technique, originally developed by them for framed tube structural analysis, to the
analysis of tube-in-tube structures under lateral loads. The method analyzes tube-in-tube
structures by means of 2-D frame computer programs and is effective in modeling the
static response, although it is limited to doubly symmetric systems. Staiford Smith and
Crowe [58] proposed a hand method for estimating the frequency of free vibration of tall
buildings. The method is efficient and improves the accuracy of frequency calculations
over procedures in codes of practice for uniform symmetric buildings. Other approaches
such as the finite strip method [20] and the strain-based finite element method [21] can be
appiied to tube-in-tube structures, although these methods have been applied only to core
tube and frame structures, separately. A simplified approach, however, for predicting
natural frequencies and modes of vibration of asymmetric tube-in-tube structures has not
been devised. In view of the complex structural behavior of such a highly redundant
structural system, there is an obvious need for developing an efficient method to determine
static response to lateral loads, as well as for predicting the natural frequencies and modes

of vibration, especially for preliminary design purposes.

4.2 Extension of FSM procedure
The theory and the analysis procedure of the finite story method based on nodal
displacement fields for framed tube structures and the thin-walled beam modeling for core
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tubes have been given in detail in the preceding Chapters; thus, only the significant steps

of the present extension are given herein.

As in Chapter 2, the out-of-plane stiffness of floor systems is neglected in the
analysis, while the in-plane stiffness is considered infinite. By this assumption, the
building cross-sections remain plane when subjected to external loads, and the
out-of-plane deformations of the core tube cross-section are uncoupled from those of the

framed tube.

Based on the above, the tube-in-tube structure consisting of an exterior framed
tube and interior core tubes is assumed to be connected by in-plane rigid floor slabs. Each
of these vertical structural components, namely the framed tube and the core tubes, is
considered as a structural subsystem, with each subsystem possessing five DOFs at each
floor level. The overall structural stiffness and mass matrices are established in accordance
with the foregoing floor slab assumption. Because the core tube is modeled by thin-walled
beam elements between floor levels, the preliminary analysis of nodal displacement fields
is necessary only for the exterior framed tube employing two-story segments at a time.
Since the floor slabs are considered to be in-plane rigid diaphragms, the nodal
displacements w°, 67, and G;R of the core tube element, are uncoupled from the

corresponding 6/

& and ng of the framed tube. Thus, the number of IDOFs of a

tube-in-tube structure becomes N(5+3N;), where N denotes the number of stories in the

building and Ny represents the total number of core elements.

For the framed tube, the vector of generalized displacement coordinates at the kth

floor level (k =1, 2,..., N} is expressed as
T T
{D'}, = [Py Dyy Dy D}y Dfs 1" = U, V, 8, €, o/,

in which Uy, V} represent in-plane displacements in the X, Y directions, respectively; 0,
denotes the floor rotations about the vertical axis; and Gik and Bflk represent the framed

tube rigid body rotations about the horizontal axes at the kth floor level, respectively. The
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substructure stiffness matrix [Sf'] i and the mass matrix [Mf'] i of the kth story of the
framed tube corresponding to the generalized displacement coordinates {Df} g are
formed by assembling the transformed stiffness matrices [k: ], [k;] and mass matrices

lm:] , [m;] for columns and beams, respectively, as follows:

(1, = Y k1, + Y [k,], (4.1)
1 1

M1, =3 Im], +Y Imp], (42)
1 1

where m_ and m,, are the numbers of columns and beams in the kth story.

Supposing that there are m,, thin-walled beam elements modeling the core tube in
the kth story, the corresponding displacement vector for the core at the kth floor level (k =

1, 2,..., N)is given by

.
{D}, = [Dyy Dy Dy | diy - i)
(4.3)
= (U, V, 8] w; 0, 6..w5, 05, 6 17

in which w;, 67, and 6], denote the vertical displacement and the rotations about the
orthogonal horizontal axes of the core tube elements (i = 1,...m,) at the kth floor level.
The degrees-of-freedom at floor levels for warping deformations of thin-walled members
are free of external loads, so that the order of the thin-walled beam element stiffness
matrix in equation (3.20) is reduced to 12x12 by static condensation before entering the
overall stiffness matrix. The resulting stiffness matrix corresponding to the vector of

generalized coordinate D} _, Di] T then becomes

k.. k.
k = i iy 44
(k] [k“ k--] (4.4)

J4 J
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in which i and j denote the element ends at the (k-1)th and kth floor level, respectively. All

sub-matrices in the equation (4.4) are of the order 6x6, i.c.

—cl ]
€y (Symm)
Cip+ €y
[ky) = s (4.5)
—Cs —YsC3 c6+yfc3
_C4 .st3 —xsysc3 CS+XEC3 ]
—Ci0~ 11
[&;] —c3 ¥4 ~x,c4 (4.6)
—Cs Y€y Cot y?C3
2
| €4 —X,C3 XYC3 Cg—XgC3
4
cy (Symm)
€t i
[kjj] = ey (4.7
Cs —YsC3 Cs+)’§cs
2
L_C4 st3 —.xsysC3 CS +XSC3 ]
where
12EI 12E1 EA -0
- y _ x — £A c, = 0.5ilc
Cl - 13 ’ 62 = 13 N C3 I » 4 1
4E1 4E]
Cs = 0.5102, Cg = ] x, c; = 0'5c6’ Cy = .—TZ (4.8)
— -2GJ (1 -cosh al
cg =0.5¢g, €10 =G.I§1 sinh al, ¢y = ( ; )
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with x, ys denoting the location of shear center O with respect to centroid C. For core
elements possessing a shear center coincident with the centroid of the cross-section, xg and
ys are zero. With the floor out-of-plane stiffness neglected, the equilibrium equation of the
core tube element involves axial forces which are null for lateral load analysis. Thus, the
order of equation (4.4) is reduced to 10x10, and the total number of DOFs of a
tube-in-tube structure becomes N(3+2Ny). The substructural stiffness matrix representing

all the thin-walled elements of the core tube is then given by

[, = D [k,], (49)

Combining now the subsystem stiffness matrices of equations (4.1) and (4.9) leads

to the following standard form for the overall equilibrium equation for a tube-in-tube

structure:
[K"]1 (D} = {P"} (4.10)
in which
N
K} = Y (1871,+ (5 (4.11)
k=1
{p} =D} Dy ..Dy| & d& ... & 1" (412)
where for the kth story

{di} = [w 6, € ..wi, 65, 6 1'

m,

(4.13)

and {P‘} represents the external load vector corresponding to the overall vector of

generalized coordinates {D}.

For dynamic analysis, the mass moments of inertia of the core tube correspondirg
to core vertical displacement w{ and flexural rotations 8¢, and O;i are relatively small,

and consequently not sufficiently significant to define w;, 6, and G;i as dynamic
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degrees-of-freedom in computiug the overall structural response. Hence, in dynamic
analysis the order N(5+3N)xN(5+3Ny) of the overall stiffness [K"] is reduced to SNx5N
by eliminating the degrees-of-freedom of the core tube vertical displacements and

rotations about the horizontal axes through static condensation.

4.3 Numerical examples

In this section, two illustrative examples involving symmetric and unsymmetrical
tube-in-tube structures under the action of torsion anl lateral loading, respectively, are
presented. To examine the effer .veness of the FSM in predicting dynamic propeiiies of
torsionally coupled structures, the natural frequencies and modes of vibration of the

unsymmetrical tube-in-tube structure are also examined.

4.3.1 Symmetric tube-in-tube structure under torsion

The structure is a symmetric 30-story tube-in-tube system subjected to torsion. The
plan layout is shown in Figure 4.2. Young’s modulus E = 2.39x10* MPa and shear
modulus G = 0.99x 10* MPa. The story height = 3.66 m and the lintel beam depth of the
core tube = 1.22 m. Properiies of members comprising the exterior framed tube are listed
in Table 4.1. For the core tube, the thickness of equivalent continuum t; = 63.4 mm,
which yields the sectorial coordinate diagram given in Figure 4.3 for which I5 =
44.1 mS, while other properties are also given in Table 4.1. The structure is subjected to
uniformiy distributed external torque M, = 3953 kN -m per floor with 1976 kN -m
applied at the top of the building.

The system is analyzed by both the present FSM and NISA. In NISA the core tube
is modeled by 50 of the four-noded thin shell elements per story, in which each lintel beam
is modeled by only one shell element. The number of DOFs in NISA is 11754, whereas in
FSM it is reduced to 210 in the overall analysis and 222 in the preliminary ca!culations for
nodal displacement distribution coefficients.
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Floor rotations of the structure under the applied torques are shown in Figure 4.4.
At the top level the rotation 0, is 8.22x 107 rad by FSM and 7.86x 10~ rad by FEM, thus
differing by 4.6%. Similar correlation exists for the distribution of column shear forces
around the outer framed tube, as evidenced by Figure 4.5. This shows a maximum
difference of 5.9%, which occurs for column 3. Figure 4.6 presents the distribution of
these forces over the height of the building. It is seen that the results from the two methods
are very close, indicating that the external torque distribution between the framed tube and

the core tube is also correctly reported by the present FSM.

Since the dynamic properties of this structure without the core tube have
previously been examined in Chapter 2, it is interesting to note the influence of the
introduction of the core on these properties. For the framed tube only, the natural
frequencies by FSM for the first six modes of vitration were 0.445, 0.572, 0.754, 1.363,
1.747, and 2.271 Hz. For the present tube-in-tube structure these become 0.425, 0.567,
0.755, 1.366, 1.806 Hz and 2.272 Hz, respectively, with an average difference of 5.8% for
the six modes compared to corresponding FEM analysis. It is noteworthy that the effect
expected for increase in stiffness arising from the introduction of the core is, more or lecs,
offset by the additional mass associated with the core, thus resulting in the foregoing

similarity in the frequencies.

4.3.2 Unsymmetric tube-in-tube structure under lateral load

Since the current FSM method exploits the fullest benefit for structures which
cannot be modelled by equivalent 2-D procedures, this example involves an asymmetric
structure for which lateral-torsional coupling always necessitates 3-D analysis. For such
structures, the benefit of the current procedure is the greatly reduced input effort,

accompanied also by much greater computing efficiency.

Figure 4.7 shows the plan of the unsymmetrical tube-in-tube considered for this

example. The structure is under uniformly distributed lateral loading of 192 kN applied in
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the Y-direction at each floor through the geometric centroid of the exterior framed tube.
The asymmetry of the system is introduced by the unbalanced column arrangement in the
Y-direction frame panels and by the eccentric location of the core tube. Unlike the other
columns in the framed panels, the three interior columns in the left frame have the same
properties as corner columns, thus resulting in total column stiffness in this panel
approximately 65% that of the right panel of the framed tube. The properties of all
spandrel beams in this panel are: area A = 0.390 m2, moments of inertia
I, = 0.533x107" m*, I, = 0.302x107? m*; and torsional constant = 0.103x10™" m*.
The properties of all other mer::bers of the outer tube are the same as listed in Table 4.1 for
the preceding example. The story height = 3.66 m and the thickness of core wall = 0.305
m. The material constants are also identical to those of thc preceding example. The
thickness t, of the equivalent continuum is 20.5 and 43.8 mm for lintels in the X and Y
directions, respectively, giving an equivalent closed section. The corresponding sectorial
coordinate diagram is shown in Figure 4.8, for which the sectorial mnment of inertia | 5=

856.0 mS.

In the FE model, the core tube is discretized by 45 four-noded thin-shell elements
in each story with each lintel beam modeled by two thin-shell elements. In the present
FSM computation, to obtain the required torsionally uncoupled nodal displacement
patterns for the framed tube corresponding to floor displacement, the origin of the local
coordinate system for the outer framed tube is located at x = 4.11 m in the overall
coordinate system, which is the shear center of a single story in this uniform building. The
total number of DOFs is 12594 in FEM compared to 210 in the overall analysis and 204 in
the preliminary calculations of the present FSM. Although circumstances dictated the use
of different computers, CPU savings are nevertheless evidenced by the following: the time
consumed by the FEM solution is 1680 sec on a PC 486/50, while on a SUN 4/40
workstation 637 sec by FSM and only 255 sec by FSM* are required for solutions of
displacements presented in Figure 4.9 and 4.10. The solution denoted by FSM* is obtained
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by computing nodal displacement distribution coefficients only at the first three floor
levels and applying the mean values of these to the other levels, whereas by FSM these are

computed at every floor leve..

The accuracy of the predicted floor lateral displacements in the Y direction and
rotations about the vertical axis is examined in Figures 4.9 and 4.10, respectively. Under
the given loading condition, the lateral deflections of the building comprise the primary
overall deformation mode, 21d the results obtained from the present FSM and FEM are
seen to very similar. At the top of the building, the lateral displacement is 54.3 mm by
FEM, 53.1 mm by FSM and 52.5 mm by FSM?*, thus differing only by 2.2% and 3.3%,
respectively, from the FEM results. The coupled floor rotations depicted in Figure 4.10
display equally good correlation.

4.3.3 Dynamic properties of unsymmetric tube-in-tube structure

The 4 namic properties for the pr2ceding unsymmetric tube-in-tube structure are
computed for mass density of members of 2.4x10° kg/ m’, which is employed in forming
the consistent mass matrices for the columns, beams and core element. Additional
concentrated translational mass and mass moment of inertia about the vertical axis

assumed at floor levels are 1.43x 10® kg and 2.71x108 kg m?2, respectively.

The first five natural frequencies and corresponding modes of vibration presented
in Figure 4.11 show alrnost similar agreement for the dynamic properties as for the
preceding static results. The fundamental frequency is 0256 Hz by FSM, 0.251 Hz by
FSM* and 0.269 Hz by FEM, thus showing 4.8% and 6.7% error for this mode,
respectively, with the maximum error in frequency of 10.6% which occur for mode 3.
Since the asymmetry of this structure, introduced by the aforementioned unbalanced
stiffness distribution and eccentrically located core, results in an eccentricity of the order

of 10%, the structural responses are expected to be weakly coupled. This is confirmed by
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Figure 4.12 which shows a top view of the associatec modes from NISA. Evidently modes
1 and 4 are coupled, whereas modes 2 and 5 are purely translational and mode 3 is

primarily torsional.

4.4 Summary

The finite story method has been applied to the analysis of tube-in-tube structures
in which the core tube is modeled as a thin-walled beam eclement. Because the floor
out-of-plane stiffness is considered negligible, the vertical displacements and rotations
about the orthogonal horizontal axes in the core tube are uncoupled frcini those in the
framed tube. Thus, the nodal displacement fields are determined only by analyzing
two-story segments of only the franed tube. The element stiffness matrix of the
thin-walled beam, given ' ' equation (3.20), is reformed by condensing out the
degrees-of-freedom relatec to the warping deformation at beam ends in order to conform

to the generalized coordinates in the overall analysis by FSM.

Numerical results have shown that the present extension of the FSM is effective in
providing good solutions of gross structural deformations for tube-in-tube structures under
the actions of shear due ty tc.sion, or bending coupled with torsion. The proposed method
is also efficient in the estimation of the natural frequencies and modes of vibration of

tube-in-tube structures.
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Table 4.1 Member properties of unsymme.vic 30-story tube-in-tube structure

Member Area Shear Area | Moment of Inerta Torsion Constant
(m?) (m?) (m*) (m*)
—
Interior | 33 0281 1,=0.261x10" 0.860x10°2
column [ ' 1,=0.344x10°! '
Corner 1,=0.370x1 0! -1
column 0.674 0.562 1,=0.370x1 o'l 0.172x10
Spandrel 1,=0.447x10! 2
beam 0.368 0.307 I,=n.285x1 0-2 0.958x10
Core 1,=37.3
tube 6.74 1438 47.9
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Figure 4.2 Plan of symmetric 30-story tube-in-tube structure under torsion
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Figure 4.3 Sectorial coordinate diagram of core tube in
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Figure 4.6 Column shears in outer frame of symmetric 30-story
tube-in-tube structure
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Chapter 5
Coupling Effect of Floor Systems

5.1 Introduction

Previous Chapters were devoted to the analysis of framed tube, core tube and
tube-in-tube structures under lateral and torsional loads, in which floor systems were
assumed to behave as in-plane rigid aiaphragms with the out-of-plane stiffness of floor
slabs neglected. This assumption is realistic for most buildings with an ordinary ratio of
the transverse dimensions, i.e. not very long and narrow, and it effectively reduces the
total number of displacement unknown~ However, for core structures with floor slabs
acting as lintels and for tube-in-tube .tructures, the floor out-of-plane stiffness increases
the overall lateral load resistance [1, 6, 7, 45], and thus deserves consideration in analysis

and design.

This Chapter examines the contribution to lateral load resistance of the floors in
tube-in-tube structures. The structure of interest is a combination of a relatively weak
framed tube and a strong core tube. The functions of floor systems and the interaction
between floor slabs and the vertical structural components are briefly discussed and
existing methods of analysis taking into account the floor out-of-plane stiffness are
reviewed. A structural model accounting for floor out-of-plane stiffness by the finite story
method (FSM) is proposed for tall building responses under lateral loads. The numerical

example is a tube-in-tube strecture with two-way joist (waffle) floor slabs and subjected,
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separately, to the actiors of lateral load and torsion. The computations are made using the
program developed based on the present FSM and the FE software NISA, with attention

focused on the effect of the floor out-of-plane stiffness on the overall displacements.

5.1.1 Functions and interaction with vertical components of floor systems

The primary functions of a floor system are to collect and distribute gravity loads
to the vertical structural components, and to transmit lateral loads to the various lateral
load resisting systems. Flcors also function as horizontal braces for the vertical structural

components, thereby stiffening the entire building system.

The two mechanisms by which the out-of-plane stiffness of the floor slabs
enhances a building’s lateral load resist~nce {46] are: (1) For floors rigidly connected to
columns and shear walls, out-of-plane rotations are induced in the floors as these vertical
components undergo flexural deformation. Consequently, the bending stiffness of floors
resists this deformation of the vertical structural components; and (2) Relative transverse
(vertical) displacements are induced in the floors due to uneven axial deformations in
columns or cross-section warping in shear cores. As in the preceding case, the transverse
shear and bending stiffness of the floors restrain the displacements in the vertical structural
components, thus introducing interaction between the slabs and the vertical components

which also increases the lateral load resistance of the whole system.

Evidently, the above two kinds of interaction between slabs and vertical
components depend on the connection between these components. The conditions of the
connections may be simply supported, elastically clamped or fixed. For simple
connections, only the relative vertical displacemants in columns and/or shear walls cause
out-of-plane deformations in slabs. For slabs monolithically connected with the vertical
structural members, both kinds of the aforementioned interaction will take place. In this

study, floor slabs are considered monolithically connected with columns and shear walls.
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5.1.2 Review of literature

The initial investigation on the bending stiffness of floor slabs in symmetric
cross-wall systems was carried out by Qadeer and Stafford Smith {46]. In the analysis, the
slabs are replaced by equivalent beams and the structures are anz''zed as 2-D coupled
walls. The effective width of the equivalent beams is shown in a set of design curves
corresponding to different geometric layout parameters. These curves were obtained by
means of the finite difference method and verified by experiments. Similar theoretical and
experimental studies [47-49] extended to various shear wall configurations including
walls of box shape. Since the above investigation concerned symmetric cross-wall
systems, the effective width obtained may not be suitable for 3-D problems involving

buildings which do not possess symmetric layouts.

Stafford Smith and Taranath [37] included the warping stiffness contributed by
floor slabs in the analysis of core tubes by the finite element method. The floor slabs were
modeled by 4-noded plate elements. The floor slab warping stiffness is the bimoment
generating a unit warping deformation of the core tube at the floor level. The warping
stiffness coefficient thus obtained is incorporated into the stiffness matrix of the core tube,
which is represented by the corresponding open section thin-walled beam. Wong and
Coull [50] reported similar studies on the warping stiftness contributed by floor slabs.
Different combinations of monolithic, free and simple support conditions of the floor slabs

were studied.

For the 3-D analysis of wall-frame structures, a two-step procedure was proposed
by Taranath [7] to take into account the out-of-plane stiffness of slabs. In this method, the
out-of-plane stiffness of slabs and joists at selected joints along the girders is first
computed by full finite element analysis. In the overall structural analysis, the slabs and
joists are represented by the obtained stiffness coefficients, which are incorporated with

associated coefficients of the girders. Thus, only vertical structural components and lateral
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load resisting girders of floor systems are modeled for the overall structural behavior. This
analysis procedure can be applied to various structures on the condition that the

out-of-plane stiffness at each selected joint is determined individually.

It has been concluded in the above studies that effective coupling of core walls can
be achieved even with a relatively flexible slab system [50). The out-of-plane stiffness of
floor slabs could considerably reduce the overall torsional rotations and warping stresses
in walls [37]. Sbimply ignoring the restraint effects of floor slabs would be unnecessarily
conservative in designs. Tt has also been indicated that the coupling effect between the
inner core and the outer framed tube 11 tube-in-tube structures should be considered [1}.
However, the tremendously increased number of elements and associated
degrees-of-freedom in a full finite element (FE) modeling to include floor slab
out-of-plane stiffness makes the standard FEM unsuitable for such an analysis in the early
design stages. Apparently, a general and reliable analysis procedure for estimating the
effect of floor out-of-plane stiffness in three-dimensional problems would fulfill the

practical needs in preliminary designs.

5.2 Preliminary examination of coupling effect of floor slab using single-story

segment of tube-in-tube structure

In the analytical model of tube-in-tube structures in which floor slabs are idealized
as in-plane rigid diaphragms, both the framed tube and the core tube undergo the same
in-plane rigid body displacements, while deforming individually in the out-of-plane
direction. When the out-of-plane stiffness of slabs is included in the structural model, the
slabs interact with open section core walls along the interior edges and with frame panels
along the exterior edges. The floors couple the nodal vertical displacements and the
rotations about the two horizontal axes (w, Ox and Oy) between core walls, and between

the core tube and the framed tube.
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The floor slabs surrounding the core walls increase the bending and warping
stiffness of the core tubes. This constraining effect of floor slabs has been studied by
several researchers as described in the preceding Section [37, 49, 50]. In these studies,
attention was focused on the coupling effect of floor slabs between the core walls, while
the coupling between the inner core tube and the outer framed tube has not been

examined.

The interaction between the slabs and frames alone usually does not cause any
apparent difference in lateral load resistance, since the deep spandrel beams in framed
tube structures are strong in connecting columns. However, the out-of-plane stiffness of
the slabs couples the out-of-plane deformations of the outer framed tube with those of the
inner core tube. This coupling effect increases the overall structural integrity by making

the two subsystems behave out-of-plane partly as a composite section.

The coupling effect of slabs between core walls as well as between the core and the
framed tube are illustrated by the example of a one-story segment of the tube-in-tube
structure shown in Figure 5.1. The material and structural geometry properties are given in
Section 5.4.1. To show the coupling effect of floor slabs, let the floor undergo a unit
horizontal displacement in the Y direction (v = —1.0) and a unit rotation about the
vertical axis Z (67 = —1.0), separately, and examine the nodal rotations Gx about the
horizontal axis X in the one-story segment. The bottom of the one-story segment is fixed.
The analysis is performed by the finite element method, for which the element mesh of a

quarter of this segment is chown in Figure 5.6.

Figures 5.2 and 5.3 display the nodal rotations €_ in a quarter of the structure due
to the aforementioned floor rigid body displacements. In Figures 5.2a and 5.3a, nodes 1-6
belong to the frame panel perpendicular to the floor displacement (flange frame); node 7 is
at a comner of the framed tube; and nodes 8-11 are in the frame panel parallel to the floor

displacement (web frame). Figures 5.2b and 5.3b show the corresponding nodal rotations

123



8, in a quarter of the core walls. Nodes 1-4 are in the flange of the middle wall, and the
nodes 5-8 are in the flange of the channel wall on the right side. Inspection of the data
indicates that, with the slab out-of-plane stiffness included, the nodal rotations 0, in
flanges, due to either floor horizontal displacement v = —1.0 or rotation 8, = ~-10,0f
both the framed tube and the core tube are considerably reduced, whereas rotations 8, in
the web frame panels show only small changes. The reduction of 8, in the framed tube are
attributed to the coupling effect of the floor slab between the core and the frame panels.
Figure 5.2b shows that, under the lateral loading, including floor out-of-plane stiffness
causes only small changes in the relative nodal rotations ©  at nodes 4 and 5. This is
because the opening is in the flange walls of the core. For a core tube with openings in the
web walls, larger changes in the relative nodal rotations 8, at the wall ends will occur by
including floor out-of-plane stiffness. Figure 5.3b illustrates that the floor slab acting as a
brace of core walls effectively restrains the relative nodal rotations 8 at the ends of walls.
With floor coupling between the walls, the relative rotation 8, between nodes 4 and 5 is
reduced from 11.9 rad to 2.35 rad for unit floor rigid body rotation about the vertical axis.
However it should be noted that, in a tube-in-tube structure, the coupling between the core
walls is also influenced by the connecting conditions of slabs with the peripheral frame

panels and the spans of the slabs between the core walls and the frame panels.

5.3 Stiuctural modeling including floor system

The present finite story method (FSM) is now extended to include the out-of-plane
stiffness of floors in the analysis. The floor slabs are considered as one-way or two-way
stiffened plates for which the element stiffness matrix of the equivalent plate can be
obtained by standard finite element analysis, thus allowing the floor substructures to be
discretized by the equivalent plate elements. By defining master nodes where the floor

joins with vertical structural components, a condensed floor substructural stiffness matrix
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corresponding to these master nodes is formed. In the overall analysis, the effect of floor
out-of-plane stiffness in constraining the out-of-plane displacements of the interior core
tube, and in coupling the core tube out-of-plane deformations with those of the exterior
framed tube, is incorporated by nodal displacement transformation in the FSM. The
procedure is explained below with reference to a tube-in-tube structure with a two-way
joist floor system. It is also applicable to core supported structures or flat plate structures

with other kinds of floor systems.

5.3.1 Condensed floor substructure stiffness matrix

The conventional spacing of one-way joists and waffle slabs of either 0.6 m or 0.9
m is being replaced in practice by skip joists with spacing of 1.5 mor 2.0 m [4, 7]. If each
segment of the joist between joints is modeled as a beam and each area of the slab
bounded by the joists as one plate element, the total number of elements of a tube-in-tube
will increase tremendously. Since the interaction oetween the floor slabs and the shear
walls, and between the floor slabs and the framed panels, occurs mainly in the surrounding
regions, it is unnecessary to model the floor by a fine mesh in the large space between the
exterior framed tube and the interior core tube. Thus, the floor is discretized in accordance
with column lines. Each segment of the slab divided by column lines may enclose several

perpendicularly connected joists and is considered to be a stiffened plate element.

As shown in Figure 5.4, the stiffened plate element is analyzed fully by FEM in
which each segment of the joist between joints is a beam element, and the plate is
discretized by joist lines. Considering the corner nodes and any other node connecting
with vertical structural components as master nodes and the remainder as slave nodes, the
clement stiffness matrix corresponding to the DOFs at the master nodes is obtained by
means of the condensation technique. With the order of the foregoing matrix determined

by the number of master nodes chosen, the condensed kth floor substructure stiffness

125



matrix [$°], is established by a further condensation based on stiffened plate elements in
which the master nodes are only those in conjunction with the core walls and the columns
in the frame panels. Thus, supposing there are m, columns in ihe framed tube and n; core
tube nodes at the kth floor level, the order of the condensed floor stiffness matrix [S*] g is

of the order 3(m¢+n.) by 3(m.+n,).

5.3.2 Nodal displacement fields in the framed tube

Since the nedal vertical displacements and the rotations about the two horizontal
axes (w, 6, and Oy) in the framed tube are coupled by the floor slabs with those in the
core tube, the nodal displacement fields at floor levels are determined by analyzing
two-story segments of the tube-in-tube structure. The aim of this substructural analysis is
to obtain the approximate nodal displacement patterns in the framed tube, including the
floor out-of-plane coupling effects. The core tube in this segmental analysis acts only as a

support of floor slab interior edges.

With the above in mind, the open section walls of the core tube in the segmental
analysis are modeled approximately as piers which are represented by a 12x12 stiffness
matrix [k, ], with the warping deformations at the two ends hidden by the static
condensation in the element analysis. Figure 5.5 shows how the pier, which is located at
the shear center of the core wall, and the interior edges of the floor are related. The node of
the pier is defined as a master node and the nodes on the floor slab interior edges
connecting with the core walls are defined as relevant slave nodes. The vertical

displacements and rotations about the horizontal axes of the slave nodes defined by

w,=w,+ (Y,—¥,) Gm— (x,—x,,) Gym
0 =0 (5.1)

XS5 xm

9” = Oym
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in which w,, 0, and € are displacements of slave nodes; w;,, 6, and 8, represent
displacement of the master node and; (x,, y,) and (x_, y,, ) denote coordinates of the slave
and master nodes in the global coordinate system, respectively. Compared with Reference
[36], the above nodal transformation does not include the warping deformation mode at
the slave nodes. Because the analysis of the two-story segment is to determine the nodal
displacernent patterns in the peripheral framed tube, rather than the core tube structural
behavior or the coupling effect of floor slabs between core walls, the warping deformation
mode at the slab interior edge is not considered. By equation (5.1), the DOFs at the n,
nodes of the core walls are correspondingly transformed into DOFs at the m,, nodes of the
piers. The transformed floor substructural stiffness matrix [S®'], is of the order
3(m¢+m,,) by 3(m.+m,,), where m; = the number of columns and m, = the number of

piers in the kth story.

The structural stiffness matrix for the twe story segment is established by
assembling the stiffness matrices of the framed tube, core tube and the transformed floor

slab as follows:

m, m,

2 m,
(51 =% ((Z[kcl +Y [ky] +‘2[kw])
k=1 1 . 1 1

+ [S*] k] (5.2)
k

where [k ], [ky] and [k, ] represent stiffness matrices of the columns and beams in the
framed tube, and of piers representing the core tube in the kth story, respectively. The

order of [S] is 6(my+m¢+1) by 6(my,+m +1).

5.3.3 Analysis procedure

The conpling effects between the framed tube and the core tube, and between the
core walls, are approached separately. First, the out-of-plane deformation coupling

between the framed tube and the core tube is taken into account in determining the nodal
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displacement fields of the framed tube. Therefore, in the overall analysis the kth story
framed tube substructure stiffness matrix accounting for floor out-of-plane stiffness is
formed by

[5°1, = Y k1, + Y k], (53)
1 1

in which m_ and m,, are the numbers of columns and beams in the kth story, respectively;
N denotes the total number of stories in the building and; [k:] and [k,] are column and
beam element stiffness matrices corresponding to the generalized displacement

coordinates given by equation (2.16).

Secondly, the coupling effect of floor slabs between the core walls is taken into
account by adding the stiffness coefficients corresponding to the 3m,, DOFs of core walls
in the transformed floor stiffness matrix [$*'] ¢ to the associate coefficients in the stiffness
matrix [S€], of the core tube. Thus, the modified stiffness matrix of the core tube in the
kth story [S“] ¢ is obtained. The core tube substructure stiffness matrix in the kth story is

itself formed by

[5,= D [k,], (54)
1

The overall generalized displacement coordinate vector for the tube-in-tube

remains the same as previrusly defined by equation (4.12), namely

(D Dy ..DL| o d& .. dy1"

{D}

where

T
[di} = [w] 6, 65, ... w,_ 6, 6° )

and for which the corresponding overall structural stiffness matrix is given by
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N m, m,
[K'] = T AX [k1,+ Y [hy] ,+ [5] ) (55)
1 1 1

5.4 Numerical examples

The symmetric tube-in-tube structure of Figure 5.1 is analyzed by the present FSM
and the general FEM, scparately under bending and torsion actions. The results illustrate
the validity and efficiency of the present modeling, and also demonstrate the contribution

of floor slabs to lateral load resistance.

5.4.1 Symmetric 30-story tube-in-tube with waffle slabs under lateral load

The 30-story symmetric tube-in-tube with a waffle floor system shown in Figure
5.1 is analyzed under uniformly distributed lateral load 192 kN in the Y direction at floor
levels. The floor slabs are connected monolithically with the peripheral framed and the
interior core tubes. The story height is 3.66 m. Elastic modulus E = 2.39x10* MPa, and
shear modulus G = 0.995x10 MPa. The slab thickness = 114 mm; the cross-section of
joists in the floor system is 152x508 mm; the wall thickness = 305 mm and; and the
spacing of skip joists in the two perpendicular directions = 1.83 m. The properties of

members in the framed tube and joisi, in the floor frames are listed in Table 5.1.

In the FSM, the floor slabs are discretized by 96 equivalent plate elements, with
cach consisting of four 1.83x1.83 m four-node plate elements and twelve joist beam
clements. In the FE model. only a quarter of the building is analyzed by taking advantage
of symmetry and appropriate boundary conditions associated with the applied load
conditions are imposed along the center lines of the cross-section. The core walls in the

quarter structure are discretized by 42 four-node thin-shell elements per story, and the slab
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is divided into 112 four-node thin-plate elements of 1.83x1.83 m in size. Figure 5.6 shows

the element mesh for one-quarter of a one-story segment.

The saving in computational effort of the FSM is evident because the total number
of unknowns in the overall analysis does not increase by including the fioor slabs. In this
example, the total number of unknowns is 264 in the two-story segment, and 420 in the
overall analysis. The required CPU on a Sun Workstation 4/40 increases only by 135 sec,
from 552 sec for the 30-storvy tube-in-tube with floors modeled as in-plane ngid
diaphragms 10 687 sec for the structure accounting for floor slabs. In contrast, the total
number of DOFs increases about three times by the full FEM model of a quarter of the
structure to include floor slabs - $162 for the calculation in which floors are modeled as
rigid diaphragms to 26712 for the calculation in which floors are modeled by beam and
plate elements. The CPU for the FE calculation of a quarter of the symmetric tube-in-tube
structure on a PC 486/50 computer increased from 334 sec not including floor slabs to

8427 sec including floor slabs.

Figure 5.7 shows the displacements at floor levels. In the case of the slab
out-of-plane stiffness ignored, the top drift is 55.8 mm by FEM, and 55.2 mm by FSM.
However, when the out-of-plane stiffness is included, it is 43.8 mm by both FEM and
FSM, in which the nodal displacement patterns are calculated at every floor level, and 45.4
mm by FSM" in which the nodal displacement paterns are determined at every other floor
level. The calculated decrease in top displacement by including floor slabs is 21.5%

according to FEM, and 20.7% according to FSM.

5.4.2 Symmetric 30-story tube-in-tube with waffle slabs under torsion

The torsional behavior of the above structure is analyzed in this example. Torque
equal to 40.7 kN - m is applied at each floor level. Figure 5.8 depicts the obtained floor

rotations in comparison with the solution by FEM. The top rotation in the analysis without
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considering floor slab out-of-plane stiffness is 0.137x10™3 rad by the FSM, and
0.140x 10~3 by the FEM. The floor slabs contribute to warping stiffness and, hence reduce
the floor rotations. The top rotation when accounting for floor slabs is 0.113x 107 rad by
FSM, for reduction of 17.5%; and 0.119x107> rad using the FEM, representing a

reduction of 15% in displacement due to stiffness of the fioor slabs.

It is interesting to note the difference between the overall deformation modes
displayed in Figures 5.7 and 5.8. Under lateral loading the tube-in-tube, which comprises
a relatively weak periphery framed tube aud a relatively strong core tube, deforms in a
mode close to bending rather than shear, whereas under the action of torsion the structure
deforms in a frame racking mode rather than cantilever bending. This shows that the
overall behavior of this structure is not dominated completely by the framed tube. Thus,
the core tube is seen to contribute to resisting lateral loads while, on the other hand, due to
its central location and small in-plane dimensions relative to the framed tube, the overall

behavior under torsion depends largely on the framed tube only.

5.4.3 Discussion of floor coupling effects

As noted previously, the floor slabs in a tube-in-tube structure couple the
out-of-plane deformations between the core walls, as well as between the core tube and
the framed tube. In the structural modeling of the finite stor; method, these two coupling
effects are considered in assembling the core tube stiffness matrix and in determining

nodal displacement fields in the framed tube.

To examine which one of the above floor slab coupling effects plays a more
important role, three cases of ireating floor slabs in the tube-in-tube structure under lateral
loads and torsion action are analyzed, separately. These are: (1) the floor slab out-of-plane

stiffness is ignored; (2) the floor slab out-of-plane stiffness is included and; (3) the floor
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slab out-of-plane stiffness is included in assembling the core tube stiffness matrix only, i.e.

the coupling effect of floor slabs between the core tube and the framed tube is ignored.

Figure 5.9 shows the solutions in terms of lateral displacements for the above three
cases of coupling as obtained by FSM. The deflections at the top level are 55.2 mm, 43.8
mm and 49.7 mm, respectively. Thus, by considering both of the coupling effects of slabs,
the deflection at the top is reduced by 20.0%, while it is reduced by 9.94% when
considering only the coupling between the core walls. Evidently both types of coupling

appear to be of equal importance in this structure under lateral loading.

Figure 5.10 presents the results for the same comparison for the structure subjected
to torsion. Although the coupling of slabs between the core walls effectively increases the
core tube warping and torsion stiffnesses, as analyzed in Section 5.4.2, the overall
structural response nevertheless depends mainly on the framed tube. Therefore, the effect
of the floor slabs observed in Figure 5.10 is due almost entirely to the torsional coupling of

the core and the framed tube.

It is important to recognize that Figures 5.8 and 5.9 represent only one example
structure. The effect of floor slab coupling is influenced by many factors such as: slab
spans between the core walls and between the core tube and the framed tube; floor aspect
ratio; wall cross-sectional dimensions and configuration and; stiffness ratios of slabs to
walls and slabs to frames. Because these factors vary in different situations, so will the
effect of the floor slabs. However, it can be seen from the above analysis that the coupling
of floor slabs between the core tube and the framed tube may be equally important as that
between the walls of the core tube. Thus the effects of both should be considered when

modeling floor out-of-plane stiffness in tube-in-tube structures.
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5.5 Summary

This Chapter has demonstrated that the finite story method can be applied
effectively to account for floor slab out-of-plane stiffne<, in tube-in-tube structures. The
efficiency and accuracy in predicting structural overall responses are illustrated by
numerical examples in comparison with full finite element analysis. The floor slab
coupling effects are explained by analyzing a one-story segment, and discussed by
scparating the coupling between the core walls to exhibit the coupling effect between the
corc tube and the framed tube in a 30-story cbe-in-tube structure. This shows that
coupling between the core tube and the framed tube may play a similar role as that

between the core walls in increasing th > overall structural lateral load resistance.
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Table 5.1 Member properties of 30-story tube-in-tube with waffie floor slabs

Member Ar;a Shear 2Area Moment 3f Inertia | Torsion (ionstam
(m®) (m*) (m®) (na’)
S SR A S S
i’;‘;’::; 0223 0.186 }x:g:ggﬁgj 0.529x10°2
Comer | g8 0.484 { Dy ggi’;}g ) 0.505x10""
Spandrel | 0257 0.214 i o2 1 0.635x10°2
Joist | 0.774x10"1 | 0.645x10°! i o0 ; 0.110x10"!
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Figure 5.6 Element mesh of a quarter of 30-story tube-in-tube structure
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Chapter 6

Conclusions and further work

6.1 Conclusions

Arising out of the work presented in this thesis, the following conclusions are
noted:

1. The present finite story method (FSM) based on nodal displacement fields is
reliable in predicting gross structural deformations of both symmetric and unsymmetric

framed tube and tube-in-tube structures of tal! buildings.

2. The method provides good solutions for natural frequencies and modes of

vibration of either symmetric or unsymmetric framed tube and 1.he-in-tube structures.

3. In general, the number of times nodal displacement fields need to be computed
along the height of the building is not critical for floor slab displacements and natural
frequencies. In the case of buildings under pure torsion, it has no influence on nodal

displacements and member forces.

4. Calculations by the proposed FSM method are ii.expensive compared with full
FEM, since the problem size is greatly reduced. Also greatly reduced are the computing
effort and the associated data preparation task. Furthermore, since all matrices are of much

smaller ordsr, implementation on standard personal computers is feasibie.

5. The prediction of accurate member forces is not included in this work. This

limitation concerning consistently accurate member forces is due mainly to the omitiing
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the shear lag in the bending deformation modes in analyzing the two-story substructures
for nodal displacement fields. The present nodal displacement fields introduce negligible
differznces in floor displacements and natural frequencies, but may show notable

differences in member forces.

6. The stiffness matrices for the core tubes modeled as story-wise thin-walled
beam elements are formed for warp-restrained torsion. The torsion related stiffness
coefficients obtained from the solution of the goveming differential equation are accurate
and the calculation for these coefficients is simple. The obtained stiffness matrices are
applicable to a wide range uf cre tubes including: completely open or close sections, as
well as cores with openings arranged in rows for access and; core walls with changing
story-wise thickness. Core tubes with story-wise changes in the location of the shear

center along the height are, however, not included in the present modeling.

7. The present finite story method can be used to estimate the coupling effect of
floor slabs in tube-in-tube structures. Under lateral loads, the coupling effects of slabs
between the core tube and the framed-tube may be as important as that between the walls
comprising the core tube, whereas under torsion loading, it may become the primary

contribution of the floor slabs in the response of the overall system.

8. Although the present analysis procedure concerns mainly tubular structures, it

can be readily applied to the analysis of flat plate structures.

6.2 Further work
The present work could be further developed in the following respects:

1. The coupling effect of floor slabs is influenced by various factors as described in
Chapter 5. Based on the preliminary study presented in Chapter 5, a complete

investigation should examine a range of each of these factors. Thus, general conclusions
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indicating the variations of coupling effect in tube-in-tube structures vs. these factors can

be obtained.

2. To eliminate the limitation of the represent FSM in member force calculations in
framed tube structures, the shear lag in the bending deformation mode should be included
in determining nodal displacement fields of the framed tube. Superposing a shear lag
function, which is parabolic in the flange frames and cubic in the web frames, to the
assumed linearly distributed nodal vertical displacements in the bending modes could be a

solution.

3. Although the assumed flexurally rigid arms of beam and column members in
framed tubes are acceptable in preliminary calculations for overall structural
deformations, a refined model of member joints needs to be considered for accurate

member forces.

4. The finite story method can be applied to the analysis of bundled tube structures
with setbacks along the building height. At the transfer floor level which connects stories
with different floor plan layouts, it is necessary to determine nodal displacement

distribution coefficients.

5. The computer program developed according to the present finite story method
can be optimized in developing subroutines to handle symmetric and asymmetric
boundary conditions along the building height, so that symmetric systems can be analyzed

by halves or quarters of the whole structures.

146



References

(1]
(2]

(3]

(4]

[5]
[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Monograph on planing and design of tall buildings, CB, ASCE, 1980
Developments in tall buildings, Beedle, L.S., ed., Council on tall building and
urban habitat, Hutchinson ross publishing company, 1983

Second century of the skyscraper, Beedle, L. S., ed., Council on tall buildings and
uruvn habitat, Van nostrand reinhold company, 1983

Khan, F. R., Current trends in concrete high-rise buildings, Handbook of concrete
engineering, Fintel, M., ed., Van an nostrand reinhold company, 1985

Advances in tall buildings, Council on tall buildings and urban habitat, 1986

Tall building structures - design and analysis, Stafford Smith, B., and Coull, A,
John wiley & sons, Inc., 1991

Structural analysis & design of tall buildings, Taranath, B. S., McGraw-Hill, Inc.,
1988

High-rise building structures, Schueller, W., Robert E. Krieger Publishing
Company, 1986

Khan, F. R. and Amin, R., Analysis and design of framed tube structures for tall
concrete buildings, The Structural Engineer, 51(3), 85-92, 1973

Cou'” A. and Subedi, N, K., Framed tube structures for high-rise buildings, J.
Struct. Div. ASCE, 97, 2097-2105, 1971

Coull, A. and Subedi, N. K., Hu_i-core structures subjected to bending and torsion,
Proc. of the 9th congress, :ABSE, Amstredam, Holland, 613-621, 1972

Ast, P. F. and Schwaighofer, J., Economical analysis of large framed-tube
structures, Build. Sci., 9, 73-77, 1974

Rutenberg, A., Analysis of tube structures using plane frame programs, Proc. of

the Regional Conf. on Tall Buildings, Bangkok, 397-413, 1974

147



[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

(23]

Mazzeo, A. L. and Fries, A. D., Perimetral tube for 37-story steel building, J.
Struct. Div., ASCE, 98, 1255-1272, 1972

Coull, A. and Bose, B., Simplified analysis of frame-tube structures, J. Struc. Div,,
ASCE, 101, 2223-2240, 1975

Coull, A. and Bose, B., Torsion of frame-tube structures, J. Struct. Div., ASCE,
102, 2366-2370, 1976

Moselhi, O., Fazio, P., and Zielinski, Z., Simplified analysis of wall-frame
structures, Can. J. Civ. Eng., §, 262-273, 1978

Ha, H., and Fazio, P, and Moselhi, M., Orthotropic membrane for tall building
analysis, J. Struct. Div.. ASCE, 104, 1495-1505, 1978

Khan, A. H. and Stafford Smith, B., A simple method of analysis for deflection and
stresses in wall-frame structures, Build. and Environ., 11, 69-78, 1976

Han, P. S. and Lukkunaprasit, P, Finite strip analysis of framed tube structures,
Proc. 3rd international conference on tall huildings, HongKong GuangZhou,
236-242, 1984

Ha, K. H. and Desbois, Finite elements for tall building analysis, Comput. Struct.,
33, 249-255, 1989

Kwan, A. K. H., Simplified method for approximate analysis of framed tube
structures, J. Struct. Div., ASCE, 120, 1221-1239, 1994

Takabatak, H., Mukai, H. and Hirano, T., Doubly symmetric tube structures, I:
static analysis, J. Struct. Div., ASCE, 119, 1381-2001, 1993

Rosman, R., Torsion of perforated concrete shafis, J. Struct. Div,, ASCE,, 95,
991-1010, 1969

Michael, D., Torsional coupling of core walls in tall buildings, The Structural

Fngineer, 47, 67-71, 1969

148



[26]

[27]

(28]

(29]

(30]

[1]

[32]

(331

(34

[35]

(36]

[37]

Gluck, J., Lateral-load analysis of asymmetric multistory structures, J. Struct. Div.,
ASCE, 96, 317-333, 1970

Heidebrecht, A. C. and Stafford Smith, B., Approximate analysis of open-section
shear walls subject to torsional loading, ASCE, 99, 2355-2373, 1973

Khan, M. A. H. and Stafford Smith, B., Restraining action of bracing in
thin-walled open section beams, Proc. Instn Civ. Engrs., Part 2, 89, 67-78, 1975
Rutenberg, A. and Tso, W. K., Torsional analysis of perforated core structure, J.
Struct. Div. ASCE, 101, 539-550, 1975

Rutenberg, A., Shtarkman M. and Eisenberger M., Torsional analysis methods for
perforated cores, J. Struct. Div. ASCE, 1986, 112, 1207-1227, 1986

Tso, W. K. and Biswas J. K., General analysis of nonplanar coupled shear walls, J.
Swauct. Div. ASCE, 99, 365-380, 1973

Tso, W. K. and Biswas, J. K., Analysis of core wall structure subject to applied
torque, Bi-ild. Sci., 8, 251-257, 1973

Khan, A. H., Tottenham, H. and Stafford Smith, B., The general theory of torsion
of thin-walled structures with undeformed cross-sections, Research Report,
Department of Civil Engineering and Applied Mechanics, McGill University,
Montreal, 1979

Hoenderkamp, J. C. D. and Stafford Smith, B., Simplified torsion analysis of
high-rise structures, Build. Environ., 23, 153-158, 1988

Robert, T. M. and Achour, B., Torsion and bending of braced thin-walls, J. Struct.
Div., ASCE, 116, 1-12, 1990

Heidebrecht, A. C. and Swift, R. D., Analysis of asymmetrical coupled shear
walls, ACE, 97, 1407-1422, 1971

Stafford Smith, B. and Taranath, B. S., The analysis of tall core-supported
struc:ures subject to torsion, Proc. Instn Civ. Engrs., Part 2, §3, 173-187, 1972

149



[38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

(46]

[47]

(48]

[49]

Liauw, T. C. and Leung, K. W., Torsion analysis of core wall structures by transfer
matrix method, The Struct. Engin., §3, 187-194, 1975

Liauw, T. C., Torsion of multi-story spacial core walls, Proc. Instn Civ. Engrs, Part
2, 65, 601-609, 1978

Chen, C. J., Liu, W. and Chem, S. M., Torsional analysis of shear core structures
with openings, Comput. Struct. 41, 99-104, 1991

Macleod, 1. A., New rectangular finite element for shear wall analysis, J. Struct.
Div., ASCE, 95, 399-409, 1969

Goodno, B. J. and Gere, J. M., Analysis of shear cores using superelements, J.
Struct. Div., ASCE, 102, 267-283, 1976

Gendy, A. S., Saleeb, A. F. and Chang, T. Y. P, Generalized thin-walled beam
models for Flexural-torsional analysis, Comput. Struct, 42, 531-550, 1992

Kwan, A. K. H., Mixed finite element method for analysis of coupled shear/core
walls, J. Struct. Div., ASCE, 119, 1388-1401, 1993

Cast-in-place concrete in tall building design and construction, Council on tall

buildings and urban habitat, 123-131, 1991

Qadeer, A. and Stafford smith, B., The bending stiffness of slabs conneciing shear
walls, ACI J., 66, 464-473, 1969

Coull, A. and El Hag, A. A,, Effective coupling of shear walls by floor slabs, ACI
J.,72,429-431, 1975

Tso, W. K. and Mahmoud, A. A, Effective width of coupling slabs in shear wall
buildings, J. Struct. Div., ASCE, 107, 573-586, 1977

Coull, A. and Wong, Y. C., Bending stiffness of floor slabs, Proc. Instn. Civ. Engrs,
71, Part.2, 17-35, 1984

150



[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Wong, Y. C. and Coull, A., Torsional stiffness of structural cores by surrounding
floor slabs, Proc. 3rd International Conference on Tall Buildings, 229-235,
HongKong and GuongZhou. 1984

Ward, H. S., Dynamic characteristics of a multi-story concrete building, J. Struct.
Div., ASCE, 95§, 553-3571, 1969

Rutenberg, A., Tso, W. K. and Heidebrecht, A. C., Dynamic properties of
asymmetric wali-frame structures, Earth. Eng. Struct. Dyn,, §, 41-51, 1977
Cheung, Y. K. and Swaddiwudhipong, S., Free vibration of frame shear wall
structures on flexible foundations, Earth. Eng. Struct. Dyn., 7, 355-367, 1979
Ellis, B. R., An assessment of the accuracy of predicting the fundamental natural
frequencies of buildings and the implications concemning the dynamic analysis of
structures, Pro. Instn. Civ. Engrs, Part 2, §9, 763-776, 1980

Stafford Smith, B. and Crowe, E., Estimating periods of vibration of tall buildings,
J. Struct. Div., ASCE, 112, 1005-1019, 1986

Takabatak, H., Mukai, H. and Hirano, T., Doubly symmetric tube structures, II:
dynamic analysis, J. Struc. Div., ASCE, 119, 2002-2016, 1993

Leung, A. T. Y., Low cost analysis of building frames for lateral loads, Comput.
Struct., 17, 475-483, 1983

Leung, A. T. Y., Micro-computer analysis of three dimensional tall buildings,
Comput. Struct., 21, 639-661, 1985

Leung, A. T. Y. and Wong, S. C,, Local-global distribution factor method for tall
building frames, Comput. Struct., 29, 497-502, 1988

Wong, C. W. and Lau, S. L., Simplified finite element analysis for three -
dimensional tall building structures, Comput. Struct., 33, 821-830, 1989

Ha, K. H., Tall frame analysis by reduced generalized coordinates, J. Struc. Div.,

ASCE, 104, 527-536, 1978

151



[62]
[63]
(64]

[65]
[66]

Pocanschi, A. and Olariu, L., Response of a medium-rise frame-tube model under
static and dynamic actions, ACI J., 79, 154-159, 1982

Vlasov, V. S., Thin-walled Elastic Beams, English translation by Israel Program
for Scientific Translation, Jerusalem, 1961

Benscoter, S. U., A theory of torsion bending for multicell beams, J. Appl. Mech.,
21, 25-34, 1954

Modern Multi-story concrete buildings, CPCA publication, 1989

Cook, R. D., Malkus, D. and Plesha, M. E., Concepts and applications of finite
element method, 1989

152



Appendix | Stiffness matrices of elements

For column and beam elements, bending, shearing, axial and torsional
deformations are considered. The stiffness matrices of columns, beams and plates used in
the FSM computer program are listed herein, in which I,,1, and I, are moments of

inertia; A = cross-section area; A, = A/1.2 and; I =length of the element.

(1) Stiffness matrix of column

_ 12E1, , - 12El,
y GASI2’ x GAslz’
EI E]l
d, = _____"___5, d, = __._Y__S.,
(1+b)! (1+b,)1
C, = 12d,, C, = 12d,,
C, = 0.5C,l, C, = 0.5C,1,
Cs = (4+b)d, Cs= (4+b)d,
C;= (2-b)d,, Cg = (2-b))d,,
EA GJ
Co = —, Cio =
r'Cl g -
c,
. Gy : Symm
. —C3 CS ;
Cy Cs
(k] = | toeieeeeiiement R L R
"’Cl . . . C4 . E Cl
. "'C9 é . C9
. "C3 C-, % . C3 C5

f
L
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Appendix | (continusd)

(2) Stiffness matrix of beam
y g 11
4 1
| e T ‘l (‘) ’;
//2' 9
3 12
_ 12Ely, b = 12Elz’ _ EI, ’ i = El, '
* GAP® Y Ga? *o(1+b)P To(+b)P
C, =124, C, = 12d,, Cy = 0.5C,l, Cs = 0.5C,1,
Cs= (4+b)d, Cg= (4+b)d,, C;= (2-b)d,, Cy= (2-b)d,
GJ
Cy = Eﬂ, Cp = T
~C9 : -
C, :
C, Symm
- Co '
- . C C
(kp) = | feeeeetfeii il L2 U
"‘C9 . . C9
-C2 . . -C4 C2
—Cl o C3 Cl
. —CIO . . CIO
. —C3 C7 . . C3 Cs
K C4 Cs "'C4 . C6_

154




Appendix | (continued)

(3) Stiffness matrix of four-noded plate element

{8i) =W 6 0y
i=1,2,3,4

kyy Ky kg Ky,
= |k ky ky ky
k31 k3 ka3 ks
ka1 Koy kg3 Ky

a,, a5 a .
' _ 11 %12 %13 i = 1,2’ 3’4
| ij] = |a2) Gp3 Qg3

a31 G3; 33 j=1234

in which,
ayy = 3D [15(Egp™ +Tpp) + (14— 4v+5p~ + 5p) £ ]

ay = =3D,b[(2+3v+5p) Egn, + 15pn, + 5vEyn,]

Db [2(1-0) &y (3+57y) +5p (3+E) 3+ Ty ]
ay = 3D1a[(2+3v+5p7) § M+ 15p71E + 50ET)
ay, = —15D,vab (§i+§j) (n;+n))

ayy = Dya’[2(1 =)y (3+58) +5p7 (3+8y) (3+7y)]

12E°8 |, . D a’
D = o (t = thickness), D, = 60ab’ p= -b—2
E = . C. N.=1N. o - xi _ yi
E:o é, ;,’ My = N, nj gi = n; = 3



Appendix || Consistent mass matrices of elements

In estimating dynamic properties, the mass of the framed tube is approached by
consistent mass matrices of structural elements. The mass matrices of columns and beams

of Appendix I are listed herein, in which m = pAl, and p=mass density.

(1) Mass matrix of beam

-E |
3 :
156m :
420
156m
420
pJi 5
= Symm
_ml 47P
20 420 §
22ml 4mi
(] = | o3 D20 e
m e
6 i3
54m 13mli  156m
420 420 " 420
54m _13ml ] 156m
420 20 g 420
pJi pJi
6 ! 3
Bm 3wl 22ml  dml
420 420 ; 420 420
_13m 3@l 22ml 4ml*
- Ta20 20;° 420 420
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Appendix Il (continued)

(2) Mass matrix of column

[ 1567
4200
1567
420
m
3
_22ml aml
20 ° 420
22iml
20
el 7| s
420
s4m  _13ml
420 20
m
6
1Bm _3ml
420 420
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Symm
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420
156m
420
' m
3
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420 420
220 4l
420 420
pJi
3
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Appendix Il Transformation matrices for elements

(1) Rigid end transformation matrix

The line elements in modeling the framed tubes are measured from center to center
of joints, with the ends within the finite size of joints considered flexurally undeformable.
Thus, elements are with flexurally rigid arms at ends (r;, rj) which are half of the sizes of

corresponding joints. The rigid end transformation matrices of columns and beams shown

in Appendix I are given by
1.0 r; i
1.0 —ri ;
1.0 §
1.0 :
10
1.0}
R = | seccovcecmcccccccscracaslon perecccrrrucstctccovanancess
[ C] il.o -'rj
1.0 r
; 1.0
: 1.0
' 1.0
L E 1‘0_
1.0 ]
1.0 rii
10 -r, |
1.0 §
1.0
TR R — 1 ;Q.:,l..(.) ......................
, 1.0 ;
1.0
: 1.0
i | 1.0
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Appendix lll (continued)

(2) Coordinate transformation matrix

In assembling the overall stiffness tnatrices of framed tubes and floor frame sys-
tems, the element stiffness matrices in their local systems are transferred into the global
coordinate system. [T,] is the transformation matrix at the node i, in which x;, y; are glo-

bal coordinates of node i. The element transformation matrix is formed by

Yy q

T. 0
01,

[
ey
{d} = [T]{d}
{dj} = [u; v; w; 61;' éyi ézi]T
Fcos‘{ siny . . . X;siny—~y;cosY
—siny cosy . . . X;CosY+ y;sinY
[T] = . . 1.0 .
. cos?y siny
. —sin¥y cosy .
L 1.0 ]
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Appendix IV: Nodal displacement transformation matrices for columns and beams

In the FSM, the nodal displacement fields at the kth floor are represented by nodal
displacement distribution coefficients B}, o, and a;‘., (=1,2,...,5) corresponding to five
relative floor rigid body displacements with magnitude of unity. These coefficients are
determined by analyzing two-story segments of the structure as detailed in Chapter 2. The
nodal displacements themselves are obtained by interpolating the foregoing floor rigid

body displacements, which leads to the nodal displacement transformation matrices [g_]

and [g,] for columns and beams, respectively, given by

| 10 T
L P10 .
R A L N
-0y —af —oh —on, ‘“:ig a, o of o o
—a;l _a§: -a:y;i —a;l -ajié a;: (131 a;i a;l a;l
. 1
. 1.0 :
S e R
"O‘ij —afj ““2,‘ "“ij ‘afjé “J]:j afj 0‘2, “2,' O‘Sj
—oy Oy =0 ~og, 0 o, Al ‘1"% o O
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Appendix IV (continued)
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i Oyj Oy a” o5
. 1.0

_p! -B? - -B¢ 87
5

1

EQ

L D R Y O R A iy Sy ey gy

The above transformation matrices are then employed in cquations (2.16 and 2.17) to
establish the column and beam matrices corresponding to the generalized displacements

of the framed tube.
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Appendix V Principal sectorial moment of inertia

The sectorial co”.dinate of thin-walled beams with closed circular or regular
polygon cross-sections is zero. For any other type of cross-sections, the procedure for

calculating the principal sectorial moment of inertia [63, 33] is as follows:

1 Choose an arbitrary pole Oy and origin M; in the coordinate system CXY, and

calculate sectorial coordinate ("ﬁffl‘ based on O; and M;

(2)  Determine the principal pole (shear center) according to

_ M1
oMlytds ® xtds
J ol A (V.1)
Ox = —"—1——, Oy = ._.o_l._.__.
X

y

where O, and Oy are distances from Oj to the principal pole O in the X and Y

directions, resjectively;
(3)  Calculate sectorial coordinate @, based on O and My;

(4)  Deternine the principal sectorial coordinate

)
= = 0
=0 T
&) Calculate sectorial moment of inertia I &

I = §@hds . (V3)
s
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