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ABSTRACT

Sandwich construction when subjected to bending
experiences appreciable deflection due to transverse shear
strains in the core. Using the assumed stress distribution
approach, stiffness matrices for rectangular and triangular
elements are derived taking into account these shear deforma-
tions. The elements are applicable to sandwich construction
having both orthotropic core and facings, the latter may be
of different materials and thickness. Solutions of several
sandwich plate bending problems are compared with theoreti-
cal values. Membrane stiffness matrices are derived using
the same formulation. Full compatibility of displacements
along interelement boundaries are ensured even for cases
when elements meet at an angle. Several three-dimensional
sandwich plate structures are analyzed, results are compared

with experimental data.
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CHAPTER I

INTRODUCTION

1.1 STRUCTURAL SANDWICH CONSTRUCTION

Recently, there has been a growing interest in many
applications of multilayer construction in building industry.
By "sandwiching" several layers of different materials, it
is possible to satisfy certain requirements as to mechanical
and physical properties that are not yet available in any
material. Through optimum structural design each material
layer can be stressed to its maximum practical limit; this
efficient use of material allows appreciable reduction in

weight of the structure without loss in structural strength.

In the building industry, panels of multilayer
construction have been used for partitions, curtain-walls,
flooring or roofing, etc..., they are now being used more
and more as main load-carrying components. These panels can
be assembled to form a three-dimensionally rigid structure
which does not require any supporting framework. High
torsional stiffness is achieved in this type of structure by
having stiffening walls spanning in two directions. Because
of its many advantages, multilayer construction holds great

promise in the field of panelization.

In general, multilayer construction may be classified

into two broad divisions:

T



- "Laminates", in which the layers are of similar
mechanical strength and when subjected to bending, the usual
hypothesis that lines initially normal to the middle plane

remain so after deformation is still wvalid.

~ "Sandwiches", in which the inner layers are much
less stiff than the outer ones. Under bending, the deflec-
tion due to transverse shear strains is significant compared
to the total deflection. Consequently, the theory of sand-
wich structures must take into account these shear deforma-
tions which are often neglected in laminate or homogeneous

systems.

The most common form of sandwich construction
composes of two thin outer layers of strong, stiff material,
between which there is a thick layer of soft, light material.
All three layers are bonded together to form a light-weight
composite much stronger and stiffer than the sum of the in-

dividual layer stiffness and strength.

Action of a sandwich member subjected to bending is
similar to that of an I-beam, large moment of inertia of the
cross-section is achieved by placing far apart the main
stress-carrying elements. The faces act as the flanges in
an I-beam to create an internal resisting couple, the core
supplies the necessary moment-arm and sets up transverse
shear stresses to resist the shear forces; besides these
functions the core also offers lateral support for the faces.

This stabilizing effect of the core against face buckling



and wrinkling requires that the core be sufficiently stiff
to resist transverse tension and compression created by the
facings as they try to wrinkle. Obviously, the bond between
facings and core is of critical importance, it must be
strong so that substantial relative movements of the faces
and the core are prevented.

1.2 LITERATURE REVIEW OF SANDWICH
PLATE ANALYSIS

The theory of stress analysis of the laminate
structures has been fully developed; however, theories of
various degrees of refinement that include the effect of
transverse shear strains are limited mostly to the local or
overall stability of sandwich plates. There have been few
solutions available on the bending of sandwich plates having
boundary conditions other than simply-supported. Applica-
tions of this type of construction in civil engineering
require a better understanding of the bending behaviour, un-
like the aerospace industry which is primarily interested

in the stability aspect.

The early theories of Williams et al [1], Leggett

and Hopkins [2], Hopkins and Pearson [3] account for the
transverse shear effect in the core by assuming that the
initial straight line normal to the middle plane of the core
remains straight after deformation but not necessarily per-

pendicular to the middle plane. This method was further ex-

tended by March [4] and Ericksen and March [5]. The later



(6] [7]

theories of Libove and Batdorf and Reissner assumed
that the core resists no face-parallel stresses, along this
line Goodier and Hsu [8l have developed a set of equations

(9]

for the displacements and stresses in the plate. Eringen

[10]

and Hoff used the energy approach to treat the problemn,

the theory took into account the flexural rigidities of the
core and also of the faces about their own middle planes.
A comprehensive treatment of the theory of sandwich plates

(11] (121

may be found in the books by Plantema and Allen

The above-mentioned papers describe various
approaches to the mathematical formulation of the sandwich
plate problems. As to practical applications, their use is
limited because of the complexity of the governing equations,
anal,tical solutions are possible only for simple structures
with simple boundary conditions. For complex problems,
closed form solutions do not exist and consequently, numeri-
cal methods must be resorted to. 1In +his class, the finite
element method emerges as an elegant, simple and extremely
powerful method which virtually removes all mentioned limita-
tions. During the last decade this new method has been
extensively developed and now reserved a unique position in

the field of structural analysis.

Only recently, finite element method was used to
solve sandwich plate problems. Monforton and Schmit [13]
developed an 80-degree of freedom rectangular element using

Hermite polynomials for the assumed displacements; Abel and



[14] [15] to develop

6]

Popov used Yu's sandwich beam theory

a one-dimensional element. Pryor's rectangular element is
applicable to the general class of anisotropic multilayer
plate; more recently, Ahmed [38] introduced another element
for sandwich material. All of the above-mentioned elements
were based on the displacement formulation approach; and in
order to take into account the effect of transverse shear
deformation, additional degrees of freedom such as shear
angles, curvatures, rate of twist and even higher order
derivatives have been used. Because of these non-geometri-
cal degrees of freedom, the elements developed are not suit-
able for general three-dimensional analysis. Using an alter-
native approach, namely, the assumed stress distribution

[18]

approach pioneered by Pian r Lundgren (17] has develop-

ed a rectangular sandwich bending element having only three
degrees of freedom per node. Unfortunately, the shear de-
formation was not taken into account correctly and the

results obtained by this element do not converge [19].

It is the purpose of this investigation to adapt

the finite element method to the analysis of general three-
dimensional orthotropic sandwich plate structures. Stiffness
matrices for bending and membrane actions of rectangular and
triangular elements are developed. Convergence of solutions
is shown by numerical examples; the method is then applied

to three-dimensional plate structures and results are compar-
ed to experimental data. Because of the size and the modul-

arity of the structures tc be analysed, a special purpose



ke full advantage

large—capacity program is developed to ta

of the characteristics of +he structures.



CHAPTER II

GOVERNING EQUATIONS AND STIFFNESS OF
SANDWICH PLATES

2.1 STRAIN ENERGY IN SANDWICH PLATES

consider a rectangular sandwich plate of dimensions

a,b consisting of a core of thickness h and two facings

of thickness ti and t2 (Fig. 2.1). Let the plate be

subjected to transverse load gq(x,y) and the origin of

the coordinate axes at the plate center.

t2

{ -
7 ¢ £ V4 b/2
T/2 \
1 ol T ox
_l b | /2 ; Vo2
JR— |
Q-////J_Y_IL 4
I t
t) 1 X o
2 = 1
a/2 | a/2
Y
Y
FIG. 2.1 CROSS-SECTION OF SANDWICH FIG. 2.2 PLATE GEOMETRY
PLATE
te to be

The facings and the core of the sandwich pla
treated here may be of orthotropic materials, the principal

axes of orthotropy coincide with the coordinate axes.

The assumptions used in the present analysis are:

1. Displacements and strains are small and the



materials obey Hook's law.

2. Perfect bonding occurs between layers of the

structure.

3. The transverse displacement of all points on
a line normal to the middle surface is the same

(Fig. 2.3).

4. Bending stiffness of the facings can be ignored
and transverse shear stresses in the facings are
neglected. This means that the faces behave as

solid membrane.

5. The core resists only transverse shear stresses,
normal stresses in directions parallel to the faces

are neglected.

The last two assumptions have been verified experiment-

[35,36]

ally and proved to be reliable for most types of

sandwich construction. Adopting these assumptions the non-

zero stress components in the faces are o and in

T
%%y Txy

the core sz’Tyz (FPig. 2.4).

The strain energy in a sandwich plate is equal to

the strain energy in the two faces plus that in the core.

3/ 2 [ Ozx1 2yi 2vxy1 )
U = . L t.( + - o . o .) +
f i=1 iE Eyi B s xi “yi
ti 2 szz T b4
= 1 _ ¥z
tg- T xyi]dA + 3 fc(G + g ) dv {(2.1)
i Xz Yz



where f and c¢ refer to the facing and core respectively;
vxy = poisson's ratio; E = Young modulus; G - shear modulus;
and the subscripts 1,2 refer to faces 1 and 2.

Because the stresses in the facings are uniform

across the thickness, the resultant moments per unit length

may be expressed in terms of these stresses as

Mx = tldcx1 = - tzdcxz (2.2a)
M_ = t,d0 = —~ t,do 2.2b
- do, 2do,, ( )
Mxy = t1drxyl= - tszxyz (2.2c)
where
d =h+ (t, + t2)/2
As Gx’oy'Txy are assumed to be zero in the core,

it follows from the differential equilibrium equations that
the transverse shear stresses do not vary across the core
thickness; hence the relations between transverse shearing

stresses T and shearing forces per unit length Q, are:

Qx = h Tz {2.3a)
= h 7T 2.3b
Q vz (2.3b)
Fig.2.5 shows the positive directions of moments M, My,
Mxy and shearing forces Qx and Qy.

Substitution of egns. (2.2) and (2.3) into eq. (2.1)

yields



FIG. 2.3

DEFORMED PLATE SECTION

face 1

FIG.

PLATE SECTION

2.4 STRESS DISTRIBUTION OVER SANDWICH

1o

-
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1 1 1 2 1
u=13% /S {—[( + ) M + { +
A dz t1Ex1 tzEx2 X t1Ey1
1 2 vxy: vXY2
+ —=—) M -2 ( + )y M. M+
tzEY2 y t;Exl tzEx2 X 'y
Q2
1 1 2 1 X
+ ( + ) M2 1+ g — +
thxy1 tszy2 Xy 1) .
QZ
+ g=%J} aa (2.4)
Yz

This expression gives the strain energy in an orthotropic
sandwich plate having facings of different thickness and

materials.

Introducing the following notations:

1 1
B. = d%/( + ) (2.5a)
X tlEX1 tzExz
1 1
B = d?/¢( + ) (2.5b)
' tlEY1 tzEyz
1 1
B, =d?/( + ) (2.5c)
G 1Cyy, tszyz
2 vxy; vxyz
B = 4d°/( + ) (2.5d)
v t1Ex1 tzExz
— 2
SX = ze d</h (2.5e)
s =G __ d%/n (2.5f)
y Yz

the eq. (2.4) may be rewritten more compactly as:
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sz Mfy M, %z, szx
U=30g=*tgT "2 3 gt
v G
2 QZ 2
+ a® (§—5 + §_X)] da (2.6)
h? “x y

2.2 EQUILIBRIUM EQUATIONS

The equilibrium equations for a sandwich piate are
identical to those for an ordinary thin plate as stresses in
both are expressed in terms of the same set of stress result-
ants. The equations are obtained by consideration of force

and moment equilibrium of a differential element of the

plate (Fig. 2.5).

BMX BMX
oM BMX
a§ + X g =0 (2.7b)
3Q 9Q
X v _
-R-'f' —-5‘1‘; + q = 0 (2.70)

where q is the intensity of the transverse loading.

2.3 GOVERNING EQUATIONS BY COMPLEMENTARY
ENERGY THEOREM

For a material obeying Hook's law, and for given
stresses or displacements, the complementary energy is equal
to the difference of the strain energy U and of the work

W which the surface stresses do over the boundary where



FIG. 2.5 EDGE FORCES ON DIFFERENTIAL ELEMENT

displacements are prescribed. Strain energy U is given by

egq. (2.6) and W is

b/2
W= £b/2 (wo, + ByMX + exMxy)}F_‘_i/2 dy +
x= a/z
a/z 5 )
+ + + .8
£a/z(WQy xMy enyy)y=—b/z dx ( )
y= b/2

where w, © ey represent the generalized displacements.

x’
In order that the system be in equilibrium, the
complementary energy (U-W) must be minimized subject to the

equilibrium conditions expressed by egns. (2.7). By so
doing, Ueng and Lin [20] have arrived at the governing
equation, eqg. (2.9), for an orthotropic sandwich plate hav-
ing isotropic facings of different material and thickness.

(EX=Ey=E, =V, BX=By=B).

\)xy=\)yx



14

(1 - A _Ei - A _ﬂi)vzvzw = —iw[l - (A* + A )_ﬂi -
Yay2 Xayz B X Y 542
(A* +A)——a—2—+ (¥ Aizi-A* A—a—z)vzj (2.9)
Y X gy X Waxr ¥ Txpuzr o 0 '
32 82
where V=——+ — : Laplacian operator
ox? ay?
1 (1/B)
=
BT am? - asmy?
% =
(AX,A x) (BG'B*)/thz
* = *

The problem of bending of a sandwich plate reduces
to solving the governing eg. (2.9) subject to the boundary
conditions. Once w is found, the shear forces Q- QY

may be obtained from the equations

2 2 - 32 2 - 2 ] - 2
A VR VR Q + (A A )~ ViQ - VPQ —55 (@-3, %)

ax X b4
A V2 v2g9 + (A -A )_Ei v2Q._ - Vv2Q = —a—(q-—A V2q)
y Y XY gy Y Y 9y x

Moments M, Myy Mxy and ex,ey are found using the following

expressions:

e:-—Qx +i‘l_\7_
b4 thz ox
Q ow
6 = "~ R * 3y
b4 vz Y
B B 96 a0
M_ = - Y (B BX+B )
X B2 - B2 vV dx v
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B Bv 96 aex
= - L +
My B2 - Bz(Bv oy B ﬁx)
\Y

36 aex
Mxy = BG(—§¥ + _§§)
It is interesting to note that when G, , = Gyz +

egqn. (2.9) can be reduced to the classical thin plate equa-

tion V2V?*w = q/D.

2.4 BOUNDARY CONDITIONS FOR COMMON EDGES

The governing equation is a sixth order differential
equation in w, which admits three boundary conditions at
each edge, unlike the fourth order equation in classical
thin plate theory which admits only two of such conditions.
Boundary conditions for various types of edge supports
commonly found in practice are given below, assuming the

edge considered is parallel to the y-axis (Fig. 2.3).

1. Free Edge

MX = 0; Mxy = 0; Qx =0

2. Simply-Supported Edge

w=0; M =0
X

If the edge is stiffened so that shear strains are
prevented then the additional condition is Yy = 0. If no
forces parallel to the y-axis are applied to prevent shear

strains then the third condition is MXy = 0.

3. Clamped Edge

w = 0; =0
Yy
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the third boundary condition is that the cross-section along
the edge does not rotate
ow

= Yx "0

A theoretical possibility exists, where Yy # 0

but M, = 0, however this case does not occur in practice.

2.5 STIFFNESS OF SANDWICH PLATES

The bending stiffness properties of an orthotropic
sandwich plate can be described by means of seven physical
constants, of which only six are independent. They are
the two flexural rigidities D, Dy; the two Poisson's rétio
v_, vy defined in terms of curvatures; the torsional rigid-
ity ny and the two transverse shearing rigidities S, Sy.
(By reciprocal theorem it can be proved that vay = Dyvx).
The constants Dx’ Dy and ny are related to the constants

in egns. (2.5) by the expressions:

B B
= X . = . =
DX = W ; DY '(1_—31}{\755' H ny 2BG (2.10)

It can be shown that the curvatures and rate of twist

of the plate are given [11,12] by the egquations

2 M M 20
3—2’:"3‘5*\’3;517'*%“% (2.11a)
ax b3 v b4

2 M M 30
B°w _ _ ¥ .y, X4 Ll ¥ (2.11b)
ayz By X BX Sy BY

M 30 30
8%w _ _ xy , 1 x ¢ 1 ¥ (2.11c)
9%y 2B, ' 25, "3y 2sy 39X
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These are the fundamental equations which define the stiffness

of the plate in bending and shear.

The stiffness constants of an orthotropic sandwich

plate may then be determined experimentally making use of

egns. (2.

11} or theoretically from egns. (2.5). Simplified

expressions for the stiffness constants are given below for

special cases.

1.

2.

Isotropic faces and core; faces of equal

thickness and material. Since BX = By = B and
vxy = vyx = v, egns. (2.10) reduvce to:
2
Dx = D =D = B 3 Etd
Y 1 - vZ  2(1-v?)
p = _Etd?
Xy Z2(1+v)
and for the shear stéfggess ze = Gyz = Gc
hence S_ =5 =8 = S,
X Yy h

Orthotropic faces and core; faces of equal

thickness and similar material:

E_td? E_td?
D i X . D =
TV v Lo
b4 2(1 vxyvyx ¥y 2(1 vxyvyx
- 2 . =
ny = nytd ; vyx Ex ny EY
G__4?2 G. a2
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CHAPTER III
IMPLEMENTATION OF THE FINITE ELEMENT
METHOD FOR SANDWICH CONSTRUCTION

3.1 STIFFNESS MATRIX BY ASSUMED STRESS
DISTRIBUTION APPROACH

Pian (18] has first used the assumed stress distri-
bution approach to derive the stiffness matrix for a rectan-
gular plane stress element. Pian [22] and subsequently
Severn and Taylor [23] applied the technique to bending of
rectanmplar isotropic plate. The procedure, which is fully

detailed in the above papers, may be summarized as follows:

1. Assume stress distributions in the
element
{c} = [pr1{8} (3.1)
where f{ol}: generalized stress vector, must

satisfy the equilibrium conditions.

{R} : undetermined stress parameters.

[P] : functions of the coordinates.

2. Evaluate the strain energy in terms of

stress parameters
u = 3{8}T[ul{B} (3.2)

The matrix [H] may be determined directly
from the strain energy expression or as

follows:



3.

4,

Stress-Strain {e}

Relation

Strain Energy U

[N]{o}

Substitution of {e} from eqn.

from eqn.

yields:

Then

[H] = fV[P]T[N][P]dV

c
f

3 fv{a}T{e}dv

(3.3) and {o}

(3.1) into the above equation

= 3 £,1837p1¥[NIlPI{B)AV

3 (83T s [pITINI[PIAV {8}
v

Matrix [H] is positive, definite and

symmetric.

Introduce the generalized edge dis-

placements

where
{q} :
L]

By choosing suitable interpolation functions

for [L] the displacement compatibility along

{u} = [L]{g}

generalized nodal displacements.

functions of the coordinates.

the element boundaries can be achieved.

Form the generalized edge forces {s}

in terms of {B} by using eqgn.

{s} = [R]{B}

(3.1).

19

(3.3)

(3.4)

(3.5)
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The coefficients in {8} should correspond to those
in {u} so that the work done by the edge forces

is given by the expression

w = § {s}T{ulds
= ¢ (8T [rRIT[L1{q}ds
= 18}7[T]{q)} (3.6)
where
[r] = ¢ [RIT[LIAs

The vector {0} of nodal generalized forces

is defined by

1

101T{q} = w = {8)}T[TI{g}

or

{9} = [T1T{8} (3.7)

Form the total complementary energy

= U - W =3 (8)7Ia1E) - {8} [TIla]

The principle of stationary complementary

energy requires that

oll
sTay = [B1{8} - [T1{a} = 0O

Hence

g} = (a1 [Tlig} (3.8)
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6. The stiffness matrix [K] is given by
{Q} = [K1{q} (3.9)
using egns. (3.7) and (3.8)
T -1
[K1{g} = [T1°[H] [Tl{ql
Then
-1
[k] = [T17[8] [T] (3.10)
This expression for the stiffness matrix
[24].

may also be derived from the principle of virtual forces
The described procedure is based on a variational principle
in which stresses are assumed within the elements and dis-
placements along the boundaries of the elements. Convergence
proof is given by Pin Tong and Pian |:313; briefly the

admissibility requirements for the assumed functions are:

1. Internal stresses must satisfy the equilibrium

equations within the elements.

2. Boundary displacements must satisfy interelement

compatibility conditions.

3. The total number of degrees of freedom in stresses
must be greater than or equal to that of the dis-

placements.

If these conditions are satisfied explicitly then it can be

shown that the remaining conditions:
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4. Compatibility within the elements, and

5. Equilibrium along element boundaries are satis~
fied implicitly through the process of extremiza-

tion.

Pian and Tong [19] have also shown that the solution
obtained by the assumed stress distribution model may be
either an upper or lower bound. However, the solution will
always be bounded by that of a compatible model using the
same type of interelement boundary displacements and that of
an equilibrium model using the same type of interior stresses.

3.2 RECTANGULAR ELEMENT - BENDING
STIFFNESS MATRIX

A rectangular finite element of a sandwich panel is
shown in Fig. 3.1, it consists of a core, thickness h,
sandwiched between two faces, same thickness t. A right-
handed coordinate system x,y,z is chosen such that the middle
plane of the plate is the plane xoy. The dimensions of the

element along the X and y directions are a and b respective-
ly.

The first step in the derivation of the stiffness
matrix using the assumed stress approach is to choose the

expressions for the stress variations ir the element.

According .to the assumptions described in Chapter II,
the face stresses Gx, oy and Txy are uniform across the face

thickness. In the core, there are only the transverse shear
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FIG. 3.1 RECTANGULAR SANDWICH ELEMENT

stresses, T,, and Tyz, which are also uniform across the
thickness of the core section. These assumptions enable

the resultant moments and shear forces to be expressed simply
by eqns. (2.2) and (2.3). The stress variations in the x

and y directions may be approximated by polynomial express-
jons, the degree of these polynomials are rather arbitrary.
However, results for isotropic plate analysis reported by

Pian [19] support the use of quadratic variation for Ot oy

T d lin T
xy and linear for Tz’

vz’
Inspection of eqgns. (2.2) and (2.3) shows that the
shear forces and moments are directly related to the stresses.

Their distribution may be assumed as follows:



where

]|
I

y =

The stress parameters

B1+B2X+B3y+BuX+Bsxy+Bsy?
B7+BaX+Boy+B 10X 2+B 1 1Xy+R 127>
B13tB1uX+B1s5y+B16X +B17Xy+B1ay "
Brot+BzoX+B21y

B22+B2 sX+B24Y

oK

b4
b

because they are subject to the equilibrium conditions,

substitution of eqn. (3.

elimination of seven of

Biz =

819 =

Bao =

B21 =

B2z =

11) into egn. (2.7) allows the

the B's:

By - %812

{8} are not all independent

24

(3.11)
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= Bia
B23 -t

Bay = 5 - E; By
a

Eqn. (3.11) may be rewritten using only the indepen-

dent parameters:

M, = Bi+B2X+B3y+BuX2+BsXy+Bsy?

M = B7+Be§439§431052+311§§4512§2

y :
b — a — - - — - J

Mxy = 'Eﬁu Xy-gBiz xy +813+BIMX+BISY+BIGXZ+BIBY2;>(3-12)
-1 Buz, Bs= a z4B15,2, - |
O T RPN |
i
= P o =.Bo.Bii= B1s~814,2 = !
O = TR R e & J

Substituting egn. (3.12) into the strain energy
expression eqn. (2.6) and integrating over the element area,

the strain enexrgy U may be put in matrix form
T .
U=3% {B} [H] {B}
where

83T = [B1 B2 Bs By Bs Bg By Bs Bs Bio B11 Biz Bis
Biv Bis Bis Bigl

The square matrix [H] is symmetric, positive definite
and of order 17. Let

6
(H] =%, [#,] (3.13)

1
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the component matrices [Hi] are given in compact form below.
The correct position of each element in the matrix [Hi] is
indicated by the numbers along the sides and only terms in

the upper triangle of the matrix [H] are given.

1 2 3 4 5 6 _
[_1 1 l E 1 l 1
2 Z 3 4 3
1 1 1 1 1
3 7T 7T % © 2
1 1 1 1 s
ab 3 § § 1
[Hl] = B'— (3.14)
X 1 1 1 4
5 8 9
. 1 1
Symmetric g g S
1
E'J ¢
7 ]B_ JB. 10 Ii li_
1
B zZ 2 3 7 3|7
11 1 1 1/,
3 T 7 6 [3
1111,
3 [ 3
[H,] = 2b (3.15)
By . 101 1
Symmetric T T g 10
1 1],
9 8
%‘- 12
. _
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(3.16)

6

m_1_3 Hko AR Aoy Hleo lﬂ_
el Ao He A A Al
w1_3 Hiks Mo HID Ak Aoy
orly Ml A AR Ao Al
adlN i Al Ml Ao bR
&~ o HiN HiNn A1 R g
[ |

al >

o lm

|

i

™

)

—_

~
—
™
~N m - 4 w D ™~
E ] - - -y — ~—
f i
71_%. =l Hlim Hlo HIY oy
| |
Glmw £l A Al Ao AR
-t
} i
51%% o HiNn Sl Al
Lol
1 1
u1;m o~ Film
-4
1 1
n-lc e —t
[
l 1 o
2_04 -
adln = H sl
~ +
Q
o m =
*l =
a n

A

[(H,4] =



[Hs] = 224
h Sx

2

[He] = 2kd
h3s

Y

2 4
1 1 1 1 1 1,
a? 2a? 2a2 2b? ab ab
1 1 1 1 1 .
3a? 4a? 3b2 2ab 2ab
1 1 1 2 s
3a? 4b? 2ab 3ab
5 )
ymmetric n? -y -1 12
n = % 3b? 2b%* 2b2
A1 15
b? b2
___4 17
3b? |
4 9 11 12 14 16
i _ 1 1 1 11
3n2a? 2a? 4a? 3a? 2na? 2na
1 1 1 1 1
b? 2b? 2b? ab ab
‘ 1 1 1 2
3b? 4p? 2ab 3ab
Symmetric 1 1 1
- 4 2
n = 5 3b 2ab 2ab
1 1
a? a?

11

12

14

16

28

(3.18)

(3.19)
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So far, the strain energy for the element which is
subjected to the stress field specified by eqn. (3.12) has
been derived. Next, the work done by the edge forces is to

be found.

Three generalized displacements are given at each
corner of the element: a transverse deflection and two
rotations (Fig. 3.2). In terms of these nodal displacements,
the deflections and rotations along the edge are approximat-

ed using interpolation functions.

One may assume that the displacements vary linearly
along the edges, although higher degree of variation is
possible. The combination of quadratic stress modes and
linear displacement modes seems to give very reasonable
results as reported by Pian [19]. In sandwich construction,
transverse shear deformations are significant, therefore the
edge rotations are not exclusively dependent on the deflec-

tion.

The positive forces and displacements along the edges
are shown in Fig. 2.5 and Fig. 3.2, respectively. Referring
to Fig. 3.2, along the edge (1-2) the displacements are

assumed as:

wi(l - X) + Wa2X

W =
6, = 0xi(l = %) + Oxz X
8 =ey1(1—§)+9y2;{-
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3.2 NODAL DISPLACEMENTS FOR BENDING

FIG.
ACTION

similar equations are written for the other three edges:

‘{u} = [L] {q} (3.20)

where

{q)T = [8x1 8y1 Wi By2 Byz Wz Oxs Oys ¥ Oxu Oyn Wil

Explicit form of eqn. (3.20) is given in Appendix A.

The linearity of the above equations shows that complete

compatibility of deflections and rotations at the element

Now if the inplane deformations

boundaries are ensured.



along the element edges are also assumed to be linear then
compatibility still persists when the elements meet at an

angle.

The moments and shear forces acting on the edges are

evaluated using egn. (3.12).

51 = MY”' = -(My)1—1=o = - B7 - BgX - B1oX?

82 = Mog12= -(Mxy)§ﬁo= - Bi3= BisX - BeX?

Sz = QYIZ = -(Qy)§=o = - ]%3 - §611 - % - i—§315
Su = Moan = (M)o) = tiiiieiiiiiie,
S5 = M= Ol o= coeeenninn .
Se = Q34 = (Qy 7=1

S7 = Mxy‘3= —(Mxy)iﬁo

Se = Moas = - (M)

Se = Qu1s = -(Q )%

S10= Mxy2u= (Mxy)§=l

S11= M 24 = (Mx)iél

S12= Q2w = (Q)x 4

In matrix form
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{s} = [R] {8} (3.20a)
the matrix [R] is shown in Appendix A.

The work, W, done by the edge forces is given by

egn. (3.86)

W {8YTITIq}

$CRITIL] ds

I

where [(T]

The line integral is evaluated along the boundaries of the

element. The matrix [T] is shown in eqn. (3.21).

Having obtained the matrices [H] and [T] the

stiffness matrix is found by eqn. (3.10).
_ T q=1
[®,1 = [(1%[H]7 (7]
The nodal displacements are the same as in egn. (3.20).

3.3 RECTANGULAR ELEMENT - MEMBRANE
STIFFNESS MATRIX

The membrane stiffness matrix also will be derived
by using the assumed stress distribution approach. The
procedure is similar to that used by Pian (18] for isotropic
plate but modified to take into account the orthotropic

properties of the layered construction.

Consider the sandwich element shown in Fig. (3.1),

the core is assumed to resist only transverse shear stresses;
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consequently, the strain energy in the element due to in-
plane deformation is that done by stresses in the faces. For
the general case of facings having different thickness and
materials, there is certain amount of coupling between in-
plane and transverse deformations, but this coupling effect
has always been neglected in small-deflection theory of
sandwich plates. However, when +he extensional stiffness of
the two facings are the same (i.e. Eiti = E»t2) the coupling
ceases to exist. To simplify the analysis it is assumed

that there is no coupling between bending and membrane

actions in the sandwich plates.

With the above assumptions, the membrane stiffness
of the sandwich plate is equal to the sum of the stiffness
of the two faces. Strain energy in an orthotropic face of

thickness t is given as

v =%, to)7{e} an (3.22)
where o [e
X | "
{c} = cy and {eg} = €y
Txy Yxy |

The stress-strain relation is

{e} = [¥] {o} (3.23)

in which
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- —
v
-
X Ey
vxx 1
[N] = |- % . 0
X Y
0 0 G
L Xy |

Substituting this equation into the strain energy expression,

eqn. (3.22) gives

u = 5/, (0}7In] {0} aa (3.24)

The stresses in the faces are assumed to vary

quadratically in X and y directions:

B1+B 2 X+B VB X2 +Bs Xy By

o’ =

X

Gy = B7+Be§489§+81o§2+611§§+312§2
Txy = 813+81u§+815§431s§2+517§§4818§2

six of the above eighteen stress parameters can be eliminated

by using the equilibrium conditions:

30 9T

__l{- +__}(l = 0
X ay

3o 9T

_51 + X =0
Yy 9x

The resulting stresses are in equilibrium
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B1+B2X+B 3 y+B X2 +BsXy+BsY >

a
1

x
_ b% » = a7 =2 -
O, = —y BytPBr+BexX+Boy+Brox"+B11XY
Y a?
b—, -2bXy, -b —;, —ax, -ax°’
Txy = - EYBZ —szﬁu jayzﬁs %589 %%—311+313
or
{c} = [P] {B} (3.25)

Substituting this equation into eqn. (3.24) yields
v = £ /0837[217N) [P1M8) aa
From this equation the matrix [H]m is found as
[H], = t J,(PI*[N] [P] da (3.26)
and its explicit form is given in egn. (3.26a).
Define the nodal displacement vector {qg} (Fig.3.3).

T
{g}” = [u1 v1 uz2 v2 us vs as vyl

Along the edges, linear deformations are assumed
{ul = [L] {q}

where
T
{ul” = [u12 vi2 vz Vou U3y Vay U1z Via)
and [L] is given in Appendix A.

Corresponding to the edge displacements, the edge

forces are evaluated from eqn. (3.25).
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= 1,0217[(N] [P] an

“m

MATRIX [H
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( S —(Txy)§ = 0
S2 —(Gy)§ =0
S3 (O‘X)f = 1
s (t_ )x =1

s} ={ '} =2t xy'” = [R] {8}
Ss (Txy)y =1
(] (c.)y = 1
: Yi (3.27)

Sq —(O'X)X =0

‘ Sg J -(Txy)x =0 J

where [R] is given in Appendix A.

1V Wa

' P ue
- —
u; 1 2 X
Us- - --3 4 ©oe Uy
| !
}Vg bx,
Y

[

FIG. 3.3 NODAL DISPLACEMENTS FOR MEMBRANE
ACTION

The matrix [T] = §[RIT[L] ds is found and shown in
eqn. (3.28). Finally, the stiffness matrix is obtained by

summing the contribution of each face
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2 P -1
(K] = ;I; [TIT[HJT(T]

b b b b
-~ 0 3z 0 -5 0 F 0
, B b b b b2 , B
6ba 2 6a 2 3a 3a
b b b b
£ ° § ° -3 ° 3 0
0 0 b > b b2 b b
2 3a 3 2a 6 6a
0 b? b b2 b bp? b _b?
24z 6 23a 3 8a 12 8a
b b b b
4 0 3 o0 -z o g O
[T], = t; (3.28)
a a a a )
0 -z 0 -3 o 3z 0 3
_a 2 a a
0 6 0 3 0 % 0 3 1
az2 . a’ _a _a® a a2’ g |
Bb 3b 2 6b 2 30
a a a a |
0 -1z 0 -7 o 3z 0 7
a* 4 a’? _a _a? a _a® a
715 S5 "4 "2 § "8 12
a- b _a b a _b a b
V] ) ) T T3 2 2

3.4 RIGHT-ANGLED TRIANGULAR ELEMENT
BENDING STIFFNESS MATRIX

Triangular elements have a distinct advantage over
rectangular elements in that they may be used to idealize

structures having non-rectangular panels or cut-outs. For
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shell structures the use of triangular elements is necessary

to provide a close approximation of the shell geometry.

Consider the right-angled triangular element shown
in Fig. 3.4, the geometry of the triangle is specified by
the lengths a and b of the two sides parallel to x and

y axes respectively.

Let

%1
|
W%

P -

The variations of the stresses and edge displacements in the
element are assumed to be the same as in the rectangular
element case. The matrix [H] is obtained from the strain

energy expression, (eqn.2.6)r using the moments and shear forces

in egn. (3.12).

FIG. 3.4 NODAL DISPLACEMENTS FOR BENDING
ACTION
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The integration is performed over the area of the triangle.
The resulting matrix [H] may be split up into six component

matrices as before

(8] = ,I,0%,]

where [Hi] is given below in compact form:

1 2 3 4 5 s
L r 1 1 1 1
2 3 6 4 8 1z | ?
1 1 1 1 1 |
q 8 5 i0 15
1 1 1 1 3
ab Iz I0 15 20
[HIJ = E—
X 1 1 1 4
I3 Iz I8
1 1 5
Symmetric 8 24
1 [
L 3_6#
7 8 9 10 11 12
1 1 1 1 1 1 .
) 3 (3 3 ] 1z
1 1 1 1 1 8
q k] 5 0 15
1 1 1 1 9
ab Iz TI0 15 70
[Hz] = B
Y 1 1 1 10
[ 1z 18|
. 101
Symmetric 5 371 i“
!
1 12
i 30 |
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2 4 S5 12 15 17

B 1 1 -1 1 1] .

2a? 3a? 6a? 3b? 2ab 3ab
1 1 -1 1 1 y

432 8a? 4b* 3ab 4ab
1 -1 1 1 5

12a? 8b?2 6ab 6ab

ab d?
(Hs] =

h2sx n? -n —n 12

4b? 3b? 4b?
Symmetric 1 L i1s

2b? 3b?
1 17

3b?

4 9 11 12 14 16

B 1 -1 -1 -1 -1 -1 “

12a?n2 6a? 8a? 12a® 6na? 4na?
1 1 1 1 2 N

2b%? 3b? 6b? 2ab 3ab
1 1 1 1 11

[He] = 224 4b®  8b? 3ab  2ab

h?s 1 1 1!

12

b4 Symmetric
a 12b®* 6ab  4ab

n=_ H
b 1 2 s

2al 3a2;
1 i 16

a? |

L _

The procedure for establishing matrix [T] is
similar to that used in the case of rectangular elements, how-

ever, the contour integration must be performed along the
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triangular boundary. The generalized forces on the sloping

edge may be found by consideration of equilibrium of a plate

element shown in Fig. 3.5.

M =M sin%6 + M_ cos?6 - 2M___ sin® cos® ]
X v Xy
!
= - . 2 _ o 2 i)
Mnt (M.y Mx) cosH sinB + (cos*“H sin G)Mxy ¥ (3.29)
Qn = QY cosf - Qx sinb |

Using eqn. (3.29) in conjunction with egn. (3.12), the

matrix [R] in

"{s} = [R] {B} (3.30)

FIG. 3.5 STRESS RESULTANTS ON EDGES OF THE
TRIANGULAR ELEMENT
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is found and shown in Appendix B. Vectors {8} and {8}

are defined as follows:
53T = [(m M)z () gy M, )5
t y=x"' x’ ‘>*n x" Uxy x=1'

(MX)§=1’(Q )X 1!( -M )y O’( xy)"y"_o

(- Qy)y O]

{B}T {(B1 B2 B3 Bu Bs Bs Bz Bs Ba Bio Bi1 Bi1z Bis

Biy Bis Bis Biel

The generalized displacements of edge (1-2) may be

expressed in terms of displacements of nodes 1 and 2:
wiz= (l-X)w; + Xwp

= - 1 ~ 3 +
enlz (1 x)(exl 51n6+6yl cose)+x(ex2 sin6 eyz cosB)

et12= (l-x)(Gxl cose-eyl s:.n6)+x(6x2 cose—ey2 sind)

where Bn and St are the rotations about the axes normal

and tangential to the sloping edge respectively.

Collectively for all edges

{u} = (1] {q} (3.31)
where
{u}T = [o B, wiz O 6. w © 6w
niz tiz Xz3 Y23 23 X331 Y31 31
{q}T = [6. 6. w1 6. 6. w2 6_ 0. ws]
X1 Y X2 Y2 X3 Ys
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and [L] is given in Appendix B.
Now [T] can be evaluated by performing the integration
- T
[r] = § [RI'[L] ds

the result is shown in egn. (3.32), and the stiffness matrix

is given by eqgn. (3.10) .

3.5 RIGHT-ANGLED TRIANGULAR ELEMENT
MEMBRANE STIFFNESS MATRIX

For membrane action the face stresses Tt oy and

TXY are again assumed as in egn. (3.25). By substituting

these equations into edqn. (2.26) and integrating over the

area of the triangle, the matrix [H] is found and shown in

eqn. (3.33).
The matrix [R] is defined by equation
{s} = [R] {B} (3.34)

where

{B}T = [81 B2 B3 By Bs Bs B7 Bg Bs Bio Bi11 Bisl

and

{s} =
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T, on the sloping side are found

The stresses O0,, T,

from the eguilibrium conditions

— 22 2 .
o = o+ 0-
ox sin cycos ZTxy sin® cosé

T

t

- . a 2 - 2
(Uy cx)51ne cosb+(sin“06-cos G)Txy

The corresponding edge displacements are

8, = (1-%) (u;cos6+vsinB)+ %X (u2c0s6+v2Sind)
§ = (1-%) (~u1sinB+vicos6)+ xX(-uzsinf+vzcosb)

Displacements along all edges

{u} = [L] {g} (3.35)
where
{u}T = [§_ 8§, uzs Va3 U1s Vial
n + 23 23 13 13
T _
{g}" = [u1 vi uz2 vz us vsl

Matrices [R] and [L] are given in Appendix B.
Matrix [T] is found by equation

[r] = § [RIT[L] ds

The result is given as in Eqn. (3.36). The stiffness matrix

is again found as

(x1 = £, (237 (A7 7]
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3.6 INCLUSION OF STRESS-BOUNDARY CONDITIONS
INTO ELEMENT STIFFNESS MATRIX

Using the assumed stress distribution approach it
is possible to prescribe boundary stresses. This can be done
only in the element-analysis stage by modifying the assumed

stress functions.

The work done by the edge forces is given by egn. (3.6).

w=¢ {s}T{u} ds

{81T[P] {g}

where {s} 1is the vector of edge forces, which may include
any prescribed boundary stresses. The matrix ([T] is then
derived in the usual manner. Thus, a variety of stiffness
matrices may be derived to take into account the stress

boundary conditions of various types of edge supports.

The inclusion of stress boundary conditions at the
element level improves the accuracy of the results as shown
by studies done on isotropic plates [19'22]; however, the
additional accuracy gained is diminishingly small when more
elements are used in the analysis. To reduce programming
effort, it is decided to use only those previocusly derived

stiffness matrices in all numerical examples presented in

the later Chapters.
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3.7 ELEMENT STRESS RESULTANTS

Stress resultants in element may be expressed in
terms of the nodal displacements by substituting egn. (3.2)

into egqn. (3.1).

{o} fp] {8}

{o} [PICH] [71{q} (3.37)

The coefficients of [P] are functions of the coor-
dinates, hence by substituting appropriate values of x and
Yy the stresses at any point of the element may be found.
Usually, stresses are evaluated at the corners of the element
and at the centroid. When many elements meet at a joint,
the stresses at the joint calculated on the basis of nodal
displacements of the related elements are not identical;
this stress discontinuity also exists along the interelement
boundaries. The representative stresses are then taken to

be the average of all correspondent stresses.
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CHAPTER IV

STATIC ANALYSIS OF THREE-DIMENSIONAL PLATE
STRUCTURES BY FINITE ELEMENT METHOD

4.1 INTRODUCTION

Three-dimensional plate or shell structures may be
idealized as an assembly of flat rectangular or triangular
elements. This approach has been used and reported by many
authors.[25'26'27’28] One of the difficulties involved is
the requirement to maintain compatibility of displacements
and normal slope along the interelement boundaries. One
solution to this problem has been proposed in Ref. [29].
Here, the authors use linear functions for displacements
and rotations in the element, and the 5ending and "shear"
stiffness matrices are derived using displacement formula-
tion. All of these applications of finite element method
to three-dimensional structures are limited to the types of

material which exhibit insignificant transverse shear deforma-

tion.

The elements described in the previous Chapter takes
into account the transverse shear deformation without intro-
ducing any more degrees of freedom other than the actual
geometrical displacements and rotations of the nodes. The
imposition of linear displacements and rotations along the
element edges ensures complete compatibility, however, the
stresses in the element are not constant since they are

assumed independently of the displacements; this is a signi-
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ficant difference between the displacement formulation and

assumed stress formulation of finite element theory.

4.2 ANALYSIS PROCEDURE

The arbitrary surface of the structure is idealized
by an assemblage of flat rectangular or triangular elements
or combinations of both shapes. These elements are connected
together only at the node points which iie on the mid-surface
of the real structure. The purpose of the analysis is to
determine the nodal displacements and the distribution of
stresses and strains throughout the structure. The direct
stiffness method [30] is used to obtain the solutions, the

procedure is summarized below.

1. Determination of the stiffness matrices of typical
elements, forces and displacements are directed along

the element (local) axes.

2. Transformation of element nodal forces into an
axis-system common to the adjacent elements so that

nodal forces can be added up algebraically.

3. Assembly of the structure stiffness matrix [K]
which relates the applied nodal forces {R} to the

resulting nodal displacements {r}
(r} = I[k1{r}

[K] is found by direct addition of the transformed

element stiffness matrices.
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4. Introduction of displacement boundary conditions
and external forces into the above equation system.

The unknown nodal displacements are found
{r} = [KI7'{®} (4.1)

5. Transformation of the element nodal displacements
into element axes. They are subsequently used in
conjunction with the stress matrix of each individual
element to yield stresses and strains at the desired

points.

Each of the above steps is described below, particular

attention is given to the programming aspects.

4.3 ELEMENT STIFFNESS MATRIX IN LOCAL AXES

In the previous Chapter, the element stiffness

matrices have been found separately for bending and membrane

actions. In this Section, a combined stiffness matrix which

includes both types of action is described.

The membrane and bending actions of an element are

characterized by the stiffness equations

[Km]{qm}
[Kb] {qb}

{Qm}
{0}

where m and b denote membrane and bending actions

respectively. Combining the two equations yields
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Qm Km 0 qm l

. (4.2)
Qp 0 Kyl L 9% J

From this equation it can be seen that the in-plane and
bending actions are assumed to be uncoupled within an
element. This assumption is valid if the deformations of

the element are small.

In the derivation of [Kb] and [Km] . three and
two degrees of freedom per node are associated with bending
and membrane actions respectively; a total of five degrees
of freedom for each node. To facilitate the transformation
of forces and displacements in three-dimensional space,
another degree of freedom is introduced at each element node.
This additional one is the in-plane rotation B8,, its

corresponding fictitious force is Mz(Fig. 4.1).

Designate the stiffness coefficients corresponding

to {ez} as [KZ], then

{Qz} = [Kz]{qz} (4.3)
with
{QZ}T = [MZI,MZZ, ceeaee Mzn]
fa 3T = [8,,18,,0 «oceen 0]

where n is the number of nodes in the element.

Egn. (4.2) may now be expanded to include eqn. (4.3).
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Qm Km 0 0 9n
Qb = 0 Kb 0 q (4.4)
Qz 0 0 KzJ qz

Because {qz} does not affect the strain energy in an
element subjected to bending and membrane actions, the
stiffness [Kz] should be a null-matrix. However, zero
stiffness may render the structure stiffness matrix ill-
conditioned, This will happen when all elements connected
to a node are coplanar because among the six equilibrium
equations at this node only five are independent. A

common practice to correct this situation is to assign small

but arbitrary values to [Kz]. For a triangular element

er1 l_l -0.5 -0.5 ez1
M = YE(t;+t,) 30 1 -0.5 o L
Zs Y 1Tt2) = . zs ¢
M j
Z3 Sym, 1 ;623)

For a rectangular one

1 1 1 .
le] 1 3 3 3] 6213
M 11 |
Z s 1 3 3 922,
M = YE(ti+tz2)ab 1| /
Zal Sym. 1 -3 !eza
] P
MZ:,.) 1 Lez“)'
— -




59

where <y is an arbitrary numerical constant. Studies made
by several authors [29,30] have shown that the smaller Yy
gives better results but the effect is very small. Yy was
chosen to be 3 x 10_6 for all problems solved in the later

Chapters.

An alternative way to avoid the ill-condition problem
because of zero stiffness is to assemble the equilibrium
equations in local coordinates at those nodes where the
difficulty arises and then suppress the degrees of freedom
corresponding to the'in—plane rotations. Both approaches
are incorporated in the computer program which will be describ-

ed subseguently.

For programming purposes, the egn. (4.4) is re-

arranged in the form

1 1
Q Ki1i:1 Kiz2 Kln q
0% = |Ka1 Koz2--K q? (4.5)
(3 - . .zn »

ni n
Q5 Koy an"Knn |

where {0°} and {q*} are respectively the generalized

forces and displacements at node 1i.

1oty
{qi}T

(.. P_. F_. M. M. M _.]
X1 yl 21 X1 yi 21 (4.6)

[, v, A e . 6. ©6_.]
i i i xXi vi zi
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4.4 TRANSFORMATION MATRIX

For the complete structure assembled from the
individual elements, six equilibrium equations at each joint
must be established in a common axis system. Let this new
coordinate axes at node i be labelled xi y; z{, the
generalized forces '{Qi} and displacements '{qi} are related

to those in the new system by a transformation as

to*y = [ty oly

i iq-, i
{g*} =[] {q,}
in which i
i A o]
[L™] = i
0 A
with

os (x. ,x* - s(x,.,z¥*
¢ (xl,xl) cos(xl,yl) cos ( i l)

cos(yi,xI) cos(yi,yi) cos(yi,z;)

[A*]
* * *
cos(zi,xi) cos(zi,yi) cos(zi,zi)
Complete transformation of the generalized forces at

all nodes of the element is

J 1 L 0 ..0 i Qs
2 = 10 L%2.. 0 2
[én 0 0 ..1" ol
or {o} = [L] {g,} (4.7)

Similarly for the generalized displacements
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{q} = [L] {q,} (4.8)

Substitution of eqns. (4.7) and (4.8) into egn. (4.5)

(L] {Q,} [x] (1] {q,}

or

{Q,} = [L17'[K] [L] {q,}

w1
Since this is an orthogonal transformation [L] = [L]T,

hence
{0,} = [z1T [K] [L] {q,} (4.9)

Thus, the transformed stiffness matrix which gives

nodal forces in the new coordinate system is
T
[Re] = [L]" [K] [L]

Expressing egn. (4.9) in the same form as in eqgn. (4.5)

it can be seen that
% - i T 3
[Kij] [TL™] [Kij] [LI] (4.10)
this form is efficient for programming.

In panelized structures many panels are of the same
size and orientation, consequently, a large number of elements
which idealize these panels possess identical transformed
stiffness matrices. It is then necessary to generate stiff-
ness matrices only for dissimilar elements, by this way

substantial saving of computer time is achieved.
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4.10 ASSEMBLY OF STRUCTURE STIFFNESS MATRIX

Once the stiffness matrices of all individual elements
are calculated in the common coordinate system, the structure
stiffness matrix is assembled by direct summation of the
stiffness contributions of all elements, considering one
element at a time. At this stage, zero-displacement boundary
conditions may be introduced by not setting up those eguations
corresponding to the restrained directions. This allows

saving of computer storage and solution time.

The structure stiffness matrix thus formed is
symmetric and banded, it is necessary to store only the co-

efficients within the band of one triangle of the matrix.

4.11 BOUNDARY CONDITIONS AND SOLUTIONS

Zero-displacement boundary conditions may be convenient-
ly treated as mentioned above, alternatively they may be
handled in the same manner as for prescribed non-zero dis-
placements. The method is described in Ref. [30]. It
consists of multiplying the corresponding diagonal term in
[K] by a large number, and replacing the load coefficients
by the previous product multiplied by the prescribed dis-
placement value. The modified system of equation still

remains well-conditioned.

The introduction of external nodal forces presents
no particular difficulty, the resulting set of equations is

solved for the displacements using Gauss' elimination technique.
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4.12 DETERMINATION OF STRESSES AND STRAINS

The element nodal displacements {g,} may be extracted
from the structure nodal displacements {r}, they are further

transformed into element axis-system using eqn. (4.8).
{q} = (L] {q,} or {g} = (L] {q;}

Rearranging {gl into displacements corresponding to
membrane and bending actions, and applying eqn. (3.37) to
obtain the resultant moments, shearing forces and membrane
stresses at all desired points. Stresses due to bending
action are calculated from egns. (2.2), they are superimposed
with those due to in-plane deformations to obtain the final

stresses. Strains in the faces are given by eqgn. {3.23).

Stresses and strains thus obtained refer to the
directions in local axes, principal stresses and strains are

easily calculated from them.

4.13 COMPUTER PROGRAM

A large-capacity computer program was written using
the matrix stiffness method incorporating the ideas explained
in the previous sections. The program was divided into
three links, the output of each 1ink being stored in auxil-

iary storage and used as input for the next one.

The first link of the program generates the trans-
formed element stiffness matrices. The second 1ink assembles

the structure stiffness matrix and solves for the unknown
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displacements using Gauss' elimination technique. The third
link calculates stresses and strains in all specified elements.
Theoretically the program can solve an unlimited number of

equations regardless of the size of the minimum half band-

width.

The program was written in F@RTRAN and run on a CDC 6600
computer. All necessary arrays are allocated compactly and
dynamically at execution stage, hence storage space is
efficiently used. Listing of the programs is not given here
for brevity. Several important features of the program are

listed below:

1. The idealized structure may consist of rectangular
or triangular elements or combination of both. Line

elements may be introduced to simulate edge beams.

2. The joints may be rigid or hinged. Rigid body
movement of a certain portion of the structure may be

imposed.

3. Plate bending or plane stress problems for both
isotropic and sandwich materials are analyzed efficiently

in terms of input data, as well as computations.

4. The size of the structure and number of load cases

are not restricted, however the total amount of data that

can be efficiently handled is limited.

5. Regular mesh of rectangular or triangular elements is
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7

automatically generated.

Output consists of displacements at the mesh
points, moment resultants and stresses and strains in

both faces of the sandwich material.

The organization of the program is in modular
form. Introduction of new elements or modification of

the program can be done with relative ease.

65
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CHAPTER V

APPLICATION TO THE BENDING OF SANDWICH PLATES

5.1 CONVERGENCE OF THE SOLUTIONS OBTAINED BY THE
RECTANGULAR SANDWICH PLATE ELEMENT

In this Chapter, the proposed finite element models
are applied to selected sandwich plate bending problems.
Results are compared to theoretical solutions to test the
applicability of the models in predicting the behaviour of
sandwich plates, which are largely characterized by the shear
deformations. It is convenient when investigating the bending
of sandwich plates to introduce dimensionless parameter sa?/D,
which will be referred to as t+he shear parameter. For a
sandwich plate with infinite shear parameter, it is expected
that the solutions will correspond to solutions obtained
from thin plate theory. On the other hand, for a plate with

flexible core, the shear parameter normally varies between

100 and 10.

The first sandwich plate problem considered is that of
a simply supported square plate subjected to a uniform trans-
verse load, the edges of the plate are stiffened so that no
shear strains can occur. Series solution for this problem is

given by Plantema. (11]

Because of the symmetry of the geometry and loading,
only one quadrant of the plate needs to be analyzed. In the
finite element idealization, the boundary conditions are
approximated by the vanishing of the deflections and torsion-

al rotations of points along the edges. The analysis is
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commenced with 1 x 1 square mesh and increased to 6 x 6.
Loads are lumped together at the node points according to the

element tributary areas.

For comparison with the theoretical solutions as
given in Ref. [11], non-dimensional parameters are calculated
for the maximum deflection and bending moments, which occur
at the plate center. The results are tabulated in Table 5.1
and shown graphically in Fig. 5.1. Rapid convergence of both

deflection and stresses to the exact values are observed.

The percentage error of the calculated value given in

Table 5.1 is computed as

|calculated value| - |Theoretical value| ., ;qq
| Theoretical valuel|

% error =

For the 1 x 1 mesh the percentage errors of the deflection
and bending moments are respectively 18 and 12, the errors
decrease sharply as finer meshes are used and reach 2 and
0.8% for a 6 x 6 mesh. From Fig. 5.1 and 5.2 the finite
element solutions are seen to converge to the exact values
from above. This means that the idealized structure is too

flexible in this case.

The second example problem is a square clamped
sandwich plate subjected to uniform pressure. Ref. [11]
gives numerical results for a particular shear parameter
Sa?/D = 4w2?. The theoretical analysis assumes that the

edge sections are free to deform in shear, this assumption
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TABLE 5.1

SQUARE, SIMPLY-SUPPORTED ISOTROPIC SANDWICH
PLATE.SIMILAR FACES, UNIFORM LOAD.

Sa’/D = 10 v = 0.3
Deflection at Center Moments at Center
Mesh 4
Size F.E. % Error F.E. % Error
I1x1 1.340 18 5.58 12
2 x 2 1.203 5.3 5.11 6.5 :
3 x 3 1.178 3.2 4.94 2.9 g
4 x 4 1.170 2.6 4.87 1.7 ;
5% 5 1.166 2.2 4.84 1.0 ;
6 x 6 1.164 2,0 4,83 0.8 i
Exact(11l) 1.141 - 4.79 - 5
e | 107t % 107 g

FIG.

Mesh Size

5.2 CONVERGENCE OF MAXIMUM MOMENT.
SIMPLY SUPPORTED SQUARE PLATE SUBJECTED TO

UNIFORM LOAD
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is not realistic, however it is claimed [11] that the more
realistic one of zero shear strain along the edges would give
substantially the same results. 1In the finite element
analysis, the deflection and normal rotation of points along

the clamped edges are taken to be zero.

In Fig. 5.3 the central deflection obtained by finite
element method is plotted against the number of elements used
per half span. For the 1 x 1 mesh the error is 12%, which
is then reduced to 2.1 with the finest mesh used. The maxi-
mum bending moment occurs at the middle of the edges. Converg-
ence of the finite element results can be seen in Fig. 5.4.

Table 5.2 gives numerical values.

5.2 INFLUENCE OF TRANSVERSE SHEAR DEFORMATION

In the classical thin-plate theory, the effect of
transverse shear deformation is neglected; however, for
sandwich construction, appreciable deflection may result due
to transverse shear stresses in the weak core. Moreover,
because of this additional deformation, the magnitude and
distribution of the stresses in the plate will in general
be different from those predicted by the customary thin-plate

theory.

To study the influence of the transverse shears
in sandwich construction, two sandwich plate problems are
considered. Both plates are of rectangular shape, uniformly

loaded, but one with simply-supported edges and the other
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TABLE 5.2

SQUARE CLAMPED ISOTROPIC SANDWICH PLATE
UNIFORM LOAD, SIMILAR FACES.

sa?/p = 4m? v = 0.3 L
, Maximum Negative
Deflection at Center
Mesh Moments
Size F.E. % Error F.E. % Error
1x1 3.64 12 2.34 -43
2 x 2 3.42 5.2 3.64 -11
3x 3 3.36 3.4 3.94 -3.9
4 x 4 3.34 2.8 4,09 -0.2
5 x5 3.33 2.5 4,18 2.0
' 6 x6 3.32 2.1 4.20 2.4 '
1
E Exact[11] 3,25 - 4.10 -
o Multi- -, 2, |
plier 10 ga 10 ga |
_ B A S S
4.4
4.2 |
0L
3.8
3.6 -
3.4
3.2 F
3.0 ! J 1 L
1 2 3 4 5 6

Mesh Size

FIG. 5.4 CONVERGENCE OF MAXIMUM MOMENT.
CLAMPED SQUARE PLATE. UNIFORM LOAD
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with edges clamped; edge shear strains are prevented in the

former but not in the latter.

[11] showed that, in a simply-supported plate

Plantema
subjected to uniform load, the stress resultants are indepen-
dent of the transverse shear stiffness, and hence identical
to those given by the ordinary plate theory. The deflection
is equal to that of a rigid-shear plate plus an additional
deflection due to shear strains in the core. This shear
deflection is inversely proportional to the shear stiffness.
Graphically, these are shown in Fig.5.5 and 5.6, where the

finite element results are obtained with a 4 x 4 idealization

of a quadrant of the plate.

The finite element solutions are in good agreement
with the theoretical values for all aspect. ratios and shearing
rigidities considered. As can be seen in Fig. 5.5, the
additional deflection due to transverse shear may be well over
100%. In a square plate, this increase in deflection is
found to be 180% for a shear parameter Sa?/p = 10. The in-

crease is 220% for a 2 x 1 plate of the same shear stiffness.

Although deflection in a simply supported sandwich
plate is substantially increased because of the transverse
shear deformations, the stresses remain unchanged. The
maximum moments plotted in Fig. 5.6 are valid for all shear
rigidities, the moments found by finite element method show
very little variation over a wide range of the shearing

stiffnesses used; in most cases the variation is within 1% of
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the theoretical values.

Figs. 5.7 and 5.8 show similar graphs for the case
of clamped plates. Theoretical results are not available for
comparison except when the ?late has rigid shear and results
from classical thin-plate theory are used. Additional deflec-
tion due to transverse shear deformation is again inversely
proportional to the shear rigidity. The influence of trans-
verse shear on the deflection of clamped plates is much more
pronounced than in the case of simply-supported plates; for
example, the additional deflection at the center of a square
plate is 700% in a clamped plate but only 180% in simply

supported plates (shear parameter sa2?/pD equal to 10 in both

cases).

Unlike the case of simply-supported plate, stresses
in clamped plate are reduced due to shear deformation, the
relieving effect is not great,as can be seen in Fig. 5.8.
The reduction in the maximum negative moment is approximately
20% for plates having a shear parameter of 10. The variation
of the maximum moment in the longer span (i.e. My) is rather
peculiar and unexpected. For plates having low aspect ratio
the reduction of My is monotonic (see Fig. 5.9) but not so

when the aspect ratio is greater or equal to 1.6.

5.3 CONVERGENCE OF THE SOLUTIONS OBTAINED BY THE

To study the convergence characteristics of the right-
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angled triangular elements the two square plates used previous-
ly for the rectangular element are analyzed. The finite
element idealizations for the plates are shown in Fig. 5.10,

in which the numbers of square units per half span are 1, 2,

4 and 6. The number of triangular elements used is twice the
corresponding number of square elements, although the total

number of degrees of freedom remains the same.

Numerical values of the maximum deflection and moments
obtained by using four different mesh sizes are given in
Table 5.3 for the simply supported plate, and in Table 5.4
for the clamped plate. The results appear to converge to the
exact solutions, although the calculated deflections oscillate
about the exact value. It is interesting to compare these
results with those obtained by using the rectangular elements
(Tables 5.1 and 5.2); the deflection seems to converge
slightly faster in the triangular element case, whereas the

stresses converge at a much slower rate.

5.4 ANALYSIS OF ORTHOTROPIC SANDWICH PLATES

The problems discussed so far, are for plates having
both isotropic facings and isotropic cores. The overall
orthotropy of a sandwich plate is usually due to the ortho-
tropic properties of the materials used for the faces or
the core, or both. However, in many applications the

orthotropy derives solely from the geometry of construction

of the core.
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FIG. 5.10

IDEALIZATION OF A SQUARE PLATE USING TRIANGULAR
ELEMENTS
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TABLE 5.3

SQUARE SIMPLY-SUPPORTED ISOTROPIC SANDWICH
PLATE.SIMILAR FACES, UNIFORM LOAD

Ssa®*/p = 10 v = 0.3 i
Deflection at Center Moments at Center
Mesh e
lelze' F.E. $ Error F.E. $ Error |
1 1.059 -8.6 1.86 -61
2 1.143 0.0 3.78 -21
4 1.165 2.0 4.56 -4.8
6 1.166 2.2 4.69 -2.1
1
Exact[ 1] 1.141 - 4.79 -
Multi- -2 g* -2,
plier 10 ap- 10 qa
J
TABLE 5.4
SQUARE CLAMPED ISOTROPIC SANDWICH PLATE
SIMILAR FACES, UNIFORM LOAD
sa®/p = 4n®> v =0.3 -
Deflection at Center Maximum Negative
Mesh Moments
S;ze, F.E. % Error F.E. % Error
— e e
1 2.64 -4.9 1l.29 -65
2 3.26 -0.3 2.84 -31
4 3.27 0.6 3.36 ~18
! 6 3.28 0.9 3.75 -8.5
Exact[11] 3,25 - 4.10 - :
j Multi- -3 4 g -2 2
plier 10 ga'/D 10 qa

[ S—
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To-date, there exists very few published results for
bending of orthotropic sandwich plates. Raville [32] has
obtained a series solution for simply-supported plates having
isotropic facings and orthotropic core subjected toc uniform
loading. Basu and Dawson [33] and Folie [34] have used
numerical methods to solve the general governing equations of
orthotropic sandwich plates. Numerical results for square
clamped plates under uniform pressure are given in the paper

by Folie.

In Table 5.5 a selection of Raville's results are
compared to those obtained by the finite element method using
an 8 x 8 rectangular mesh to solve a quadrant of the plate.
For the finite element solutions, the plate properties are

assumed as follows:

Plate dimensions in x,y directions 24" x 32"
Core and facing thicknesses 2.0" and 0.G01"
Facing material properties E = 107 psi, v = 0.3
Core shear modulus Gyz = 114 psi; and
ze/Gyz = 0.4, 1.0, 2.5.

There is good agreement between the two sets of results
for the deflection and moments, but shear forces calculated
by the finite element method are generally 10% too low.
Inspection of Table 5.5 shows that the transverse shear
stiffness has a great influence on the load distribution in

the plate. When the shearing rigidities are the same in both
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directions, the shorter span carries a greater share of the
load as can be expected. For this particular plate the
maximum moment in the short span is 1.4 times that in the
long direction; if the shearing rigidity in the short span
is reduced to 40% of its original value, the maximum moment
in this span is now equal to only 60% of the maximum value

in the long direction.

A series of graphs are presented in Appendix C
showing the maximum deflections and stresses in square ortho-
tropic sandwich plates subjected to uniform loading. Two
edge conditions are considered: simply-supported and clamped.
Because of the scarcity of published results, these graphs

should be of value to the designers.
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CHAPTER VI

APPLICATION TO THE ANALYSIS OF FOLDED
SANDWICH PLATES

6.1 INTRODUCTION

In the previous Chapter, various problems of bending
of flat sandwich plates have been considered; in this
Chapter examples of the application of the finite element
method to problems of sandwich folded plates are described.
The results of the analysis of two sandwich folded plates will

be compared to experimental data taken from Ref. [37]

Since the stresses in folded plates are caused by
bending and membrane actions, the complete element stiffness
matrix which includes both types of action must be used.
Along the intersection of the panels which make up the folded
plate, continuity of displacements and normal slopes should
be maintained; these compatibility requirements are satisfied
completely by the elements developed in Chapter III. Further-
more, since the elements possess only geometrical degrees of
freedom such as displacements and rotations, no difficulties
arise due to the transformation of the generalized forces
and displacements along the junctions. Several assumptions
adopted by most existing theories of folded plates are not
necessary in finite element methods; there would be no
difficulty in taking into account the flexibility of the
diaphragms, as well as other features such as material ortho-

tropy, variable thickness, cut-outs, etc.
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6.2 9.5 FOOT FOLDED PLATE-COMPARISON BETWEEN FINITE
ELEMENT SOLUTIONS AND EXPERIMENTAL RESULTS

The first of the two folded plates to be considered
is shown in Fig. 6.1. It consists of six similar sandwich
panels rigidly connected by means of aluminum channels, which
were welded together at four inch intervals. These channels
were not used at the two outside longitudinal ridges, hence
these ridges are free to deform. The panels were made up with
0.025 in thick aluminum facings bonded to one inch thick
honeycomb core. Details of the connections and test proce-

dure are fully reported in Ref. [37].

For the finite element analysis, rectangular elements
and beam elements are used to idealize the panels and the
reinforcing channels respectively. One half of the plate is
divided into a rectangular mesh of 18 x 6, the first number
refers to the number of transverse subdivisions and the

second to the number of longitudinal subdivisions from diaphragm

to midspan.

Figs.6.2 to 6.5 show the results obtained for the
folded plate subjected to uniform line loads of 24 1b/ft at
ridges 2 to 6 inclusive. A study of the results indicates
that the displacements obtained from the finite element
solution agree remarkably well with the experimental data.
Whereas, the stresses are overestimated by the finite element
method, the greatest differences are Found at the inner

ridges. Stresses in the top facing are generally higher than
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those in the bottom, the difference in magnitude indicates
the influence of the slab action of the plates; for this
example, the contribution by bending stresses to the total
stresses is less than 12%. The longitudinal stresses, as
well as the deflection vary linearly over the width of the
plates, as can be expected since the plate length-to-width

ratio of 4.25 is high.

Fig. 6.5 shows the deflection of the folded plate
loaded uniformly at ridge 3; since the loading was not
symmetrical, torsional effects were present. Again, the
finite element scolutions compare favorably with the experi-

mental results. Stresses are HRot shown for this case because

they were not reported in Ref. [37].

6.3 19-FOOT FOLDED PLATE-COMPARISON BETWEEN FINITE
ELEMENT SOLUTIONS AND EXPERIMENTAL RESULTS

This sandwich folded plate has similar geometry to
the previous one (Fig. 6.6). The core was made of poly-
styrene foam, which has much lower shear rigidity than honey-
comb core. The panels were connected by the same type of
channel sections, which were also used to stiffen the longi-

tudinal outside edges.

Because the plate length~-to-width ratio of this
folded plate is more than twice that of the previous one,
longitudinal stresses and deflections are expected to vary
even more linearly over the plate width. Consequently, a

coarse mesh of 6 x 10 was thought to be sufficient for the
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whole structure.

Figs.6.7 to 6.9 show the results obtained for the
case of uniform surface pressure acting over the entire
plate. Good agreement between finite element solutions and
experimental results are observed for both displacements

and stresses.

The deflections along the mid-span section of the
folded plate are plotted in Fig. 6.10, the plate in this
case was supported by a column placed on ridge 3 at 2 ft
away from the mid-span. Reaction on the column was measured
[37]

by a load cell and equal to 1,800 1bs. This load is

considered as external forces in the finite element analysis
in order to eliminate the effect of column deformation, which
is in fact, negligible as indicated by the theoretical
results. The percentage difference between the two sets of
displacements varies from 27% at one outside edge to 8% at
another. The effect of the column is to reduce the stresses
and deflections in the adjacent panels; however, at the
immediate vicinity of the column high stress concentration
would undoubtedly occur. This effect could be further
studied by finite element analysis, however, this was not

done because of the lack of experimental data for comparison.
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CHAPTER VII

APPLICATIONS TO THE ANALYSIS OF PANELIZED
BUILDINGS MADE UP OF SANDWICH PANELS

7.1 INTRODUCTION

In the previous Chapter application of the finite
element technique to the analysis of folded sandwich plates
was presented, the panels of the test-structures were used
as roofing components to carry relatively light load over a
large span. However, sandwich panels can also be used in
complete assembly of a building, construction of many such

[39]

structures has been reported.

In frameless panelized buildings, the panels serve
as main load-carrying elements. Dead and live loads are
carried by bending of the floor-panels to the load-bearing
wall-panels and resisted by column action. Wind load is
transferred by bending of the transverse walls and by
diaphram action of the floors to the walls parallel to the
wind direction and resisted by shear~wall action. Thus, in
this type of structure the wall and floor panels distribute
and resist all loads, three-dimensional rigidity is achieved

without the use of bracing or framing systemn.

In this Chapter, the finite element technique is
applied to the analysis of a sandwich panelized building.
The results are compared to experimental data obtained from

tests of a four-storey half-scale model.
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7.2 DESCRIPTION OF THE TEST MODEL

A half-scale panelized building model is being built
and tested by the System Building Group at Sir George
Williams University. When fully constructed, it will consist

of four storeys and six room units in flooxr plan.

Fig. 7.1 shows a perspective view of the model at its
fifth stage of assembly. The walls and floors are made up
of sandwich panels, openings were introduced in the walls to
represent door spaces. Two different panel sizes (Fig. 7.2a)
are used, one of 2 ft x 6 ft for the floors and the other of
2 ft x 4 ft for the walls, thus a floor consists of three

panels joined together.

Each panel is made up of 2 in thick polystyrene
foamed core (shear modulus Gc = 1200 psi) sandwiched between
two aluminum faces of 0.025 in thickness. The panel edges
are reinforced with wooden frame (Figs. 7.2 b and 7.2 ¢) to
prevent possible premature crushing or delamination. This
wooden frame also facilitates the connection between the

panels.

Panel-to-panel connections are effected using specially
designed aluminum extrusions. Fig. 7.3a shows the connection
between two floor panels, and Fig. 7.3 b shows a cross-
section of the extrusion in the connection of the wall and
floor panels. Steel staples (spaced at 3/4 in center-to-

center) are used to attach the panel frame to the flanges of



lo2

/ - ‘§§§$
m I~ nF
| s
|
( T\ %' T~ -
| i ~
: - = . i
= S
i ;
8 ]
.i B |
| = == L
" — — oo g ..T
- -
' ) | d -
i - - |
= : .

4t

* f - . Zot = 4

FIG. 7.1 PERSPECTIVE VIEW OF PANELIZED BUILDING
MODEL.6 FT 4 IN SQUARE FLOOR, 16 FT
11 IN HIGH



103

T ===
! !
| !
| [
\ ]
| |

| ! r-—--"

I ! i !

6 l : ! E

t i | | 4|

| | ! |

| | | |

| | ! :

| | I !

' | | !

1 Lo — -4 | U

t |

L—————l H———‘—"’l

2l 2!
Floor Panel Wall Panel

FIG. 7.2a TYPICAL PANEL SIZES
Aluminum Sheet
~ 0.025" thick

T
,..\3/ 1

b o=

\\\— Corrugated Fastener

FIG. 7.2b TYPICAL PANEL FRAME

White Pine Frame
f .‘.......,r’!h.-...l

PN T ".%.
.0 . .o \

. \
oo o

//—2 X 2 Clear
y

. '\ . . . 4
\\\h Polystyrene Foam

FIG. 7.2c TYPICAL PANEL SECTION



104

.3 1.4 3"
T T
T ‘ "
",.. N '~ B N - o :
oLk \\ - o
& N . \, . .o l 2u
— =
Aluminum \
Extrusion - 0.125"
Thickness Steel Staple
FIG. 7.3a CONNECTION OF FLOOR PANELS
ﬂ - I 2"
0-125' [+ I
| A * - —1 i *-
Pl )
2ll
§
; 2"
E — S &
Lo
2" o 2"

FIG. 7.3b CONNECTION OF WALL PANELS



105

the extrusions.

The model was subjected to vertical and horizontal
loads simulating gravity and wind load, respectively. Strains
and displacements were recorded at various points in each
stage of loading or unloading. Full description of the
design details, experimental procedure and the data-acquisition
system can be found in a series of reports issued by the

System Building Center at Sir George Williams Universityg4o’4l’42]

7.3 FINITE ELEMENT ANALYSIS OF THE MODEL AND
COMPARISON OF THE RESULTS

To represent the full structural action of the wall
and floor panels of the building, a three-dimensional assemblage
of finite elements is used for the analysis. Both in-plane
and bending components of forces and displacements are
considered, the element stiffness matrix is obtained by super-
imposing the membrane and bending parts as explained in

Chapter IV.

Since the structure is symmetric and the applied
loadings can be split up into symmetric and antisymmetric
components, only one quarter of the complete structure is
analysed. Fig. 7.4 shows the idealized model for one quarter
of a typical storey of the structure, the panels are represented
by rectangular sandwich elements and the connecting beams by
line elements of equivalent stiffnesses (indicated by heavy

lines in Fig. 7.4).
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The structure is analyzed for the case of uniform
horizontal load applied at the top floor level, discussion
and comparison of the results in this Chapter are for this
type of loading only. Because the attachment of the wall-
panels to the foundation frame is by means of steel staples,

the structure is assumed to be hinged at the base.

The load-deflection curves at each floor level is
plotted in Fig. 7.5, which shows both experimental and finite
element values. Inspection of the curves indicates that
there are large discrepancies between the two sets of results.
The maximum deflection, which occurs at the top floor level,
as found by the finite element analysis is only half of the
measured deflection. At lower floor levels the difference
becomes larger since the actual deflection varies linearly
through the height of the building whereas, the theoretical

deflection decreases at an increasing rate.

A peculiarity in the behavior of the model structure
can be seen in Fig. 7.5, where the load-deflection curves
show that as the load increases, the deflection also
increases but at a lower rate. And it is interesting to note
that the sleopes of the load-deflection curves at the initial
stage of unloading match those of the theoretical curves.
This indicates that the structure becomes stiffer when the
deformation or the applied loading reaches a certain stage.
This behavior may be attributed to the nature of the panel

connections, where some joint-slippage must have occurred
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before the connections became effective.

To verify the above conjecture a shear-wall analysis
of the model omitting the floors and the cross-walls is
performed, the resulting deflections are much higher than the
experimental values. This illustrates that in the initial
stage of loading because of joint-slips the flooré and the
cross-walls had only partial restraint on the rest of the
structure. In fact, during the test it was observed that
the staples which attached the tension side wall-panels to
the foundation-frame were loosened and the panel corners
were raised up by an amount equal to 3/16 in. The extent
of the influence of joint-slippage is not fully understood
and further tests are to be carried out to obtain more
information. Consequently, it would seem that at present,
no definite conclusion can be reached regarding the compari-
son of the deflection. However, comparison of the stresses

is still possible since equilibrium of the structure must be

maintained regardless of the amount of joint slippage.

Figures 7.6 to 7.9 show the distribution of the
longitudinal strains in the panels at various levels of the
building model, the plotted values are for a particular
lateral loading of 2,500 1bs applied uniformly at the top.
Generally, the measured strains are less than the predicted
values, however they are of the same order of magnitude.
Discrepancies between the two sets of results may be due

to several reasons:
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- experimental and instrumental errors.

- separation of the facing and the core at
gage locations.

- stress concentration and effects of the

connecting extrusions and the wooden frame.

In the panels perpendicular to the load direction,
the longitudinal strain distribution is approximately uniform
over the panel width (Figures 7.6, 7.7) except at the base
portion. These panels are subjected to bending, however
the bending effect is not great, as manifested by the narrow
difference between the strains in the outer and inner faces.
The bending effect virtually diminishes in the panels
parallel to the load direction, longitudinal strain distribu-
tion in these shear-panels is practically linear (see

Figures 7.8, 7.9) over the panel width at all sections.

As a further check on the effect of the bending
stiffness of the panels, a membrane analysis of the same
structure is carried out. The results show that the displace-
ments and the stresses are increased approximately 8% and 5%
respectively, as compared to the results of the full membrane-

bending analysis.

One advantage of the membrane analysis is that only
three equations of equilibrium equations are set up at a node
whereas six equations are required in the full analysis. This

allows considerable saving in computer time and storage.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

The finite element technique has been extended for
applications to two and three-dimensional sandwich plate-
structures. BStiffness matrices for bending and membrane
actions of sandwich elements having rectangular and right-
angled triangular shapes were derived by using the assumed
stress distribution approach. The proposed elements are
applicable to sandwich construction with both orthotropic
core and facings. The latter may be of different materials
and thickness. A large capacity computer program capable
of handling any type of plate structures was developed to

effect the solutions.

One feature of the present elements is the ability of
approximating a rather complex distribution of stresses in
the material-layers while full compatibility of displacements
and slopes is maintained at the element boundaries; this
compatibility still exists aven when elements meet at an
angle such as along the fold-lines of a folded plate structure.
Another feature is that the transverse shear deformation,
which characterizes all sandwich constrﬁctions, is taken into
account without introducing any degrees of freedom other than
the deflection and edge rotations. Having only these geo-
metrical degrees of freedom, the elements can be used for

structures of arbitrary shape.
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Application of these elements to flat sandwich

plate problems leads to the following conclusions:

1. The deflection and stresses obtained with the
rectangular and triangular elements converge rapidly
to the "exact" values as the mesh is refined. Results
given by the rectangular elements are generally better
than those given by the triangular ones for a given

mesh size.

2. For common types of sandwich construction
subjected to transverse loading, the transverse shear
deformation increases significantly the deflection of
the plates. The influence of the core shear stiffness
on the stresses depends on the type of edge supports.
In clamped plates the effect is to reduce the magnitude
of the stresses, whereas in simply-supported isotropic

plates no change in stresses occurs.

3. The solutions obtained for rectangular orthotropic
sandwich plates are in good agreement with the available
analytical solutions. The degree of orthotropy has
a great influence on the stress distribution in the

plate regardless of the type of edge supports.

Applications of the method to the analysis of two
folded sandwich plate structures and one four-storey

sandwich panelized building lead to further conclusions.
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4. Comparison of the F.E. results to experimental
data shows encouraging agreement. The predicted stresses

are generally on the safe side.

5. The connections between panels can greatly affect
the behavior of the structure; if they are not sufficient-
ly rigid, excessive deformation may result even at low

level of loading.

6. Although only results for one particular panelized
building are given, it seems that for lateral load
analysis the membrane solutions are not much different

from the full membrane-bending solutions.
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APPENDIX A

MATRICES USED IN THE DERIVATION OF THE STIFF-
NESS MATRICES FOR THE RECTANGULAR SANDWICH
ELEMENT
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APPENDIX B

MATRICES USED IN DERIVATION OF THE STIFF-
NESS MATRICES FOR RIGHT-ANGLED TRIANGULAR
SANDWICH ELEMENT
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APPENDIX C

DESIGN CHARTS FOR SQUARE ORTHOTROPIC
SANDWICH PLATES '
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APPENDIX C

DESIGN CHARTS FOR SQUARE ORTHOTROPIC
SANDWICH PLATES

Coefficients for maximum deflection and stresses in
square orthotropic sandwich plates subjected to uniform
transverse loading are shown in Pigs. C.1 to C.7. Two cases

of boundary conditions are considered:

1. Simply supported edges

2. Clamped edges

To obtain the actual values for maximum deflection

and stresses, the following relations are used:

R
Woax oga ' /D

— 2
Mpax = Baa
Qnax = Yaa

The coefficients d, B, vy are obtained by finite element

analysis using an 8 x & mesh idealization of one quadrant of

the plate.
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