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ABSTRACT

Analytical and Computational Studies on Liquid
Behaviour in a Zero Gravity Environment

Wei Yan

Analytical and numerical investigations regarding the behaviour of a
mechanical system that is comprised by a liquid-vapor-solid vessel in a zero

gravity environment are presented.

The analytical results focus on the static states assumed by the system
when all the body and frame forces, except the surface tension forces, are
removed. It is shown that the stationary state of the system with the smallest
vapor-liquid interface is also the state of absolute minimum of the global
potential energy. A new variable, the critical depth, that demarcates the
transition from one static state to another with different characteristics, along

with the interface configuration ratio, are used to describe the phenomenon.

The dynamic effects are analyzed through the solutions of continuity,
momenta and the free-surfice kinematic equations, and the Laplace-Young
and Dupré-Young conditions. Simulations show the dynamic response of the

system during transitions from one to zero gravity static states under the

iii




influence of various physical and geometric conditions. As expected, the
results demonstrate that the nulled gravity stationary state is approached
asymptotically as the dynamic effects diminish due to the action of the viscous
dissipation. The interface formation time is shown to increase with the
Reynolds number and the contact angle. Finally, transitions from one
stationary state to another where the global potential energy attains its

absolute minimum value are confirmed numerically.
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CHAPTER 1

INTRODUCTION

1.1 General

The study of liquids in near zero gravity environment has been
strongly motivated by the recent activities in space technology. The increasing
sophistication of space vehicles and their missions, has brought forth serious
attention to the problems associated with the behavior of fluids under

reduced gravitational conditions.

Microgravity science deals with phenomena taking place under the
influence of exceedingly low gravitational acceleration. These conditions can
be produced in an aircraft flying through a parabolic trajectory, in drop towers,
in sounding rockets and in spacecrafts during planetary orbit or in transit to
other planets. The deployment of the space shuttle and the agreement to
build the International Space Station, Freedom (ISSF), which will be
inhabited permanently by humans, has intensified research activities in the
field of microgravity science and technology. Beginning in 1996, the ISSF is to
be built up by carrying components of the space station into orbit by space

shuttles (Canadian Press, 1991).

In Canada, one of the international partners in ISSF, microgravity

related research projects have been financially supported by the Canadian




Space Agency since 1984. Many of them have been experiments in drop
towers, some of them have been performed using aircrafts such as the KC-135
and others are being prepared for the early 1990's available through the
NASA Space Shuttle programme. The experimental capabilities and scope
will be significantly advanced with the launching of the ISSF where longer

test durations become available.

Problems related with liquids stored in space vehicle tanks under zero-
gravity environment are currently under investigation. The present work is
devoted to liquid behavior under static and dynamic conditions. The analysis

is carried out using analytical and computational methods.

1.2 The Problem

A liquid and a vapor contained in a solid vessel are in contact with
each other and are separated by an interface that behaves as though it consists
of two homogeneous fluids separated by a uniformly stretched membrane of
infinitesimal thickness (Young, 1805). The surface tension of a liquid is
defined as the surface potential energy per unit area of surface. A fluid particle
located near the surface of a liquid is subjected to a resultant force directed
back into the liquid. A particle at the surface can thus be considered as having
potential energy greater than that of a particle inside the liquid. The value of
the potential energy is equal to the work that has been expended against the
resultant force in bringing the molecule from the interior to the surface. The
surface potential energy is proportional to its surface area. Surface tension

strives to make the surface as small as possible. Thus the surface tends to

2



form a shape of minimum area, which therefore has minimum potential
energy, the condition for stable equilibrium. For example, a drop of liquid
tends to become spherical, since a sphere has minimum surface area for a

given volume.

A schematic diagram illustrating how these surface tension forces act at
the solid-liquid-vapor interfaces in a capillary dominated environment is
presented in Figs.1.2.1 and 1.2.2. The free surface energies at the solid-liquid-
vapor interfaces may be visualized in the forms of the surface tension forces
acting in the direction of the surface, denoted Dy 6. The contact angle is the
angle between the tangential planes to the solid-liquid and liquid-vapor
interfaces at the line of contact with the solid. A wetting liquid is the one with
the contact angles lying between 0° and 900, as shown in Fig.1.2.1. An example
of this is water in contact with glass. Moreover, most propellants to be
considered are wetting liquids. Non-wetting liquids form contact angles
between 900 and 1809, as shown in Fig.1.2.2, the best examnple being mercury in
contact with a glass. The wettability between the liquid and the container

defines whether the spherical surface encloses the liquid or the vapor.



INTERFACE

Fig.1.2.1. Surface tension and contact angle of wetting liquid

in zero-gravity.



INTERFACE

Fig.1.2.2. Surface tension and contact angle of non-wetting liquid

in zero-gravity.




It is observed that the contact angle depends entirely on the nature of
the solid-liquid-vapor interfacial surfaces. The contact angle has a definite
value when the states of the interfaces are fixed. Laplace's second law of
capillarity indicates the constancy of the contact angle in a given system, that
is, the contact angle remains constant in any gravity field because the

intermolecular forces are independent of the level of the gravitational field.

in general, a liquid is under the influence of inertial and
intermolecular forces that are represented in the form of surface tension
forces. In a normal gravitational field the inertial forces dominate and the
surface tension forces are suppressed becoming only significant in very small
fluid systems. Thus, the development of the liquid interface and the pressure
is mainly due to inertial forces. In orbit, the actual value of gravitational
constant does not decrease substantially. Inside the spacecraft, however,
almost 0-g conditions are present since the centrifugal acceleration balances
the gravitational acceleration. The forces arising due to non-uniformity of the
earth's gravitational field, solar activity, aerodynamic deceleration, internal
gravitation, forces generated due to the interaction of the electric charge of the
apparatus with earth's magnetic field and solar pressure are extremely small.
Therefore, in a microgravity environment surface tension may become
comparable to inertial forces and hence exert a great influence in the
development of the liquid-vapor interface. In the present thesis zero gravity
environment will imply that the effective body force is zero and all the other

extraiieous forces are neglected.

Future space activities will require the handling and storage of a large

amount of liquids. These will include fuel for control motors and refueling of
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smaller vehicles, water, atmospheric gases in liquid form, cryogens and other
types of liquids used in experiments or industrial processes. There are many
problems associated with liquid behavior in a microgravity environment. A
typical example can be found in the propellant tanks of space vehicles.
Improper positioning of the liquid (away from the draining outlets) may
cause ingestion of gas bubbles, resulting in changing flow rates and mixture
ratios and adversely affeci engine performance. Vortexing during propellant
draining enhances the severity of the problem. Similar difficulties are also
encountered during liquid filling. The liquid may be forced by external
disturbances to oscillate. If it happens that the forcing frequency is proximal to
the liquid mass natural frequency, attitude control difficulties and in severe
cases structural damage may result. Although many of the problems
associated with the physics of liquid motion in microgravity, such as liquid
positioning, sloshing, draining and refilling, have been solved in the past by
practical means, they, however, have generated additional difficulties.
Knowledge of the liquid-vapor interface dynamic behavior and the final
equilibrium liquid configuration is essenual to solve the problems of effective
tank volume and effective liquid storage, pump inlet design, positioning of
tank inlets and outlets, and the orientation control of space vehicle.
Therefore, a better understanding of the physics of solid-liquid-vapor systems

is required.



1.3 Previous Work

Study on surface tension phenomena can be traced as far back as
Leonardo da Vinci and Sir Issac Newton. It was Young who first established
the theory by demonstrating how the principles of surface tension and contact
angle can be used to explain many capillary phenomena. The theory was
represented on a mathematical formula by Laplace. Gauss obtained the
equation of the free surface and the conditions of the contact angle by
applying the principle of conservation of energy to the system. Dupre and
Gibbs utilized scap bubbles and other devices, and determined the

equilibrium configuration of liquids.

Although work on capillary-dominated fluid motions started early in
the 19th century, serious attention to problems of liquid setting and interface
dynamics as related to liquid storage and management at spacecrafts under
microgravity conditions began around the end of 1950s and the early 1960s.
Extensive research was carried out during that period. The status of zeroc-
gravity technology at that time was surveyed by Unterberg et al (1962). A
comprehensive review by Otto (1966) also summarized the fruitful results

during that time.

Benedikt (1959, 1961) studied the hydrostatic behavior of liquids in
microgravity environment, while liquid deformations due to surface tension
forces were taken into account. He indicated that there is a transition period
between the time when gravity is removed and the time when an

equilibrium is established.



Several researchers have analytically investigated the configuration of
the liquid-vapor interface under zero-gravity conditions. Solutions for the
configuration of the interface between parallel plates was presented as a
function of the gravity field by Reynolds (1961). These formulations and the
principles have inferred the configuration of the interface in other
geometries. Li (1961, 1962) predicted the interface configuration in many
geometries by applying the minimum energy principle. He showed
conclusively that the configurations are primarily dependent on the tank
geometry, the contact angle, the ullage, and the gravitational level. The
equilibrium interface in a cylindrical container of a general cross-section was
calculated by Concus (1986). Their analtical approach was valid in predicting

the steady state case with large liquid heights.

Several types of zero-gravity facilities, such as drop towers, airplanes,
ballistic rockets and orbiting vehicles, have been used to conduct experiments
in the past. Each of them involves the use of free fall, or force equilibrium
with the local gravitational field. Among these, the drop tower, the aircraft
flying on a parabolic trajectory, and the ballistic rocket have been the most

popular.

A number of experiments have been carried out in drop towers.
Reynolds (1959) examined wetting and non-wetting liquid placed in a
transparent container with different ullage by means of still and motion
picture photography during a 1-second free-fall in the drop test. The results of
his study indicate that wetting liquids in spherical tanks will crawl around the
container walls, leaving a vapor pocket in the center. Non-wetting fluids

coalesced as a globe in the center of a container, with a complete vapor



blanket between the globe and the walls. Experimental studies concerning the
interface dynamic response to changes in gravity levels were conducted in the
NASA Lewis Research Center 2.3 seconds drop tower facility. The
observations verified the analytically predicted free-surface configurations
(Petrash, et al, 1962, 1963). These experiments were conducted in various
geometrical containers at several filling ratios using liquids forming three
different contact angles (0, 40, 125 degrees) with the solid wall. The
experimental work was confirmed and extended by Clodfelter (1963) who
reported on the end boundary effects in flat-bottom cylinders at the 1.85
second drop facility. A free-fall experiment in a drop tower with a capillary
tube geometry verified the contention that the solid-liquid-vapor system
tends to a configuration in which the free surface energies are minimal
(Petrash, Jan., 1963). This energy minimization process can significantly alter
the liquid-vapor interface configuration depending on the geometry
employed. Experimental studies of the behavior of liquids under various
conditions under the absence of gravity forces were also conducted by Siegel

(1961).

The zero-gravity test bed on aircrafts has been used for the experiments
of Clodfelter et al (1961), Neiner (1959) and Trusela et al (1960). It was found
that the time required for damping out interface oscillations increased with
the decrease in viscosity. Non-wetting liquids tended to form a sphere

removed from the tank wall, as did the gas ullage with wetting liquids.

An analytical method to predict the time required for a liquid-vapor
system in a spherical conta.ner partially filled with a totally wetting liquid to

deform from a gravity dominated condition to that of a nulled gravity

10



equilibrium state was presented by Paynter (1964). A dimensionless time
parameter was proposed to estimate zero-gravity liquid deformation rates at
different tank radii. A free-fall experimental study was conducted to
determine the time required ‘or the liquid-vapor interface to reach
equilibrium in spherical, cylindrical, and annular tanks by Siegert (1964). The
dependence of the time to reach equilibrium as a function of the pertinent

liquid parameters and system dimensions was obtained.

Although experiments under =zero-gravity can provide real
information on the liquid behavior, a number of factors affect adversely the
results. The short time durations (2 to 3 seconds) of microgravity conditions is
the major disadvantage of drop towers. It was reported that complete stability
or equilibrium of liquid were not achieved in all test drops. Furthermore, the
undesirable influence of initial disturbance created while releasing the
container becomes quite significant. Thus, such experiments are not suitable
for investigating liquid dynamic processes leading to steady-state or
equilibrium states, since the liquid dynamic motion usually does not rezally
reach the state of rest within a few seconds. Alternatively, microgravity
conditions can be maintained for about 25 seconds by an aircraft flying a
parabolic trajectory. The inaccuracies in the flight trajectory due to pilot error
and side gusts, and the long dead time required, reduces significantly the
effectiveness of the method. Another disadvantage is that the experiments

have to be carried out in batches.

Liquid dynamic behavior of the free surface during a step trausition
from terrestrial field to zero gravity in rectangular and cylindrical tanks have

been investigated numerically by Vatistas et al (1990, 1991).
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1.4 Thesis Outline

Since experimental tests are still prohibitively expensive and most
often impossible, the present work is devoted mainly to analytical and
numerical methods with the aim to study aspects of the mechanics of liquid
interface under zero gravity. More specifically, the present investigations deal
with (a) the liquid static shapes under zero gravity conditions, and (b) the
dynamic response of the free-surface during a step transition from one gravity
to zero gravity. The zero gravity stationary states are obtained using analytical
methods, which is confirmed by the computational approach, while the

transient response is accomplished via numerical methods.

The analytical part of the thesis concentrates on liquid free-surface
characterization under hydrostatic conditions in a nulled gravity
environment. This is achieved based un the minimum potential energy
principle, resulting in two new dimensionless parameters: the interface
configuration ratio and the liquid critical depth. The latter parameter
represents the condition (critical height) under which the free-surface splits
into two fluid bodies in search of the most preferable equilibrium condition
(global potential energy extremum). The stationary interface configuration for
containers given the contact angle and ullage volume can be predicted by the

value of the critical depth.

The numerical results are obtained using a modified version of the

code previously developed by Nichols et al, (1980). Simulations concerning

12



the liquid interface dynamics in rectangular and cylindrical containers are
accomplished solving simultaneously continuity, the Navier-Stokes
equations, the kinematic free-surface condition, and the Laplace-Young
equation. Time required for the static free-surface formation as a function of
the Reynolds number and the contact angle is of primary importance. The
new hypothesis concerning the most preferable equilibrium condition (for
liquid heights smaller than the critical depth) is confirmed by the numerical
results. The numerically obtained steady-state interface configuration is found
to be in conformity with the analytical results as well as the limited

visualization experiment reported by Petrash et al (1963).

In this chapter, fluid problems under microgravity and discussions
concerning the methods employed to solve the problems are introduced.
Chapter 2 deals in detail with the interface shape and location, as well as
liquid distribution at the equilibrium state by introducing and discussing
interface configuration ratios and critical depths. Chapter 3 is concerned with
the dynamic behavior of liquids during the transition from the terrestrial to
weightlessness conditions by the computational technique. The finite
difference method is presented. Chapter 4 considers the dynamic responses to
the transitions and variations between analytic and numerical analyses.

Chapter 5 provides the important conclusions.

13




CHAPTER 2

LIQUIDS IN STATIC EQUILIBRIUM

2.1 Liquids at Equilibrium State

The purpose of the analytical investigations is to determine the static
liquid-vapor interface shape under zero gravity conditions. Two dimensional
rectangular and cylindrical geometries are to be considered. Liquids forming a

variety of contact angles with the containing walls will be investigated.

A rigid tank partially filled ».ith an incompressible and homogeneous
wetting liquid is subjected to zero-gravity, shown in Fig.2.1.1. In a normal
gravitational field, the fluid mass develops a pressure gradient. This arises
from the fact that the fluid on the lower layers must support the weight of the
liquid above. Hence, on the Earth, for relatively large containers, the capillary
effects are suppressed and result in a distorted, flat and free liquid surface. In
space, particularly in the zero gravity environment, the free surface shape will
be the results of surface tension and wall adhesion forces since other forces

and accelerations are negligibly small though they may not completely vanish.

Using variational principles Myshkis et al (1987) proved that the
potential energy, E, for the mechanical system consisting of a liquid, its vapor

and a rigid containing vessel,



Free surface
under 1-g

Hd HL| H

Fig.2.1.1 Schematic of liquid in a rigid tank under zero-gravity
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E=6vllsvll+Glslsls|+cvs‘svsl+p] mdav (2.1.1)
v

where Sy, Sis and Sy are the areas of the vapor-liquid, liquid-solid and vapor-
solid interfaces, respectively, and oy, 6)s and oys are the surface tension at these
interfaces; II is the force potential (F=-VI1 ) and V is the total liquid

volume, will attain minima for all variations of Sy respecting the constraint

8] dv=0 (2.1.2)
\4

provided the following necessary and sufficient conditions:

Dupre-Young condition

Ovs = Ojs + Oy cos (a) (2.1.3)

Laplace-Young condition

dy dy

—

old dx +£ dx = p I + constant (2.14)

are satisfied, where €=0 or 1 indicates Cartesian or cylindrical coordinate,

respectively, and y=y(x) is the location of the interface. In zero gravity where

no extraneous forces exist (I1 = 0), equation (2.1.4) simplifies to:

16
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old| —dx 1,g(__dx |- constant (2.1.5)

From equation.(2.1.5), both the rectangular and the cylindrical tank

configurations of Fig.2.1.1 give the general free surface equation:

-é— = constant (2.1.6)

Hence, in a weightless environment, the equilibrium liquid configuration will

deform reaching a constant curvature free surface.

The contact angle requirement indicates that:

dy
- = cot (o)
dX(x_-_L) (217)
The surface radius is then
R=—L
cos(o) (2.1.8)

Under the condition that the liquid-vapor interface curve passes

through the point (0, H), the equation of the interface is given by

x2+[(H + R-y]2=R? 0<x<L) (2.1.9)

for concave down as wetting liquid and

17




x2+[(R-Ho) +y]?=R?  (0<xsL)

for concave up as non-wetting liquid, respectively.

Solving for y from equations (2.1.9) and (2.1.10), yield
y=R+H.-VR?-x2

y=H.~R+4VR2-x2

for wetting and non-wetting liquid, respectively.

From the above equations,

AH =|H| - H¢|=[R - VRZ- 12|

or

H.=H| + AH

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

(2.1.14)

The distances of the vertex at the central line from the original one-g

liquid level in rectangular or cylindrical tanks are given by

rect =

T cas? @) cos (o) [2 - sin ()] - (% - a)}

18
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in3
5=l 1- 2_[1 - sin ((!)]}
N cos (@) { 3 cos? (o)

(2.1.16)
respectively.

If equations (2.1.15) and (2.1.16) are divided by L, their dimensionless form is

obtained:

Srect = cos () [2- sin (0] - (% - @117

—1 {
2 cos? (o)

Se=—L—{1-2

cos () 3  cos2 (o)

= _ 1 {1 2 [1 — sin3 ((1)]} 2118)

for rectangular and cylindrical geometries, respectively.

2.2 Interface Configuration Ratio

The potential energy of a mechanical system consisting of a liquid, its
vapor and a solid container under zero gravity, when all the extraneous forces

have been removed is:

E=0v1l5v1|+clslsls‘.*-cvs!svsl (2‘2'])

It is assumed that there are two liquid configurations, (a) and (b), where the

energy is minimum. The variation of E is then given by:
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O = Oyl 8 | Svll + O SI Sls l + Oy 8' SvsI (2.2.2)

Since
85| =~ 3|S5yl 223)
then
8E=o0, {Sl Syi| +co0s (@) 8] 5, l} (2.24)

If assuming that Sy for (b) is less than that for (a), then 815y, ! < 0. For this case

31551 > 0, which implies that 81Sys | < 0. Therefore,

SE<0 or Ep <Ej (2.2.5)

The latter suggests that the state with the smallest vapor-liquid interface is the
one with the absolute minimum potential energy. If the interface area is not
initially at a minimum, will become so through a dynamic process. If on the
other hand it is at a local minimum then given a disturbance of an
appropriate magnitude it might degenerate to the the absolute minimum
state. Hence, for a given amount of liquid, the system with the smallest liquid-
vapor interface area will be the preferable state. The symbol 0 is defined here
as the interface configuration ratio, which is represented by the ratio of a
liquid-vapor surface area to the liquid volume in a tank in the static

equilibrium state. Mathematically

20



=A
9=g (2.2.6)

where A is liquid-vapor interface area and V is liquid volume. In certain
situations the free-surface might have several configurations (bifurcating
solutions) that satisfy Laplace's equation and the contact angle requirements.
In this situation the system will tend to the state with an absolute free-surface
erergy minimum. The smaller the normalized interface configuration ratio 6
(6= 8 L) the smaller the free surface energy since V/L3 remains constant. This
type of the configuration is more stable and more likely to be formed ° -

certain amounts of liquid while maintaining the same contact angles.

2.3 Wetting Liquid Interface Configurations and Location of Liquid

in Rectangular Tanks

Two cases of wetting liquids (contact angle between 0°and 90°) in
containers in a zero gravity environment are introduced here. One of them is
under the condition that the liquid volume is sufficient to cover the base of
the containing vessel in all cases. The other is that the volume of a liquid may

not be enough to cover the base of the container.

2.3.1. Configuration System 1

Consider a wetting liquid in a rigid rectangular tank in the zero gravity
environment, given in Fig.2.3.1. The interface area and the liquid volume

enclosed by the interface and tank walls of the configuration system 1 are

21



obtained by the liquid surface area and volume integrals, respectively. Thus,
the interface configuration ratio of the liquid-vapor interface area to liquid

volume in the system 1, 6, is

B
- i 23.1
cos (o) {Hc +L [1 sin (@) - B +1tan (a)]} ( )

cos (o) 2cos? (o) 2

erl =

(05a<1§-)

Where o is the contact angle, H¢is the liquid depth which is the interface

height from the bottom of a tank at the central line, L is the half width of the

tank, and
pr=7-c. 2.3.2)

The dimensionless 6:1 is obtained by multiplying with L on both sides

of the equation (2.3.1).

By

lT-sin(@) P 1 (2.3.3)
cos (o) 2 cos? (o) *2 tan (o)

Or1 =

cos (o) {_ﬁc +

(Osa<129-)



y A

Fig.2.3.1 Wetting liquid configuration system 1

in a rectangular tank under zero-gravity



where dimensionless H is

i -He 23.4
H, 5 (23.4)

The distance between the liquid surface at the center and along the solid

walls AH, in dimensionless form is:

1 —sin (o)

AH =
cos (o)

(2.3.5)

Figure.2.3.2 shows that AH decreases with the contact angle.

The maximum value of H, is reached when the liquid-vapor interface

approaches the top of a tank, mathematically,

2 cos (o) +sin (o) ~- 1
cos (o)

=H_AH-=
= - AH (23.6)

¢, max

In Fig.2.3.3, the results of the equation (2.3.6) reveal that —ﬁc max is the function

of contact angles, rising almost linearly with the contact angle.

The configuration ratios decrease with increasing liquid depth H, for
different contact angles are showr in Fig.2.3.4. It indicates that the
configuration ratio is monotonically decreasing with H, for different contact

angles.
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Contact angle (degrees)

Fig.2.3.2 Dimensionless AH versus contact angles
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Contact angle (degrees)

Fig.2.3.3 Dimensionless Hemax versus contact angles
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Fig.2.3.4 Dimensionless configuration ratio 6,1 versus

liquid depth H. at different contact angles

27




I

Equation (2.3.3) suggests that the dimensionless ratio 6:1 is a function of
the liquid depth H, and the contact angle a. The dependence of liquid depth
with respect to the contact angle has been discussed above. The smaller liquid
depth H,, the larger the arl. The minimum value of Erl,mi,, will be obtained
when the interface along container walls reaches the to‘g of the tank, that is
He=Hemax, see Fig.2.3.5). The minimum configuration ratio in

dimensionless form is given by:

S 4 B; cos (@)
L min e + 20 +4 cos 20) +sin (2a)

(23.7)
As shown in Fig.2.3.6, H¢ appears to approach zero as maximum 6;1,max
is reached.

6 _ 4 By cos (o)
Tl, max 4cos (o) -sin(2a) -t +2a

(23.8)

However, this phenomenon may not be true, it will be discussed in detail in

section 3.4.
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He

H=2L

Fig23.5 Minimum interface configuration ratio of system 1

in a rectangular tank when He = Hmax under zero-gravity
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H=2L

L L Liquid

Fig.2.3.6 Maximum interface configuration ratio of system 1 in

a rectangular tank when H_ = (0 under zero-gravity
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2.3.2. Configuration System 2

The other possible interface configuration for system 2 is shown in
Figs.2.3.7 and 2.3.8 for contact angle o less and more than 45 degrees,

respectively. The interface configuration ratio 6 is given

22, sinp;

Or2 = O<a<k
i Xr( sin2 B, + sin B cos B2 - BZ) ( 4) (23.9)
272 B2 sinf;
Or2 = Eegel
: X, { sin2 B, - sin By cos B2 + Bo) (4 2) (2.3.10)

where X; is liquid wetting length on a side of the tank wall, and

Pa=|E-a (23.11)

The value of the minimum 83 min for this separate symmetrical system
is obtained when X, — L, as shown in Figs.2.3.9 and 2.3.10. Equations (2.3.9) and

(2.3.10) become the followings at the non-dimensional form.

- Zﬁﬁz sin B

0r2,min = Osa<k 23.12
P sin2 B2 + sin By cos B2 - B2 ( 4) ( ‘
- 212 B, sin 2

8:2,min = Bz sin B (ﬁ“ <ac< ’?f) (2.3.13)

sin2 B, - sin B, cos B2 + P2
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Fig.2.3.7 Wetting liquid configuration system 2 (0° < o < 45°)
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Fig.2.3.8 Wetting liquid configuration system 2 (45° < & < 90°)
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liquid at system 2 (0° < o <45°)

Fig.2.3.9 Minimum interface configuration ratio of wetting




Xr =1,

Xy =i,

Fig.2.3.10 Minimum interface configuration ratio of wetting

liquid at system 2 (45° < & < 90°)
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24 Comparison Between configuration Systems 1 and 2 in

Rectangular Tanks

Consideration is given to systems with configurations 1 and 2 in a
rectangular tank. Here, extermination of the free energy principle is reflected
by the minimum interface configuration ratio 0. The smaller 6 obtained from
one of the systems is the most stable configuration for a given amount of

liquid.

24.1 Minimum Ratio of System 1 and Minimum Ratio of system 2

The configuration system 1 with the minimum interface configuration
ratio Oy min is shown in Fig.2.3.5 while the system 2 with 0y min is shown in
Figs.2.3.9 or 2.3.10 depending on the contact angle. The difference of interface

configuration ratios between system 1 and system 2 is presented as follows:

Aera = er2,min - erl,min

2 ﬁ BZ sin BZ 4 (12“.-— o) cos (a)

- - - 24.1
sin2 B +sin By cos Py - P; 4 — T + 20 + 4 cos (20) + sin (200) 4.1
< yi 9
(0 <o < 4)
Aera = 9r2,min - erl,min
2Y2 B, si 4 (& - ) cos (o)
P2 sin By 2 (2.4.2)

sin2 B3 - sin B cos B + By "4 -1+ 20 + 4 cos (20) + sin )

[f<a<d
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The equations (2.4.1) and (2.4.2) are plotted in Figs.2.4.1 and Fig.2.4.2,

respectively. The solutions are

ABra = 012, min = Or1,min >0 (24.3)

The graphs show that the ratio difference A6ra has all positive values, which
means that configuration system 2 has a larger 8 value than that of system 1.
Therefore, the interface at the zero gravity is shown in the configuration of

system 1 when the liquid level is high enough.

24.2 Maximum Ratio of System 1 and Minimum Ratio of system 2

N

Consider the maximum interface configuration ratio 6,1 max of system 1
shown in Fig.2.3.6 compared with the minimum interface configuration ratio

5r2,min of system 2 shown in Figs.2.3.9 and 2.3.10.

AByp = 9r2,min - er‘l,max

2Y2 B, sin B _ 4 (121 - a) cos (o)
sin2 By + sin Py cos fp - Po 4 cos (@) —sin (20) -7 + 201

(2.4.4)

(05a<7ﬂ
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Fig.2.4.1 Comparison minimum interface configuration ratios between

configuration systems 1 and 2 at contact angle (0° < o < 45°)

38



25

225

ABra 2}

1.5 - :
40 50 60 70 80 90

Contact angle (degrees)

Fig.2.4.2 Comparison minimum interface configuration ratios between

configuration systems 1 and 2 at contact angle (45° < & < 90°)
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Aby, = erZ,min - e1'1,max

212 B, sin B _ 4(%—a)cos (o)

yi9 i
(4 <o 2)
From Figs.2.4.3 and 2.4.4 the following is apparent
Abrb = 012, min — Or1,max S 0 (2.4.6)

The results show that the obtained values are negative, which means
the minimum ratio 8y min Of system 2 is smaller than the assumed maximum
0r1,max Of system 1. The configuration of system 2 given in Fig.2.3.9 or Fig.2.3.10

exists in a zero gravity only if the liquid level is low.

From above discussion, the assumed maximum ratio 5,1,max of system 1
will not be presented at the zero gravity even if the liquid is enough to cover
the base of the tank bottom under 1-g gravity because the configuration of
system 1 will change to system 2 when the liquid depth decreases, before liquid
touches the bottom which is the condition of Erl,max. Figures.2.4.5 and 2.4.6
illustrate the conclusion. Suppose the liquid depth is originally at He max, the
interface configuration ratio is E,I,min. When the liquid depth decreases, the
configuration ratio increases. When the ratio is more than that of system 2,

the configuration will be changed from the previous system 1 to system 2.
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Fig.2.4.3 Comparison of the maximum interface configuration ratios of
system 1 with the minimum interface configuration ratios of system 2 at 0°<

o < 45°
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Fig.2.44 Comparison of the maximum interface configuration ratios of system

1 with the minimum interface configuration ratios of system 2 at 45° < o < 90°
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Fig.2.4.5 Interface configuration ratio changes of system 1 due to liquid depth

Hc changing, compared with interface configuration ratio of system 2 at 0°< a

< 45°
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Fig.2.4.6 Interface configuration ratio changes of system 1 due to liquid depth
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It is interesting to notice that the liquid depth required to change the
configuration system is dependant on the contact angle. For example, the
liquid with a contact angle less than approximately 16° at a liquid depth of 0.1
still retains configuration of system 1, while the liquid with more than 160
acquires the configuration of system 2. As for the mathematical formula, the

configuration ratio goes to singularity when the contact angle reaches 450.

2.5 Wetting Liquid Interface Configuration and Location of Liquid
in Cylintdrical Tanks

Similar to the analysis of rectangular tanks, two configuration systems
of wetting liquid placed in a flat-bottom circular cylindrical tank in the zero
gravity environment are introduced here. One of which is with the sufficient
liquid volume. The other is with not enough volume of liquid to cover the

base of the container under the conditions to be investigated.

25.1 Configuration system 3

Consider a liquid-vapor configuration system 3 of a cylindrical tank
shown in Fig.2.5.1. Following the same procedure as in the rectangular tank,

the interface configuration ratio 6.3 of surface area to liquid volume is defined

by
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Fig.2.5.1 Wetting liquid configuration system 3 in a cylindrical

tank with contact angle 0° < a < 90° at zero-gravity
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2[1- sin ()]

Oc3= F 7
- . 2 - .
052 (@) {L[l sin ()]|2 cos? (&) — 1 + sin (o)) +Hc} 251
3 cos? (o)
(0 Sa< 11)
2
or in the dimensionless form
= 2[1- sin ()]
Ocs = [1- sin (0)][2 cos? (@) — 1 + sin ()]
cos? (a){ £ COS710) — 7 + Sin {Q), +ﬁc} (2.5.2)
3 cos3 (o)
i
(O <o< 2)

In Fig.2.5.2, the result of the equation (2.5.2) shows that the configuration ratio

is the function of contact angles and liquid depth.

The minimum value of 8 5 will be obtained when the interface on the

container wall reaches the top of a tank;

= 6 cos (o) [1 - sin (0)]

0c3 min =
c3;min 3 cos3 (o) + 2 sin (o) — 2 sin2 (o) - sin (o) cos? (o) (2.5.3)
while the maximum will be obtained from;
= 6 cos (o)
ec3,max = (2.54)

cos? (o) - sin2 (o) + sin (o)
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Fig.2.5.2 Interface configuration ratios versus liquid depth

at different contact angles
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2.5.2 Configuration system 4

The alternate interface configuration of system 4 for a cylindrical tank is
presented in Figs.2.5.3 and 2.5.4 for contact angle a smaller or greater than 45°.
The volume of the liquid is obtained by the integral disc method. The free
surface area is calculated by revolving the liquid-vapor interface curve about
the y axis. The configuration ratio 6.4 derived from the volume and the area is

simply expressed by

- 2Ry (L -hy B3)
%La +hyL2-RE (L - hy B3)

Ocq (OS(I<§-)

(2.5.5)

6 Ra[(hq + L) B3 - L]
Ocs = ' Lea<l (2.5.6)
419-3R§L—3m1?+3m4+uR3m (4 2)

where

_ V2 X
Ry 2 sin B (25.7)

_'\/X%—Lzsinzﬂz—LsinB;;

h

4 2 sin b2 (2.5.8)
=|BE_ :

Bz|4 a| (2.5.9)

Bi=L-2a (2.5.10)

49




YA

o [Vapor) |
~ooooooo oo | Interface
SEREEEEN 74 B VR SR
........ ” s e e e e e Q
SERREN X gl H=3L
AR AT
R....Zﬁz' S
'::::::'.:B{ NS
Yl A iRy Xe
SUCEEREY A SRR .08
.b‘l ; J >
Liquid X
O

Fig.2.5.3 Wetting liquid configuration system 4 in a cylindrical

tank with contact angle 0° < a < 45° at zero-gravity
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Xc=L-|x| (2.5.11)

Inserting equations (2.5.7), (2.5.8), (2.5.10) and (2.5.11) to equations (2.5.5)

and (2.5.6), gives the general expressions for the ratio of system 4:

2Y2X_sin P2 {ZLsin B, —[X - Lsin By (IZL - 2a)}

Bcq = : (25.12)
) 161%6in3 by + [X' - Lsin By][21.25in2 B3 - X2B3] - 2LXZsin B,

(0 fa< 11)

4

o 2 V2 X, sin B {[X + Lsin B2] B3 - 2Lsin B} 2513

c4 = N . e
§L3sin3 B-2LX2sin B-2L%in2 By X ~Lsin BoJ+[X +Lsin Bo}X2ps

(E- <a< ﬂ)

4 2

respectively. Where

X' =4/X2 - 12sin2 B, (2.5.14)

The value of the minimum 0c4,minis reached when X — L in the

dimensionless form:

_ 2 Y2sin B2 {Zsin B2 - [cos B2 —sin [32] (Ei - Za”

ec‘i,min =

(25.15)
13f1 sin3 B - 2sin B, + [25in2 By + 12\1— 2a] [cos Bz - sin Bz]

(OS(X<%)
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6 = 2 Y2sin B, { (cos By + sin [32) B3 - 2sin Bz}
e % sin® Bz - 2 sin B2 — 2sin P (cos Pz — sin Pa) + (cos B2 + sin B2) B

[fe<y

(2.5.16)

2.6 Comparison Between Configuration System 3 and 4 in
Cylindrical Tanks

The configuration system 3 with the minimum interface configuration
ratio 8c3 min is shown in Fig.2.5.1 while the configuration system 4 with the

minimum interface configuration ratio 0.4 min is shown in Figs.2.5.3 and 2.54

when X — L.

The graphs of the equations (2.5.3), (2.5.4), (2.5.15) and (2.5.16) are given
in Fig.2.6.1 and Fig.2.6.2 for a contact angle smaller or greater than 45°,
respectively. These results clearly show 5C4,mi,, to be between 6c3,min and 6c3,max
throughout the entire contact angle region of the wetting liquid. The

following conclusion can be drawn:

0c3,min < Ocg,min € Oc3,max (2.6.1)
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Fig.2.6.1 Interface configuration ratios of systems 3 and 4 in a

cylindrical tank when contact angle 0° < o < 45°
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Fig.2.6.2 Interface configuration ratios of systems 3 and 4 in a

cylindrical tank when contact angle 45° < o < 90°
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2.7 L ruid Critical Depth

2.7.1 Liquid Critical Depth in Rectangular Tanks

Equations (2.3.7), (2.3.8), (2.3.12) and (2.3.7), (2.3.8), (2.3.13) are plotted in
Figs.2.7.1 and 2.7.2, respectively. Similar to cylindrical containers, it is obvious

that a similar conclusion is arrived at.

011, min < 0r2,min S Or1,max 2.7.1)

When the liquid depth is large enough, the system will have the
configuration of system 1, as shown in Fig.2.3.5; when the liquid level is low,
the system will have the configuration of system 2 as shown in Figs.2.3.9 and

2.3.10.

Suppose the original configuration of a liquid with the contact angle of
200 js at almost full, where the configuration ratio is at Or1,min of system 1,as
indicated in Fig.2.7.3. Asthe liquid depth goes down due to volume decrease
and 61 increasing, the configuration of system 1 will remain unchanged until
or1 is equal to 6r2min where the configuration may change to that of system 2.
When the liquid level reaches the critical depth, the ratio o1 is larger than
8r2,min the configuration will be at the system 2. There is a liquid critical depth
where the configuration changes from one system to the other. At this
particular depth (critical depth), the system can have either the configuration
system 1 or 2. Below this depth, the configuration is that of system 2, and
above that depth, the configuration is that of system 1. The dimensionless

critical depth in a rectangular tank, Y,is defined by
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Fig.2.7.1 Interface configuration ratios of systems 1 and 2
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Fig.2.7.2 Interface configuration ratios of systems 1 and 2 at

contact angle 45° < o < 90°
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_ ﬁ(lzi— a)‘z sin2(1;u-oj + sin[z(lz-a)]— z(li-a)}
= 8 (’i - a’ sin ({41 - a) cos (o)
1 [sin Qo) +2 (125- - a)]
" cos (@) * 4 cos? (o) 27.2)

P$a<ﬂ

_ P25 -o)fsint(o-F) - sin2 (- ) + 2 (- )

" 8 (a - ﬁ-) sin (a - Ti-) cos (o) @7.3)
_ . [sin Qo) +2 (gu - a)]
cos (o) 4 cos? (o)
fee<y
where
Y (2.7.4)

-

I
(g Sod

If the liquid depth is greater than the critical depth, the interface
configuration will remain at system 1; while the system 2 will be obtained if
the liquid depth is lower than the critical depth. The experimental verification
by photographic study at NASA (Petrash et al, 1963) confirmed the present

analytical results and vice versa.

The critical depth can then be used to define which configuration of a

system will acquire by comparing the liquid depth with tiae critical depth.
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Figures 2.7.4 and 2.7.5 clearly demonstrates the region of configurations for a
liquid system. It is a useful tool in predicting liquid location for the design of
liquid tanks. The above analysis indicates that the critical depth has no
relation to the height of the tank provided that the latter is higher than the
critical depth, which is an important conclusion. The filling ratio of liquid
volume to container volume used before might be inappropriate as an

independent parameter.
The result obtained from the plots of the equation (2.7.2) and (2.7.3)

indicates that the critical depth is increasing with the contact angle increase, as

shown in Figs.2.7.6 and 2.7.7.

2.7.2 Liquid Critical Depth in Cylindrical Tanks

The equation (2.6.1) indicates that the @ct,mincurve is located between
0c3,min and @c3,max curves. Thus, the configuration of system 3 will change to

that of system 4 when the liquid depth is low.

The non-dimensional critical depth is
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Fig.2.7.4 The interface configurations at different liquid depths

compared with critical depth at contact angle 0° < a < 45°
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Fig.2.7.5 The interface configurations at different liquid depths

compared with critical depth at contact angle 45° < o < 90°
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Fig.2.7.7 Liquid critical depth with the contact angle at

45° < 0 <90°in a rectangular tank
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_ Y2(1-sin a{léﬁ sin3 B3-2 sin B2+‘2sin2 B2+1§—2 a)(cos B-sin Bz)]

= ' 2.7.6)
¥ 2 sin B cos? @ [2 sin By - (cos B2 ~ sin B2) (% - 2a)]
_(-sina) (2cos2 -1 +sin &)
3cos3 o
(0 Sa< 11)
4
_ Y2 (1-sina) [% sin3 B, - 2 sin B — 2 sin2 B; (cos B3 - sin [32)]
Ye = 2 sin By cos2 a [(cos B, + sin B) (Za - %) -2sin Bz]
Y2 (1 - sin @) (cos By + sin By) (2(1 - g-)
+
2 sin B3 cos? [(cos fB2 + sin 32) (Za - E—) -2sin (32]
2 2.7.7)
_(-sina) (2cos? o — 1 +sin a)
3cos’a
yid yig
(o<

Below this critical depth, the configuration is at the system 4, and above
that depth, the configuration is at the system 3. The results found from
plotting equations (2.7.6) and (2.7.7) also illustrate that the critical depth

increases when the contact angle is increased, as given in Figs.2.7.8 and 2.7.9.

The same procedures may be applied to other geometries to analyze the

critical depth.
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Fig.2.7.8 Liquid critical depth in a cylindrical tank with contact
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Fig.2.7.9 Liquid critical depth in a cylindrical tank with contact

angles 45° < a < 90°
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2.8 Non-wetting Liquid Interface Configuration and Comparison

Consider a rectangular tank partially filled with a non-wetting liquid
where the contact angle is greater than 90 degrees. The equilibrium liquid
configuration in a zero gravity environment is again a constant curvature
liquid-vapor surface meeting the tank wall at the same contact angle as was
observed in the terrestrial field. Sketches showing the configuration of a non-
wetting liquid in a rectangular tank under zero gravity is presented in
Figs.2.8.1. and 2.8.2 for configuration systems 5 and 6, respectively, depending
on different liquid depths.

Following the same procedure of analysis, the interface configuration

ratios are:

é-rs = [ b ] \ o
— [2-sin(n-a) Bs
COS(n—a){H- 2 cos (n-o) +2c052(7t—a)f

—e—rS min = Ps (2.8.2)
' _2-sin(m-a) Bs
cos (1~ o) [2 2 cos (=) 5 s a)]
b—rs,max = s : (2.8.3)
cos (- o) Bs _sin(x-o)
2cos2(m-a) 2cos (m-a)

— 2B5[1 + sin (a—g-)]

91'6,mira =

(2.8.4)
B¢ +sin? g - cos P sin P
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Fig.2.8.1 Non-wetting liquid configuration system 5 in a

rectangular tank under zero-gravity
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Fig.2.8.2 Non-wetting liquid configuration system 6 in a

rectangular tank under zero-gravity

71



c=0 - &
Bs=a > (2.8.5)

=q-L 286
Be=a . (2.8.6)

Fig.2.8.3 presents the plot of results of equations (2.8.2), (2.8.3) and (2.8.4).

The mathematical form is

Or5,min < Ore,min < 615, max (2.8.7)

It indicates that a non-wetting liquid at contact angle smaller than 135 degrees
has almost the same characteristics for configuration systems as of a wetting
liquid, that is, when liquid depth is high enough, the configuration system is

that of 5, otherwise, it is system 6.
The same principles of analytical method for non-wetting liquids at a

rectangular tank system can also be extended to non-wetting liquids in a

cylindrical tank system. Similar results can be predicted.
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CHAPTER 3

NUMERICAL SOLUTIONS

3.1 Introduction to the method

The dynamic behavior of liquids in space vehicles is a fascinating
subject that has attracted the attention of researchers in recent years. When
external forces are removed, the fluid mass will undergo a dynamic transition
with the aim to establish a new equilibrium state. Forces and free liquid shape
and position during and after the dynamic phase might dramatically affect the
liquid management systems, pumping and venting, and the stability and

control of the spacecraft.

Many techniques have been developed to determine liquid dynamics
in zero-gravity environment. An exact solution to the general problem of
liquid motion in a container on a spacecraft by the analytic method is
extremely difficult. A very small fraction of a wide range of problems can be
solved by classical solution methods. Since drastic simplifications with respect
to the physics of the problem are required to achieve analytical solutions, the
results are limited and often unrealistic. Earthbound experiments using drop
towers or aircrafts suffer from an extremely low period of microgravity which
is not sufficient to evaluate fluid response to dynamic disturbances. Orbital
experiments provide excellent means to evaluate low-gravity fluid dynamic
behavior. However at present, these are expensive and require a long lead

time to carry out the tests.



The development of numerical methods and the availability of high
speed computers has made possible simulations of the liquid free surface
dynamics. Computational methods are characterized by a lower cost and
providing sufficiently accurate information concerning the physics of the
problem. For example, the computational cost is many orders of magnitude
lower than the cost required for a similar experiment to be performed in orbit.
It is not implied here that experimental work is not required. What is
advocated is that the use of approximate solutions will give sufficient
information about the problems to be encountered and will reduce the
number of experiments that have to be performed in space. The computer
code that will be presented here has been developed to predict liquid response
characteristics for rather general conditions. The present analysis focuses the
dynamic response of a liquid in rectangular and cylindrical containers, to a
step transition from terrestrial to -veightlessness conditions. The finite
differences SOLA-VOF solution algorithm, developed by Nichols et al (1980)
and Hirt (1981) was chosen to conduct the analysis. An important
characteristic of this method is that it is strongly based on physical
considerations, not just on mathematical manipulations. The employed
numerical technique is able to successfully track the liquid-vapor interface
configuration over a wide range of conditions using the fractional volume of

fluid scheme and provide useful design data.
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3.2 Govemning Equations

The schematic of the wetting liquid problem to be studied is shown in
Fig.2.1.1. Fluids to be investigated are assumed to be incompressible with
constant kinematic viscosity v. The differential equations to be solved are
written in terms of Cartesian coordinates (x, y). For cylindrical
(axisymmetrical} coordinates, x is the radial coordinate (represented by 1), y
the axial coordinate (represented by z). A coefficient € is used to choose the
coordinate system. A zero value of € corresponds to a Cartesian geometry,
whereas a value of one refers to a cylindrical geometry. The fractional
volume of fluid scheme is represented by a function f(x, y, t). A unit value of {
indicates a cell full of fluid while a zero value is for the cell containing no
fluid. Cells with f values between zero and one contain a liquid-vapor

interface.

The mass continuity equation is

du dv

x Tay Tex 0 (3.2.1)
Momentum equations are:

x-direction or r-direction

Q.E+u_a_l.1.+v?.9.=—.1.a_g+A +VIQ_2.9_+92_L.1_ £ lé}i_.u.

ot ox dy pox X ]axz dy2 Xox %2 (322
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y-direction or z-direction

2 2
ov v ov __10p +A +V ‘a v a_\:+£_a_v (3.2.3)

u — T -

Ty T ey V1o T a2 TXax

The equation of the fractional volume of fluid is:

§)£+afu +afv +eflag
o x| oy X - (3.2.4)

Laplace’s equation for surface tension effects is:

d{\/ (@] v;‘y(‘dy‘)z 329

The velocity components u, v are in the Cartesian coordinate

directions x, y or cylindrical coordinate direction r, z, respectively. Body or

gravitational accelerations are denoted by A,, Ay. Fluid density is denoted by

p. Surface tension is expressed by ©. P is the surface pressure.



3.3 Finite Difference of Momentum Equations

The finite difference mesh used for numerically solving the
differential equations consists of uniform rectangular cells of width Ax and
height Ay. Fluid velocities and pressures as well as the fractional volume of
fluid are located at cell positions as shown in Fig.3.3.1. The u-velocity
component is at the middle of the vertical sides of a cell. The v-velocity
component is located at the middle of the horizontal sides. Pressure and
fractional volume of fluid are at the cell center. The finite difference notation
in Fig.3.3.1, subscripts i and j denote ith cell in the x-direction and jth cell in
the y-direction at cell centers, i+; denotes the right cell edge, and j+} denotes

the upper cell edge.
The finite difference of momentum equations are

n+l n+1
ull=u,, 4 At -ﬁL-—PliL+Ax-FLUX-FLUY+VISCX\ (33.1)
Fy 7 AX .
\B‘E—‘(fi,j + f|+1,i)

2

n+1 n+1
vitl=v, 4 At ’-EL—B—M— + Ay - FLVX - FLVY + VISCY\ (33.2)
*2 2 A
‘p_zz(fi,j + fx,jﬂ)

where At is the time increment. The superscript on quantities evaluated at
time nAt are omitted, while n+1 means the next time step. The advective and

viscous terms in equations (3.3.1) and (3.3.2) are defined by the followings:

Ui+l
2

2 Ax

FLUX =

(Ui - wig; + y[sgn (u.,%,;)] (2 vy - wig) - uig)) (3.3.3)
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FLUY = ZVA.; {ui.;?,q - ui*;—i-l + [Sgn (V.v)] (2 Ux.%,j - uh%,‘)-l - uh%.in»

=1(v. . . ,
Vav = 4 (Vn'l,)-lz. + vx,p% + Vx,)-.;. +Vi¢1,]+§.)

=V 3 .
VISCX = Zx—;(ul%'] -2 uu%.) + ui—‘?]) + ‘AM-(UN»%JH -2 Ui%,j + uh%,i-l)

Ujedj = Uyl Uil
i#z,l 12,) _ hi,)

2Ax2(i-1) Ax?(i—1)

+VE

FLVX = ;Aa; (Vin,p.}i = Viapt + Y [sgn (ua)] (2 Vigl = Victge = Vm,;»%)}

Vijel

FLVY = . Z’ [v,,,+% - Vij1 + y[sgn (vi,p%)] (2 Vil = Vipl = Vn,jo%)}
y

Uav =i‘(ux-%,) + ul—lz.,)ﬂ + uu%,; +u|¢.;.,)+1)

VISCY = -~y (V1+),j+l -2 Vsl + Vx-l,jol.) + v (V Ljed — 2 Vil + Vx,j-l.)
Ax? 2 7 N 2 2 2

+VE

Vietjel = Victjel }
ks SR

2Ax2 (i -1.5)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

where sgn(u,,) represents the sign of Uav. A parameter ¥ governs the choice

of the donor-cell or centered-difference approximations. The second order

centered-difference approximation is indicated by a zero value of Y. When ‘¥

is equal to unity, the first order donor-cell form is obtained. A ¥ value

between zero and one corresponds to the approximation between first order

and second order, which can be easily adjusted to satisfy both numerical

stability and accuracy requirement.
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3.4 Finite Difference of Continuity Equation

The velocities computed from equations (3.3.1) and (3.3.2) will not, in
general, satisfy the continuity equation. The pressure must be adjusted in
each computational cell to arrive at the required values of velocities. The

finite difference form for continuity equation is:

+1 n+l n+1 +1 n+l n+l
Uil = UL, V- VilL Uil = WL
DT,,”= 3 7 2 2+E( ‘2 2)=O (3.4.1)
Ax Ay 2 (i-15) Ax

If the divergence of a cell, Df}’, is negative value indicating a net flow of mass
into the cell, the cell pressure is needed to be increased to eliminate the
inflow. Likewise, the pressure is decreased to draw a flow back when there is
the net flow out of the ceil. Because there is one pressure variable for each
cell, the divergence for each cell can be driven to zero in this way. The

pressure change Ap to drive D[}’ to zerc for an interior cell containing fluid

and for a fr:e surface cell is described by equations (3.4.2) and (3.4.3),

respectively.
n+1
Ap =~ D,
2at|—1l—4+ 1 (34.2)
Ax)?  (ay)

Ap =(1-1) Pp+nPs - P;; (3.4.3)
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where Ps is a pressure at the surface, Py, is a pressure inside the fluid and Py ;is
the surface cell pressure. m is the ratio of the distance between the cell centers
and the distance between the free surface and the center of the interpolation

cell.
The new cell pressure is then adjusted to

P, + Ap (3.4.4)

and thus new velocity components located on the sides of the cell are

adjusted to reflect this change.

At A
Uely = U+ A P (34.5)
X
At A
T P (3.4.6)
X
Vil = Vil + At Ap (3 4 7)
2 2 Ay i
At A
Vl,,—% = vx,rlz- - P (3 4 8)
Ay 4.

The iteration of the pressure adjustment usually is required because its
neighbors are affected when one cell is adjusted. The iteration proceeds by
sweeping the computational mesh row by row starting with the bottom and

working upward. For each cell, the divergence, D], is computed using the
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most current velocity values available. If D values in all cells reach a very
small number, typically of order 10-3 or smaller, the iteration is considered to
arrive at convergence. Multiplication of Ap by a coerticient @ can be used to
accelerate the convergence of the iteration. The value of w in this solution is

set to 1.7.

3.5 Fractional Volume of Fluid and Surface Tension

The function of fractional volume of fluid is governed by equation
(3.2.4). A straight line cutting through a cell can be assumed as an
approximate interface. The interface slope is determined using a function Y(x)
or X(y), depending on its orientation. When the interface is described by Y(x),

it is approximated to

Y, = Y0o) =[fG, j-1) + £G, ) + £(, j+D] Ay (3.5.1)
then
Yi+ - Yi—-
‘dd%) =it (3.5.2)
i 2Ax

dX/dy can also be obtained in the same way.

The smaller value between the I%Iand is chosen to be the

dx
dy

approximation of the slope. After determining the slope of this line, it can
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then be constructed in the cell with the known amount of f volume lying on
the f fluid side. This line provides the information for the application of free
surface pressure boundary conditions. Once the curvature in each free surface
cell is obtained from the functica Y(x) or X(y), the surface tension pressure

can be found.
3.6 Boundary Conditions

Boundary conditions are satisfied by setting appropriate velocities in
the fictitious cells surrounding the mesh. The left boundary will be discussed
as follows while the boundary conditions at other walls are analogous. If this
is a no-slip rigid wall, for all jth row,
u‘l,) = 0 (36.1)
Vij =~ Vy, (3.6.2)
If it is a rigid free-slip wall, for all jth row,
u, = 0 (363)

Vij = Vaj (3.6.4)

The continuative boundary conditions used at the left wall for all jth

row are



Uy, = U, (3.6.5)

Vi) =V, (3.6.6)

No-slip and free-slip conditions are imposed on the velocities
computed from the momentum equations and after each time cycle of
pressure iteration through the mesh. These continuative boundary
conditions, however, are only imposed after applying the momentum
equations and not after each cycle through the pressure iteration. P and f
given in the following equations are imposed to no-slip, free-slip and

continuative conditions.

Pyj=Py, (3.6.7)

fi,=f, (36.8)

For the free surface boundary conditions, velocities are set to vanish

the divergence on every cell boundary between a surface cell and an empty

ou  ov
one. Zero values for 3y or 3x are also used to set exterior tangent velocities to

a free surface on boundaries between empty cells adjacent to a surface cell.
The free surface boundary condition for normal stress is also satisfied by the

equation (3.4.3).
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3.7 Computational Procedure

The fluid computation is advanced through a series of time cycles. Each

time cycle at one increment in time, At, consists of three steps:

(a) Finite difference approximations of the Navier-Stokes equations
are used to compute the first guess for new time level velocities using the
initial conditions or previous time cycle values for all advective, pressure,

and viscous terms.

(b) Pressures are iteratively adjusted in each cell and then the
velocity changes induced by each pressure change are added to the previous
velocities obtained from the last step in order to satisfy the continuity
equation. Iterations usually are necessary because the pressure variation

required in one cell to satisfy equation (3.2.1) will affect the four adjacent cells.

(©)  The function of fractional volume of fluid defining fluid regions

is calculated accordingly to give the new fluid configuration.

At each step, suitable boundary conditions must be imposed at all mesh
and free surface boundary cells. Repetition of these steps will arrive at a

solution through any desired time period.

The computational code is mostly run on the Digital Equipment VAX
6510 computer (VMS system), called VAX2; while the result data processes
and vector plots are performed on SUN STATION computers, called
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MAXWELL (UNIX systemn) at the Concordia University. From 5X16 to 20X24
cells are usually used for the analysis. The CPU time used for running the
program varies mostly from 15 minutes to 3 hours on VAX 6510, depending

on the problem to be dealt with.

3.8 Discussion of Conservative and Non-conservative Form

The substitution of the continuity equation (3.2.1) into momentum
equation (3.2.2) and (3.2.3), yields the conservative form of momentum,
which is widely used in the past (Welch et al, 1966; Hirt et al, 1975). For this
form, the divergence D is required to be vanished. However, in the numerical
method, it is sometimes hard to insure the exact zero value of the
divergences in the continuity and momentum equations because of the errors
resulting from the pressure iteration, the inherent errors in finite differences
and roundoff errors by the con.nuter. The computational results obtained
from the comparison of conservative with non-conservative forms confirm

that the non-conservative form might be advantageous.
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CHAPTER 4

RESULTS OF THE NUMERICAL
SIMULATIONS

4.1 Liquid-vapor Interface Dynamics and Configurations

The dynamic behavior of the liquid-vapor during a step transition
from terrestrial conditions to weightlessness and its configuration when all
the transient effects have died down are the subject of the present
investigations. The hypothesis concerning the most probable liquid-vapor
interface position for heights less than the critical depth will be also verified
by solving the complete set of fluid equations. Since only limited
experimental data in microgravity environment from the literature are
available, they are used as reference for studying the deviation of the dynamic
behavior obtained from the numerical analysis. The validation of the
numerical technique is also made by comparisons with the steady state

solutions derived from the analytical methods.

A rigid container partially filled with a wetting liquid, as shown in
Fig.2.1.1, is considered to undertake a step transition from terrestrial
conditions to weightlessness. Originally at time t = 0, the system is under the
influence of one gravity. At time t = 0+, the system is subjected to zero-gravity.
During the transition period, the system is assumed to preserve the contact

angle. The equations of momenta, continuity, fractional volume and surface



tension pressure are marched in time using the previously presented
numerical technique. The velocity components, free surface shape etc. are

recorded at a chosen time level.

The dimensionless time and the normalized interface formation time
will be used as the measuring parameters in the transition process. In order to
derive a non-dimensional form of time, the characteristic time given by

Abramson (1966):

3
=1/ =P 4.1.1)

o]

is used, where t, = the characteristic time; p = density of the fluid; L = the half
width or radius of a container; 6 = surface tension. Thus, the time level in

dimensionless form is defined as

-t
" 412)
The dimensionless interface formation time, 1, is represented by

1= 105 (4.1.3)

to
where tpsis the time required for the liquid-vapor interface oscillations to

decay to 0.5 % of the original amplitude. All the linear dimensions are

normalized by using the half width or radius of a tank, L.
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The dynamic interface response and velocity vectors to the gravity
change in a rectangular tank are demonstrated in the four frames, as shown

in Fig.4.1.1.

(A). At time t = 0, the fluid is in 1-g field. The existence of iarge body
forces restrains the free surface to generate a large depression arising from the
curface tension forces. The velocity components are zero and the pressure is

hirdrostatic.

(B). At t =9, the gravitational forces have long been removed at zero-
gravity and the surface tension forces are a dominant factor. The interface at
central line is moving down and that at walls is moving up. The velocity

components are not zero.

(C). At t =19, the fluid is still moving while the amplitudes of liquid
velocities are smaller than that at t = 9. The profile of liquid-vapor interface is
primarily formed. The velocity components certainly remain non-zero.

(D). The liquid stops moving and oscillation at t=238 when the liquid
system reaches the equilibrium state under zero-gravity. The liquid-vapor
interface becomes a surface of constant curvature intersecting the wall at the
contact angle. The steady state configuration of system 1 indicated by the

analytic approach is obtained.
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Figure.4.1.2 also demonstrates the dynamic processes of liquid in a
rectangular tank during the transition period from 1-g to 0-g when the initial
liquid depth is lower than the critical depth. Frame (A) is under 1-g gravity
field. At frame (B), t = 0.5, the movement of liquid is severe. At frame (C), the
liquid is separated into two parts as the result of liquid movement. The liquid
is still moving and the interface is not steady whereas the amplitudes are
rather smaller than that at previous phase. Frame (D) shows the
configuration of the system at the steady state, when the interface becomes
stable and velocity components are zero again. The plot of this phase is as

expected by the analytic method to be configuration of system 2.

Similar calculations for a cylindrical tank are presented in Figs.4.1.3 and
4.1.4. The results illustrate the same characteristics as that in a rectangular
tank. The graphs from the numerical analysis agree with that derived from
the analytic method. The configuration systems 3 and 4 are confirmed by plots
of (D) in both figures. Furthermore, plots of frames (B) and (c) are confirm the
photographic studies in the drop tower experiments although the complete
steady state condition was not achieved in all drop tests (Otto, 1966). These
satisfactory correlations with experiments inspire confidence in the use of the
computational model to predict the liquid response in space vehicle tanks

due to gravity change.

92




(A) t=0 (B) T=0.5

---------------------------------------

......................................

.....................................
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Fig.4.1.2 Liquid dynamic response to a step transition from 1-g to

0-g in a rectangular tank at low initial liquid depth
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Fig4.1.3 Liquid dynamic response to a step transition from 1-g to

0-g in a cylindrical tank at high initial liquid depth
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Fig.4.1.4 Liquid dynamic response to a step transition from 1-g to

0-g in a cylindrical tank at low initial liquid depth
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Stable interface configurations are expected when no kinetic energy
exists in the liquid. When the system switches from the 1-g to 0-g, the interface
will change from a flat to an up or down concave depending on the contact
angle. During this t ansient period, a periodic oscillation might result
depending on the internal damping forces. As the kinetic energy is dissipated
by viscous forces, the liquid eventually reverts to the equilibrium

configuration.

Figure 4.1.5 shows a comparison of the numerical results for different
initial liquid depth with the critical depth at contact angle of 44.9° for a
rectangular tank. One is for above the critical depth while the other is for
below the critical depth. The one above the critical depth approaches the
steady state of the configuration of system 1 as predicted by the analytic
method. When the initial liquid depth is below the critical depth the liquid is
going to be two separated parts once gravity is removed, which agrees well
with the configuration of system 2 presented by the analytic approach.
Comparison of numerical results for different initial liquid depth with the
critical depth at contact angle of 44.9° in a cylindrical tank is shown in
Fig.4.1.6. Four sets of data are chosen, two for liquid heights above the critical
depth and two below the critical depth. They reach the configuration systems

3 and 4, respectively.
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4.2 Interface Oscillations

When the gravitational force is suddenly removed, the potential
energy of the system is considerably in excess of its 0-g equilibrium value.
Upon entering the zero-gravity field, the liquid mass then oscillates about the
equilibrium liquid configuration until viscous forces in the liquid damp out

the oscillation and bring the liquid to rest.

During the transition period for contact angle equal to 44.9° the
interface is found to exhibit the distinct characteristics of an under damped
system, as shown in Figs.4.2.1. and 4.2.2 for rectangular and cylindrical
geometries, respectively. A dominant damped natural frequency is clearly
present. The amplitudes of oscillations and the time required to reach the
steady state are significantly affected by Re number, as can be seen in Fig.4.2.3.
If the Re number is large, the amplitude decay is small with time while the
time to reach the steady state is going to be much longer. For smaller contact
angles, such as 30° and 12°, the chaotic undulations depicted in Figs.4.2.4 and
4.2.5. are always apparent. Nevertheless, for all cases studied the interface
reached the corresponding steady capillary dominated shape, when all the
transients had died down. The interface oscillations in a cylindrical tank at
contact angle of 60° also represent the characteristics of an under damped

system, as shown in Fig.4.2.6.
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Comparison of Fig.4.2.2 with Fig.4.2.7 shows that there is little
difference in oscillation amplitudes and frequencies when the initial interface
heights in the two cases are only slightly different. Further comparison for
initial interface heights are made, as presented in Figs.4.2.8 and 4.2.9.

Although the initial heights are different, the oscillation modes are similar.

4.3 Interface Formation Time

One of the important parameters under study is the time required for
the interface to form its zero gravity configuration after release from a normal
gravity field. The time necessary for the interface to form its equilibrium
shape after entering zero gravity can be represented by the time required for
the liquid-vapor interface oscillations to decay to 0.5% of the original
amplitude, tps. The dimensionless interface formation time is obtained by

normalizing the time ty5using the characteristic time.

Numerical studies have shown that the time t;5, depends strongly on
the fluid density p, surface tension o, viscosity v, the half width or radius of a

container L, and the contact angle a. Mathematically

fn{tos, p,o,v,L,a)=0 (4.3.1)

From the dimensional analysis, the following dimensionless

parameters can be obtained.
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i
R

(4.3.4)

The general expression for the formation time as a function of Re

number and the contact angle is rearranged as follows:

T = fn (Re, o) (4.3.5)

For a given contact angle,

17 =fn (Re) (4.3.6)

It is expected that Re numbers will be of significance in describing
dynamic behavior because it incorporates the effects of viscosity, tank
geometry, density and surface energy. Reynolds number defines the
conditions required to obtain similar flow characteristics in different sized

systerns and defines regimes of different behavior.

Numerical results for the dimensionless interface formation time 7 as a
function of the Re number in a rectangular and a cylindrical tank are given in
Figs.4.3.1 and 4.3.2, respectively. The slope ol curve at the beginning is steep,

then it tends to be nearly horizontal, which means that the required time
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increases steeply at considerably small Re numbers while the time increases
quite slowly at large Re numbers. It is obvious from the graphs that the
transition time required for the previous interface under one-g to reach

steady state conditions increases as the damping forces decrease.

The effect of the parameter, contact angle a, on the time required to
form the steady state interface when Re number is constant is shown in

Fig.4.3.3. The time increases with increasing .

4.4 Interface Height

Although the values of fluid properties, such as viscosity, surface
tension and density, have a profound influence on the numerical solution
during the dynamic transition from terrestrial conditions to weightlessness,
they have no effect on the liquid-vapor interface heights at the secondary
static state. Therefore, from dimensional analysis at zero-gravitv, the

dimensionless interface height

y=fh(x, o) (4.5.1)

Similarly, the dimensionless distance of the vertex at the central line from

the original one-gravity liquid level has the form of

8 = fn (o) (4.5.2)
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Equations (4.5.1) and (4.5.2) are the general form of equations (2.1.11),
(2.1.12) and (2.1.15), (2.1.16), respectively. The variations ofg with the contact
angle in a rectangular and a cylindrical tank are shown graphically in
Figs.4.4.1 and Fig.4.4.2, respectively. It can be seen that the numerically
obtained values of 8 for different contact angles agree well with the values

calculated from the analytic method.

4.5 Shapes of Interface at the Equilibrium State

The liquid-vapor interface will reach the steady state after certain time
period switching from 1-g to 0-g field. The interface shapes are obtainable
from the numerical analysis at different contact angles. Figs.4.5.1, 4.5.2, 4.5.3
and 4.5.4 show the comparison of interface shapes at equilibrium state
calculated from both analytic and numerical methods in a rectangular tank at
the contact angle of 12°, 30°, 44.9° and 60°, respectively. Both analytic and

numerical results, generally, agree well.
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4.6 Damping of Liquid Oscillation

Liquid damping is the other factor to be considered in the solution of
the liquid motion problem as the magnitudes of these oscillations depend on
the amount of liquid damping present. An investigation of the primary
variables which may contribute to damping factor is required. Of particular
importance are the surface tension, container size, kinematic viscosity and
amplitude of oscillation. After entering the zero-gravity field, the liquid is
oscillating along the equilibrium interface with the decay of the interface
oscillating amplitude. The logarithmic rate of decay of this amplitude is

considered as a damping factor dg.

Fig.4.6.1 shows the relationship between the damping factor and Re
number in a rectangular tank. With the increase of Re number, the rate of
decay of oscillation is decreased due to the reduction of viscous damping. The
damping factor varies rapidly at small Re number while it does not change
significantly at large Re number. Re number equal to 170 at 84 of 0.4 appears
to be a changing point, which may be used for the classification of small or
large Re number region. A similar relation is observed in a cylindrical tank,
as shown in Fig.4.6.2. However, the changing point is around Re number of
50, which is less than that in the rectangular tank. This may conclusively
show that the geometry of a container is related to the functional relationship

between Re number and the damping factor.
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CHAPTER 5

CONCLUSIONS

Analytical and numerical studies concerning the lignid free-surface
equilibrium configuration in a zero gravity environment and its dynamic
behavior during tr sition from one gravity to zero gravity fields in both

rectangular and cylindrical tanks have been presented.

Based on the Dupré-Young and Laplace-Young equations, solutions for
the equilibrium liquid-vapor interface have been obtained over a wide range
of physical and geometrical parameters. The analysis based on the previous
corollary, has shown conclusively that the critical depth dictates whether the
free-surface of the liquid will either cover completely the lower plate of the
container or not. Numerical results have also confirmed the above mentioned
finding. In the past, a filling ratio (a measure of the amount of fluid present in
the container) has been used as an independent variable. This, however, can
not define uniquely the liquid-vapor interface condition. For a given filling
ratio the interface may attain two distinct configurations. Although both are
extrema of the potential function one is a local minimum while the other is
an absolute one. A new independent variable, the interface configuration
ratio, is proposed herein instead of the previously used filling ratio. It has been
shown that in zero-gravity environment given several minimum potential

energy states of a mechanical system consisting from liquid-vapor-solid vessel,



the state with absolute minimum is the one with the smallest liquid-vapor

interface.

A transient numerical solution for the equations describing the motion
of a liquid with a free-surface under the influence of capillary forces in a two-
dimensional gecmetry has also been presented. These numerical simulations
describe the dynamic response of the free-surface during a step transition from
one gravity to weightlessness. The numerical results show that in all cases the
second equilibrium state (0-g) is attained asymptotically as the transient effects
diminish. The investigations reveal that the dimensionless interface
formation time increases with the Reynolds number and the contact angle.
The second bifurcation, cbtained analytically when the liquid height is less

than the critical depth, has also been confirmed numerically.

Under the present condition, the computational results can be generally
obtained in a reasonable time using the VAX2 mainframe computer.
However, the calculation using finer grids will increase the requirement with

respect to computer storage and speed.

Experimental studies on liquid behavior in zero gravity should be
considered at the next stage. Investigations with the aim to obtain the interface
behaviour in other container geometries as well as sloshing, draining and

refilling in the zero gravity environment are required.
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APPENDICES

L. Calculations of Interface Configuration Ratio in a Rectangular

Tank

A.1__ Configuralion System 1

(A) Area

From Fig.A.1, for a unit thickness, the liquid-vapor interface area A, is

defined by

A =2B1R;

where
b=l

cos Py =sin a

R; =—L
oS O
E=R;sina

An =2(22L-a —L_

(A.1.1)

(A.1.2)

(A.1.3)

(A.14)

(A.1.5)

(A.1.6)




yA

Fig.A.1 Configuration system 1 in a rectangular tank
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L(1~-sino)

AH=R1—§=——?6-S—Q—-— (A.1.7)
AH = 1-sina

T cosa . (A.1.8)
(B) Volume

For a unit thickness, the liquid volume Vyq is defined by

Vi1 = Va1 + Vi (A.1.9)
where

Vp1 =2L AH - B; R? +LE
2

=2LAH-£1-L—+L2tana
cos? o

_ 2f1-sina B tan o
2L cos o c052a+ 2 (A.1.11)
The liquid volume V; is
Vq=2LH +2120-%0¢__B +LM)
i cosa  cos2q 2 (A.1.12)
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(C) Configuration Ratio of the System 1

The configuration ratio of the system 1 is as follows

L
= 2B cos o

/ . 1-sin (o) _ B 1
2L \Hc L[ cos (@) 2 cos? () rghn (a)}}

B; ,
cos () <Hc + L[l —sin@) B +Ltan (a)}}

cos (@) 2cos?(a) 2

The equation (A.1.13) is the same as the equation (2.3.3).

(D) Parameter &
The liquid mass conservation shows

B, L2
2L0=2LAH-—"——+1L2tana
cos2o

rearrange the equation (A.1.14)

L
§=38 =AH___EI.___+.L_
rect 2 oo | 2 tan &

& =1 — i ~(E_
Sroct oo (@ cos (o) [2 - sin (o)] (2 a”
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(A.1.14)

(A.1.15)

(A.1.15)



A2 Configuration System 2

(A) Area

From Fig.A.2, for a unit thickness in z-direction, the liquid-vapor

interface area A, for left side part is defined by

Ap=2MRR (A2.1)

where

Ra= i_ﬁ_— % (A2.2)
sin B2

po=|%- o] (A2.3)

Xz = Ry sin P2 (A2.4)

{2 =Ry cos B2 (A.2.5)
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Fig.A.2 Configuration system 2 in a rectangular tank
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(B) Volume

The liquid volume for left side part is calculated by

Via=X3 + X { - B R%
= R% sin2B; + R? sinP; cos P ~ B2 R3

= _ﬁ_(sirﬂﬁz +sin §; cos Bz ~ 52)

2 sin?f;

(C) Configuration Ratio of the System 2

Apn
0 ==t=
r2 Vr2

B2 V2

sin B2

Xe

2
——x—f——(sin2[32 + sin Bz Cos Bz - Bz)
2 sin?f,

_ 2Y2 B, sin B
X; (sin2B; + sin B, cos B2 - B2)

The equation (A.2.7) is the same form of the equation (2.3.9).
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I1. Calculations of Interface Configuration Ratio in a Cylindrical Tank

A.3 Configuration System 3

(A) Area

The schematic diagram is shown in Fig.A.3.1. The liquid-vapor interface

area is calculated

Aas =21 R3AH
_agr2{lzsine) (A.3.1)
cos2q
(B) Volume

The liquid volume is

Ve = Va3 + Va3 (A3.2)
where
Va3 =1 L2 AH - Vi3 (A.3.3)

The volume Vp3is calculated. The equation of the interface shown in

Fig.A.3.2is
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Fig.A.3.1 Configuration system 3 in a cylindrical tank
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vk

Fig.A.3.2 Calculation of the volume V3
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R% =1} + (R - y)?

or

r3=+2R3y-y?

= VIRay-y2 AR
Vba= j d@f r3 dra[ dy
0 0

1]
= n(Ra AH2 —%AH:’)
or

Vb3=én AH (312 + AH?Y)

Va3=%1rAH(3L2—AH2)

Vas =1 L2 H,

Ve = Va3 + Vg3
=%u AH(312-AHY) + n L2H,

2 cos?o ~ 1 +sin o
cos2a.

—nLZ{L (1 - sin o)
3 cosa

+H
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(A3.49)

(A.3.5)

(A.3.6)

(A.3.7)

(A.3.8)

(A.3.9)

(A.3.10)



(C) Configuration Ratio of the System 3

The configuration ratio for the system 3 is given

=Aa
ec3 Vc3
. L2(1 - sin a)
- cos2a,
—a 2oy 1 aci
an{L (1 —sin o) (2 cos2x — 1 +sin a)+HC}
3cosa cos2a.
_ 2(1 -sin a)
= - . 2 - .
cosla {L (1 -sin o) {2 cos2a - 1 +sin oc)+ I'Ic}
3cos cos2o

The equation (A.3.11) is the same as the equation (2.5.1).
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A4 Configuration System 4

Configuration system 4 is shown in Fig.A.4.

(A) Area

The interface has the function as follows

(x + haP +(y +rf =R} (A4.1)
since

hy=r4 (A.4.2)
x =R} - (y + h4)z - hy (A.4.3)

The surface area can be defined (where Xc = L) by the following

equation

Ay= f 2 f(AV1+[f (P dy (A.4.4)
where

f(y)=x=vVRE-(y +hef ~hy (A.4.5)
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Fig.A.4 Configuration system 4 in a cylindrical tank
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h4+y

f'(y) = -

"/R%—(h4+)’)2
oTePe  RE
1+[f )] KT (b1 7]

V1 '<>2=R4{1-__h_4__}
FyV1+[f'(y)] ey}

Ac4=f 2nf (P V1 +[f'(PEdy
0

=2n]0 m{l-m}dy

L
hy
=27R4L - ———-———————dy
L RE—(h4+y)Z

=2nR4L-h4[sin"

h4+y
R

ol

Ry
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(A4.6)

(A4.7)

(A.4.8)

(A4.9)

(A.4.10)

(A.4.11)

(A.4.12)



(B) Volume

The liquid volume is

Ves = Voa - Vag

where

Vps=rnLiL=rL3

and
L
Vas =J S ()’) dy

S(y) = nx?

X=‘VR}—(y+h4)2 - hy

L
Vas =f nx2dy
0

=1rf [VRE = (y + haf - ha]" ay

=n(R}L-h4L2—%L3)—21th4f VRE-(y + hef dy
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(A4.13)

(A414)

(A.4.15)

(A.4.16)

(A4.17)

(A.4.18)



where

f VRS - (y + haf dy=%

- %[(m +L)VRE - (L + hoF + Rf sin”? (QR%)]

(hg + y)w/RE -(y+ hyf + R sin-1 (%El)t

- (0 VRE=E + R sin (4] A1)
since
VR - (L + hyf = hy (A.4.20)
VRI-hf=L+hy (A.4.21)
1{ha+y) =
sin ( R, =5 a (A.4.22)
.1 lh4 -
sin (-I-{; =Q (A.4.23)
Therefore
_ 271 _ 2_1743_ -
Vag = n(R4 L-h 1211 h, R} (IZL 2 a» (A.4.24)
Veg = Vpg — Vag
- 3_ _ 2 _ 3 _ _
=nL n(RZL h L %L h4RZ(121 2a))
=n{%L3-R3L+h4L2+h4R3(g--2a)) (A.4.25)
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(C) Configuration Ratio of the System 4
9c4=$‘:"‘:‘

___ 2eRifL-n(3-2a)
_n§L3-RZL+h4L2+h4RZ(121-2a))
. 2Rift-huf3-2a
_§L3+h4L2-R}<L-h4(§-2a)}

(A.4.26)

The equation (2.5.5) is obtained by substituting B3 = 121 -2 a into the equation

(A.4.26).
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