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ABSTRACT

Applications of Renewal Theory to Risk Modelling

in an Inflationary Environment

SERGE YANIC NANA NJIKE

The expected value and the variance of the aggregate discounted
claims of an insurance portfolio are considered. An approximation is
given in both cases using renewal theory. The compound Poisson spe-

clal case is studied in more detail.
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INTRODUCTION

One of the main problems of interest in classical insurance risk theory is the
evaluation of the aggregate claims distribution of a risk business portfolio. From this
distribution, the first and the second moments of the aggregate claims are derived
in order to evaluate the premium that should be charged to a contract. Traditional
models have usually assumed that claim severities are independent and identically
distributed random variables and that they are independent of the number of claims
recorded over the period of time considered, primarily for mathematical tractability.
A major difticulty with this assumption is that the claim severity is independent of
the time at which the claim occured. If the time period of interest is short and the
inflation rate low, then this is not a serious drawback, but may be a problem in times
of higher iuflation or for contracts with long terms.

Several authors such as Taylor (1979), Waters (1983), Delbaen and Haezendonck
(1987) have considered inflation in the evaluation of ruin probabilities. Biihimann
(1970) and Willmot (1989) have also considered inflation in the evaluation of the
distribution of total claims. In this thesis, we focus on the expected value and the
variance of the total claims when the number of claims over a fixed period of time is
assumed to follow a renewal process.

Renewal theory is used here as a tool to obtain the mean and the variance of the
aggregate discounted claims. The first chapter is thus a review of the fundamental
results of renewal theory. Those results will then be applied to a risk model with
inflation in chapter 2. The limit behaviour of the aggregate mean and variance is
then studied in chapter 3 where some numerical tables are given to illustrate the

accuracy of the results obtained in chapter 2,




Chapter 1

Renewal Theory

1.1 Ordinary Renewal Processes

A renewal counting process {N(t), £ > 0} is a nonnegative integer-valued stochastic
process that registers the successive occurences of an event during the time inter-
val (0,t]. For ordinary renewal processes the time durations between consecutive
“events” are assumed positive, independent and identically distributed random vari-
ables (i.i.d.r.v.).

In an insurance portfolio, the number of claims in a given period can be seen as
a renewal process (under the assumption that two claims can not occur at the same

time). More details on renewal processes can be found in Karlin and Taylor (1975).
Definition: A renewal process N = {N(t) :t > 0} is such that

N(it)=max{n >20:T, <t} where Tp =0,

7‘71=7'1+"'+Tn (1‘1)

and {7r}ip1 is a sequence of i.i.d.r.v.’s with common distribution function (d.f.) F.
The 7’s are usually called the interarrival times. We shall speak of T, as the time

of the n'® arrival. Its distribution function is denoted by F,,.



Another way of defining N(#) is by using counting functions and by writting N(t)

oo
N(t)= Z Iit.<oy (1.2)
k=0
where I(7, < is the indicator function of the event {T} < t}.
A first remark derived from the definition of a renewal process is that if the r's

are »* ponentially distributed with the same parameter, the renewal process reduces

to the well known Poisson process.

Proposition 1.1: The event {N(t) > n} is equivalent to {T,, < t}, i.e. if the number

of outcomes in the time interval (0,t] is at least n then the nt* arrival time is at most .

Proposition 1.2: Let F, be the d.f. of T,,, then

Fi=F and Frq(x) = /0r Fi(az - y)dF(y) fork > 1. (1.3)

Proof: F = F and Ty = T} + 741 by definition. The proposition is obtained
by writing the distribution function of the sum of two independent random variables
as the convolution of their distribution functions (the product of convolution is stud-
ied in more details in section 1.2). Using (1.1), P(Ty41 € &) = P(Tk + 741 < ) since

Te41 18 independent of T}, Thus

P(Ti4 <) = /0 P(Ti + i1 < @|Thyr = y)dF(y)

/r P(T,. £ & — y|ri41 = y)dF(y) by independence of the 7,’s
0
= [P <o -)aFy) = [ Fule - y)F().
0 0
.

For a fixed value of t, we are interested in the probability density function (p.d.f.)

of the r.v. N(t), which is obtained in the following proposition.
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Proposition 1.3: Let pi(t) = P{N(t) = k}, then

pk(t) = Fk(t) - Fk.H(t) for k 2 1 ‘(14)
and po(t) = P{N(t) =0} = P{ri >t} =1 — F(t).
Proof: P{N(t) = k} = P{N(t) = k} — P{N(t) = k + 1}. By Proposition 1.1, we
have that

m(t) = P <t)— P(Ti41 <t)
= Fi(?) = Feq(t) .

o
We are also interested in the mean number of renewals in the time interval (0,t]

generally called the renewal function, described below.

1.1.1 The Renewal Function

Definition: The renewal function m(t) is defined as m(t) = E[N(¢)] for £ > 0.

Since the p.d.f of N(t) degpends on the distribution function of the interarrival

times an expression of N(t) can be derived as follows.
Proposition 1.4: m(t) = 12, Fi(t) for ¢t > 0 and where Fi(0) = 0.

Proof: The proof can be found in any standard texi, see e.g. Grimmett and Stirza-
ker (1992). For t fixed, N(t) is a discrete random variable with probability density
function py(t) = Fi(t) — Fip1(t) therefore

m(l) = E[N(t)]= i kpi(t)

k=1



m(t) = Zk[P{N(z)>L}— P{N(t) 2 k+1}]

k=t
= 2 P{N(t) > k} = E P{T. < t} by Proposition 1.1
k=1 k=1

=
= 2 Fi(t) .

)

Thus the knowledge of the Fi (1) is sufficient to obtain the renewal function m(t).

But in most cases the k** convolution Fi(t) is difficult to obtain in an explicit form

(see section 1.2). A numerical approach is used when F is a distribution closed under

convolution. However, a different way of deriving an expression for m(t) is possible.

It uses a functional equation approach as given below.

Proposition 1.5 : The renewal function m(t) satisfies the following equation

m(t) = F(t) + J{)t m(t — x)dF(x) . (1.5)

Proof: Cousider the following expression for m(t) = E[N(t)|]=E[E{N(t)|m1}]. Since

if £ > 1, i.e. the first arrival occurs after t

E[N(t)|n = ] {
1+ E[N(t-z)] ifa<gt.

Thus
m(t) = /()""E[N(t)[r,:w]dp(x)

/ “aF () + / 'E[N(t - c)}dF(z)
= P+ [ " mlt — z)dF(z) .

Therefore m satisfies a functional equation, called a renewal equation. We will
study renewal equations in more details in Section 1.3. However, we need some

results on convolutions of distributions before we do that.
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1.2 The Product of Convolution

The definitions given here can be found in Feller (1971). We might have simplified

some notations when considering special cases of Feller’s definitions.

Definition: Let f and F be two real, locally bounded functions vanishing on (—o0, 0).

The product of convolution of f and F, denoted f * F is defined as follows:
z+
f*F(x)= /0 f(x —y)dF(y) forz >0. (1.6)

The above integral is interpreted in a Lebesgues-Stieltjes sense. It can easily be shown

that this product of convolution posseses the following properties.

1.2.1 Properties of the Product of Convolution

(i) Commutativity: f+ F = Fx fif Fis a d.f. on [0, c0).
(ii) Asssociativity: Let GG be another distribution function on [0, ),
fr(F+G)y=(f*xF)*xG.

(iii) If f is non-negative then sois f * F.

The proofs are straight forward applications of the definition.

We also define the n** power of convolution of a single distribution function F as:
F = 0=y P(z) forn>1 (1.7)

with the understanding that F*' = F and F*%(z) = ljp)(z) the indicator
function of the set [0, 0o).

Under this definition F*" is seen as the distribution function of the sum of n
i.i.d.r.v.’s with d.f. F. The following proposition gives additional properties of this

power of convolution.

[, ]



Proposition 1.6: If F and G are two distribution functions with support on [0, co)

then

(i) F#*G(x) £ F(x)G(x) for any = >0 and F * G(oo) = F(00)G(o0),
(i) Frmtn)(z) < F*(x) for any myn > 1 and any z > 0 and

(iii) if F(0) <1 then 32, F**(z) < 0o for any x> 0.

Proof: The proof properties (i) and (ii) can be found in any standard text book.
(i) F+G(x) = [¥ F(z — y)dG(y) but F is a non-decreasing function therefore

F(x ~-y) £ F(z) for any @,y 2 0. An upper bound of the convolution is thus given

by
w4+
FrG) < [7 F)d)

F) [ d6)
F(z)G(x) .

IN

IN

The second part follows by taking the limit as @ — oo.

(ii) At a given x,

F*(m"'")(:l&') = F""(:l:)*F'"(:L‘)
< F(ax) ()

by property (i). Using this inequality iteratively gives
F*(a) < F*(a)
for any n > 1. Finally F(x) <1 (by definition of a ditribution function) and thus
Fromtn) () < F*™(x) .

(iii) The proof of this property is due to DeVylder and can be found in Garrido
(1983). From property (i), we know that F**(z) < [F(z)}* for any k > 0 and also

6




that F(x) > F(0) for a fixed £ > 0. Thus for a fixed z such that F(z) <1 we have

O & .1

If z is such that F(x) = 1 then we need another upper bound of F**(z). Consider the
event (X; > £,-.-, X,, > £). For any n, it is included in the event (X;+: -+ X, > x).

The X;’s are i.i.d with d.f. F, thus we have that
P(X, > f—l)\ > %) SPXi+ - +Xu>2).
Hence,
[P(X > =) < [1 = F™(2)],

which implies,

Pe) <1 —[1 - F‘(-E)]" . (1.8)
In addition we can rewrite
Z F'k(:v) = F“o(:v) + F"](:z:) 4+ 4 F‘("'l)(m)
k=0

+an($) + F'("'H)(:I:) 4+ 4 F“"(Z"-l)(m) + .-

Since k() < Fr(-1{=)

ST FH@) < nFz) + nF () + 0P ) 4

k=0
o
< n)y, Fkn (i)
k=0
where F**(z) < u, for any n > 1, u, being defined above. The fixed real x is such

that F'(iz) = 1. but there exists an integer n > 1 such that F(£) < 1, therefore u, < 1

for any n > 1. By Proposition 1.6(i) and (1.8) the following bound results:

Yo F @) <n Y Fe) < a [P () < n Y fualk
k=0 k=0 k=0 k=0

Since u,, < 1 the right hand side sum above is a convergent geometric series for any

fixed integer n. o



1.3 The General Form of the Renewal Equation

The renewal equation defined in (1.5) is a particular form of the general renewal

equation given by Feller (1971). This equation in f is given by

where F is a distribution function such that F(0) < 1, and g is a locally bounded real
valued function.

As pointed out at the end of Section 1.1 our interest is to derive the renewal
function m(t) of a renewal process. Proposition 1.4 gives us an expression of m(t)
that uses the p.d.f. of the number of venewals N(t), but for certain processes this
method is complicated. The next paragraphs illustrate two methods to solve equation
(1.9) and hence give an expression of m(t). The first method is given by Feller (1971)

and the second one uses the Laplace Transform technique.

1.3.1 The Convolution Method

Under the above conditions on F and g the renewal equation (1.9) has a unique solu-
tion, fo, among the functions that are bounded on bounded intervals. This solution
is

fo=gxX F*. (1.10)
k=0

Proof: A proof is given by Feller (1971). We give here a different proof taken from
Garrido (1983). Clearly fo is a solution of (1.9) since

g+ forxF = g+(g*x Y F*)«(F)

k=0
= g+g*[(Y F*)* F] by associativity

k=0

g+g* > - FO]

k=0

8




g+forxF = g4+g+xd F*—g
k=0

Y Ft=fo.

k=0

Now to prove the uniqueness of fy, assume that there is another function, fi, satisfying

(1.9). Then
Jo=g+ foxF and fi=g+ fi*xF.
Taking the difference we have

fb"IH = jb*‘pj—gh *17:=(fb-j})*]7
= (fo~ fi)*x F*" foranyn2>1

The idea is to prove that as n — oo, fp — f; — 0. Consider

I(fo— f1) * F**(x)| for any z >0
| [ o= i) = y) dF™(y)

[ 1o = fte = ) aF™()

< sw l(y) ~ i) [ dF()

< suwp | fo(y) — fr(y)| () .
0<y<z

|Jo(2) = fi(x)]

IN

Two cases have to be considered:
(i) For the first case, assume that the fixed « > 0 is such that F(x) < 1. By

Proposition 1.6(i), this leads to the following upper bound:

[fo(w) = fi(z)] < sup |foly) — fi(y)F(z)]"
0<y<z

As n — oo, for a fixed x such that F(x) < 1, [F(z)]* — 0 which implies that

lfo(x) = fi(=)] — 0.
(ii) For the second case we assume that the fixed x is such that F(z) = 1. We still

have
|fo(z) = fi(z)] £ sup |fo(y) = fi(y)|F™(z)
0y

9



for any integer n > 1, thus we also have

lfo(z) = filz)] < sup |foly) = fi(y)|F(x)
0<ysr
for any integer A > 1. Since x is such that F(x) = 1, x is non-zero (the case £ = 0 is

excluded) by Proposition 1.6(i) and (1.8), we have an upper bound as following:
Fw;k(m) S [F-m(m)]k

[u,,]k

IN

where u, < 1 as defined in (1.8). Using the preceding upper bound of F*"**(xx), we

have

|fo(2) = fi(x)] < sup |fo(y) = fi(w)|[un]*
0<y<x
We are interested in the limit of | fo(z) — fi(x)] as & — oo. For x and n fixed, u,, < 1.

Therefore [un]k — 0 as & — oo and the conclusion follows. .

The general renewal equation given by Feller still has fo as unique solution even
if Fis a defective distribution bounded by 1. The proof remains the same.
Equation (1.5) gives the renewal function m and the expression is obtained using
the p.d.f. of the number of renewals N(¢). The same expression can be obtained with
a renewal equation and results in (1.10). From (1.5) we have
m(t) = F(t) + [ m(t — 2)dF(x) = F(t)+ m* F(t),

a renewal equation whose solution is given by (1.10) as

m(t) = F*[if‘"‘(t)]
k=0

i Fk(t) .

k=1

Notice that we get the same value of m(t) as in (1.5).

1.3.2 The Laplace Stieltjes Transform Method

The renewal function m satisfies the renewal equation (1.5). To get a solution of the

renewal equation (1.9), another useful technique, frequently used in physics to solve

10



differential equations, is known as the Laplace transform method.

Definition: Let F be a d.f. defined on [0,00), the Laplace Transform of F is the

function defined by
Lr(6) = /0 * ¢~ dF(z) where 8 >0 .

The above integral is interpreted in a Lebesgues-Stieltjes sense. It is understood that
the interval of integration is closed and may be replaced by (—oo,00). But in our
application F vanishes on (—o00,0) and 0 is a positive real value. Feller (1971) extends
the definition of the above Laplace transform for defective d.f.’s (i.e. the function is

bounded by 1). With the usual notation for expectations,

Lr(0) = E[e~®*] where X is a random variable with d.f. F. (1.11)

Proposition 1.7: Let K, G, H be three d.{’s such that K(z) = G * H(z), then

Ly(0) = Le(0)Lu(9) . (1.12)

Proof: Let Z, Y, X be three random variables with d.f.’s K, G, H respectively. Since
K is the convolution of G and H, therefore Z~Y+X where X and Y are independent.
Thus using (1.11) Lx(0) = Ele~%%) = Ele"®]|E[e~%X] = Lx(0) = Lg(6)Lu(0). For

others details see Feller (1971). o

We will use (1.12) to get the solution of the general renewal equation (1.9) in
which F and g are given monotone right continuous functions vanishing for ¢ < 0.
We can consider them improper distribution functions and can assume that F is not

concentrated at the origin. By (1.12)
Ly(0) = Lg(8)+ Ly(6)Lr(0)

11




or equivalently

L) = =)

1= Lp(0)°
Using the inverse of the Laplace Transform, we can get f in certain cases.
In particular, if we let f = m and g = F, it leads us to the renewal equation in

(1.5). Its corresponding Laplace Transform thus satisfies

Lr(0)

L,,,(()) = T_—L-;-(-b—)' .

Proposition 1.8: For anyn > 1and 6 >0
P{N(t) > n} < ” L}(0) (1.13)

where F is the common distribution function of the independent interarrival times 7;.

Proof (Jeulin 1992): First recall Markov’s inequality.
Let ¢,a > 0 be two reals, and X a random variable. If X accepts an absolute

moment of order «, then

PX| 2 ) < EIXI". (1.14)

We use the following relation between events {N(t) 2 n}={T,, <t} ={t - T, > 0}

to get

P{N(t) > n} P{(t-T,)>20} for0>0

= P{t-T) > 1}

IN

E[e®*-™)] by Markov’s inequality.

SinceT,, =1 + -+ + ™., we have

P(N(t)2n} < B[]

i=1

12



P{N(t)>n} < "] Ele®)
i= s, e’
Lg(8)
< L) .

As a consequence, the number of outcomes N(t) in [0,t) is a renewal process that
accepts moment of any order, i.e. E[N(t)"] < oo for any r > 0, since

EINGY] = Sw P{N(t) = n}

n=1

< S w P{N(t) 2 n)

n=1

< e S n"LE(6) by (1.13) .

n=1
Since F is a distribution function ( for any 8§ > 0 , Lp(€) < 1) and since the radius of

convergence of the above series is one, the expression on the right hand side is finite.

13



Chapter 2

Applications to a Compound

Process with Inflation

2.1 The Classical Collective Risk Model

The collective risk model presented here can be found in the text by Bowers et al.
(1986). We will review some of the results developed for this model.

The basic concept of the collective risk model is that for an insurance portfolio of
policies, two factors have to be taken into account:
(1) the number of claims, N, in a given period and
(ii) the amount of the i** claim, X;.

Then
SNn=X1+--+Xn (2.1)

represents the aggregate claims generated by the portfolio for the period under study.
The number of claims N is a random variable associated with the frequency of claims.
In addition, the individual claim amounts X, X,,... are also random variables that
measure the severity of claims.

In order to make this model tractable, two assumptions had to be made. These

assumptions are:

14




(i) X1, X3, ... are independent and identically distributed random variables (i.i.d.r.v).
(ii) N, X1, X3, ... are mutually independent.

The following proposition recalls some basic results obtained with this model.

Proposition 2.1:
() E(Sn) = B(N)E(X,).
(ii) Var(Sn) = E[Var(Sn|N)]+ Var[E(Sn|N)] = E(N)Var(X,)+[E(X1)]*Var(N).
(iii) Msy (t) = E[e™] = My[logMx, (2)].

All the proofs can be found in Bowers et al (1986) but are reproduced here for
completness.

Proof: We will prove only (iii), parts (ii) and (i) are easily derived from (iii).

MSN(t)

i

E[e"7)

= E[E(e"¥[N))]

= E[{E(e)}Y]
= E[{Mx,(1)}"]

= MnllogMx,(t)] .

[ ]

When N is a Poisson r.v. (respectively Negative Binomial) Sy in (2.1) is called

a Compound Poisson (respectively Compound Negative Binomial) r.v.. Different

distributions can be fitted to the claim severities, e.g. the Log-Normal, the Gamma
or the Log-Gamma distributions.

Let P(z) denote the common d.f. of the i.i.d.r.v.’s X;, then the distribution

function of the aggregate claim Fs, is obtained by using the law of total probability

as follows:

Fsy(®) = P(Sy <x)=) P(Sy < z|N =n)P(N =n)

n=0
= ZP(XI +---+_X,,_<_:B)P(N=n)
n=0
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Fsy(z) = iP‘"(:v)P(N = n)

n=0
where P*"(x) is the n'" convolution of P(x).

For long term insurance contracts or for insurance companies operating in an eco-
nomic environment with a high inflation rate, the preceding model does not produce
adequate premiums. Factors as interest or inflation have then to be taken into ac-
count. These factors allow the dependence among claim severities or the dependence
between claim severities and claim occurence times; see for example Proposition

2.2. In the following section, we study a compound model with inflation.

2.2 A Risk Model under Inflation

The model presented here as well as Proposition 2.2 and Proposition 2.3 are
taken from Garrido (1986).
Let {Ti}i>1 denote the claim occurence times recorded by a risk business. The

T}’s are r.v.’s over a probability space (2, A, P). We also denote by
T = Tk+1 - Tk for k > 1 (2.2)

the claim inter-occurence times. The 7,’s are positive i.i.d.r.v.’s with common d.f.,
say I, and common moment generating function (m.gf.) ®r. We assume that the
m.gf. & exists over a set M included in the real line R and that E(r;) < oo for
t> 1.

In conjunction, let {Yi}i>1 denote the corresponding claim severities recorded at
times T} and be r.v.’s defined on (0, A, P).

If N(T') denotes the number of claims recorded over the timeinterval (0,T), T > 0,
and # > 0 the constant instantaneous rate of interest earned by the risk business,
then

N(T)

Z(T) = Z e Ty, where To = 0and Yy =0 (2.3)

k=0
defines the aggregate discounted value at time 0 of all claims recorded over (0,T).
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We also assume that the risk business operates in an inflationary economic en-
vironment where the instantaneous rate of inflation a is constant throughout the
period (0, T]. Inflation is used here in its broad sense and can either mean claim cost
escalation, growth in policies face values or exogeneous inflation (or combinations of

such). The r.v.

X =e Ty, fork>1 (2.4)

denotes the deflated amount of the k** claim in currency units of time point 0. Our
key simplifying assumptions are:

(1) {Xi}apr are iidrv.’s.

(ii) E(X,) = p < oo.

(iii) { Xk, 7i}ip>1 are mutually independent.

Together, assumptions (i) and (iii) imply that dependence among claim severities
or between claim severities and claim occurence times is through inflation only. Once
deflated, the claim amounts X are considered independent, as we can confidently
assime that time does not affect claim amounts anymore.

Note that here only the X;’s are assumed i.i.d.. As it is proved in the following
proposition, the claim severities {Yz }x>1 are not necessarily independent nor identi-

cally distributed nor does Y, need to be independent of T}, k > 1.

Proposition 2.2: In geneial, the r.v’s {Yi}i>1 are not mutually independent and

the {¥%, Ti}i>1 are not pairwise independent.
Proof: Consider the special case where N(T) is a Poisson process, then T} has a
Gamma distribution with parameter (k, ), A > . By definition
EY:) = E(Xpe*T¥) for k>1.
Since { X, 7} are pairwise independent

E(Yi) = E(Xx)E(e"™)

¥



EYy) = Il('A—_—a)k

and

E(YiYin) = E(XiXipretTetTin))

= yzE[e')"T"]E'[e“"‘“]
. A A
= 52 k
= Fe) G
. Ak+1
Iy :
(A =2a)*() —a)

Thus E(YiYis1) # E(Yi) E(Yi41) which proves the first statement of the proposition.

Now consider the pair {Yi,Ti}r>1 and
E(T.Y:) = E(Tkaf’."T") = pE(Tke“T") . (2.5)

Define the function g(e,t) = e™ and apply Lebesgue’s theorem for derivatives under
the expectation. The function g(e,t) is bounded by e since ¢ € (0,T]. Moreover

for any t € (0,7, g(a,t) is integrable. We have

a aoTy — _‘?_ aTy
E((?ae ) = ('9aE(e )
which implies,
a, A
aTy - = &
E(Tie™) = 6a(A—a)
_ kA
T (A= a)n

Substituting E(Tke°T+) from above into (2.5) we get E(T.Y:) = l‘(‘,\__%frn- Since
k A
E(T)E(Y:) = 'Xﬂ(:\—_-(;)k # E(T\Y)

we see that {T}, Yi} are not pairwise independent. °

2.2.1 Premium Calculations

The object of this section is to approximate the premium (or the expected aggregate

claims loss) over a period of length (0, T).
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Equation (2.3) gives us the aggregate discounted value at time 0 of all claims

recorded over (0,7 as

N(T)
Z(T) = Z e Ty, where Ty =0 and Yy = 0.

k=0
Substituting Y, defined in (2.4) as ¥, = e“T* X, for k > 1, into (2.3) gives us
N(T)
Z(Ty=Y" e~P-Tk X, whereTg=0and Xo=0.

k=0
We denote by § = A — « the net instantaneous rate of interest. The aggregate

discounted value at time 0 of all claims is now defined as

N(T)
Z(T)= Y e X, whereTo=0and Xo=0. (2.6)
k=0

The net single premium paid at time 0 for a contract of duration T > 0 is given by

N(T)
No(T) = E[Z(T)] = E[ ) e~*Tk X,] where To = 0 and X, = 0. (2.7)
k=0

Since {Xg, Tk }i>1 ave mutually independent we may simplify Io(T') by using condi-

tional expectations. Let S be the o-field generated by the claim occurence times up

to Tn(r)+1s
G=U{Tlv"',TN(T)+i}- (2'8)

The o-field o(X;) generated by the X.’s is independent of . Thus consider the

following conditional expectations:
N(T)
Mo(T) = E[B(Y e~ Xul9)]
k=0
N(T)
= E[Y E(e™T X|9)]
-=0
N(T)
= E[Y e T*E(X})]
k=0
N(T)
pE(Y e, (2.9)

k=0

By Proposition 1.1 (of chapter 1) the random variables T} and N(T') are dependent.

Therefore the usual iterated conditional expectation of Proposition 2.1(i) used in

classical risk theory can not be applied to obtain an exact value of ITo(T).
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Nevertheless, an approximation can be given if we assume that the insurance port-
folio is large enough so that adding one more claim to the actual number N(T') has
little effect on the premium. This approximation can also be justified for smaller

portfolios if T is large enough. The following proposition gives us an approximate

value of Io(7").

Proposition 2.3:

N(T)+1
Ks(T)= E[ Y, e7*T¥) = &p(-6) Z HM(T) (2.10)
k=0
where Hs(T) = [T e=%2 dF(s) and ®p is the moment generating function of the inte-

roccurence time 7,.

Proof: In the calculation of Ks(T) = E[Z,ly_(g)'” e~*Tx], we condition on the o-field

generated by the occurence time of the first claim Ty:

N(T)+1

K(T) = E[B{ Y. e*™o(T))].
k=0
Since
N(T)+1 —8s ifs>T
(S e =g = ] s
k=0 e~ 4 0'5’E(2N(1_’)+’ e~*) ifs<T,

0o T
4 — -8 —éas —bs _ ;
Ks(T) = /T e~ dF(s) + /0 [e7% + e~ 5 K5(T — #)] dF ()
and therefore
oo T
Ks(T) = [ e™dR(s)+ [ e Ks(T = 5)dF(s),
0 0
where from, the following renewal equation results:
Ks(T) = &p(—6) + K5+ Hs(T) (2.11)

for Hs(T) = [T e~® dF(s), 6§ > 0. Note that Hj is a defective distribution function
(since Hs(oo0) = Op(—~6) < 1).
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The solution of this renewal equation is thus given by (1.10) and can be written

Ks(T) = p(—8)+ Y H;T)

k=0

provided that H; is bounded. Clearly here
— had -6 — had ~bs
Hs(T) < Hs(oo) = /0 =5 dF(s) = & /0 €5 F(s)ds

6/00 e %% ds
0
1.

IN

IA

Hence Hs is bounded and thus (2.11) has a unique solution. Since ®p(—4) is a

constant, we can rewrite Kg(T) as

Ke(T) = 0r(—8) 3 HI*(T) (2.12)

k=0
®

The preceding theorem establishes the basis of the approximation of Ilg(T"). Sub-

stituting (2.12) for the right hand term in (2.9) we obtain the following approximation:

Mo(T) ~ uls(T) = u®p(—=9) f: H*™(T) . (2.13)

k=0

The accuracy of this approximation will be studied numerically in Chapter 3. We
compare in that chapter our approximation in the special compound Poisson case
(i.e. when N(T') follows a Poisson process) with the exact value of the premium given
by Willmot (1989). We will also analyse Willmot’s model and see how the renewal

approach allows us to study more general models.

2.2.2 The Variance of the Aggregate Discounted Claims

In this section we develop an approximate value for the variance of Z(T') again by
solving a renewal equation. Recall equation (2.6) that gives the aggregate discounted

claims at time 0
N(T)
Z(T) = Y e X, whereTo=0and Xo=0.

k=0

l)l
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Proposition 2.1(ii) gives the variance of a compound sum Sy = TN, X; to be
Var(Sn) = E(N)Var(X,) + [E(X1)]*Var(N)

for N independent of the claim severities X;. Consider now the aggregate discounted

claims Z(T') and the o-field ¥ defined in (2.8). We have that
V() = Varlz(T)
= E{Var[Z(T)IS]} + Var{E[Z(T)|S]}
= Vi(T) + V(D). (2.14)

(i) Consider the first term Vi(T') = E{Var[Z(T)|3]}. The o-field O contains all the

information up to time Tn(ry41. Therefore

N(T}
W(T) = E[Var() e Tk X,|3)]
k=0
N(T) N
= E{Y Var(e®: X Q) +2 Y Cov(e Xy, e~ X130},
k=0 0<i<iSN(T)

since under 3, N(T') and {Ty,--,Tyir)s1} are known. By independence of claim
frequency and severities X; we have

N(T)
Vi(T) = E{Y e*Var(Xi)}
k=0

2B Y [B(XiX;)e e — B(X:)E(X;)e e}

0<i<iEN(T)
where the last term is equal to zero since the r.v’s X are mutually independent. We

thus get that

N(T)
VA(T) = E{Var[Z(T)|3]} = E{Y e Var(Xs)}.
k=0
Let us assume that the deflated claim amonnts X have a moment of order 2 (denote

by o2 the variance of X}) and that N(T') is large enough. When T is large, we can

approximate the above variance term with

Vi(T) =~ o*K5(T) (2.15)
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where Kg(T') is defined in (2.12).

(it) For the second term, we have

N(T)
Va(T) = Var{E()_ e~k X1 |9)}
k=0
N(T)
= Var(u Z e"”“‘)
k=0

N(T)
= u*Var() e %Tk) .
k=0

Assume that the number of claims N(T) is large enough to replace it in Z(T') by

N(T) + 1, much as we did to get an approximate value of the premium Ilo(T). Then

NI+
V(T) = p2Var( Y, =)= p2V(T)

(2.16)

where V(T) = Var(S NI ¢~6T4), We apply again Proposition 2.1(ii) and condi-

tion on the o-field generated by the first occurence time o(77). We have

N(TV41 N(T)+1
V(T) = E{Var| Z e“ST"la(Tl)]} + Var{E| Z e“STkla(Tl)]}
k=0 k=0
Vai Ve
where

N%+l e e~ ifth >T
er i "] e-om 4T NI-TOH o, e <

given Ty.

Since the process N(T') + 1 is stationary we have for the first term

N(T)+1

Ve = E{Var| Z e~T|o(T))]}

N(T 8)+1 00
= / Var[e™ "ST“]dF(s)+/ Var(e %) dF(s)
L 0 T
N(T-s)+1
= / Var( ‘ e~tTk) e=202dF (s)
L—O
= V x Hy(T)

23

(2.17)



where V(T) is defined in (2.16) and Hs(T) = JT e~5*dF(s).

Similary
N(T)+1

Var{E| Z e~ (T))]}
k=0

= Var[e"m IimysTy + 6-6T‘(1 + Ks(T - Tl))l{'nST}]

V22

where [ is a set indicator function and Kj is defined in (2.10). Adding all terms

together, it follows from (2.17) that:
V(T)= G(T)+V * Hy(T). (2.18)

where G(T) = Varle™™ + e Ky(T — T1)I{1,<1y). We see that V(T) follows a
renewal equation as (1.9). If we can find a solution to this renewal equation, we will
have an approximate value of the variance of the aggregate discounted claims Vy(T)

expressed in (2.14). This approximation would then be
Vo(T) = o2 K5(T) + p*V(T) (2.19)

where p and o? are, respectively, the mean and the variance of the deflated claim
amounts Xy.

The difficulty is now to find a solution to the renewal equation (2.18). To verify
the existence of such a sclution all the conditions of (1.9) must be satisfied, i.e.

e the function (G(7') must be locally bounded (it is proved in Appendix A) and
® Hjs, as a function of T, is bounded. (Hys < 1).

Given the complexity of the function G(T') = Varle=*T + =51 [(5(T — Ty ) i1, <1},
the renewal equation can not be solved with the convolution method (1.10) since the
convolution with 352 H3¥ is not tractable. It shows the limits of the convolution
method which works only for certain distributions F and functions g of the general
renewal equation (1.9).

Nevertheless, we may use the Laplace transform technique to obtain a solution

to the renewal equation (2.18). In the Subsection 1.3.2 on the Laplace transform
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we only needed to express the Laplace transform of the function g and the Laplace
transform of F. Thus, we should first find an expression of the above complex function
as follows:

G(T) = Var[e~T + f-m Ks(T - T\)lim¢my) = Var(R)+ Var(U) + 2Cov(R,U),
R U

Var(R) = E(R?) — E*(R)
= bp(~26) — [®r(-6)]?,

Var(U) = E(U?) ~ E(U)?
= [T e~26s |K}(T — 2)dF(s)— [JT e~5 K4(T — s) dF(s))?
= K} % H,5(T) ~ [Ks * Hs T)]’ where Hs(T) = [T e=% dF(s),

Cov(R,U) = E(RU) — E(R)E(U)
= [§ e Ks(T — s) dF(s) — ®p(—6) K5 + Hs(T)
= K * Hys(T) — ®p(—6) K5+ Hg(T).

From the preceding expressions we have

G(T) = ®p(=26) — [0p(~6)]?
+ K} % Hys(T) — [Ks + Hs(T)?
+2[Ks * Has(T) — Op(—8) K5 * Hs(T)]

Considering the renewal equation (2.11), we may rewritte it as following:

G(T) = Op(-26) - [®r(~6)]
+[K} + 2K5)* Hys(T)
—[K5— ®p(=6))* — 2®p(—6)Ks * H;(T) (2.20)

where K5(T) and Hs(T') are given in (2.10).

The function V(T) follows the renewal equation

V(T) = G(T)+ V* Hy(T).
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Taking the Laplace transform on both sides of the equation we get

L¢(0)
1 - LHza (0) .

The inverse Laplace transform of Ly(f) gives the function V(T') needed to approxi-

Lv() = (2.21)

mate the variance of the aggregate claims Vo(T) as in (2.19).

Many mathematical softwares compute Laplace transforms for certain distribu-
tions and also invert these transforms. In the next section we study the special
compound Poisson case and calculate the approximation of Ig(T) and Vo(T) using

these inverse transforms.

2.3 The Compound Poisson Case

2.3.1 The Premium

This subsection illustrates an example of the model with inflation when the renewal
process N(T') is a Poisson process. In this case the distribution of the interoccurence
times /' is exponential with parameter A. We will apply all the results found in the
preceding sections to get an approximation of the premium E[Z(T)].
o The d.fis Fy(t) =1 —e™.
o The m.g.fis ®p(t) = -\-l-.
o The function Hs(T) = [T e=® dFy\(s) = ;\—’-‘-—F’Hs(T) where § is the net inatantaneous
rate of interest.
o The k**-convolution of H, k > 1, is proportional to a Gamma distribution with
paramater (k, A + 8): H}*(T) = (A—iz) Fo(T).
The premium [1y(7') is given by (2.13) as
Mo(T) ~ pdr(— 2 H3(T).

k=0

In the Poisson case, we get the expression

o(T) = lt()\+6 Z(A+5 Fts(T) .

k=0
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Now let us rewrite the above expression as

6 ERANNYY
Consider the discrete r.v N with the following p.d.i: pp = (/\—4_5-)(%“)". The premium
[Mo(T) can be rewritten in the form

Mo(T) = #2 S p et (7)) (2.22)

s’
where the right hand side of the preceding expression is proportional to the distribu-
tion function of a compound geometric sum, with py = P(N = k) as the distribution
of the number of terms in the sum, and an exponential distribution with paremeter

(A + 6) as the distribution of each element in the sum. Therefore we may rewritte

(2.22) as

o(T') = _6/} v(T) = i?P(SNST)
with
Fs(T) = ;:P(N—k) Fibs(T) . (2.23)
=0

Using an argument in Bowers et al (1986), the derivation of Fs,(T) = P(Sy < T)
for a compound geometric sum can be obtained by using Proposition 2.1(iii) ie
Ms, () = My(logM x(t)). In this case N is geometric with parameter p = A+6 which

leads us to the following expression:

pMx(t)
s (1) = XN
', — -— H (1) = '\+8 = 1‘ . . . 3
where ¢ = 1 — p and Mx(t) = 335 e We get for Mg, (t)
6

The distribution function of this compound sum Sy is interpreted as a weighted
average of the sum of two distributions: a dirac distributior at 0 and an exponential

distribution with paramater & (the net rate of inflation). Therefore
Fsy(2) =p.(1) 4+ q.(1 —e )1 -~ qe™ % for £ >0.
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Since we had expressed the premium ITo(T") in (2.23) as the distribution function of

a compound/geometric sum at T, we obtained the following result for the premium:

A

Mo(T) ~ 5‘-55[1 ~ 35T Gr6£0,T>0and A+6>0. (2.25)

Remark: When é§ = 0 (the zero net interest) this derivation of the approximation
does not hold. We go back to the basic model defined in (2.6) and the results for the
mean and the variance of the aggregate discounted claims are straight applications of

Proposition 2.1.

2.3.2 The Variance of the Aggregate Discounted Claims

We will derive in this section the variance of a compound Poisson process with infla-
tion. (2.19) gives an expression of the variance for the general model. We need to
find the function K4(T'). Since Ilo(T) = p K5(T') (2.13) we may derive an expression
of I{s(T) from (2.25) as following;:

A A

KD =50 - 535

eT] for6#£0,T>0and A+68>0. (2.26)
The aggregate claims variance Vo(T') is given by (2.19) as:

Vo(T) = o Kys(T) + p*V(T)
where V(T') is the solution of the renewal equation

V(T) = G(T) + V + Hys(T) .

G(T) is a defective mixed distribution function that has a weight at 0. The Laplace
transform of the continous part of G(T') is computed by using the software MAPLE.
Refering to result (2.21), the Laplace transform of V(T') is derived in the Poisson case
as follows:

Lv(0) = g lp+ (1 = Py (2.27
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where

_ 263
P= O F26)(r+ 62"

Equation (2.27) represents the Laplace transform of a mixed distribution: a Dirac
distribution at 0 and an exponential distribution with parameter 26. Therefore, by

linearity, the inverse Laplace transform of (2.27) is given by
A -26T
V(T) = 55{1 — qe~¥"} (2.28)

where ¢ = 1 — p and p is defined above.

By (2.19) we finally obtain an approximate value of the variance of the aggregate

discounted claims at time 0 in the Poisson case as follows:

A A

Wil = o550~ a5

I 4G - ge Ty (229)

where u and o? are respectively the mean and the variance of the claim severities.
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Chapter 3

Limit Properties of the Model

In this chapter, some results on the renewal theorem will be reviewed in order to
study the limit behaviour of the premium Ily(T) and the variance V5(T) as the con-
tract duration T tends to infinity. Numerical values of the premium in the compound
Poisson case are also compared to those of Willmot (1689). The following definition

can be found in Karlin and Taylor (1975).

Definition: Let F' be a d.[. concentrated on [0, co) such that F(0) = 0. A point «
of F is called a point of increase if for every positive ¢, F(a+¢) — F(a—¢) > 0.

A d.f. F is said to be arithmetic if there exists a positive number A such that the
points of increase of F' lie exclusively on the points 0, £\, £2) .-+ The largest such

A is called the span of F.

The Basic Renewal Theorem: Let F bhe the d.f. of a positive r.v. with mean
p. Suppose that ¢ is Riemann integrable and that f is the solution of the renewal

equation

7t = gty + [ 1t - 2)dF(a).
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(i) If I is not arithmetic, then

1 foo :

= [Cg(x)de ifp<oo
lim f(t)=¢ “ Jo~ a(=) 2
= if §= 0o
(i1) If F is arithmetic with span A, then for all ¢ > 0

A .
2y + k) ifpu<oo
lim f(t) = < Lk=0 g(c ) ifp

e if g = oo

Hence the basic renewal theorem is applied to a renewal equation with any positive
d.f. F. But in our model, the d.f. F is assumed to be positive and continuous which
implies that F' is not arithmetic. Moreover the renewal equations of the premium
and the variance are defined for defective d.f.’s Hs and Hjs. Thus to apply the basic
renewal theorem we have to modify the structure of those renewal equations. Instead
of doing this we will obtain the premium and the variance limit by an alternate direct
method. Moreover, the basic renewal theorem can be useful if a non-continuous
distribution function is chosen for the claim interoccurence times. But in this chapter
only the exponential case is studied for F.

Equation (2.13) gives the premium as being [1o(T') = p K;(T') where Ks(T') follows

the renewal equation
Ke(T) = r(—=6) + Ks « Hs(T) .

Taking the limit on both sides of the equality as T — oo and using Proposition

1.6(i) we obtain

1\’5(00) = T% .

Since Hs(0o) = ®p(—38) we have the following value for the premium at infinity

Dp(—6
To(o0) = 1—’_—;(&_—)5) . (3.1)

Similarly, (2.19) gives the aggregate variance Vo(T') at time 0 as
Vo(T') = 0 Ks(T) + p2V(T)
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where V(T') is the solution of the renewal equation
V(T) =G(T) + V » Hys(T).

thus taking the limit on both sides of the equality we have

7(00)

V)= T

Recall that the value of G(T) is given by

G(T) = Op(~26) = [Br(~6)7
+I(§ * Hz(,'(T) — [1{5 * H(;(T‘)]2
+2(Ks * Hag(T) — ®p(—8) K5 + Hs(T)]

and take the limit as T — oco. Using Proposition 1.6(i),

V(oo) = —g—
where
A = q)p(_za)_¢;(_5)+{%}2¢F(_25)
OL(—8)  20r(—8)0r(=26) —203%(-6)
T dp(—dF T 1= 0p(=8) 1= &p(<6)
and

B=1-0op(-246)

b being the moment generating function of the claim interoccurence times 7;. By

(2.19) we obtain the following aggregate claims variance as T tends to infinity:

, Op(—26) 2 A
— 1_—.——_—. l—- Jd.
Vo(oo) =0 ; —(bp(—26)+# B (3.2)

where % is expressed above, u and o? are, respectively, the mean and the variance of

the deflated claim amount Xj.

32




3.1 The Compound Poisson Process

3.1.1 The Premium and the Variance Limit

We give the limit of the premium and the variance of the aggregate claim amounts
when the distribution function F is exponential with parameter A (i-e N(T') follows
a Poisson process). These results could be applicable for portfolios with long term

contracts.

Expression (3.1) gives the limit premium. In the Poisson case this reduces to

Mo(oo) = £ (3.3)

Expression (3.2) gives the limit variance. In the Poisson case we have a simpler

expression

‘ gy A
— (42 2
Vo(oo) = (p* + o )26 . (3.4)
Both (3.3) and (3.4) reproduce the exact results obtained by Willmot (1989) at T’ = oo

in the special comy.ound Poisson case.

3.1.2 Numerical Tables

We give here some numerical values of the approximated premium in the compound
Poisson case and compare them to the exact premiums given by Willmot(1989).
Willmot studied the distribution of total claims occuring in a fixed period of time
on a portfolio of business under inflationary conditions. He assumed that, conditional
on N(T) = n > I, the times of the n claimms are distributed as the order statistics
from a sample of size n from the “parent” d.f. (Willmot 1989). In the particular

compound Poisson case he obtains the following exact expression for the premium:

#A

5 (1-¢€7T).

Ty, (T') =

In our model we are assuming that N(T) follows an ordinary renewal process

which allows the claim interoccurence times to have any positive distribution. If we
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consider the special compound Poisson case, our approximate premium formula in

(2.25) becomes

The following tables give a numerical comparison of both formulas.

Table 1: Values of the Approximate and Exact Premiums

for 6, A, u constant, T variable

6= 5%, =1 currency unit, A = 100 claims per period
T D 10 25 50 100 1000
[o(T) 443.18 | 787.54 | 1427.28 | 1835.91 | 1986.53 | 2000.00
Mw, (T') |} 442.40 | 786.94 | 1426.10 | 1835.83 | 1986.52 | 2000.00

Table 2: Values of the Approximate and the Exact Premiums

for T, i, X constant, § variable

T =1 time unit, & = | currency unit, A = 100 claims per period
é 5| 10% | 25% | 50% | 100% | 1000%
Ho(T) | 98.49 | 96.07 | 89.26 | 79.30 | 63.58 | 10.00
Mw, (T) || 97.54 | 95.16 | 88.48 { 78.69 | 63.21 | 10.00

Table 3: Values of the Approximate and the Exact Premiums
for é, u, T constant, A\ variable

6 = 5%, u =1 currency unit, T = | time unit

A 100 500 | 1000 2500 5000 | 10000
Ho(T) 98.49 | 488.65 | 976.36 | 2439.48 | 4878.00 | 9755.06
Tlw,(T) || 97.54 | 487.70 | 975.41 | 2438.52 | 4877.05 | 9754.11
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Similarly for the variance formulas, the exact expression from Willmot (1989) in

the compound Poisson case is
A .
Vin(T) = 526" + o?){1 = 7T}
Our approximation formula in (2.29) for the special compound Poisson case is

A A _. oo A P
Vo(T) = 02{53(1 ~ YT 5° 2T} + ﬂz{%{l — qe~ T},

The following tables give a numerical comparison of both formulas.

Table 4: Values of the Approximate and the Exact Variances
for 6, A, u constant, T variable

6 = 5%, 4 =1 currency unit, A = 100 claims per period, 0% = 25
i0 25 50 100 1000

|

T
Vo(T) || 10245.35

16444.32 | 23867.84 | 25824.98 | 25998.82 | 26000.00

Vi, (T') || 10230.20 | 16435.13 | 23865.79 | 25824.81 | 25998.82 | 26000.00

Table 5: Values of the Approximate and the Exact Variances
for T, y, A constant, é variable

T =1 time unit, u = | currency unit, A = 100 claims per period, s = 25
) 5% 10% 25% 50% 100% | 1000%

Vo(T') || 2496.82 | 2376.93 | 2061.13 | 1652.62 | 1127.39 | 130.00

Vivo (T) || 2474.23 | 2356.50 | 2046.04 | 643.51 | 1124.06 | 130.00

Table 6: Values of the Approximate and the Exact Variances
for 8, u, T constant, A variable

4 = 5%, 1 =1 currency unit, T’ = 1 time unit, o2 = 25
A 100 H00 1000 2500 5000 10000

24906.82 | 12393.75 | 24764.89 | 61878.29 | 123733.97 | 247445.33

Wivo(T) || 2474.23 | 12371.13 | 24742.27 | 61855.67 | 123711.35 | 247422.71




In general, a good approximation of the premium and the variance is obtained as
illustrated in the preceding tables. Even at a fixed net rate of interest of 5% and with
a low average number of claims A, the difference between the approximate premium
and the exact one does not exceed 1 currency unit. The approximation improves as
A increases. Common insurance portfolios record averages of at least 1000 claims per
year. Thus, the approximate values obtained for the premium would even be closer
to the exact values in most applications. The same remark holds for the approximate

variance.

CONCLUSION

The risk model with inflation discussed in this thesis provides a more realistic
study of insurance portfolios than the classical compound Poisson model. The choice
of renewal processes to model the number of claims allows the claim interoccurence
times to have any positive distribution.

The premium and variance approximate formulas are illustrated here only in the
Poissun case because of the exact results available for comparison purposes in that
case.

The results obtained in Chapter 2 can be extended by considering the claim
interoccurence times to have distributions such as the Gamma or the Inverse Gaussian,

One could also extend this thesis by studying the limit distribution of the aggregate

discounted claims Z(T) when the average number of claims is very large.
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Appendix A

We prove in this appendix that the function G(T') defined in equation (2.18) of
Section 2.2.2 is bounded. We need this condition in order for the renewal equation

(2.18) to have a solution.

G(T) = ®p(-26)— [0p(-8))?
+1{g * Hzg(T) - [1(5 * l'l,s(T)]2
+2[K5 * H;s(T)] - 2(1’5'(—6)[1(5 * H(,'(T)]

where Ks(T) = (1 - Ti—se_")' Thus, if 6 # 0 (the case § = 0 is excluded) then

A
Ks(T) < 3

forany T' > 0, A > 0. Since Hs(T) < 1 and using Proposition 1.6 (i), the following

upper bound for (7(T') results:

G(T) < 141+ K}T)H,s(T) + [Ks(T)Hs(T))?
+2[Ks(T) Has(T)) + 2[Ks(T)Hs(T))
Ao

< =+ 2=
< 2445425

forany T > 0, A > 0 and § #0. .
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