e \ ; il X
1) " ‘
‘ M u‘ A . ‘I vl
: . .) |
5 ASPECTS OF PROGRAMMING LANGUAGE DESIGN }
-] . ’
- Peter Grogono) .
. -
p () L] 1
P ' ' , & . i
o -
%) '_,\\(
. , A Thesis in the b -
4 . . n/ C
De tment of Computer Sciefice
. 1]
,V. ,
' ']
13 “’ 1
}. ; " N / ‘ . rd
L h ;
: / .
t ¢
! . * § . 5 ,
: ' | . ~ : :
. Presented in Partial Fulfillment of the Requirements
for the Degqree of Master of Computer Science at
{) Concordia University ’ ? '
‘ Montreal, Quebec, Canada ’ :
“ L}

- October, 1979

*

| _ . © Peter Grogono, 1979 . . B

hd

~ . ABSTRACT

- v P

-

> /ASPECTS OF PROGRAMMING LANGUAGE DESIGN
‘ N
i 3 e

Peter®Grogono .

’ : This ‘thesis starts by surveying the relationship
. . .o 4 - ¢
between contemporary progranming languages and’

contemporary computer architecture, using as a

/

Pef;fence point the .von Neumann machineﬂ Tt

demonstrates that the complexity and unreliability
of modern software is in part due to the different

design goals of architects and programmers. ’Thi;

R

thesis argues in favour of a more unified approach

I

w”
"* to computer ‘system design, and presents a, simple

language that supports some of the claims made.

!
t

R .
. A
’
' B ‘\
<
%t

& . .

G e

R A M N

Preface — ')) Se

" thesis was the design of a programming languége suitable for . -

a procedural language by abstracting from machine~language ' .

4

The original goal of the reseérch that led to this

the interactive manipulation of dynamic data structures.

Early investigation revgaled that the tradit&ﬁn of désigning

is a major obstacle to the designer who wishes to make a ' .
significant extension to the power of a tybical contemporary

1éﬁguage.

This thesis consists of two parts. The first part,

sections 1 through 3, contains an analysis of the factors

that have led to complexity and unreliability in system
software, especially in compi}ers,:and makes some
suggestions as to how these problems might be 'solved by
programming 1anguége designers. The setond part, sectibn b,
presents a simple iéhguage, the design of which'émploys some

{

of the ideas developed in the first part.
TP P

I have received much help ‘and encouragement during the

preparation pf this thesis. T wish to thank those with wﬁom

I have iiscussed the ideas presented herein. My deepest

debt, h
!

research to meander in strange and unexpected directions, :

wever, is to V.S. Alagar, who patiently'allowed my

but was able to guide me at the critical corners. Professor

Alagar also read and criticized many versions of this
' ~

thesis. The final version owes much to him; the mistakes

]

are my own. . A ,

.

[

1

2

;Contents o

LR .)

. ' Ca
-0 'Gﬁfntroduc;ionué.‘ o ‘ ‘ ; .
1 .‘pﬁprvey 11 i o ‘) | " ‘ S
'1“1 4 “Contemporary Machines:ll _ . 1.
l1.1.1 ‘ The von Néuménn Machine 12 . . , , -]
1,1.2", ‘Extensions to the von Neumann Machine 14 “
1,2 ’ Contemporary Programming Languages 1§ : > .{
132.1 ' ' fascal as a von Neumann Language 19 f
1.2.2 ¢ { lInédequacies of the von heumann Machine 20 l o
1.2.3 ' Other von Neumann Languages 24 , o ’ '
1.2.4 Oﬁhér Kinds of Language 25
1.3 "*Recent»Deyelopments in.Progr;mming Langdhfes‘za .
1.3.1 Verification 29 N o
1.3.2 Abstract Data Typés 32
1.3.3 Concurrent Programming 34. .
_ . SR .
2 The Semantic Gap 38 L q;
2.1 Narrowing?the Semantic Gap 39 » y
22,2 é&tensioné to von Neumann Arcﬁitecture 42 . '
2.2.1 ' Procedure Invocation 42 ‘ . T
2.2.2 Addressing Mechanisms 43 :
2.2.3 'Evaihation‘Stadks 45
2.2.4 Variable Size.ﬁemory Cel}é 46 o !
2.2.5 Tagged Data 47 ' . ’ o
2.2.6 * Associative Memory 48 o - SR)
2.3 Hicrqprograﬁming 49 ', 4

TP L oDt g e s W e e

s "

o

2.4 Conclusion: 51 _) . .
3 ‘Mdltiprocessor Architecture 53 ‘
3.1 v. . . Motivations for Multiprocessor Systems 53
3.i.1 o Limitations of ﬁniproceséoré 53
.3.1.2 Very Lérge Scale Integration 54'
3.2 . Aspects of Multiprogeséor Design 56
3.;.1) ‘ pommon.Clock 57
3.2.2 ‘ Shared Memory 58
3.2.3 . Connections Between Processors 59
§-2w4. instructing the Processors 61 .
3.3 Languages,fg} Multiprocessors 62
3.3.1 ~ - Static Program‘prchitecture 63
3.3.2 Dynamic Program Structure 65
3.3.3 Granularity 69)
3.3.4 Dataflow Languages 70 \
3.4 ‘ Conclusion 73 ")
Vel
4. A Case Study 74
4.1 : Description of CSP 74
4.1.1 Syntax and Informal Sémantics 75
4,1.2 Standard Processes 86 |
4,2 Example Programs 88 ~ (
4.3 An Implementation of* CSP 100 }A
4.3.1 . CSP System Atchitecture 101 -
4.3.2 CSP Processor chhitectufe 102
4.3.3 . Compiling CSP 113 T
4.3.4 Loading CSP 115
-6~
\//
- S/

O

R 4

¥
!
1
|

3

TSP T
—

¢t

o Mg e

e gt R

wa

o T g— o 1
\ ~
v .

References 132 .

[, - P et o A 2 e i o

[. 4

/ o - .
4.4 . .]’ Evaluation of the CSP System 115 -
4.4.1 ' Evalﬁa}ion of the Languagé 115 ,
4.4.2° - . Evaluation of the Implemeniqtioduléo
4.4.3 ‘ Directions for Further Research 122
.4.5 ' Conclusipn 123 |

' ?

Appendix 1: A Notation for the Productions of a Gr ammar
] - .

Appendff 2: The Grammar of CSP 129

v

Diagrams
. ('Y

Fig. 3.1 A Program with Tree Structure 64

Fig. 3.2, A Dataflow Diagram 71

.

Py A Y
! .
St
t
[y
\
.?
N
v ¢
(,
’
‘
. I
° ' A
.
- 3
* . ! e
. . ’
’ -
"
.
, -
[
-7— ?
-
e .
‘ 1
- - - 3 -
* A - A

A

e e e ity

e e e o

0 Introduction . . :
/ v kN

—)

The object of this thesis is to demonstrate that there

is a widéning gap between procéssor design and programming
\ ! . ' '
" language design, and that this gap has harmful consequences
for softward development.

s
The boundary between hardware and software design is ’

the machine language. The pgob%em of the hardware designer

is to construct a machine, or perhaps a range of machines, ' o -
that w;ll interpret"the machine language'as rapidly as
possible, subject to constraints of hardware technology and
economics. The problem of the software designer is to
'construct operating systems, interpreters, and combi;ers

that will enable users of the computer system tq work.-
efficiently at a higher, less machine dependend, level; tﬂ‘ﬂ’
software designer ié subject to the restraipts of software

technology and economics.

8 hsion l is a critical survey of the‘?onsequences of
\\\\\Lhié/;jii;?bn of design at the arbitrary level of the
- machine 1anguagg. It demonstrates that the independe f
development of hardware and software has lead to
unécessarily increased complexity in both, but not to ’
comparable increases in efficiency and performance. The
limiting factor is always the machine language interface,

8

which has changed little during the last twenty years. »

If substantial progress is to be achieved in computer '

. . = i o ———————— -
S B, S e T ¢ T

P g

i

% " ‘ (\/ \ -

-

:]

.design, machine languages must bé ra@icglly‘changed.
Proposals for éhangg.at the machine languége level shoula
come from software designers, because software aesigners
have (or, at least, ought'to have) a deeper understandihg of

the problems which must be solved by the machine language..

Although a unifieqvtop—aown approach is ostensibly
desirable, it is not without dangeré. Section 2 discusses'
yhyS in which:machine languages can be modified to make
highflevel languages easier to implement. This approach
cannot be expected to lead to taéical innovations, because
most high-lével languages are merely abstractions of

contemporary machine languages.

1

The traditional computer is designed around a single
processing unit executing a single stream of sequential
instructions. The computing power of a single processor is

limited, and it is therefore inevitable that in the future

large computers will have many processors. The recently

developed technigques of very large scale integration, and in

‘particular the introduction of cheap, mass-produced

microprocessors, will hasten this trend. Section 3
discusses some of the issues raised for language designers

by these developments.

Sections 1, 2, and 3 take a broad view of the future.of
computer design. Taken together, they point to the need for
a‘greater unification between hardware and software design.

Section 4 shows the form which such a unification might

-9~ ,

Sl

.

; -
-
1
H
{
Ed
'
A
B
)
.
1
s
»
y
»
: ¢
.
4
e
' “
t
'f
£
.1 .
.
A
; .
. Il
et
-
B e
.
* v
a
3 .

~

" v ¢ B f f
. . S
v . f . .

csp, ig described, tog‘g'thet with an imple;enéatioﬁ.

‘

S
[
. ‘
. -
e
. s
)
4
S
.
.
" . !
! o
’ b '
.
s
.
e
5
'
v
. ’
]
el
‘
. l
° . N
. .
B
v ' ’
’ '
4 .
.
.
H ’
-
~ - '
.
s B
)
"
“ s
' .
‘ -
e »
3
D ! b4
v
" .
.
’ .
. -1 ,
' -
. ! -
., M . v N
L J , — ,
})
; -10- v
R .
-
- L4 -
. .
s
s - »
.
.
: .
7 e 1 mTEIY _— AL Ty

.

assume. A simple language, based on Hoare's [1978] language

.
.
a
b
3
B
f
-
.
i,

.0

ra

4

1 Survey

This section surveys the current scene in terms of both

‘hardware and software. It is not an unprejudiced survey; it

C . . . N
is intended to demonstrate that, despite much activity,.

there have been few fGndamenEal advances during the lasl'ten

[}

years., This stagnation:is shown to be due to the paucity of

%
communication between® architects of hardware and designers _—

of spftware.

1.1 Contemporary Machines . '

\

The designer of a programming language wﬂ?%h is to be
S

‘"widely used camn assume only very general propeffies of the

machines on which it is to be implemented. 1In principle, a
language designer will follow7Dijks€ra's [1976) diétum, that
the processor should be regarded as a slave that executes
programs written iﬁ a brogramming language according to
predefined semantics, rather’than regarding the semantics o{
the 1aﬁguage as being defined by aﬁ.implementaéion on a
particular processor. Despite this, most languages have
been designed foE contemporary pfocessorsf and to this
extent processor technology can be pgrceived as a limiting
factor in language design. The general properties of

contemporary processors are those of a von Neumann machine.
\-

The. basic von Neumann machine is described”in section 1.1.1

below. The von Neumann machine .has been extended in a

‘number of ways that do no% affect this argument; these

-11-

¢ v

[P IREREE BPP PRIV S R N

L]

R
~7

There are. other .

b

to the basic von Neumann machine which are more.
© ’ ¥

o

are discussed in section 1.1.2.°

-

T W et & e g s O T

propérties'; these are discussed in section 2.1.1.

i
.
\ . “

1.1.1 The von Neumann machine

N

u

. The term von Neumann machlne is used to denote a’ N

N

computer wzth the follow1ng general propertles [von® Neumann,:.

1946]: -

. .
“n L
v ,*

t

1. The machine consists of a ptocessor P and a‘'memory M.

4

-

. .
jr— -\. et et T AR .

-

The uniﬁ of’ mFmory is a strlng
. a yord.

words.

The memoryqitores the

Each word has the same

5 w

The processor can read from ot

During a single transfer, the v

-

[y 3
.

Having ééad a‘word from memory,

-

kY

examining .its value.

s

N a
' '

main. kinds: onme' kind alters the flow

o

[

moved” from M to P (read) or from P to M (write).

’1nterpre€jlt as an 1nstruct10n or as data. It is not '
in general possible %o determine whether a word 15

destined to be used as an instruction or as data by

. The instructions executed by the processor are of two g

of binary digits called
A ~

values of a number of» -
L4

number of bits. o ¢

write to the memory.

. .

¥ .
alue of one word is

o

the processor €an .-

——

of control, and the Cod

B e D £ ol M

/4 ‘ - s i

other does not. “Instructions of the first kipd are

_typically called conditional jumps} the processor evaluates{

a simple boolean expression, using data in memory as |
operands, and executes either the next instruction in

sequence or another one dkpending on the:result of the

-evaluation. The unconditional jump is merely the special

-

¢
o

case in which the expression evaluated is the constant true.

Instructions of the second kind are either ‘computational or

. . . £ : . . ¥
motional. ' A computation instruction applies an operator to.

one or more operands, and produces one or more results.:. The

operators may be arithmetic or boolean, or special operators

such as shift, mask, or ‘extract. A motional instruction

moves data from one place to another; in particular, .input
]

‘and ohtput instrxctions may be regqfaed as motional.

The.implementation of these instructions varies
considerably from one actual computer to anogherf For
example, é conditional juﬁp instruc#ion may be implemented
by simpler instructions, such as test and jump, or test and
skip. Soﬁetimes a single instruction may perform several
logical tasks: for‘exémple, decrement and jump if zero. The
°

underlying principles, however, are always the same.

) 3

» The von Neumann machine is xmportant for three reasons.

3

First, almost/all of the computers currently in use are, in

essehtlal respects, von Neumann machines. Second, many
conﬁemﬁcrary programming languages were designed to be

1mplemented eff1c1ently on von Neumann machines, and were

-13-) ,

> rame e e L.

N AR b ey n e

f . fi
therefore strongly influenced by von Neumann machipe

characteristics. Third, even those languages that were no7
designed to be implemented on von Neumann machines are in
practicé executed by von Neumann machines, because these are

in most instances the only machines available.
' ‘ ‘ L)
2 . ' L

1.1.2 Extensions to the(i:; Neumann Machine
! .

"
More than thirty years have elegigd since the first von
Neumann' machines were built. The purpose of this section is
to sﬁow that, although many improvements have been made to’
the initial design during that period, modern computers
still have the bgsic characteristics of von Neumann)

machines.

\

1. The earliest computers had a register, sometimes called
. } :

the accumulator (AC), which had the same number of bits

as a word of memory. Later a second register of the

same size, the multiplier/quotient (MQ) was provided to

store the other half of the double length quantities
that arose during multiplication and division of

integers. Later still, index registers were added to - .

remove some of the burdens of addres; calculations from

.

the accumulator. Eventually, several‘geneial purpose

régisters were provided instead of. an accumulator and

index registers.

Registers are gonsidered to be part of the processor.

3

A e T

[

They provide short-term storage, thereby reducing the = .
. . number of data transfers between the prdcessor and the

memory. S

: 2. The simplest form of memory controller allows‘only one

memory access to be in progress at a particular time.

. A memory which is.divided into banks allows concurrent

s

daccess to several locations, provided that no two

locations are in the same bank. The addresses within a

i bank are usually not contiii:ff; and-so memories of

this type are called interledved memories.

3. The processor can use an interleaved memory effectively .
by executing several instructions concurrently,
. . -

provided that the instructions do not interact with

each other. A processor that executes several

instructions concurrently is usually designed in such a

way that the programmer is not aware of instruction

overlap. ‘

j ' ’ . A, The processor does not in general access the memory

‘randomly. The distribution of access within a short
L2 - Y
time will often be confined to a small interval in the
h ; address space. This fact can be exploited by :

constructing the memory in two parts, one of small

e

“ capacity and high gpeed, and the other of large N
caﬁabity and lowar speed. The smaller memory is called:

F . - a cache.

“y i

Fa meams -

“The brincipie of the cache is extended in virtual

memory machines which provide a large virtuai address

space by using disks to back-up a solid-state memory.

-

Input and output’operations are usually muoh slower

than processor dperations. Input and output may .-

proceed in parallel with processing if the processor -

can respond to an interrupt sent by a pefipheral/device

which is ready for more data. Greater efficie can

be obtained if the peripheral is allowed dirfct ‘memory

access. ‘

Input and output functions were origi ally performed by

the processor, but additional processors can be added
to perform input and output. The processor is

sometimes called the central processor to distinguish

it from ancillary processors.

-

Thére are three things to note about these extensions to the

von Neumann machine:

1.

Although some o6f them have not been widely implemented
L3

until recently, théy are all old ideas. Index

‘registers were used in the MUl (1949) and general -

purpose registers in the Ferranti Pegasus (1956).

Interrupts and asynchronous input and ougpﬁt date from-

the Univac 1103 (1954) and the Remington Rand LARC

(1956). The IBM 360/87 (1966) used a cache memory, :and

-16-

*

\J’

YT S e

"R

2.

the Ferranti AtlES/C%QSB) had virtual memory. —

‘

’ ‘ \ ‘ of e s -
The machine language of a computer possessing thesd
extensions is essentially the same as the machine
language of the edrliest von Neumann machines.. The

power of individual 1nstruct10ns has increased only

slightly, and the improvements that have occurred help

the assembly language programmer more than the cbmpilef

writer. The reakon for this is often that compdﬁgr
ma;ufacturefs waﬁt to provide their customers‘with
"upward compatibility’ They will therefore .go to
great lengths to enhance the hardware in a manner that
is transpareAt‘to the programmer. The cache memory of
the IBM 360/91 and the pipelined instructions of the
CDC 6600 are examples of this philoésophy. The result
is fhét programming language development suffers, and

attempts to enhance performance are made at the wrong

level of abstraction.

All of the extensions described are intended to reduce
the number of accesses to the memory. This suggests

that a fundamental 1imita£ion of the von Neumann

+machine is the single path between the processor and

" the memory. Backus [(1978] calls this the von Neumann

bottleneck,

e Ry i &

et e & B o R Wy et

B s i b Aart B D L ot e @SS et M 50 E S e o s ek

YA s ga

PR
t

e e pmmean s

PP PRI T WA TR 0% w0 = s
L)
-.' -
-
*

1.2 Contemporary Programming Landuages
’ 4 . * N

We can. associate with the von Neumann machine a class

of programming languages called von Neumann lénguages. A

~

program in a von Neumann.language has the following
properties:

.

\ ! .
1. Two kinds of language conétruction are used; one
describes data and the other describes actions.

[3 3

t

2. The actions described by the program are those that can
easily be carried out by a von yeumanh machine:
.expressions are evaluated, data is moved about, and the

flow of control is influenced by values of the data.

The class,of widely used von Neumann languages includes

COBOL, FORTRAN, ALGOL-60, PL/I, ALGOL-68, and Pascal.

Languéggs such as LISP,. SNOBOL, and APL are not von Neumann

languages in the sense defined here, although they ﬁay be,

4

and ‘in fact usually are, implemented on a von Neumann

o

machine.)

v

. It is an important part of this thesis that, despite

the advances’ in hardware technology described in section

s

'2.}.3 beloﬁg modern computers do not adequately support von-.

Neumann languages. In order to establish this point,it is
necessary to examine in more detail the sense in which the
languages mentioned above are von_ Neumann languages. We

consider Pascal, because it is a reasonably modern, geherél'

4

¥

- .
B Tpvwap e w S e it

*t

A,

St e U ey e

P e SO

L}

purpose, and cleanly designed languagé. The argument
developed in the two sections below could be made almost as
easily in terms of Algol, Forfrah,'Basic, Cobol, or any

other von Neumann language.

1.2.1 Pascal as a von Neumann L.anguage

The programming language Pascal was defined about 10

%

Years ago, although its first published description dates

., from 1971 [Wirth, 1971]. It was originally intended to be a

S lianguage for teaching programming principles, and -~

consequently it is a rélatively 'sparse' language, in which
elaborate data and control structures are built from simpler
. units. One specific objective of Pascal.was that it should
‘be pogsible to compile and éxecute Pascal programs .
. :éfficiéntly on typical computers of the late 1960's. As
'these’cbmputérs'are esséntially voh Neuménn;machinés with-
- the supgrfic}al;éqhancemeng.described above, Pascal may be
\{ called a von Neumann language. ' S

- s

.
4 *

. ‘x\ 1. The primitive types of Pascal, integer, real, boolean,

’and ggég correspond éo the types of data that are
\’ : “ﬁsually stored as logical units in memory. The methods
\ ' for constructing aérays‘;ﬁd records are abstracted Erom
« . the indexed and éffSet addressing techniques of
v . cassémbly language progr;mmihg:a Sets are simply strings

in an abstract form.

‘.'A

b o S i e e e B . . & -— bae e e . ——

4 e

[N

. 2. Pascailexpressiéns consist of operands and operators.
The. operands are data with the types described above,

and the operators correspond to the machine 1anguégé

instructions for performing combutations. Pascal

assignment statements map to instructions that alter

the' content of the memory of the von.Neumann machipe.

3. Pascal has a relatively small number of control

4
P T WY

structures. The seqguence (a series of statements

+
a

separatéd by semicolons) corresponds to the convention
of the von Neumann machine that instructions are
executed éequen;ially'unless they~are‘3umps. The
selection statements (if, case) ,and looping statements
(while, repeat, for) are abstractions gﬁ machine

E instructions that controi‘the flow of execution.

. N 3
- .

1.2.2 1Inadeguacies of the von Neumann Machine
) ,. Vr . . 9 , . " _{

R Although the preceding section demonstrates that Pascal
is a von Neumann language in the sense defined at the

q”beginning of section 1.2, there are many features of Pascal
v | that have no\caunférpaiélin the von Neumann machine. Thgsg
? 4 - r“iﬁade;;acies of the von Neumann machine are reflgctéd“in the
4 - complexity of the’compiler, object coae, loader, and

-

y *- . run-time gystem that are needed to support Pascal programs = §
in a typical environment. ‘ o

-y

-20-

et o B s 5 it s o
\

‘

1. Code and data in a Pascal program are separated; code
cannot be accessed or altered, and data capnot be

executed. The von Neumann machine, on the other hand,

does not distinguish code and data.

,.Zf " The type of a variable in a Pascal program caﬂ‘be ‘
" determined from its declaration in the program text. '
¢ . wThe function of an operator is determined by its
operands. For example, the operator Iy may denote -
integer multiplication, real multiplication, or set
. intersection. 1In the von Neumann machinefhthe
situation is reversed: the type of a variable cannot be
determined from its representation in memory, and
//'different'éperations are implemented by different
.o : instructions. The compiler therefore carries a twofold
burden: it must maintain an elaborate symbdl tab1e~'
containing the types of variables, and ité coaf,\
\. generator must emit instructions appropriate to. the

types of their operands.

. 3~ ' Arrays and records are natural ways of structuring data

in a von Neumann machine, but the machine provides very.

t

little assistance in accessing or altering them. The
'éndex registers and the instructions that use them .
help, but ié is rare that an arra§ or record component
. . is accessed by a sipgle instruction in. the machine

‘code. Furthermore, the machine provides no assistance

L)

v -21—

i b s Ammy o i o . R Commme e e o

e ki ARSI & g

T

o

at all in checking the legality of access to an array

.or record component. .Bounds ¢hecking for arrays ‘and

q
type checking for record components must be performed

- by additional code emitted by the compiler, This

inadeguacy of the machine leads to overhead éuring both

compilation and execution.

o

The control structures of Pascal can be implemented

, 1 (5 s .
using the conditional jump instruction, but the von

-

' © Neumann machine provides no further assistance. It

does not, for example, recognize. nested statements or

- block structure. The raw code emitted by the compiler

will contain many jump instructions, and often the

S

targets of these jumps will themselves be jumps. The

implementor has the choice of accepting the o

inéfficiency of the object code, or of increasing the
complexity of the compiler by adding 'optimiéing'
features. Moreover, modern operating systems reguire
the compiler &o generaté code that is at least"
relocatable, fnd ideally position independent.
Structufed source languages tend to generate code with
many jumps, thereby placing an extra burden on the
relocating loader. Machines which use 'short' and
'long'-addresses for jump operands place an additional
burden on the compiler, since it must de;ermine when a
'short' branch can safely be used. The high degree of

structuring -present in the source program does not help

l

8

-22~ ‘

- . . P

~

, .
, . .
i . . i A<
: , .
/ R B . ’ ’ R
; j .
.
o

these low-level ‘optimizations' algorithms.

i\n“ 3 : v
bor ‘ .

‘5. The principal abstraction Techanism of Pascaliié tﬁe

~ procedure. Most computers proviée no help at all in
the implementation of procedure calls and exitql At -
most, there i; a\'sﬁbr;utine call’ ihétruction, which

is often not iusable because it leaves the link in the

wrong place.

. 6. -1In ﬁany implementqtibns of Pascal, a stack is used to
sgoré'local variables, parameters, and links. Although
this use of stacks has been known éince ALGOL was first
implemeptéd in 1958, Qery few modern computers have
instructions éuited to the manipulation of stacks.

Some computers have 'incgemen;~address and store' and
‘load and decrement address' instructions, or their
equivalent, and these may be.helpfuléin evaluating
expressions which the‘compiler has translated into
reverse polish. They do not help the ALGOL or Pascal
implementor, however, because’ he ngeds an efficient
means of creating a stack frame, and of addressiﬁg
variables with respect to the base of the current stack

frame. : ' ‘

\

-23-

'
U

[

1.2.3 Other von Neumann Languages

Although Pascal was chosen'to demonstrate that

contemporary 105 Neumann machines do not adequately support

contemporary von Neumann languages, similar arguments can be

applied to other languages. 1In fact, to the extent that

Pascal was designed for efficient implementation on

contemporary processors, it is actually a poor choice for

demonstrating the inadequacy of these proééssors. PL/1 and

Aléoi-68 both’ have many features which cannot be implemented

efficiently on a von Neumann machine.

PL/I and ALGOL-68 both allow programs to define .
structures whose size may change during executiph of
the program. This is a common reqﬁiremehf‘of\sbr§ng
processiné algorithms, for éxample. Thé“task Pf, A
storing dynamically varying structures, énd of checking
the legality of acceés to them, must be performed by*
code emi£ted by the compiler and~the run-time system,
Secause the machine certainly does not help.

PL/I provides many data repfesenﬁat;ons, in particular,
binary and decimal fixed point. Opératidns on fixed 4

point data must be simulated on a host machine that

does not possess instructions that operate on data in

’

_these formats. S | "»f“'

PL/T has an on statement that defines a résﬁonse to an

+

3

—24-

N . v e A ————
N e ———— s s & ' .

L L P

A

AL sy A

B
f

~8

“) : ’ ‘ . .- e

. interrupt caused by a program error, such as an

’ 4 '

overflow or a range error. Some'of these errors may be

\

“ih ’ detected by the machine, but others are nééa The PL/I‘

a

run-time system must detect all of tbe'excepfion
e ' conditions, with or without hélp from the machine and

.- operating system, and provide the appropriate response.
- &

2
~

i

1.2.4 Other Kinds of Language

a7, . . >

There are a number of languagés which are in widespread

3

o use, but which cannot be called von Neumann languages. e

% i «

" ThesSe languages are usually implemented on von Neumann.

. . - o ' _
machines for the simple reason that other kinds of machine

are for the most part unavailable. The implementation

Lo usually requires an interpreter, or a compiler supported by

. . . -
an elaqorate run-time system.
& N

- One of the essential components of tHP von Neumann
@achine is the-memory.‘ The value of a datum stored in the

. }memory of a vbn,Neumann machine may subsequently be
v N " Y]

. Lret;ieéed from the memory. The ﬁaraware concept of storage |

¢ ©

is associated with the linguistic concept of assignment. 1In

. ‘applicative languages, there is no assignment operation, and

in principle memory is not required. A program in an
—a

o

pplicative language is an expression composed of operands,
operators, and function invocations. Execution of the

’: program consists of applying operators and function o

\ .
-, a ' s ' S -25—

- U S . o T ——

30

B T GOSN SR A,

D

|

'

v

-

-
JRUUPIUN.AUNNOUIRPRIY F B e

t
y *

definitions until the expression achieves an irreducible

form.

-

®

If the functions RPLACA and RPLACD, and the functions’

Q-

‘that ¢epen§ on them, are removed from L&SP, the resulting

language is applicative. Operators and functions have no
side—ﬁ%fects; the only consequence of their application is a
result; and the value of the result depends only on .the

&

value pf the- operands. A LISP machine accepts as-input an

exéression_satisfying the rules of LISP syntax’(a symbolic

uéxpfession‘or S-exgr), evaluates it, and displays the

o

‘ result. During the evaluatipn, structures binding“Variablez

names to value;, and formal parémeiens to actual parameters,
a{e.created. Some of.these are part of the final result,
olhers are nﬁt.' when the LISP machirie is simulated by a von
Neumanﬁ machine., the structures will occupyhébacé in“hemory.
.Since the amount of memory available is Tinite, the spaée
oEcupieq by~structureé that are no 1onger'réquired must bg
reélaiﬁéd. .The machine has no way of deciding wheth;r a
memory;cell is acFibe or inacﬁive, andléonsequently garba&g
coliectioﬁ must be performed bx the interpreber; Thea
garbage collector is an expensi&e piece of machinery whigh

is required by the implementation, nol the -language: this is

S . .
a strong indication that LISP:is not a von Neumann language.

. . e 1 o ‘
A“LISP implementation 'is, nonetheless, usually -

sdpdqrted by a von Neumann machine, and the languagé is
®

" usually extended in ways that reflect the voh Neumann

_ ; 9

_26;

Car Ay g n e om
v .

L RO

3
ekt &

' systems provide higher level control struqtures. These '

o

machine. Typically, assignment and goto statements aré

- i
added (as part of the prog feature); more recent LISP

. o L 98
extensions are symptoms both of the capabilities of the host

X

- N a
processor and the programmérs' preference for sequential

execution.
b Y

! ’

- The memory of a‘vpn Neumans machine consists of a
number of addressable cells of uniform size. A date g@ject
whose size changes dubing its lifetime cannot be stored in a
.sipple way. Similarly, the operations prdvided by the von

Neumann machine have fixed length operands. Languages such

as SNOBOL, in which opgrands are strings, or APL, is>which o

operands are vectors, are not von Neumann 1anguages,
although, 11ke LISP, they can be simulated by an interpreter

runnlng on a von Neumann machine.

The language LUCID [Ashcrcft and Wadge, 1975, 1977,
1978] is a language in whlch statements, as opposed to

commands, are written, The de51gners of LUCID have -

" demonstrated that 4 language amenable to conventlenal

mathematical techniques of proof can‘nonetheless incorporate
control structures, such as iteration, that are normally

associated with command languages.

. -
i

Backus [1978f proposes a functional style of .
' programming which is a kind of hlgh ~level LISP. He
perce1ves the von Neumann bqttleneck as a 11m1tat1on of von

Neumqnn archltecture, and sugges that 1t is the excessive

i *]

" a7

s

-

ot b P TE T

St

" o - !

detail required in contemporary’ programming languages that

leads to the inefficiency of their implementation. N
. : ' s 3 N

»

. The language SASL [Turner, 1975] is also akin to LISP. '
Turner ([1979) has demon;tra&ed’a novel iﬁplementation
technique for applicative-langﬁ;ges in-éhich the source
progfam is mapped into a treelstructute, and the tree is

o v - ’
then transformed into a canonical form which is eguivalent,
to the result that would be obtained by exeéuﬁing the
program. ,An interesting feature of the technique is that

local variables disappear during the transformation.

-

1.3 Recent Developments in Program Language Design

i '

Although many people g}e,interested in programming
language deéi@n, radical ihnova;ions have been few and far
between. The field of programming language design is, in
£57L, stagnant. This stagnation is due to'int}insic
incompatibilities between the principal areas of active
* interest -- program verification, abstract data structures,

and concurrent programming -- and von Neumann architecture.

v
e
¢

e s A

have been convincingly proved correct. There are several g

1.3.1 Program Verification)

-

;
\

The idea of formally demonstrating that a program is

. correct, instead q% relying on tests, is not new. Although

(]
program verification has been the subject of intensive .

research, there are at present few non-trivial.programs that

‘

reasons for this.
gy

1
First, the early proponents of formal programming

. methodology recommended that correctness be achieved by the

strict application of a formal program development

. . ¢
technique. The proof should be developed in parallel with
the program, so that when'the program is complete, so is the

proof. As Dijkstra [1976, .page 216] séys:.'... therefore,

Ainstead of first designing the program. and then trying to

prove its correctness, we develop correctness proof and
program hand in hand'. The alternative approach is to start
with the text of a complete program, and prové that it does '
what it is supposed to do; this is a much @ofe difficult

task. > . -

Secoﬁd, a traditional mathematical proéf is”a set of
assertions that are simultaﬁeously true. A program in a von
Neuﬁann language describes a proéess. The proof of a
program musi take as its starting point the text of the
program, anq/yet it must recognize the changes of state that SR

occur as the program is executed. Thus a statement as S ;]

innocuous as

o _ - -29-

I3

2 4 s RN s 0 S

e e e St ®

. AR R S P o =

TR NIRRT, > D T b e N &

with informal semantics 'increase the value of x by’1' ieaés
to problems in formalizing the meaning of the program. text
using-é}aditional mathematical techniaueg. A further
diffigulty in-this area is that computer manufacturers elaim
Phat their processofs can 'add', 'multiply', and so on. In
fact, the.Qperations that a typical processor performs bear
only a slight resemblance to the operatlons knowuwn- to
mathemat1c1ans as 'add1t1on' and 'multiplication’. Thus the
axioms for a programming language describe the
implementation on an idealized machiné whose pérformance is

not even approached in practice. N

?

Explorlng the techniques of prograﬁ verlflcatlon more
deeply, we flnd that éwo problems recur: the dlfflculty of
capturing the essen§1a1 properties of assignment, and the
difﬁiculty of dealing with arrays. Both of these problems
can be traced back to the architgcture of the von Néhmqnn

machine, the memdry of which is essentially an array to

which assignments .are made.

The third reason for the lack of success of
verification techniques is the compie%gﬁy of the proofs.
Although a proof is often cpnsidered éZ be a2 chain of |
logical deductions whose truth depends only.on axioms,

prem1ses, and rules of 1nference, in practice a proof 1s

successful only to the extent that it is convincing

~Unfortunate1y, the proofs of programs are often less

\ ' > °

-30-

oonvincing than the programs that:-they claim to prove. ¢
'; . There is no more justification for believing a proof to be

free of errors than believing a ptogiém to be free of

errors. In fact, we should probably be more suspicious of

-~

the proof, because it is both longer and more difficult to

‘construct’ [DeMillo et al, 1977].

A on L -

The fourth difficulty with program verification stems
'\ ’ T
. from the dual nature of useful computer programs. The

correctness of a program depeods on two thlngs- the- correct

representatlon of the external world within the program, and

the internal logic of.the program itself. Floyd [1967b]

demonstrated the connection between theorem proving and the
! 3

» . correctness’'of a program: we can specify:correctness in

‘terms of theorems about programs., Given a suitable

axiomatic system, for example, Hoare s [1969], we can prove . T

! ’ * these theorems rlgorously Moreover, we can devise programs

§ : that construct the proofs, and hence automatic Qrogram

verifiers. : '

An automatic program verifier constructs a proof that .
is formal in the sense of Lakatoé [1976, ppl24-5}. The

: validity of the proof does not depend on the meaning of the

N °

specific (problem dependent) .terms. In other words, the

A\l

P L3t = ey o

proof can say nothing about the correctness of the

et i e
.

_representation within the program of facts from the external
world. This is what Pratt [1977) means when he says:

. 'Proofs are just computations for convincing mere machines

limited by Chhrch's Thesis of the truth of propositions'.
, ! L]

¢

Proafs of progréms will perhaps become manageable when
these two aspects of progr;hming (external facts and
internal logic) can be separated. ©Pratt [1977) calls this
the 'fact/heuristic dichotomy' (the term is derived from

ChomskyTE 'competence/per formance dichotomy'), and he has

- demonstrated that in a language in which fact and heuristic

are separated, correctness proofs are eﬁpty, and the program
is automatically correct if the facts on which it is based
are true. An application of the fact/heuristic principle to

code generation in a compfiler is given by Johnson [1978].

LY
1

“w .

e T T

1.3.2 Abstract Data Types :T‘

'<The second area of active research concerns abstract o

/
data types. The type of a variable determines both the set

of values that it may assume, and the set of operators which

., I
accept it as an operand.)

For simple types, these two properties are usually

built into the language. For example, the declaration

VAR flag : boolean b

determines the values that flaq may assume (true and false),
and the operators which accept it as an operand (AND, OR,
and NOT). These concepts extend naturally to structured

types: for example, the prpperties of an array can be

-32-

N G 5 S O g I i, > A gt 4 T -
M

D . TR

ot n

s oy *

-

- . v !

derived from the properties of each of its components. An

.operation on an entire array is either illegal (ag-i ascal

for all operations other than assignment), or is interpreted

as the applicétion'gi the specified (scalar) operation to
b .

each”componenE of the array in turn (as’in PL/I).

This concept of type, which alread§/goes far beyond the
von Neumann machine (as shown in Section 1.2.2), is
inadequate for the hiéher levels of abstraction found in
recent programming languages such as Alphard (Shaw et al,
1977) and CLU [Liskov et al, 1977]. These languages provide
mechénisms nof only for’implementing more elaborate da;a

types, but also for encapsulating them. Data abstraction in

this sense requires three features not provided by earlier

languages:

1. The compiler must detect and rejecg attempts to employ

’ knowledge of the implementation of an abstract data
Eype. ‘This is whaﬁ;is meant bf enéapsulation:,only
those operators that are‘mean}égful for the type ma& be
performéd upan'it. The operations permitﬁed on a

variable of type stack might be: procedures push and

pop; and boolean vaiued functions empty and full.

o

2, The instantiation of a variable may involve appropriate

3

"initialization. . For example, a stack should be. ’

inifially empty. (L

[P

o S R T N e g e e 2o

°

N ~

y 3, The data types must be parameterized. For example,
Co . once the type stack and.the associated operations have

beén defined, it must be possible to instantiate a

'stack of 10 integers" or a 'stack of 100 reals’.

A

"

The first two of these features are more important than the
.. third. We can make statements about variables of a given
I type which are true when the variable is initialized, and

whose truth is preserved by the permitted operations. These

, Statements are then invariant properties of the variables of

the type, and this invariance can be deduced from the

defining capsule of ‘the type only.

The von Neumann machine does not prbvide.any support
for abstract data types. Substantial checking is required

during both compilation and execution. The cost of
implementing abstract data types is high, because of the
]

complexity of the compiler and‘tﬁeﬂrun—time support system,

1

A

1.3.3 Concurrent Programming

Thé third area of active research considered here is
concurrent programming. The art of writing code that
supports concurrent programs and responds to asynchronous
events has been perceiyed as difficult, and this percepéion
has been substantiated by unreliable software. Most

techniéues of concurrent programming are based on the

o

=34~

e

a
-

 assumption that sequential programs are easier to unde;étand

than parallel programs, and that parallel programs should‘
fhergfore consist mostly of éequential‘code, with the
addition of a sméll number of synchronizing primitives. The
synchronizing primitives that have been éfopOSeq include

semaphores [Dijkstra, 1968), monitors [Hoare, 1974], éndj

mailboxes [Atwood et al, 1972].

A process conslsts of a sequential program (body of

code), which can be shared with other processes, and a state

vector which is unique to the process. From time to time a

processor is allocated to a process, and steps in the

process are executed. Processors are regarded as resources,

.

and, like most resources, are limited in number. A layer of

software, consisting of an interrupt handler, synchronizing
and .communication primitives, and a scheduler, ﬁ% required
to maintain the illusion of concurrent sequential processes.

Processes therefore run on virtual machines.

<
i

The earliest machines did not have ‘hardware interrupts.
Interrupts were introduced to provide a means of overlapping
processing and peripheral operations. This solution,

conceived and executed at the engineering level, resulted in

. a machine that had undesirable properties for the

programmer, such as non-determinacy. The task of disguisiné

these undesirable properties was left, as usual, to the

programmer.

Floyd [1979] has introduced' the phrase paradigms of

» %
>

' .
. d -

N " . . -

. e L

P

e aseman o fr e

)

v

L

programming, in whioh the word 'éara@igm' is used in.tﬁe
‘sense of Kuhn [1970]. The domipan; pa;adigo of’progfamming“
at the present time is probably 'top-down design with
step-wise refinement', or perhaps, more loosely’, 'structured

programming'. Floyd comments on his own introduction of a

programming paradigm: the use of non~deterministic

algorithms, originally intended for parsing,’ and later

adopted by the artificial intelligence community [Floyd,
@sva] .

>

o ;. The contemporary paradigm for concurrent programming is

13

something like this: 'do” as much as you can sequéntially,

and, when you have no alternative, use one of the currently.

a

fashionable devices for communicating or synchronizing'.

The purpose of this paradigm is to ensure that the . S
confidence that we have in the correct, deterministic
behaviour of sequential programs can be extended to

concurrent programs. - The methodology arose from twol\ . ‘ '

A

considerations: first, sequential programs were better - e

understood; and, second, most concurrent programs were

actually executed-by one, or perhaps two, processors. Thus °

~

- T - ‘
the concept of concurrent processes was introduced to ' .

1

disguise the existence of non-deterministic events, such as
interrupts, rather than as an abstraction of a machine with
many processors. The need for ‘concdurrency was recognized,

but the object was to minimize its impact on,the practice of

. : o, w
programming .) ’ .

A

)

[

i

Il

It is a central érguﬁéht Of this thesis that this -
paradigm of concurrent programming is obsolete. It hust'be
repiaced,by a paradigm that leads to programs with much more
parallelism. ‘Such a parédigm has been proposed by Hewitt
and Atkinson [1977]. Section 4 presents a simple °

piogrammiﬁé language for which a paradigm of this kind is

appropriate. . w , a

N

2 The Semantic Gap

The 'distance! betwéen the concepts underlying computer.

architecture and the concepts udderlying high level

languages has been called the semantic gap [Gagliardi,
1973]. It has been demonstrated in the: preceding sections

that the semantic gap is wide. Although many programmlng

'languages are based on von Neumann pr1nc1ples, and most

computers have a von Neumann architecture, in practzce the _

machznes only prov1de rudimentary support for the languages.
The width of the semantic gap is r;spons1ble for the
complexity of modern compilers and operating systems, and
this complexiéy is in'turr:responsiﬁle‘for the expense and °

unreliability of software.

Some people perceive the semantic gap as a serious ..
problem. {For example, Myers [1978] finds thag modefn N
processors are quite inadequate for the support of modern
program@ing,langdages. He cbnsiders the pgoblem pf'
implementing PL/I on the IBM 360, and so his concern is
perhaps not surprisingz On the other hand,.there a?ekthose
who aré-not yorried by the semantic gap} and are even.
proposing that it shéuld.be allowed to widen. Féldmaq

[1979) works from the premise that compilers as complex ‘as ,

the best contemporary aktificial~intelligeﬁce programs will

be constructed in the near future. i

- .

The point of view adopted in this thesis is that the-

semantic gap shduld be narrowed. As it is unlikely that

PR S

JREPIS SH

. N

g

I3

&

programmers will accept a drastic reduction in the.power™ of -
progfammingﬁlanguages, this can be acﬁiebed only by

agsigning machines that come closer to providing the ‘ ’

»~

«

 features tequired by high level languages. : .-

» .

bl . ~

2.1 Narrowing the Semantic Gap

There have been many reports of computers designed for)

the efficient execution:of high level languages. These

projects can be graded according to how close the machine is

to a particular languige. .

At one extreme, there are machines that 1nterpret a
program written in a high level language dlrectly from its
source text An APL machine has been described by Thurber
and Myna {1970}, and an ALGOL-60 machine has been described
by Bloom [1875]. Machines of this type, which,perform no
encoding of the program at all, are unlikely to be ‘ I
efficient. These systems might be well+suited to S

a

educational environments, where programs are short and:

source-level &ebugging aids are essential. ; -

A less radical solution is to tailor the instruction
set of the machine to the high level language that it is |
intended to implement. Then it is only necessary to provide -
an 'assembler' to translate the source text into the machlné

language. The assembler may be implemented in hardware or

software. Machines incorporating harfiware assemblers also -

0 &

LI _39_

Y

RO

-

s it

include an APL machzne [prxnet 1915], ana an ALGOL machine R
" - ' .|Haynes, 1977]. The "SYMBOL machine [Chesley and Smlth,

. - 1971; Rice and Smlth, 1971; Cowart, Rlce, and Lundstrom, ‘ l *
N . : A b / I

1971] is of particular interest. . Lr S

~

S e e e e

) .) . i .
. ¥ B] . . -
' " The SYMBOL computer was, built by Fairchild Inc _for Iowa
. f
State University. The SYMBOL programmlng 1anguage is

.
®
. . v -

typeless has ‘a syntéx and block structure -similar to that

AU

of to PL/I, and prov16€s data structures in the form of

- 3
T .

1lsts. There is no’ software- one part of the processor

-
1 3

. reads and translates the source program, and ‘another part

: \\' executeslthe comp11ed code. The translator is very ‘fast:
- “the existing version compiies 1250 statements per second,
: ‘' and a proposed (but not implemented) versidn could cohpile
5000 statements pet secénd. (Note also that the SYMBOL -
. ‘machine was bu11t in 1970, and these performance figures are PR
: based on ‘a 4 m1crosecond memory cyclé time.) The speed of 4

executlon of theucomplled cer is comparable to that of more

¢

[

orthodox processors,'although_the hlgh’level-archztecture

3 allows certain complex. operations to be éerﬁormed very

.- - . 5

e rapidly.

o T vy iy ey ™ S St Sy e

¢ ‘ot . . A

g ’ , Machines with software 1nterpreters 1nc1ude an

:) Algol like machine [de 1a Guard1a and Field, 1976] and an.

ISPL machine (Balzer, 1973). o

' . Obvious limitations of computers which implement a
specific*language are that they cannot easily be adapted . - %
“* when ehe language changes, and that they cannot be used at

< R ‘ (6 , . ,,1'

o _40- | ‘ L

2w s

[

e e s e

ey

R TR

oA t
all for.languages other than .the one for which they were

designed. McKﬁpman [19&7] intrpduced the term langquage

oriented a;ghiiecture to denote an architecture that is not /

" but which provides instructions and hardware which

R Examples of language directed architectures include the

'cpmputérs marketed by Burroughs-Corporation, directed

' suitable fof’lgﬁguages of the ALGOL family, such as *

procedure calls, expressi?n evaluation, and array component

-

designed specifically for a particular high level .languag \

L) .

facilitate'thé_impledéntation of a language or a family of T

! . . o J

languages.) .

N
\ . -

English Electric KDF9, directed towards ALGOL, and various
N ,

’

towards ALGOL (B5500,.B6500, B6700, B7600) arnd COBOL

o

(B3500) . : . ' R

-

)

. Tanenbaum [1978] has described a computer architecture

1]

-

ALGOL-60, ALGOL-68, Pascal, XPL, BCPL, and SAL. Tanenbaum's
architecture is strongly influenced by the stack-based . SN

.) . .. /) . .
ipplementation of these languages.,K Addressing modes,

address calculation are all designed in terms of a hardware

stack. ‘ : . '

-

-

5
[RN

2.2 Extensions to the von Neumann Architecturé.

. In this section, we consider some extensions to the von

' Neumann machine. The von Neumann architecture -- a dingle

AN ne it

processor and a randomly addressable memory =-- remains

unchangedy, These extensions allow von Neumann machines to
sﬁppbrt contemporary programming languages more efficiently,
both by reducing the complexity of the compiler and by

simplifying the object code.

2.2.1 Procedure Invocation

The following is a fairly general schema for invoking a

procedure in a high level sequentiai programming language:

Create an environment in which the procedure will

. - execute; g}

Compute the addresses or values of parameters which are

to be passed to the procedhre;

v C’
TH R Honta s T . . .

Save the status of the caller fﬁ its own loéal

environﬁéntr{

Transfer cont;gl to the procedure;

éxecute tﬁe procédure;
"‘,Rgturn%values of parametersltd the caller;

Destroy the local environment:

-

. T [e -
e S ALY O e . ~ * - N

8. Return to the caller. ‘

~ —
i .

Some languégés do,not require all of these steps; for
! o) ,
;) example, FORTRAN environments are static, an@pso steps 1 and

7 may be omitted.

, ‘ The only contribution that a, typical processor makes to

this operation is a save-link-and-jump instruction of some

kindf that may suffice (but often does not) for steps 3 and

4. More power ful instructions can be envisioned: ideally, a
I ' CALL instruction with an .appropriate operand would implement : T
steps 1 through 4,.and a RETURN instruction would implement 2

stéps 6 through 8.

'2.2.2 Addressing Méchanisms

The addressing modes ﬁrovided by most processors are
| .

machine oriented rather than language oriented. Some
‘ {

e N I,
~

instructions address part of the instruction itself, some

address registers, and some address memory. These are the

simplg addressing modes: it is usually possible to compute
an address which is the sum of the contents of a register

and part of the instuction.

These addressing mechanisms are usually adequate in the

% ’ sense that there is usually an instruction, or a small group

of insttdctions, that will access the required operand. A

compiler, however, will usually employ only a fgy*qglthe

¥

-43- ' . '

——

MY e e

A

4. Array components (indexed addressing);

P e . SR ———
IUIIRREIIN L T . -

available éddreséing modes, and there may be no efficient

ways of accomplishiné the most common tasks. Many machines

. have general purpose registers which may be.usei~to store an

operaﬁd or an address. The optimal use of these fegiSters-
is beyond the ability of most compilers. éyﬁ fact, the

intelligent use of registers is one of th factors that

‘'distinguishes code produced by a good assembly language

. programmer from code produced by a compiler.:

The following objects must be-addressed in a typical

high level language:

1., Constants (note that constants are often stored in the

instruction space rather than in the data space);

2. Local variables;

3. Non-local variables; ’

5. ., Record components (offset aédressing).

-

As stated above, it is always possible to realize these
addressing modes in terms of an instruction set.
Nevertheless, a machine that provided the addressing modes

listed would simplify both compiler design and object code.

A large proportion of the assignment statements in high

-

level language programs have very simple right hand sides

bk

[Rnuth, 1971; Tanenbaum, 1978}.. This suggests that it is

[

more useful -to provide instructions that can move data
around in memory and perform simple operations on data in
memory, than it is to provide only instructions to load and

store registers. The provision of instructions of this type

probably acceounts for éome of the success of the DEC PDPll

]

architecture.
r / . i
. © N,
2.2.3 BEBvaluation Stacks
“ ‘ .

It is much easier to generate code for a stack machine

than for a multi-register machine. This is because

expression evaluation is inefficient for a .one-register

machine, and requires register optimization on a
\ l '

‘multi-register machine. Stack machines may ‘also be able to

evaluate expressions faster than machines with a small

number of hardware registers, because fewer memory accesses
are required. (This argument is not applicable to machines
such as the DEC PDP11 which use memory for the stack; it is,

however, appliéable to machines such as the English-Electric

KDF9 and the Burroughs 6500, in which high-speed registers

are used for the st;ck.)

The advantages of stack machines are most fully

K

realized when the expressions to be evaluated have several
operators. The studies of Knpth.;nd Tanenbaum cited above
show that such expressions{are comparatively rare. The
stack code for ,‘ 2

o,

—45-

‘

/

.- e o e et ot o o At st
- N - . I - .

‘o

Y T AN 1 e

S T e

7

-
-

e+ RS T RS o ST —— . P [s e S AR R B T oy (i e

e

is _) ' Y

PUSH y | ‘ .
*POP x

.and the stack code for

is ,

a PUSH n
PUSH 1
ADD ~
POP n

v *

Both of these statements can be implemented in one
ipstruction by a machine that has memory to memory move and
memory increment instguctioné. Stack pvaluation ié
desirable, but it must be .supported gy additional g
}nstructions for special cases such as these.

2.2.4 Variable Size Memory Cells -

b
The memory of a von Neumann machine is used to store

objects of many differenﬁ types. Some of the more' common °
types are instructions, integers, characters, bodieans, |
reals: and structured comginatiops of thesg. Early l

- compdtérs couldf only address a word of memory at a time, aﬁd

all operations involving more than one word,_o% a part;word;

had to be simulated by software. More recent ¢computers can

1

A s e A A i - it i s

e e aatba 4 e e o e

P

LERCE

A

address units of several lengths, such as 8, 16, 32, and 64
bits in the case of the larger IBM 370 computers. The word"
length of the Burroughs B1700 computer is determined by the

s

microprogram. /

2.5.5 Tagged Data

One of the more striking differences between a high
level language and the von Neumann machine on which it is
implemented i$ the way in which operators ;nd operands are
treated. 1In thé source text, the effect of an oberatoq is
determined by its oﬁerands. 'In the machine, the effect of

an opérator is determined by the instruction chosen. '

-

There is no reason, however, why an item of data in
memory should not be tagged with its.fype. Myers [1978]

points out several advantages of this approach:

[

1. Fewer operationlcodes are required, and so instructions
can be shorter. It miiht seem that this advantage
would be offset by the extra storage required for the

. data, but this is not ﬁeéessarily so. Usually, a_datum
will be storedxonce.only and accessed hore than once,
and so storing type information in the datum fathen
than in the instruction may lead to a net saving d§

'sgace. This is especially true of arrays, because only

one type descriptor is needed for an entire array.

}. The processor can perform type compatibility checks f’.

- -47-~

JOTOUOIPE

P Y

R i s TR o

h
/

,.’/

s

w
]
b

during execution. This is not in fact a particulafly

~

significant advantage, since typé compatibility errors

éhodld probably be detected during compilation anyway.

<

The processor can perform automatic type conversion.

For example, an integer may be converted to a real
before being added to another real.
e ‘

The doﬁcept of tagged data can be extended to structures: an
arfay tag Specffiqs thg,nuﬁber of components and their type,
and a recorq pagVSpéé;fies the type of each component. The
processor can then perform bounds checking for arrays and

type checking for record components.

2.2.6 Associative Mémory

A von Neumann machine has a memory that is adéessed‘by

address., A large part of the complexity of von Neumann
systems is due to the address translations performed during
compilation, linking, and execution. 1In certain

circumstances, address translation can be eliminated, or at

{

least reduced, by the use of associative memory.

1

An associative memory is‘capable of retrieving a datum

of which the value (or part of the value) is known. The

retrieval of an entry from a symbol .table, which requires an

—

algorithm in a von Neumann machinéz is a basic opération in
an associative ‘processor. A}though the idea of associative

memory is not néw, it is only recently thét the technology

a

-48-

Ay o

See it e M A

e e

" 2.3 Microprogramming) . . "

RNk e

' to produce.'it economically has become available.. A detailed-

discussion of associative memory is beyond the scope of this
thesis. Yau and Fung [1977) have su}véyed recent work in

this‘field.

. &

s

Hardware is petrified software. The advantage of

~ .
software is that it can be easily and cheaply altered; the
advantage of hardware is that it can be cheaply

vy

mass-produced.

The boundary between hardware and software used to be
fixed at the level of the convéntionaltmachine language. We
can now 'lower' this boundary by writing a program, at a
lower level of abstraction,_that interprets the instructions

of the machine language. Such a program is called a

microprogram [Wilkes and Stringer, 1953]. We can alsp
'raise' the boundary by executing a program that is stored

in read-only memory in machine language form;

:)
Microprogramming has already been exploi%ed iq a number

of different ways: ' .

1. " The machine language may be implemented by a
microprogram to reduce the cost of the processor; In
this case, the microprogram cannot béd altered by the.

user. The ICL 1907, and DEC PDP11/45 computers are

microprogrammed in this Gay.

-49-

+ g

2. Microp}ogrammiﬁg may be used to provide compatibility
of machine language instructions over a wide range of
- proc;ssor architectures. This is the approach used by
IBM in the 360 and 370 series of computens.

R 3. . The user may be allowed to extend the instruction set
of the computer by microprogramming. The
Hewlett-Packard 2100 computer is microprogrammed; the
manufacturer provides the microprogram for tﬁe basic
'instruction‘set, and also for certain standard

. A extensions, such as floating-point instructions. The
user may add to the microprogram, extend the

instruction repertoire by adding to the micfoprogram,

1

or create his own instruction set.
4, Different microprograms may be used to implement
different languages. The *Burroughs B1700 computer
'provides instruction sets tailored for different
languages: the switch from one instruction set to

another is achievéd by a jump in the microprogram.

o R B by =y A
e

The application of microprogramming can be extended from

programming languages to the programs themselves. The -

l

> A

declaration of an abstract data type, for example, could be
compiled into a microprogram that provides the instructions

necessary for operating on the defined data type.

~-50-

2.u Conclusion

em s v

The preceding sections have demonstrated stagnation in

the development of both hardware and software concepts, and

| have identified von Neumann architecture as a principal
cause of this stagnation. This situation is due not to

weaknesses in von Neumann's work; rather, it is due to the

.
L o s L

phenomenal brilliance of his original design.

The von Neumann machine was ahead of its time; in 1946 .
the available technology was not adequate for a digital -
processor” of reasonable power. EDVAC had 30:000 tubes, and
each time it'was.switched on, several of them burned out.

- By the early 1950's: the von Neumann design was well matched

to the available technology. The processor was constéucted

—_— with complex, high-speed switching circuits, and the memory
» consisted of delay lines, storage ‘tubes, ‘and magnetic cores,

" The processor contained“a‘fewlexpensive devices, the memory

‘contained many cheap devices, and costs were balanced.

The von Neumann architecture was so éuccessful that iﬁ
is still the most common architecture in use after 33 }ears
of research and development. During this time the speed and
complexity of electronic devices has i;creased by several
9rders of magnitude, and the cost and size-of these devices
has diminished by sewveral orders of magnitude. \NQ other

design has survived such a radical change in the underlying

AT+t e 3wk e

technolégy.

o R Aeme ma e,

ol NP MUV

.’n
PRINSEATASTRRRIP L Ay

o 1

The technological backgfound against which a computer -
/should be desigped'toéay is utterly different from what it.
was in 1946. The most importagt chénge is the size of the .
basic component. For about 20 years the logical component
from which a computer was built was{the ggﬁg, a simple
electronic switch. Gates were realized physically by
relays, tubes, transistors, and eventually.by integrated .
circuits. The unit of fabrication of computers constructed

in the ‘future will be. a chip constructed by LSI (large scale

-integration) techniques. A typical unit might contain a

processor, 8K bits of ROM, and 32K bits of RAM. The cost

o

_per chip decreases rapidly with the volume manufactured, and

v
N .

so there will be a strong incentive to restrict the variety

of LSI chips, and to match them to specific functions by
programming them. oo o

o~

/ N -
Manufacturers are gcurrently producing microprocessors

in large quantities. ~These microprocessors have von Neumann .

architectures, and most of the undesirable’ features of

mainframe computers'designed in the early 1960's: There is
v ..)
a serious danger that the prqoliferation of micropggcessors
N . S

will be a fatal-blow to the ailing sgiepce'of software

theory.

s

e e

.
DR

kT e g

[

T

PP

<

3 Multiprocessor'Architecture
k"

There are a number of indications that the Q§e_of C
Multiprocessor systems will increase rapidly during the next

few years. This-section examines the reasons for these

t

increases- ‘the forms that hult1processor systems may take;

arid the 1mp11cat10ns for programming language des:gn.

3:1 -Motivations for Multiprocessor Systems i . .

‘Seve}al processors are oetter than one: this is the i
firot and mosf important explanation for the interest in ‘ $
multiprocessor configurations. A second explanation is
provided‘by the technological developments_of\the last few

years. °

o*

-

3.1.1 Limitations of Uniprocessors ™)

A 5ingle processor is limited, as we have’segn,‘b§_$he -
von Neumann boétleneck: the bandwidth ofwthe channel between
the processor and the memory. This bandwidth can be
incréa%ed,by enlarging the word size; by interleaving memory
banks; by prov1ding cache memory; or by prOV1d1ng more !
registers. All of these procedures add to the complexlty of
the processor, and hence to its cost. Moreover, measures
such as providing morevregisters-may increase the

complexity, and hence the cost, of software.

LN

L

-53-

:’\

e n s e

ut
:

3.1.2 Very Large Scale Iﬁtggration , .

// . -

The logical unit of processor design is the gate; the

' physical unit i's the manufactured component. In the early

! . [}

- days of computers, using tubes, and later transistors, tpe
’ ratlo of logical to phy51cal un1ts was of the order «0f'1:10.

The introduction of integrated circuits in the 'thlrd

Q
3

"generation' of computers, starting withbthe IBM 360 éér}es;
inéteased this ratio to about"lp:l. This change did not
'iead to~a révolution in processor design because processors
" were still cop€kived as a collection of gates, although it
did«iead td an increase in the use of modular design
concepts. More receﬂély, the development of VLSI (very
lafge Scale integratién) iechnology has incgeased the
logical/phygical‘ratio to 104:1 or even 105:1. The design
units of the future will therefore be of much greater
complexity than single gates: they will be processors,
beriphe:al controllers, memofy~access coqirolle?s, memory

-

blocks, aqq 50 on, . ‘ ’J
N . ' . . .

The design of a VLSI module iS'expengive (t%ﬁgga}ly
hundreds of thousands of dollars), but the circuits C;; be *=
. manufaétured very cheaply (often for less than a dollar per

unit) , provided that production runs are large. 1It is

*

therefore economical Ep use VLgi techniques oniy if a very

large number of units can be sold. This imélies that -

{
vgeneral purpose dev1ces are more amenable to VLSI tthnlques

, than special purpose - devices. v .

N

~

e st Ay T B e e

T e G g o o o

' 2 p—— o P s = -
e vt Bt TR D 4 3 vt § 'y 2 Cao . s .
3

ity) X \ .)

¢ [N

4]

Once a VLSI'circuit has been designed and put into

‘.

.prodﬁption; it cannot easily be altered. Moreover, the
complexity of the circuits iX% such that the logical design

cannot be adequately evaluatgd until the device vas bﬁen
exteénsively tested. ' \ S

w

& ‘. .)
These two considerations -~ the need for large

production runs and the complexity of individual devices --
point to the same conclugion: VLSI circuits shpuld be

programmable. In fact,. of course; the programmable

" o

microprocessor is already the most common example of VLSI

technology.

rs . 7

Although microprocessors are not yet as powerful as

mainframe processors, their potential is much greater. A

CDC 7600 mainframe costs about $5,000,000; for the same

cost, usiﬁg today's prices, it would be p&sbiblé to ~ E k
construct a machine containing 104 microprocessors and 109
pytés"of memory. Such a project is not feasible qﬁ‘pfgsent
because the software necessaryjto make such a machige usable

does not exist. The example, however, serves as an

indicaéion‘of the need.EGF‘such software.

e R A o - 7=+

ST,

%

s

‘3.2 Aspects of Multiprocessor Design

A

Most contemporary multiprocessor systems fall into one
of two ca;egories: identical processors sﬁéring a common
memory; and distribgted systems consisting of autonomous
computers exchanging ﬁéssages. In this section we consider
an intermediate arch@tecture; fn which the coupling between
processdts is tigpt eﬂough to allow a simpie computational
task to be shared between them, but at the same time loose

enough to allow extensive concurrency.

Itlshould be noted that the multiprocessor architecture
proposgd here, ahd developed in more detail in section 4, is
not ; multiprocessor in the sense in which the term is often
used in the literature. For example, Enslow [1977] staies

the followiﬁg criteria for a-multiprocessor:

1. A multiprocessor contains two or more processors of

. .
N .

approximately comparable capabilities. -

2. All processors share access to common memory.

i

3.. All processors'share actess to input/output channels, .

control units, and devices.

4. The entlre system is controlled by one operating system
providing 1nteractions between processors and their
. programs at the job, task, step, data set, and data

element level. . ' }

é.

.
e A TR it vt e

3 A e Ly

LS G IV S s - e e e ————— A ARSI P RTT Y T amn e e

-

The multiprocessor systems discussed in this thesis do not
satisfy any of these requirements. In Enslow's terminology,

the systems described here are multicomputer systdms.

4
\

3.2.17 Common élock

Most electronic logic systems are controlled by one or,

more clocks. A clock, in this cpontext, is a lggigisignglff
that alternates -between £§l§Euané true; the oscill;tzgn is
regular and is usually between 106 and 108 cycles per
second. All state transitions in the system take place at
the Same®time as clock transitions; between clock

transitions the system is quiescent.

a

It fé a premise of logic design that state transitions
are inStantaneous, and that propagaéion ;nd recovery times
are infin?tesimal. In p;actice, of course, this is pot so,
and it is a problem of logic engineering to construct a

_system that will run fast and reliably. Reliability depends
on m;;; factors, but a necessary condition for reliability
is that the interval between clock transitiong is long i

compared with the propagation and recovery times within the

system.' In a 1arge system, the clock rate is limited by "the

complexity or even the physical size of the system, !

This is one reason for abgndoning the concept of a

4

common clock in a computer with several processors. Another,

reason is tha£ in a large multiprocessing network,

T

_/'\ ‘
N

Y

i S A i e et s %

B T i
‘

T e .

X e

K
r",

T) B . —

processors will have specialized functions. A clock rate

suitable for a peripheral cpnﬁrqller might be quite

unsuitable for a floafing-point processor.,

]

o \ l f

s

3.2.2 Shared Memory \ ‘ oo

Ié is possible to connect several processors to a
single memory. The ogvious advantége of such a
configuration is that very little ﬁew software is needed.
Application programé can run in one processor of a
multiprocessor environment just as the;~ran in a single
processor enviromment, and the operating system software
needs to be changed only slightly so that it can schedule
several processors. Fot'this reason, many commercial
computer sysStems are offered with two or more processors
sharing memory: computer manufacturers must usually make a
commitment to existing softwdre. The disadvantages of this

) A
approach are described in section 1.1.2 above.

For the same reaéon, a configyration of this kind is
not of great inferest to researchers; it offers little
potential for intereséing software development. Processes
running in different processors communicate by altering
shared data structures, agé secure ways of accessing shared

data styuctures have been described by Hoare [1974] and

Brinch Hansen [1975].
a : .
A more serious objection to systems of thig type is

- A—

‘
hn o e ——

S T

; l e] B : o
/ .

'that the pétformance)og the procgg%ors may be degraded .

[

because they are competing for BMOry. Siﬁce memory
résponse time is a limiting factor in some single processor

s§stems, this is an impbrtant problem,.

AY

.

| .
} © 3.2.3 Connections Between:Processors

There are a number of ways in which the processors of a

multiprocessor system may be interconnected:

g $ \ ’
1. Each processor is connected to a common bus.

2. Each processor is connected to every other processor.

!

3. Processors are at the nodes of a rooted tree whose

edges define the connections.

4, Processors are placed at the 2N vertices of an
N-dimensional hypercube whose edges define the
connections.

-

5. Processors are placed at the nodes of an arbitrary

graph whose edges define the connections.

Note that configuration 5 includes configurations 2, '3, and
4. Configuration 1 is a special caé?} any processor can
communicate directly with any other processor, but only one

'communication can take place at a‘time.

Configuration 2 requires N(N-1) connections between N .

- i

, . -59- K

b2

PR

processors; it is too expensive to implement unless N is
very small. Configuration 3 is an elegant implementation of
a hierarchical system; the processor at the root of the tree
handles the most abstractifeatures of the task, and
delegaées subtasks to its subtrees. The DDM1 machine
[Davis, 1979] has a tree structure in which any processor
that is not a leaf of the tree may delegate tasks to a
processor immediately below it in thegyreQL It is unlikely
that efficient processor, utilization will be achieved with a
fixed tree structure.

L} I '
The hypercube (comfiguration 3) is a generalized tree

in which every processor can be regarded as a root. If
there are N = 2k processors, tﬁe longest patﬁ between any
two processors has k .= 1ogzN edges and N.logzn connections
are required altogether. IMS Associates manufacture |

N\

computers with processors connected in this way:

configurations with 16 and 256 processors are available.

The configuration may change dyriamically. The first
configuration is actuallf a dynamic configuration because at
a givén time, any two processors may be connected. Tree and
hypercube configurations usually have a fixed structure, and
this may limit the degree of para;lelism that can be
obtained with them. The general graph (configuration 5) is
not very useful unlefs either the system is used for solving

one problem only or thy/topology can be altered to suit the

problem. In Systems of this type some broéessors may be

.

s et B,

e R ST e g
»

PN

R L TS Y Y e

o

. \ .
dedicated to communications; many edges would emanate from

them, but only a few edges‘would emanate from'a'processing

node.

3.2.4 Instructing the Processors

" Regardless of the way in which the processors are
connecﬁed,‘they must be told yhat to do. fherq are two
possibilities: either a processor may be p{bvided with code
for all of the actions that it will ever be required to
perform, or ‘it may be loaded prior to eaqh taék. In the
first case, the messages passed between processors will
consist of pure data,.and in the second case they will
consist of a mixture of instructions and data. The

distinction may be blurred in some cases: if a processor

.contains a LISP interpreter, and is Sent LISP programs, it

can be placed in either of the above categories according as
to whether LISP programs are considered to be instructions
or data. 1In dataflow systems, a message consists of an

operato% and operands; a processor may apply some operations

and pass others to a lower level processor. At the otler

extreme, an operating system loads a large programjisggh as

a compiler, into a processor before activating it.

The important point is that loading time should be
small compared to processing time; otherwise the processors

will be utilized inefficiently.

v

In a procedural 1anguage, code and data are distinct,
and code may be re-entrant. Re-entrant code is useful for a
single processor supporting several processes which require .

- the same code. (Recursgion is a special case of this.) The

) ' concept of re-~entrant code and multiple -activation records i
. N ' !

} : seems to be less useful in an-environment. in which the

| number of proceséors is comparable to the number of _ K b

processes.

3.3 Lanquages for Multiprocessors. o , A

It is possible to implement a von Neumann language on a
multiprocessor system. If the language is not adapted for

multiprocessing, the programmer has gained nothing and the
. v
semantic gap has been widened. 1If the language is extended

by the addition of a few synchronization and communication
- facilities, it will still not be closely matched to the
system architecéure, and the problems of inefficiency,

unreliablility, and complex compiler design will not have

'} - been solved. It follogs that new languages will be required

{ ’ for multiprocessor systems.

v e e ok s

R

P

L N SN SR

s

3.3.1 Static Program Architecture

The structure of all but the most simple systems is
hierarchical. 1In computer science, the hierarchy is usually
represented by a Eree:'the root of the tree denotes an

abstract concept, and the leaves of the tree denote concrete

.instantiations. The intermediate noqes of the tree are

abstractions.of the subtrees below them, and concretizations

" of the nodes above tﬁem. {(This tree, like most trees in *

computer science, has its root at‘the top.)

4 '
»
‘ £

The hierarchical nature of coﬁplex systeﬁs has long

been recognized by‘programmers and designers of programmin%
|
i

languages. Almost 3;1 programming languages have some form

of procedure, and in a program,. procedures are the nodes of
i , . 4
the hierarchical tree. We use the term arborization to \\

denote the extent to which a program has a tree-like \

.

structure. ¢

-

In a fully arborized proggam, the onl§ Ehannels of
‘communication are ‘the edges of the graph describing the
tree. For example, the procedures G and K of.the program
depicted in tﬁe Fig. 3.1 can only comﬁuniéate,along the
darkened edges GFEAIJK. 1In a pracéicaixsituation, this‘éath
is so indirect that G and K are effecti e;y isolated frem
one another. 1In many instances, this is a desirable -
s;tuation: G and K can be coded by different programmefs

Q . o 7

working in different places, and subsequently one can be

altered without reference to the-other.

~

Furthermore,

N

v
:

m
%

=63~

. P -

- . o ——————————— - R e e T

provided ‘that G and K do what is expected of them by F and J

respect1velyh they need have no knowledge of the rest of the
/
program.

. Fig. 3.1: A Program with Tree Structure

"Although this properfy of a fully arborizeg program- is
attractive in.,principle, it is unworkable in practice. This
is evident from the fact that there is no widely used ’

»

programming language in widespread use which lacks a

mechanism. for subverting the ‘arboreal structure. FORTRAN

has COMMON, and in BASIC and COBOL control may move freely
at any level of the tree and data is global.. Languages of

thg'ALGdL family use nested scopes: in terms of the dtagranm,

&

procedures G and H can ohly communicate by means of
variables declared in or above piocedure F.' In practice,

o ! -
* , . u

R

eI,

e AR RIS £€ o AL e b

| e o e e At bt

]
“

most programs written in these languages employ glebal data,

'declared.in the root, A. This is wfdely recognized to be

too restmictive: there are times when G should be allowed to

{

communicate‘with H without F knowing about it. e

e
L2 L4
I o

It is therefore necessary to provide a means, of

converting the tree into a network without destroying its

basically tree-like nature. We use the term reticulation to
denote the dégree to which a program possesseg a net&oik

structure.

The contribution of Strucfured\prdgramming has been to
emphasize the arboreal ﬁature of progréms. The need for
retiéulation has been realized more recently, and has lead
"to increased interest in abstract data types. Languages of
the futuré must enable both arboreal and reticular -

structures to be implemented.

b

3.3.2 Dynamic Program Structure

\

A proéram written ir a language of the iLGOL,family
consists of a 'main program' and procedures. The.main
program may be considered as a procedure with a special

privilege -- it is called by, and returns to, the operating

. systenm. ‘cali the main program Po.ané the procediuYes

Py,Pys.e.sPy, and write dowﬁ}%ll these names.
If Pi calls Pk' draw the line PiPk.o'If both’

]

Py and Pj call Py, then create a new node P,. and

) : -65-

AN A i o e A B O D gt L .

rm——

o B e wheze e . . e e e e - - 3 PN

join P P, and P;Py+. The diagram is now a tree o

“

of wﬁich Py is the root. Select a node apd label it 'A!.
L?bei all the nodes on the path between the selecteé node
and the root, including the root, 'S' (there wili not be any
if the selected node was Pj). Label all other nodes "I'.
Suppose that each node represents a process and ;hat the
only active process is the one labelled 'A' and that the

" others ane‘elther suspended at a proceaure cal} (fS'{ or are
inactive ('I'). This 'is a model for a possible, though -
unusual, execution of aﬁ ALGOL program: the active node
moves about -the tree; all processes on the path to the root
are suspended; and all processes not on the path to the root
are inactive. This sﬁggests a question: why are all

processes except one suspended or inactive?)

°

We are accustomed to writing programs that dé one-thing
at a time because we use processgrs'that can only do one
thing at a time, Yet this is an unnecessary and arbitrary'
limitation. There are many programming situations in which
a multiprocessing model is more natural than a

tree~structured sequential model.

Consider this seguential program:

repeat ©
read
do something
write '

until end of file -

This is a common abstraction for many p:obleTs. It is

- - ‘._\\
—~

r

Q.
T A
)

e 4

A i S e LV

v
P I .

- e a——— e e O

i satisfactory if each 'read' produces exactly the right
' v . e

| .amount of data for each 'do something', but it breaks down

¥ -
i

. . if this is not so. We then have g choose one component of
; - - N

; ’ the program and use it to 'drive' the other two.. It is much
id
more natural to define the abstract solution to a problem of

this kind as three communicating processes:
4

A7

read =--> do something ---> write - : |

In this model, each unit is a process, receiving data from a.

process or file on its left, and sending data to a process

or file on its right. No process dominates, controls, or

drives. ‘ T

In many compilers, the parser is a procedure which, v ‘ B
when called, ﬁ%turns part of the phrse tree. The parser, in
turn, calls the scanner, which returns a token. It is

-

! simpler to think of the parser as a process which receives

o e b M A s S St 2t

tokens from the scanning process and sends subtrees to the
code-generation process. Multi-pass compilers,are often c-

written in this way, but the 'passes' are executed -

|

s
| |
oot .. 5
|

i

s

i

2

o’
sequentially rather than concurrently. The intermedia%e

/

e efoting W et 1L SRR T o S,

[+ o~

/

/

" filés used to convey the partially-compiled program from one

3 . pass the next can be eliminated by parallel processing.

.

.) ' v .

* In L~ type languages, it is considered unde31rable

)

A . to allow f nctldhs to have side-effects. Sometimes

/ 81de*effecté cannot be avoided however, consider, for

/ 'example, the agse of a function which is regquired to return

[el

v P =

Al
V.

-

a pseudo-xandom number. It is more consistent to think of 2
pseudo—random number generator as a process emitting r andom

numbe:s as they are required, rather than as a function.

|
,

These arguments, considered in conjunction with the
¢

'

.arguments developed in section 3.1 in favour of a

L]

§
multiprocessor architecture, suggest that a language should

be developed ‘that embodies parhllel’prqcessing in its

‘ ﬁyndamental'design. Some of the obvious advantages of such

a language are:

. 2 4
. 'y w T . -68- « .) K
3 sy - z s
,

A Y

»

1. Properties of a multiprocessing .system are inherent in

¢ the language, not grafted onto it.

2, The present situation, in which pnysicai machines and °

abstract machines are quite different in nature and are

I

9

only relat;d by elaborate compilers and operating

systems, can be avoided.

* »

é; A language which supports'parsllel processing can be

used to write operating system software as well as-

]

appllcation software- thus entl:e systems can be

wtxtten in one language. s -
i * .

. B

3’_&

w8

‘processors.

-‘preyails, the system is probably inefficient or

[

3.3.3 Granularigﬁ ‘ .

v . ¥

)

The work done by a multiprocessor system can be divided
into two parts: fitst, the part performed by opegationsﬁ‘
within individual processors, aod; second, the qessages
exchsnged betseen ptocessotsw5<i¥complete definition of one
of these parts fully determines the other part; we will

comﬁare systéms by comparing the messages that move between
. A ~

Some of the 1oportans characteristics of messages
within a system are: their mean lenoth (L), their meana
information content (I), and their mean" frequency (F). We
can say that there are constants kl and ko such that.’

approximately: ' , ' >

L = kll . \;Q\'

and, even more approximately: Lo .

3 ' ' ' -
| F = kZI/L . » \\ o

assuming that the system has a message carrying ability FL

and is operated close to ‘the limit of this capacity. If in
fact FL is close to the maximum message catrying capacity,

o

The system may also

we can call the systsm message bound.

‘ ') N
be limited _by the pover of its processors, in which case we

call it processor bound 'If neither of these gsituations

under- utillzéd.
n \' - . ’ '

e JRE——— 1Y

S
3 A e % 8 v

RPN

Davis, 1979; Gostelow and Thomas, 1979; Ruggiero, 19797

A fine-grained system is characterized by,ﬁessageg that

are very sho€£ and very frequeﬁt. In a coarse-grained

system the messages are longer and less frequent. Most
contemporary process&rs employ parallelism at the fine-grain
level. For example, the bits of a word are procegéed’

simul taneously rather than sequeptially. ' Powerful
processors, .such asathe CDC 6600, IBM 360/91, and Amdahl

470 V/6 can overlap the execu;ion of instructions. This
kind of ‘parallelism is not visible to the programmer and is

therefore not discussed further in this Ehesis.

- l
3.3.4 Dataflow Languages

)

1

A number of researchers have propoéed dataflow

languages and‘machines of various kinds [Ackerman, 19739;

Watson and Gurd, 1979]).

| ! -
Consider the evaluation of the expressions:

4
I

X' = x.cos(t) + y.sin(t) o

-

y' = y.cos(t) - x.8in(t)

<

. ’ Pig. 3.2: A Dataflow Diagfam

b}
¢ B

Fig. 3.2 is a representation of the evaluation of these
expressions in the form of a dataflow diagram. Edges.on

this -diagram Qenote operaqu and node® denote operatioqg.. A ' /
node is conceived as a ceil which 'fires' whén it has an

operand on each of its inputs. The 'firing' initiates the
operation, and when the Bperqtion is complete; the resulting
operand is placed on the output edge. Operands flow from

the top to the bowtom of the\diagram} and the only .
synchronization cbnstraint is that a cell cannot fire until

gl} of its operands are available. Assuming ;hat énough

processors are available, the computation aﬁove'could be

-71- L R

in which T

~“completed in time \j> ’ ; - '

max(Tsin cos) + Tmul * Tagd

s;n’ Tcos' mul’ and Tadd are the times

requlred to compute a sine, compute a cosine, multiply, and
aﬁ%, respectively.~”There are some problems with the
dataflow model. It is essentially an applicative model, in
which there is no history. The symbols in the example‘abd%e

are names of values, not variables, as we can see by

attempting to construct a dataflow diagram for o

XxX=x + 1"
’/

The%e problems can.Be resolved. An importanz advantage . of
datnflon systems. is that program verification is more
natural,'becagse properties of programs can be derived
without\n oefinition of 'process'. Datiflow concepts are
very appropriate to the implementation of applicative,
languages. However, it io'weli known that applicarive 4
langnages are more suited to parallel processing than are
conventional albor%rhmic languages: and @ number of
perosals for concﬁrrent applicative systems have been made

[Rahn, 1974; Keller, 19795 Williams, 1978]. s

The disadVantage with dataflow'from the point of view
of the present discussion, however, is that it is too .
fine-grained. A natural .implementation of the graph abové
requ1res an 'add' processor that waits for two operands,

adds themn, and passes on ‘the result. Assuming that operands

=72~

[

‘
e .
U S -

-

A e M7

P

g pae

-~

e e e S TR e B S et

i

travel in the system as messages, it is ‘likely that the time

‘required to receive tw&%messages and transmit a third would

exceed the time required to perform the add operation.

i v

3.4 Conclusion ! :

Most proposed,and implemented multi-processor. systems
have either a loosely-coypled architecture, in which several
computers occasionally exchange messages, or a

tightly-coupled aréhitecture} in which memory is shared. An

>

v

intermediate architecture, in'which.messages are frequent

and memory is not shared is described in the next section.

.

o g

g

e

-7]

4 A Case .Study .

This section describes’a simple language and an

implementation of it. The language is such that it cannot

be implemented satisfactorily on a von Neumann machine, and

g0 it is an example of the kind of language discussed in
this thesis.
N

The languaée is called CSP. It is based on a notation

developed by Hoare in_his paper Communicating Sequential

. Processes [Hoare, 1978].
-, 2

' : I
.CSP, in the form in which it is described here, is a

'toy' lagggige. It is intended to be a medium for
illuéttatiﬁg concepts of programmping language design and
implementation; CSP is not a language;in which large and

a

complex ﬁrograms should be wr@tten;

f

4.1 Descfiption of CSP

The design of CSP is based on the premise that a
program can be constructed from a collection of concurrent

processes which can communicate with one another but which

" do not share data. Thus the primitive concepts of CSP are

concurrency, input, and output. CSP is simple because

'certain rules have been strictiy followed. One of these

gyles is that processes cannot be Sreated‘dynamically, and

so thé number of processes can be determined by the

=74~

i e e

o

compiler. This means that redursive processes can only be

implemented in a very restricted way. Agbther rule is that
an outpyt command must specify a target process and an input
command must specify a source process.

~

The control structures 6f CSP are based on Dijkstra's

'[1975,1976] guarded commands. If more than oﬁe guard in a

structured command succeeds, then only one of the [

éorrésponding guards is executed. The choice of the command

-selected for execution is arbitrary, and to this extent the

language is non-deterministie.

¢

The syntax of CSP has a strong flavodr of Pascal

[Wirth, 1971). CSP syntax, like Pascal syntax, overloads

the keyword end. Those who prefer to do so may read trats,

nigeb, esochec, or taeper when they see end.

{
4,1.1 Syntax and Informal Semantics

CSP programs are written in free format. Blanks may be

used freely between terminal symbols, and there must be at

least one blank between two keywords or between a keyword

and an identifier. 'A line break is equivalent'to a blank.
A comment, consisting of '$, é string not containing '$',
aﬁd a clbsing '$';'is also equivalent to-a blank. Keywords
are reserved. Upper case and lower case letters are not

distinguished in the language, and the use of upper case
\ . .

letters for reseryéd words herein is merely a convention.

~-75=~

e oy e e AR T T TR

I e B s g <+ e o o f

The-syntax is defined by productibns in Wirth's [1977]
, , \
notation. Appendix 1 contains' a description of this
notation. Appendix 2 contains the complete grammar of CSP.

program = global-declaration parallel;éommand ;

-A pfogram consists of global declarations followed by a

)

command- defining ope/gr more processes that will be executed

concurrently. Proce%ﬁgs may contain parallel commands.

ks °
Pparallel-command = "START" process { "AND" process }
*

s
"END" .

The processes are started simultaneously, and continue to

execute concurrently. \

process = Bkocess—identifier range local-declaration

"BEGIN" command-~list . "END" .

process—identifier = identifier ..

range = "[" (integer-constant | identifier ":" subrange
) "I" | empty . o . , . .

L3

subrange = integer-constant ".." integer-constant .

A range introduces an array of processes or a numbered

.process. For example:

~76-

-

e

N
e mme e W

P e

w
-t -

-

)
A ¢

START procg[0]

AND procp : 1..99] 3

id4

AND proc{100]}
END

There are 101 processes; the processes proc{l], ‘

"~

proc[2),...,proc{99]) all have the same code, and within that
’code.p‘is a-bound variable, _Proc(0] and proc{100] have .

différent'code, and might be used for initialization and
termination.) -

N 13
t ©

global-deélafation = "STRUCT" { type-clause]} | empty . -

type-clause = identifier { "," identifier } ~
i tfpe;descriptor { "," type~descriptor } ";" .

type-descriptor = ["[" sugrange "1" | simple~type |

empty .
simple-type = "INTEGER" | subrange | "CHARACTER" .

Processes‘may exchange messages. The cohtent of a message
is specified by a structure name. This is a global

declaration:

. STRUCT
int5 ¢ [1..5] INTEGER;

card : INTEGER, ({1..80] CHARACTER; '
ready\: 3

~

Three structures are defined: the structure int5 ‘'describes a

message containing 5 integers; the structure card describes

a message containing an integer followed by 80 characters;

v

-77-

K
[SO
3

P 1

4

g g g, Ml () g o o

H

k

and the structure ready describes an empty message, which is

or a single cﬂaractép need not be declared globally.

local-declaration = "VAR" { var-clause } | -empty .

-

var-clause = jidentifier { "," identifier }

TRl | siﬁple-type | array-type) ";" .

N

array-type = ﬁ[f subrange "] " simple-~type .

-

g

local to that.process. This is a local declaration:

VAR v
count : INTEGER;
card : [l..80] CHARACTER;
column : 1. .80; :

i command-list = command { ";" command } . -

\

¥

é ,
command is executed, it either succeeds or fails.

command = null-command | assignment-command

* s

. null-command = "SKIP" | "WAIT" .

Null commands have no semantic effect and never fail.

-

called a‘sigﬁgl. A message that contains a_single'integer

Local declarations appear at the beginning of a process

definition and contain declarations of variables that are

Commands in a command list are executed sequentially in the

order in which they appear in the program text. When a

| input-command | output-command | choose-command .

WAIT command requires an unspéq}fied.amount‘of time to be

ey

ooy,

e e

5

a

‘executed. It is not used in production programs; in
demonstration programs it is used‘'to mean 'some time

consuming action which does éomething irrelevant to this -

example'.

=

assignment-command = target ":=" expression .

o

/7
The expression is evaluated, and its value is given to the

target. The target and expression must match, in the sense
defined below., The assignment command fails.if the target

and expression do not match. .

target = simple-targeg | structured-target . "

-

simpie-target = variable . . S

variable = idehtifier | component .

- component = identifier "[" simple-expression "]1" .

& °

structured-target = donstructor

"(" variable { "," variable } ")" .
expression = simple-expression. | stfuctured-expression;Q

.4

structured-expression = constructor

" (" simple-expression | ',"éimpleégxpression } "y,

constructor = identifier .

Simple targets and variables have a.cohvpntiqnal'form,'and

their types must conform. ‘Array components may appear on.

3

L . t

-79- -

D

PP s ahu B
N

ey

R g

~ei§hér side of an assignment. These are assignment'

i . .
commands: - ‘

. |
< ‘ . .

x o1z 2%F 4+ 1) L L .
card[1] 1=z %1 K ‘v o) . . .

+

An assignment command with a structured target must have a

structured expressiaon.with the same constructor, as in’ this

3

command :

buffer(line,length) := buffer(card,80)

.

-

input-command = "RECEIVE" target "FROM" ’
process-descriptor .

<

output-command = "SEND"™ expression "TO" ?
» process-descriptor .) ’

process+descriptor = process-identifier
‘ LY -

2

[nn siﬁple-eipéession "iv]

Input and output commands enable proc%sses to communicate
with one another. Since there are no shared|variables,
these commands.are in- fact the only way by\which prodesses

can communicate. If process a.contains a co%mand of the

‘form
b ~ ,
" SENDe TOb S .
then Drocess.g,musﬁ contain a command of: the form M
RECEIVE v FROM a A

<+
»

Ifbo-’

AN

1

These two. commands are executed simultaneously,' and their

v

joint effect is that of the assignment statement

A
. vame |)

-

Since corresponding input ang output commands are executed

|

simultanebusly, either may have to wait for the other, and

there is ne implicii queuveing. The command

SEND e TO b

fails if either (1) process b is no longer active, or (2).
process b cannot accept a messaée of the type e. The

command

RECEIVE v FROM a - SN

fails if either (1) process a is no lonéer active, or (i)

process g‘sends a messagé of a different type.

-

When an input or output command has the subscripted form

“SEND e TO pli]

£l

a

. the subscript must be an expression containing only

constants and variahles bound by range descriptors. _ For

example,. the processes introduced by

START sieve [i:}..100] T ’

bl

may contaih commands of the form | -

RECEIVE p FROM sieveli-1]" : o .
‘& ’ o

T " e Vo AL P gyt

o e i

»

-

‘ot

NG

for 2 <i < 101. This rule may be’ expreésed in terms of .an

implementation this way: subscripts in i put and output‘
iy

"\r-.p‘ o A K\' N .
cohmands are evaluatzﬂ by'the compiler. AR .
-‘ » - . ’ ‘\\\ ,
y choose-command = "CHOOSE" |- “REPEAT") ¢ N o

, guarde&-cdmmand { "OR". guarded-command } "END" .

u L

quarded-cqmm?nd = rcnde guard,"~>" command-list .

i~
1

guard = boolean—e§§ression§| input-command

l‘booleaniexpiecgion ';"inpct;comman& . R
. . . - / * B " S
' . H ’ g N "
" The general form of the.choose cdmmand is S .
. _ / IR
., CHOOSE G, -> ¢; - - 'f . '
.) OR G, -> cz (. ,‘]
. .OR G_ f>,cn oo o s

¢ ‘

2in which the G, are guards and the C; are command lists.
¢ o0 N ’

When a guarduis_ihaludied;'lt'eiﬁhen succeeds or fails.: A

boolean expression succeeds if its{bd@ue 15 true. otherwise

it faila. The effect’of the choose, conmand above is as

"

e ¥ follows: . K L -
Q/ oo . ~ ' A . . §
! \ -% R !

&, »
+ ,If no guard succeeds, then the choose command fails;

<

if exectly erie guard succeeds, then the corteeponding

)
~ '

“command 1ist is executed:) ‘, . -

Al o

3£ more- than one guard succeeds, then exacélx one of -

2

the coi;esponding connand lists is executed.

E:
a -

Yo

ryabeggre m TWE

/

i

- ‘

S

The choose command is therefore non-deterministic; this is

the only.ins\tance of non-determinism i?n the ianguagye.

+
3

o L The repe&t form of the choose commané! is similar,

4

except that if one or more guards are true, the command list

is executed, and the whole command is repeated. When all

‘the guards fail, the repeat command terminates without

failing. The following commands compute the sum S =

< 1+2"”o - -"H'I: ‘ y ’ .) X . u‘-

‘ L
-

OO
e o
¢

* o0

Lo . moge
C ~ 'REPEAT
, m(n-)m--m+lgs

END

= g + m

-l

The cmand

- . REPEAT’ o ’ - S
Y - RECEIVE y FROM & -> szm) vTOC : ‘ L

[N

3 Wit

Ee:minates when t input command fails}e this could be

unacceptable message. The c_:onmand) , ,
{ \ : : . , 4
3: : _REPEAT -

" RECEIVE cat FROM.a -> 9E Riaow TO c \ '

" OR

Y

1
. Y
«

'RECEIVE dog FROH a -> SEND batk 70 ¢

Is

. END

’\

'

L%

bl : " ’\

'or sen s 2 message other than’ cat or g The input

, ‘ cmands need not specify the same prdce (althpugh theyt do’ |
'in.this ‘example) .) . : . "
S , * -
. ‘ Ty, * e . Q t
-) .. K ‘- P
. ~83- -

< portid

;)fi;'?“?i ;r‘m?'?fﬁ%?;«%"'% :

.
N

e ann Ay T

ma L et g s ey Abpoue o ke

. — T v

P R

*

&

[
i

DA

,notation with no other semanti¢ significance.

‘expresaions.

~ s,

When a guard contains a boolean expressiom'followed by

an input command, tﬁp input command is attempted only.-if the

1

boolean expression evaluates to true.

[

The command

CHOOSE - ' T
n > 0; RECEIVE v FROM a => C
END "

°

can only receive v when n is positive.

The range part of a guarded command is a shorthand

>

The command

oy
N

cnoosn
-[i:1..3) RECEIVE v FROM pli-1] ->
SEND v TO pli]
END |

v

is an abbreviated form of the equivalent command
i o

i :

CHOOSE
. RECEIVE v FROM p[0} -> _

.Y SEND v TO p{l] . ot
OR ‘

RECEIVE v- FROM p[l] ->
SEND v TO p[2)
OR) - . . |
. RECEIVE v FROM p{2] ~> \ .
SEND, v TO pl3] ‘
END A

The remaining productions of the grammar describeﬁ

They areaconventional in nature, and are

‘

"-described briefly here. o - - SN

“ a P
boolean-expression = comparison { "&" comparison J
< ") ‘ o ' ,

1ean-§xpréssion gaﬁ'only occur as part of a guard.

ction)\operator only is required, because djisjunction

The

!

.

ol

\ s e e o e et ST o) o NS

T -

cak be achieved by multiple quards.

comparison = simple-expression comp-op

simple-&xpression . -

Y

e simple-expression = [add-op] term { -add-op term }

v

| boolean~constant |} éharactgt-cons%ant . °

term = factor { mult-op factor } .

i " “

u‘\' d o

! e : factor = variable | integer~constant "“ ‘
| " . | " (" simple-expression ")®)

g

| function-identifier " (" simple-expression ")" .

The syntax specifies the priofity'of mﬁltiplicative over
~additive opegators. as in Pascal. ' The language provides

some built~-in functions, but fdnctigns cannot be defined by

R
the user. .

.

. (¥
boolean-constant = "TRUE" | "FALSE" .

Y - . N -

@ > ' ‘. . n
PALSE and TRUE are keywords; they cannot be redefined by the

'
3

. user. ') {.
. : .

character-constant = *'* ‘character *'"

e

y .

This version.of CSP does Bot support strings.

il

R -

integer-cohstant = digit { digit i .

-«

. - A - . -
comp_opC wew | wER | m™ | wyw | Wy | Wy
~ - . - .

'

‘add-op = 4" | "erl . -

.mult-op = "#% | *ym | mw .
. + . ——— . N

function-identifier = identifier .
identifier = letter { (letter | digit | e I

Qperators and identifiers have conventional syntax. If the
Character set is limited, "<", "“s", and ">" may be
repreeented by "<=", "<>", and ">=" respecti?ely.

,) | (

4.1.2 Standard Processes ‘ ’ !

h)

There are two standard processes which do not need to

be deflned by the uset: input and output.

.

‘The process input is connected to an input device, such
as the keyboard of a terminal, or a dl!k file, from which it
reads a stream of characters. One of the characters that

may be read is eol, signifying the end of a line of text. .

<

When an end of file condition is signalled by the input N

&deyice, the process input terminates.

’Any user process can receive messages from the. process

input by using the command

'

RECEIVE v PROM 1nput ’ a
. - }

1f tﬁe type of ¥ is eharacter then exactly one character jis

sent (it may be eol). If the type of v is inpeger khen/a

number’ is teturned. In ¢h}s case,’ the process ingu skips

SoVet blanks and line endings until it finds a signor a . o ‘ﬂ~-i

I s = Sl ek

dig%t; and reads the digits %ollowing according to'this

éyntEg: . .
) ~ . -

number = { blank | eol } ["+" | "-%] digit { adigit } .

N

H

-

If input cannot find a2 number, it fails. - . ' ~a

\

Arrays and constructors may also be read by input; the

concepts above are extended in the obvious way. 1If line is

" declared by .

v
e \

VAR line : [1..100] CBARACTER:

"~
LY

then the comnand

RECEIVE line FROM input

2

has the following effect. characters are read from the 1npu

t
device and copied ‘into line until either 100 characters hav*ff

been copied or eol is read; in the letter case, eol is

stored in line and reading ceases.

xhe process outgut is connected to an output device

such as the screen of a terminal or a printer, to which it

sends a stream of characte:g. The process output terminates

(only.when all usger processes have terminated.ﬁ

Any user process can send messages to output. Output

will occept characters, integers, arrays;’and structures.

If\an.aifay of charac%ers containing ecl is sent to output,

the cnerdctefevfollowing eol will not be printed.

I
.

o

In this 1mp1ementat10n of CSP, input and outgut are the

only prOcesses that can communxcate with the external

environment.

4.2 Example Programs f~) C T

o ! 1
"THe examples, that follow are simple CSP programs. They

are intended to illustrate the abplfkation of CSP to simple

problems in concurrent programming, and also to demonstrate

that some traditionally sequential Xlgorithms (such as

ed in a natural way using

o

Eratosthenes' sieve) can be expre

coéncurrency.

Example 1: Direct Copy

- \

This program copies characters from input’ to outgut
When the la&t character has been read from the input file,
the procedure input terminates; the receivé command then
ﬁcils, terminating the repeat commacd, and thereby the
process copy. ~ ;

. .

START copy
VAR

ch : character; '
BEGIN
REPEAT
RECEIVE ch FROH input -
SEND ch TO output

T 8 3 e T T o

il

Example-2: Change Ligg Structuré T
. \ “

This progiam demonstrates .process synchronization. It

coneists of two concurrent processes: read and write. Read

removes eol characters from the inpdt'stream and sends all
- v

other characters.to write. Write sends charactersutoqthé

-output stream, inserting an eol character after each group

of 100 characters. ' ‘ ‘

¢ »

Read terminates when its receive' command fails. When
read has terminated, the receive comqgnd in write fails,

terminating the repeat command. The choose command.in'write

appends a final eol to the output stream if'necessary.

Y
E

pr——

et bammy o e g

. " END

' START read : - , : R

VAR , ; . "
ch : CHARACTER; . A

BEGIN ' o R

' REPEAT v

RECEIVE ch FROM input ->
-CHOOSE ch = eol -> SKIP

"OR ch ¥ eol -> SEND ch TO write -
. END ‘
END
END ' _
AND write » - Lo ‘
- VAR '

ch : CHARACTER; |

count : H..100; ‘ .
BEGIN | : L

count := 0; ' , . i o

REPEAT ' '

count < 100; RECEIVE ch FROM read -2
SEND ch TO output;
count := count + 1
OR
couynt = 100 ->
SEND.eol TO output;
.+« count := 0

*

END; .
+ . CHOOSE: ' ! 0
count > 0 -> SEND ecl TO output
OR :
i count =0 -> SKIP . :
END) ' \
. END’

. . f N

Example 3: Bounded Buffer

The processés read and write in the previous.example

vere closely synchronized.

of two processes fluctuate, and 'if this is the case, the

throughput may be impfoved by interposing a buffer between

them. The'process buffer is

a aimple example of the
?

‘inplementation of an abstract data typ? in CSP.

&

Sometimes the ppeeeéping'ratég‘

'

P Taad

B o e i el ad

o

"The following program is based on -Hoare's [1978)

]

example 5.1. It assumes the'existence of two précesses:

'

producer which sends characters, and consumer which receives™

the characters sent by producer. IQspead of sending

i

characters*directiy to consumer, producer sends them to the’

, J process buffer, and buffer sends them on to consumer.

— ~Buffer can store up to 100 characters in the buffer buf.

N

The number of ac;ive characters in the buffer at any

one timeé is N = in - out. The guards ensure that characters
can only beqput into the buffer if N < 100, and that they

can only be removed from the buffer if N > 0. Consumer must

issue the command :

SEND r'eady Y0 buffer

«

m\\when it is ready fo another character. The program assumes
: .

{

) that the characters \sent by the producer can be counted
without causing integ' overflow. . The operator "\".is

" equivalent to mod in Pascayl. . o

ot

4 -
o S e————, o

e,

'

STRUCT : : . i _
" ready : ; . ~»

START producer .(;y////’ . . .

AND consumer ...

AND buffer
VAR
in, out : INTEGER; .
buf : [0..99] CHARACTER;

BEGIN w
" in := 0; out := 0; .
T o REPEAT ' N

in - out < 100; ,
RECEIVE buf[in\lOO] FROM producer ->
in = in + 1 |
OR .
in.~ out > 0; ’
. " RECEIVE ready FROM consumer =>, . - . °
SEND buf[out\100] TO consumer.
out := out + 1 ’ i
-END-
. END ' : !
END :

. Example 4: Text Scan . .

1

The néxt program reads a stream of characters from

« input and ¢ounts the numbetjof occurrences of each of the 26
letters of the alphabet.. One process is used for each

letter. When the end of the stream is encountered, the

signal giigg is used to synchronize printing of the countets

in alphabeticel order.

but it demonstrates the way in which parallelism could be
' achieved in more elaborate programs. A cross-reference
generator, for example, could keep - ‘26 tables, one, for‘each
initial letter, and update them concurrently ‘The function

»

ord is equivalent to the Pascal function ord., = .

PR
K o .

This purticulat program is trivial, o

)

J
<‘

STROCT ‘ I
v print : S) (

START count[O] - . ' |
VAR !
- v - ¢h ¢ CHARACTER;
N ¢ ¢ INTEGER;
. BEGIN . C
REPEAT -
RECEIVE ch FROM input -)r . : I
c := ord(ch) - ord('A') + 1; , ‘
: CHOOSE o
5. [p:1..26] c & p -> N
’ . SEND ch TO count[p] '
END
END, ’
SEND print TO couot[lJ
END .

- AND count[p 1..26]
- VAR e
' n : integer; \
BEGIN « ‘
n = 0; ’ K , L
REPEAT p . o
RECEIVE ch FROM count[0} ->
n :=n+-°1 , |

k3

» END; .
v CHOOSE N ‘
\ RECEIVE print FROM count{p-1]. ->
: ' SEND n TO output; ,
SEND print TO count[p+l] . o
. END !
END . '
o " AND count[27] ’ C .
7 C BEGIN 3 '
. RECEIVE print FROM p[261 : ' \
L. END ,.
END ' . .

-[. y =7

-

-

v

’ 1
‘ .
. N
o .

. Example 5: Eratosthenes' Sieve

- This elegant prqgraﬁz adapted from Gries's solution in

‘Hoare's notation, uses N+2 concyrrent processes to print the

" prime.numbers less then N2. In the version shown, N =.100.

—G

Process ‘sieve[i] receives a string of primes fﬁom process

gieve[i-1]; it prints the first pfiﬁe P that ié receiveék

»

and sends the others on to procés§ sieve[p+l], unless they

o) a
are multiples of p.
. b
,
1 .
i N -
) . 4 ’. ’
i o , '
‘ !
4 .
.
.
.
.
Ao k) ~
7 .
,
1
N .
S
.
.
N [
.
»
+
e o
©
t
e e
.
v « -
* 13
\
1 N +
C
.
. —
. -, ‘
e 14
. .
. o #

¢ - L}
*
.
-
;
'
’
v 3
1
]
)
b . .
.]
;v
.
d -
s . ¥ = .
iy . ~ ,
. ; ,l\,
hd o .
, L oo
MR

START- sieve[0]
; VAR -
. . . n : INTEGER:) v
S , SEND 2 TO © tput- '
n := 3; !
REPEAT z

n < 10000 -> C ('

. . " SEND n TO sieve[l]:.
,na:=n+2~
.END ’

_— :) S

AND sieve[i:l..100]) ' * '
- VAR L
p, m, mp : INTEGER;'
BEGIN '
RECEIVE p PROM gieve[i~ 1]; y
" SEND p TO output; : '
mp := p;
REPEAT
RECEIVE m FROM 31eve[ip1] —2
REPEAT o
> mp ->mMp :* mp +p -
END;
- o CHOOSE .
- : m = mp -> SKIP .
‘ OR '
* m <mp -> SENDm TO sieve[i+1]0
END N)
_ o END <¥ :
“f . " END

Y

<

. . AND sieve[101] ;
VAR -
- p ¢ integer; e T Y
BEGIN : . St
REPEAT" -
RECEIVE p FROM sieve[lOO] -> !
" .~ SEND p TO output
, END. .
! iy END . ‘
o END

ek
-t -
M
» ;
I
! L3
v
[4
¥y -
"0
'
/
v
L 9
fn
<
- o .
; .
Pl []
-
Ll
w
\
3
[
s)l »
¥
-
| [
,
e q .
. |
'
’ o
.
o
T
—
»)
)
) A
LY -
<
AY
» n
-
. 1 .
b,
\ ,
a
~
\ L
¢ M
\ .
B
-‘l
“lit
i

[

P

SO

;-
¢ .

. . ’

Example 6: Hhﬂgry Philoéophets

posed by Dijkstra:

S .

The next prégram is a soiufion to thé following problem
. A R

« Pive phiiogophers glterna;liy think and eat.. In order
;' to eat, they enter a dining—&oom containing a.circular
- table withqs,chairs around it. In Fhe centre of the
table there is a bowl of spaghetti, and around its
petipﬁefy tﬁere are 5 blates, and betwe'en each two
plates there is anork. In ordqg to eat, a philosopher
_sits.down at his chgig and takes a fork in each hand.
The problem is &y program the philosophers 80 that none

’ . &
4

starves. ’
If each philoéopher goes into the dining-room, sits down,
and picks up the fork on his left, and waits for the fork on
his right to become avéilable, all will starve. Dijkstra

suggests limiting the number aof philosophers in the

*

"dining-room at any one time to four in order to ?revent this

unfortunate occurrence. ¢

The program that follows is based on Hgare's [1978]
solution; it models the %:haviour of the philosdpheré,
. , % .
forks, and room, by 1l processes. The processes communicate

by means of signals. A philosopher is not allowed to enter '

‘the dininé—room if the other four philosophers are already

in it. when a philosopher wants to think, he reads a

)

character from the process input to think about. The

A

-96~

.

[PO O T ARV S

.

o e e e

i
- ~
.
*

command WAIT indicates.an arbitrary time de{ay with no

‘side;effects. Although éach fork process sends the signal

putdown immediately after receiving the signal Eickub, the”f'

. philosopher aoes not actually. put fhe fork down until he has.'

finished eating. . -

W' . “
N A

-97-

a

¢

'STRUCT
enter, exit, pickup, putdown s

START‘philosopher[p 0..4] ' SR
VAR
ch : CHARACTER;
- BEGIN o
REPEAT
RECEIVE ch FROM input ->
WAIT; § Thinking about ch §
SEND enter TO room;
SEND .pickup TO fork(p]:.
SEND pickup TO fork[(p+1)\5];
WAIT; $ Eating §
RECEIVE putdown FROM fork[p];
* RECEIVE putdown FROM fork[(p+1)\5],
SEND exit 'O room) “
END . ‘ ‘ P

RECEIVE pickup FROM philosopher[f] ->
SEND putdown TO philosopher | f] Ay
OR -
RECEIVE pickup FROM philosopher[(f-1)\5] ->
SEND putdown TO philosopher|[(f-1)\5]

END
END /
AND room X
VAR h
occupants : 0..4; '
BEGIN ¢ ¢ .
REPEAT
[p:0..4] occupants < 4; {
RECEIVE enter FROM philosopher([p] ->
o ogcupants := oscupants + 1 "w
R

[p:0..4] RECEIVE exit FROM philospher(p] ->
occupants := occupants - 1
"END
END
END ’

" L ~-98-~

e

ey

e aw W

-

Gy ez me s uue

[T PR

e AT AT AT g gy

Exémple 7: ‘A Non-Terminating Prégram ' .)

/

The semantics of CSP do not enforce terminatiion of the

following program, because when it is executed; the process

1

slave may never select the second option of the repeat

command (Hoare [1978], section 7.6). The program is

-’ %

therefore considered‘ﬁo bg incorrect, although any

reasohable implementation would @ventuall; choose the second

option.

STRUCT ' .
stop : ; FA
, / i
START master- . Y 4 ~

BEGIN

i . \ /,/ “
SEND stop TO slave M e
END ' . :

AND slave | y ar
VAR -
run : boolean; ‘ -
BEGIN ~ '
run := true;
REPEAT ' $
run -> SKIP . —
OR . .)
run; RECEIVE stop FRQM master -> run := false
END - -
END . ‘ ‘ ;
END \ . ‘

Example 8: Deadlock

It is easy to write a program that deadlocks the

processors of a CSP system. The following example is based

on the program given b& Kieburtz and Silberschatz [1979].

e i o
.

T

.

STRUCT . ,
messl, mess2, mess3 : ; "
START proca
BEGIN
SEND messl 'TO procb;
SEND mess2 TO procc ‘ ‘
END ‘

AND ‘procb
BEGIN
RECEIVE mess3 FROM procc;
RECEIVE messl PROM proa
END :

AND procc,
BEGIN N ’
RECEIVE mess2 FROM proca; :
SEND mess3 TO procb - z* ‘
-END

END ‘ | , (& "

4.3 An Implementation of CSR | '

{

- It is evident that CSP is not merely another

A

‘ghbstrgction f'a von Neuﬁann machine, altHbugh a CSP pro

-

could be simuiateq’by a von Neumann machine. This section
describes an appropriate architecture for a CSP system,

,/ foliowing the principle ;hat'the language should determine
.the nature of the broceésor (top~&own design) rather)than
the processog determining the nature of the language

o

" (bottom-up design).

The distinguiéhing features of CSP are: concurrent
processes, and communication between processes. a single

process has many of ;he'gharacterisiics of a von Neumann

~,

S
..machine. There is therefore no need for a revolutionary

v . architecture: the nature of CSP suggests that it can be

&, . . /J

I -100~

m

g T

M g Ao b At

Tr oLy ey e

o o
. ‘ I
o R e

#

.implemented by a system containing'seberal éonveht#onal

’ B »
processors.

’

»

4.3;1-.CSP System Architecture ‘ .

s

- LN

.The processes of a CSP‘pfogram have local data and

exchange messages: there is no global data. This is a

sensible policy to adopt at the hardware level also, because

it eliminates problems of memory interlocks.

The only assumption made in a CSP program about® the

timing of events is that corresponding send and reteive

commands are executed simultaneously. Therefore, there is -

that output from one process can be synchronized to input to

-

. » ~ ¢
another process when necessary. There are a number of

points in favour of the 'no common clock' rule (cf. section
1

3.1.2): o

1. Lamport [1978] has described the difficulties of

!

clocking arbitrarily large distributed systems.

» *

which CSP does not require,

[}

3. In order to be incorporated into the system, a

J

~

no need for a common clock in the support system, provided

One reason for having a common clock is shared memory,

processor must be able to communicate with the other

‘ procesiors fn the system, But need not have any other

features in common with them. This means that a CSP -

v
.3

{

[

.

~

1

T

system can incorporate specialized processors with very
different performance characteristics; the advantages

L] L]

of‘this were discussed in section 3.2.

The term 'common clock' is used here to denote a’timing

signal that synchron1zes events throughout the system. ‘The X . /

- *

concept of 'system tlme, lech enables events to be-

Sl }
tlme-stamped and therefore ordered (or at least partially ' - :
ordered) is not ptecluded, and is in fact an 1mportant part ’ ’

of the communication protocol proposed for CSP. *

¢

Although it must be possible for any'process to
communicate with any other process, it is not feasible to

provide the N(N-1) cdnnections needed to fully connect N °

. processors. (See section 3.2.3 above for a more detailed

it

. 2, The bus has a clock to control the timing of data o

common bus.

>

LI ¢ . . -
discussion of this point.) The alternative chosen for the

-

MR BN .

proposed implementation is to .connect every processor to a
R\The common bus has the following : .

characteristics: r

4

. 1 :
1. A processor is either connected to the bus or it is‘

- o »
S -

disconnected. ' - ;

transfers. When a processor is disconnected, the bus

~

-clock does not in;luence its behaviour.- Thus the bus

clock is not a common clock in the sense defined above.

* .

AT SRS BT 30

) = g
. . ~ .

3. A'processor may request.use of the bus, Such a teqpébt i

will eventually be.granted. Once a processor is

“

connected to the bus, it may send a méssage to andther .

processor.

The single system bus is a potential bottleneck. Th%s‘ ,
problem is discussed in more detail in section 4.4.2 below,

in which the pfobbsed'implemenﬁation is evaluated.

~

 ‘The bus is a shared resource which may be used by only a

oﬁe processor to commugicate with another processor at any -
o;e time. .The bus must the:éfore,be administered by a égg
controller. The bus ql%troller notices a réquest for the

bus, waits (if necessary) for " the bus to becoﬁe‘free, and

then grants the request. When it tells the requesting @

o
process- that it has the bus, the controller also issues the

system time. /

Since there is no common clock, a single requestcline

< joining all processors cannot be used. Each processor is

Sﬁndependently conneqted to the controller, Snd the ,
controller samples each requestvline in turn. 1If iwo

" processors }equest the bus simg}taneously, the bus will be
given to the processor whose request line is sampled first.
If t seconds are required to sample a request line, then a

" processor in an N processor system waits -an average of Nt/2
seconds to obtain the bus, ulléss another p:&cesso: is - -

already using it.

= e ammmartra v i e & s e ———— T

SO X

B
— . L Zo IS S TR PR, we ey gneseiew w -

- ' Tﬁ@ié is a choice'of methods
ﬁime.f,k'fast clock, perhaps giving kpe time ’
| ; mieffé;;qhds, could be used, Put it is not ﬂeceésary. “Aj
. : gloJer clock, perhaps counting milliseconds, would need
." fewer bits to encode the time. The;oniy disadvantage of a

slow clock to a CSP program is that-a choose command may

-

g select the receive command acknowledging the more recent
. —_— ¢ -

send command, because the send commands apparently occurred

at the 'same' time. Another kind of clock could simply

+

count the number of bus requests, and use the value of this
counter 'as the system time. is clock would provide a
total ordering of gommunicatio events, and would 'run' more

slowly than the fast (microsecdnﬁf glock mentioned ébove.

Althbugh the bus controller has a special status in the

éystem, it has’a CsP flavéur and can in fact be 'programmed'’

8

quite easily in CSP:

-

-

& wen

e . . . [

-104-

S °

o

(¥

e W w o w e

STRUCT- ' S 3
request, finisheds: ::

START bus . ' ’
VAR) !
active, time : INTEGER;
BEGIN
active :=' 0; time := 0;
" REPEAT !
vactive = 0 ->
. CHOOSE
C[p:1..100]) :
RECEIVE request FROM process[p] ->
SEND time TO process[p]:
active = 1;
. time := time + 1 T
END . cl
OR '
active = 1 ~>.
CHOOSE ‘
{p:1..100]
RECEIVE finished FROM prccess[p] ->
active := 0

END
END

— a

A process.that wants the bus executes the command
- SEND request TO bus >
It can use the bus as soon as the command

RECEIVE time fROM bus

>
A\

succeeds, and when it has finished using the bus it must

execute
SEND finished TO-bus

The process bus in this example functions as a monitor

[Hoare, 1974].

END , . : N

i et A

&

-
\

. .

>
. o

When the Qeqding process hag obtained the control of
the bus, it must attract the attention of tﬁe”receiving
processor., It does'this by placing the identification of
the receiving processor on the data lines of the'bus, and
then raising the interrupt line. Every processor is
interrupted, and looks aé the code on the data'lines; one
processor identifies the code as its own, and raises the

acknowledge line on\phe bus, and waits for the message{

/

4.3.2 CSP Processor Architecture

Each process in a CSP program is executed by one
processor in the CSP machine. In this rather conservative

design, each processor is assumed to be a von Neumann

" machine. It is easy to see how all of the commands of CSP

]
can be executed by a von Neumann machine, except for the:

commands send and receive. This section therefore describes

the implementation of the send and receive commands..

Suppose that the sending process s contains the command

~

(1) SENDe TO r

and the ;ecéiving process r contains the command

(2) RECEIVE v FROM s

1

These two commands are equivalent to the assignment

statemenf

-106-

EEFS IR

PR

°

aqd they must be executed simultgneously. In practice, of
course, process s will not usu;lly reach‘gommand (1) at
exactly the same time that ﬁrocess r rea¢hes command (2).
Consequently, one of the processes must wait for the other.
Suppose_ that commasd (1) is reached first;fthen the
processor executing process s (which we may call processor
s) will wait. When processor r reaches command (2) it must
not wait, because the processors would'then be déadlocked,

and so it must have some way of discovering that s is

waiting.)

¢ 'Supposé that the syétem has a public bulletin-bdard.
Then processor s could pin a bulletin to tﬁe_bdlletin-board
saying 'I have a message for process r'. Later on, prgcess
r would reach command (2), and would look on the 4
bulletin-board for a message from s. Once.r has seen sg's
bulletin, the command can be executed. Alternatively,
proc$ss r might reach command (2) before process s reached
command (1). 1In this case, process r would pin a message to

the bulletin-board saying: 'I am waiting for a mgssage‘from

process s'.

4
"~

Unfortunately, the public bulletin-board is a form of
$hared data, and so we cannot use it. Howeveg, there is no
reason why éach processor should not have its own private
bulletin-board, and this is the basis of the compunication

protocol described here.'- .

Two forms of communication take place between
processors. A bulletin is a short communication which can -

be intercepted and placed on the bulletin-board of the

receiving processor. This is done by interrupting é%e
receiving processor. A messaée is a longer communication
containing data. (In command (1) above, e is data.) A
message can only bé passed between two processgrs when poth
are prepared for it: in other words, messages neither use

nor require the interrupt routine.’

A bulletin must contain the identification of the
{ p
sender and a flag specifying the direction of the proposed
message. The sending processor must also provide,

3

information that enables the’ receiving processor to decid

whether it can accept the message or not. This information
consists of the time that the bulletin was issued, and a

structure identifier defining the format of the message.

When a process fails br terminatés it sends a
termination message bulletin to all processes that might be
expecting to exchange data with it. A send ‘command issued:
by a process é to a receiving process that has terminated
aborts s. A receive command issued by a process r to a
terminated process fails, but does not necessarily abort r.

An unacceptable message does abort L.
1

These considerations suffice for an informal
description of the implgmentaﬁidn of send and receive; the
remaining details will be discusséd after these

w

, . -108-

Y
4
1
o?
ot

e

13
.

b
N

. ’ v N [- L . . “, . A , ”
. descriptions. - ; ® - ‘ . "

. : 1 . , ‘ . ,"».
e Desq{{;tion of SEND . : ' o T B

L

The sending process s firft looks at ite' _
bulletln—board- xf there is a bulletln saylng that the
recexvxng process L has alteady failed, then s is aborted.

-~

.If there’ is no such bulletln, then -s constructs a bullet1n,

o . sends 1t to r, and walts for a’ bulletln frém r. S uses the
: a ' ‘ . ~commén bus to send ‘this bullet1n, but releases 1t whlle
. . X
'wa1t1ng. The bulletln containg the number (or other ' RN

§" o i i.1dent1f1cat10n) of s's proce§dor, the time obta;nedofrom the

. ,bus adm1nlstrator, and’ the structure 1denb1f1 r of the,data.

L -
.

¢ r

« 7 P - ')
“/}he balletin that s evenﬁually rece1ves may say that r

’ w o

hag terminated, in wﬁgzh case s is aborted Otherwlse, it
.~ _ says that r is retdy, and § immediately t;an its the data

* - (the bug is open for ‘this transmission because it was

. ’ . ¥ :

. © '. « obtained by r). The send command is then complete. -
* a - c -r . . N B) Y

-SEND Protocol J

& “ -
+ . /4

1. 1f reeeiver has terminated, {hen abort this process. i
o v g?) . ® '\ . ' o ' !

. 2. Get-common bus. - ° e

H . . e
» ¢ -
0

3. Send a bulletin containing identification of sender,

time, and structure identifier, to the receiver..
‘a. . 4 Return common‘bus.

. °
e ’

D odee ey AR e

- s, wait for a reply bulletin from the receiver. .

.

6. If receiver has terminated, then dbort this probess.

¢J’/’ :t

- 1. If receiver is ready, then send dat@.

R
- L
8. Remove bulletin ffom bulletin-board.
. N Y
\\N) Description of-RECEIVE ' . o

3

The receiving process r waits for-a bulletin from s to

‘appear on the bulletin-board. (This wait ié unnecessary if

. .

< 'the builetin is there already.) If the bulletin says that s
has terminated, then the receive command fails. Otherwise, e
thé bulletin de'scribes a message that s has ¥or r; if the ’
meésage is not acceptable, then r is aborted. (Note that i
abortion implies termination, and so a bulletin announcing ' ' }
the termination of r will be send to s, and so s will also
. » abort: see s.tep 6 ofﬁ.Lnd‘ protoco);.l) If.t\henbulletin is

‘acceptable, r obtains .the common bus, sends a bulletin to s

announcing ' its readiness, and receives the data.

¢ RECEIVE Protocol

1. wait %or b
o ' «\ . . 8. .

. , 2. ' 1f sender has teérminated, this receive command fails. v
‘{ . o e Y <
L : s :
: 3., If the mgsgége described by this bulletin is

S ' unacceéptable, abort this process.

Ve

)
.
.

-110- . S A

S — - E R

Vet gt e w0

4. Remove bulletin from bulletin-board. -

"5, . Get common bus.

6. Send 'ready' bulletin to sender.
7. Receive data from sender. N

B. Return common bgs. ‘
s ; *\\Q/ ’
One drawback of this organization is the need to assign -
memory for a bulletin-board in each processor. The
bulletin-boards need not be very large, however. When a

']
process has sent a bulletin, it either waits or terminates.

Therefore, no process can. send a second bulletin until the
. »
first is acknowledged. 1In the worst case, a bulletin-board

» -

in an N-processor system would contain N-1 bulletins. 1In
practice, the compiler could allocate lesSs space to the
bulletin-board of a processor that only communicated with a

» few other processors. - ’
y .

The receiye protocoliis suitable for a single receive
command. A CSP choose command may, however, contain several ;'
récéive commands, exachﬂy“ong of which is-to be gxexuted.
The non-determinism of such a command is resolved in this
way: ° . o ' R

: A
1. If, on entry to the choose command, ‘there are no
relevant bu{letihs on-the bulletin-board; then the

»

processor waits for'a bulletin specifying an acceptable

-111- T

5
—rn——— b,

.
. -
e e ekt AR g R S s £ S

- Br e e bt s

—

‘message, and select;-it«

2. If there is exactly one acceptable bulletin on the
=

bulletin-board, the coresponding message is selected.
3}

3. If there are several acceptable bulletins on the
bulletin-board, the oldest Pulletin {that with tﬂed
earliest{;ime stamp) is selecfed.: If two acceptable
bulletins were issued at the same time, one is chosen
arbitraril&. (Tﬁis can "only happen if the clock is

slow running .in the sense of section 4.3.1 above.)

When the two processes have agreed to transfer data, the

receiving process r requests the bus, and sends a 'ready’

bulletin to the sending process s. The amount of data to be

sent has been agreed upon (it is specified by the étructure‘

identifier in the first bulletin sent by s) and so no -

special protocol is required for the messag& transfer. .

1

The processors of a CSP system could be conventional
minicomputers or microcomputers péogrammed with the
necessary CSP primitives. A processor designed fer a CSP
system could have sevefal special features, either provided
by hardware, or microprogrammed. 1In particular, a special
interface to the common bds isedesirablé, so that a
processor can reject interrupts in;ended for another

processor without a break in execution.

o -112-

g

L e DS

b

RN
R |

o s Ew e e e

”

4.3.3 Compiling CSP

Many features of a CSP compiler follow conventional
practice. 1In this section we discuss only those aspects‘of

‘the compiler that are related specifically to CSP! .

The cogpiler must allocate processes to processors.
Since we are assuming a one-to-one relationdhip between
processes and proéessons, this can be done quite easily;
%Eofess names are mapped onto consecutive integers which are
the addresses of processors. The problem is harder if some
processors have special characteristics, in this case the
programmer might have to specify that a particular processor
contained, say, fast floating-point calculation, or access

to a special device.

The compiler calculates the length of each message from
the global structure declarations. These codes and lengths
are used, when the send and receive commands are compiled,

to construct the appropriate bulletins.

The non-deterministic nature of the choose command
L£hoose
implies that the code for the command cannot be fully’

compiled, but must be partly interpreted. For a choose

;

command, the compiler must generate code that:

1. evaluates boolean guards; ‘

o »

2. rejects guards containing false boolean expressions;

»

.

3. ~constructs a list of eligible messages (each entry in'

=113~ .

e b gt b & g

w

ot ey Wi 4 e R St e s S oo

P e e .

F

the list contains the number of the sendlng process,
the type of mess)ge expected, its length, and the
address of the first instruction to be executed if f£he

message is received);
¢ -+

4. sends the list to a run-time procedure which takes the

/
,appsopriate action:’

\ |

- - < Bach process may terminate or abort; when either

happens it must send a termination bulletin to all'processes
that might be expecting to receive a message from it or send
a message to it. If it aborts, it must also send a message

to .the output process explaining what happened.

The compiler can perform type checking, and can eﬁit\
code for range checking, within a proceéé, using standard
t%chniques. It cannot easily check the compatibility of
1]

messages passed’ betwean processes, but this is automatically

checked by the run-time system anyway.

There is no reason why the cohpiler should not compile
processes independently of one another, provided that it has
a table of process names and structure definitions for the

whole program.

[Ny

et vt T

i o A

v

JRON R P

. message and storing the appropriate code in memofy.

{.3.4 Loading CSP

The task of lbading a CSP program is most easily

carried out sequentiallﬁ, although it is possible to imagine '

several processes loading concurrently from a random access

file. A simple loader would be a seqﬁential process running

in a single processor, sending code in the form of

- structured messages to other processors: Each processor

2
would contain a bootstrap program capable of receiving a

N

b

4.4 Evaluation of the CSP System

This section evaluates first the language CSP and then

the proposed .implementation,

.4.4.1 Evaluation of the CSP Language

CSP is not intgnded to be an adequatq languégeafor
ser\jous programming. This evaluation considers two
questjons:-does CSP provide a foundation on which a useful
programming language coﬁld-be built, and would such a

programming language be\uéeful?

"CSP has adequate control strfuctures, but lacks

- facilities for abstraction. One solution to this problem

would be to add conventional procedures and functions,

-115-

e e

N

{

%

~defined,1oca11y‘to a‘process. A better solution would.be to

- incorporate procedures and functions as processes, but allow

a shortened form of call.” For example, the command sequence

SEND parameter TO proc:
RECEIVE results FROM proec

could be’ abbreviated to
:‘ , » . ”'_1'

. proc(parameters,results)

This format also informs the compiler that the calling

prgcess is performing no actions between invoking the -
procedure and using the results that it returns.. The

compiler could therefore allocate the same processor to both

processes. ' ’ \

This solution does not adequately accomodate

‘utilities' ~- procedures and functions that are used by

"

many procesées Short°htilities, such as the standard
l.)

\ mathematlcal functions, should probably be incorporated in

tne conventlonal way in the memory space of the calling
process. Longer utilities should be autonomous processes-

if &hey are freguently used, multiple copies could be

[y

loadeg. . .
\ N Ny

A\more serious 11m1tat10n of CSP is 1ts essentially

. static Structure The number of processes, their names, and

the struéture of the messages that they can exchange, are

all deter;ined by ‘the program text. These are fundamental

v | -116~ o .

v

properties of the language and attempts to change them lead

to considerable increases in the complexity of the design.’

The ability to create and destroy processes may not be
as serious as it seems. 'it is possible to construct very
elegant algorithms tkhat employ recursive p;ocess creation
and non-determinism in' the.sense of Floyd [1967al. 1I¢ is
also possible to design algorithms that explo;t ﬁarallelism
with a fixed number of processes. Practical experience with

CSP is_required before the importance of this restriction

- 14

can be fully assessed. ,

. The requirement that the length of each message be
known dufing compilation is a more serious restriction. A

-

useful implementation of CSP would have to support variable
‘ o
length message without relaxing the security provided by the

present implementation.

»

It is not difficult to modify the syntax in such a way
that the send and receive commands are symmetric, thereby
allowing a send command to bevused as a guard. The
communication protocol must also be made symmetric, because
a process may have to choose a send command that is
acceptable to it. This can be done within the framework of
the implementa%ion deéoribed, but only at the expense of a
morehcomplex exchange of bul etins. The language gains in
expressive power; for example, the repeat command of the
process buffer of example program 3 can bé written @n a.more

symmetric way:

17-

——tn

JEEUIVRR WSRO S

REPEAT ~ , *
in - out < 100;
RECEIVE buf[1n\100] FROM producer ->
in := in + 1 .
OR
- in - out > 0
SEND buf[out\lOO] TO consumer ->
"out := out + 1
.END ' .

The requirement that-corresponding send and receive

commands are executed simultaneously is controversial.

«Hoare {1978} aréues that méssage buffering is not a

feature. Kieburtz and Silberschatz [1979] find this

- primitive operation ‘and should not be an implicit language

argument unsafisfactory for the following reasons:
. o

1.

‘Software buffering by the destination process is not

easy to accomplish.

“
?he assumption underlying the concept that\buffered
communications are not primitive is that memoryless>
communiéation channels are %he norm; this assumption
may become invalid when VLSﬂ technology permits

store-and-forward transmission to be implemented as

easily as common bus dYnnections.
, s
CsP further assumes that no communication may be lost.

This is not always so; for example, in a system

refreshing a-graphics display, it is better to réceive .

up to date information, even at the expense of missing

soA; information altogether. o

-118-

-~

?hese objections are not very convincing. It is true
. - ’ N
that software buffering is not always eaﬁz to aCcomplish,
. but that does not necessarily make it easier to accomplish

by hardware. Thus, neither of the first two objections

carry much weight. The third objection is even weaker. The ’

&

fact that a special situation can be constructed in which it

is preferable to lose messages surely cannot be used as a
. LR l . . ;
design criterion for a language in which communication is a :

primitve concept.

Kieburtz and Silberschatz [1979] also object to CSP on

the grounds that processes can deadlock (cf. Example 8 of

sdction 4.2). lThis is scarcely a valid criticism of a
“programming language, although it might be a valid objection
to an implementation. Indeed, all concurrent programming

° fconstructions, such as semaphores, conditional grifical i

Prd

Aregions, and monitors, permit deadlock. The more important

B ; . question is whether the compiler or run-time system can :
o ' . detect deadlock. It is true that it is not élways easy to

detect the possibility of deadlock from a CSP source

° . program. Further research is required to determine o i

compile-time or run-time deadlock avoidance strategies.

: : ' Tﬁis thesis does not discuss in depth the verification .
of CSP programs, for the reasons described in section 1.3.1.

An iydividual process of a CSP program .has semantics simiiar

to those of other procedural languages, and can be verified

by standard techniques. The proof assumes that receive ' Ty

o 8 s i ik § ey e e o e

a

-

Gommands receive valid data in a certain seguence, andvit
proves, amongst other things, that send commands transmit
"data in a'cgrtainréequence. The remainder of the

verification procedure consists of,demonstrating that the
assumptions made about réceived data, and the assertions

made about transmitted data, are consistent.

4.4.2 Evaluation of the CSP Implementatién

The common bus of the proposed system is a potential
bottleneck. The extent to which this will lead to a loss of
efficiency cannot be determined without a dynamic analysis
of non-trivial programs, because bus loading varies
ly with'the amount of ‘processing performed between
‘ receive‘commands..wThe examplé programs of section
4.2 cannot be considered realistic because they perform a

negligible amount of computation. A more realistic example

might be a compiler written as five concurrent processes:

-scanner

symbol-table ‘
parsqf

code-generator ‘

optimizer

The common: bus can be replaced by a.digitally
controlled switching network. The links required for a

particular program can be determined by the compiler, and

s

.—~120~-

R R———— - % g st s —ce

P e greaes . -

created by the loader. The number of links required for a

‘typical Csp piogram is much less than the number of.linfs
required to connect évery brocessor to every other o
processor. Networks which provide arbitrary |
interconnections between processors, but only a limited‘

number of distinct paths, are called delta networks. Patel

[1979] describes the construction and analyses the:

performance of delta'networks for microprocessors.

The one—to—one;relationship between processes and
processors is probably unduly restrictive. In a more
sophisticated system, several small processes could be
supported by dne processor. Ideally, processes shéring a

proéessor would be message~bound, so they would ng}lébmpe;e

I

for process}ng time. This extension requires a slight
modification to the communicatibn protocol and an algorithm
for deciding how processes should bb‘allocated to
‘processors. The converse, dividing a process between

several.processors, is better done at the source language

level.

The local mémory requirements of processes will véry
considerably, and will probably not match the» memory

available to the processors. There are several ways in

which this pﬁleem can be miﬁigated:

1, Allocate processes to a processor uhtil its memory is

exhausted.

vt S)t

L ceam et K
ol R

|
w
\
1
‘

'

2. Prov?de each processor with a different amount of

, Memory, and attempt to match requirednmemory to -

L}

available memory during joading.

- 3. Provide memory in the form of blocks which can be

switched from one processor to another.

4. Consider memory to be a°cheap resource. i *

4.4.3 Directions for Future Research . <
l - - . }

There are a number of possible directions for future .

: research into the potential of CSP~-like programming

languages. Some of these are enumerated below.

. 1. Elaboration of the language -

. The version of CSP presented here is inadequate for
serious use. Research is required to extend CSP in such a

way that it becomes useful withoufisacrificing its
’ ty ‘ 0 .
attractive features. Desirable extensions include: variable

o

length messages, dynamic creation of processes, and more

k4

general input and output cépabilities.
‘ . 2. Simulation of a CSP System
: P »)
! - Potential problems of CSP, such as overloading of the
’ common bué, could be evéluated most-easily by a conventional

sequential program simulating a CSp system. Implementing a

°
3

o

4

- m—— -

ORI NS

-l

X -

f
P A ame A]
~»
-
-
-~
°

Csp program has three.advantages,over constructing a CSP. .

-

- system-) 4rst -the cost is less; second MOre measurements

acan be\ostalned, and ¥ third,: 1t is easxer to modlfy the

a

.. 'sigelation program to_model different implementations than

ot _ it is to alter hardware. ‘ L J\\\\\;
-’ v’:A — < * ‘ "H'>“) ' '

3. Construction of a CSP System '

“

B AT NS L e

“ . o
Iﬁ_the results of the simulation are encouraging, a

‘4

¥

small CSP"system could be constructed using microprocessors.

.
I

-

s ey R T A A

&

4. Other Applications of CSP - . ; -

CSP is a notation for concurrent processes as well as a

- _ ’ programmlng language for concurrent processing. Such a
* ¥

. notation may have appllcatlons outsidé the area of ! .

. multlprocessor archltecture: for example, csp mlght,prov1de

a sound ﬁoundat1on for a SLmulatlon Tanguage.

’
-

S

4.9 Conclusion’

4 , * - a
.

TSP proviaes a procedural notation for programming-
- ‘jﬁcqmmnnicating sequential-processes without shared data. It
. S .)
' can be used to construtt parallel versions of traditional
- ' sequential'alébrithms. It also enables many of the -)

low-level activities tradltlonally associated with operating

.

. system software, such as perlpheral drivers %nd resource

’ o . S 2
schedulers, to be coded in a high-level language. Moreover,
‘. ,. . % . . .; . .
| . & , . . ,
] ‘ ~123~

2T e——

. f S -1

3 emBes AN VWA e b RO R e L) -

a ?easible'implementation'has been presehted,AQemohstrat ng

that CSP is a practical language. ’

Ccsp doés not, of course, provide an immediate panaceé
for all of the problems of programming language design
discussed in the earlier sections of this thesis. It does,
howevér, provide partial solutions to some of theseﬁf‘

protilems,

N .
v
N
v v
i . . ‘ .
. *)
[N o .

1. . The von Neumann bottleneck -- the single patﬁ betqgen £,

-

fast processor and a- random access memory -- has been ’
, réplaced by many paths.between processo?shand their‘
memories. The performance of a CSP system implémented
in the way described here mightybe limited by the
. common bus, however. A more generél impiemgntation of
CSP could exploit the fact f%at the:L are now many daté
, paths, and with appropriate programmlng technlques 1t :
should be p0531b1e to adjust the flow of data S0 that -
" all paths are efficiently used. A CSP system is a
Anetwbrk in which the nodes are prodessing units and
storage units, and ih which edges carryudata: the
topology oé the network and pence the loading of bﬁe-
nodes and edges can be adjusted by the compilers and .
loaders of a CSP system. 1In this way, CSP overqomés

. 'some of the limitations of the von Neumann architecture

discussed in section 1.1.2.

2. Section 2 of this thesis introduced the term 'semantic

gag; to describe the divergence between hardware and

A , e . ~ L

[

— N . R e N . e e g et

RN

[~

')

o —r o e

B

\ e wra e Am s oA ey ey o e P . e - -& . ’ !

software design. The description in section 4.3 of the -
. . .
’ implementation of CSP shows that the semantic gap can

be narrowed in some respects by designing hardware with
an architecture that correspbnds to the architecture of

the language. This thesis provides only én

introduction to. this design methodology; CSP requires

’

ot

\ ©. more elaborate constructs, such as control and data
abstraction facilitieﬁ, and’ the implLementation of these
. could also be continued down to the hardware level.

' /\
The obje?tive of this design methodology is to ensure

that optimization strategies adopted at a low level
actually 1mprove the efficiency of operations performed :

| at hlgher levels, instead of merely increasing their

complexity. ' P o j
.
1
|

3. CéP pontains keys to both the sol»tion of certain
problems of'contemporary programming and their l - 4
. ’ - unification. The problem of accessing shared data is
elimiqated. Access t6 shared resources‘can be
controlled by a single CSP process functioning as a
Hoare monitér | An abstract data type can be

1mp1emented as a CSP process, although the o/

e G, T s

., . communlcatlon protocecls of CSP would have to be

elaborated to make this feasible. £

Al

4, Traditional multiprocessor systems require an elaborate:
operating system to schedule resources/dynamically

[Enslow,.1977]L In CSP, much of the resource

-125-

R S e e

O O

$

\ : S . !
ai;oeation is performed by the program and the
compiler., This follows the trend estaglished by Pascal
(Wirth, 19711, which allows the compiler .to check the
legality of many oberations and aésignmentsT\énd
Concurrent Pascal [Brinch-Hansen, 1975], which allows
the compiler to check the legality of operations on
shared data structureés. - CSP continues this trend
towérdé more homogengeous sygtems in which there are
fewer distinctions between the operating system and the

users' programs.

5. CSP exploits the potential of modern technology. CS?

processors could-consist of a microprodessor,‘
communigation software in ROM, and a comparatively.
small amount of‘RAM. These probessors wouyd be
ideniical, and therefore cheap to produce. A CSP
system would be simplg to maintain, because a defective
processor can simply be switched.off until it is

replaced.

w

-—

CSP is.not a revolutionary architecﬁure, because the

¥ Pad

byilding block, the processor, can be a smal} von Neumann

machine. Further study is needed to determihe whether the ;

CSP processor ought to be a von Neumann machine,. or whether

there is another kind of architecture that is more -

appropriate.

(//')) "'126"‘ N

s
B Y

o e~

e —— Y S P RT ANEHEE LIS et 2o v ¢ e s - N e e A w .- - -

' . . »)

Appendix 1: A Notation for the Productions of a Grammar

PN
7
\

\ The‘notatibn used in this thesis.forvéﬂg proauctions of
CSP grammar is similar to thé notation described by Wirth »
[1977]1. It is.an é;;;}§ion of Backug—Naup Form (BNF), in
which the symbol '::=' is written '=', the meta-brackets '<'
. . and '>' are not ‘required ﬁor non~ter@ina1 symbols, and

terminal symbols are enclosed in gquotes ("). Additional

braces ({...}).

grammar = { productions } .

'

at

Braces '{' and '}' mean 'zero or more repetitions'; this

production therefore allows a grammar to be empty.'

-

production = identifier "=" expression ”." .

The '=' correéponds to the '::=' of BNF, and the ','

ferminates the production. In contrast to BNF,

‘non-terminals are not delimited, and terminals Are enclosed

in quotes (").
~expression = term { "]“ term } .
Thé bar "|" denotes alternation, as in B\
term = "[" factor "]" | "{" factor ;}" .

N . Brackets '{' and ']' denote an option - 'zero br one

occurrence’.

. -127- . .

R o e o e .

[

ha

PR

| 5 - ——— - - o m——— . e oo e f b w———
o , -
H [\ R
: W factor = terminal | "(" expression ")*"
i .
t) ' - A
: . Parentheses ' (' and ')' are used for grouping. - ' v
E ’ . .
:
1 -
, terminal = """" gtring """" ,
Quote (") is repeated when it is employed as a terminal
; symbol. The string can.contain any.characters. 1
' . N ')
; - identifier = letter { letter | "-* .} . ,
; ! . ‘) ‘ ‘ £y i ’
v . letter = "a"™ | "b" | ... ‘| "z" . ' '
: 3 ’ : * / [l f
t s ! . ' - i
L h ;
] - ¢ !
A - < N *
:] ° i
' N.\‘r ~
i \ $ 1
{ ') i
§ 4
i ' - z
: 3
‘ . \ L.‘
¥
f
|
; ’ " !
? \
§ a ’ Y .
{ o »
. ’ 3
\ . “» ;
e it e ‘:
‘(3 - ») !
. \ : ‘
PY b deadd - . - . !
/‘ *
. | . \ . |
- - -'128“" : i i
i N ‘ |
) !
" \
’ A ’,; N l:

.
o ae

[

e et e e 5

R L RS R PR b

aAppendix 2: The Grammar of CSP

program = global-declaration'parallel—command .

parallel-command = "START" process { "AND" process } "END" .

[

-

process = process-identifier range local-declaration

"BEGIN" command-list "END" .
process-identifier = identifier .

range = "[" (integer—cdnstant | identifier ":" subrange)

.

"1* | empty . s i

subrange = integer-constant ".." integer-constant .

global-declaration = "STRUCT" { type-clause } | empty .

4
/
type-clause = identifier { "," identifier }

:" type-descriptor { "," type-descriptor’} ";" .

—r

type-descriptor = ["[" subrange "]"] simplé-type | empty .

simple-type = "INTEGER" | subrange | "CHARACTER" .
local-declaration = "VAR" { var-clause } | empty .

var-clause ='identifiér { ","” identifiet }
w,n

:" (simple-type | array-type) ";". .-

array-type = "[" subrange "]" simple-type .

pe '

command-list = command { ";" command } ..

=129~

~

B T PP ey]
»

PR TSI EESEEEE 4

R

- structured-target = constructor

comﬁand = null-command | assignment-command

|" input-command | output<command | choose-command .

’

null-command = "SKIP" | "WAIT" .

assignment-command = target ":=" expression .

target = simple-target | structured-target .
S

simple~target = variable .

variable = identifier | component .
component = identifier "[" simple-expression "] " -,
"(" variable { "," variable } ")" .
expression = simple-expression | structured-expression .

structured-expression = constructor - ‘ °

"(" simple-expression { "," simple-expression } ")" -,
constructor-= identifier .

input-command = "RECEIVE" target "FROM" process-desriptor .-

N’i
oufput—command’= "SEND" expression "TO" process-descriptor .

~—

process-descriptor = process-identifier

i

[‘f[" simple~expression "}1"] .

choose-command = ¢ "CHOOSE" | "REPEAT")

v =130~ . | : ,

B y A DML VERY dmew n

«
v

h Y

guarded-command { "OR" guarded-command } "END" .
guarded-command = range guard "->" command-list .

guard = boolean-expression | input-command

| boolean-expression ";" input-command .
boolean-expression = comparison { "&" comparison } .
comparison = simple-expression comp-op simple-expression .

simplé-expression = [add-op] term { add-op term } e

. | boolean-constant | character-constant .

term = factor { mult-op factor } .

factor = variable |- integer-constant | "(" simple-expression

")" | function-identifier " (" simple-expression ")"

boolean-constant = "FALSE" | "TRUE" .

‘character-constant = "'" character.”'"

integer-constant = éigit { diqgit } .

comp-op = "<" | nin | ®=m | }#u | nzu | *>v ' \
add-op = M+" | "=" ,

mult-op = "*" | n/n | m\»

]

function-identifier = identifier .

S

identifier = letter { (letter | digit | "_") } .

-131- .

2 e e o i

/
* e e i

e e b

b Y g ¢ mn e e

s

References J

The following is a list of the references consulted
while this thesis was being prepared. Only .those references
marked with an asterisk (*) are actually cited in the text.

Ackerman, W.B.. [1979%)

' Dataflow Languages

Proceedings Natlonal Computer Conference 1979,
pl087-1095

o

Ashcroft, E.A., Wadge W.W. [1975%)
- Clauses, Scope Structure and Defined Functions in

LUCID *
Fifth Principles of Programming Languages Conference,
1977, pl7-22

Ashcroft, E.A., Wadge, W.W. [1977%]
LUCID, A Non-procedural Language with Iteration
Communications of the ACM, 20, #7, July 1977, p519-526

Ve

Ashcroft, E.A., Wadge, W.W. [1978%]
Lucid: Scope Structure and Defined Functions
Research Report CS-78-01, University of Waterloo

Atwood, J.W., Clark, B.L., Grushcow, M.S.,"Holt, R.C.,
Hornlng, J.J., Sevcik, K.C., T51chr1t21s, D. [1972%]
Project SUE Status Report '
Technical Report CSRG-1l, University of Toronto, 1972

Backus, J. [1978%*] '
Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs
Communications of the ACM, 21, #8, August 1978,
p613-641

Baker, H.G. [1978]
Shallow Binding in.LISP 1.5
Commun1cations of. the ACM, 21, #7, July 1978, p565- 569

YT

- Balzer, -R.M. [1973%]

An Overview of the ISPL Computer ‘
Communications of the ACM 16, #2, February 1973,
p117-122 o

Banatre, J.P., Routeau, J.P., Trilling, L. £1979]
_An Event Driven Compiling Technique
Communications of the ACM, 22, #1, January 1979,
p3L-02) o

Bezivin, J., Nebut, J-L, Rannou, R. [1978]
Another View of Coroutines .
ACM SIGPLAN Notices, 13, #5, May 1978, p23-35

o

Birtwistle, G.M., Dahl, 0-J, Myhrhaug, B., Nygaard, K.
- [1973] . '
SIMULA Begin . ‘
+ Auerbach, 1973

+
.

Bloom, H.M. [1975%]
Conceptual Design of a High-level Language Procéssor

in High Level Language Computer Architecture, ed. Chu

Academic Press, 1975

Brinch Hansen, P. [1975%]
The Programming Language Concurrent Pascal
IEEE Transactions on Software Engineering, SE-1, #2,
June 1975, p199-207 \

Ry

Brinch _Hansen, P. 1[1978)
Distributed Processes: A Concurrent Programming
Conceptl .
Communications of the ACM, 21, #11, November 1978,
p934-940 ’

Chand, D.R., Yadav, S.B. " [1978]

On the Application of Data Abstraction Facilities
ACM Conference, 1978, p639-645

Chesley, G.D., Smith, W.R. [1971¥%]

The Hardware-Implemented ngh—“eveI»Machine Language
for SYMBOL . v
Spring Joint Computer Conference, AFIPS 1971

4 !

.. =133-

— . P . - . .- . - e

-

—

P

Y e e et

am o sk em i

v U e tonert AV e T kB

AR

s e |

V Chevance, R.J. [1977]

Design of High Level Language Oriented Processors
ACM SIGPLAN Notices, 12, #10, October 1977, pl0-32-

Claybrook, B.G. [1977]
A-Facility for Defining and Manipulating Generalized
Data Structures
+ ACM Transactions on Databases, 2, #4, 1977, p370-406

9

Cowan, D.D., Lucena, C.J.P. [1978]
Data-directed Approach to Program Construction
echnlcal Report CS-78-02, University of Waterloo ‘

]

Cowart, B.E., Rice, R., Lundstrom, S.F. [1971] : *
The Physical Attributes and Testing Aspects of the
SYMBOL System
Spring Jaint Computer Conference, AFIPS 1971

Davis, A.L. [1979*)]
A Data Flow Evaluation System Based on the Concept of -
Recursive Locality
National Computer Conference, 1979, pl1079-108¢

Demers, A. et al [1978]
Data Types as Values: Polymorphism, Type-checking, and
Encapsulation
Fifth Principles of Programming Lanquages Conference, .
1977, p23-30

DeMillo, R.A., Lipton, R.J,, Perlis, A.J. [1977%]
Social Processes and Proofs of Theorems and Programs
Fourth Principles of Programming Languages Conference,
1977, p206=-214

013 stra, E.W. [1968*] ‘
/Co-operatlng Sequentlal Processes .
in Programming Languages, ed. .Genuys
Academic Press, 1968

’

Dijkstra, E.W. [1975%*] -
Guarded Commands, Nondeterminism, and Formal
Derivatidn of Programs
Communications of the ACM, 18, #8, August 1975, p453-7

-

-134-

o o e A bt s

e]

-

R A LT T

Dljkstra, E.W. ([1976*].
A Discipline of Ptog;ammlng
Prentice-Hall, 1976

Ellis, T.M.R. [1979} :
Parallel Processing in an Adaptable Appllcatlon
Oriented Language Processor
SOFTWARE: Practice and Experience, 9, 1979, pls3- 190

Enslbw, P.H. [1477*]
Multiprocesisor. Organization -- A Survey)
ACM Computing Surveys, 9, #1, March 1977, pl03-129

Feldman, ‘J.A. 979*] . =
ngh Level Programming for D1str1buted Processing
Communications of the ACM,..22, #6 June’ 1979, p353-367

Floyd, R.W. [1967a*] : -
Non-deterministic Al?quthms
Journal of the ACM , 12, #4, October 1967, p636-644

Floyd, R.W. [1967b¥*]
Ass1gn1ng Meanings to Programs .
in Mathematical Aspects of Computer Science,
ed. Schwartz ppl9-32, 1967

Floyd, R.W. [1979%] | _ ' -

The Paradigms of Programming :
Communications of "the ACM, 22, #8, August 1979,
p455-460)

LY

Friedman, D.P., Wise, D.S.. [1978} . . -
Unbounded Computational Structures :
SOFTWARE: Practice and Experience, 8, 1978, p407-416.

Gagllardl, U.0. [1973*] ‘ C e
Report of Workshop 4: Software Related Advances in
Computer Hardware
Proceedings of a Symposium on the ngh Cost of

Software . ’
.R.I., 1973

~

~135--

o o v b

.
.
R

st e e

o e ey pm bt el T

L

Geschke, C.M. et al. [1977]

‘Barly Experience with MESA ~ "

Communications of the ACM, 20, #8, August 1977, e

p540-552 -)
Gostefbw, K.P., Thomas, R.E. [1979] T i °,

A View of Dataflow v
National Computer Conference, 1979, p629-~ 636

Grune, D. [1977]
A View of Coroutir .

de la Guardia, M.F., Field, J.A. -[1976*]
A High Level Language Orlented Multiprocessor
Proceedings of 1976 Conference on Parallel Proce331ng

IEEE, 1976

Guttag, J. [1977) ’) N .o
Abstract Data Types and the Development of Data: = -~
Structures

Communications of the ACM 20, ¥6, June 1977, p396-404 o

-Hanson, D.R., Griswold, R.E. [1978]

The SL5 Procedure Mechanism' i
Commun1cat10ns of the ACM, 21, #5, May 1978, p392-400
¥ T

v

Haynes, L.S. [1977*)] ’ o
@ 7The Architecture of an Algol 60 Computer Implemented
with Distributed Processing
Proceedings 'of the Fourth Internatlonal sSymppsium oh
Computer Architecture .
IEEE, 1977

.

Hewitt, C., Atkinson, R. [1877*]
) Synchronization in Actor Systems
. Fourth Principles of Programming Languages Conference,
1977, p267~280

Hoare, C.A.R. [1969*] A)
An Axiomatic Basis for Computer Programming
Communications of the ACM, 12, 1969, p576-580

Q

o ’ 3 . !

s S TN it e res et s

:
e e aaf

AN

e I

e s

.

.
P 2

b
©
¥
[
b

¥

H
3

H
g

3

4

;

Q

B
“*

Hoare, C.A.R. [1972] - R .
X .+ Towards a Theory of Parallel°Programm1ng - 0T

in' Operating Systems Techn1ques ‘
Academxc Press, 1972

\5 I ')
Hoare, C A.R. [1974%] - w -
O MOnitors: An Operating System Concept ’
" Communications of the ACM, 17, #10, October- 1974, °°

_P549-557 ¢)
/ ; - i
e Hoare, . C.A.R, [1978*] -~ . s
Comﬁhnlcatlng Sequenti/fal Processes ’ . .
Communications of the ACM, 21, #8 August 1978,
p6€6 =677 ox o
s .) ' H \ °

Hunt, J.G. [1979] , .
Messages in Typed Languages o
. ACM SLGPLAN5N0t1ces, 14, #1, January 1979 p27 -45

’ w

Ingalls, D. H H.. [1978) . ' '

The Smalltalk-76 Programmlng System Desi and
Implementation 7ﬁ

Fifth Principles of Programming. Languages Conference,’ -

. 1877, p9-16 : : -

I

Jacobsen, T._. [1978)

L) Another View of Coroutines [1978]
S - ACM SIGPLAN Notices, 13, #4, April 1978, p68-75
: ' w w’ ";' ’ ’ ' *
o Johnson, S.C. [1978%] ’

R . A Portable Compiler: Theory and Practice

Fifth Principles of Programmlng Languages Conference,
£ 1977, p97-104

. i
- B
- ¢ a 4

30

Kahn, G. [1974%*]
The Semantics of a Simple Language’ for Parallel .

\ Programming g ‘
. International Federation of Information Processing
e North Holland, 1974 > :

Kiebdrtz, R.B., Silberschatz, A. [1979%)]
. : . Comments on "Communicating Sequential Processes"

5 ...~ Transactions on Programming Languages and Systems, 1,
$2, October 1979, p218-225

4

»

s Ao P, T4 e T

b

ol dme

Seikstingh

PARVRDINTRVISURINEN S

U

T

-

o

2y - Keller, R.M. et al [1979]:

A Loosely-Coupled Applicative, Multlprogrammlng System
National Computing Conference, 1979, p613-622
I) "~ .

, Kessels, J L. W [1977] ’ :
’) A Conceptual Framework for"a Nonprocedural Programmlng

Laqguage
Communications of the ACM, 20, #12, December 1977,
p906—9L .
P " Knuth, D.E. [[1971%) “ A
’ L An Empjirical Study of FORTRAN Programs *
e SOFTWARE: Practice and Experience,l, 1971, pl05-133
1q ‘., :,\
Kuhn, T.S. [1970*] _ ‘ g

The Structure of Scientific Revolutions
University of Chicago Press, 1970

Time, Clocks, ‘and the Orderlng of Events in a-
Distributed System

Communications of the ACM, 21, #7 July 1978, p558 565

%
—

L4

Ledgard, H.F., Taylor, R.W. [1977] . .
) , Two Views-of Data Abgtraction .
T -Communigations of the ACM, 20, #6, June 1977, p382-384
o s . Liskov, B., Snyder, A., Atklnson, R., Schaffert, C. [1977%)

Abtraction Mechan1sms in CLU

<, - . . Communications of the ACM, 20, #8 August 1977,
P p564-576

v% 4 ,\ o
E . Lewis, B. [1978]

Further Comments on "A View of Coroutines
ACM SIGPLAN Notices, 13, #7, July 1978, p31-33

e o

i
‘e

Lakatos, I. [1976%] g T~
' . Proofs and Refutations: The Logic of Mathematical
. . .Discover :
" Cambridge Univerity Press, 1976 '
,<%§ * Lamport, L. [1978*] ~

2

'

o A s e i Lo n b e
N R .

o e e iy

——— T

Maurer, W.D. [1978] N ’
Register Type Bits - A Proposal for Efficient
Instruction Repertoire Extension '
' ACM SIGPLAN Notices, 13, #9, September 1978, p34 ~35

McKeeman, W.M. [1967*]
Language Directed Computer Design
Fall Join# Computer Confererice, 1967

Mizell, D. [1978]

Verification and Design Aspects of "True Concurrency
. Fifth Principles of Programming Languages Conference,
1977, pl171-175

Pl

Myers, G.J. [1978%*]
‘Advances in Computer Architecture
Wiley, 1978

von Neumann, J. et al [1946%*]

Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument

in Collected Works.of John von Neumann, ed. Taub
MacMillan, 1963

' °

Ogden, W.F. et al [1978]

Complexity of Expressions Allowing Concurrency

Fifth Principles of Programmlng Languages Conference,
1977, pl85-194 :

Patelr, J. H [1979%*]
Processor- Memory Interconnections for Multlprocessors
Sixth Symposium in Computer Architecture,’pl68-177

M “~

Prabhala, B., Sethi, R. [1978]

Efficient Computation of Expressxons with Common
Subexpressions

~Pifth Principles of’ Programmlng Languages Conference,
‘1977, p222~-230.

3
[

Pratt, V.R. [1977%] :
The Competence/Per formance Dichotomy in Programmlng

Foufth Principled of Programming Languages Conference,
1977, p194-200

PR AT WRRNANH I 5 ety ar e by o e e n . - . ¢ . - W v e s [

-

&

~-Price, R.J. [1979]
A Language for blstr1buted Processing
National Computer Conférence, 1979, p957-967

Reynolds, J.C. [1979]
Reasoning about Arrays
Communications of the ACM, 22, #5 May 1979, p!§0 298

1

Rice, P., Smith, W.R. [1971%]

‘ SYMBOL - A Major Departure from Classic Software
Dominated von Neumann Computing .Systems’

Spring Joint Computer Conference

AFIPS, 1971

é—i\\)
Robinet, B.J. [1975%] ' :
- Architectural Design of an APL Processor
in High Level Language Computer Design, ed. Chu :
Academic Press, 1975

Ruggiero, W. et al [1979]
Analysis of Data Flow Models using the SARA Graph
Model of Behavior
National Computer Conference, 1979, p975-988

Schmidt, J.w. [1977)
ﬂSome High Level Language Constructs for Data Type
. Relations
ACM Transactions on Databases, 2,.#3, 1977, p247-261

‘.

Shave, M.J.R. [1978]
The Programming of Structural Relationships in Dynamic
Environments
SOFTWARE: Practice and Experience, 8, 1978, pl199-211

Shaw, M., Wulf, W.A., London, R.L. ([1977%]
Abstraction and Verification in Alphard:
Defining and Specifying Iteration and Generators
Communications of the ACM, 20, #8, August 1977,
p553~564

- . L8

Tanenbaum, A,S. ' [1978*]
—~ Implications of Structured Programmlng for Machine
Architecture)
Communications of the ACM, 21, #3, March 1978,
0p237-216*

L]

| = | (*‘*%0' : | | |

——

.TUrner; D.A. [1975%]

© Wirth, N. [1971%*)]

¢ e e s ittt

Tennent, R.D. [1976] ’)
The Denotational Semantics of Programming Languagés -
Communications of the ACM, 19, #8,-August 1976,
p437-453

. 3
Thurber, K.J., Myna, J.W. [1970%] y
: System Design of a Cellular APL‘ Computer
IEEE TC, C—19, $4, 1970, p291 =303

aoa

SASL Language Manual : }
Technlcal Report CS/75/1, Unlver51ty of Glasgow, 1975 3

Turner, D.A. [1979]
A New, Implementation Technique for Applicative
Languages
SOFTWARE: Practice and Experience, 9, 1979, p31-49

. Watson, I., Gurd, J. [1979]
A Prototype Data Flow Computer with Token Labeling
National Computer Conference, 1979, p623-628

Wilkes, M.V., Strlnger, J.B. [1953*]

Mlcroprograqmlng and the Design of Control C1rcu1ts in
an Electronic Computer

Proceedings Cambridge Philosophical Society,

Part 2, 49, p230-238, April 1953

i
|
|
Wllllams, R. [1978%*]
. A Multiprocessing System for the Direct Executipon of .
LISP

Fourth Workshop on Computer Architecture for
Non-numeric Processing, p3b5-4l

__ Winograd, T. [(1979]

‘Beyond Programming Languages
Communications of the ACM, 22, 7, July 1979, p391-401

The Programming Language Pascal
Acta Informatica, 1, #1, 1971, p35-63 . ‘ C

[ST P G S

e

PRSPPI

-

e e e s s P, i £ A

4

ki
$a

¥

. What Can We Do About the Unnecessary Diversity of ~
Notation for Syntactic Definitions?
Communications of the ACM, 20, #11, November 1977,
p822-82% -
p o
“'. L

Yau, S.S., Fung, H.S. [1977%] Y :
Associative Processor Architecture -- A Survey
ACM Cémputing Surveys, 9, #1, Maieh 1977, p3-27

