National Library
of Canada

i~

du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform s heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (1. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
f'université qui a conféré le grade.

La qualité d'impression de certaines pages peult laisser a
désirer, surtout s les pages originales ont été dactylogra-
phiées 4 l'aide d'un ruban usé ou si f'université nous a fau
parvenir une photocopie de qualité inférieure

La reproduction, méme partielle, de cette microforme es!

soumise 3 Ia Lol canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canada

|

i~

Bibliothéque nationale

National Library
du Canada

of Canada

Canadian Theses Service

Ollawa, Canada
K1A ONA4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise repruduced without his/her per-
mission.

ISBN

Canadi

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protege sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

0-315-56122-X

AUTOMATIC TEST SUITE DERIVATION
FROM ESTELLE SPECIFICATIONS

Behdad Forghani

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Masters of Engineering at
Concordia University
Montyéal, Québec, Canada

February, 1990

© Behdad Forghani, 1990

ABSTRACT

Automatic Test Suite Derivation From Estelle Specifications

Behdad Forghani

This thesis develops a methodology to automatically derive conformance tests
in TTCN (Tree and Tabular Combined Notation) from an Estelle specification of
a protocol. A software tool implementing this methodology is described. The tool
is integrated with a test generation tool previously developed(CONTEST—ESTL)
and a TTCN editor. The input is Estelle specification, the output of TTCNGEN
is the test cases in TTCN notation. The test generation tool transforms a given
Estelle specification to a normalized form and the test cases (subtours) are derived
to cover the data flow functions of the protocol. TTCN test generation technique
is based on first converting the enabling conditions of transitions to a conjunctive
normal form and then automatically generating the dynamic behaviour from
Estelle transitions. Each normalized transition in the Estelle specification is
translated to a TTCN test step. Spontaneous transitions give alternatives to the
events in these test steps. A TTCN test case is obtained from each subtour by
attaching the test steps corresponding to the transitions in the subtour. Constraints
are derived from the enabling conditions and the actions related to the ASP/ PDU
parameters. This way test suite derivation process is largely automated. The
ISDN LAP-D and a simplified transport class 2 protocols are taken as examples

throughout the thesis.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Behcet Sarikaya for
guiding and supporting me throughout my graduate studies. He was always ready
to listen to my questions and problems and gave thoughtful answers to my question
and solution to my problems. I would also like to thank him specially for his
support and guiding during the period of preparation of this thesis.

I would also like to thank my parents Ashrafolmolok and Mehdi for their

continuous support, encouragement and understandings.

iv

DEDICATION

I dedicate this thesis to my parents

Ashrafolmolok and Mehdi

|

Table of Contents

Listof Figures i e i e X
Listof Tables 0.t ittt einenenneneanns xii
Chapter 1: INTRODUCTION ittt et etn e aenn 1
1.1 Basic Elements of Communication Protocols 3
12 ConformanceTesting i, 6
1.21Typesof Testing. 7
1.2.2 Abstract Test Architecture. 9
1.30veview e e e e 12
Chapter 2: ISDN AND FORMAL SPECIFICATIONS 15
21 LAPD . . e e e 19
2.2 Establishment of Information Identificaton 21
23 Estelle e e 22
24 TTCN . . e e e e e 25
2.5 Estelle descriptionof LAP-D 27
Chapter 3: TESTSUITEDERIVATION 30
31 Normalization vy 31
3.2 Simplification of the ProvidedClause 34
33DataFlowAnalysis, 38
3.4 Test Sequence Generation.00, 41

vi

3.5 Implementation of Transition Tour Generator 44
3.6 MultiModule Tour Generation Algorithm 45
3.7 Infeasible Paths and Edittour 49
Chapter 4: DYNAMIC BEHAVIOUR GENERATION. 51
4.1 Test Step GenerationModule 53
42TestCase Generation. 59
4.3 Distributed Test Architecture 61
4.4 Parameterization of Subtrees L 62
441 Algonthm e 62
4.4.2 Applicationof the algorithm. 64
Chapter 5: THE DECLARATIONS AND CONSTRAINT GENERATION
MODULES i i e e e 66
5.1 DeclarationsModule. 66
5.2 Constraint GenerationModule 69
Chapter 6: Implementation 73
B.Amappdu e e e 74
6.2 simplification i i i e 75
B.3HCNgeN e e e e 77
6.3.1 Module Decomposition, 78

vii

63.1.1 SystemModules i 78
63.1.2 Requirements Module 79
6.3.1.3 Software DecisionModules 81
6.3.2 Module dependencies 83
6.4 mstourgen, edittour andtestcase. 84

Chapter 7: Application of the TTCNgen on LAPD and Transport Protocols 86

7.1 Example of TTCN subtrees for LAPD protocol 86
7A1Example1 e 86
7A2Example2 91
7A43Example 3 e 95

7.2 Transport Class 2 Protocol 97
721 Example 1 .. . L 98
722Example2 e 99

73 Performance 101

Chapter 8: CONCLUSIONS i 104
Bl Summary e e 104
8.2 Suggestion for Furtherresearch 105

REFERENCES ittt e ettt et e 107

GLOSSARY e e e e 111

APPENDIX A e e 113
Adlntroduction e 113

viii

A2 COmMmMaNdSt ittt e e e e e e 113

A2.1 nf{NormalForm)Command 113
A22simplifyCommandcc0 ... 114
A23mappduCommand.ot 115
A.2.4 dtf (Data and Control Flow) Command 116
A25ttengenCommand, 117
A26dfgtoolCommand 117
A27mstourgenCommandc.00... 118
A28testgenCommand 119
A29edittourCommand 119
A210testcaseCommand., 120
ABExceptions 120
A.3.1 Compilation Exceptions 120
A3.2 Input FileExceptions 121
A.3.3 Bad File Format Exceptions 121
A.3.3 Capacity Exceptions 121

o

List of Figures

Figure 1 Layer Concept of OSI Reference Model[1]. 2
Figure 2 OSl operation[1}. e e e e 4
Figure 3 Interlayer communication[3]. 6
tigure 4 Conceptual testing architecture. 9
Figure 5 Abstracttestmethods[5). 11
Figure 6 Functional groups and reference points of ISDN[7]. 16
Figure 7 Interactions between entities at the user-network

interface[7]. e 18
Figure 8 Control of circuit-switching connection[7]. 20
Figure 9 Relationship between SAPI, TEland DLCI[8]). 22
Figure 10 Estelle modules for formal description of LAPD protocol. . 28
Figure 11 Test suite derivation methodology. 32
Figure 12 Example ofadataflowgraph. 39
Figure 13 Edittour. e e 50
Figure 14 Example of a non-parametrizedtestcase.. 61
Figure 15 Example of a parametrized testcase. 65
Figure 16 Example of TTCN type definition. 68
Figure 17 Example of ASN.1 type definition. 68
Figure 18 Example of a PDU constraint declaration. 72
Figure 19 Main modules of the test generationtool. 74
Figure 20 Module a2pendency diagram forttcngen. 84

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

Declarationofthe IPDU. 86
TTCN subtree produced for subtree 217. 89
Example of the subtree generated for transition 121. 93
Subtree generaivd fortransition122. 94
Subtree generated for transition 143. 96
Module decomposition of TP2 protocol. 97

Example of the code generated for nested 'all do’ loops. . 100

Subtree generated fortransition23.. 102

Table 1
Table 2
Table 3
Table 4
Table §

Table 6

List of Tables

Test purposes for LAPD prctocol.. 41
TTCN code corresponding to delay clause. 57
TTCN code produced for transitions with no output. 58
TTCN code corresponding to ALL statement. 58
Results of the application of the test generation tool on LAPD

andTP2protocols 0. 103

rerformance of the test generation tool for LAPD and TP2 . 103

xii

Chapter 1 INTRODUCTION

In 1977 International Organization for Standardization (ISO) established a
subcommittee to develop a structure or architecture that defines communication
tasks. This way standards can be easily defined for that architecture. The result of
that subcommittee was the so called Open Sy.tem Interconnection (OSI) reference
model. This reference model provides a common basis for the coordination of
standards development for the purpose of systems interconnection. The term
"open" denotes the ability of any two systems conforming to the reference model
and associated standards to connect. The technique chosen by ISO for structuring
the reference model is layering. Within a system there are one or more active
entities which implement the functions of that layer (usually referred as (N) layer).
Each entity communicates with entitiec above and below across an interface. This
interface is called Service Access Point (SAP). The (N-1) entity provides services
to an (N) entity via invocation of primitives. A primitive specifies the function
to be performed and is used to pass data and control information [1]. Figure 1

shows the layer concept of OSI reference model.

Principles used in defining OSI layers are[2]:

1. Do not create so many layers to make the system engineering task of describ-

ing and integrating layers more difficult than necessary.

2. Create boundary at a point where t..= description of services can be small and

the number of I~teractions are minimized.

N+1)
N+
layer entity (\3 MN)savice

/ncaﬂ point
Interface

I
X Interface

Figure 1 Layer Concept of OSI Reference Model[1].

Create a layer where there is a need for a different level of abstraction in the
handling of data (e.g., morphology, syntax, semantics).
Allow changes of functions or protocols to be made without affecting other

layers.

The resulting OSI reference model has seven layers. These layers are:

1.

Physical :

Concemed with transmission of unstructured bit stream over physical medium;
deals with the mechanical, electrical, functional, and procedural characteristics
to access the physical medium.

Data Link :

Provides for the reliable transfer of information across the physical link; sends

blocks of data (frames) with the necessary synchronization,error control, and
flow control.

3. Network :
Provides upper layers with independence from the data transmission and
switching technologies used to connect systems; responsible for establishing,
maintaining,and terminating connections.

4. Transport :
Provides reliable, transparent transfer of data between end points; provides
end-to-end error recovery and data flow control.

5. Session :
Provides the control structure for communication between applications; estab-
lishes, manages, and terminates connections (sessions) between cooperating
applicaticns.

6. Presentation :
Provides independence to the application processes from differences in data
representation (syntax).

7. Application :
Provides access to the OSI environment for users and also provides distributed

information services.

1.1 Basic Elements of Communication Protocols

The OSI model is connection-oriented. Two (N) entities, also called peer

entities communicate, using a protocol, by means of an (N-1) connection. This

logical connection is provided by (N-1) entities between (N-1) SAPs. Figure 2
shows the OSI principles in operation. When application X has a message to
send to application Y, it transfers those data to an application protocol entity. A
header is appended to the data that contains the required information for the peer
layer 7 protocol (encapsulation). This process continues down to layer 2, which
generally adds both a header and a trailer. This layer 2 unit is called a frame and

is passed by the physical layer onto the transmission medium.

Ouwtgoing frame Incoming frame
AP'X’) congtruction AP data reductlxl

Application Peer protocols [AH[AP data | Application
Prescntation LpH] Data unit J Presentation
Session | SH | Data unit | Session
Transport {TH [Data unit | Transport
Network [NH| Data unit] Network
Data link [Fja| c Data unit (I field) [FCS[F|| [Datalink
Physical v l Blts] Physical

% Communication path §

Figure 2 OSI operation[1].

A protocol consists of procedural rules for dialogue and precisely defined
formats for each type of Protocol Data Unit (PDU) that can be used within the
protocol. The unit of information to be transferred between (N + 1)-entities via

(N)-service is called the (N)-Service-Data-Unit, or (N)-SDU.

The REQUEST primitive type is used when a higher layer is requesting a

service form the next lower layer.

The INDICATION primitive type is used by a layer providing a service to
notify the next higher layer of any specific activity which is service related. The
INDICATION primitive may be the result of an activity of the lower layer related
to the primitive type REQUEST at the peer entity.

The RESPONSE primitive type is used by a layer to acknowledge receipt,
from a lower layer, of the primitive type INDICATION.

The CONFIRM primitive type is used by the layer providing the requested

service to confirm that the activity has been completed.

Figure 3 shows the concept of a layer and interlayer communication. In the
simplest case, the whole (N)-SDU fits into the user data field on the (N)-PDU, and
(N)-PDU’s map one-to-one into (N-1)-SDU’s. However, the relations..ip between
these three data units can be more complex. The OSI Reference Model defines

three mappings[3]:

1. segmenting/reassembling, where one (N)-SDU is mapped into multiple (N)-
PDU'’s;

2. Dblocking/deblocking, where multiple (N)-SDU’s are mapped into a single
(N)-PDU;

3. concatenation/separation, where multiple (N)-PDU’s are mapped into a single

(N-1)-SDU.

(N+1)-layer

indication

request MN)-SDU

(N)-ShU

NHayer | (ND-emtity
request indication
(N-1)-SDU (N-1)-SDU
(N-I)entlty |4 -- N-lyprotocl |__ | (N-1)-entity
(N-1)-PDU's

e T 5

SAP Service Access Point
SDU Service Data Unit
PDU Protoco! Data Unit

Figure 3 Interlayer communication[3].

In general, blocking and concatenation improve performance: they reduce the
number of (N-1)-SDU’s needed to transfer the (N)-SDU’s and various control

(N)-PDU'’s and consequently the processing overhead in layers (N-1) and below.

1.2 Conformance Testing

OS] protocols are presently being implemented by a large number of computer
manufacturers and communication companies. In order to achieve the goal of
OSI which is interworking of heterogeneous computers, we need to test the
conformance of various implementations of protocols to the standards. Standard

test suites must be developed for each OSI protocol standard, for use by supplier

or implementors in self testing, by user of OSI products, by telecommunications
administrations or by third party testing organizations.

Conformance testing involves testing both the capabilities and behaviour of
an implementation, and checking what is observed against both the conformance
requirements in the relevant standard(s) and what the implementor states the
implementation’s capabilities are.

Conformance testing does not include assessment of the performance nor
the robustness or reliability of an implementation. It cannot give judgement
on the physical realization of the abstract service primitives, how a system is
implemented, how it provides any requested service, nor the environment of
the protocol implementation.The purpose of conformance testing is to increase
the probability that different implementations are able to interwork and gives
confidence that an implementation has the required capabilities and its behaviour

conforms consistently in representative instances of communications.

Conformance testing can be done using a number of architectures defined by
ISO [5]. A number of tests designed to establish conformance of the implemen-

tation under test (IUT) is called a test suite.

1.2.1 Types of Testing

ISO defines ten types of testing:

1. static conformance review : A review of the extent to which the static

conformance requirements (requirements for the capabilities of an implemen-

10.

tation) are met by Implementation Under Test (IUT).

basic interconnection tests : Limited tests of an IUT to determine whether
or not there is sufficient conformance to the relevant protocol(s) for intercon-
nection to be possible, without thorough testing.

capability tests : Tests to determine the capabilities of an JUT. This involves
checking all mandatory capabilities and those optional ones that are stated in
the Protocol Implementation Conformance Statement (PICS).

behaviour tests : Tests to determine the extent to which dynamic confor-
mance requirements (permitted observable behaviour in instances of commu-
nication) are met by the IUT.

conformance resolution tests : Tests to determine in depth whether or nut
an implernentation conforms to a limited number of specific requirements.
conformance testing : Testing the extent to which an IUT is a conforming
implementation.

conformance assessment process : The complete process of accomplishing
all conformance testing activities necessary to enable the conformance of an
implementation or a system to one or more OSI standards to be assessed.
test campaign : The process of executing the parametrized executable test
suite for a particular IUT and producing the conformance log.

multi-layer testing : Testing the behaviour of a multi-layer IUT as a whoie,
rather than testing it layer by layer.

embedded testing : Testing the behaviour of a single layer within a multi-

layer IUT without accessing the layer boundaries for that layer within the

IUT.

As itcan be seen not all types of testing defined by ISO are mutually exclusive
and one can come up with a combination of certain types of testing such as

conformance multi-laver iesting.

1.2.2 Abstract Test Architecture

Test metbods need to refer to an abstract testing methodology, based on OSI
reference model. Abstract test methods are described in terms of outputs from the
IUT are observed and what inputs to it can be controlled. The starting point for
developing abstract test methods is the conceptual testing architecture, illustrated

in figure 4.

3 A

Tester T
ASPs
PDUs

Figure 4 Conceptual testing architecture.

The action of the tester shown in figure 4 can be applied locally, in which case
there is a direct coupling within the system under test, or externally via a link or

network. The definition of abstract test methods requires that the Points of Conirol

and Observations (PCOs) be distributed over two abstract testing functions, the

lower and upper tester.

The lower tester provides control and obszrvations at the appropriate PCO
either below the IUT or remote from TUT. If the action of the tester is external
to System Under Test (SUT), the lower tester will rely on the (N-1)-service.
The upper tester provides control and observation at the upper service boundary

during test execution.

Four categories of test architectures are defined, one local, and three external
which assume the lower tester is located remotely from the SUT. The local test
architecture sometimes referred as generic test is the simplest to specify and
defines the PCOs as being above and below the IUT. Local test architectures
are not practical since the lower and upper tester must be implemented on every

system under test separately.

Three different categories of external test architectures are distributed, co-
ordinated and remote. They vary according to the level of requirement or stan-
dardization put on the test coordination procedures, on the access to the layer

boundary above IUT, and the requirements on upper tester.

The coordinated test architecture requires that the test coordination proce-
dures used to coordinate the realization of the upper and lower testers be achieved
by means of test management protocols. The other two external test architec-
tures do not make any assumptions about the test coordination procedures. The

distributed and coordinated architectures require specific functions from the up-

10

ot tester above TUT. The remote test architecture does not. Finally, only the

distributed test architecture uses a PCO at the upper layer boundary of the IUT.

Therefore, only distributed test architecture requires access to the upper boundary

of the IUT. Figure 5 gives an overview of abstract test architectures.

ur]
3ASP5
Test T
Coordination
Procedures
' ASPs
it []

(a) The Local Test Methods

LT

Test Coord.
Procedures

[4—TM-PDUs —Pp

Service Provider

(c) The Coordinated Test Methods (external)

Figure 5 Abstract test methods/S)

11

Test Coord.
LT Procedures uUT
"ASPs
PPUs
ﬁsps T
Service Provider

(b) The Distributed Test Methods (external)

| Testcoord. 1T g
Procedures ¢ UT .
i¢—— PDUs — UT

IASP;

PP

Service Provider

(d) The Remote Test Methods (external)

1.3 Overview

The objective of this thesis is to implement a system which automates the
process of test suite generation from the formal specification of a protocol. Proto-
cols are complex systems and test suite derivation for them is very cumbersome,
time consuming and an error prone process. While still some parts must be done
manually, this system dramatically reduces the time and effort required to obtain
test suites. To the best of our knowiedge this work is original and no similar

system has been developed earlier.

The system developed uses an earlier test sequence generation system based
on the data flow analysis and normalization called CONTEST-ESTL. The contri-
bution of this thesis is generation of tests in TTCN test notation. Estelle language
was chosen as the basis of the work for the following two reasons. First there was
already a tool developed for generating test sequences and performing data flow
analysis for the Estelle language. Second in the standardization documents most
of the protocols are specified as finite state machiines and can easily be formally
specified in Estelle. Protocol standards developed by CCITT like ISDN provide
an SDL diagram which can directly be translated to Estelle.

The different modules of this test generation system were implemented in C
language and LEX and YACC compiler facilities. The reason why C language
was chosen is its portability, ease of maintenance and my own experience with

this language.

Next the organization of the remaining chapters of this thesis is explained.

12

T T W

T

Chapter two gives an overview of formal description techniques and Integrated
Services Digital Network (ISDN) and its Link Access Protocol on the D-channel
(LAPD). At the end of the chapter the module decomposition of the Estelle
specification of the LAPD protocol is explained.

Chapter three gives an overview of the methodology used to derive dynamic
behaviour tests from Estelle specifications. This chapter first explains the different
steps that must be taken to generate a complete test suite. Also an algorithm to
generate transition tours from a collection of interconnected finite state machines

is discussed in this chapter.

Chapter four explains the details of generating dynamic behaviour in TTCN
format. First algorithms used to generate subtrees and test cases are given. Then

the issue of the paramct-ization of the tests is discussed.

Chapter five explains the declaration and constraint generation module. The
first scction gives details of mapping between Estelle and TTCN declarations.
Two declaration tables generated by the software are demonstrated. The next

section gives the algorithm used ° the constraint generation module.

Chapter six explains the details of the implementation of the software modules
which perform the test suite derivation. The languages used in the implementation
of the modules, module decomposition, and dependencies between the modules

are explained in this chapter.

Chapter seven demonstrates some of the results obtained by applying the test

gene ation tool on LAPD and transport class 2 protocol. Some statistics about the

13

test suite generated and the time performance of the software are also given.

Finally a user’s guide of the system developed is given in appendix A.

14

Chapter 2 ISDN AND FORMAL SPECIFICATIONS

As a result of advances in technology, digital transmission techniques are
being intensively introduced in a large number of countries. The result of this has
been a general consensus in the world of telecommunications to lay down through
the International Telegraph and Telephone Consultative Committee (CCITT) the
basic elements of the universal network, the Integrated Services Digital Network
(ISDN)[8].

The main feature of the ISDN concept is the support of a wide range of voice
and non-voice applications in the same network. A key element of the service
integration for an ISDN is the provision of a range of services using a limited set

of connection types and multi-purpose user network interface arrangements.

The definition of ISDN is based on three fundamental elements:

1. Digital connectivity for information transfer : all types of signals are
transmitted in digital form across the network.

2. Common-channel signaling connectivity : In the ISDN, signaling is trans-
mitted over the entire network and between the terminals in the form of
messages, containing addresses, information and protocol elements.

3. Multipurpose capability of user-network interfaces : the connection to the
ISDN allows the user to have at his disposal such different services as voice,

telematic or video communications from the same point.

CCITT has defined a common-channel signaling system known as protocol

D. According to the principle of common channel signaling, a particular channel

(Channel D) transports the messages between the user and the network completely

independent of the information channels. Any signaling interchange can therefore

be carried ov: outside or during a communication. In addition to common channel

signalling telemetry and packet switchea network data can be carried over this

channel.

Figure 6 shows the architecture model and reference points of the ISDN. The

definition of the functional groups are given below.

Users and servers

Public-swilched
teleph

1 s T Circull
U v reult
switching
termination
Existing = 1erminal Packet
terminal daptor NT2 HH NT1 LT ST \/ switching
equipment \
Subscriber | 1::2:::.'3& |ICommon-Channel
TE Network d'g“ll line { Signalling
termination 1 \
Network
ISDN
lerl!)nlml termination 2 Operating and
equipment maintencance

Figure 6 Functional groups and reference points of ISDN[7].

network

Users and servers

Packet-switched

data network

e Terminal equipment (TE) performs the functions of layers 1, 2, and 3 of

the user side of ISDN user network interface.

16

e Terminal adaptor (TA) performs the adaptation of non ISDN terminals
(TE2) allowing a terminal type 2 to be served by the ISDN user network
interface.

e Network termination 2 (NT2) performs the functions of layers 1, 2 and 3 of
the network-user interface. Private exchanges or intercommunication systems
are examples of equipment which perform the NT2 functions.

e Network termination 1 (NT1) handles layer 1 on the network side of the

interface T.

The user interface with the ISDN network is at points S and T. Rates and
types of transmission are defined at these points. Two access rates have been
defined at S/T interface. The first is called “basic rate’” and has a usable rate of
144 kbits/sec. The second access rate is the primary access rate whose usable rate

is 1984 kbits/sec (in Europe) or 1536 kbits/sec (in North America).

ISDN signalling capacity is multiplexed into two types of channels. A B
channel at the rate of 64 kbit/sec. A D channel is used for common-channel
signaling, telemetry and packet switched data. The structure of basic rate is
2B+D, the rate of D channel being 16 kbits/sec. For the primary rate the structure
is 30B+D or 23B+D, for a total of 1984 or 1536 kbit/sec, this time the rate of
D channel is 64 kbit/sec. For very small subscriber installations, one or more
terminals should be capable of being connected by a single access directly to the

public network, i.e. without NT2.

Three other types of channels are also defined for primary access, channel

17

HO (384 kbit/sec), H11(1536 kbit/sec) and H12 (1920 kbit/sec) for services such

as videoconferencing.

The definition of ISDN access is based on a functional separat.on of the
signaling data flows from the user information flows exchanged between the users.
Separation of signaling and information flow gives the three-dimensional model

of ISDN protocol shown in figure 7.

}"
¢

\

L Physical medium

B . service primitive between adjacent layers.
Pj - management service primitive between the control or user layer and the
management entity.

Figure 7 Interactions between entities at the user-network interface[7]).

The model consists of three planes:

18

1. The control plane, which is organized in seven layers, concerns signaling
in the D channel and covers all the control protocols for service calls and
facilities. So far only the service primitives of layers 1-3 have been defined
for the protocols of the control plane.

2. The user plane, which is also organized in seven layers, contains protocols
implemented for exchanging data relating to applications in the channels for
user information transfer (D, B or H)

3. The management plane, which is not organized in layers, concerns the local

operating functions of the NT2s and the terminals.

The control and user planes can communicate with the management entity
by using management service primitives. Management entity coordinates the
activities in control and user planes which do not communicate directly. Figure
8 gives an example of an application which transfers data on a circuit switched
connection. At the beginning a circuit switched connection is set up by the control
plane or the D channel. After the connection is set up the user data is transferred

in the user plane in the B channel[7].

2.1 LAPD

The function of Link Access Protocol on the D-channel (LAPD) is to convey
information between layer 3 entities of TE, NT2 and NT1 on the D-channel.
LAPD is independent of transmission bit rate. It requires a duplex, bit transparent

D-channel.

19

User equipment Network

User application
A7
User ::
ane
o A4
—- | A3 switched network
User 3
T
perspective i | T |
——p Data exchanged
User data flow by the users
—e—>
Control (in the B channel) ?
plane Connection
control
Network C3
perspective c2 :
—_) Ci1 Control application
C3
c2
C1
signalling information ignalling
(in the D channel) information

Figure 8 Control of circuit-switching connection[7].

The functions of LAPD are:

1. The provision of one or more data link connections on a D-channel. Discrimi-
nation between the data link connections is by means of a data link connection
identifier (DLCI) contained in each frame;

2. Frame delimiting, alignment and transparency, allowing recognition of bits
transmitted over a D-channel as a frame;

3. Sequence control, to maintain the sequential order of frames across a data
link connection;

4. Detection of transmission, format and operational errors on a data link;

20

5. Recovery from detected transmission, format, and operational errors. Notifi-
cation to the management entity of unrecoverable errors; and

6. Flow control.

2.2 Establishment of Information Identification

A data link connection is identified by a Data Link Connection Identifier
(DLCI) carried in the address field of each frame. DLCI consists of two elements:
the Service Access Point Identifier (SAPI) and the Terminal Endpoint Identifier
(TEI). The SAPI is used to identify the service access point of the user-network
interface. The TEI is used to identify a specific connection endpoint within a
service access point.

Two different types of data link connections have been defined for LAPD.
The first type is broadcast link which is always in information transfer mode and
provides unacknowledged information transfer. The second type is point-to-point
data link connection which provides both unacknowledged and acknowledged
information transfer and corresponds to a particular SAPI. In order to transfer
information in a point-to-point data link a connecticn must explicitly be established
by exchanging SABME and UA command. Figure 9 shows the relationship
between SAPI, TEI and DLCI. Each SAP identified by SAPI has a specific
puipose. Recommendations Q.920 and Q.921 of CCITT define 4 SAPs : 0 for call
control procedures, 1 for packet mode communications using Q.931 call control
procedures, 16 for packet communication conforming to X.25 level 3 procedures

and finally 63 for management procedures|8].

21

ET/NT2
TE(1) s Connection endpoint suffix
layer3 layer
agnal signaling signaling
Inmon iaformation information
Bl1]2 3|2|1(B 1B
Data Data
link L link ¢ 16
layer layer \
SAP identifier
TEI=3
TEI=S$ TEIxS TEI=8
TEl = 1275 —A—A

TEI= 127 » TEl =127 »

D-channel SAPI=0 SAPI=16

Broad cast data link (B) DLCI = DAPI + TEI

CEI = SAPI + Connection endpoint suffix
Point-to-point data link

Figure 9 Relationship between SAPL TEI and DLCI[8].
2.3 Estelle

Standard definitions are presently given in natural languages. Since these def-
initions contain ambiguities and impreciseness, standardization institutions such
as ISO(International Organization for Standardization) and CCITT(International
Telephone & Telegraph Consultative Committee) have developed formal descrip-
tion techniques(FDTs). The formal description technique accepted by our test
generation system is Estelle[4], which is based on an extended finite statc ma-

chine model.

22

The extended finite-state machine (EFSM) model describes a system such
as a protocol entity as a collection of modules. Each module is a finite-state
machine capable of having memory, i.e., extended finite-state machine. Modules
of an entity can communicate with each other as well as with the environment
over channels (FIFO queues). Messages carrying data paramters are exchanged in
these channels. The queue management is done by Estelle language and tne user
is relieved from this task. Instances of these channels are called interaction points.
Service primitives (exchanged with lower and upper layer entities), and internal
interactions (with other modules) are communicated in the channels. PDU’s
exchanged betwecn two protocol entities need not explicitly be defined, they are
encoded and introduced as parameters to the service primitives. Decomposition
of an entity into modules is usually functional: a module for timer management;
a mapping module to map the PDUs into interactions with the environment, i.e.
service primitives; an abstract protocol module for handling service primitives

and forming PDUps, etc.

The language of Estelle is based on Pascal with extensions to facilitate
protocol specification. To save space we only describe the constructs related
to transitions. An Estelle transition is composed of an initial state, a final
state. FROM/ TO clauses define initial/ final state(s) of the finite-state machine,

respectively.

The arrival of an input interaction is expressed using WHEN. Transitions

with no WHEN clause are called spontaneous. They are used to describe

23

nondeterminism (internal decisions of the entity, for example).

The conditions for firing the transition are described in a PROVIDED clause
which is a Boolean expression on interaction primitive parameters and variables
of the module. Variables of the module are called context variables. The presence
of PROVIDED clause is optional in a transition and its absence is equivalent to

PROVIDED FALSE.

Estelle transitions that do not have a WHEN clause may have a DELAY
clause. The general format of DELAY clause is:
delay(min, max)
A mansition with delay clause is not considered before min time units. It may
be selected between the min and max time units, After max time units if the

provided clause is satisfied it must be selected.

Another clause related to transitions is the ANY clause. The simple form of
any clause is:
any IDENTIFIER : DOMAIN
If an ANY clause occurs in an expanded transition (normalized transitions are
all expanded) then the corresponding transition declaration is only a shorthand
notation for a sequence of transitions where the IDENTIFIER is replaced by it’s
value. For example:

any X : 1..2

provided f (x)

is equivalent to two transitions. The provided clause of the first transition is:
provided £({1)

and the provided clause of the second transition is:
provided £(2).

Finally, the action of the transition is contained in a BEGIN/END block
which can have assignments to context variables, calls to internal procedures,
Pascal statements and produce output with OUTPUT statement[4).

Estelle supports nondeterminism by way of spontaneous transitions and al-
lowing more than one transition from a given major state to have their predicates
enabled. Once a transition is enabled, its execution is atomic. Abstractness of
the specification, i.e. being away from implementation considerations could be
achieved through the use of incomplete type definitions using the three-dot nota-
tion, such as in the type declaration:

buffer_type = ...;
or constant declaration:

max_buffer = any integer;

24 TTCN

A language has been defined by ISO to specify abstract test suites, i.c.,
expressing tests in a manner independent of their execution. This language is

called the Tree and Tabular Combined Notation (TTCN).

The Tree and Tabular Combined Notation (TTCN) specifies a test suite in

four parts: test suite overview, declarations, dynamic behavior and constraints.

25

The test suite overview table is for describing the purposes of the test suite and its
individual tests. The points of control and observation (PCOs), abstract service
primitives (ASPs) and Protocol Data Units (PDUs), global variables and timers
are defined in declaration tables. The dynamic behavior table is used to define
test cases as trees of events input(?)/ output(!) from the service access points
(SAP) accessible to the upper/ lower testers. Dynamic behavior table contains
behavior description, label, constrain:s reference, verdict and comments columns
[1]. The constraints part specifies values for ASPs and PDUs that are symbolically

referenced in the dynamic behavior tables.

A conformance test suite in TTCN consists of a number of test cases which
test the implementations for conformance. Tests are hierarchically organized into
test groups each consisting of one or more test cases. Test cases are specified

using the tree notation and are made up of test steps.

For example, suppose the following events can ocrur during a test whose
purpose is to establish a connection, exchange some data and then disconnect.
The tree notation expresses this sequence of events as:

TREEIL]
L! CONNECTrequest
L 7 CONNECTconfimn
L ! DATAreq
L ? DATAind
L ! DISCONNECTreq
L ? DISCONNECTind
L ? DISCONNECTind
L ? DISCONNECTind

26

Here, L stands for the PCO at which the lower tester exercises the test. The
symbol ? and ! stand for receive and send respectively. So, L! CONNECTrequest
means that the tester transmits the CONNECTrequest primitive at the PCO I at
this point in the test. TREE[L] is the identifier for this behavior tree and L stands
for the formal PCO used.

2.5 Estelle description of LAP-D

As part of the work for this thesis, a formal description of LAPD based
on recommendations Q.920 and Q.921 was developed. Figure 10 shows the
block diagram of modules of this description. Since the purpose of this formal
description was automatic test suite generation, for simplicity only the modules
labeled “DATA LINK ENTITY” and “FRAME EXCHANGE" (referred as “‘data
link procedure” in recommendations) as well as timer T200 and T203 modules

were explicitly described ‘n Estelle.

Each Data link entity module is able to set up a link by exchanging SABME
and UA frames. The link is released by exchanging DISC and UA frames.
While the link is established acknowledged and unacknowledged frames can be
exchanged.

Demultiplexing of frame is done based on the SAPI value of incoming frames.
For the outgoing frames multiplexer assigns the value of SAPI to the frames based
on the data link entity requesting transmission of the outgoing frame. The reason
for making multiplexer responsible for assignment of SAPI value was that the

data link entities were described as an array of identical Estelle modules.

27

| NETWORK LAYER J
LAPD SAP ¢ 3 SAP1 3 SAP 16 i
DATA LINK DATA LINK DATALINK
ENTITY ENTITY ENTITY
[TMimer T200) [Timer T280 [Timer 200
Timer T203) Timer 1203) Timer T203)
I |
- MULTIPLEXER/ g — ‘
MANAGEMENT DEMULTIPLEXER |«
LAYER / Y vY Yy
TED MULTIPLEXER/
ASSIGNMENT DEMULTIPLEXER
SAP 63 1
et - FRAME EXCHA E
CRC + FLAG
Y
PHYSICAL LAYER

Figure 10 Estelle modules for formal description of LAPD protocol.

The reason for having two types of connections to management layer is that
each individual data link must be able to communicate with the management layer
in order to report errors and receive response to errors and the value of TEI. This
is done by having a multiplexer/demultiplexer at the interface between LAPD and
management layer. At the same time management is able to exchange information
and identification frames (XID frame) which must be done by LAPD as a whole

and not individual data links bound to a network layer SAP.

Another point worth mentioning is that the data link entities are not really
independent as claimed by Q921 and Q.931 recommendations, because TEI

assignment and removal is common to all data links. All the data links must

28

change their states in the case of assignment and removal of TEI simultaneously.
In order to specify the data link entities as independent finite state machines
with the states specified in recommendations all service primitives leading to
assignment and removal of TEI must be broadcast to all the data link entities.
These service primitives are MDL-ASSIGN-REQUEST for assignment of TEI
and MDL-REMOVE-REQUEST and MDL-ERROR-RESPONSE for removal of

TEI which are broadcast in our approach.

29

Chapter 3 TEST SUITE DERIVATION

Formal description techniques such as Estelle can be used in (semi)- automatic
generation of test suites. Finite-state machine based techniques [9, 10, 11] lead
to state explosion therefore they are not considered in this thesis. Some adhoc
methods developed to cope with context variables and primitive parameters are

discussed in [12,13].

The methodology of interest to us in this thesis is the one that takes an Estelle
specification of the protocol and derives tests from the control and data flow graph
models of the normalized specification {14]. For specifications containing multiple
modules the normalization is applied to each module. A tool (CONTEST-ESTL)

implementing this methodology automates most of the steps [15, 16].

To derive test sequences the following steps must be taken: The formal
specification of protocol in Estelle is given as input to CONTEST-ESTL for
normalization followed by simplification of provided clauses. At this point three
tasks are done in parallel. These are data flow analysis, test sequence generation

and TTCN test step generation.

The resulting test sequences are called unparameterized test sequences since
no parameter values are assigned for test inputs. Then the result of data flow
analysis and test sequences are combined together and test cases in TTCN format
are generated. By obtaining test cases and test steps most of the work for test

suite generation is achieved and the user only needs to provide the suite overview.

The methodology is schematically shown in Figure 11. The contributions of
this thesis 0 the test generation tool are simplification, test step generation, test
sequence generation and finally test case generation modules. The box labeled
fully automated means that the modules do not require any user intervention or
interaction during their execution.

In this chapter normalization, simplification of provided clause, test sequence
generation and data flow analysis are explained. Chapter 4 explains the details of
generating dynamic behaviour in TTCN format. Chapter 5 explains the constraint

generation module.

3.1 Normalization

Normalization is the first step of test suite derivation methodology. After
the specification is written in Estelle the normalization module is activated. The
process of normalization transforms the input specification into another Estelle

specification which possibly contains more transitions each having a single path.

The functions of normalization module are[17]:

i. Variant records are converted into records enumerating all case constants;

ii. Body of procedures and functions are replaced;

ili. Conditional statements(IF, CASE) are eliminated;

iv. State sets are enumerated so that each transition has one major state in the
TO and FROM statements;

v. WITH statements are removed by record structure replacement.

3

Simplification

[

! E
]]
] t
5 :
! 2
; :
:)
‘ H
| o)
: 5
i :
5 i

Test Step Generation

Test Sequence Generatlon

Test Sequence Editor Data Flow Analysis

=/

Test Case Generation &
65' Step Pnnmet@—- Parameter Enumeration

Test Suite

Figure 11 Test suite derivation methodology.

The following is a transition from the Estelle specification of ISDN LAPD
protocol (ph is the physical layer and 13 is the network layer discussed in chapter

2):
from AwaimgEstab
to MulFrmEstabd
when Ph.PH_DiInd
provided (FrmRecvd.Frame = UA) and (FrmRecvd.F = FINAL)
begin

32

if L3Initd then
output L3.DL_EstabConfmmn
else
if V.S <> V_A then
begin
DiscIQ;
output L3.DL_Estabind;
end;
output TIMER_T200.STOP;
T200_RUNNING := false;
output TIMER_T203.START;
V_A:=0,
V_S:=0;
V_R:=0;
end;

This transition occurs when a LAPD entity receives an Unnumbered Acknowl-

edgement (UA) in response to a SABME frame.

Normalization transforms the above transition into 3 transitions. Normaliza-
tion is achieved by moving the conditions in the IF statements to cover one of
the paths to the PROVIDED clause. Each transition corresponds to a path of the

IF statements. The following is one of those transitions which has a single path:

trans
{94}
when ph.ph_dtind_ua
provided (((true) and (frmrecvd.f = final)) and (not (v_s <>v_a))) and
(not (13initd))
from awaitngestab
to mulfrmestabd
begin
output timer_t200.stop;
t200_running := false;

33

output timer_t203.start;

v_a:=0;

v_s:=0;

vr=0
end;

After normalization, we obtain 420 normalized transitions for the LAP-D

specification.

3.2 Simplification of the Provided Clause

After normalization the PROVIDED clauses are simplified and decomposed
into several simpler atomic predicates for which there is a unique way of satisfy-
ing. The method is the following: Let P1, P2 and P3 be elementary expressions
such as 'frmrecvd.p_f = final’. An elementary expression is either a Boolean
variable or a relational expression on variables and input primitive parameters.

We perform the following simplifications in the order specified:

1. "TRUE and P!’ is replaced by 'P1’;
"TRUE or P1’ is replaced by ’true’;
'FALSE and PI” is replaced by ’false’;
'FALSE or P1’ is replaced by 'P1’;

;nos W N

"NOT’ and relations are combined. For example 'NOT(X <=Y)’ is converted
to'X> Y’

6. 'NOT(P1 and P2)’ is replaced by "NOT(P1) or NOT(P2)’.

Similarly, 'NOT(P1 or P2)’ is replaced by "NOT(P1) and NOT(P2)’.

10.

11.
12.

"NOT(NOT(P1))’ is also replaced by P1. Then this rule is applied recursively
to 'NOT(P1) ' and 'NOT(P2) ’;

if the predicates 'P1’ and 'P2’ are mutually exclusive, *P1 or P2’ is replaced
by:

’(P1 AND NOT(P2)) OR (NOT(P1) AND P2) OR (P1 AND P2)’.

In general 'P1 OR P2 .. Pn’ mutually exclusive ORed predicates produce
2" — 1 ORed predicates;

steps 5 and 6 are repeated for the resulting terms which have the NOT(Pn)
in step 7,

AND is distributed inside OR operation. 'P1 AND (P2 OR P3)’ is replaced
by '(P1 AND P2) OR (P1 AND P3)’. The rule is repeated of the terms 'P1
AND P2’ and 'P1 AND P3’ if either P1, P2 or P3 are not simple expressions;
Relations are combined. For example:

*(EXPR1 = EXPR2) AND (EXPR1> = EXPR?2) is replaced by:

"(EXPR1 = EXPR2)’;

Duplicate predicates are removed;

Predicates evaluating to a false value are replaced by FALSE. For example:
"(EXPR1 < EXPR2) and (EXPR1 = EXPR2)’ is replaced by 'FALSE’. Then

rule 2 and 3 are reapplied to the resulting expression.

Rules 1 thru 12 above follow from straightforward logical equivalences. Rule

7 guarantees that every product (in the form of P1 AND P2 AND ...) contains

all the elementary expressions exactly once. Transformation in rule 9 converts a

35

given predicate to the form (known as disjunctive normal form):
Pl1 OR P2 OR P3 ... OR Pn

where Pi’s are products of elementary expressions, i.c. of the form P1 and P2
and ... Pn [11]. Because of the rule 7 each Pi contains all the elementary
expressions exactly once, therefore Pi’s are mutually exclusive. The next step in
our simplification process is to create a separaic transition for each elementary
expression, i.e. each Pi becoming the PROVIDED clause of a separate transition.
This is accomplished by separating Pi from the main predicate and substituting
it into a copy of the original body and header, i.e. completing the other parts
(WHEN, if any and the BEGIN-block) of the transitions. The advantage of this
step is that now for each transition there is only one way to satisfy the PROVIDED

clause. Also all the possibilities to fire a wansition have been enumerated.

As an example we take the transition 259 from the LAP-D specification:

trans
{ 259)
when ph.ph_dtind_rej
provided ((true) and not ((v_a <= frmrecvd.n_r) and (frmrecvd.n_r <=
v_s))) and (not ((frmrecvd.c_r = n2ucomand) and (frmrecvd.p_f = poll)))
from timerrecovry
to awaitngestab
begin
update_buffer(frmrecvd.n_r);
peerrecbz = false;
output Im.mdl_errind(j);
peerrecbz = false;
rejexcept := false;
ownrecverbz = false;
ack_pending := false;

36

rc :=0;
frmvar_sabme.tei := tei;
frmvar_sabme.c_r := u2ncomand;
frmvar_sabme.p := poll;
output ph.ph_dtreq_sabme(frmvar_sabme);
13initd := false;
output timer_t200.start;
1200_running := true;
output timer_t203.stop

end;

Transition 259 gets expanded into six transitions. The following is one of

those transitions with a simplified provided clause:

trans

{ 298 }

when ph.ph_dtind_rej

provided (fmrecvd.p_f = final) and (frmrecvd.c_r <> n2ucomand)
and (frmrecvd.n_r > v_s) and (v_a <= frmrecvd.n_r)

from timerrecovry

to awaitngestab

begin

update_buffer(frmrecvd.n_r);

(* same as above *)

end;

Provided clause simplification step increases the number of transitions of

normalized LAPD specification from 420 to 490 transitions.

37

3.3 Data Flow Analysis

After simplification of the provided clause, data flow analysis of the protocol
can be performed. This step generates two files. The first file contains the
data flow information. A graphical representation of the actions of normalized
transitions, called data flow graph (DFG) is done by a program called Dfgtool
[16]. The second file contains the control flow information of the protoco! which
is the initial and final state of transitions as well as the input service primitive
and output service primitives inside the body of transitions.

A data flow graph can be partitioned into blocks, a block representing the
flow over a single context variable. These blocks can be merged together in order
to obtain protocol functions or test purposes[19]. The test cases which have the
same test purpose specified for a block are grouped together. Therefore the blocks
inside the data flow graph make up the test groups in TTCN. Dfgtool lets the user
name these test purposes to be used later by the test case generation program.
Figure 12 shows a part of the data flow graph for the function “Transmission
of Acknowledged Frames”. Using data flow analysis technique 19 test purposes

were identified for LAPD protocol. These functions are shown in table 1.

Transmission of DISC In this test group IUT is forced to transmit DISC
Frames Frames.

Transmission of DM In this test group IUT is forced to transmit DM
Frames Frames.

Table 1 Test purposes for LAPD protocol. (Continued ...)

38

o e
(7D (3D (Rergevinto) (Raris) (Reve=soek) (Rard-espy) (Curve) (liispTey) (isms=Bock) (Eeckiw
(E330) (Erash Seweripiion) (WTD

Sslect with left mouse button.

; (1_1‘_9_,_‘-'{_._ CTRN)) (Tgtip 1. Treme.ns)

___ 73]
rﬂ_ﬂ') (ph.dtreq_1.freme.p) (phidtreq. i .frame.c.r}) (ph_direq 1.frmme.n_s)(1qdup,1.fram
196 158

196

Figure 12 Example of a data flow graph.

Transmission of FRMR In this test group IUT is forced to transmit

Frames FRMR Frames.

Transmission of In this test group IUT must transmit

Acknowledged Information | Acknowledged Information.

Transmission of REJECT | In this test group IUT is forced to transmit
Frames REJECT Frames.

N(R) Value of Outgoing In this test group the correct setting,
Frames incrementing and resetting of N(R) sequence

number of frames is verified.

Table 1 Test purposes for LAPD protocol. (Continued ...)

39

Transmission of RNR

Frames

In this test group IUT .s forced to transmit RNR

Frames,

Transmission of RR

Frames

In this test group IUT is forced to transmit RR

Frames.

Transmission of SABME

Frames

In this test group IUT is forced to transmit

SABME Frames.

Transmission of UA

Frames

In this test group IUT is forced to transmit UA

Frames.

Transmission of
Unacknowledged

Information

In this test group IUT is forced to transmit
Unacknowledged Information.

Persistant Deactivation of

Physical Layer

In this test group physical layer is deactivated

and the TEI removal of the equipment is verified.

Retransmission counter

In this test group the correct setting,
incrementing and resetting and the effects of

values of retransmission counter are verified.

Reject Exception Condition

In this test group the correct setting and clearing
of reject exception condition and its effects

areverified.

Table 1 Test purposes for LAPD protocol. (Continued . ..)

40

Saving Release Request In this test group the link is requested to be
During Link Establishment | released before it is established and it is verified
that this request is saved and the link is released

as soon as it is established.
N(R) Value of Incoming In this test case the effect of N(R) sequence

Frames number of frames sent by tester is verified.
Reception of In this test group Acknowledged Informations

Acknowledged Information | are transmitted to IUT and the correct behaviour

of IUT is verified
Reception of In this test group Unacknowledged Informations
Unacknowledged are transmitted to IUT and the correct behaviour
Information of IUT is verified
Report of Errors to In this test group errors that must be reported to
Management Layer management entity are created.

Table 1 Test purposes for LAPD protocol.

3.4 Test Sequence Generation

This step uses the control flow information about different modules of pro-
tocol created in the previous step. There are several techniques to generate test
sequences for finite state machines which guarantee the cormrectness of implemen-
tations which pass these tests, i.e. they have 100% error detection capabilities
[20]. All these techniques use state identification sequences of finite staie ma-

chines to verify that each time a transition is fired the FSM is in correct state.

4]

A state identification sequence is a sequence of inputs for which the output se-

quence is different for different initial state of FSM. The main state identification

sequences are:

1. Characterization or W sequences [22].
2. Distinguishing sequences [21].
3. Unique Input Output (UIO) sequences [10].

There are two types of distinguishing sequences: preset and adaptive. Preset
state identification sequences are fixed for all states, adaptive sequences change
depending on the initial state of FSM and therefore if the state of FSM is not
known and if it is desired to find out what state FSM is in, the input sequence
depends on the observed output sequence hence the name adaptive is given. For

practical purposes the preset sequences are preferred over the adaptive sequences.

Unforturately there are many problems with the technique of applying state
identification sequences to protocols modeled as finite state machines which makes

them impractical. These problems are :

1. Not all FSMs have distinguishing or characterization sequences. This problem
is not specific to protocols modeled as FSMs and also exists for ordinary
FSMs;

2. Protocols are extended finite state machines and have variables. The effect
of the value of these variables might make applying identification sequences

impossible;

42

3. The most important reason is that almost all FSM models of protocols are
nondeterministic, i.e. for the same input and in the same state different
transitions with different outputs have been defined. The prouf of 100% error
detection capabilities for all the three state identification sequences assumes

that the FSMs are deterministic.

The nondeterminism of protocols modeled as FSMs is usually because they
are extended finite state machines and the different behaviours of the protocol
implementations are due to the variation of parameters of input primitives, e.g.
sequence number of a packet or the variables inside the protocol or both. Combin-
ing the data with these sequences and extending the states of FSM due to effect of
variables greatly solve these problems. Implementation of a system which derives
test sequences by considering the data and extending the above mentioned test

generation methods io consider data has not been implemented in our system.

Our test generation program generates a simple transition tour. The transition
tour is divided to subtours. A subtour is a sequence of transitions that starts from
the initial state of the protocol and goes back to the same state. This division
is marked physically in the output file and this way the user is able to define
subtours that go back to initial state more than once by editing the output file.
Each subtour becomes a test case in TTCN. Conformance testing requires that test
cases be independent and can be run in any arbitrary order. That is the reason why
subtours must start from a stable state of the protocol and go tack to (possibly

different) staple state.

43

3.5 Implementation of Transition Tour Generator

The test sequence generation program called mstourgen (multiple module
synchronizable tour generator) generates transition tours for a collection of finite
state machines. These finite state machines are interconnected together by FIFO
queues and messages put by a module are consumed by another module which

has been coupled through a queue at that interaction point.

Besides the control flow information of each EFSM the program takes two
more kinds of optional input files. The first kind of optional input file is specified
by an option in the command line and describes the internal queues or interaction
points of the protocol. The user must specify which interaction points are

connected together.

If an interaction point is internal then a queue is associated with it and before
a transition which takes its input from an internal interaction is fired this input
must be present in the head of the queue. To avoid possible deadlocks, before
a transition outputs an interaction into a queue the module which receives this

interaction is checked to be able to consume that event.

The queues are managed in two ways. The preference is given to rendez-vous
type of passing messages. This means that as soon as an event is put into the
queue the other module consumes the event by firing a transition which consumes
and dequeues that event. However if this is not possible for a transition, the event

is put into the queue and can be consumed after.

The second type of the user in the command line enables the user to let a

tester monitor more than one external interaction point. For example the upper
tester used for LAPD monitors the point-to-point and broadcast links as well as

the interface of LAPD and management entity.

The user has the option of two types of transition tours. The first option
minimizes the overall length of tour but subtours can be of any length. The
second option minimizes the length of subtours but the length of overall tour is

most probably much longer than using the first option.

The tests generated are synchronizable. This means that to each external
interaction point a separate tester can be connected. At each instance one of
these testers is active and applies inputs to JUT. Before switching from one active
tester to another, the second tester will receive an interaction (input). This is the
test coordination procedure needed to implement the test using distributed test

architecture.

3.6 MultiModule Tour Generation Algorithm

We present an original algorithm to generate a transition tour from several
FSMs connected by FIFO queues. Because of the huge nuinber of possibilities in
the search through multiple modules, efficiency is an important factor and many

of the steps explained aim to maximize the efficiency.

The input was explained in the previous section. The output of this program

is a transition tour which covers all the transitions of all FSMs.

45

Step-1:

Step-2:

Group the transitions which are similar to reduce the search complexity.

Two transitions are similar if:

a. Their next states are the same;

b. If the input interaction point or the interaction points of one of the
outputs are internal, the other transition must have the same input or
output interaction point and must put the same message in the queue;

c. The external interaction points of the input for non spontaneous
transitions are the same or are controlled by the same tester;

d. For external interaction points in the output statements which are
different from input interaction point and are not controlled by the
same tester and therefore change the synchronization, check that the
other transition also outputs a message to the same external interaction

point or an interaction point which is controlled by the same tester;

Do an approximate calculation of the maximum depth of search to cover
a new transition. The length is the maximum number of states if no
synchronization is requested and no internal queues are present (this is an
exact value). If synchronization is required the length is doubled since
for every transition that must be taken an extra synchronizable transition
might be needed (this is a rough approximation). This value can be
supplied by the user during the invocation of the program. The result is
the maximum depth of the search. The maximum depth cf the search is

multiplied by the maximum number of internal interaction points in the

46

transitions to take into account the effect of rendez-vous which makes the
length of sequence longer than the maximum depth of search. The latter
number is the maximum length of transition sequence taken to cover a
new transition;

Step-3: Do a depth first search of all possible sequences of transitions to find a
sequence of synchronizable transitions which contains at least one group
of transitions that one or more of them have not been covered and leave
the queues empty (to avoid committing to transitions which yield to
deadlock). To reduce the complexity of the search only the following

group of transitions are considered during the search:

o

Group of transitions that change the state;

b. Group of transitions that have at least one transition that has not been
covered.

c. Group of transitions that take their input from an internal queue.

d. Group of transitions that output to internal queues.

e. Group of transitions that change synchronization, i.e. output a mes-

sage to an external interaction point which is not controlled.

Each group has associated flags to avoid searching inside the group each
time. The depth is incremented from 1 up to the maximum number found
in step 2.

Step-4: To further reduce the complexity the group of transitions which cause

queueing underflow (take a message from internal queues that it is not

47

Step-5:

Step-6:

available) are avoided during the set up of sequence and all levels of
back-tracking.

If step 3 fails first turn off the synchronization checking. If it fails
again stop tracing internal queues and if it fails again stop checking both
synchronization and queues and repeat step 3. If each time the search is
successful issue a warning to the user about the decision.

If short subtours are requested:

Save the current state of search (major states of modules and the
sequence of transitions considered so far) because the next search
will go beyond the current arch.

If the protocol is not in its global initial state after applying the
sequence found in step 2, find a sequence that takes the protocol
back to the initial global state and leaves the queues empty. The
search algorithm is similar to the one in step 3 except that this time
the goal is to reach the global initial state rather than covering a new
transition.

Save the sequence of transitions that takes all the modules back to
initial state.

Repeat a cycle of the sequence found in step 3 and the sequence of
transitions found in (b) until all the transitions in all the groups are

covered.

Step-7: Repeat steps 3 to 5 until all transitions are covered. In case of short

48

subtours resume the search path to what it was at the end of step 3
because the next search is longer than what it was in previous search.
Step-8: If the protocol is not in its global initial state find a sequence that takes

the protocol back to the initial global state and leaves the queues empty.

3.7 Infeasible Paths and Edittour

Since the test generation program only uses the control flow information and
the value and effects of variables are left out, some subtours may be impossible to
execute because the enabling conditions of predicates are not satisfied. Therefore
the user may want to change the sequence of transitions of a subtour for the
previous reason or other reasons such as studying the effect of a certain value

of a variable.

A program called Edittour was written to make this modification easier. This
program shows the Estelle code of the transitions that will be executed in each
subtour and enables the user to change the sequence of transitions in the subtour.

An example display by Edittour is shown in figure 13.

49

(C_WERT TUToUR_) (PREVTOWS ST) (__BToPY) ___VPeete___)
i) C—wr——)

PISPLAY NODE: O ESTELLE
select with left mause butten

Subtour - 18

2]1 11 82 004 91 lﬁ‘

a

2 when 13.d¢1_
frem toivasgned
te sstabuwaitted
bopin
cutput la.ndi_nogaind
ond;

when Tm.mdl_ssgnreq

from estabuaittel

10 swaitngestad

bogin
tet iz tai_value;
peerrechz :z false;
rejoxcept :x false;
ownrscverbz :z false;
ack_pending :z false;
rc :s @;
fraver_sshme.tey :z tel;
fraver_sstme.c_r !z u2ncomend;
fraver_sshme.p :z poll;
output ph.ph_dtreq_sshme!{fravar_sshme);
output timer_t208.start;
1200 running = true;
output timer_t203.stop;
131nitd :2 true

.oni;

trens

{ o2)
shen t.start
from 1d)s

i

Figure 13 Edittour.

Chapter 4 DYNAMIC BEHAVIOUR GENERATION

After having normalized the specification and simplified the PROVIDED
clauses our next step is generation of the dynamic behaviour part of TTCN. This
task is divided into two parts. The most important part of dynamic behaviour
generation is the gencration of test steps. The second part is generation of the
test cases. The program which generates test steps and the declaration part of

TTCN is called TTCNgen.

The information needed for declaration and test step generation is:

1. Normalized and simplified Estelle specification.

2. List of interaction points which are internal. The same file which described
the connections of interaction points for test sequence generation is used in
this part.

3. Information about Pascal types which define the PDUs.

We need the third input because the normalization module assumes that PDUs
are defined in Estelle as a variant record and it enumerates the tag of this variant
record. Corresponding to each value of the record tag which is defined in the
case statement of the variant record a new Pascal record is defined in Estelle by
the normalization module. Therefore the original record which defines the PDUs

is lost after the normalization process.

A program called 'mappdu’ reads the original specification and creates a table
with two entries. The first entry is the Pascal types which define different PDUs

51

and are defined by the normalization module. The second entry is the actual names

of different PDUs. The following is the example of LAPD PDU definition:
First an enumerated type called FrameTag defining the different types of PDUs

is declared as:
FrameTag = (I, RR, RNR, REJ, SABME, DM, Ul, DISC, UA, FRMR ,
XID, WRONG);

Then LAPD PDUs are defined as:

Frame_type= { Layer 2 frames after being decoded }
RECORD
C_R : bit; { C/R bit from Octet 2 }
SAPI: SAPs; { from Octet 2 but handled by the multiplexer }
TEl : byte; { from Octet 3 }
CASE Frame : FrameTag OF
I:
(N_S : byte { send sequence number from Octet 4 });

RR, RNR, REJ, I :
(N_R : byte; { receive sequence number from Octet 5 });

SABME, DISC, UL, I:
(P : bit { Poll bit from Octet 4 in case of SABME and DISC and
Octet 5 in case of Ul and I frames });

DM, UA, FRMR:
(F : bit { Final bit from Octet 4 });

U1, 1, XID:
(Informtn: I_type { from Network or Management layer});

52

END;

Normalization creates a different type for each constant in the case statement.

An example is the information PDU (I). The record defined for this PDU is:
frame_type_i =
record
c_r: bit;
sapi:saps;
tei: byte;
n_s: byte;
n_r: byte;
p: bit;
informm: i_type
end;

The table mapping Pascal types to PDUs now contains:

frame_type_i I
frame_type_rr RR
frame_type_mr RNR
frame_type_rej REJ
frame_type_sabme SABME
frame_type_disc DISC
frame_type_ui Ul
frame_type_dm DM
frame_type_ua UA
frame_type_frmr FRMR
frame_type_xid XID
frame_type_wrong Wrong

4.1 Test Step Generation Module

The test steps that our program generates are suitable for local test architecture.

53

If the modules in the specification describe the behaviour of a single layer only
then the test architecture will be single layer (LS for local test architecture).
Ideally multi-layer tests can also be obtained if the modules of the specification

describe the behaviour of more than oue layer of the protocol.

The test step generation module maps each normalized and simplified transi-
tion into a TTCN test step. Then spontaneous transitions are considered and some
of the test steps (corresponding to WHEN transitions) are modified as a result.
Constraints for the input and output events are derived from the PROVIDED

clauses and the actions.

The following is the algorithm which implements the test step generation. Estelle
reserved words are shown in bold. The input is the Estelle description of the
protocol and the tables of PDU and internal interaction points. The output is test

steps in TTCN.

Step-1. Parse the body of SPECIFICATION and read the table binding Pascal
types to PDUs and the list of internal queues;

Step-2. Parse an Estelle module.

Step-3. Start printing the subtree for the first transition.

Step-4. Print the subtree name as “Subtree_” + ((number of modules read so far
-1) "0”s) + transition number. For example the test step corresponding
to the first transition in the second module is called Subtree_01.

Step-5. Pass the number of external SAPs in the module as formal SAPs of

subtree. This allows defining different names for different SAPs when

Step-6.

Step-7.

array of SAPs is used. This way there is no need to change the name of
SAPs inside the subtree hecause the SAP names are formal.

Print the formal parameters of subtree. Formal parameters to subtrees are
the parameters whose values are not bound to any specific value and the
decision on their value is left to the test case. These formal parameters

arc.

a. The identifier list of ANY clause that has been used inside the
transition anywhere besides as an index of interaction point since
the array of interaction point is dealt with by making the SAP names
formal.

b. Parameters or fields of PDUs which are passed by WHEN clause
whose interaction point is external and are not bound to any fixed
value by an equation inside the PROVIDED clause.

c. Parameters or fields of PDU which are used in the WHEN clause
whose interaction point is internal.

d. Parameters or fields of PDU which are used in theOUTPUT clause
whose interaction point is internal. In this case the program makes
sure that there is no name conflict with global variables and param-

eters passed by WHEN clause.

Print a guard for attachment of subtrees. If the expression in the guard
evaluates to false abort the test and give an inconclusive verdict. The

guard contains:

55

Step-8.

Step-9.

Step-10.

a. Inequalities inside the PROVIDED clause.

b. Constraints on the global variables.

If the transition has a WHEN clause whose interaction point is external

then:

a. if all the parameters passed by the interaction are PDUs then produce
SAP!PDU1 [,SAP!PDUY, .., SAP!PDUn]

b. Otherwise print SAP!ASP where ASP is the name of interaction.

If the transition has a DELAY clause (delay(min, max)), two instances
of a timer called 'module name’_delay with velues 'min’ and 'max +
PropDelay’ are started before the protocol enters the initial state of the
transition. Then the program produces the code shown in table 2.

Produce code corresponding to the body of transition in the following

manner:

a. Look for the first OUTPUT in the body of the transition to make

sure that that transition was fired. Produce a receive event for the

OUTPUT statement.

o If all the parameters passed by the OUTPUT are PDUs then
produce SAP?PDUI [,SAP?PDU2, .., SAP?PDUn]

e Otherwise produce SAP?ASP where ASP is the name of inter-

action.

56

Behaviour Description Label I CRef v Comments
e e —— e ——————
?TimeQut ModuleName_delay min [label] 1
SAP?First Output in transition
(body of the Transition) PASS

t2

?TimeOut ModuleName_delay max + PropDelay

SAP?Spontaneous transition output

(body of the spcntancous transition) 3
{goto label] 4
SAPIOTHERWISE FAIL

SAP?Spontancous transition output

(body of the spontancous transition)
{goto label] S

SAP?OTHERWISE FAIL
EXTENDED COMMENTS

1 - A label 1s produced if spontancous transitions from that state cxist.

1, 2 - Two copics of timer ModuleName_delay with duratons of 'min’ and "'max + PropDelay’ arc
started cvery time the state from which the transition with delay begins is entered.

3 - TTCN code to venfy that the spontaneous transiuon was fircd

4, 5 - The statcment ’goto label’ 1s produced if the spontancous transition goes back 1o its 1nitial
state,

Table 2 TTCN code comresponding 1o delay clause.

If the body of transition has no output statement produce the code

shown in table 3.
b. Produce subtree attachments corresponding to procedure calls which
occur before the receive event (subtree attachment can’t be bound to

a receive event),

c. Bind all the assignments prior to the first OUTPUT statement to the

corresponding receive event.

57

Behaviour Description Label | CRef v Comments
START MinRespTimer {label]
ITIMEOUT MinRespTimer PASS
(body of transition)

?First output of spontaneous transition

(body of spontaneous transition)
goto label
SAPIOTHERWISE FAIL

Table 3 TTCN code produced for transitions with no output.

I ‘ Behaviour Description Label !CRef v ’ Comments I

(IDENTIFIER := low bound of DOMAIN)

STATEMENT [label]

[IDENTIFIER <> high bound of DOMAIN]
(IDENTIFIER := IDENTIFIER + 1)

goto label
—— ———

Table 4 TTCN code corresponding to ALL statement.

d. For all the following OUTPUT statements produce receive events but
the assignments preceding the receive are performed before that event.
e. Produce subtree attachment for procedure calls.
f. For the all statement in the form of:
"all IDENTIFIER : DOMAIN do STATEMENT’
produce the code shown in table 4.

Step-11. Produce code for the body of spontaneous transitions with no DELAY
clause in a manner similar to step 10 as an alternative to the first

output statement. Condition these alternatives to the predicate of their

58

PROVIDED clause. If the spontaneous transition goes back to its initial
state generate a TTCN goto statement which goes back and waits for the
first output in the main transition. Otherwise stop the test and assign an
inconclusive verdict to the result of the test.

Step-12. For all receive events and all the SAPs in the module produce:

'SAP?0THERWISE’ FAIL’.
Step-13. Repeat steps 1 to 12 for all the transitions in the module.
Step-14. Repeat steps 1 to 13 for all the modules.

The rest of the Estelle constructs which are related to dynamic features of
Estelle are ignored at this point. If any of these constructs have an effect on the

test suite they must be considered during test case generation.

4.2 Test Case Generation

In this step the information obtained from data flow analysis (explained in
section 3.3) and transition tours obtained from mstourgen (explained in section

3.4) are combined to obtain test cases.

A program called testgen finds a series of subtours generated by mstourgen
that cover the transitions of a particular data flow function. Each subtour makes up

a test case. The test cases are grouped under the name of the data flow function.

During subtree generation TTCNgen saves the heading of subtrees which
contains the formal parameters of subtrees in a separate file. A program called

testcase reads the output of testgen and the headings of all subtrees and creates un-

59

parametrized test cases. However from the heading of the subtrees the parameters

that must be passed to subtrec are known.

The following is an example of output generated by testgen.

Name of Function => Transmission of DISC Frames

3 subtours

subtour : 0

teiasgned ph.ph_dtind_sabme [ph.ph_dtreq_ua,I3.d]_estabind,timer_t200.stop,timer_t203.start] 81
idle tstop nil 04

idle tstant nil 002

mulfrmestabd 13.dl_relizreq [ph.ph_dtreq_disc timer_t200.start.timer_t203.stop] 119
idle tstart nil 02

active tstop nil 003

active nil [t.expiry] 05

awaitngreliz timer_t1200.expiry [ph.ph_dtreq_disc,timer_t200.5tart} 117

idle t.start nil 02

teiasgned nil [i3.dl_relizconfmts] 16

teiasgned 13.d]_estabreq [ph.ph_direq_sabme,timer_t200.start,timer_t203.stop] 14
active tstart nil 01

idle tstop nil 004

awaitngestab nil [13.d]_relizind, timer_t200.stop] 93

active Lstop nil 03

This subtour covers some of the transitions which are part of the *Transmission
of DISC Frames’ function.

The testcase generated by ’'testcase’ program is shown in figure 14.

As it can be seen from figure 14 only the header of subtrees with the list of
their free formal parameters are currently generated and the actual parameteriza-
tion shculd later be performed.

This method of test case generation is compact and highly modular. The

drawback is that the test step generation module only looks inside one transition

TEST CASE DYNAMIC BEHAVIOUR

Reference: lLip_d_protocol/Transmission_of DISC_frames/Transmission_of_DISC_frames_1
Identifier: Tansmussion_ofl_DISC_fremes_1

Purpose: To lest Transmission of DISC frames

Defaults Reference:

Behaviour Description Label CRel v Commants

Transmimion_of_DISC_frames_1

+Subtree_81(13,13_bcast im ph)
CSABME c.r: bit, _SABME sapi : saps,
¥ _SABME ti: byte, SABME p : bit)

+Subtree_04[13,13_beast,Im,ph)

+Subtree_002(13,13_bcast,im,ph}

+Subtree_119{13,13_bcast.im,ph]

+Subtree_02(13,13_bcast,Im,ph]

+Subtree_003(13,13_bcast.lm,ph])

+Subtree_05{13,13_bcast,lm,ph]

+Subtree_117(13,13_bcast,im,ph]

+Subtree_02{13,13_bcast,lm,ph])

+Subtree_16(13,13_bcast,lm,ph]

+Subtree_14[13,13_bcastim,ph)

+Subtree_01{13,13_bcastim,ph]

+Subtree_004(13,13_bcast,lm,ph]

+Subtree_93{13,13_bcastlm,ph)

+Subtree_03(i3,13_bcast.im,pb]

EXTENDED COMMENTS

Figure 14 Example of a non-parametrized test case.

for symbolic substitution and PDU identification. If this method fails due to
certain styles of specifications the alternative is to generate a flat test case with

no subtree attachments for each subtour.

4.3 Distributed Test Architecture

If the test sequences are synchronizable (explained in section 3.5), the tests

can be implemented using distributed test architecture. In this case the upper tester

61

or the interactions at the upper boundary of the protocol must remain unchanged.
However since the lower tester is using the services of the lower layer protocols
a mapping between receive and send interactions (REQUEST and INDICATION)
must be made. All REQUEST primitives must be changed by INDICATION and

vice versa.

4.4 Parameterization of Subtrees

The process of parametrization can be automated by defining a convention to
specify what can be enumerated and what is fixed and what a type of enumeration
is needed in case of the types which have unlimited bounds like integers or types
which have cover a big range of values. Enumeration can be done by defining
a loop control either for each different data type or best for each individual

parameters of subtrees which must be enumerated.

The following describes an automatic parameter enumeration algorithm.

4.4.1 Algorithm

We assume that the set of data flow functions F of the protocol is identified,
the subtours are generated and the set of subtours S covering each fuiction is
determined. We define P(f) to be the set of input parameters (I-nodes) in each
function f. Let S(f) to be the set of subtours covering function f with s € S(f)
being composed of simplified normal form transitions tl, t2...tn. We define for
each transition ti, input(ti) and provided(ti) to be the input interaction (or null)

and the provided clause of the transition d, respectively. Parameters of an input

62

interaction can be obtained with the application of Parameters(input(ti)). Note that

these parameters and the provided clause are assumed to be expressed in Estelle.

Stepl.

Step2.

Step3.

Step4.

Step5.

Repeat the steps 2 through § for each function f in F, for each subtour s
in S(f), for each ti in s if input(ti) < null.

FuncParSet = Parameters(input(ti)) () P(f);

ProvParSet = Distinct paramciers referred to in provided(ti);

for each p € ProvParSet and p ¢ FuncParSet select a value so as to satisfy
the provided clause.

enumpos(FuncParSet) = { i | for each p € FuncParSet, i is the number of
possible enumerations, i.e., the number of possible values for enumeration
parameters, an implementation dependent value for others};

highbound = maximum (enumpos(FuncParSet));

for each p// € Parameters(input(ti)) and p/7 ¢ ProvParSet select a default
value if it exists or else select a random value from its value domain;
fori:= 1 to highbound do

begin for each p/ € FuncParSet select a new value from its value domain,
if all values are exhausted, assign one of the earlier values;

update the TTCN subtree instantiation for input(ti) with all of its parame-
ters;

end;

Therefore if a parameter of input is not mentioned in the PROVIDED clause

or a parameter inside the provided clause is not part of the data flow function,

63

only a default value is chosen and used during the test. If a parameter of input
or variable is part of the data flow function and is also mentioned in the provided

clause its values are enumerated.

4.4.2 Application of the algorithm

Figure 15 shows the same subtree shown in figure 14 after it was parametrized
by the user by the application of parameterization algorithm. In this case the
C/R bit of the SABME PDU (_SABME_c_r) and the poll bit of SABME PDU
(_SABME_p) are enumerated using the ENUM(enumerate) statement which is
expected to be included in TTCN [6]. The BNF for the Enumerate construct is:

Enumerate ::= ENUM[‘“(*“ValueList")"]TreeReference

ValueList ::= Number {”,” Number } | **;> ValueList

From figure 15 we can see that the tei and sap parameters of the PDU were
not enumerated. The reason is that although the provided clause of the transition
does not specify any constraint on the value of these parameters, in reality the
value of tei field is fixed and the value of sap is constrained on the configuration
of the LAPD and Network layer interface. In the case of tei checking the value
of this field is handled by higher priority transitions. The value of the sap is
specified in the specification of the multiplexer module.

TEST CASE DYNAMIC BEHAVIOUR

Defauits Reference:

Reference: lap_d_protocol/Transmission_of_DISC_trames/Transmission_of _DISC_frames_1
Identifier: Transmission_of_DISC_frames_}
Purpose: To test Transmission of DISC frames

Behaviour Description Label CRel

Comments

JLOCAL(SAPVar, PFBit)

ENUM(n2Zucomand, n2uresp; poll, u2nresp

LOCAL(SAPVar, PFBIit)

0, tei, PFBiY)

+Subtree_81{13,13_bcast.tm ph](SAPVar,

+Subtree_04[13,13_bcast,im,ph)

+Subtree_002(13,13_bcast.Im,ph)

+Subtree_119{13,13_bcast,im,ph)

+Subtree_02{13,13_bcast.Im,ph}

+Subtree_003(13,13_bcastim,ph)

+Subtree_05(13,13_bcastim,ph)

+Subtree_117(13,13_bcast,im,ph)

+Subtree_02[13,13_bcast,Im,ph)

+Subtree_16{13,13_bcastim,ph)

+Subtree_14{13,13_bcast,!m,ph)

+Subtree_01[13,13_bcust,lm,ph)

+Subtree_004[13,13_bcast,Im,ph)

+Subtree_93[13.13_bcast.lm.ph}

+Subtree_03{13,13_bcast.tm,ph)

EXTENDED COMMENTS

Figure 15 Example of a parametrized test case.

65

Chapter 5§ THE DECLARATIONS AND CONSTRAINT
GENERATION MODULES

The processing of the transitions of Estelle was explained in the previous
chapter. This chapter explains how the rest of Estelle declarations (e.g. variable

and type declarations) and constraints are processed by TTCNgen.

5.1 Declarations Module

The first time that the declaration module is called by TTCNgen program
is after the SPECIFICATION part is parsed. At this point Estelle global
declarations are known and their corresponding declarations are made in TTCN.
Then TTCNgen starts parsing each module separately. When the parsing of a
module is finished, all its local declarations are available. Before the parsing of
the next module is started they are destroyed. Therefore before starting to parse

the next module the local declaration of that module must be processed.

The following are the TTCN declarations which are generated by the dec-

larations module:

1. Subranges, enumerated and primitive types are declared as TTCN user-types.
For Estelle primitive types no base type is declared in TTCN. Pascal records
which do not define a PDU are defined as ASN.1 SEQUENCE type[25].
Pascal sets are defined using ASN.1 SET OF construct. Arrays are defined
using ASN.1 SEQUENCEOF construct.

LTS

Estelle primitive functions are declared as TTCN operations. The arguments
passed to operations match the arguments in the function declaration.
Constants in TTCN are declared in the same fashion as they are declared in
Estelle.

All Estelle variables are declared as test case variables in TTCN.

Estelle interaction points which are external are declared as PCOs in TTCN.
A timer called MinRespTime is declared for every specification. The duration
of this timer must be equal to the maximum time that it takes for the
implementation to respond to an external behaviour. The duration of this
timer must be supplied by the user. The function of this timer is to check
if the implementation does not respond to events that must be ignored. Also
for each module which has at least one transition with delay clause a timer
name “ModuleName”_delay is declared.

For the interactions passed in external channels which have at least one non
PDU parameter or have no parameters an ASP declaration is made. If the ASP
has parameters a parametrized ASP constraint table is also defined in TTCN.
The fields of ASP whose types are PDUs are defined as PDU field types.
For each Pascal record appearing in the previously mentioned table of PDUs
a TTCN PDU declaration and a parametrized PDU constraint declaration is
made.

For the interactions that have more than one PDU parameters or have a
mixed non-PDU and PDU parameters a parametrized ASP constraint table

is declared. Then cormresponding to each PDU a chained parametrized PDU

67

constraint reference is created. Corresponding to each field of the PDU an

argument is passed to the ASP constraint table and then the declaration of the

ASP constraint passes those arguments to the parametrized PDU reference.

Figure 16 shows the TTCN user type definitions generated for LAPD protocol.

Figure 17 gives an example of ASN.1 type definition for frame_type_frmr record
which was declared in the specification of LAPD protocol.
USER TYPE DEFINITIONS

Name Base Type Definition Comments
byie integer 0..255
bit integer 0.1
saps (sap0,sapl,sapl6.5ap63)
i_type
frametag (i,rrmr rej, sabme, dm,ui,disc, ua, frmr,xid, wrong)
reason (cferr,inc_length,info_np,undef,i2long)
ar_type (a,bed.efghi_emjklmno)

Figure 16 Example of TTCN type definition.

User ASN.1 Type Definition

Type Name : frame_type_frm-

ASN.1 Definition or Reference

SEQUENCE OF (

c_r bit,

sapi saps,

ter byte,

f bit,

rejed_frame frametag,
control_field byte,
curr_v_s byte,
curr_v_r byte,
rej_c_r bit,

2 bit,

y bit,

x bit,

w bit

Figure 17 Example of ASN.1 type definition.

68

5.2 Constraint Generation Module

This section explains the details of the module which generates the constraints
references for TTCN events. For each input and output events of TTCN which
has a parameter (PDU or SDU) a constraint must be specified. An event constraint
specifies what the legal values for the parameters of the receive events or send
events are. The constraint generation module is calied right after creating the input
and output events at the end of steps 8 and 10 of the algorithm that produces test

steps explained in section 4.2.

All the constraints generated by this module are parameterized constraints.
We chose parametrized constraint tables because the constraints on the event
parameters often depend on the formal parameters of subtree or on operations and

the only way of specifying these constraints is using parameterized constraints.

Two types of constraints are generated by the constraint generation module.
The first type is the constraints for the send events and the second type is the
constraints for the receive events. This is due to the fact that the send event
is created from the WHEN clause and the receive event is created from the
OUTPUT statement and the procedures must know whether the parameter passed

is an OUTPUT statement or a WHEN clause.

There are some basic differences between the input and output parameters.
One difference is that WHEN clause is similar to the heading of a procedure
call and parameters passed are always a variable and not a constant and they are

declared in the CHANNEL declaration part. Whereas output statement is similar

69

to a procedure call and therefore the parameters passed are explicitly statcd in the

body of the transition and can be of any sort, e.g. a constant.

The following describes the algorithm use:! in generation of parameterized

constraints for the send events.

1. Find the parameters passed by the WHEN clause. If no parameter is passed
by the WHEN clause do not generate a constraint reference and retw.n.
2. If ASP has at least one non-PDU parameter the main constraint reference is

called 'ASPName’_Con.

a. For non-PDU parameters look inside the PROVIDED clause and see
if they are directly used in an equation. If yes pass their value found
from the equation to the constraint reference. Otherwise pass the formal
parameter which was generated in step 6.b of the algorithm given in
section 4.2, as its value.

b. For PDU parameters create a parameterized PDU constraint reference
and put it in place of the constraint for that field (This is called constraint

chaining).

3. For each PDU parameter print the constraint name as "’PDUName’_Con. For
each field of PDU look inside the PROVIDED clause and see if they are
directly used in an equation. If yes pass their value found from the equation
to the constraint reference. Otherwise pass the formal parameter which was

generated in step 6.b of the algorithm given in section 4.2, as its value.

70

e T 9T e

e et .

The following describes the algorithm used in generation of parameterized

constraints for the receive events.

1. Look at the parameters passed by the OUTPUT statement. If no arguments
are passed by the OUTPUT statement do not generate a constraint reference
and return.

2. If ASP has at least one non PDU parameter the main constraint reference
is called "ASPName’_Con. For PDU arguments call the constraint reference
’PDUName’_Con. If the interaction has no non-PDU arguments place the
constiaint reference inside the subtree, otherwise chain them inside the ASP
constraint.

3. If the argument passed to the OUTPUT statemenc is a constant or an expres-
sion put the exact value in the constraint table.

4. If the argument passed to the QUTPUT statement is a variable then look
in the assignments inside the body of the transition prior to the QUTPUT
statement. For non PDU parameters of the OUTPUT statement check if
the exact variable appears in the left hand side (LHS) of an equation. For
PDU parameters check if the reference t. the field appears in the LHS of an
equation (in the form of Variable.Field). In both cases the constraint is the
right hand side (RHS) of the equation.

5. If the constraint can not be found in any of the equations inside the transition

before the OUTPUT statement then assume that the assignment was done in

earlier transitions. In the case of PDUs the other possibility is that the field

1

which does not appear in the assignment must or can be absent.

The following is the definition ¢f SABME PDU in Estelie.

frame_type_sabme =
record
c_r: bit;
sapi: saps;
tei: byte;
p: bit
end;

Figure 18 shows the constraint declaration for SABME PDU. An example of

a subtree with constraint references is given in chapter 6.

PDU Constraint Declaration

PDU Name: SABME Constraint Name:
SABME_Con(c_r_value, sapi_value,
tei_value, p_value)

Field Value Information
Fleld Name Value
cr c_r_value
1apl sapi_value
ey tei_value
P p_value

Figure 18 Example of a PDU constraint declaration.

72

Chapter 6 Implementation

This chapter explains the details of the implementation of the test gencration
tool. First the languages used in the implementation of different programs are
specified. Then the module decomposition of the programs are explained. The
principle used in partitioning the task in different modules was the separation of
concerns ana information hiding. Also wherever there was a need to give the
user a chance to process or change the information manually, the modules were

implemented as separate programs.

Information hiding is a software design method in which orz hides the
software design decisions from other modules. In particular, this is done whenever
the design decisions are likely to change. The design decisions ar: mainly

algorithms and the representation of data structures.

The languages used to implement the programs in our test generation tool
and the dependency between different programs are shown in Figure 19. The
arrows indicate that the output of the program is passed as a file to the next
program. For the programs that were implemented by the author of the thesis, the
languages which were used in their implementation are mentioned in the figure.
The following sections explain the details of different modules implemented by

the author.

-

CEstelle Spcclﬂutlog
%

Normalization
(o)
PDU Table 3
Generation Data Flow &
(mappdu) Simplification c;::d l;:ow
YACC, LEX, C action
C Y
YACG, LEX, {simplify) (dtn
, 3
Test steps, D:d" atlons Test Sequence Generation Data Flow Analysis
Generation (mstourgen) (dfgtool)
(ttcngen) c
YACC, LEX, C \ /
Merging the Subtours &
Data Flow Functions
(testgen)
Editing Transition Tours
(edittour)
C
Test Case Generation
(testcase)
LEX, C

Test Sulte

Figure 19 Main modules of the test generation tool.
6.1 mappdu
The mappdu program consists of two modules. The main module was written
in LEX interleaved with the C language[25,26]. This module finds w.ere the
record definitions of PDUs are placed in the specification and then calls the parser.

The second module is a parser which only contains the type declaration part of

74

PASCAL language. The parser makes a list of the case constants used in the
record and then the main module creates a table which maps the types generated

by the normalization module to the value of the case constants.

6.2 simplification

The box labeled simplify is really made of the two programs called simplify
and transform programs. The simplify program was implemented in LEX and
C languages and the transform program was implemented in LEX, YACC and
C languages.

Usually the user only runs simplify. simplify creates a UNIX pipe to
transform [27]. The transform program simplifies the predicates inside the
provided clause of the transitions as explained in section 3.2 and sends them to
simplify. Then simplify substitutes the new predicates in the provided clause of

the transitions.

Sometimes it is desirable to change or delete some of the predicates generated
by the transform. The following example shows a predicate generated by trans-
form which can not be satisfied. The example is taken from the specification of
LAPD protocol. The original predicate is:

(((true) and not ((v_a <= frmrecvd.n_r) and (frmrecvd.n_r <= v_s)))
and (not (frmrecvd.p_f = final))) and (not (frmrecvd.c_r = n2ucomand))
transform generates the following three predicates:

(frmrecvd.n_r > v_s) and (v_a > frmrecvd.n_r) and (frmrecvd.p_f =

final) and (frmrecvd.c_r <> n2ucomand)

75

(frmrecvd.n_r > v_s) and (v_a <= frmrecvd.n_r) and (frmrecvd.p_f =
final) and (frmrecvd.c_r <> n2ucomand)

(frmrecvd.n_r <= v_s) and (v_a > frmrecvd.n_r) and (frmrecvd.p_f =
final) and (frmrecvd.c_r <> n2ucomand)
In order to satisfy the first predicate the value of v_a (which is the sequence
number of the last frame acknowledged) must be greater than v_s (which is the

sequence number of the next frame to be transmitted) which is impossible.

The reason for implementing the task of simplification of the provided clauses
in two separate programs was to give the user a chance to modify the predicates
generated by the transform program before the transitions are generated. This can
be done by asking the transform program to dump the predicates in a temporary
file. Then the user can edit the temporary file and ask the simplify program to

read the predicates from the temporary file rather than from the UNIX pipe.

Of course this can be done by editing the output of the simplification program.
However the first solution is preferred because the transition numbers are indicated
as a PASCAL comment inside the transition declaration. Deleting a transition
from the middle by hand causes these numbers to be different from the real
transition numbers. Also by editing the TempFile the user can concentrate on
the predicates. If due to deleting or a adding a transition by hand the numbering
of the transitions are found to be wrong the transitions can be renumbered by

running the simplification program again.

76

€.3 ttcngen

TTCNgen is the most important part in Figure 19. The simplify and mappdu
programs were just designed to prepare the inputs to this program. TTCNgen
is the basis of the design of testcase generation programs (mstourgen, testgen,
edittour and testcase), since they assume that there is a subtree made for each
transition. This program is the link between the Estelle specification and the

programs which use data and control flow graph abstraction of the specification.

We used an interactive TTCN editor in order to visualize the test cases/ steps,
constraints and declaration tables generated and possibly produce hard copies of
these tables. Such an editor is described in [28). Qur program produces the
TTCN tables in the intermediary forms required by the editor. This step requires
producing a separate file for each test step and test case in a centain format. The

TTCN editor enables the user edit the tables interactively on a workstation.

The TTCNgen program is made of 18 different modules. Each module is made
of many procedures and functions that have the same concern such as printing
expressions, generating constraint references. The parser was written in YACC
and the lexical analyzer was written in LEX. The other modules are written in C
language. Most of these modules are compiler utilities. They perform operations

such as parsing, hashing, semantic checking, etc.

This section uses some of the software engineering terminology described
in [29]. The module decomposition and description of the dependencies and

interfaces between the modules are explained in the following subsections.

77

6.3.1 Module Decomposition

6.3.1.1 System Modules

System modules are the modules which communicate with the environment.

They are mostly system dependent. The system modules of TTCNgen were

written for the systems running UNIX operating system. Most of the system

interfaces in this module can easily be ported to any system which has a C

compiler. The system modules of TTCNgen are:

lexio.c

files.c

This module reads the Estelle specification of the protocol and
provides input to the LEX as an array of characters to improve the
performance of LEX. It also merges the files that must be included
in the specification because of the include compiler directive. It
exports two interfaces to LEX:

char input() which returns a full line to lex.l and void unput(char)
which puts a character back into the input stream (unreads the
character).

This module opens and closes the files required for compact dy-
namic behaviour tables and declarations. It then returns an array
of file pointers corresponding to the different fields of each table.
The void CloseFiles() routine merges and then closes the tempo-

rary files where it is required. The exported interfaces are:

78

NameTmpFiles: Initializes the name of temporary files to be
used by the compiler.

RemoveTemps: Deletes the temporary files.

OpenFiles: Opens the files required for the subtrec and the
temporary files.

CloseFiles: Closes the files required for the subtree and the
temporary files.

LF: Places a line feed for all the columns of the table.
InitDefs: Opens and places the initialization codes in all the
files used for the declarations.

OpenTypeFiles: Opens all the files used for type definitions.
CloseTypeFiles: Closes all the files used for type definitions.

6.3.1.2 Requirements Module

Requirement modules are the modules which are directly related to the

specification of the problem. The requirement modules of the TTCNgen are:

ttcngen.c

lex.1

This modules contains the main routine of the program. It picks up
the command line arguments. Also checks if the input files exist.
This module performs the lexical analysis of the specification. It

exports the yylex interface to parse.y.

79

parse.y

semantics.c

errmsg.c

print.c

This module parses and checks the syntax of the specification. It
exports the yyparse interface to ttcngen.c.

This module checks the semantic of the specification. These three
modules (lexical analyzer, parser and semantic checking) are an
essential part of any compiler based program. The semantics.c
module exports many semantic checking routines such as chkcon-
neci (check a connect statement) to parse.y.

This module prints error messages for different syntax, semantics
or exception conditions such as file errors. The exported interfaces

are:

a. error: Prints a fatal error message.

b. warning: Prints a warning message.

c. unimpl: Prints a message for use of an unimplemented feature.
d. userror: Prints a fatal error message and exits the program.

e. cerror: print message and exit for internal compiler errors and

exits the program.

This module prints TTCN expression and statements from Estelle

parse aee. The exported interfaces are:

a. PrintType: Prints an ASN.1 type from an Estelle type.
b. xpr: Prints any expression.
C. PrintIntOut: Prints the internal outputs in the form of an

assignment.

80

d. PrintStmts: Converts and prints TTCN statements from Estelle

statements.

subtree.c This module generates the Behaviour Description part of the test
steps. It exports PrintSubtree Interface to code.c which prints all
the subtrees.

constraint.c This module generates constraint references for the external events

of the IUT. The exported interfaces are:

a. PrintOutCons: Prints constraint references for the output state-
ment.
b. PrintInCons: Prints constraint references for the input (when)

clause.

declarations.c This module generates the declarations part of the TTCN. The

exported interfaces are:

a. genbodydefs: Generates constant, variable, PCO, ASP and
function declarations from the module body definitions.
b. DefTimer: Generates timer declarations.

c. DeclProcs: Generates procedure declarations.

6.3.1.3 Software Decision Modules

Software decision modules contain the parts of the software (algorithms,

data structures, etc.) which are not specified in the specification. Their need is

81

determined by the software engineer for implementation purposes. The software

decision modules of ttcngen are:

code.c

hash.c

types.c

This module is the link between the parser and subtree generation
modules. It is called by the parser every time a module of the
specification is parsed and this module calls the declarations and

subtree generation modules. The exported interfaces are:

a. genbodycode: It is called each time a module body is parsed
and generates the subtrees and the timer and procedure decla-
rations.

b. abortcode: Aborts the TTCN code generations.

This module stores the string in a hash table for faster look up and
search for the symbols and identifiers. The exported interfaces of

this module are:

a. entername: enters the name in the hash table.
b. unigname: guaranties that the identifier has unique name by

adding suffix to it if it has conflict with existing names.

This module keeps internal representation of the PASCAL defined
types in the specification and stores their name. The exported

interfaces of this module are:

a. typeof: Returns the type of an identifier.

82

symbol.c

trans.c

tree.c

utils.c

b. Routines which let the user define user defined types such as

records, subranges, etc. and representation of user defined

types

This module stores the name and types of symbols such as iden-
tifiers, functions, etc. and resolves the scope of identifiers.The

exported interfaces of this module are:

a. declare: Declares a symbol and associates types and other
attributes to it.

b. lookup: Looks up for an existing symbol.

This module stores some of the information about transitions like
number of inputs and outputs in an array.

This module builds the parse tree.

This module contains many utilities. It provides the subtree gen-
eration the list manipulation facilities such as adding elements to
the list and freeing a linked list independent of the types of the
elements. It also generates constants for the low or high binds of
undefined types. It also has routines to read optional inputs like

connection of interaction points and the PDU table.

6.3.2 Module dependencies

Figure 20 shows the dependencies between the modules used in the imple-

mentation of ttcngen. Since every module except code.c uses the errmsg.c, this

83

module was not .;own in the figure. The arcs represent dependency of a module
on another. Arcs labeled H mean that the first module does not know and does
not carc how the information in the other module is represented and stored (the

second module hides information).

tiengen.c
H lexl H Jexlo.c
parse.y
H/ \H H semantlcs.c
& \ H -
utils.c code.c tree.c
N
\H T H H | typesc
\ \H
subtree.c
e _| declarations.c symbol.c
filesc H 7
LY » H lll
\ print.c
hash.c
H
constraint.c

Figure 20 Module dependency diagram for ticngen.

6.4 mstourgen, edittour and testcasc

The mstourgen program was implemented in one single module in C lan-

guage. The algc..thm of this program was explained in section 3.6.

Edittour was also implemented in LEX and C language. Edittour makes calls
to Sunview’s library procedure and can only be run on SUN workstations. The

details of this program is explained in section 3.7

The testcase program was implemented in LEX and C languages.

algorithm of this program is explained in section 4.2.

85

The

Chapter 7 Application of the TTCNgen on LAPD
and Transport Protocols

In this chapter examples of TTCN subtrees generated by applying the ttcngen
on the Estelle specification of LAPD and Simplified Class 2 protocol[31] are
demonstrated. The examples demonstrate different features and capabilities of

the ttcngen program.
7.1 Example of TTCN subtrees for LAPD protocol

7.1.1 Example 1

We use the subtree generated for transition 217 as our first example. This
example shows the main features of the ttcngen program. Transition 217 fires
when LAPD receives an I(acknowledged information) PDU with bad N(S) se-
quence number (<> V(R)). In this case LAPD rejects the frame. The declaration

of the I PDU is shown in figure 21.

PDU Type Declaration

PDU Name: 1 | Pco Type. 13 | Comments:
PDU Field Information

Field Name Type Comments

c_r bit

sapi saps

tei byte

n_s byte

n_r byte

P bit

informtn i_type

Figure 21 Declaration of the 1 PDU.

The declaration of the normalized and simplified transition 217 is:

trans
{217}
when ph.ph_dtind_i
provided (frmrecvd.n_r = v_a) and (frmrecvd.n_r < v_s) and (frm-
recvd.c_r = n2ucomand) and not(rejexcept) and (frmrecvd.n_s < v_r) and
not(ownrecverbz) and not(peerrecbz)
from mulfrmestabd
to mulfrmestabd
begin
update_buffer(frmrecvd.n_r);
rejexcept := true;
frmvar_rej.tei := tei;
frmvar_rej.c_r := u2nresp;
frmvar_rej.n_r := v_r;
frmvar_rej.p_f := frmrecvd.p;
output ph.ph_dtreq_rej(frmvar_rej);
ack_pending := false
end;

The definition of the interaction ph_dtind_i is:

channel phys_layer_ap(user, provider);
by provider:
ph_dtind_i(frmrecvd: frame_type_i);

Therefore framerecvd (received frame) is passed by the interaction ph_dtind_i
and since the type frame_type_i appears in the PDU table declaration and declares
it to be 1 PDU and all the references to this PDU frmrecvd are replaced by L

The declaration of frame_type_i is:

frame_type_i =
record
c_r: bit;

87

sapi: saps;

tei: byte;

n_s: byte;

n_r. byte;

p: bit;

informtn: i_type
end;

Similarly the declaration of ph_dtreq_rej is:
ph_dtreq_rej(frame: frame_type_rej);

This declaration tells the program that this interaction outputs a REJ PDU.
A spontaneous transition which may fire from the mulfrmestabd state instead of
transition 217 is the transition 263. The following is the declaration of transition

263:

trans

{ 263}

provided ack_pending

from mulfrmestabd

to mulfrmestabd

begin
frmvar_rr.tei = tei;
frmvar_rr.c_r := u2nresp;
frmvar_rrn_r:=v_r;
frmvar_rr.p_f := not_final;
frmvar_rrn_r == v_r;
output ph.ph_dtreq_m(frmvar_rr);
ack_pending := false

end;

After the steps explained in section 4.1 are applied to this example the subtree

88

for transition 217 shown in figure 22 is produced by the ttcngen program. In here

we explain this tree in detail.

TEST STEP DYNAMIC BEHAVIOUR
Reference: lap_d_protocol/lsp_d_body/Subtrec_217

Identifier: Subtrec_217(13:Desp,13_bcast:Bbcastsap, im:imsap ph-phsap, _I_sapi * saps, _I tei : byte, 188 : byte, 1 p:bit,
_I_informtn : {_type)

Objective: Unknown
Defaults Reference:

Behaviour Description | Labd CRel V| Comments

{v_a < v_s AND NOT(rejexcept) AND
_I_n_s <> v_r AND NOT(ownrecverbz) AND
¥ NOT(peerecbz))

phtl 1.Con
(n2ucomand, _!
_sapy, _1_tei,
JIns, v _Ip,
_1 _informtn)

ph7REl(rejexcept .= true)frmvar_rej.tei = 1 REJ_Con (ulnresp, (PASS)
teiXfrmver_ref c_v = u2arespXfrmvar_rejn v - frmvar_rej .sapi,
#ev_rXfrmvar_rejp_{:= I p) ter, v _r, _1p)

+update_buffer(v_a)

(ack_pending := false)

ph7RR [ack_pending](trmvar_rr tei := tei) RR_Con({u2nresp ,
4 (frovar_mr.c_r ‘= u2nresp)Xfrmvar_rrn_r := v_r) frmvar_rr sapi, ter,
(frmvar_rr.p_{ = not_final)}frmvar_rrp_r = v_r) v _1, pot_final)

(ack_pending := false)

[(v_a < v_s) AND (NOT(rejexcept))
AND (_l.n_s <> v_r) AND (NOT
(ownrecverbz)) AND (NOT(peerrecbz)))

->1

[NOT({v_a < v_s) AND (NOT INCONC
¥ (rejexcept)) AND (_1_a_s <> v_r) AND
£ (NOT(ownrecverdz)) AND (NOT(peerrechz))
"))

13sap?”OTHERWISE FALL

1B3bcastsap?OTHERWISE FAIL

Imsap?OTHERWISE FAL

phsap?OTHERWISE FAL

[NOT((v_a < v_s) AND (NOT(rejexcept)) INCONC
AND (I n_s <> v_r) AND (NOT
(ownrecverbz)) AND (NOT(peerrecbz))))

Figure 22 TTCN subtree produced for subtree 217.

89

The provided clause of transition 217 binds the value of n_r field of the I
PDU to the variable v_a. The tei, sapi, n_s, p and informtn ficlds of PDU are
not bound to any fixed value, however, since the tester must send this PDU to
IUT, their value must be known at execution time and are passed to the subtree
as formal parameters : _I_sapi, _I tei, I n_s, I p and _I informtn. The n_r

field of PDU is substituted by the variable v_a everywhere in the subtree.

The external SAPs of the LAPD module are 13, 13_bcast, Im and ph are passed
as formal SAP parameters to the subtree. As an alternative to every receive event,
External SAP?OTHERWISE is specified which monitors these external SAPs and

if an invalid behaviour is observed the tester will fail the IUT.

The condition on global and formal parameters for the test to be valid is:

[v_a < v_s and NOT(rejexcept) and _I_n_s <> v_r and NOT(ownrecverbz)
and NOT(peerrccbz))

Note that the expression v_a < v_s is concluded by the program by substituting
the value of frmrecvd.n_r (v_a) in the expression frmrecvd.n r < v_s. If the
condition for attachment of subtree_217 in the value of global variables (v_a, v_s,
rejexcept, ownrecverbz or peerrecbz) or the formal parameter _I_n_s evaluates

to FALSE an inconclusive verdict is concluded and the test is stopped.

The first action taken by the tester is to send an I PDU. After doing so either
a REJ PDU, as specified in the body of transition, or an RR PDU, as a result of
the spontaneous transition, may be received. The reception of RR PDU is valid if

the value of the global variable ack_pending is to TRUE. Therefore the validity

of reception of RR PDU is conditioned to the value of this variable.

At the beginning the subtree waits for the arrival of REJ or RR PDU’s to
identify which transition was fired. All the assignments appearing before the
OUTPUT of REJ PDU are bound to the reception of this PDU. This is important
since the spontaneous transition might depend on or use one of the variables
appearing on the left hand side of these assignments and also if an error occurs
the correct value of the variables before the error occurred will be known.

If an RR PDU is received the test step concludes that the transition 263 was
fired instead of transition 217, which is a valid behaviour. In that case the body
of transition 263 is traced and since transition 263 goes back to its initial state
the tester must still receive a REJ PDU. Before doing so the subtree checks if
the condition to fire subtree 217 is still valid. In that case the tester executes the
goto statement. Otherwise an inconclusive verdict is assigned to the result of the
test. Logically on the second run the receipt of RR PDU is not valid any more
since the body of the transition 263 changes the value of ack_pending to FALSE.

After the receipt of REJ PDU the subtree update_buffer is called which is
supposed to trace or verify the side effects of the procedure call made by the
transition 217 before REJ PDU was sent. Note that the parameter passed to this
procedure is also replaced by its value. Then the assignment ’ack_pending :=

false’ is made in order to keep track of the value of this variable of JUT.

7.1.2 Example 2

The next example is the subtree generated for transition 121. This example

91

shows how ttcngen program handles the events of the internal interaction points.

The declaration of the subtree 121 is:

trans

{121}

when 13.d1_dtreq

from mulfrmestabd

to mulfrmestabd

begin
frmvar_i.c_r = u2ncomand;
frmvar_i.informtn := info;
output i_q_in.iqdup_i(frmvar_i)

end;

The declaration of the iqdup_i interaction is:

iqdup_i(frame: frame_type_i);

According to the rule 6.d of the algorithm presented in section 4.1, the output
to the internal interaction point is converted to an assignment. In this case the
right hand side of the assignment which must be the parameter of the internal

interaction is called frmvar_i. The left hand side of the assignment is the name

:
3
1
A
]
}
|
|
!
|
|

of the subtree parameter which stores the value of the interaction parameter. Since
the identifier frame is used for many other parameters it is uniquely named by
the software. In the case of iqdup_i interaction it is given the name ACframe.

The subtree generated is shown in figure 23.

According to rule 6.c, the parameter frame of the internal interaction iqdup_i

92

TEST STEP D¥NAMIC BEHAVIOUR

Reference: lap_d_protocol/lap_d_body/Subtree_121
Identifier: Subtree_121(13:13s8p,13_beast:13bcastsap im:imsap ph-phsap, _info : i_type, ACtrame : I)

Objective: Unknown
Defaults Reference:

Behaviour Description Labdl CRef v Comments

01d)_dtreq dl_dereq_Con(
_inio)

(frmver_i.c_r = u2ncomand)

(frmvaer_i.informtn := _info)

(ACframe := frmvar_i)

Figure 23 Example of the subtree generated for transition 121.

in transition 121 is stored in a variable. This variable is later passed to a transition
which takes this interaction as its input. The second transition which consumes
the internal event is determined during the test case generation. An example of

such a transition is transition 122. The declaration of transition 122 is:

trans
{122)
when i_q_out.iqgdup_i
provided not(peerrecbz) and (v_s <> (v_a + k16_signal)) and
1200_running from mulfrmestabd
to mulfrmestabd
begin
lastisent_i := frame;
lastisent_i.tei := tei;
lastisent_i.n_s := v_s;
lastisent_i.n_r := v_r;
lastisent_i.p := not_poll;
output ph.ph_dtreq_i(lastisent_i);
save_i_frame_i_i(lastisent_i);
vs:i=v s+ l;

93

ack_pending := false
end;

This parameter of the internal interaction frame is again named ACframe.

The subtree generated fer transition 122 is shown in figure 24.

TEST STEP DYNAMIC B."HAVIOUR

Reference: lap_d_protocol/lap_d_body/Subtree_122

Identifier: Subtree_122(13:kap,13_beast Theastsap im imsap,ph phsap, ACtrame :)
Objective: Unknown

Defaults Referenc:

Behaviour Description Label | CRe | v

Comments

(((NOT(peerrecdz)) AND (v_s © v_a +
k16_signal)) AND (1200_running))

ph?l(lasusent_1 ‘= ACframeXlastisent_i.ter := 1 1_Con (lastsent_ic (PASS)
teiXlastsent_1n_s ;= v_s)Xlastsent_in_r = _r, lastisent _isapy,
¥ v_r)(lasusent_i.p := not_poll) tei, v_s, v_r, not
_poll,

lastisent_i informtn)

+save_i_frame_i_i(lasusent_i)

(v . =ve+1)

(sck_pending = false)

ph?RR[ack_pending)(frmvar_rr el = te1) RR_Con(u2nresp ,
(trmvar_rr c_r ‘= u2nresp)frmvar_rrn_r = v_r) frmvar_mr sapi, tei,
(fnovar_mr p_f = not_finalXfrmvar_rr.n_r = v_1) v _r, not_final)

(ack_pending "= false)

[((NOT(peerrecbz)) AND (v_s © v_a
+ k16_signal)) AND (1200_running))

> 1
(NOT(((NOT(peerrecbz)) AND (v_s <> INCONC
v_a+k16_signal)) AND (1200_running)))

15ap”OTHER WISE B FALL
theastsap?OTHERWISE FAIL
bnsap?0THERWISE FAIL
phsap?OTHERWISE FAIL
[NOT(((NOT(peerrecbz)) AND (v_s <> v_a INCONC

+k16_signal)) AND (200_running))}

Figure 24 Subtree generated for transition 122.

94

In the subtree generated from transition 122 all the references to the variable
frame which is the name of the parameter passed by iqdup_i interaction is
replaced by the subtree formal parameter ACframe. In this subtree this parameter
is assigned to the variable lastisent_i as it was specified in the specification. In
the constraint reference for I frame, we can see the references to the c_r and
informtn fields of lastisent_i to which the values n2ucomand and _info were

assigned in the subtree created for transition 121.

7.1.3 Example 3

Our last example of the subtrees generated for testing LAPD protocol is the
subtree generated for transition 143. This is an example for a subtree generated

for transitions with no output statements. The declaration of transition 143 is:

trans
{ 143)
when ph.ph_dtind_rmr
provided (frmrecvd.n_r = v_a) and (frmrecvd.n_r < v_s) and (frm-
recvd.p_f <> final) and (frmrecvd.c_r = n2uresp)
from mulfrmestabd
to mulfrmestabd
begin
update_buffer(frmrecvd.n_r);
peerrecbz := false
end;

The subtree generated for this transition is shown in figure 25.

95

TEST STEP DYNAMIC BEHAVIOUR

Reference: lap_d_protocol/lap_d_bod" ~ ““mee_143

Identifier: Subtree_143(13:1cap,13_bcast:Ibcastsap,im:imsap,ph:phsap, RR_sapi : saps, _RR_tei : byte, _RR_p_{ : bit)
Objective: Unknown

Defautts Reference:

Behaviour Description | Labd CRel | v Comments
[v.a <v_s AND RR_p_{ <> final}
ph!RR RR_Con(n2uresp ,
_RR_sapl,
_RR_tei, v_a,
_RR_p_0
START MinRespTimer 1
TTIMEOUT MinRespTimer (PASS)
+update_buffer(v_a)
(peerrecbz = false)
pPh7RR[ack_pending}(frmvar_sr.tei := ter) RR_Con{u2aresp ,
(frmvar_mr.c r := u2nrespXfrmvar_mrn_r = v_r) frmvar_rr sapy, tei,
(frmvar_r p_{ := pot_finalfrmvar_rrn_r := v_r) v _r, not_final)

(ack_pending := false)

{{v_a < v_s) AND (_RR_p_f <> final)}

->1
NOT((v_a < v_s) AND (_RR_p_f < final))] INCONC
Isap?0THERWISE FAIL
Ibcastsap?’OTHERWISE FAILL
Imsap?0THERWISE FALL
phsap?OTHERWISE FAIL
NOT((v_a < v_s) AND (_RR_p_f < final))] IheinC

Figure 25 Subtree generated for transition 143.

This transition fires when LAPD receives an RR PDU. When this transition
is fired no output is sent. From the rule 10.a of the algorithm presented in section
4.1, the tester waits for the amount of MinRespTime to make sure that the IUT
does not send any erroneous output. However since this transition starts from
mulfrmestabd state the transition 263 might still be fired and therefore reception

of RR PDU is still legal.

7.2 Transport Class 2 Protocol

In this section we give examples of subtrees generated for the specification
of simplified class 2 transport protocol (TP2). This protocol is decomposed into
two types of modules. The first module type is called AP. Each AP serves one
transport user. APs perform the main protocol functions such as exchange of
information and flow control. The second module type is called MAP module
which multiplexes data from APs into a single channel. The MAP module
performs an association between the real addresses of protocols and the AP

entities. Figure 26 shows the block diagram of the TP2 module decomposition.

Transport User Transport User

! :

AP ° ® ® AP

i t

MAP

{

Network Layer

Figure 26 Module decomposition of TP2 protncol,

In TP2 the map module performs the decoding and encoding. Since the
parameter of the interactions at external interaction points are encoded they do not

correspond exactly to PDU types and our system failed to identify the PDUs. In

97

order to properly handle PDU constraints a slight modification on the specification
was done and PDUs were explicitly defined in the interaction point declarations
i.e., the encoding and decoding were made implicit. The tests generated are still

correct because in TTCN encoding and decoding are also implicit.

7.2.1 Example 1

The next example shows how ALL statement and nested loops are handled
by our program by applying rule (10.f) in section 4.i. The subtree was generated
for the initialization part of ap_body module of TP2. The initialization part of
the protocol is treated like any other transition. Implicitly for the initialization
transition, the from and the to states are the initial state of the module and the
initialize transition can not have an input (WHEN clause). The declaration of the

initialize transition of this protocol is:
initialize
to idle
begin
all t_suf: t_suftp do
begin
all epid: tcepidtp do
begin
tc[t_suf, epid].assgnd_nc := undef_clsclrbfrs;
tc[t_suf, epid].pdu_buflcr].full := false;
tc[t_suf, epid].pdu_buflcc].full := false;
tc[t_suf, epid].pdu_bufldr].full := false;
tc[t_suf, epid}.pdu_bufldc].full := false;
tc[t_suf, epid}.pdu_bufldt].full := false;
tc[t_suf, epid}.pdu, buflak].full := false;
tcft_suf, epid}.pdu_buffcr].is_last_pdu := false;
1c[t_suf, epid]).pdu_buflcc].is_last_pdu := false;

98

tc[t_suf, epid].pdu_bufldrl.is_last_pdu := false;
tcft_suf, epid].pdu_bufldc].is_last_pdu := false;
teft_suf, cpid].pdu_bufldt].is_last_pdu := false;
teft_suf, epid).pdu_buflak].is_last_pdu := false;
tc[t_suf, epid].pdu_bufldcl.is_last_pdu := true
end
end
end;

The subtree generated for the initialization part is shown in figure 27. The
two constants LOtsuftp .nd Hltsuftp were generated by TTCNgen since the bound

t_suftp was not declared in the specification.

7.2.2 Example 2

Our last example is the subtree generated for transition 23 from the MAP
module of the TP2. Transition 23 shows the PDU chaining and consideration of

the lifetime of PDUs. The declaration of transition 23 is:

trans
(23}
any ncid: ncepidtp do
when ns{ncid].ndataind_cr
provided not(exists_tc(ncid, nsdufragm.destref))
from idle
to idle
begin
nsdufragm.peeraddr := form_taddr(nc[ncid).remotenaddr,
nsdufragm.tsapid_calling);
t_suf_S := nsdufragm.tsapid_called;
assgnnewtcepid(epid_6);
assgnnewref(ic[t_suf_5, epid_6].localref, nc[ncid].activerefs);

99

‘TEST STEP DYNAMIC BEHAVIOUR

Reference: simple_tp/map_body/Subtree_0
Identifier: Subtree_0
Objective: Unknown
Defaults Reference:

Behaviour Description Label CRef v

Comments

Subtree_§

(t_suf := LOt_suftp)

(epid := 1) 1

(tclt_suf,epid].assgnd_nc := undef, clsclrbfrs) 2

(k[t_suf,epid).pdu_buflcr} full := false)

(tc[t_suf,epid].pdu_buf[cc).full := false)

(iclt_suf,epid].pdu_buf{dr].full = falsc)

(1clt_suf,epid].pdu_buffdc].full := false)

(ic[t_suf,epid).pdu_buf[dt].full :« false)

(tc[¢_suf epid).pdu_buf{ak).full := false)

(ic{t_suf epid).pdu_buflcr).is_last_pdu
= (alse)

(tclt_suf,epid].pdu_buflce]
.is_last_pdu := false)

(1c[t_suf,epid).pdu_buf]dr)
.is_last_pdu := fulse)

(1c[t_suf,epid).pdu_buf{dc)
.is_last_pdu := false)

(tc[t_suf,epid] pdu_bufldi)
.is_last_pdu := false)

(ic(t_suf,epid]. pdu_buflak)
.is_last_pdu := false)

(tc[t_suf,epid) pdu_bufdc)
.is_last_pdu := true)

{epid <> maxicep]

(epid := epid + 1)

>2

{epid = maxicep)

[t_suf © Hlt_suftp)

(t_suf :=t_suf + 1)

->1

{s_suf = HIt_suftp)

Figure 27 Example of the code generated for nested 'all do’ loops.

tc[t_suf_S, epid_6].remoteref := nsdufragm.srcref;

tclt_suf S, epid_6].assgnd_nc := ncid;

output ap[t_suf_5, epid_6].transfer_cr(nsdufragm)
end;

100

The declaration of ndataind_cr is:

ndataind_cr(nsdufragm: tpduandctrlinf_cr; lastnsdufragm: boolean);

The first parameter of this interaction is CR PDU and the second parameter
is a boolean type. The AP interaction point is internal and therefore a variable
called Hpdu is declared. The nsdufragm which is the parameter of input PDU also
appears in the internal output statement. Since we can refer to this variable only
on the event line (send event) it can not directly be used to assign values to Hpdu.
Therefore the program tries to find the value of each field. In this case the value
of all the fields of CR PDU are passed to subtree as formal parameter because
no equality constraint is mentioned about them. The constraint on the PDUs of
this protocol are checked in the body of AP module. The subtree generated for

this transition is shown in figure 28.

7.3 Performance

In this section the overall results of applying the test generation tool for LAPD
and TP2 Estelle specification are discussed. Some basic statistics about the two
specifications are given in table 5. Table 6 shows the time performance of the

tool on the two protocols.

From table 6 we can see that the bottleneck of the system for the time
performance is the mstourgen program. The reason is that it is based on breadth-
first-search and LAPD protocol is composed of three modules and has three

internal queues. Therefore the search complexity is very high. Whereas since

101

TEST STEP DYNAMIC BEHAVIOUR

Reference: simple_tp/map_body/Subtree_23

Identifier: Subtree_23(ns:ncepprims, ncid : ncepidtp, _CR_order : ordertp, _CR_poaraddr : taddrtp, _CR_crvi : seqoumip,
_CR_destref : reftp, _CR_grcref : reftp, _CR_user_dara : datatp, CR_opts_ind : opitp, _CR_tsapid_calling :
t_suftp, _CR_tsapid_called : 1_suftp, _lasmsdufragm : boolean, Hpdu : CR)

Objective: Unknown

Defaults Reference:

Behaviour Description Label CRd v Comments

[NOT(exists_tc(ncid, _CR_destref)))

nsindataind_cr ndataind_cr
_Con{CR_Con(
_CR_ovrdexr, _CR
_peeraddr, CR
_avl, CR _des-
tref, _CR _orcref,
CR _user_data,
.CR_opss_ind,
_CR_taapid _cal-
ling, _CR
_tsapid_called),
_lastnsdufragm)

(nsdufragm.peeraddr .= form_taddr(nc[ncid]
remotenaddr, _CR_tsapid_calling))

(t_suf_5 := CR_tsapid_called)

+assgnnewicepid’epid_6)

+assgnnewref(tc[t_sufl_5,epid_6) locatref,
nc[ncid).sctiverefs)

(tc[t_suf_5,epid_6].remoterefl .= _CR_sreref)

(tct_suf_S5.epid_6].assgnd_nc := ncid)

(Hpdu.order := _CR_order,
Hpdu.peeraddr ;= _CR_peeraddr,
Hpdu.crvl := _CR_crvi, Hpdu
destref := _CR_destref, Hpdu
srcref -= _CR_sreref, Hpdu
user_data := _CR_user_data, Hpdu
opts_ind := _CR_opts_ind, Hpdu
1sap1d_calling =
_CR_tsapid calling, Hpdu
.sapid_called := _CR_tsapid_called)
¥

[exists_tc(ncid, _CR_destref)) INCONC

Figure 28 Subtree generated for transition 23,

TP2 has only one internal queue and two modules with much less number of

transitions the program converges very fast.

102

Specification Original Number of | Numberof | Noof Data } Number of
number of transitions transitons flow test cases
transitions after nor- | after simpli- functions

malization fication
LAPD 135 410 490 19 1094
TP2 23 67 69 11 53
Table 5 Results of the application of the tast generation tool on LAPD and TP2 protocols
Specification] mappdu] transform | simplify | ticngen | mstourgen | testcase Total
LAPD 06sec | 183sec | 17.5sec | 48.3sec | 9334 sec | 36.0 sec | 9454.7 sec
TP2 0.3 sec 2.5 sec 19.8 sec 14 sec 1.6 sec 38.2 sec

103

Table 6 Performance of the test generation tool for LAPD and TP2

Chapter 8 CONCLUSIONS

8.1 Summary

The derivation of conformance tests for protocols is a cumbersome task. Most
of this procedure can be automated. We described a technique for directly deriving
test suites from Estelle specifications. We first transform the original specification
to another simpler Estelle specification in which the enabling predicates of the
transitions are converied to a disjunctive normal form. After simplification the
test sequences are generated ‘n a semi-automatic manner. Finally these sequences
are parameterized and converted to TTCN notation automatically. This is done
by mapping different constructs of Estelle specification to their corresponding
constructs in TTCN. The advantages of our technique include ease of translation
due to the use of normalized specification and ease of manipulation of the resulting

TTCN tables due to the use of an interactive editor for TTCN.

There are some incompatibilities between TTCN and Estelle that have not
been resolved yet and may yield to incorrect results. One is the way Estelle
modules can be structured. Each Estelle module can be refined to submodules. In
Estelle the user can define array of modules and they will have their corresponding
array of timers, etc. This particular structuring i.e., having array of interaction
points and timers can not be specified in TTCN. Currently the tests produced

only test one instance of such modules.

The input specification must Jeclare the PDUSs to be a parameter of interaction
at the external interactions points. Only then CONTEST-ESTL is able to success-
fully identify the PDUs. TTCNgen’s PDU constraint extraction is based on this
PDU identification process. PDU identification is difficult for protocols where
concatenation is allowed, i.¢., several PDUs in a single ASP, and/or multiplexing
where several (N)-layer connections are mapped into a single connection. More
research is needed to get rid of this restriction.

As it was seen in the case of transport protocol, since currently TTCN requires
the PDUs to be identified on the event line, the input specification must also
declare the PDU parameters in the interaction point declaration. This way the

encoding and decoding are assumed to be implicit.

8.2 Suggestion for Further research

More research is needed in direction of improving test generation algorithm
(mstourgen) by including data flow iu the test case generation system. The present
system only considers the control flow of the specification. This improvement has
two advantages. The first advantage of this improvement is the non-determinisin
(taking different actions for the same input) in the FSM model will be eliminated
because the inputs are differentiated. The second advantage is that the infeasible

paths will be avoided by the software.

For higher layer protocols such as application and presentation lavers adding
ASN.1 constraint and declaration will greatly enhance the system. This can be

done by mixing the standard definitions of PDUs in ASN.1 and Estelle language

105

and having a mechanism of mapping Estelle type definitions to ASN.1 type
definitions.

We are currently ge - _iting the tests in local test architecture. In section 4.3
the conversion from local to distributed test architecture was discussed. Morc
research is needed for converting LS to DS, CS and RS test architectures.

The existing software can be improved by probably attempting to generate
the test cases in a tree form where more than one transition has the possibility
of being fired. The existing test cases or test sequences are linear and inside the
subtrees only the spontaneous transitions are taken as alternatives. Also currently
the test sequences generated contain many infeasible paths and must be carefully
be inspected by the user. This can be avoided by considering the data flow as

well as the control flow and simulation of protocol during test case generation.

106

REFERENCES

William Stallings , “Data and Computer Communications”, New York, NY,
Macmillan Publishing Company, 1988.

International Organization for Standardization, “Basic Refence Model for
Open Systems Interconnection”, ISO 7498, 1984,

Liba Svobodova, “Implementing OSI systems”, IEEE Journal on Selected
Areas in Communications, VOL. 7, No. 7, September 1989, pp. 1115-1129.
ISO/TC 97/SC 21, "Estelle: A Formal Description Technique Based on an
Extended State Transition Model", DIS 9074, 1987.

ISO/IEC JTC 1/ SC 21, "Methodology and Framework of Conformance
Testing: Parts 1 & 2", ISO DIS 9646, 1988.

ISO/IEC JTC1/SC21/WGT1 Florence Meeting, "Working draft Addendum on
Extensions to TTCN, including Parallel Trees", DIS 9646 addenda topic,
November 1989.

G. Dicenet, “Design and prospects for the ISDN”, Norwood, MA, ARTECH
HOUSE Inc., 1987.

CCITT, COM XI-R 43-E, "Report on the Meeting Held in Geneva from 3
to 14 November 1986 [Part C.6.1 - Recommendations Q.920 and Q.921]",
December 1986.

B. Sarikaya, G.v. Bochmann, "Some Experience with Test Sequence Gen-
eration for Protocols”, Proc. 2nd. Int. Workshop on Protocol Specification,

Testing and Verification, 1982.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

. K. K. Sabnani, A. Dahbura, "A Protocol Test Generation Procedure”, Com-
puter Networks 15, 1988, pp. 285-297.

B. Kanunga, et. al., "A Useful FSM Representation for Test Suite Design and
Development"”, Proc. of 6th Int. Workshop on Protocol Specification, Testing
and Verification, 1986.

J-P. Favreau, R.J. Linn, "Automatic Generation of Test Scenario Skeletons
from Protocol Specifications Written in Estelle”, Proc. of 6th Int. Workshop
on Protocol Specification, Testing and Verification, 1986.

Y. Tscha, Y. Choi, "A New Approach to Generate Test Sequences from
Protocol Specifications Written in Estelle”, Proc. of Globecom 87, 1987.

B. Sarikaya, G.v. Bochmann, E. Cemny, "A Test Design Methodology for
Protocol Testing", IEEE Trans. on Soft. Eng., May 1987.

B. Sarikaya, S. Eswara, V. Koukoulidis, M. Barbeau, "A Formal Specification
Based Test Generation Tool", Technical Report, Concordia University, 1988.
B. Forghani, S. Eswara, V. Koukoulidis, B. Sarikaya, "Estelle Based Test
Generation Tool for Modular Specifications”, Proc. FORTE89, Vancouver,
Dec. 4-7, 1989.

V. Koukoulidis, "Full Implementation of a Test Design Methodology for
Protocol Testing", M.Sc. Thesis, Concordia Univ., March 1989.

B. Sarikaya, "Test Design for Computer Network Protocols”, Ph. D. Thesis,
McGill University, March 1984.

B. Sarikaya, G.v. Bochmann, E. Cerny, "A Test Design Methodology for
Protocol Testing", [EEE Trans. on Soft. Engr, May 1987, pp. 531-540.

108

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30

B. Sarikaya, G. v. Bochmann, "Synchronization and Specification Issues in
Protocc! Testing", IEEE Trans. on Communications, April 1984, pp. 389-395.
Z. Kohavi, “Switching and Finite Automata Theory”, New York NY, Macmil-
lan Publishing Company, 1978.

T. S. Chow, "Testing Software Design Modeled by Finite State Machine”,
IEEE Trans. on Computers, vol. C-19, no. 6, June 1970.

Son T. Vueng, W. L. Chan, M. R. Ito, “The UIOv Mtthod for Protocol Test
Sequence Gene:zation”, 2nd International Workshop on Protocol Test Systems,
Berlin (West), Germany, October 1989.

A. T. Shreiner, H. G. Friedman, Jr., Introduction to Compiler Construction
with UNIX", Englewood Cliffs, NJ, Prentice Hall, 1985.

ISO/TC 97/5C 21, "Information Processing - Open Systems Interconnection
- Specification of Abstract Syntax Notation One (ASN.1)", IS 8824, 1989.
B. Kerninghan and D. Ritchie, "The C Programming Language”, Englewood
Cliffs, NJ, Prentice Hall, 1978.

B. Kernighan and R Pike, "The UNIX Programming Environment”, Prentice
Hall, 1984

S. Eswara, B. Sarikaya, "CONTEST-TTCN: An Editor for ISO’s Protocol Test
Notation", Proc. Canadian Electrical and Computer Engineering Conference,
Vancouver, Nov. 1988.

David A. Lamb, "Software Engineering: Planning for Change", Prentice Hall,
1988.

R. Nigel Horspool, "C Programming in the Berkeley UNIX Environment",

109

Prentice Hall, 1984.
31. G.V.Bochmann, "Specification of a Simplified Transport Protocol Using Dif-

ferent Formal Description Techniques", Research Report, University of Mon-

treal, Publication 623, April 1987.

110

GLOSSARY

Transition tour:

A sequence of transitions which covers all the transitions of a finite state

machine.

Subtour:

A sequence of transitions which start from initial state and goes back to the

initial state oi the finite state machine.

Test suites:

A set of tests which verify the conformance of an implemecntation to the

standard. Test suites are further refined into test groups and test cases.

Test cases:

Test trees which achieve a specific test purpose. Test cases must be indepen-

dent of each other and the tester must be able to run them in any order.

Test steps:

A test tree which has a name and can have formal parameters similar to
procedures in conventional programming languages. Test steps are grouped

in a library and can be called(attached) from everywhere.

Interaction points:
An interface over which Estelle modules communicate with the environment
and other modules. If the interaction point connects two modules of the
specification together and is not visible from outside then it is called an
internal interaction point. If the interaction point is used for communication

with the environment it is called an external interaction point.

112

APPENDIX A

USER’S GUIDE

A.l Introduction

This user’s guide explains the commands that must be given by the user to
obtain the test suite from the Estelle specifications of a program. To follow this

guide you must be familiar with the methodology presented in this thesis.

A.2 Commands

The commands described in this section must be issued directly from the
UNIX shell. Currently there is no user interface for the whole system. The

reason is partly because of the simplicity of the commands.

A.2.1 nf (Normal Form) Command

This command activates the normalization module. Normalization is the first
step of generating tests. If you have described the PDU as a PASCAL variant
record you should also request for the first phase of data flow analysis which iden-
tifies the different records which define the PDUs. The syntax of this command
is:

nf Estelle-specification

T R e s o T

!
+
¥
3
&
<

where Estelle-specification is the name of the file containing the Estelle specifica-
tion of the protocol. This command only activates the normalization. To request
for the first phase of data flow analysis you must type:

nf Estelle-specification record-name

where record-name is the name of the variant record dsscribing the PDUs. The
name of the file where the output of this prcgram is written to is made of the

name of the original program and a .LIST suffix (Estelle-specification.LIST).

A.2.2 simplify Command

This command invokes the simplification module. This command is really
implemented in two different programs. The programs are called simplify and

transform.

Usually you only need to issue simplify command. simplify creates a UNIX
pipe to transform. The transform program simplifies the predicates inside the
provided clause of the transitions as explained in section 3.2 and sends them to
simplify. Then simplify substitutes the new predicates in the provided clause of

the transitions.

The advantage of implementing the provided clause simplification phase
as two separatc programs is that the user can check the predicates gencrated
by transform program before the transitions are generated. The simplification
process is usually invoked by typing

simplify SpecFile.

114

In order to check the predicates before the transitions are generated the user

must first type:
transform SpecFile > TempFile.

Now TempFile contains the transformed predicates. The predicates of differ-
ent transitions are separated by an empty line. The user can then edit this file and
generate the simplified specification by typing

simplify SpecFile TempFile.

Modification/deletion of predicates can be done by editing the output of
the simplification program. However the first sclntion is pieferred because the
transition numbers are indicated as a PASCAL comment inside the transition
declaration. Deleting a transition from the middle by hand causes these numbers
to be different from the real transition number. Also by editing the TempFile the
user can concentrate on the predicates. If due to deleting or adding a transition
by hand the numbering of the transitions become inconsistent the transitions can
be renumbered by running the simplification program again.

If the name of input file has .LIST suffix, which is usually the case since
the input of the program is generated by nf command, the name of output file
is obtained by cubstituting the .LIST suffix of the SpecFile by .cnf.LIST suffix.
Otherwise the name fo the output file is derived by adding .cnf suffix to SpecFile.

A.2.3 mappdu Command

This command is used to create a table mapping PASCAL records to PDU

types explained in chapter 4. The syntax of this command is:

115

I

s g

mappdu input-file PDU-name

Input-file must contain the original Estelle specification of the protccol and
PDU-name is the name of the record which defines the PDU as a PASCAL variant
record. The program assumes that the case constant used in the definition of the

variant record is the actual PDU name. If this is not the case the user can modify

the name and supply the correct PFDU name to be generated in TTCN.

The name of the output file generated by this program is derived from the
input file by appending .map suffix to it.

A.24 dtf (Data and Control Flow) Command

The dtf command extracts the data and control flow information of the
protocol. For each module in the specification a file containing the data flow
information to be used by dfgtool program and a file containing the control flow

information to be used by mstourgen program are created.

The syntax of this command is:
dtf Input-file
Input-file must contain the normalized and simplified Estelle specification of the
protocol. This file is created by simplify program. The name of the output file
is derived from the name of the modules in the specification by appending .DTF
suffix for the file containing data flow information and .CTRL suffix for the file

containing control flow information to the module name.

116

A.2.5 ttengen Command

This command invokes the ttcngen program explained in chapters 4 and 5.

The syntax of this command is:
ttcngen Spec-file [-m Map-table] [-¢ Connection-file]

Spec-file must be the output of the simplify program.

The first optional arguments are -m Map-table tells ttcngen that Map-file
contains the table mapping PDUs to PASCAL types probably generated by
mappdu program.

The second option -¢ Connection-file indicates that Connection-file contains
description of the queues connected together. Each line of the Connection-file
must have the format:

Module-1:ip-1 Module-2:ip-2

The name of the test suite is the same as the name of the Estelle specification
indicated by the Estelle keyword: SPECIFICATION. The files generated by this
module are in intermediary forms required by TTCN editor described in [Eswa
89].

A.2.6 dfgtool Command

This command invokes the dfgtool program. The syntax of this command is:
dfgtool Input-file

Input-file must contain the data flow information of an Estelle module and is

117

generated by issuing dtf command. The name of the output file is derived from

the input file name by appending .dat suffix to it.

A.2.7 mstourgen Command

This command invokes the mstourgen program. The syntax of the command
is:
mstourgen f1...fn [-c cf] ... -c cfn] [-e ef] ... -¢ efn] [-s -ns -llength] output-file
f1 through fn must contain the control flow information of different modules
of the specification and are generated by dtf command. cf1 through cfn specify
the internal connections and the associated queues between the modules and is
usually the same file which is used for ttcngen command. Each cfl through cfn

file names must be preceded with a -¢ switch.

efl through efn contain the description of the interaction points that are
controlled by the same tester. The format of this file 1s the same as the Connection-
file described in A.2.5. Although this format only lets you specify two interaction
points to be equivalent in each line, due to the transitive property any number of
interaction points can specified to be controlled by one tester by repeating one
interaction point in more than one entry. Each efl through efn file names must

be preceded with a € switch.

The -s switch indicates that short subtours must be generated and -ns switch

causes the software to generate non-synchronizable tests.

118

Invoking the program by ’-ns’ switch tells the program not to check synchro-
nization. The -1 switch supplies a value which overrides the default maximum

depth of search to cover a new transition before the program gives up.

The name of the output file is specified as the last argument of the command.

4

A.2.8 testgen Command

This command merges the transition tour obtained from issuing the mstour-
gen command and the result of the daca flow analysis obtained from dfgtool
command. The syntax of this command is simply:
testgen
After issuing this command a menu comes up and then you are given the three
choices of: text-output, number-output and invoking edittour program. In order
to generate test suite you must chose the text-output option. Once you choose
this option, you will be prompted for the name of two input files explained in the
previous paragraph. The name of the output file is derived from the name of the

file containing the result of data flow information by appending .ttour suffix to it.

A.2.9 edittour Command

This command lets you to modify the output of the testgen command by
showing the subtours generated by testgen vis-a-vis the Estelle specification of
the protocol. You can optionally issue this command inside the testgen program

as explained in the previous section.

119

The syntax of this command is:
edittour Subtour-file Spec-file
Subtour-file is the output of testgen and Spec-file is the normalized and simplified

Estelle specification. The output is written back into Subtour-file.

A.2.10 testcase Command

This command generates the test cases from the subtour file. The syntax of
this command is:
testcase Subtour-file [Suite-name]
Subtour-file is the output of testgen command which might have been modified
by edittour. Suite-name is the name of test suite. If no Suite-name is specified
the name of test suite is derived from Subtour-file by removing all the suffixes.
The files generated by this module are in intermediary forms required by TTCN
editor described in A.2.5.

A.3 Exceptions

This section describes the exceptions messages that the different modules of

test generation tool print.

A.3.1 Compilation Exceptions

These exceptions apply to nf, simplify, dtf and ttcngen commands. These
exceptions are caused by syntax or semantic errors in the specifications. In this

case an error or a warning message is given to the user indicating the line number

120

and type of error. If an error message is issued to the user the code generation

is stopped.

A.3.2 Input File Exceptions

These exceptions apply to all the commands. If a file does not exist a proper
error message indicating the name of the file that couldn’t be found is issued and

the program stops.

A.3.3 Bad File Format Exceptions

These exceptions also apply to all the commands. The compiler based
commands(nf, simplify, dif and ttcngen) give syntax error messages. The rest
of programs give the message:

Improper input file: name of the file

error message is displayed and the execution is aborted.

A.3.3 Capacity Exceptions

To avoid having capacity exceptions no limit was put on the size of spec-
ification, number of files, etc. Wherever the size of input was not known e.g.,
parameters of input, linked list were used instead of arrays. Therefore the only
capacity exceptions are the size of memory of the system and the disk space.
If both cases an appropriate error message is displayed and the execution of the

programs are aborted.

121

References

[Eswa 89] S. Eswara, “An Editor for ISO’s Protocol Test Notation for Test Suite
Management”, M. Eng. Thesis, Concordia University, Jan. 1989.

122

