l * l National Library
of Canad:t du Canada

Bibliothéque natwonale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

il pages are missing, contact the untversity which granted
the degree

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢, C-30, and
subsequent amendments.

NL 339 (¢ 88/04) ¢

AVIS

La qualté de cette ricroforme dépend grandement de 1a
qualité de ta thése soumise au microfilmage Nous avons
fout fait pour assurer une qualité supérieure de reproduc
tion.

S'il manque des pages, veuillez communiquer avec
l'université qui a conféré le grade

La qualité J''/mpression de certaines pages peut taisser a
désirer, surtout st les pages onginales ont été dactylogra
phiées a l'aide d’'un ruban usé ou si 'umiversité nous a4 fail
parvenir une photocopie de qualté inférieure

La reproduction, méme partielle, de cette microforme est
soumise & la Lol canadienne sur le drott d'auteur, SRC
1970, ¢ C-30, et ses amendements subséquents

i}

Canadi



BANDWIDTH-EFFICIENT CODED-MODULATION
TECHNIQUES FOR FADING CHANNELS

Seyed Hamidreza Jamali

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

November 1991

©  Seyed Hamidreza Jamali, 1991




B+

Nationat Library
of Canada

Bibhothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
Ki1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous gielque forme
que ce sait pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées

L'auteur conserve la propniété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN @ 315-7366.-3

f+4

Canadi



iii

ABSTRACT

BANDWIDTH-EFFICIENT CODED-MODULATION
TECHNIQUES FOR FADING CHANNELS

Seyed Hamidreza Jamali, Ph. D.

Concordia University, 1991

Coded-modulation techniques have recently become a popular signaling method over
bandwidth-limited channels. They provide coding gain on the Additive White Gaussian
Noise (AWGN) channel without sacrificing the bandwidth. This is accomplished by cod-
ing onto an expanded signal constellation so that the minimum Euclidean distance
between coded sequences is maximized. Maximizing the minimum Euclidean distance
improves the coding gain on the AWGN channel. However, the performance of these
schemes on fading channels is dominated by other factors. On fading channels the length
of the shortest error event path (time diversity) as well as the squared product distances
along this path are considered as primary code design criteria. The minimum Euclidean
distance has secondary importance on fading channels. Thus, coded-modulation schemes
designed to be strong for the AWGN channel can be quite poor for fading channel and
conversely suboptimal designs for AWGN can become superior choices for fading chan-

nels.

In this research we introduce coded-modulation schemes constructed based on the
design criteria for fading channels. In this study both Trellis-Coded Modulation (TCM)
and Block-Coded Modulation (BCM) schemes are considered.

Construction of a TCM scheme for fading channels is addressed by initiating design
rules. These rules are introduced to avoid the exhaustive cemputer search. It is shown

that the introduced code outperforms TCM schemes with the same number of trellis
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states, because of its higher time diversity and minimum product distance.

To construct BCM schemes, Reed-Solomon (RS) codes are combined with Multi-
Phase Shift Keying (MPSK) signaling. These nonbinary codes are of particular interest
because they make highly efficient use of the redundancy and their block lengths and

character sizes can be readily adjusted to match with the appropriate MPSK signaling.

The performance of the introduced schemes is evaluated on a Rayleigh fading chan-
nel, for different decoding strategies, by means of the error bound analysis and computer
simulations. The potential coding gains compared to the uncoded schemes are reported.

Different soft-decision decoding techniques for the RS coded schemes are addressed.

We also evaluate the performance of the introduced schemes on a shadowed Rician
fading channel using parameters suitable for the Canadian Mobile Satellite (MSAT)
Communication channel. The effect of fading bandwidth on the performance degradation

of both TCM and BCM coded schemes is studied.
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CHAPTER 1

INTRODUCTION

1.i. MOTIVATION

In mary important radio applications the channel characteristics are often time-
varying, as evidenced by signal fading. This characterization serves as a model for
transmission over many radio channels such as short-wave ionospheric radio communi-
cation in the 3- to 30-MHz frequency band (HF), tropospheric scattering (beyond -the
-horizon), radio communication in the 300- to 3,000-MHz frequency band (UHF), 3,000-
to 30,000-MHz frequency band (SHF), and ionospheric forward scatter in the 30- 1o
300-MHz frequency band (VHF) [1]. These channels have randomly time-variant
impulse responses. The time-variant impulse responses of these channels are conse-
quences of the constantly changing physical characteristics of the media. The physical
characteristics of such channels results from the multipath nature of the propagation
medium. The meaning of multipath is implicit in its name; the propagation medium con-

sists of several distinguishable paths connecting the transmitter to the receiver.

In a multipath fading environment the received signal can be viewed as a sum of
several complex waveforms arriving via different individual paths. If the number of paths
is large, then applying the central limit theorem will lead to the conclusion that both in
phase and quadrature components of the received signal are approximately Gaussian [2].
Therefore, in such a fading channel the amplitude of the received signal is Rayleigh dis-
tributed. Fading that fits to this channel is generally called Rayleigh fading. When there

is a single dominant, nonfading component in the received signal along with a fading



process, the signal amplitude is Rician distributed [3). Such a channel is called Rician
fading channel. The experimental evidences confirm that envelope statistics on different

kind of fading channels fit to a Rayleigh or Rician distribution (4]-[7].

In fading channels, errors occur in burst. Conventional digital modulation and
detection schemes provide poor performance over such channels. For instance, for binary
orthogonal signaling on a Rayleigh fading channel, it is shown that the error probability
is given by [2, p. 533]

1

P, =—
2+Es/N0

A (1.1)

where E_ is the mean value of the received signal energy and E /N , is the channel sym-
bol Signal-to-Noise Ratio (SNR). Equation (1.1) states that, the error probability
decreases inversely with E /N . This is in contrast to the Additive White Gaussian Noise
(AWGN) case in which the error probability decreases exponenially with E /N [2, p.
250). In order to reduce the error probability on a Rayleigh fading channel, the high error
probability of a deep fade on a single transmission must be circumvented. This is accom-
plished by means of diversity transmission [1]-[3]. One form of diversity transmission,
called, time diversity, involves sending a symbol L, times, in the hope that not all of the
transmission will be subjected to deep fades. In other words, by transmitting the same
information signal over independently fading channels, the probability that all the signal
components will fade simultaneously is reduced considerably. In this technique the
receiver performs some averaging to achieve an error performance that decreases
exponentially with E_/N (2, p. 550}

~0.149 L, (E,IN,)
P, <e ° : (1.2)

From a coding point of view the time diversity technique can be regarded as a
repetition (block) code of rate 1/L,. Since a repetition code is a simple form of coding,

one might expect that selection of more efficient types of codes maintains the benefit of



the time diversity technique. The order of time diversity provided by a code can be
related to its minimum Hamming distance if maximum likelihood soft-decision decoding

is considered { see Chapters 3 and 6).

Retransmitting the same signal L, times or using a code with redundancy involves
bandwidth expansion which is not tolerable in bandwidth-limited channels, e.g., mobile
channels. To achieve the benefit of coding without bandwidth expansion, one might con-
sider the recently developed bandwidth-efficient coded-modulation schemes [8]-[52].
These schemes are the integration of a bandwidth-efficient modulation scheme with some
form of coding which are suitable for the channels in which both power and bandwidth

are limited.

Trellis-Coded Modulation (TCM) schemes, as one of the coded-modulation tech-
niques, were originally developed for the AWGN channel by Ungerboeck (9]. In his
pioneering paper [9], Ungerboeck showed that by combining trellis codes with
multilevel/phase signaling schemes, substantial coding gains (3-6 dB) can be obtained on
the AWGN channels without sacrificing bandwidth efficiency. He also pointed out that to
get benefit of coding with no bandwidth expansion, the coded schemes should be
designed based on maximizing the minimum Euclidean distance between the channel
codzd sequences rather than the minimum Hamming distance. Following his idea many
authors [12]-[45] contributed in this area by searching for new TCM schemes and in for-
malizing the theory. Calderbank and Mazo in [3] gave a new description of the trellis-
coded modulation schemes and showed that asymmetric one-dimensional TM schemes
provide more coding gair than symmetric ones. Extension of Ungerboeck’s two-
dimensional TCM to multidimensional schemes was performed by Calderbank and
Sloane [14]-[16] and Wei [17]. Some trellis codes were con.aucted in [25]-[26] by
Divsalar er al. using two-dimensional as well as one-dimensional asymmetric signal sets.
Multiple Trellis-Coded Mudulation (MTCM) schemes were introduced by Divsalar and

Simon [22]-[24] as an extension of multidimensional schemes using Multi-Phase Shift



Keying (MPSK) signaling. The rotationally invariant TCM schemes were presented by
Wei [27]-]28) and one of these schemes with coding gain of 4 dB was adopted by CCITT
{29} for use in new high-speed voiceband modems in 1984.

Although it was originally developed for the AWGN channel, there has been con-
siderable interest in recent years [31]-[45] in applying TCM to fading channels. The prin-
ciple advantage is that, when combined with interleaving of sufficient depth, TCM pro-
vides a form of time diversity, allowing the error rate to decrease with signal-to-noise
ratio faster than the inverse dependence commonly found on Rayleigh fading channels.
In [34] Divsalar and Simon show that the performance of the TCM schemes depends
mainly on the shortest error event path length (time diversity) and the squared product of
the Euclidean distances along the shortest error event path (minimum product distance).
The minimum Euclidean distance of the TCM schemes is considered as a secondary
parameter on fading channels. Thus, for fading channels the ability of TCM schemes to
provide time diversity is more important than the minimum Euclidean distance. For-
tunately it is possible to achieve both coding gain (i.e., an increase in minimum
Euclidean distance) and time diversity from the same TCM scheme. However, when two
schemes are compared, the one that yields the besi coding gain may not yield the best
time diversity. Hence, to develop a suitable coded modulation scheme for fading chan-

nels, these schemes must be designed based on fading channel criteria.

1.2. THESISOUTLINE

The primary objective of this research is to introduce a new class of coded-
modulation schemes, designed based on fading channel criteria. The channel of interest
is the Rayleigh fading channel. However, the obtained results will be applied to a mobile
fading channel as an application example.

In Chapter 2, the characteristics of multipath fading are reviewed. Statistical models
for Rayleigh and Rician fading channels are considered. A general coded communication

system for fading channel is briefly described. Then, the random coding bound for an



ensemble of coded schemes is calculated. We discuss the cut-off rate for different signal
constellations and decoding strategies. This general discussion reveals the potential gains

of coded-modulation schemes on bandwidth-limited fading channels.

Chapter 3 is devoted to a background on the development of the trellis-coded modu-
lation schemes. These schemes are reviewed for the AWGN channel. The performance of
these schemes, then, is evaluated over fading channels. The parameters which dominate
the performance of the coded schemes over fading channels are extracted from this
evaluation. This leads to the observation that the time diversity and minimum product dis-
tance of the coded schemes are main design criteria for fading channels. This motivates

us to construct coded schemes for fading channels based on thesc criteria.

In chapter 4 we construct a new TCM scheme based on the design criteria obtained
in the preceding chapter. This scheme is designed to maximize the time diversity as well
as the minimum product distance of the coded scheme. The construction of the code is
performed by introducing some design rules rather than exhaustive computer search.
The error bounds for this scheme as well as other analogous schemes are derived and

compared. The simulation is carried out to confirm the analytical results.

The construction of block-coded schemes as a counterpart to the trellis-coded ones
is discussed in Chapter 5. We combine Reed-Solomon (RS) codes defined over GF(2™)
with Multilevel Phase Shift Keying (MPSK) signals. In this combination, the symbol size
of the RS codes is chosen as a multiple of MPSK symbol size with the hope that the com-
bined scheme provides a time diversity equal to that of the RS code. The lower bounds of
the post decoding bit error probability for these schemes over a Rayleigh fading chanrel
are derived for two decoding strategies, namely, errors-only and errors-and-erasures
decoding techniques. For errors-and-erasures decoding these bounds are evaluated for
different erasure generation strategies based on the existence or the lack of the Channel
State Information (CSI). The simulation results are provided to examine the tightness of

the error bounds.



The results of Chapter 2 show that the reduction in SNR due to the soft-decision
decoding in fading channel is much more than the one in the AWGN channel. Applying
this decoding technique for block-coded schemes, hence, is of great importance on fad-
ing channels. In chapter 6, the issue of soft-decision decoding of RS-coded schemes is
considered. This decoding technique is implemented by the Viterbi Algorithm (VA) for
short RS codes. For the longer low rate RS coded schemes the Successive Erasure
Minimum Distance Decoding (SEMDD) is discussed. The performance of these decod-

ing strategies are evaluated and compared with the other techniques.

Chapter 7 represents the apphcation of the trellis- and RS-coded schemes on a sha-
dowed Rician fading channel. The fading model used is based on the one developed for
the Canadian Mobile Satellite (MSAT) program. The performance of these coded
schemes is evaluated for an ideally-interleaved channel. The effect of imperfect inter-
leaving on the performance of the coded schemes is also investigated. A comparison

between trellis-coded and RS-coded schemes is carried out based on the obtained results.

Finally, in Chapter 8 we summarize the contents of the thesis, and identify future

research problems that can be derived from this thesis.
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CHAPTER 2

DIGITAL TRANSMISSION VIA FADING CHANNELS

Our objective in this chapter is to show the potential gains of bandwidth-efficient coded-

modulation schemes on bandwidth-limited fading channels. The treatment of this prob-
lem is general and does not include any specific coded scheme. With this objective in
mind, after a brief introduction about the physical behavior, we will develop a statistical
model of the fading channel. This model and its related parameters will be used
throughout the thesis. Then a general coded transmission system over fading channels
will be described. To study the performance of the coded signaling schemes over fading
channels the random coding bounding technique will be employed. In this approach the
error bound is evaluated for an ensemble of coded signaling schemes rather than a
specific one. This yields an appropriate parameter, namely cut-off rate, which can be used
for comparing different signaling schemes over a Discrete Memoryless Channel (DMC).
We will evaluate this parameter for some two-dimensional signaling schemes, for
different decoding strategies, on a Rayleigh fading channel and discuss the results. We
will conclude this discussion by showing that the potential coding gains for bandwidth-
efficient coded-modulation schemes over a Rayleigh fading channel is much more than

that of the Additive White Gaussian Noise (AWGN) one.

2.1. FADING CHANNEL MODEL

There are numerous causes of fading. Among them a few will be addressed in this

introductory section. One common cause of fading is the multipath nature of the propaga-



tion media. In this case, the transmitted signal arrives at the receiver from different paths
frequently with time and/ or frequency varying relative phase differences. These indivi-
dual paths cannot be distinguished at the receiver and in some fashion all of them are
added. Thus, the received signal becomes a replica of the transmitted one with randomly
amplitude and phase. This kind of fading occurs in ground-to-ground radio communica-

tion, and tropospheric and ionospheric scatter communication [3], [7].

The second kind of fading which is most common in ionospheric High Frequency
(HF) radio propagation is the electron density variation versus altitude in the ionospheric
layers. This occurs in HF radio communication which uses ionospheric layers as
reflectors to communicate between two points which are not in line-of-sight or are too far
apart for ground wave propagation. As the height of the ionosphere varies ( due to the
day-night changes or son spot activity, among the other causes), the length of the
transmission path varies, and the received signal experiences random variations in both

amplitude and phase.

Another signifizant cause of fading is the relative motion of the transmitter and
receiver in a static multipath environment. In mobile radio systems, the propagation
between the transmitting antenna and the mobile unit antenna is over several paths,
namely, the line-of-sight path and the path due to the scattering caused by reflections
from and diffractions around obstacles. These interfering signals produce a complex
standing-wave pattern of varying field strength, with minima and maxima being of the
order of a quarter wavelength apart. As a result of the vehicle movement through this
standing-wave pattern, the amplitude and phase variations are induced in the received
signal.

Two kinds of fading, namely, short-term and long-term fading are often considered
in fading channels. In short-term fading the changes in channel characteristics occur
within a time scale that ranges from fractions of a second to several seconds. While in

long-term fading the variations of the channel characteristics are in the range of minutes,



tens of minutes, hours or even more. These variations often related to solar or meteoro-
logical influences [3]. Both kinds of variations are of course continually in process. How-
ever, the distinction between them is extremely useful for engineering because, for most
fading channels, only the short-term fading variation affects the details of the received
waveform structure and the inter-relationships of errors within a message; while the

long-term variations determine in effect the availability of the channel.

A widely used model for channels that suffer from short-term fading is the linear
time-varying filter model [3]. Representing the complex envelope of the input signal to

such a channel by s (¢), the complex envelope of the output signal r (1) can be shown as

oo

ri¢) = j h(t,t).s@-1).dt+n(t), 2.1.1)

-00

where n(z) is the complex additive white Gaussian noise. Also, h(1,t) shows the com-
plex equivalent low-pass impulse response of the channel. The parameter t in h(t, t),
represents the usual filter response variable, while the r-dependence indicates that the
very siructure of the impulse response changes with time. The corresponding equivalent

low-pass transfer function of the channel can be obtained as

(- <]

HE 0= | ko). e? ™", 2.1.2)
0

which is the Fourier transform of A (7, ¢) relative to its T-dependence.

Considering H (f , 1) as a complex Wide-Sense Stationary (WSS) process [3], it is

characterized by its covariance function defined as
1 *
RAf,Aty=—E[H(f.,t).H (f +Af .t + A1) ). (2.1.3)
2

If R(Af, Ar) is negligible for 1At 1>T,, and |Af 1>B,,, the channel is said to have fad-

ing banawidth (Doppler spread), B, time spread, T, and coherence bandwidth 1/T , I

1 A much more detailed discussion about these parameters can be found in {3} and {1, chap 7}
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The selectivity of fading is characterized by the coherence bandwidth. If the coher-
ence bandwidth of the fading channel is smaller than the signal bandwidth, the signal
components with frequency separation greater than the coherence bandwidth are affected
differently by the channel. In this case the fading is called to be frequency-selective fad-
ing. On the other hand for signals with bandwidth much smaller than 1/T,, all signal
components fade together and H (f , 1), in effect, is an all-pass filter (for that bandwidth)
with a varying amplitude and gains that applies to all the signal spectral lines. This is
called frequency-nonselective or flat fading channel since the channel treats all the fre-
quency components of the signal in the same way. This kind of fading channel is con-
sidered throughou: the thesis and whenever we refer to the fading channel the flat fading

is assumed.
The flat fading channel imposes a multiplicative distortion k£ (T, t) on the signal,
with

h(t,t) =908(1).a(t), (2.1.4a)
where

a(z)=a‘(t)+jaq(z). (2.1.4b)
Using (2.1.1) and (2.1.4b) the output of the channel r (1) is related to its input s () as
r(¢)=a().st)+n(). (2.1.5)
Because of this multiplicative distortion the flat fading channel has also been called mul-
tiplicative fading channel.

Central limit theorem arguments lead to the conclusion that [2], [3] the in-phase
a, (1) and quadrature a, (r) components of a(t) are two statistically independent Gaus-
sian random processes and are characterized by their autocorrelation functions or by
their power spectra, P (f), with bandwidth B,. In fading channels with only a diffused
multipath signal, these Gaussian processes have zero mean and the fading envelope,

defined as
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a=Va;” + aqz, (2.1.6a)

has a Rayleigh distribution with a probability density function (pdf)

2

a
—.e 2. (2.1.6b)
a

o

pA(a)’—'

2 . .
where o, represents the variance of the Gaussian random processes. The average energy

of the fading envelope is related to c: as

Ela®]=2c]. (2.1.6¢)
The fading phase defined as
a
¢ =tan” —, 2.1.7a)
a

P o0) = ; 0<¢ < 2m. (2.1.7b)

When there is a single dominant, nonfading component in the received signal along
with a diffused multipath fading process, a (1) can no longer be modeled as having a zero
mean. This occurs when there are fixed scatterers or signal reflectors in the medium, in
addition to randomly moving scatterers. In such a case the fading envelope is Rician dis-

tributed, having a pdf
2
py@)=2a.0+K). e KUK 1 0aNKK ¥ 1)), (2.1.8)

where I ,( . ) is the zero-order irodified Bessel function of the first kind, and K is the ratio
of the energy of direct component to the energy of the diffused multipath one. In ihis case
the phase is no longer uniformly distributed, but rather is more concentrated around that

of the nonfading component. Note that for K = 0, (2.1.8) reduces to (2.1.6b).
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2.2. CODED COMMUNICATION ON FADING CHANNELS

The basic elements of a coded communication system are shown by the general
block diagram in Fig. 2.1. A sequence of digital information is produced by the data
source. The channel encoder adds some redundancy to the incoming bits and delivers the
encoded message to the modulator at a rate of R bits/sec. The modulator transforms the
encoded bits to a waveform that is compatible with the channel characteristics. In its gen-
eral form the modulator transmits m bits at a time by using ¢ = 2™ distinct waveforms
5; (1), i=0,1,..,g—1, one waveform for each of the 2" possible m-bit sequences. This is
called g -ary modulation. The transmitted waveforms are subjected to channel noise and
distortion. In an additive white Gaussian noise ct.annel, only Gaussian-distributed white
noise is added, while in a multiplicative fading channel the amplitude and phase of the

transmitted waveforms will be distorted as well.

At the receiver the demodulator processes the corrupted signals and reduces each of
them to a number that represents an estimate of the g -ary transmitted symbol. In such a
case we say that the demodulator has quantized the received signal to ¢ levels and has
made a hard decision. As an alternative, the demodulator may make @ -ary decision,
where Q > q. In this case it is said to make soft decision. In its extreme case, J = oo, no
quantization is performmed. Based on the quantized or unquantized information furnished
by the demodulator, the decoder attempts to reconstruct the original transmitted message
from the knowledge of the code used by the encoder and the redundancy contained in the

received data.

From the analysis point of view, the function of the encoder-modulator can be
divided into separate discrete-time and continuous-time operations. The justification for
this separation lies in the Gram-Schmidt orthogonalization procedure [2]. This procedure
permits us to expand any one of the M (finite-energy time functions
5;(2), i = 0,1, .., M—1, as linear combinations of N £ M orthonormal basis functions

over the finite time interval 0< ¢ <7, i.e.,
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N
;)= 55, -0,0) i=01,. . M=-1, (2.2.1a)

n=1

where ¢, (), n =0,1, .., N~1,are N set of orthonormal functions

T

i l:]
Jo,0).0,).d1 =3, =
0

2.1b
0 l#j, (2.2.10)

and the coefficient s5;, shows the projection of s; (1) onto the function ¢, (¢) over the time
interval 0 <1t <T, i.e.,
T
Sipp = Isi(r) .0, (1) dr (2.2.1¢)
0
The orthogonalization procedure provides us a tool to represent the waveforms
{s; (1)} as the points of an N-dimensional signal space formed by the orthonormal basis,
{0;(1)). The idea of signal space is of fundamental importance, for it visualizes the
design of the communication systems from an abstract point of view using the language
of geometry. Each of the waveforms s,(t), i = 0,1, -+ ,M-1, are completely deter-

mined by the vector of their coefficients
S; = (8,00 S; 10 o S,(v-1) ); i=0,1,.,M-1, (2.2.2a)

and their energies are interpretated as the norms of the corresponding vectors as

T N
E=[is@).di=¥ 1s 12=1s 12 (2.2.2b)
s i Rt E i T -~
0 n=1
The distance between two signal waveforms s,(r) and s, (t) can be viewed as the
Euclidean distance between the corresponding signal points in N -dimensional signal
space as
T

a2 = J1s,(00=s,)1% de = 15, =517 (2.2.3)
0
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At the receiver, to recover the transmitted vectors from the received waveforms the

virtue of the orthonormalily of the {9, (r)) is used. This is done by multiplying the

received signal by each of the orthonormal basis and integrating over the interval

0<t <T.

In general, the input to the receiver is a random process expressed as

r(t)=a(t).s‘.(t)+n(t); 0<t <T,

2.24)

for a multiplicative fading channel. In (2.2.4) n(z) is the additive white Gaussian noise

with a two sided spectral density of N /2 and a(t) is the fading process. Assume that

a(r) is slow enough that it has a constant envelope a and a constant phase? ¢ over the

interval 0 <¢ <T. In this case the integrator outputs, say

T
rjsjr(t).q)j(t).dt; Jj=01,.,N-1,
0

are random variables which constitute the components of a random vector
F={rg i - r‘.(N_l)).
Considering (2.2.4) we have

r=a.s‘-+n,

where
= (00 My Min-py)s
is a random vector whose components
T

n, Ejn(t).(hj(t) dt;  j=0,1,.,N-1,
0

(2.2.5a)

(2.2.5b)

(2.2.6)

(2.2.7a)

(2.2.7b)

¥ It ss assumed wiat the phase ¢ 1s known at the recciver, and the receiver compensate the phase vanations of the
received signal by multiplying 11 by exp (—j §). This kind of receiver is called coherent receiver and is considered in
this thesis Also we assume that the fading envelopes are independent random vanables. This 1s achieved by using

theoretically infinite size interleaver and de-interleaver in the coded communication system.
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are independent zero mean Gaussian variables with variances N /2 [2]. Assuming that
n(t), hence n, is statistically independent of s, itis clear that the vector r, is a random
vector whose components, (rj }, are statistically independent Gaussian random variables

with mean
Elr;l=a .s;, (2.2.8)
and variances N /2. It follows that the conditional density of r given the fading envelope

a and the transmitted vector s;

N-1 N-1 e—\r,-—a.s,,lleo
py(rla,s)=T] p(r;la,s;)=T] : (2.2.9a)

7 =0 ) =0 VN

This expression can be modified as

N-1 N-1 e-—lrl—a s, 12 E,IN,
py(ria,s) =[] p(rj Ia,sij)-—‘ Il , (2.2.9b)

=0 j=0 AN /E

by assuming that the output of the integrators at the receiver is divided by E_. This

operation normalized the average energy of the received signal components to one and

the variance of the Gaussian noise to N 0/2E 5

We may summarize the results of this section by saying that, from the analysis point
of view, the effect of the modulator, the waveform channel, and the demodulator can be
considered as a random mapping which maps the points of an N -dimensional signal
space to an N -dimensional real vector space. This random mapping, which is called vec-
tor or discrete channel is characterized by the conditional (or transition) probability den-

sity of (2.2.9).

2.3. ERRORBOUND AND CUT-OFF RATE

In a digital communication system the function of the demodulator-decoder pair is
to estimate the transmitted message from the received noisy waveforms. Such an estima-

tion must be based on some desirable criterion. The most reasonable criterion for this
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purpose is to minimize the probability of error of this estimation. A communication sys-
tem, hence, is judged by its ability in communicating a stream of data between a source

and a destination with a low probability of error.

To evaluate the error performance of a specific coded system, the knowledge of the
specific code and signal set is required. Exact expressions for the probability of error, in
general, involve multidimensional integrals, which are complex to calculate. Upper
bounds are hence developed [2], [53], which are applicable to any signal set. However,
evaluation of these bounds for a specific signal set, other than a few simpie cases, is
essentially cumbersome. This becomes particularly prohibitive as the size of the signal

set M and the dimensionality NV, become large.

These difficulties can be circumvented by bounding the probability of error for an
ensemble of coded systems, rather than a specific one. Strangely enough, it is much
easier to find the error bounds not for just one communication system, but rather a whole
collection of communication systems, each consisting of an encoder, vector channel, and
decoder. Since such an upper bound is the average of the probability of error over the
entire ensemble of coded systems, it is obvious that at least one coded system must have
a probability of eiror which is no greater than the ensemble average. Hence, the ensem-
ble average is an upper bound of the probability of error for the optimum coded system
with signal set of M signals of dimensionality N. This technique was first introduced by

Shannon [54] and now is referred as random coding bounding in information theory [53].

Using this technique Wozencraft and Jacobs show that the average error probability
for an ensemble of the block coded systems over a discrete memoryless channel is upper

bounded as |2, p. 392]

Ploy< 2 VBRI 2.3.1)

where NV is the number of times that the channel is used in the transmission of a coded

word, and R is the information rate in bits per channel use. The parameter R ; is called
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the cut-off rate and is derived as [2, p. 396]

Q-1 g¢q-1
Ry=-log, ¥ [ I p,\ag 1 23.2)
h=0 =0

where ¢ and Q denote the number of the transmitter alphabet and the receiver quantiza-
tion levels, respectively. Also, p; shows the probability of transmitting the [-th symbol,
s;. and {q,, } represent the set of the channel transition probabilities. We will use (2.3.2)
to evaluate the cut-off rates of some known two-dimensional signaling schemes over fad-
ing channels which employ hard-decision or erasure decoding techniques. In the follow-
ing we extend the above results to the tading channels with soft decision decoding. The
cut-off rate for such a case is derived in a manner similar to {2} for an ensemble of block

coded systems.

Consider an ensemble of block codes with block length of N and symbols chosen
from a signal alphabet (s, ) with cardinality of q. We assume that the code words of this

ensemble are pairwise statistically independent, i.e.,
P(s,,s,)=P(s).P(s,) all i,k #i, (2.3.3a)

and furthermore, the constituent components of each code word have the same property3,
ie.,

N-1
Ps)=T] PG, i=0,1,.,M-1, (2.3.3b)
j=0

where M is the total number of the code words in the ensemble.

To derive the bound of (2.3.1) for such an ensemble of codes we start with union
bound. Assume that the i -th message, m;,, is transmitted, then the probability of erroneous

detection of this message is upper bounded by invoking the union bound as,
M-
Peim)< ¥, Po(s,,s,), (2.3.4)
k=0,i#k

312, chap. 6] n 1s proved that thesc assumpuons are truc for an ensemble of panty check codes
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where P,(s;,s,) is called pairwise error probability and represents the probability of
error when the two code words s; and s, are used to communicate one of the two equally
likely messages. By virtue of (2.3.3) the statistical average of P,(5;, s, ) over the ensem-

ble of coded systems is independent of subscripts { and k. Hence,

PGS, sp=P e  all i k=i, (2.3.52)

and

PE)=Pelm) <M P,(e), (2.3.5b)

where the bar sign denotes the averaging operation over all codes in the ensemble. The

number of code words in the ensemble, M, is related to R as
M =2"R (2.3.6)

Substituting (2.3.6) into (2.3.5b) results in

P <2 PE. (2.3.7a)
Hence, we need only to show that
P(e)<2 (2.3.7b)

to obtain the desired bound of (2.3.1).

2.3.1. Calculation of the Pairwise Error Prabability

In fading channels, the decoding process uses a metric of the form m(r, s, a) if an
estimate of fading amplitude, a, is available at the receiver, and m (r, s) if not. The esti-
mate of the fading amplitude is called Channel State Information (CSI) [32]. Whatever
the metric is used, it is desirable from the view point of simplifying the decoding process
that it have an additive property, namely, that the total metric for a code word is the sum
of metrics for the constituent components, i.e.,

N-1
m(r,s)= Y m(r,,s,). (2.3.8)
n=0
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If we consider the Maximum Likelihood (ML) criterion for the optimum decoder, then

the ML metric is defined as
m(r,s) =In Py(r Is, a), (2.3.9a)

when CSI is available, and
m(r,s) = In Py (rls), (2.3.9b)

if not. Note that for memoryless channels the ML metric of (2.3.9) satisiies the require-

ment in (2.3.8).

Assuming that s is transmitted and r is received. Between the two sequences s and §

the optimum decoder incorrectly decides § if and only if*

m(r, 8) 2m(r,s), (2.3.10a)
or equivalently
N-1 N-1
> m(r,,$5)2 Y, mr,,s,). (2.3.10b)
n=90 n=0

Then the pairwise error probability is given by
Py(s.8) = EPys.31a)], (23.11a)

where

Pz(s,él a):Pr[m(r,é)zm(r,s) Is,a], (2.3.11b)

is the conditional pairwise error probability conditioned on the fading amplitude vector
a, and E shows the statistical expectation operation. The conditional probability of

(2.3.11b) is upper bounded using the Chernoff bound techniques [2], {55] as

Pys,s1a)<E [ exp@A[m(r,§) —m(r,s))) ], (2.3.12a)

ris

4 We drop subscnpts { and k and use § and § nstead of §, and §; 1o show the fact that the parwise emor probability
is independent of subscripts { and k.
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where A 2 0 is the Chernoff parameter to be optimized to tighten the bound. Substituting

(2.3.12a) into (2.3.11a) yields
P,(s,8) <E, [ E_ [exp(?«[m (r,8) —m(r,s))) ] ] . (2.3.12b)

Defining the Chemoff bound between the code words s and § as
C(s 8, M) =E, [ E [exp(l[m (r,§) —m(r, s)]) ] ], (2.3.12¢)

(2.3.12a) can be written as
P,(5,8) < C(s,5,A). (2.3.12d)
Averaging (2.3.12d) over all codes in the ensemble and recalling (2.3.3), we obtain
B@<Ceh),

=TT C(s,,$,, M),

n=90

=[C(. §, 0", (2.3.13)

where C (s, §, A) is called Chemoff factor of signals s and §. Defining
R\ =-log, C(s, §, A), (2.3.14a)
(2.3.13) can be written as
Pye)<2 ; A20. (2.3.14b)

The bound in (2.3.14b) is valid for any A 2 0. The parameter A should be chosen in a such
a way that the bound is as tight as possible. For this optimum A, R j(A) has the largest pos-

sible value. Defining

(2.3.14¢)

Ry=max R,(A) = RO(Aopl )R
A

the desired result of (2.3.7b) is obtained.
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2.3.2. Calculationof C (s, §,A)

Averaging C (s, §, A) over all assignments of signals s and §, we obtain

g-1 ¢-1
C.$\M=3 3 p(s,).pGs,).Cs,,s,. 7). (2.3.15)
n=0m=0
Then (2.3.14c) becomes
q~-1 q-1
Ry=-log,min ¥ ¥ p(s,).p(s,).C(s,,s,,\). (2.3.16a)
n=0m=0

Assuming that the signals are used uniformly, ie., p(s,) = p(s,) = l/q, then (2.3.16a)

turns out to be

q-1 g-1
Ry=2log,q ~log,min ¥, ¥ C(s,,5,,.M). (2.3.16b)
n=0m=0

Similar expression for cut-off rate is obtained in [44] using the ensemble of convolutional

coded schemes.

2.3.3. Cut-Off Rate for Some Two-Dimensional Signal Constellations

The cut-off rate, Ry, is the appropriate criterion for comparing different modulation
schemes on a discrete memoryless channel [8]. The bigger R, for a given signal energy-
to-noise ratio the better the modulation system. In the following, we calculate the cut-off
rate for some known two-dimensional signal constellations shown in Fig. 2.2, and com-

pare them based on the R ; criterion over a Rayleigh fading channel.

To evaluate the cut-off rate of (2.3.16) the expressions for Chernoff factors are
required. The Chemoff factors for fading channels with and without channel state infor-
mation have recently been evaluated in [32] with an emphasize on Multi-Phase Shift
Keying (MPSK) signal sets. A procedure for evaluating these factors for general two-
dimensional signal sets is included in Appendix A and the results are summarized in the

following.
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2.3.3.1 Fading Channel with CSI

Assuming that the channel state information is available at the receiver, the
Chemoff factor of signals s and § for a Rician fading channel is derived as [see Appen-

dix A]

C@s,H=CG.840,,)
1 +K KE /4N oI5 — 17
= exp |- . (2.3.17a)
1+K +EJ4Nls - §17 1+K +E/4Nyls —$1°

The Chernoff factor for a Rayleigh fading channel is obtained from (2.3.17a) by setting
K =0as

1

C(s,S$)= (2.3.17b)

1+ E/4Ngls - 12
Using (2.3.16) and (2.3.17), R, is plotted for a Rayleigh fading channel in Fig. 2.3. It is
worth noting that the cut-off rate for the AWGN channel is obtained from (2.3.16) and
(2.3.17) by setting K = oo, The result is consistent with the findings of [2, p.317] and is
shown in Fig 2.4.

From Fig.’s 2.3 and 2.4 it is apparent that at low signal-to-noise ratios the required
E N, to achieve a given R, in the Rayleigh fading channel is more than that of the
AWGN one. For example, if we contider the required E_/N ; for rates around 3/4 of the
saturated rate, then the Rayleigh fading channel needs 4.5-6 dB more E /N, than the
AWGN one, depending on the selected signal set. However, at high signal-to-noise ratios

(SNR) both channels provide the same rate.

2.3.3.2. Fading Channel without CSI

For fading channels without the channel state information the Chemoff factor of
signals s and s is evaluated in Appendix A. For a Rician fading channel this factor is

given by
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B 2
C(s,S,A) =expA—(Is "= ISI°+ Als =517)
NO
Y
e 2
—f - rerfe(ve¥'v) . de, (2.3.182)
T
0

where

AE /2N (15 12 = 1817 + 15 - £1%)

V= ~VK cos(8). (2.3.18b)
V1+K
The Chemoff factor for a Rayleigh fading channel (X' = 0) simplifies to
ES
C(s, §,0) = exph— (s 12= 1§12+ M5 - £1%)
NO
Es
.(1=Vrerfc| A (Us1?=151% 4 |s—§|2)]
0
E ] 2 2]
exp | (A—(s "= Is1"+ s = £19))
0
ES
CA—(s 1> = 1512+ 15 = £1%)). (2.3.19)
2N

0
Note that for constant envelope signal sets such as MPSK, |s 2= 1512 and (2.3.18) and

(2.3.19) are identical to the results given in [32].

In this case, unlike the case with CSI, the cut-off rate of (2.3.16) is maximized by
optimizing A numerically. Using (2.3.19) the cut-off rate R, is plotted in Fig. 2.5, for a

Rayleigh fading channel.

To compare the cut-off rate for Rayleigh fading channels with and without CSI the
cut-off rates for these cases are replotted in Fig. 2.6. It is observed that, unlike the AWGN
and fading channels with CSI, constant envelope signal sets, i.e., MPSK constellations
perform much better than rectangular constellations for the fading channels without CSI.
Note that the cut-off rates of the 16QAM and 32CROSS signal sets are even inferior to

4PSK. This is explained by considering the fact that in an MPSK signal set the boundary
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of the optimum decision regions are radial and thus invariant to radial scaling of the
received signals caused by fading [2]. This makes the MPSK signal sets a suitable choice
for designing the modulator part of the coded schemes on fading channels. Furthermore,
these signal sets are less sensitive to the nonlinear distortion caused by the nonlinerity of
the power amplifiers in the transmitter. Thus, we restrict our attention to the constant

envelope signal sets throughout the thesis.

2.3.4. Quantized Fading Channel

To complete the discussion of the cut-off rate, we now apply the analysis of R, to
the quantized fading channels where either the number of quantized levels, @, is the
same as the transmitter alphabet size, g, (hard quantized channel) or there is one null
zone besides ¢ quantized levels (erasure channel). Since the former is a special case of

the latter we begin our discussion with the erasure channel first.

2.3.4.1. Fading Channel with Erasure Zone

The cut-off rate in (2.3.2) can be written as

q-1 q-1 q-1

Ry=-log, | S I3 p\Nam P+1 X p,\an 1P|, (2.3.20a)
{=0

h=0 1=0 =

where q,, represents the probability of the received signal being in the erasure region
provided that the /-th signal is transmitted. Defining a circular erasure region for MPSK
signal sets as in Fig. 2.7, q,, is independent of the transmitted signal and will be denoted
as g, Using the symmetry of the MPSK signal set and assuming that the signal points are

uaiformly used, i.e., p;, = 1/g, (2.3.20a) is further simplified as

-1
1 q
Ry = ~log, [—{ Y g, ]2+q,_, ] (2.3.20b)
q =0

where
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q, =E, jp(r | 55 a).dr ]; 1=0,1,..qg-1 (2.3.21a)
A
and
q, =E, Jp(r | s4a).dr ] (2.3.21b)
AC

In (23.21), A, and A, denote the decision region of the /-th signal and the erasure
region, respectively.

Assume that the fading amplitude is known at the receiver. In this case a simple
erasure zone is defined based on the fuding amplitude. If the fading amplitude is less
than a threshold value, say ap, then the received signal is considered to be in the erasure

region. Based on such definition, the probabilities ¢, and g, are evaluated in Appendix

B as
E N @+ )M oo E
sV 0 4 -E a.’IN s
q, = ( e oy J do ( I p*—rcosd
n(l + E,IN) MEIN, ooy o Vo
£ o pz(E,/No)zcosze
“EpINg+ ————— ~pE /N ,c0s0
1+E,IN "o
.e M erfc(——)dp)),  (2.3.22a)
T+ EJN,
and
q-1
g,=1-3%, q,. (2.3.22b)
1=0

In (2.3.22), we choose a; in such a way that R ; is maximum.

2.3.4.2. Fading Channel with Hard-Decision

By setting the threshold value a; = 0 in (2.3.22), the transition probabilities for a

fading channel is obtained. In this case g, = 0 and (2.3.20) simplifies to
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q~1
R,=log,q -2log,[ Y g, 1. (2.3.23)
1=0

Using (2.3.20), (2.3.22), and (2.3.23) the cut-off rates for the hard quantized and
erasure channels are plotted in Fig. 2.8, for some MPSK signal sets. In this figures R, for
soft-decision fading channels with CSI is also included. It is observed that the soft-
decision decoding significantly improves the performance of the coded schemes com-
pared to the hard-decision one. The reduction in SNR due to the soft-decision decoding
at rates around 3/4 of the saturated rate is about 7.5 dB compared to the hard-decision
one. Also, the erasure decoding can save about 2 dB at the same rate compared to the
hard-decision decoding. It is worth noting that the reduction in SNR due to the soft-
decision decoding in fading channels is much more than the one in the AWGN channel.
The cut-off rates for the AWGN channel using different decoding strategies are shown in

Fig. 2.9 fur comparison.

2.4. DISCUSSION

The cut-off rate curves may be interpreted to show the benefit of using bandwidth-
efficient coded-modulation schemes on bandwidth-limited channels. First, ws investigate

the potential gains of these schemes on the AWGN channel.

Consider a situation in which uncoded QPSK signal set is used to transmit a mes-
sage with rate of 2 bits/symbol over the AWGN channel with an error probability not to
exceed 107>, The requircd E /N for such an error probability is about 12.9 dB. This
points is indicated in Fig. 2.4. Now consider a coded system which transmits messages
with the rate of 2 bits/symbol by using 8PSK signal set. Assuming unlimited coding and
decoding effort (very large V), according to Fig. 2.4, this coded scheme can provide the
same performance of uncoded QPSK with a reduction of 5.2 dB in SNR without
bandwidth expansion. It is also apparent that further expansion of the signal set to more

than twice may not achieve additional gain.
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The same argument can be applied to the Rayleigh fading channel. In such a chan-
nel, the uncoded QPSK can provide an error probability of 10° atE /Ny = 50 dB. This
point is shown in Fig. 2.3. It is observed that if the number of channel signals is doubled,
e.g., by choosing 8PSK modulation, error-free transmission of 2 bits/symbol is theoreti-
cally possible at E /N, =12 dB. Hence, for Rayleigh fading channel the use of
bandwidth-efficient coded modulation may result in 38 dB reduction in SNR at error pro-
bability of 107, This is si gnificantly more than the reduction of SNR in the AWGN chan-

nel due to the use of bandwidth-efficient signaling.
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Fig. 2.3. Cut-offrates for the Rayleigh fading channel with channel state information.
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CHAPTER 3

TRELLIS-CODED MODULATION SCHEMES

The purpose of this chapter is to give a brief background on the Trellis-Coded Modula-
tion (TCM) schemes as the first developed bandwidth-efficient coded-modulation
schemes, introduced by Ungerboeck. After giving a historical background on the
development of these schemes we will explain the set-partitioning technique as a tool for
designing TCM schemes. The performance measures of the TCM schemes will be briefly
discussed. The rest of this chapter will be devoted to evaluating the performance of TCM
schemes over fading channels. This performance analysis provides some code design cri-
teria for fading channels, different from the AWGN one, which will be used for designing

the strong coded schemes for fading channels in the following chapters.

3.1. HISTORICALBACKGROUND

Designing a reliable communication system depends on different parameters. One
of these parameters is the communication channel which is characterized by its fre-
quency response and noise level. Some of the communication channels like telephone
channels are only bandwidth-limited and signal-to-noise ratio in these channels is high
enough so that the channel can support a number of bits/Hz of bandwidth. To satisfy the
bandwidth limitation, one can employ bandwidth-efficient modulation techniques such as
Multi-Phase Shift Keying (MPSK), Quadrature Amplitude Modulation (QAM), and the
various forms of Continuous Phase Modulation (CPM) techniques. For the power-limited

channels where the power is limited rather than the bandwidth, like deep-space commun-
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ication channel, Forward Error Correcting (FEC) coding is usually used. Some channels
like mobile satellite channels not only are bandwidth-limited but also are power-limited.
In such cases usually it is not possible to achieve the desired throughput with either
modulation echniques or coding techniques acting alone. Instead, what is required is the
integration of a bandwidth-efficient modulation scheme with some form of FEC coding to

exploit the best possible attributes of both.

Traditionally, coding and modulation have been treated as separate operations with
regard to overall system design. In this traditional approach to channel coding, encoding
is performed separately from modulation in the transmitter; likewise for decoding and
detection in the receiver. Moreover, error control is provided by transmitting additional
redundant bits, which has the effect of lowering the information bit rate per channel

bandwidth. That is, bandwidth efficiency is traded for increased reliability.

In order to make a more efficient ase of the available bandwidth and power, coding
and modulation have to be treated as a single entity. In fact Massey [8] was among the
first to show that to obtain considerable performance improvement, the modulation sys-
tem must be designed based on unconventional basis. He predicted " the coding tech-
niques such as sequential decoding, Viterbi decoding and threshold decoding all of
which employ convolutional codes and make use of the soft decision information pro-
vided by the demodulator, will then naturally suggest themselves as solution to the design
of coded portion of the over-all digital communication system [8]." Following this
approach, Ungerboeck showed in the pioneering paper [9] that by combining convolu-
tional codes with band-width-efficient modulation techniques considerable gains in terms
of SNR can be achieved compared to the uncoded situation, sacrificing neither data raie
nor bandwidth. His motivation for developing this new coding and modulation technique,
called trellis-coded modulation, initially came from work on multilevel systems that
employ the Viterbi Algorithm (VA) 10 improve signal detection in the presence of inter-

symbol interference [10]. This work provided him with ample evidence of the impor-
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tance of the Euclidean distance between signal sequences. Considering this fact, he
noticed that codes shoutd be designed based on maximizing the minimum Euclidean dis-
tance between coded sequences rather than Hamming distance, and that the redundancy
necessary for coding would have to come from an expansion in the signal set. By com-
puting the capacity of channels with AWGN for the case of discrete multilevel modula-
tion at the channel input and unquantized signal observation at the channel output he
observed, that cod’.ig gains of about 7-8 dB over conventional uncoded multilevel modu-
lation are achievable, and, that an expansion of the signal set by a factor of two is

sufficient for most cases [9).

In the following we review the main aspects of the trellis-coded modulation
schemes and consider the performance of these schemes on both the AWGN and fading
channels. The design criteria of TCM schemes for these channels are obtained from per-

formance analysis.

3.2. TRELLIS-CODED MODULATION FOR THE AWGN CHANNEL

In classical digital communication systems, the function of modulation and error-
correction coding are separated. Modulators and demodulators convert an analog
waveform channel into a discrete channel, whereas encoder and decoder correct errors
that occur on the discrete channel. Conventional encoder and decoder for error correc-
tion operate on binary. or more generally Q-ary, code symbols transmitted over a
discrete channel. Since the decoder receives only discrete code symbols, Hamming dis-
tance is the appropriate measure of distance for decoding and hence for the code design.
The codes with larger minimum Hamming distance d, provide more error correction
capability and better performance. However, this can only be achieved by increasing the

number of redundant symbols which causes transmission rate loss.

Generally, there exist two possibilities to compensate for the rate loss: increasing
the modulation rate if the channel permits bandwidth expansion, or enlarging the signal

set of the modulation system if the channel is bandwidth-limited. First approach has been
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used successfully for channels constrained in energy but not in bandwidth like deep-
space communication channel. The latter leads to the use of non-binary modulation
However, when modulation and error-correction coding are performed in the classical
manner, disappointing results are obtained. Two problems contribute to this unsatisfac-

tory situation.

One problem in the coded systems arises from the hard amplitude or phase deci-
sions made in the demodulator prior to the final decoding. This causes an irreversible loss
of information, which in the binary case is equivalent to approximately a 3 dB loss in
signal-to-noise ratio [56]. The remedy for this problem is to employ soft decision decod-
ing, which means that the decoder operates directly on the unquantized “soft" output
samples of the channel. If the Maximum Likelihood (ML) criterion is applied in soft
decoding of the unquantized demodulator output, then the decision rule of the optimum
sequence decoder will depend on the minimum Euclidean distance. In other words, the
optimum decoder chooses the code sequence which is closest to the received sequence in
terms of the squared Euclidean distance. In this decoding scheme, the most probable
error occurs between signals or signal sequences, one transmitted and the other decoded,
that are closest together in terms of squared Euclidean distance. Hence, in such a case the
appropnate design criterion for coded schemes is maximizing the minimum Euclidean

distance between the coded sequences.

The second problem becomes apparent when the optimum sequence decisions are
made based on Euclidean distances. Mapping of code symbols of a code optimized for
Hamming distance into nonbinary modulation does not guarantee that a good Euclidean
distance is obtained In general, one cannot even find a monotonic relationship between

Hamming and Euclidean distances, no matter how code symbols are mapped ! [10].

By looking at moqulation and encoding as a single aspect of the signal design prob-

! The squared Euclidcan and Hammng distances are equivalent only in the case of binary modulaton or 4-PSK
modulaton, which merely corresponds 10 two orthogonal binary modulauons of a carner
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lem and likewise demodulation and decoding as a single aspect of the signal detection
problem, the problems encountered in classical approach of error-correction coding on

bandwidth-limited channels can be easily overcome.

In coded-modulation techniques the modulation is considered as an integral part of
encoding process and is designed in conjunction with the code to increase the minimum
Euclidean distance between pairs of coded signals. The key to this integrated modulation
and coding approach is to devise an effective method for mapping the coded bits into sig-
nal points such that the minimum Euclidean distance is maximized. Furthermore, using
the maximum likelihood decoding technique based on unquantized samples (soft deci-
sion), demodulation and decoding is integrated in one step, avoiding the loss of informa-
tion due to the hard decision prior to the decoding process. Such a method was developed

by Ungerboeck [9], and is based on the principle of mapping by set partitioning.

3.2.1. Mapping by Set Partitioning

In TCM schemes in order to transmit m bits in each signaling interval a redundant
2m+1-ary signal set is used. The m input bits are encoded by a rate m/(m + 1) treliis
encoder and m + 1 encoded bits are mapped to the signal points of the 2"'”-ary signal
set in such a way that the minimum Euclidean distance between channel-signal
sequences is maximized. This is done by a rule called mapping by set partitioning 19).
This rule is based on successive partitioning of the 2m+]-ary signal set into subsets with
increasing minimum Euclidean distances A,<A <A,< - -+ between the signals of these
subsets. The partitioning is repeated m + 1 times (m < m) until A”_l . 1s equal or greater
than the desired minimum Euclidean distance of the TCM scheme to be designed. The set
partitioning of an 8-PSK signal set is shown in Fig. 3.1 as an illustrative example.

A general structure of a TCM encoder is shown in Fig. 3.2. In this figure, at each
time instant n, a block of m information bits (b:' , b:' 'l, v bn]) enters the TCM encoder.

From these m information bits, ni <m bits are expanded by a rate mi/(ni + 1) binary
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convolutional encoder into 7 + 1 coded bits. The convolutional encoder can be con-
sidered as a finite state machine, which at each time interval n, accepts ni binary bits
O bf'l, - b"1 ), makes a transition from its initial state S, to one of the 2™ possible
successor states S, ., and outputs one of the 27 (i +1)-tuples. The (1 +1)-tuples are
used to select one of the 2"*1 subsets of a 2’"+1-ary signal set. The remaining m — m
uncoded bits determine which of the 2" signals in this subset to be transmitted.

It is traditional and instructive to describe a convolutional code by means of a trellis
diagram. Such a diagram shows the time evolution of the coded sequences. The number
of states in the trellis diagram of a TCM scheme depends on the memories in the encoder.
For an encoder with v memories the total number of states is 2'. The connection (transi-
tions) between consecutive states in the trellis diagram depends upon the encoder. For an
encoder with m = ni the states are joined by single transitions while for encoder with
m>m, 2" " parallel 1ransitions exist between states. These parallel transitions are
associated with the 2™ " signals of the subsets in the lowest layer of the set partitioning
tree.

Denoting the minimum Euclidean distance between parallel transitions by Am+ 1 and

the minimum distance between non-parallel paths in the TCM trellis diagram by d, (),

the minimum distance of a TCM code can be expressed as [11]
d, = min [Am‘,de(n’z)]. (3.2.1)

Note that in the special case of m = m, the subsets contain only one signal and the

minimum distance of the TCM code is determined solely by the code trellis diagram.

Fig. 3.3 represents the encoder and the code trellis diagram of a rate 2/3 4-state
8PSK TCM. This scheme is designed [9] for coded transmission of 2 bits/T in the AWGN
channel and its performance is compared with an uncoded QPSK which has the same
transmission rate. Using (3.2.1) the minimum squared Euclidean distance of this TCM

scheme is found to be 4, which is determined by parallel transitions. Thus, this scheme
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provides a
8. =10log,,(4/2) = 3dB

asymptotic coding gain compared to uncoded QPSK without any sacrifice in bandwidth

efficiency.

3.2.2. Performance Measures

The performance of a TCM scheme over the AWGN channel can be evaluated by
considering different performance measures. The minimum Euclidean distance between
all possible pairs of infinitely long code sequences is an important performance measure
which is usually used as the code design criterion over the AWGN channel. Besides this
measure, the performance of TCM schemes can be evaluated based on the different

parameters considered in the following.

Number of sequences at minimum distance N(d,): For a given szquence, this
parameter gives the number of neighbors at distance d,, and hence those with which it is
more likely to be confused by the receiver {10}, [30]. This number is used, together with
d,, 1o obtain an asymptotic expression for the error event probability defined in the fol-
lowing.

Error event probability P,: Two paths of finite length through the trellis diagram
of the code form an error event if they start form the same state, merge in the same state,
and do not simultaneously occupy the same state in between. Mathematically speaking,

an error event of length [ is defined by two coded sequences s, and §, as {30}

S, = (Sps Sppps o Sppna)

S, = (8 Se) (3.2.2)
such that

Sl = Sx Sie1 = 1+l

S. =5 i=1+1, .., t+1-1, (3.2.3)
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where §, and S“ denote the state of the code sequences s and § at time i, respectively.
The probability of an error event starting at time ¢, given that the decoder has estimated

the correct transmitter state at that time is called error event probability or P,.

Bit error probability P, : This is the most important performance measure for the
user and is defined as the expected number of decoded information bit errors per infor-

mation bit.

Coding gain g: This parameter is defined as the difference between the values of
coded and uncoded signal-to-noise ratios required to achieve the same event error ( or bit

error) probability:

g =SNR| ~SNR | (dB). (3.2.4)

uncoded coded

At high signal-to-noise ratios, it is possible to show that [30]

2
[de /Pav ]coded
8.=8 snr 5= 1010g,, , (3.2.5)

[df/Pav ]

uncoded

where g represents the asymplotic coding gain and P, is the average signal power.

Note that (3.2.5) shows once again the importance of the minimum Euclidean distance.

3.2.3. Performance Evaluation on the AWGN Channel

The performance of the TCM schemes is evaluated by means of upper and lower
bounds for the error probability. This is done based on the generating function approach
[53], [581, which has been extensively applied in the performance evaluation of convolu-
tional codes. This approach involves finding a generating function for the code which,
when combined with a union bound, gives the upper bound on the probability of error

attainable by the code.

The generating function is derived from the state diagram of the code and expresses

the weight distribution of the code in closed form. This function enumerates the dis-
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tance, length, and the number of errors on any incorrect path, compared to the correct
one, at any step in the Viterbi decoding process. For linear codes, without loss of general-
ity, it is assumed that the correct path is the all-zero code word. In such a case the gen-
erating function is obtained as a transfer function of a state diagram containing 2" states

[58], where v is the memory of the code.

Generally speaking, the TCM schemes are nonlinear. The Euclidean distance
between any incorrect path and the correct one depends upon the correct path. In such a
case the error probability bound still can be derived by the generating function approach.
However, the generating function in this case is obtained as a transfer function of an
expanded pair state diagram containing 2% states [53], {59], [60]. This approach is
extremely general, but has a computational complexity increasing with the squared

number of states in the trellis diagram of the code.

Among the TCM schemes, some of them have the Uniform Error Property (UEP)
[30], [61]. According to [30] UEP means that every code word has the same weight dis-
tance distribution, or the same error event probability. Ungerboeck’s codes [9] can be
considered as a class of codes with such property [61]. The UEP permits the error bounds
to be evaluated with the same approach used for linear convolutional codes with the

computational complexity of 2" instead of 2% [30], {61].

3.2.3.1. Lower Bound on P,

The error bounds will be evaluated for TCM schemes on fading channels in more
details later. However, here we summarize these bound for the AWGN channel. Let
assume that the sequence s is transmitted. The probability of selecting the sequence §
instead of the correct one, s, is called the pairwise error probability. The error event pro-
bability is lower-bounded by evaluating the pairwise error probability for a sequence at

minimum distance from the correct one. This lower bound 1s expressed [30] as

d

[4

V8 ¢

P, >—erfc
2

) (3.2.6)
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where 62 = N o/2E is the variance of the noise at the output of the matched filter ( see
Chapter 2, Section 2.2a ). This lower bound is general and is applicable to both codes
with and without UEP.

3.2.3.2. Asympintic Estimate on P,

Considering N (d,) an asymptotic estimate of the error event probability ( at high

signal-to-noise ratios ) is obtained [10] as

de

(3.2.7)

1
P,2—N(d,)erfc
‘2 8 o

Note that the asymptotic estimate is also applicable to the codes with or without UEP
provided that in the latter N (d,) to be considered as the average number of near neigh-

bors at minimum distance de .

3.2.3.3. Upper Bounds on P, and P, The upper bound on the error event probability
for the codes with UEP can be obtained using the generating function approach applied

for linear convolutional codes. This upper bound is expressed [30] as

d 8¢’

e’ .TD)I,

de

- exp(~1/80%) (3.2.8)

1
P <—N()erfc
e 2 [ \jgo'

where T(D) represents the generating function of the code obtained from the state
digram. The probability of bit error is derived from the generating function which
enumerates the distance as well as the number of bit errors on any incorrect path.
Representing this generating function vy T(D,7) the upper bound on P, is expressed

[30] as

d, | sume OT(D.1)
N 4 s

1=1.D= —1/86%)
o 1, D =exp(-1/8c")

1
P,s —N(,)erfc
2m

(3.2.9)

o

V8o

It is shown [30] that the same upper bound on the error event probability and bit error
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probability can be obtained for general TCM schemes, replacing 7°(D ) and T(D, /) in
(3.2.8) and (3.2.9), respectively, by corresponding generating functions derived from the

expanded pair state diagram of the code.

3.3. ANALYTICAL DESCRIPTION OF THE TCM SCHEMES

In the previous section TCM schemes were introduced as a convolutional code and
a rule ( mapping by set partioning ) that maps the output of this code onto a fixed signal
constellation. Calderbank and Mazo in [13] combine these two steps into one and intro-
duce a new description of these schemes, analytical rather than graphical, which express
the TCM output as a series of expansion of products ( of all orders ) of the encoder bits.
This method can be used in obtaining the performance bounds. In the following their

approach is briefly described.

Assume a rate m/(m + 1) TCM scheme with v memories in its encoder. The output
of this scheme ( each channel symbol ) depends not only on the most recent m bits, but

also on the v previous bits, i.e.,

s, =f b, ....b (3.3.1)

n-(v+m )+l)’
where s, is the transmitted channel symbol ai time n, and b, s are the input bits to the
encoder. Dropping the time index n for convenience and assuming that the encoder input

bits are represented by *1, (3.3.1) can be written as a sum of products of b, ’s [13],

S =5 B by b ys by )
v+m v+m

= do + Zbidi + E b‘bldlj tooo A bl o bv+m dl...(v+m)' (332)
1=1 1,y=1
]>1

Regarding 2"*"™ values taken by s, by a column vector s, and also each product of the

variables b; as 2v+'"-1ength vector d = (d, ,d1 , . d the above equation can

l.(v+m ))’

be writien as
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s=B,.d, (3.3.3)

where B, is a y XY Mk

matrix, whose each row represents the 2"*" values taken by
all products of the b; ’s called for in (3.3.2) for each sequence b, b, ..., b,,. If Bis a vec-
tor corresponding to a particular product of the b;'s ( i.e., a column of By, ), then as
shown in [62], the corresponding coefficient of that product in the expansion of (3.3.2) is

simply obtained from

1 T
d= B .s, (3.3.4)
2(v+m)

where the "T" " superscript denotes the transpose operation.

Knowing the modulator output corresponding to the all possible input sequence of
length m+1, the coefficients {d, } can be determined from (3.3.4). This completes the

description of the TCM codes, analytically.

34. PERFORMANCE OF THE TCM SCHEMES OVER FADING CHANNELS

TCM schemes can be used for transmission of reliable digital information over
bandwidth limited fading channels. It is shown that [34], [37] when combined with
interieaving/de-interleaving of sufficient depth, these schemes can provide significant
coding gains compared to the uncodec ones, provided that some new designing criteria
are utilized in designing the code. To obtain these criteria we first evaluate the perfor-
mance of the trellis coded MPSK schemes over a Rician fading channel as an illustrative

example.

A general block diagram of a TCM system on a fading channel is shown in Fig. 3.4.
Input bits are encoded by a trellis encoder. The encoded digits are interleaved and
mapped to an MPSK symbol. Transmitted signal is faded and corrupted by AWGN in
passing through the fading channel. At the receiver the in-phase and quadrature com-
ponents of the received signal are demodulated, quantized for soft decision, and de-

interleaved. Using these quantized components, the Viterbi decoder detects the
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transmitted sequence based on maximum likelihood estimation. To improve the perfor-
mance of the system, the Channel State Information (CSI) may be used in the decoding

process. This is shown by thee dashed line.

The Performance analysis of the system under consideration depends upon different
parameters such as the type of the demodulation, the decoding metric, the presence or
absence of the CSI. Assume that coherent detection with ideal interleaving/de-
interleaving, and the ML decoding metric defined by (2.3.9) is used. Then usinz the
union bound technique, the average bit error probability is upper bounded as

P, <Y a(s,8).p(s). Pys,$), (3.4.1)
s,8eC

where a (s, §) enumerates the number of bit errors between the correct sequence s and the
erroneous sequence §, p (S) is a priori probability of transmitting s, and C shows the set
of all coded sequences. Also P, (s, §) represents the pairwise error probability of s and §,
specified by (2.3.11). Using the results of Chapter 2, the pairwise error probability is

obtained as

P,(s,8) <min C(s,8,})
A
=min [] C(s,,, S, A, (3.4.2)

A
nemn

where C(s,,, S, ,A) is defined as the Chemoff factor of signals s, and s, ( see Chapter 2,
Section 2.3.2 ) and 1 represents the set of all n for which s, # §, . This factor for a Rician
fading channel with a pdf of (2.1.8), and for decoding strategies with/without CSI is
obtained in Appendix A. Using the results of this appendix the bit error probability is

derived in the following.

3.4.1. Decoding with CSI

Using (A.12) the pairwise error probability of (3.4.2) for the case with CSI is

obtained as
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‘ 1+ K K(E 4N ) |5, 17
Pys,8) < I exp |- , (3.4.3)
nen 1 +K +(E /4N s, 5. 12 1+K +(E,/4Nls —§ 17

which simplifies at high signal-to-noise ratios to

(1+K)e ¥

P, 9<T]
nen(EsM'NO) s, —sﬁl

. 344
2
Note that the pairwise error probability for a Rayleigh fading channel can be simply

obtained from (3.4.3) or (3.4.4) by setting K = 0.

The upper bound of the bit error rate at high SNR’s is obtained by substituting

(3.4.4) into (3.4.1) as

) a+kYe™ i
Pos3¥¥ a8 .p(s). — . — (3.4.5)

P g2
s.8eC (Es/4N0) [31

where [ is the number of unlike symbols of the sequences s and § ( i.e., the number of ele-
ments in 1} ) and [3,2 is the product of the distances between these unlike symbols defined
as
Bi=T] Is, -5, 1> (3.4.6)
nen

We postpone the extraction of any conclusion from this performance analysis until deriv-

ing the upper bound of the bit error probability for the case of decoding without CSI.

3.4.2. Decoding without CSI
The pairwise error probability in this case is obtained from (A.18) with Is | = 1§ |
( MPSK signal set ) as

u . 2 E’ 2 e—K v
Pys.) <min]]exp | A"—. ls, =1 -——J (1- ‘f;t-erfc (Ve v).dO, (3.4.7a)
A N 19
0

nen 0
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where v is defined by (A.18b) as

AE /2N ls, =, 1°
V= —VK cos(8). (3.4.7b)
V1+K

The pairwise error probability of (3.4.7.a) can be simplified at high signal-to-noise ratios
by noticing that the first term of (3.4.7.b) dominates and v becomes independent of 6. In
this case, the evaluation of the integral becomes trivial and after some mathematical

manipulations, (3.4.7a) simplifies to [34]

exp

A2 EJN, T Is, -5, |2] a+ k) e

nen

P,(s,§) < ey P , (3.4.8)
2AT(E, 2N )T LB,
Optimizing the Chernoff parameter A provides a tighter upper bound for P (s, §) [34] as
!
[Z ls, -, Iz]

| l nemn

! (2e/l) Ik

@ P.(s, 8 < . 0+ Ky e, (3.4.92)
2

(E,/Ny) B

o

/

with the optimum value of A being

2 l
Ao = . (3.4.9b)
Pl ]
(E(IN ) X, -8,
nen

Substituting (3.4.9a) into (3.4.1) gives the upper bound on the bit error probability as
!

[Z Is"~s'nlz]
Qen)t €M

P,<TY a(s.8).ps). o - a+k e (3400
(ESINO) Bl

s, 8¢C

Some concluding remarks can be extracted from the upper bound evaluation of the

bit error probability. First, it is observed that the probability of bit error depends on /, the
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length of the error event path, or the number of elements in n. For high signal-to-noise
ratios the upper bounds of (3.4.5) and (3.4.10) are determined by the smallest value of /
which corresponds to the error event path with the smallest number of discrepancies
between the correct and erroneous sequences. This path, henceforth, is called the shortest
error event path and its length is shown by L. Therefore, at high signal-to-noise ratios the

bit error probability is approximated by

L
1

(1+K)e—K 1
S
B

E,IN,

P,=a. (3.4.11)

2 .
where B, denotes the squared product of the distances along the shortest error event
path. For simplicity this parameter will be called minimum product distance. In (3.4.11)
the parameter a 1s a constant that depends on the distance structure of the code and the

presence or the abse.ace of CSI.

We observe that P, varies inversely with L -th power of the SNR. A larger L pro-
vides a better performance for TCM schemes operating in fading channels. This effect
resembles what is normally achieved with time or space diversity, the difference being
that no price is paid in terms of the increase in bandwidth or complexity. The parameter

L, hence, is also called the time diversity of the TCM schemes.

3.5. TCMSCHYMES FOR FADING CHANNELS

Most of the TCM schemes appearing 1n the literature have been designed based on
maximizing the minimum Euclidean distance. The choice of the minimum Euclidean dis-
tance as the performance criterion is justifiable when the channel being considered is the
AWGN channel. However, for fading channels, the ability of TCM schemes io provide
time diversity is very important. Fortunately, it is possible to achieve both coding gain
and time diversity from TCM schemes. However, when two schemes are compared, the
one that yields the best coding gain may not yield the best time diversity. In other words,

the .odes designed to be strong for the AWGN channel, can be quite poor for fading
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channels and conversely subhoptimal designs for the AWGN channel may be superior

choices for fading channels.

3.5.1. Maximum Time Diversity of TCM Codes

Let's consider a conventional m/m+1 rate TCM scheme with v memory in its
encoder. The trellis diagram of such a code has 2" states and 2™ branches leaving each
state during each symbol interval. Parallel transitions occur if v is less than m, or when
the trellis encoder has (m-nm)>0 uncoded bits (Fig. 3.2). It’s shown that [42], [43] the

maximum achievable time diversity, L max’ is given by

A%
L = '—}n. (35.1)

m

where | ] denotes integer truncation. Note that the maximum time diversity of the codes

with parallel branches is limited to one. Also, L will always be equal to L if the

max’®
number of symbols in the signal space, M, has its maximum value 2™ . However, if M
is less than its maximum value then the maximum time diversity factor might not be

achieved.

In Tables 3.1 and 3.2 we list the time diversity for the set of rate 2/3 8PSK and rate
3/4 16PSK trellis codes designed by Ungerboeck [9] for the AWGN channel. It is
observed that some of the Ungerboeck’s codes have parallel transitions and, hence, pro-
vide a time diversity of one. The 4-state rate 2/3 8PSK TCM scheme and most of rate 3/4
16PSK TCM schemes can be given as examples. Furthermore, most of the Ungerboeck’s

codes with no-parallel transitions do not achieve the maximum time diversities.

In order to achieve the maximum time diversity, some authors have designed new
TCM codes for fading channels [37], [44], |45]). These results are included in Table 3.1
for comparison. Besides these schemes, Multiple Trellis-Coded Modulation (MTCM)

techniques are introduced in [35] for fading channels.
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3.5.2. Multiple Trellis-Coded Modulation

The maximum time diversity of the conventional TCM schemes are limited by their
structure. To remove this limit and provide more time diversity one can use MTCM
schemes wherein more than one channel symbol is transmitted per trellis branch [22]-
[24]), [35]. The principle behind this technique is to design a rate
mk/(m + 1)k (k = 2,3,...) encoder and combine it through a suitable mapping rule with
a 2m+]-p0im signal set outputting k of these signal points in each transmission interval.
In this case the length of the shortest error event path is always equal to or greater than
the number of branches along this path. In view of (3.4.11), the possibility of a value L
greater than the length (in branches) of the shortest path is significant and what affords
multiple trellis coding the opportunity of improving trellis coding performance on the

fading channels.

Although these schemes may provide more time diversity, but the buffer size of the
Viterbi decoder for these schemes increases with the multiplicity of the code k. This
brings more decoding delay which can be considered as a drawback when the overall
transmission delay is limited by the nature of the transmission system. Less decoding
delay is important particularly in the channels with burst errors when the large
interleaving/de-interleaving size is necessary for destroying the memory of the channel.
Hence, the schemes with less decoding delay may be preferable for these channels. In the
next chapter we will design a conventional TCM scheme based on maximizing both time
diversity and mimmum product distance and compare its performance with similar

schemes ( with the same complexity ) on a Rayleigh fading channel.

3.6. DISCUSSION

The performance evaluation of the trellis-coded schemes on fading channels leads
to the TCM code design criteria for fading channels. One can say that although the TCM
schemes on the AWGN channel is solely designed based on the minimum Euclidean dis-

tance, this design criterion is considered as a secondary parameter for high SNR’s on
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fading channels. The primary design criteria for high SNR's on fading channels are the
length of the shortest error event path ( time diversity ), L, and the minimum product dis-
tance BLZ . However, for small signal-to-noise ratios the minimum Euclidean distance may
be considered as the important design criterion. This is shown by evaluating the pairwise

error probability of (3.4.3) at low SNR’s, as an illustrative example, in the following.

-

Assuming low SNR's, (3.4.3) is simplified by ignoring E /4N Is, - 17 with

respectto (1 + K) to

5 Es . 2’
P,(s,8) < H exp |- . s, =8
1+K 4N, )
nen
' k E J)
= exp - . KO
T 1+k oanvg, "7
ne
' K ES 2
= exp |- . S| (3.6.1a)
| 1+K 4N,

2 . ) .
where dE denotes the Euclidean distance defined as

2 i .2

dE = Z Isn —-snl )

nen

(3.6.1H)

This shows that at low signal-to-noise ratios the performance of the TCM scheme over
fading channel depends on the Euclidean distance rather than the length of the error
event path. This is not surprising and can be explained intuitively. Between the fading
process and the AWGN, the latter is more effective at low signal-to-noise ratios and,
hence, dominates the bit error probability. To combat the noise component, one has to
increase the Euclidean distance between the coded sequences. However, at high signal-
to-noise ratios the effect of the channel fading amplitude is dominant. In this case

increasing the time diversity of the code has been long known [2] as 4 remedy.



Table 3.1. Time Diversity of the Rate 2/3 8PSK TCM Codes.

No. of
states
v

2

AWGN-Channcls {9]

No. of transitions

between two states L | M between two states
m-m

2

Fading-Channels [44], [45]
No. of transitions
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Table 3.2. Time Diversity of the Rate 3/4 16PSK TCM Codes.

No. of AWGN-Channels [9)
v | stales No. of transitions L_..

2" m  between two states L

Zm—m

214 1 4 1 1
318 1 4 I 2
4 1 16 1 4 1 2
51 32 1 4 1 2
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8] 256 2 2 1 3
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Fig. 3.1. Set partitioning of an 8PSK signal set.
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CHAPTER 4

A TCM SCHEME FOR FADING CHANNELS

The previous chapter has described the concept and performance of trellis-coded modu-
lation schemes operating over both the AWGN and fading channels. We observed that
the design criteria for TCM in fading channels are different from that of the AWGN
channel. Thus, TCM schemes designed to be strong for the AWGN channel can be quite
poor for fading channels and sutoptimal AWGN designs may be superior choices for
fading channels. In this chapter a new 4-state rate 2/3 8PSK TCM scheme is designed
based on the code design criteria for fading channels. Both the time diversity and the
minimum product distance of the code are maximized. Some design rules are introduced
to avoid the exhaustive computer search for designing the code. Using upper bound
analysis and computer simulations we evaluate the performance of the new code and
compare it with other 4-state 8PSK TCM schemes over a normalized Rayleigh fading
channel. This comparison shows the superiority of the new scheme compared to the other

4-state schemes on fading channels.

4.1. 4-STATE RATE 2/3 8PSK TCM SCHEMES FOR FADING CHANNELS

The performance analysis of the TCM schemes over fading channels ( Chapter 3,
Section 3.4 ) leads to the conclusion that maximizing the shortest error event length (time
diversity) and the product of the squared branch distances along that path (minimum pro-
duct distance) is the main objective for the code design. A simple argument shows that

maximizing the minimum product distance for codes with a small time diversity is more
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effective than for codes with a large time diversity. Assume a TCM scheme with a time
diversity L and a minimum product distance [312 . Suppose this code is redesigned to pro-
vide a minimum product distance [522 with the same time diversity. Using (3.4.11), the
: . . . . . . . 2 2.

increase in coding gain due to increasing the minimum product distance from B; to B, is

obtained as

g =SNR,=SNR,1, _p = (10/L) . log,o ((B/B)° . (/).  (411)

where @, and o, depend upon the distance structure of the schemes 1 and 2, respectively.
y and @,

It is observed that the increase in the coding gain due to the increase in the
minimum product distance is inversely proportional to the time diversity L. For instance,
doubling the minimum product distance of a code with a time diversity of 2 provides 1.5
dB more coding gain ( assuming the same « for both schemes ), while the same incre-
ment in the minimum product distance yields only 0.75 dB more coding gain for a time
diversity 4. Thus, we attempt to increase the minimum product distance for codes with

small time diversities.

Ungerboeck’s 4-state 8PSK TCM with 3 dB gain over uncoded QPSK on the
AWGN channel was considered as an example in Chapter 3 ( see Fig. 3.3 ). This code
has been designed for the AWGN channel [9] and its trellis diagram contains parallel
transitions implying that a one-step error events can occur. This limits the achievable
shortest error event length to one. Thus, if this code is used over fading channels with
interleaving, the asymptotic steepest rate of descent of P, with E /N will be inverse
linear.

To increase the shortest error event length, parallel transitions must be avoided. For
Rayleigh fading channels a 4-state 8PSK TCM without parallel transitions is suggested
in [37]. Trellis diagram of this code is shown in Fig. 4.1. Hereafter this code is called
Wilson's code. As it is seen the trellis diagram of Wilson’s code is fully connected and

results in shortest error event paths of length two, i.e., asymptotically the rate of descent
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of P, with E_/N , follows the inverse square law. This is the maximum achievable time
diversity with 4-state 8PSK TCM schemes (see (3.5.1)). The coding gain achieved by this
code in the AWGN channel is 1.1 dB, which is 1.9 dB inferior to Ungerboeck’s code.

This code has been designed to increase the shortest error event path length. How-
ever, the product of the squared branch distances along this path has not been optimized.
Fig. 4.1 indicates that this parameter for the ccde is limited by
62(000,201) = 812 . 822 = 1.172 which is the product of the squared distances between
unlike pairs of the paths (0,0,0) and (2,0,1) !. Note that this is an error event of actual
length three but the shortest error event is of length two. In the following we shall intro-
duce new rules to avoid such paths and shall design a new 4-state TCM based on maxim-

izing BZ.

4.1.1. Code Design Rules

The trellis diagram of the 4-state 8PSK TCM scheme without parallel transitions is
fully connected. This allows us to represent the signal associated with transitions
between states of consecutive stages by a 4x4 matrix B, whose ij-th element is denoted
by b,.j, representing the signal associated with the path from state i at stage k 10 state j at
stage & +1 of the trellis diagram. Also, note that the elements of the i -th row indicates the
associated signals with paths diverging from state i and the elements of the j-th column

show the associated signais with paths remerging to state j.

Using set partitioning, the 8PSK signal set can be partitioned into two subsets
A, =(0,24.6) and A, = (1,3,5,7) with intra-set distances 82 and 84. Signal points from
either of the subsets Aj and A, are assigned to the alternative rows of matrix B. To assign
signal points to the elements of the matrix B the following rules are utilized. To express

these rules we define the “state difference” as the number of bits in whici two states

1 We represent the distance between signals of an MPSK signal set by 8‘ to avoid the confusion with A, defined as
the minimum distance between signal points of a signal sct at { -th siep of set parutioning (sec Chapter 3, Secuon 3.2 1)
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differ. For instance, the "state difference” of the states 01 and 10 can be considered as

two.

Rule 1:  Elements of each row of matrix B are associated with signals from subsets A,
or A, such that the distance between a pair of branches diverging from one
state to two adjacent states with "state differences” two or one to be 8, or §,,
respectively. This rule is shown schematically in Fig. 4.2.

This rule guarantees that the distance between each pair of diverging paths from state i is

at least 8,. The same rule cannot be applied for assigning the signal points to the ele-

ments in one column, since there will be at least two elements in one column whose dis-
tances differ only by 6,. In other words, among the remerging branches to state j there
will be at least one pair with distance &, If we assign the signals with distance 9, to the
pair of branches remerging to state j from the two states with a "state difference” of one,
then the mimmum product of squared branch distances of the error events of actual
length two (diverging at stage & and remerging at stage & +2) will be limited to

5]2 : 542 = 2.344 which is greater than 512 . 5;_2 = 1.172. Thus,

Rule 2:  In assigning signal points to each column of the matrix B, the signals with dis-
tances 83 are associated with branches remerging to state j (column j) from
two adjacent states with "stare difference” of two. The pair of paths remerging
1o state y from two states with "state difference” of one may be associated with
signals with distances 8, or §,.

By using rules 1 and 2 the minimum product of the squared distances of the error events

of actual length two will be
2 o6 92 g2 g2 2 Q2
™= min(d, . 9, , 0, .0;) =0, .9, =2.344
.2 . A
To limit B to the error event path with actual length two the third rule is introduced as

Rule 3:  The same signals can be used in two different columns whose associated states

have “szate difference” two. In other words, if a signal appears in column 1, it
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can only be used in column 4, and the signals of column 2 can only be repeated
in column 3.
This rule guarantees that the product of the squared branch distances for the shortest
error events of length two and actual length three are always 822 . 8§ > 8,2 .842 , since each
pair of branches with like signals between stage k+1 and stage k +2 are connected to two
adjacent states with “state difference” two and according to the second rule, remerging
branches from these two adjacent states at stage k +2 to a state at stage & +3 have intra-

set distance 83.

4.1.2. Code Design Example

Fig. 4.3 shows an example of the code design procedure in 4 steps. In the first step
the signals from subset A, are assigned to the first row of the matrix B according 1o rule
1. Using the third rule the elements of the third row can be obtained in step 2. For the
signals of the second and the fourth rows the subset A; must be used. At this stage we
may use signal points 1 or 3 as the first element of the second row according to rule 2.
Choosing 3, the second and the third elements of this row can be found as 7 and 1,
respectively, according to rule 1 and rule 1 + rule 2. Finally, the fourth row of the matrix
B can be obtained from the second row by using the third rule. This comp. tes the code
design. The trellis diagram of this code is shown in Fig. 4.4a. If signal point 1 is chosen
in step 2 another code will be obtained as Fig. 4.4h.

The minimum Euclidean distance of these code can be obtained simply by using the
design rules as

2
-«

d; = min (6,2+642 ,622+632 ,6]2+812+822) = 5|2+612+822 = 3,172,

which implies that the coding gain of these codes over uncoded QPSK on the AWGN
channel is 2 dB which is only 1dB inferior to Ungerboeck’s code. However, these new
schemes provide 0.9 dB more coding gain compared to Wilson's scheme over the AWGN

channel. Over fading channels the new schemes outperform Ungerboeck’s code. Also,
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the coding gain of the new schemes is more than that of Wilson’s code over these chan-

nels. This can be justified by noting that [32 for the new schemes is doubled.

4.1.3. Encoder Realization

The encoder of the new schemes may be realized using the analytical description of
the TCM codes [16], [62]) (see (3.2.2)). In the following the analytical description of the
new scheme shown in Fig. 4.4a is obtained as an example. For this scheme the input and

memory bits are associated with the phase of the channel input signals as follows

O =/ 1.1, 1)=ns8 8,=/(1,1,-1,1)= 38
91=f(_].],1,])=—77[/8 65=f(—]’]9—1a1)=-‘57t/8
8, =/, -1.1.1)=5n8 0=/ (1, ~1,-1,1) = /8

93=f(‘1.—1.1,1)=—31t/8 97=f("1,"],-1,1)=—1t/8

Oy = /(1 1. 1,-1) =-Tn/8 0,,= /(1. 1,-1,~1) = ~5m/8
99=f("1s1,1,—1)=1t/8 913=J"(—]'1,_1’_1)=3m8
(4.1.2)
Oy =fCL-LL-)=518  O5=F(-1,-1,-1,-1)=Tn/8.
Replacing (4.1.2) as a vector form (0 instead of s) in (3.3.4) and solving for d, the

desired result is obtained as
0=(-by+4b.b, - 2b,b 4b /8. 4.1.3)
The realization of the TCM encoder based on (4.1.3) is shown in Fig. 4.54.

The analytical description involves multiplication, and the variables (b, } are not in
(0, 1) form suitable for logic circuits. The Ungerboeck representation of TCM schemes (a
linear convolutional encoder followed by a mapping rule), on the other hand, has a logic
structure. Indeed, it is shown in [ 3], if the analytical expression of a rate m/(m + 1)

TCM scheme has only m + 1 terms (codes with minimal transmitter complexity) then a
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convolutional encoder realization can be found using a simple procedure.

The scheme described by (4.1.3) is of minimal complexity and hence can be con-
verted to the Ungerboeck representation. Assume a natwral mapping 1s used in associat-
ing the outputs of the convolutional encoder 1o the signal points. Denoting the input and
output bits of the convolutional encoder at time n by b, (i = 1,2) and ¢! (j =0,1,2),
respectively, the following associations are found

Cno = bn1 @ bnz—l Cnl = bn2 @ bnl—l @ bnz—l
(4.1.4)

where @ shows the modulo-2 addition. Equation (4.1.4) defines the underlying convolu-

tional code. It is realized in Fig. 4.5b.

4.2. PERFORMANCE ANALYSIS

In this section the performance of the new scheme is evaluated by means of upper
bound analysis and computer simulation for both the AWGN and Rayleigh fading chan-

nels. These results are compared with those of the other rate 2/3 4-state 8PSK schemes.

For upper bound analysis the generating function approach is used (see Chapter 3,
Section 3.2.3). To avoid the higher computational complexity of the expanded pair state

diagram some structural propertics of the TCM encoder are exploited.

As it is explained in Chapter 3 TCM schemes are, in general, nonlinear and the
assumption of the transmitted all-zero code word cannot be utilized in the evaluation of
the error bounds. Instead, every possible code word should be considered as a transmitted
one. This requires an error evaluation algorithm which has a computational complexity

increasing with 2", where v is the memory length of the encoder.

It is shown in [61] and [64] that for a class of TCM schemes with Uniform Error
Property (UEP), the error bounds can be found with a computational complexity of order

2", the same as linear convolutional codes. According to [64] this approach can be
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applied for TCM schemes with the following properties.

i) The TCM scheme consists of a binary (linear) convolutional code with a

memoryless mapping from the encoder nutput to channel input signals.

i) The weight profile of the signal subsets A; and A, (subsets of the first step of
set partitioning) for a given error vector e is not a function of the subset under
consideration.

The weight profile of a subset A, for a given error vector e is defined as
F(A,.e,D)=Ya D" (4.2.1)

where a is the number of channel signals in the subset A, that have a squared Euclidean
weight o with respect to e. The Euclidean weight o is defined as the squared Euclidean
distance between s€ A, and s + s, where s, is the channel signal corresponding to the
error vector e. In (4.2.1) the sum is taken over all possible values of the Euclidean error

weights with respect to e.

The second property is held for 8PSK TCM schemes which use the Ungerboeck
approach in set partitioning. Consider the 8PSK signal set A = {0, 1, ..., 7} and its two
subsets A, = 10,2,4,6) and A= {1, 3, 5,7} at the first step of set partitioning. The
weight profile of these subsets with respect to all possible values of e can be obtained
using (4.2.1). Table 4.1 shows the results for both subsets A, and A,. It is observed that
these subsets have the same weight profile. with respect to e and thus the second condi-

tion is satisfied. In addition, condition 1 is also satisfied; see Fig. 4.5b.

We can now find the generating function of the new scheme using the error state
diagram proposed in [64). The branches of this diagram are labeled as
(2™’ F(A, e D) where r denotes the number of data bits corresponding to the
branch error e. Using Table 4.1 the branch labels of the error state diagram shown in Fig.

4.6 are obtained as
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The encoder generator function is now obtained from the error state diagram of Fig. 4.6

by solving the nodal equations of this graph as outlined in [53]. This yields

TWD, )=t + 81, + 81 (4.2.3a)
where
-1
g =ty =ty g "
il = _t9 ] _IS '—tlz . tz . (4.2.3‘“‘
& —ty oty 1t Iy

After some mathematical manipulations, the transfer function T (D, 1) is simplified as

Ad+ AP+ A0 v A

T(D,1)= , (4.2.40)
1+ B +BI>+B, 1 +B,"
where
Al - 1.5D4000 + 0.504.586
A2 - DS.414 + D6'586*0.5D8586 _ 0.51)11 414
A3 - 0.5D3.172 _ 0‘25D5.172 " D5.4l4 _ ().SDXOOO" ().5[)8 828
_ po4l4 (9510828
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A =050+ 07505172 _ p ™72 _ | sp8000 _ ) 5,8828
+0.25D%"72 4 075D "% 4 0.5p 12, p128B _ 75p 14828

B] - -0.500'586-—0.5D3A]4 + D4.000

Bz - _0‘500.586_02.586_0.5D3.414 + 0-5D4.586 + 0.507.414

33 - _0.500.586 + 0.5D 1172 _ 0.503.414 _ 0504000 + O.5D4.536 (424b)
+0.25D%% 4 0.5p74M

B, =-075D""" + 050> + 0.5D**® - 0.250>'™ + 0.25D***

8.828 10.828

+0.5D% _0.5p*3%® _0.25D

The minimum Euclidean distance of the code can be obtained from the transfer

function as follows [30]

, _ dT(D)dD
d’= lim ——— =3.172,
D -0 T(D YD

which agrees with the previously obtained result.

4.2.1. Performance in the AWGN Channel

Using the transfer function T(D, /), given in (4.2.4), the upper bound on the proba-
bility of bit error, P, (e), is obtained from (3.2.9). For the AWGN channel D is replaced

2
-6 , where o’=N o/ 2E, is the normalized variance of the AWGN (see Chapter 2,

by e
Section 2.2). The upper bound for the new 4-state scheme is plotted versus E, /N , in Fig.
4.7. To compare with other 4-state schemes, the upper bound on P, (e) for Ungerboeck’s
code and Wilson’s code are also included. To examine the tightness of the upper bounds
computer simulation is performed. The results show that the upper bounds are quite tight
for high signal-to-noise ratios.

The performance comparison of the 4-state schemes reveals that the new scheme

outperforms Wilson's code but its performance is inferior to Ungerboeck’s scheme in the

AWGN channel. This is not surprising and can be explained by considering the minimum
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Euclidean distance of these schemes.

4.2.2. Performance in the Rayleigh Fading Channel

For fading channels an upper bound on the bit error probability is developed in {32]

as

1 oT(D,!
p, <L @D

LD - et AN 4.2.5)
m 3l I =1, D =exp(-E,/4N )

where T(D, 1) is the transfer function of the error state diagram whose branch labels are

modified from those of the no fading case as follows. In the absence of fading each
5’ 8
branch label has a factor of D ' (see (4.2.2)). For the fading case, D " is simply replaced
82
by E, [ D?® '] where the E_ denotes averaging over the fading amplitude and g is given

as
o)

at with CSI

y = 42.6
& 4i(a - A) without CSI. ( )

In (4.2.6), a denotes the fading amplitude and A is the Chemnoff bound parameter. To per-

form averaging two cases are considered.

4.2.2.1. Fading Channel with CSI

In this case it is assumed that the fading amplitude is known at the receiver and the
decoder uses this information in the decoding process. For a Rayleigh fading channel it

is shown that [32]

028,2 ]
Ea[ D 1= (4.2.7)

1487 E 4N,

Using (4.2.5), (4.2.4) and (4.2.7) the upper bound on P, versus E, /N, is plotted in Fig.

4.8 for the new scheme along with the other 4-state TCM schemes.
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4.2.2.2. Fading Channel without CSI

In the absence of the fading amplitude estimation at the receiver, it is shown that

(32]
Aa - A8} A82E,IN 2
E,1 DM T = M °[1 — Vv e .erfc(v)], (4.2.82)
where
E
2 5
v =A8 —. (4.2.8b)
2N0

2

The upper bound on P, for this case is obtained by replacing Da' in (4.2.2) by (4.2.8) and
using (4.2.4) and (4.2.5). However, in this case the Chernoff parameter should be optim-
ized for a tighter bound. This is done by means of numerical analysis. The upper bound
for the new scheme on fading channel with CSI is compared with that of fading channel
without CS1I in Fig. 4.9. It is observed that the use of CSI improves the performance of

the coded scheme about 1.5 dB.

4.2.3. Simulation Results

While the upper bound analysis reveals the dependency of the error rates to the
code parameters, it could be very loose over the range of signal-to-noise ratios of
interest. To predict the true system performance the development of computer simulation
is required. Although this technique is straightforward and relatively easy to implement,
but it requires an unacceptably large computer time when smaller values of error proba-

bility are needed.

The simulation in our study is based on Fig. 3.4. The channel is modeled as an addi-
tive white Gaussian noise with a time varying fading process a, representing the complex
signal gain. The in-phase and quadrature components of the channel complex gain are
generated as two independent Gaussian random variables. In such a case the fading
amplitude is Rayleigh distributed. To implement the ideal interleaver/de-interleaver the

samples of the fading process are generated independently.
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The simulation results for the fading channels with and without CSI for three

different TCM schemes are included in Fig.’s 4.7-4.10.

4.3. DISCUSSION

The results shown in Fig. 4.8 compares the performance of the three 4-state TCM
schemes, namely, New scheme (48-N), Wilson’s scheme (4S-W) and Ungerboeck’s code
(4S-U). For error probabilities of 102 or less, the new scheme has better performance
than the other two. The coding gain of this code for bit error probabilities in the area of
10_3, which is important in digital speech transmission, is about 1.8 dB and 4.5 dB with
respect to 4S-W and 4S-U codes, respectively. For the lower bit error probabilities, both
the 4S-N and the 45-W codes have significantly more coding gain than the 45-U code
because of their doubled time diversities. However, the performance of the 4S-N code is
about 2 dB superior to that of the 4S-W code at high signal-to-noise ratios. This is
because of the fact that the minimum squared product distance of the former is twice

more than that of the latter.

The results of Fig. 4.10 shows the benefit of using the CSI in the decoding process
for different 4-state codes. For Ungerboeck’s code the use of the CSI slightly improves
the performance of the scheme at low SNR’s. However, its effect at high SNR’s is negli-
gible. This may be explained by considering the contribution of different error events
with different lengths at low signal-to-noise ratios and the effect of the dominant error
event with the shortest iength at high SNR’s. For this scheme the error events with fength
one are dominant at high signal-to-noise ratios. This means that for high SNR’s the deci-
sion can be made only by observing the received signal in one signaling interval. Thus, in
such a case the detection of the coded signals are similar to the detection of uncoded
MPSK signals which is independent of the CSI because of their angular decision regions
[2]). Based on this fact it seems that the use of CSI is more effective for the codes with
higher time diversities. Fig. 4.10 shows that the improvement for 4S-W and 4S-N due to

the use of CS1 is about 1.5 dB
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Fig. 4.1. The trellis diagram of a 4-state 8PSK TCM scheme without parallel transitions

(Wilson’s code).
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Fig. 4.2. The schematic representation of rules 1 and 2.
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Fig. 4.4. The new 4-state 8PSK TCM codes designed for fading channels;

(a) TCM Scheme 1,
(b) TCM Scheme 2.
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Fig. 4.5. Two different encoder realization of New TCM Scheme 1;

(a) Analytical approach,
(b) Ungerboeck’s approach.




Fig. 4.6. Error state diagram of New TCM Scheme 1.
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Fig. 4.7. The average bit error probability for different 4-state 8PSK schemes over the
AWGN channel.
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Fig. 4.8. The average bit error probability for different 4-state 8PSK schemes over the
Rayleigh fading channel with use of CSI.
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leigh fading channel,
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Fig. 4.10. The effect of CSI on the performance of different 4-state TCM schemes over a
Rayleigh fading channel.



CHAPTER §

BANDWIDTH EFFICIENT RS CODED MPSK SIGNALING
OVER FADING CHANNELS

In the preceding chapters, the Trellis-Coded Modulation (TCM) schemes were studied
based on the fading channel design criteria. In this chapter the issue of using Block-
Coded Modulation (BCM) schemes, as a counterpart of trellis-coded modulation
schemes, is addressed. Specifically, we combine Reed-Solomon (RS) codes with Multi-
Phase Shift Keying (MPSK) schemes, as possible joint power and bandwidth-efficient
BCM schemes for fading channel.. The performance of these schemes over a Rayleigh
fading channel is evaluated for different decoding strategies; i.e., Errors-Only Decoding
(EOD) and Errors-and-Erasures Decoding (EED) techniques. The lower bounds of the
post decoding bit error probability for these decoding strategies are obtained by deriving
the probabilities of the channel symbol error and erasure for the MPSK signaling over
the Rayleigh fading channel and developing expressions for the code symbol error and
erasure. Based on the existence or the lack of the Channel State Information (CSI), two
erasure generating strategies are considered. The tightness of these lower bounds are
confirmed by the simu'ation for of three RS coded 8PSK schemes. The potential coding
gain of RS coded MPSK schemes compared to the uncoded case is discussed based on

the results,

5.1. RSCODED MPSK SCHEMES

Although, it is believed that [12], "generally, anything that can be achieved with a
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block code can be achieved with somewhat greater simplicity with a . onvolutional

code," the BCM schemes may challenge their counterpart for the following reason.

A feature of TCM schemes is that the transmitted symbol at any given time depends
on the previous input symbol sequence. In decoding the process, hence, the decoder has
to know the history of the coded sequences before being able to decode a particular sym-
bol. Furthermore, it has to look at the subsequence history of the sequence to examine the
total influence of that symbol on the transmitted sequence. Therefore, if the decoder
losses or makes a mistake in the history of the sequence, errors will propagate. This
event can be considered as a drawback in some channels such as the mobile radio chan-
nels with a slow shadowing fading. In such a case, the errors due to shadowing will affect
the decoding process of the symbols in an unshadowed time and so cause long-term error
propagation. In such a scenario, the block-coded modulation may be more advantageous,

because, the decoding of a received code block is independent of any other blocks.

BCM schemes have been studied by several author: [12], 116], [46]-152]. Cusack
[46] was apparently the first to propose a BCM scheme based on Ungerboek’s set parti-
tioning principle. He used QAM signal constellations and Reed-Muller codes in his BCM
schemes. Sayeg'. [47] later generalized Cusack’s work by applying known binary block
codes to design BCM schemes based on various QAM and MPSK signal constellations.
These schemes mainly ave been designed for the AWGN channel where maximizing
the minimum Euclidean distance between coded channel symbols is considered as the

main criterion.

Although some authors [65] have attempted to apply vauious known BCM schemes
on fading channels, the issue of designing these schemes based on maximizing the time
diversity has not been well appeared in the literature. In the following we introduce the
idea of combining Reed-Solomon codes with MPSK signaling, as a bandwidth-efficient
block-coded technique, over the bandwidth-limited fading channels. There are many

reasons for using RS codes. Being Maximum-Distance-Separable (MDS) {68] codes,
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they make highly efficient use of the redundancy, and the block lengths and character
sizes can be readily adjusted to match the MPSK constellation. By choosing the same
cardinality for the channel and code symbols, the minimum Hamming distance of the RS
code will determine the time diversity of the coded scheme. RS codes also provide a
wide range of code rates that can be chosen such that the coded scheme have compatible
bandwidth efficiency as the reference uncoded system. Finally, the available errors-and-
erasures decoding techniques for these codes make them a suitable choice for channels

with side information.

5.2. CONSTRUCTION OF RS CODED SCHEMES FOR FADING CHANNELS

To develop an RS coded MPSK scheme we consider two approaches. First, an RS
code, defined over GF (2™), is combined with an expanded 2™ -PSK signal set. In this
combination the code rate is chosen such that the rate of the coded scheme is the same as
the uncoded one (usually 2™y “K). In this case the time diversity of the coded scheme
is determined by the minimum Hamming distance of the RS code. In the second
approach the symbols of an RS code, defined over GF (21'") are mapped to the signal
points of a 2™ -PSK signal set such that each symbol of RS code consists of the concate-
nation of / channel symbols. The follovsing proposition indicates that the effective order

of time diversity 1n such a mapping is at least d, , the minimum Hamming distance of RS

code.

Proposition :
Assume a code, defined over GF (21'"), with a minimum Hamming distance d, .
Let the symbols of this code be transmitted using a signal set with a cardinality of
2" in such a way that each code symbol consists of the concatenation of / chan-
nel symbols. Then, the minimum Hamming distance between the coded signals is

at least dh.

Proof :Let ¢ = (5,1, 8150 - §1;) 8nd €5 = (55, S0 s So;) bE twO code symbols with
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constituent channel symbol components (s, ) J.Ifc, €y then ar least one of the
constituent channel symbols of ¢, differs from that of ¢,. Thus, for two code
words which differ in d, code symbol positions, the corresponding channel coded

sequences will differ in at least d, positions. The proposition, then, follows. O

Note that the second approach allows us to enhance the order of {ime diversity by
using powerful low rate codes. Increasing / provides more powerful codes. However, for
practical purposes, such as decoding delay, we restrict ourselves to / = 2. In the follow-

ing we consider some examp!us of RS coded MPSK schemes.

5.2.1. Example 1: RS (7, 5) Coded 8PSK

As the first example we construct an RS coded scheme using the 8PSK signal set.
Applying the first approach the RS code is defined over GF (23) and its rate chosen such
that the overall coded 8PSK rate is comparable with that of uncoded QPSK, ie., 2
bits/symbol. The code which comply with this requirement 13 the RS (7, 5) code with a

minimum Hamming distance of 3.

5.2.2, Example 2: RS (15, 8) Coded 8PSK

To obtain more coding gain, the minimum Hamming distance of the coded scheme
should be increased. This can be done by using longer and lower rate RS codes. How-
ever, to compensate for the rate loss, the cardinality of the MPSK signal set should be
increased. As the second example we combine RS (15, 8) code, defined over GF (24),
with 16PSK signal set. This yields a coded scheme with minimum Hamming distance 8
and the overall rate 4x8/15 = 32/15 > 2 bits/symbol with almost the same bandwidth

efficiency as unceded QPSK.

5.2.3. Example 3: RS (63, 42) Coded 8PSK

Choosing a signal set with a larger number of signal points has a drawback when

the issue of the carrier recovery is concerned. For denser MPSK signal sets it is a difficult
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(if not impossible) task to maintain carrier synchronization during deep tades. An alter-
native is to use the second approach in constructing of these schemes. As an example of
such approach, we consider the RS (63, 42) coded 8PSK scheme. The RS code is defined
over GF (26) and nence, each code symbol consists of two concatenated 8PSK symbols.
The rate of the RS code is 42/63 which translates into 2 bits/symbol when combined with
8PSK signal set. The minimum Hamming distance of this coded MPSK scheme is lower

bounded with that of the original RS code, i.e., 22.

5.3. PERFORMANCEEVALUATION OF RS CODED MPSK SCHEMES

The transmission model of the system under consideration over a fading channel is
depicted in Fig. 5.1. A single sample per symbol is assumed in representing of this model.
An RS encoder, defined over GF (2™), encodes the input bits into words of length n with
alphabe. size m. The code symbols are interlraved and then used to modulate an M -ary
PSK waveform. The channel corrupts the transmitted signal by introducing a fading gain
and an additive Gaussian noise term. It is assumed that the receiver performs coherent
detecrion and hence the channel phase shift is compensated by the receiver. Also, it is
assumed that ideal interleaving/de-interleaving is employed to destroy the memory of the
fading channel. This allows us to consider the samples of the fading amplitude as being
statistically independent.

The additive Gaussian noise is defined to have a two-sided spectral density N 0/2.
The multiplicative gain is a random variable having a normalized Rayleigh fading den-

sity function as
p,(a)=2ae™, (5.3.1)

with a mean-square value of unity, i.e., E[A 2] = 1. We choose normalized Rayleigh den-
sity function so that the measured signal energy at the receiver represents the average

signal energy per channel symbol E .
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In the case of the errors-only decoding, the MPSK detector makes a hard decision
on each of the received signals according to their phases. These decisions are de-
interleaved and supplied to the RS decoder. If the decoder performs errors-and-erasures

decoding, the MPSK detector also provides the erasure location information to the RS
decoder.
5.3.1. Uncoded MPSK Performance

The performance of MPSK signaling in the AWGN channel with an amplitude gain
a AWGN is derived in [1]. At high signal-to-noise ratios the symbol-error probability is
well approxunnated [1, p.169] by

Poy(a)= erfc [a \[ES/Nosin(n/M) ], (5.3.2)

where erfc (.) is the complementary error function defined as

erfc(x)=

2 2
— J e” . d. (5.3.3)
ﬁ X

For the purpose of comparing coded systems with uncoded ones, we need to distin-
guish beiween the signal energy per channel symbol E_, and the energy per bit E,,
defined as the required energy per information bits. For MPSK signaling with M = 2",
each M-ary symbol represents m channel bits and therefore E. = mE, . In the case of
using a rate R encoder, m channel bits carry mR information bits and the signal energy

per channel symbol can be related to the energy per information bits as
E . =mRE,. (5.3.4)
Substituting (5.3.4) into (5.3.2) yields

Poyla)=erfc [a \mRY, sin(n/M ) ] , (5.3.5)

where y, = E, /N ,. Equation (5.3.5) can be considered as the conditional MPSK symbol-
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error probability conditioned on the fading amplitude, a.

The symbol-error probability for MPSK signaling over a Rayleigh fading channel
can be found by averaging the conditional symbol-error probability of (5.3.5) with
respect to the fading amplitude a as

PFM = IPSM(Q) -pA(a).da
0

2
= fza .erfc [a \mRY, sin(n/M) ] e .da
0 12
mRy, sin’(n/M)
=1- . (5.3.6)
1+ mRy, sinz(n/M )

The relationship between the symbol-error probability and bit-error probability of MPSK
signals depends upon the mapping of the m -bit groups to the symbols. If one uses a Gray
code for this purpose, in which the bit groups assigned to adjacent phases differ by only

one bit, the bit-error probability is approximated by

Poy Py (5.3.7)
log,M m o

-~

PBM

5.3.2. RS Coded MPSK Schemes Performance
5.3.2.1. Errors-Only Decoding

Consider an (n, k) RS code defined over GF (2™). The minimum Hamming dis-

tance d,, and the error correction capability ¢ of this code are d, = n—k+1 and
t = l(dh—l)/ZJ = l(n-k)2], respectively. If the number of errors in the received sig-
nal exceeds the error correction capability of the code, the decoder cannot find the

correct code word. This event is called a decoding failure. Summing up the all possible

decoding failure probabilities, the post decoding block error probability can be expressed
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[68] as

n. i i
Ppe= X () Psc (=Psc)™, (53.8)

i=1+41

where Pg,. is the RS code symbol-error rate. Note that if the first approach in combining
RS codes with MPSK signal set is used, then Pgc is the same as Pg,,, given by (5.3.6).
However, in the second approach where each symbol of the RS code consists of two con-
catenated MPSK symbols, the probability of a correct reception of each code symbol is

(1-Pg;,)* and the error probability of the code symbol, Pg., is derived as
2
Poe =1-(1-Pg)" (5.3.9)

Assuming that for every undecodable error the decoder is aware of its decoding failure, a

lower bound for the post decoding bit error probability can be derived [69] as

1 " Pc
n { -
Py2-- Y (.)Pg (1-Psc)"™ (i . —), (5.3.10)
n ! P
i=1+]

where P indicates the mean bit error probability of a code symbol.

5.3.2.2. Errors-aiid-Erasures Decoding

In errors-only decoding a hard decision is performed at the receiver prior to decod-
ing. In other words, the receiver decides, on the basis of the received signal, which une of
the M symbols of the signal set was most likely to have been sent. Such a receiver dis-
cards a part of the channel information about the reliability of the received symbols and
this results in 2 performance degradation. One way of improving the performance is to
allow the receiver to have the option of not deciding at all when the received signal does
not clearly indicate one of the transmissions as the most probable. This non-choice is

called an erasure.

Algorithms that decode both symbol errors and symbol erasures for the RS codes,

e.g., the Berlekamp-Massey decoding algorithm, are well known [68]. Using these
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decoding algorithms all patterns of ¢+ symbol errors and e symbol erasures can be

corrected provided that

e +21<d, ~1. (5.3.11)

To consider the performance of the RS coded schemes over fading channels with
side information (errors-and-erasures decoding technique), a decision region for erasures
should be defined. Depending on the existence or the lack of information about the fad-
ing amplitude, CSI, two strategies for defining the decision region for erasures are con-

sidered.

Erasure Generation with CSL It is assumed that the value of the fading ampli-
tude, a, is available at the receiver. In this case a simple erasure generation strategy is
suggested by Hagenauer and Lutz [69], in which a threshold value, a; is defined for the
fading amplitude. If the fading amplitude is less than this threshold value then the
received symbol is declared as an erasure. This definition is based solely on the value of

the fading amplitude and ignores the impact of the additive noise on the channel symbol.

To evaluate the performance of the RS coded schemes with erasure decoding, it is
necessary to consider the probabilities of different events. For this erasure generation

strategy the following probabilities are determined.

i) The probability of an unreliable (erased) MPSK symbol is

ar
2

Py =l p,@).da=1-¢", (5.3.12)
0

i) The probability of a reliable (not erased) MPSK symbol is

2
~ar

Iy (5.3.13)

iii)  The probability of a reliable MPSK symbol being in error is
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o0

1
Pomig = p jPSM(a).pA(a).da

2
ar

e .I‘b
=erfc (ap .Fb)—————— erfc (aT ‘\jl + 1‘1,i ), (5.3.14a)

N1 + T

where

I, = \mRE, [N sin(/M). (5.3.14b)

iv)  The probability of an unreliable MPSK symbol being in error is
ar

1
Psyie = fPSM(a).pA(a).da
EM

1 I

(1-erfc (apN14TH) | (5.3.15)

2
l-e aTerfc (a;T,)-

P \ier?

Erasure Generation without CSI. In the case of no channel state information a
circular region with radius p, in the MPSK signal space is considered for erasures [44].
This region , A, along with the ar ular decision regions, A, for an 8PSK signal set is
shown in Fig. 2.7. A channel symbol erasure is declared if the received signal falls into
the region A, . Note that with this definition of the erasure region, the impact of the addi-
tive noise on the erasure declaration is taken into account in addition to that due to fad-
ing. However, at high signal-to-noise ratios the effect of the additive noise is negligible,

and as it will be shown, this erasure strategy is equivalent to the previous one.

Suppose the i-th chennel symbol is transmitted, then the probability that the

received signal r falls into the decision region A, is expressed as
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of=E, [ p(r1a.s, )dr], (5:3.16)

A

where E_ represents the averaging operation over the fading amplitzde a. Note that QiE
is the probability of correct decision of a reliable MPSK symbol. Hence, the probability

of a reliable MPSK symbol being in error is obtained as

! E 5.3.17;
PSMlE_ = I—P_ 0., (53.3.17;

where

Pe, =E, [I—I p(rla,s; )dr]. (5.3.18)
A,

In general case these expressions must be evaluated numerically. As we will see, to find
the lower bound of the post decoding bit error probabilities using errors-and-erasures
decoding the threshold value for each signal-to-noise ratio has to be optimized. To avoid
numerical evaluation of the above expressions in the optimization procedure, appropriate
approximation that leads to a closed form expression is developed; see Appendix C.

Using the results of Appendix C the probabilities of different events are given as

i) The probability of a reliable (not erased) MPSK symbol is

-pr
Py =€ (-erfc(NmRY,pr)) + erfc (JmRY,pr ). (53.19)

i) The probability of a reliable (not erased) MPSK symbol being in error is

1 | -pr Iy
P 1—— |e "+———erfc(\ll+l‘b2pr)

Peu V1 + T2

—e ‘erfc(T,pr). (5.3.20)
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iii)  The probability of an unreliable (erased) MPSK symbol being in error is

2

1 -P{ I, Pr
Poyop = 1-~—-—-1 - [e erfc(I‘pr.) + — -¢

Em Vl + I'p

T
b
- _——erfc(\h + prT )L, (5.3.21)
\1 + T2

wheicpp =p /\E, shows the normalized erasure threshold value.

The post decoding block error probability of RS codes for the errors-and-erasures

decoding technique can be computed [69] as

dk_l n-e
_ n—=e i n-e~t
Ppe = X Ppcle) )) o Pscir P
e=0 t = [(d,,—e)lZ]
n
+ E Ppo(e), (5.3.22)

e =d,

where P (e) is the probability that e code symbois being in erasure, and can be

expressed as
Pec(e) = () Phc (1= Ppe)"™. (5.3.23)

Again, for the first approach of RS coded schemes, P~ and P sc 1 ©an be replaced by

PEM and P

MIE respectively. For the second approach, we assume that the RS code

symbol is erased if either one of the two MPSK signals belonging to that symbol lies in

the erasure region. In this case P and P scIf &€ obtained as

2
Pee=1-(P, ),

2
PSCII',-"_ 1—(1—PSM|E) . (5.3.24)

The lower bound of the post decoding bit error probability for the errors-and-

erasures decoding can be obtained by weighting the probabilities of all possible decoding
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failures, given in (5.3.22), by the corresponding bit error probabilities [69] as

{ d -1 n-e
n—e
2= X P T (P
e=0 ‘= [(d,-e)/z]

PBCIE

PSCIE

)

n—-e—¢
=P T (ePyo g+t

n

1
+= 3 Pg(e)(ePpop+(n—e)P, . o). (5.3.25)

e=d,

54. PERFORMANCE EVALUATION OF SOME EXAMPLES OF RS CORED
SCHEMES

In this section we consider the performance of three RS coded MPSK signaling
schemes, constructed in Section 5.2, and compare them with a reference uncoded signal-
ing scheme over a normalized Rayleigh fading channel. The reference scheme for all

examples is uncoded QPSK.

Using (5.3.10) and (5.3.25), the lower bounds of the post decoding bit error proba-
bility of EOD and EED techniques can be obtained. These bounds for the RS (7,5) coded
8PSK, the RS (!5, 8) coded 16PSK, and the RS (63, 42) coded 8PSK schemes are
evaluated and shown in Fig.’s 5.2, 5.3, and 5.4, respectively. The bit error rate of uncoded

QPSK over a normalized Rayleigh fading channel is included for comparison.

In evaluating the error bounds for RS (7, 5) coded 8PSK and RS (15, 8) coded
16PSK ( both use the first approach in code construction ), the code symbol-error rates
are replaced by the MPSK symbol-error rates of Section 5.3. Assuming Gray mapping is
used in the bit assignment of the code symbols, (5.3.7) can be used in relating the mean
bit error probability of a code symbol to its symbol-error rate. In calcr lating these bounds
for the RS (63,42) coded 8PSK scheme ( which uses the second approach in code con-

struction ), two points are being considered. First, the code symbol-error rates are related
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to the 8PSK symbol-error rates using (5.3.24). Second, a simple argument shows that the
mean bit error probability of a code symbol can be approximately related to the channel
symbol-error rate by multiplying the latter by 2/im, where m is the code symbol size in

bits,li.e.,m = 6.

The lower bounds for EED are evaluated for two erasure generation strategies: with
and without CSI. The numerical results show that the performance of the coded schemes
improves at low SNR’s slightly when CSI is utilized in the erasure generation process.
However, this improvement is not siguificant enough to be shown in Fig.’s 5.2-5.4. For

high SNR’s both erasure generation strategies yield the same performance.

The lower brunds of the post decoding bit error rate for the errors-and-erasures
decoding techniques have been found by optimizing the fading amplitude threshold, a;,
and the erasure region radius, p;., for each value of E, /N ;, based on the existence or lack
of CSI, respectively. Fig. 5.5 represents the optimized fading amplitude threshold a; and

the normalized erasure region radius p, as a function of E, /N , for the different schemes
considered in Fig.’s 5.2-5.4. Note that at lower signal-to-noise ratios, the value of p,. is

slightly higher than that of a,. This is due to the fact that in erasure decoding without
CS1 the impact of the additive noise is considered as well as the fading amplitude. As the

signal-to-noise ratio increases these valies get closer.

To examine the tightness of the lower error bounds computer simulations are per-
formed for three RS coded MPSK schemes. The results of the simulations are included in
Fig.’s 5.2-5.4. The simulation results substantiate the tightness of the error bounds. For
the RS (7,5) coded 8PSK scheme the bounds are tight at high SNR’s while for the other
two schemes the tightness of the bounds is held for the whole range of signal-to-noise

ratios of interest.

1 Assume that a Gray mapping 1s used wn assigrung the bit groups to the 8PSK symbols If a code symbol 1s 1 error
then one of the following cases might occur 1) Only one of the two concatenated 8PSK symbols 1s i error 2) Both
8PSK symbols are i error Weighting the probabihues oi evenis (1) and (2) by 1/m and 2/m, respecuvely, and
summung them up leads to this result
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To compare the performance of the three RS coded schemes, the corresponding
error bounds are redrawn in Fig. 5.6. It is observed that using longer and lower rate codes
improves the performance of the coded schemes at the expense of the decoding complex-
ity. Note that, for instance, the RS (15, 8) coded 16PSK scheme provides a 3-4.5 dB
more coding gain than RS (7, 5) coded 8PSK at bit error rates around 107>, However, at
low SNR’s the latter scheme outperforms the former one. This can be explained as fol-

lows.

By using 16PSK signaling the signal set becomes denser and the distance between
channel symbols becomes shorter. Hence, at low signal-to-noise ratios for the second
scheme, more errors occur during transmission and the decoder fails to correct more
erasures/errors. In other words, at low error rates the high error correction capability of
this scheme cannot compensate the performance degradation due to the use of a denser

signal set.

5.5 DISCUSSION

The idea of combining RS codes with MPSK signal sets is introduced in this chapter
by constructing some bandwidth-efficient RS coded MPSK schemes. Both analytical and
simulation results show that substantial coding gains can be obtained compared to the
uncoded reference system. Using errors-only decoding, the coding gains compared to
uncoded QPSK, at bit error rates around 10-5, for RS (7, 5) coded 8PSK, RS (15, 8)
coded 16PSK, and RS (63, 42) coded 8PSK are 17.6, 21, and 28 dB, respectively.

The use of erasure information in the decoding process enhances the coding gain by
addiuonal 2-3 dB, depending on the RS coded scheme used. Indeed, this technique is a
specific example of soft decision decoding. Using more general unquantized soft decision
decoding, more coding gain is expected for these schemes on a fading channel. The soft
decision decoding of the RS codes. in general, is a formidable task. However, for short
RS coded schemes, it is practical to perform soft decision decoding by introducing a

trellis structure and using the Viterbi algorithm. This issue along with the other soft
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decision decoding techniques for block-coded schemes will be discussed in the next
chapter. Based on the results in Chapter 6, a comparison will be performed between RS

coded MPSK schemes and some other BCM schemes.
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Fig. 5.1. The baseband signal transmission model for RS coded MPSK schemes on a
fading channel.
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Fig. 5.2. Performance of the RS (7, 5) coded 8PSK scheme in a normalized Rayleigh
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Fig. 5.3. Performance of the RS (15, 8) coded 16PSK scheme in a normalized Rayleigh

fading channel.



Average Bit Error Probability, P,

R

S|
10 .

104

Rayleigh Fading Channel

‘( T
RS (63, 42) Coded 8PSK

Lower Bounds
EOD o cam am
EED
1072 Simulation Results -
EOD —O0—
AN
N
N
N
_3 ~
10 N\ -
N
N
~
N
N
N
N
~
N
107 Uncoded QPSK N
167 y
EQOD denotes Errors-Only Decoding
EED denotes Errors-and-Erasures
\ Decoding
1 0—6 } J | 1 1 ]
5 10 15 20 25 30 35
Eb IN o (dB)

Fig. 5.4. Performance of the RS (63, 42) coded 8PSK scheme in a normalized Rayleigh
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CHAPTER 6

SOFT-DECISION DECODING OF RS CODED MPSK SCHEMES

In Chapter 5 it was shown that the RS coded MPSK schzmes provide substantial coding
gains compared to uncoded schemes on a Rayleigh fading channel. These coding gains
were evaluated for errors-only and errors-and-erasures decoding strategies. On the other
hand the cut-off rate evaluation of Chapter 2 revealed that soft-decision decoding tech-
nique on fading channels improves the performance of the coded schemes remarkably,
compared to the hard-decision one. The soft-decision of the RS coded schemes is con-
sidered in this chapter. For short RS coded schemes, this decoding strategy is imple-
mented by introducing a trellis structure and using the Viterbi Algorithm (VA). Based on
this technique the upper bound analysis and simulations are carried out for two short RS
coded 8PSK schemes. These results are compared with those of errors-only and errors-
and-erasures decoding techniques. Because of its higher complexity the Viterbi decoding
cannot be applied to the longer low rate RS coded schemes. In such cases, low complex
soft-decision decoding techniques, such as Successive Erasure Decoding (SED), will be
used instead, at the expense of performance degradation. We will apply this technique
for soft-decision decoding of longer low rate RS coded schemes. The performance of this
technique for different RS coded schemes will be compared with the other decoding stra-
tegies. Finally, a comparison will be carried out between RS coded schemes and some

other Block-Coded Modulation (BCM) schemes.
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6.1. TRELLIS DECODING OF BLOCK CODES

The soft-decision decoding for binary signaling (BPSK) asymptotically provide 3
dB improvement compared to the hard-decision decoding in the AWGN channel {2],
[56]. Most of this improvement can be gained by three level quantization (errors-and-
erasures decoding) and little improvement is left for quantizing to more than three levels
[2]. For channels cther than the AWGN channel, however, soft decision decoding may
significantly improve the performance of the coded schemes (see the cut-off rate analysis
of Chapter 2). For instance, in the case of independent Rayleigh fading, the improvement
is equivalent to the change of a (1 + 1)-order diversity receiving system to performance
of a d, -order diversity system [70]. This improvement increases drastically by increasing

the signal-to-noise ratio.

In contrary to convolutional codes which use the Viterbi algorithm as the low com-
plex implementation of the maximum likelihood decoding, most soft-decision algorithms
for block codes are complex. To implement maximum likelihood decoding for block
codes, in general, the received vector must be correlated with each of the valid code
words and the closest code word to the received one must be chosen as the transmitted
one. However, when the number of code words is large, implementing such a receiver is
impractical. In such a case, soft-decision decoding of the block coded schemes can be
implemented by employing some techniques which discard improbable code words
without correlating the entire set of code words with the received one {56}, '70]-{72].
One of these techniques, introduced by Wolf [71], uses the Viterbi algorithm on an
equivalent trellis diagram constructed for the block code. In [71] Wolf shows that for any
(n, k) linear block code defined over GF (g ) there is a trellis structure having no more

- . . . . g
than q" states. For cyclic codes, this trellis is periodic.

For a linear (n, k) cyclic code over GF (¢), the encoder has n—k storage devices
for elements from GF(q). It is shown that the trellis for this code can be formed by asso-

ciating the trellis nodes with the q('“k) possible states of the (n—k) stage shift register
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used for encoding. However, not all of these states are used at different depths of the

trellis. The number of states at depth j is given by [71]

q’, j=1,2 ", n-k-1,
N, =1{¢""  j=n-k,n-k+1, -k, (6.1.1)
q"‘f, Jj=k+1, - n
The trellis is repetitive for j = n—k+1, --- k.

To interconnect nodes of the trellis a polynomial p (x; j) in x of degree (n—k-1)
with coefficients from GF (g) is associated with each node at depth j. The polynomials at

depth (j +1) are then formed from the polynomial at depth j in accordance with [71]

p,(xij+)=(x p(x; ) +x""kap) modulo g(x), (6.1.2)

where g (x) is the generator polynomial of the code. In (6.1.2) i shows the index of the
starting node at depth j, I shows the index of the terminating node at depth j+1, and

a, € GF (q) is the label of the connecting branch between these nodes.

As an example, using (6.1.1) and (6.1.2) the trellis diagram of the RS(7,5) coded
8PSK scheme is shown in Fig. 6.1. This code is defined over GF(8) and its trellis
diagram has 87 = 8% = 64 states. Using this trellis, we can apply the VA to perform
soft-decision decoding for this code. In the following we drive the upper on the block
error rate as well as the bit error rate for the RS coded schemes which employ the VA for

soft-decision decoding.

6.1.1. UPPER BOUND ANALYSIS

To derive an upper bound, first a union bound is obtained on the error event proba-
bility. An error event starts where the two paths in the trellis diagram diverge and ends
where they remerge. A union bound for the error event probability may be obtained by

summing the probabilities of the error events of all possible lengths given a particular
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transmitted sequence s and averaging this quantity over all possible correct sequences s

P,<T Y p(s). Pys.3), (6.1.3)

s.8eC
where § is the incorrect decoded code word, and C is the set of all valid code sequences.
In (6.1.3) P,(s, §) represents the pairwise error event probability for two code words s
and §.
In applying the VA to the soft-decision decoding of block codes, the algorithm finds
the closest code word to the transmitted one for each received block. In this case the

length of the error events is limited to the block length, n, and (6.1.3) is equivalent to an

upper bound on the block error probability.

To evaluate the upper bound (6.1.3), the pairwise error event probability Pz(s, S)
should be found. Using the results of Chapter 3 the pairwise error probability for a Ray-
leigh fading channel is obtained for cases with and without CSI by replacing K =0 in

(3.4.4) and (3.4.9a), respectively, as

With CSI

1
§) < R 6.1.4:
Pys,9)<T] Y (6.1.4a)
ien Bl - ( s/ 0)

Without CSI

2
len—ntZ]

e/l LE"

Po(s,$) < , (6.1.4b)

= - 2
(E,/IN ) B,
where 1 is the set of all i for which s, # 5, [ shows the length of the error event, and B,z
is the squared product of the distances defined as (3.4.6). Substituting (6.1.4) into (6.1.3)

gives the upper bound on the block error probability as
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With CSI

1
Py <3306 . T1 o

2
ien By - (E;/AN )

s,5eC
2
< a(ﬂ[ ) 1 !
<Y - ), (6.1.52)
v, 5 B E /4N,

where d, is the minimum Hamming distance of the code ana a(B,2 ) is the average
number of code words with a Hamming distance of / and a squared product of branch

distances of ﬁ,2 from the transmitted code word .
If no CSI is used in the decoding process, we have

Without CS1
2

[EL%—gF]
ey nem

Phe SE2P6). ' 2 ’

i
5.8eC (Es IN 0) B'

2 l

eyt @gB))
<Y YuB). - -
I=d, B} (E,IN o) B;

(6.1.5b)

b

where
2 2
dzB) =Y Is;=5; 17, (6.1.5¢)
ien
is the squared Euclidean distance between the two unmerged paths with a squared pro-
duct distance of B,z and a length of /. In deriving (6.1.5b) it is assumed that all error
events of length / with the squared product distance of [312 have the same Euclidean dis-

tance.
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To derive the bit error probability we use the upper bounds of (6.1.5). Assuming
that Gray mapping is used in assigning the bits to the 2™ - ary PSK signal points, the bit
error probability can be related to the probability of the symbol error by dividing the
latter by m (see (5.3.7)). To find the symbol error rate, we can weight the terms
corresponding to the error events of length / by //n. For, two paths with | unmerged

branches have ! different symbols. Thus, the probability of the bit error can be upper

bounded as
With CS1
55 a®) 1
P, < —. A ). (6.1.6a)
° Lg g2 B2 E,4N,
=d, B;
Without CSI

2 l
! Qen) @)
P,<Y Y — .a). . .

1 ; (6.1.6b)
1=d, BIZ mn (Es/NO) B

l
For high signal-to-noise ratios these upper bounds can be simplified by considering
only the terms corresponding to the shortest error event paths (the path with minimum

Hamming distance d, ) as

With CSI

4, a®}) 1
P,<y —. N )", (6.1.72)
B

mn B: E 14N

(]

Without CSI

4
d, . ed)™ (@B,
P,<Y — .a(l). — (6.1.7b)
p2 ™" (E,/Ny " B,

h
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As an illustrative example the upper bounds in (6.1.7) are evaluated for the RS (7,
5) coded 8PSK and the shortened RS (6, 4) coded 8PSK schemes. To find the distance
weight distribution of these schemes an exhaustive computer search is performed. Fig.’s
6.2 and 6.3 show the multiplicity of Bi for the code words with minimum Hamming dis-
tance of 3. Using (6.1.7) the bit error rate upper bounds of the RS (7, 5) coded 8PSK and

the shortened RS (6, 4) coded 8PSK schemes are shown in fFig. 6.4 and 6.5, respectively,

for the cases with and without CSI.

6.1.2. Simulatior: Results

In this section the performance of two short RS coded schemes; namely, RS (7, 5)
coded 8PSK and its shortened code RS (6, 4) coded 8PSK is evaluated via computer
simulation. The soft-decision decoding of these schemes was implemented using the
Viterbi algorithm for cases with and without CSI. The simulation results for the the RS
(7, 5) coded 8PSK and the RS (6, 4) coded 8PSK schemes are included in Fig.’s 6.4-6.5.
In order to compare with the errors-only and the errors-and-erasures decoding tech-
niques, the results for the RS (7, 5) coded 8PSK scheme from Chapter 5 are redrawn in
Fig. 6.6. It is observed that by using soft-decision decoding, about 8.5 dB and 6.5 dB cod-
ing gain can be obtained at a bit error probability of 107 compared to errors-only and
errors-and-erasures decoding techniques, respectively. The use of CSI improves this gain

by 1 dB additional coding gain.

6.2. SUCCESSIVE-ERASURE DECODING

The trellis decoding is applicable for the short codes with a small number of redun-
dancy. For longer low rate codes this technique is impractical because of its high com-
plexity. In this section we consider another soft-decision decoding approach which is
applicable to all RS coded schemes. Such approach, termed successive-erasure decoding,
was introduced by G. D. Forney [72] in connection with Generalized Mirimum-Distance

Decoding (GMD). For binary signaling, this technique yields asymptotically the same
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performance as the maximum likelihood decoding (MLD) [56). However, its perfor-

mance for nonbinary codes with multi level/phase signaling is inferior to that of MLD

[73]. We begin our discussion by reviewing GMD briefly.

6.2.1. Generalized Minimum-Distance Decoding

Lets =(sg, 5, ...,5,_;) be a transmitted code word with symbols from GF (¢), and
r=(rqgry -.r,_;) be the corresponding output from an unquantized channel. Assume
that the receiver consists of a detector and a decoder. The detector constructs two com-
ponents corresponding to each received signal r;, an estimate of s; denoted by §, and a
weight o, 0 < o, < 1, indicating the reliability of that estimate. The output of the detec-
tor will then be a sequence of n estimates §; with their n corresponding weights «, .
Defining

+1 if s=5,

f@s)=1_ (6.2.1)

1 if S2S,
we are able to develop the following theorem.
Theorem [Forney]:
Consider a code of length n and minimum Hamming distance d,. Assume a

received vector r with a corresponding estimate vector § and a reliability vector

a. Then there exists at most one code word s ] for which

n
a.sjsz a‘.f(s“,sﬁ)>n—dh, (6.2.2)
i=1

where 0o, < 1.
Proof :See [72].

This theorem shows that it is possible to madify the errors-and-erasures decoding
technique to utilize the channel side information (soft-decision). It is shown that [72]

using an errors-and-erasures decoding algorithm by no more than (d, + 1)/2 triais the
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unique code word satisfied in (6.2.2) can be decoded, if there is one. This decoding algo-

rithm can be explained as follows.

First we start by applying the errors-and-erasures decoding to the hard-decision
component of the received vector §. The decoded code word is then examined by apply-
ing (6.2.2). If this code word satisfies the condition then it is the estimate of the transmit-
ted code word and we are done. Otherwise we erase the two symbols in § with the least
reliability weights and repeat the errors-and-erasures decoding process. Again, the
decoded code word is tested by the condition of (6.2.2). If it satisfies this condition the
decoding ends otherwise we erase the four symbols with the smallest values of reliabili-
ties, and continue the errors-and-erasures decoding. This procedure is continued up to
erasing d, — 1 symbols, successively. The GMD procedure decodes successfully when-
ever any of the successive decoder outputs satisfies (6.2.2), otherwise a decoding failure

is declared. When successful, it will produce a unique code word.

6.2.2. Choice of Reliability Weight

The performance of GMD depends on the choice of the reliability weight, a. A way
of obtaining an expression for the o, ’s is by optimizing the error probability bound for
GMD at high SNR. This can be done by applying the Chemoff bound technique to the

condition (6.2.2) as follows [72].

The probability of not decoding correctly for GMD is obtained by considering the
condition (6.2.2) as

n-1
P(ndc)= 3, P(r, sj).Pr ) a(r‘.).f(s‘(r‘.),sﬁ)Sn—dh ] (6.2.3)

rs i=0

Using the Chemoff bound, for an ensemble of codes, it is shown that [72]

P(ndc) <exp [—n (Ad, - u(A)) ] , (6.2.4a)

where u{A) = In [g (A)] and
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gA)=E [CXP [7»(1 ~o(r)) . f (£, 5) ] ] (6.2.4b)

Note that in (6.2.4) the subscripts i and j have been deleted for simplicity. The upper
bound (6.2.4a) can be tightened by choosing an appropriate reliability weight o and
optimizing the Chernoff bound parameter A. To choose a(r), g () can be evaluated as

1
gy = —j[P(r 1) . exp(Ml-o(r))+ Y, P(rls).exp(A(1 + a(r))ldr. 6.2.5)
q

sxS

To minimiz. the error bound, we minimize g (A) over a(r). By differentiating {6.2.5) with

respect to a(r), we find that the a(r) which minimizes g (A) is

1 P(ris(r)) i
o(ry=— ln——— = —L. (6.2.6)
2L Y P(ris) 2A

s#S

Since0<agl,wemustseta=1if L 22 A ora=0if L <0. Thus

1 if L 22\
a(r)= {L12A if 0<L<2A (6.2.7a)
0 if L <0,

where

Fa—

P(ris(r))
n————,
Y Plrls)

s#S

(6.2.7b)

6.2.3. SEMDD Algorithm

In GMD the decoder usually does not utilize the full error-correcting capability of
the code since many correctable error patterns, in general, fall outside the error-
correcting radius. In such a case a decoding failure is announced. To improve the perfor-
mance of this decoding algorithm a decoding scheme closely related to GMD [72] is used

as the following. Let the decoder be a full likelihood detector and it store a complete
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likelihood packet for each reception r, , ie., P (r; Is}) for all j. Based on this information
the detector also provides an estimate fl , for each received signal ris for which P (r‘. Isj)

is greatest. Define the estimate log likelihood ratio as

P(r; l.f}(ri )
L($)=1In . (6.2.8)
Yy P, Isj)

S,*S,-

Note that this parameter is the same as the reliability weight, used in GMD, except that it
is not bounded. Now, the same decoding procedure, as explained for GMD, can be
applied by successive erasing pairs of unreliable symbols and utilizing errors-and-
ercsures decoding. In each step of this process an estimate of the transmitted code word
is obtained and is stored. Up to (d, + 1)/2 estimated code words may result. The decoder,
then, chooses that one for which P(rléj) is the greatest, i.e., the one closest to the
received vector r in likelihood distance. For the AWGN channel this is equivalent to
choosing an estimated code word with minimum Euclidean distance form the received
vector. This decoding algorithm is named, Successive-Erasure Minimum Distance
Decoding (SEMDD) [73]. Note that the set of estimated code words generated in this
algorithm is the same as those generated by GMD; the difference is the choice between

them is made by the likelihood measure rather than testing the condition (6.2.2).

Aisc SEMDD algorithm forces the decoder to always make a decision. Although it
is difficult to obtain analytical results for SEMDD it can be said that the performance of
this decoding technique is superior to GMD. This follows from the fact that whenever
GMD decodes correctly so does SEMDD, but converse is not true. Since the complexity
of these decoding algorithms are almost the same, SEMDD is preferred because of its

superior pEi.ormance.

6.2.4. Simulation Results

For GMD, the probability of not decoding correctly can be evaluated for the
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AWGN channel using BPSK signaling [56] and MPSK signaling [73). Indeed, the condi-
tion (6.2.2) provides a basis for this evaluation. However, the performance of SEMDD is
hard to analyze, particularly when the fading channel is concerned. Hence, the perfor-
mance of this decoding technique for different RS coded MPSK schemes are evaluated

using computer simulations.

In our simulation we consider a normalized Rayleigh fading channel for the cases
when CSI is available at the receiver and when it is not. Depending on the existence or

the lack of channel state information, the reliability function of (6.2.8) is

With CSI
M -1).exp(=Ir, —a .§1*INy)
L(s) = In , (6.2.92)
2 exp(=ir, ~a .5 lleO)
s, #3,
Without CSI
M - 1) . exp(=Ir, =5 15N g)
L(5) =1n : (6.2.9b)
Y exp(=lr; =5, 1INy
5, # 5,

where a shows the fading amplitude. In (6.2.9) the factor (M — 1) in the denominator

ensures that the reliability function always will be positive.

In the successive-erasure decoding process, we start deleting 1, 3, ..., d, — 1 sym-
bols successively when d, is even, while forodd d, ’s, 2, 4, ...,d, — 1 symbols are deleted
in each decoding step. This ensures that the full erasure-correcting capability of the code
will be employed.

Fig. 6.6 shows the results of the simulation for the RS (7, 5) coded 8PSK scheme
with and without CSI. It is observed that using SEMDD without CSI for a P = 1()"5,
about 3.5-6 dB coding gain is obtained compared 1o errors-only decoding and errors-

and-erasures decoding, respectively. This coding gain is improved by an additional (.7
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dB when channel state information is used. Comparing the results of SEMDD with those
of the Viterbi decoding reveals that the performance of the latter is superior to that of the

former.

The simulation results for the RS (15, 8) coded 16PSK and the RS (63, 42) coded
8PSK schemes are shown in Fig. 6.7 and Fig. 6.8, respectively. For these schemes, the
use of SEMDD improves the performance compared to hard-decision decoding. How-

ever, this improvement is less than that of the RS (7, 5) coded 8PSX scheme.

6.3. PERFORMANCE COMPARISON OF RS CODED MPSK SCHEMES WITH
SOMEOTHER BCM SCHEMES

In this section we compare the performance of RS coded schemes with other
block-coded 8PSK schemes [65]. These block-coded schemes were designed based on
the set-partitioning approach and consists of three binary codes (n, k,, d,,), (n, k,,d,,)
and (n, k4, d;4). A general structure of these schemes is shown in Fig. 6.9. The informa-

tion bits length, & , for each code is chosen subject to the condition [47]
k,+k,+ky=3Rn, 6.3.1)

where R denotes the code rate. In this case the minimum Euclidean distance of block-

coded 8PSK scheme can be obtained as [47]

2 .
d} 2 min(0.586d, ,, 2d, , 4d, ). (63.2)

In {47]-[51] some BCM schemes are designed for the AWGN channe! based on maxim-

izing the minimum Euclidean distance of (6.3.2). Most of these schemes utilize the

known binary codes as the components of the BCM schemes.

Some BCM schemes are constructed for fading channels [65] based on the time
diversity parameter. We choose three BCM schemes [65] with time diversities 2 or 3 and
compare their performances with that of RS (7, 5) coded 8PSK on a Rayleigh fading
channel. These codes are denoted by BCM1, BCM2 and BCM3 for our reference. The
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parameters of these codes are given in Table 6.1.

Fig. 6.10 shows the average bit error probability of BCM1, BCM2 and BCM3 along
with that of the RS (7, 5) coded 8PSK scheme. The Performance of the latter is shown in
this figure for different decoding strategies. The performance of RS (7, 5) coded 8PSK,
using hard-decision decoding techniques, is comparable with BCM codes with a time
diversity of 2. For this coded scheme provides a time diversity of 2 when errors-only or
errors-and-erasures decoding techniques is employed. It is seen that in this case the per-

formance is almost the same as that of BCM2. However, it outperforms BCM1.

Comparing the performance of the RS (7, 5) coded 8PSK scheme, using the VA,
with that of BCM3 reveals that the performance of the former is superior to the latter in
spite of their same decoding complexities. Recalling that (see Table 6.1) the bandwidth
efficiency of BCM3 (1.7334 bits/Hz/sec) is less than that of RS (7, 5) coded 8PSK
(2.1428 bits/Hz/sec), one can conclude that the lauer provides more coding gain and

more bandwidth efficiency with no decoding complexity price.

6.4. DISCUSSION

The use of soft-decision information in the decoding process of coded modulation
systems provides a remarkable coding gain over hard-decision decoding in Rayleigh fad-
ing channels. This gain in general, is much larger than that achieved in the AWGN chan-
nel, due to the increase in time diversity of the coded schemes when soft-decision decod-
ing is employed.

The implementation of maximum likelihood decoding is realized by introducing a
trellis structure for RS codes and utilizing the VA. A measure of the complexity for this
decoding technique is the number of states in the trellis diagram. This number for RS
codes is q"—k which grows exponentially with the number of redundant symbols. This
decoding technique, hence, is only applicable to codes with small symbol size, ¢, and

small number of redundancy.
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Another implementation of the soft-decision decoding for RS codes is the SEMDD
algorithm. Although SEMDD is asymptotically optimum for binary codes with antipodal
signaling [56], its performance for nonbinary codes with multiphase signaling is inferior

to that of MLD. The results of Section 6.2 confirms this statement.

Indeed, this decoding procedure bridges part of the gap between hard-decision
decoding and MLD, but not the whole gap. For RS (7, 5) coded 8PSK at a P, = 107
almost 2/3 of the MLD performance is obtained by SEMDD. Due to the lack of the
results for the other codes such comparison cannot be done properly. But it is observed
that by increasing the symbol size, SEMDD becomes less effective. This can be

explained as follows.

For the nonbinary case the scalar reliability ‘function (6.2.9) does not contain infor-
mation about reliability in exactly the same way as in the binary case. In the binary case,
there are only two signal points and one decision border. The reliability weight in this
case determines exactly the closeness of each of the signal points to the decision border.
However, in the nonbinary case there are more than one decision border and a small reli-
ability function does not determine which of these decision borders the received signal is
closer to. In other words, it reveals that the hard-decided signal point is unreliable but
does not say which one of the other signal points are more likely to be transmitted one. A
way to improve this decoding algorithm, hence, is to use a reliability vector, rather than a
reliability scalar, for each received signal and to produce more decoded code word can-
didates than that of the SED procedure. This may improve the performance at the

expense of more complexity.

A complexity measure for the SED algorithms is the minimum Hamming distance
d,. Since no more than (d, + 1)/2 successive decoding steps are required for such a
decoding process then the number of an errors-and-erasures decoder needed for SED is
proportional to d, . Recalling that the complexity of the errors-and-erasures decoding

(the Berlekamp-Massey Algorithm) is proportional to dh2 [68], the SED procedure can be
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performed with a complexity proportional to d:.

As a final comment the effect of using the channel state information (CSI) in the
decoding process can be considered. The results of Chapter 5 showed that the use of CSI
in the errors-and-erasures decoding process has no effect on the performance at high
SNR. While the results for soft-decision decoding reveals that the use of such informa-

tion improves the performance of the coded schemes. The effect of CSI for MLD is more

than SED.



Table 6.1. Some Block-Coded 8PSK Schemes [65].
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Code L d¢2 No. of Component Codes n R
States Cps Cy2 Cp (bits/Hz/sec)
BCM] |2 | 4 4 8 Pg (88) | 8 2
d
BCM2 | 2 | 4 8 Ps Py P 15 | 1.9334
d
BCM3 | 3 |6 64 Pis H P, 15 | 1.7334
P . The Overall Parity-Check Code
P: : Dual Code of P,
H 2" - 1,2 =k - 1) Hamming Code




124

"MSd8 P3Pod (S ‘L) Y Jo uresderp sy[aiL "1°9 314

EXs

o
SN
%.f..i\ 3

Ay
S

ALl Sl

< ;<4(‘i




125

Multiplicity, a (332)

RS (7, 5) coded 8PSK
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Fig. 6.2. The multiplicity of the product distance B32 for the code words of the RS (7, 5)

coded 8PSK scheme with a Hamming distance of 3.
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Shortened RS (6, 4) coded 8PSK
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Fig. 6.3. The multiplicity of the product distance B; for the code words of the shortened
RS (6, 4) coded 8PSK scheme with a Hamming distance of 3.
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Fig. 6.4. Performance of the RS (7, S) coded 8PSK scheme, using the VA, in a normal-
ized Rayleigh fading channel.
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Fig. 6.5. Performance of the shortened RS (6, 4) coded 8PSK scheme, using the VA, ina

normalized Rayleigh fading channel.
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CHAPTER7

PERFORMANCE OF TRELLIS AND BLOCK CODED SCHEMES ON
SHADOWED RICIAN FADING CHANNELS

In preceding chapters, two class of bandwidth-efficient coded-modulation schemes,
namely, TCM and BCM schemes were presented. The performance of these schemes was
evaluated for a Rayleigh fading channel. The purpose of this chapter is to evaluate the
performance of these schemes on a shadowed Rician fading channel and compare them
based on the obtained results. With this objective in mind, we first introduce the sha-
dowed Rician fading model and its related parameters. Then the performance of the
coded schemes will be evaluated based on the assumption of the ideal interleaving. We
will also study the effect of the imperfect interleaving on the performance degradation of
the coded schemes. It will be shown that block-coded schemes are less sensitive to the
change of fading bandwidth than the trellis-coded ones. Based on this observation and
other results a comparison will be carried out between these two class of coded-

modulation schemes.

7.1. DESCRIPTION OF THE CHANNEL MODEL

In mobile radio channels, although the statistics of the received signal envelope is
Rayleigh distributed, the shadowing of the radio signal by buildings and hills leads to
gradual changes in local means as the vehicle moves. A suitable model for these channels
assumes that [74] the received signal is the sum of a line-of-sight component, ¥y, which is

log-normally distributed because of shadowing, and a Rayleigh distributed multipath
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component. If the line-of-sight component is temporarily kept constant, then the condi-

tional probability density function of the fading envelope, g;, can be shown as

ai2+'Y2
o T, A
Pair@;1M="—"".e A=) (7.1.1a)
0‘a oa

where oaz is the average of the scattered power due to multipath, and / ,(.) represents the
zero-order modified Bessel function of the first kind. The probability density function
(pdf) of the fading envelope g; is obtained by averaging the conditional pdf of (7.1.1a)
with respect to the log-normally distributed process 7. The pdf of yis

(ny-m.)’

1 262
prp=—".¢e ', (7.1.1b)
21tGy.’Y

where S, and m. are the standard deviation and mean, respectively. Thus,

oo

Py (ai) = JPA |r(a, l'Y)-Pr('Y) .dy

0 0o (ln')‘—m.,)2 (a.2 + ‘f) ]
d R a4Y
- —';——— —e Yy (L)
2no; .o, o ¥ o,

The parameter G, S, and m, determine the degree of shadowing. The values of these
parameters are given in Table 7.1 for different degrees of shadowing for the Canadian

Mobile Satellite (MSAT) Communication channel [75], as an example.

In mobile radio channels the fading amplitudes, g,’s, are correlated due to the
Doppler shift associated with relative motion of the transmitter and receiver antennas.
The Doppler shift depends upon the mobile speed, the carrier frequency, and the angle
between propagation vector and mobile vector [76]. For reasonable bit rates and mobile
velocity, the fading varies slowly compared to the bit rate. This results in a channel with

memory where the errors occur in bursts. The error bursts degrade the performance of the
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coded schemes. To transform the bursts into statistically independent errors,
interleaving/de-interleaving is commonly applied. Sufficiently large interleaving destroys
the memory of the channel. In the following the error bounds for coded schemes on a
shadowed Rician channel are evaluated for zero channel memory (perfect interleaving).

The use of the Channel State Information (CSI) by the receiver is assumed.

7.2. UPPER BOUNDS WITH VITERBI DECODING

In determining the upper bound on bit error probability of trellis coded schemes and
the Viterbi Algorithm (VA), it is useful to recall the state diagram and the associated gen-
erating function approach described in Chapter 4. The pairwise error probability, condi-

tioned on the fading amplitude, is easily shown to be upper bounded by [35]

2 2
~E /4N, Y alls, - |

€M

P (s, §1a) <exp , (7.2.1)

where T is the set of all i for which 5, #5;. The unconditional pairwise error upper

bound can then be determined by averaging over the fading amplitude a, with the result

P,(s,8)<E, {exp

E_4N,Y alls, - § 12] ] (12.2)
€M
where E, denotes the statistical averaging with respect to a. Recall that a union bound on
the bit error probability can be obtained by summing the pairwise error probabilities
weighted by the number of nonzero information bits along the corresponding incorrect
path. This information for a TCM scheme is implicit in the generating function T(D, 1)

associated with the error state diagram (see Chapter 4).

To evaluate the unconditional pairwise error probability (7.2.2) we consider the
time-varying fading. We refer time-varying fading to the fading channel with zero
memory. This is achieved by assuming suitably large interleaving. Because of ideal

interleaving, the fading amplitude, although constant within a signaling interval, Is
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independent from interval-to-interval. In this case (7.2.2) can be written as

Po(s,8) < HEa‘ [exp [—E_‘/4N0 aizls‘. -5 Iz] ] (7.2.3a)
ien
where
- (Iny-m,)’ <a.-’+1’>]
- +
2 2 1 1 21'5,2 2(3‘,2
E, [exp(—a‘ .8‘. .73/4)] = — J —.e
‘ V2o’ Y
G, . Oy g
- a1 +202.82 .y,14)
- 262 ay
Jae ° Af—) da).dy.  (7.2.3b)
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In (7.2.3b), ¥, and 8,-2 denote £ /N and Is5;- Iz, respectively. The second integral can
be simplified using [77, p.717]

oo Bz

2 1 (-4—)
[ re™ JoBt).dt = —e %, (7.2.4a)
0 20

where [77, p. 952]
JoUt) = 1(1). (7.2.4b)

Using (7.2.4) in (7.2.3b), after some mathematical manipulations we obtain

2 2 a’8; 1
Ea' [exp(—a‘. .9, .YS/4)] EEa,[ D' ']l=

1+ 03.5‘.2.7:/2)\/5

5,2.7,/4 A0 tem)
g — N *

2 2
e tretun .dr. (7.2.53)

—o0

where for high signal-to-noise ratios, i.e.,y, > 2/(c; . 5‘2), can be simplified as
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Using (4.2.5) an upper bound on the bit error probability is given by
Py < ';_ aT(aDIJ) 1=1,D =exp(-E,/4N) * (7.2.6)

where the transfer function T(D 1) is obtained from that of the no fading case replacing

82
the branch label factor D ' by (7.2.5b).

Similar upper bounds are obtained for RS coded schemes using the analytical
approach of Chapter 6. For a time-varying fading channel, the upper bound on bit error

probability is determined as
5 d"
a,‘5,2
5 4, a®,) |E (D"
P < —. . , (1.2.7)
b mn B 4, E /4N,

282
where E_|[ p* '] is given by (7.2.5) and the other parameters are defined in Section

6.2.1.

The upper bounds for three rate 2/3 trellis coded 8PSK schemes, namely,
Ungerboeck’s 4-state scheme (4U), New 4-state scheme (4N), and Ungerboeck’s 8-state
scheme (8U) are shown in Fig.’s 7.1-7.3 for light, average, heavy shadowed Rician fad-
ing channels, respectively. The upper bounds for the Viterbi decoding of the RS (7, 5)
coded 8PSK scheme are also included. The simulation results are provided in these

figures for examining the tightness of the upper bounds.

It is observed that these bounds become tight for higher signal-to-noise ratios. How-
ever, the tightness of the upper bounds depends on the degree of shadowing. For the
heavy shadowed Rician channel the upper bounds are weaker than the other two chan-

nels. The problem is essentially that the conditional bound given by (7.2.1) is weak for
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can assume small values unless there is a strong line-of-sight component. Since for the
heavy shadowed channel the line-of-sight component is weak, the upper bound on the bit

error probability in this channel is less tighter than the other two channels.

7.3. LOWER BOUNDS WITH HARD-DECISION DECODING

To evaluate the performance of the RS coded schemes on shadowed Rician fading
channels for errors-only and errors-and-erasures decoding the lower bounds on the bit
error probability of (5.3.10) and (5.3.25) are utilized. The associated probabilities with
these lower bounds, however, can no longer be expressed as closed forms, as was in the

Rayleigh fading. In this case, these probabilities are obtained by numerical integration.

The lower bounds for RS (7, 5) coded 8PSK, as an example, for different degrees of
shadowing are represented in Fig.’s 7.4-7.6. The simulation results for different decoding
strategies, i.e., errors-only, errors-and-erasures, and SEMDD, are also included in these
figures.

The lower bounds of the post decoding bit error rate for the errors-and-erasures
decoding technique have been found by optimizing the fading amplitude threshold, ar,
for each value of E, /N, Fig. 7.7 represents the optimized fading amplitude threshold ar
versus £, /N, for three different shadowed channels. The optimum threshold decreases
with increasing signal-to-noise ratio, E, /N ;. A comparison between optimum threshold
values for different channels shows that this value for the light shadowed channel is
higher than the other ones. However, the slope of the optimum threshold variation of the

heavy shadowed channel is smaller than the light and average shadowed channels.

To study the effect of the erasure threshold a; on the bit error probability this proba-
bility is evaluated for diflerent threshold values. The signal-to-noise ratio is chosen to
yield P, = 107 for optimum threshold decoding. Fig. 7.8 represents the bit error proba-
bility as a function of the threshold value a; for different degrees of shadowing. It is

observed that for values below and above the optimum threshold the bit error probability
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increases. This can be explained as follows. For the threshold values below the optimum
one, the decoder ignores too many erroneous symbols as erasures and hence P,
increases. On the other hand, for values above the optimum threshold the decoder erases
too many correct symbols which again increases P, . It is intersting to note that the per-
formance improvement due to errors-and-erasures decoding depends upon the degree of
shadowing. This can be seen from Fig. 7.8. In this figure the intersection of the curves
with a;. = O denotes the bit error probability corresponding to the errors-only decoding. It
is ohserved that this value becomes higher when the degree of shadowing increases.
Hence, the use of errors-and-erasures decoding in heavy shadowed channel results in

more improvement.

7.4. THE EFFECT OF FADING BANDWIDTH ON THE PERFORMANCE
OFTHE CODED SCHEMES

The preceding sections have been concerned with the evaluation of the performance
of the coded schemes in time-vaing shadowed Rician fading channels under the assump-
tion of ideal interleaving/de-interleaving. The present section will be concemned with the
effect of limited interleaving/de-interleaving. In order to study the performance degrada-
tion of the coded schemes due to the imperfect interleaving, we only change the normal-
ized bandwidth of the fading process. With this approach the effect of interleaving is
taken into account by considering the results for higher fading bandwidth to be

equivalent to those when the actual fading bandwidth is low and interleaving is utilized.

The performance in this case is not amenable to analytical evaluation so that resort
has been made to computer simulations only. Before presenting the simulation results a

brief description of the simulated channel is required.

To simulate a shadowed Rician channel with limited fading bandwidth the com-
ponents of the line-of-sight and multipath fading are filtered to provide the desired

Doppler bandwidth. The block diagram of the simulated channel is shown in Fig. 7.9.
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19 i generated by three independent Gaussian Ran-

The complex channel gainA =a .e
dom Variables (GRV) [39], [45). This random variables are filtered by a third-order
Butterworth filter of 3 dB normalized bandwidth B, T, where B/, is the Doppler fre-
quency of the channel and T denotes the symbol interval. The parameters 03, m. and
c: determine the degree of shadowing. In this study we use the light shadowed channel

with the parameters of Table 7.1. The parameter p depends on the bandwidth of the fad-
ing process and its value for different normalized bandwidth B, T, is given in [45].

The effect of fading bandwidth on the performance of 4-state and 8-state TCM
schemes as well as RS (7,5) coded 8PSK and RS (63, 42) coded 8PSK, on the light sha-
dowed Rician fading channel, are shown in Fig.’s 7.10-7.14, respectively. For RS (7, 5)
coded 8PSK the results are given for both hard-decision and soft-decision decoding tech-

niques, while for RS (63, 42) coded 8PSK only the errors-only decoding is considered.

As one would expect the performance of the coded schemes gets better as the fad-
ing bandwidth increases; that is, when the channel errors become more bursty. Indeed,
for small normalized fading bandwidth the fading is slow enough to be considered as
approximately constant over a number of symbol intervals in a decoding span. Using the

slow-fading model the pairwise error probability (7.2.2) is written as
P (5.9 <E, [exp [—Es/4N0a2Is—§I2]], (7.4.12)

which can be simplified, using (7.2.4), as

1 -~ 10l .e
€

VIno? . dp(s8) . E,/4N _,,

21\50' 1e m')
.dt, (7.4.1b)

P (s, §) <

where dj(s,8) shows the Euclidean distance between sequences s and §. Eq. (7.4.1b)
shows that the pairwise error probability varies inversely with E /N, and hence, the
coded scheme only provides time diversity of order one. This is in contrast with the

time-varying fading case where the time diversity of the coded scheme depends upon the
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length of the shortest error event path. Considering that the uncoded schemes also pro-
vide time diversity of order one, we may find that the coded schemes on slow-fading
channel perform worse than the uncoded one (see, for example, Fig.’s 7.10-12). To get
benefit of coding in fading channels with memory, therefore, the use of sufficient inter-
leaving is required.

It is observed that the performance degradation of RS (63, 42) coded 8PSK is much
less than that of RS (7, 5) coded 8PSK. In the former case, for B, T, 20.2 there is little
difference from the limiting random channel, i.e., B, T, =oo. One might expect this by
considering the high error correction capability of this code. Also, because of its struc-
ture this coded scheme treats burst errors of two channel symbols as one error. Of interest
is also the difference between performance degradation of the RS (7,5) coded 8PSK
scheme for different decoding strategies. The sensitivity of the Viterbi decoding to the
variations of fading bandwidth (imperfect interleaving) is more than the errors-only

decoding technique.

Here we compare the effect of the channel fading bandwidth on TCM and RS coded
schemes. The average bit error probability, for different coded schemes, in terms of the
normalized fading bandwidth is plotted in Fig. 7.15. These results are given for
E,IN, = 10dB. Itis observed that, in general, the RS coded MPSK schemes are less sen-
sitive to the variation of fading bandwidth than TCM schemes. For example, for RS (63,
42) coded 8PSK the bit error rate (BER) degradation for ¢he fading bandwidth range of

0.1-0.3 is less than 2 times, while this degradation for an 8-state TCM is about 10 umes.

The performance degradation of TCM schemes is due to the sensitivity of the
Viterbi decoding to bursty errors. This algorithm contributes in degradation of the perfor-
mance in two ways. First, its error propagation nature which is more effective when the
fading bandwidth is small and channel creates burst errors. Second, its non-optimum
metric when the samples of the fading process are correlated. Recall that in applying the

Viterbi algorithm it is assumed that the channel is memory-less, therefore, the maximum
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likelihood rule results in an equivalent Euclidean distance as an additive metric. For the
channels with memory the use of such a metric may not be the optimum choice. Note that
in the Viterbi decoding of the RS codes since each block is decoded independently the
error propagation does not exist, while the second problem can be considered as a source

of degradation.

7.5. DISCUSSIONS

To show the efficiency of the RS coded schemes, the performance of these schemes
are compared_with some rate 2/3 TCM schemes on the light shadowed Rician fading
channel. Fig. 7.16 shows the simulation results for the New 4-state (4N) and
Ungerboeck’s 8-state rate 2/3 trellis coded 8PSK schemes over such a channel with the
use of CSI. The simulation results for errors-only decoding and SEMDD of RS (7, 5)
coded 8PSK and RS (63,42) coded 8PSK are also included.

It is observed that the performance of RS (7, 5) coded 8PSK, using hard-decision
decoding, is inferior to both TCM schemes. However, this scheme with soft-decision
decoding, the VA or SEMDD, outperforms the 4-state TCM. The performance of RS (63,
42) coded 8PSK is superior to the TCM schemes at high SNR’s. This concludes that the
use of RS coded MPSK schemes becomes interesting only for large values of SNR where

they begin to outperform trellis codes.

To compare the performance of different decoding strategies for the RS coded
schemes over shadowed Rician fading channels, the results of Fig. 7.1-7.3 are summar-
ized in Table 7.2 for the RS (7,5) coded 8PSK scheme. In this table the additional
improvement in coding gain compared to the errors-only decoding technique is given at
bit error rate of 107,

We see that there is only a small difference between errors-only and errors-and-

erasures decoding performances. Considering Fig. 7.8 it is also observed that the perfor-

mance of the errors-and-erasures decoding quickly deteriorates if the threshold is not
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optimal. In view of this and difficulty to estimate the fading amplitude errors-and-
erasures decoding seems an unattractive solution. Instead, SEMDD promises a remark-

able coding gain with some increase in the complexity.

Among the different decoding strategies, the soft-decision decoding is the most
effective one. Note that for such channels the use of soft-decision decoding results in a
SNR improvement considerably larger than 3dB, the value typically obtained for the
AWGN channel. In hard-decision error correction decoding of block codes, errors can
occur when the number of errors exceeds the minimum distance of the code, and hence,
the effective order of diversity is half the minimum distance of the code. On the other
hand, in soft-decision decoding the effective order of diversity corresponds to the
minimum distance of the code. In the case of RS (7, 5) coded 8PSK, soft-decision decod-
ing changes the effective diversity order of code from 2 to 3. This increases the slope of
the BER curve and causes a significant coding gain which increases with SNR. However,

this is achieved by increasing the complexity of the decoder.

The complexity of the soft-decision decoding, using the VA, is measured by the
number of the states in the trellis diagram. Hence, the complexity of the soft-decision
decoding of the RS(7,5) coded 8PSK scheme, for example, is compared with a 64-states
trellis decoder. However, the decision depth and the decoding delay in this case is much
less than that of an equivalent 64-state trellis code. For a 64-state trellis code the decision
depth is at least 5x6 = 30 channel symbols, while this delay for the RS (7.5) coded 8PSK
scheme is 7 channel symbols. The lower decision delay can be considered as a privilege
for this scheme when the overall transmission delay is limited. This allows one to
increase the size of the interleaver/de-interleaver and improve the performance of the

coded system for burst error channels.

It is also interesting to note that the improvement in SNR for a given bit error rate
depends on the degree of shadowing. Table 7.2 shows that this improvement increases

with the degree of shadowing. In fact, in heavy shadowed channels the line-of-sight com-
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ponent of the received signal experiences more shadowing, hence, the use of the channel
measurement information in the decoding process will result in a larger SNR improve-

ment.
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CSI:

Table 7.1. Channel Model Parameters For a Mobile
Shadowed Rician Fading Channel

Degree of Shadowing 002 m., o,
Light 058 | 0.115 | O.115 |
Average 0.126 -0.115 | 0.161
Heavy 0.0631 | -3.91 0.806

Table 7.2. Additional Coding Gain of Different Decoding Strategies
Compared to Errors-Only Decoding Technique at a
Bit Error Rate of 107, for RS (7, 5) Coded 8PSK

Decoding Strategy EED Soft-Decision (VA)
Degree of Shadowing Without CS1 | With CSI
Light TdB 5.5 dB 6.5dB

Average 1.5dB =6 dB =7 dB
Heavy 2dB =7 dB =8.5dB

Denotes Errors-and-Erasures Decoding
Denotes the Viterbi Algorithm

Denotes the Channel State Information
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7.1. Performance of some trellis-coded 8PSK schemes and the RS (7, 5) coded

8PSK scheme over the light shadowed Rician fading channel.
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Fig. 7.2. Performance of some trellis-coded 8PSK schemes and the RS (7, 5) coded

8PSK scheme over the average shadowed Rician fading channel.
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Heavy Shadowed Rician Fading Channel with CSI
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Fig.7.3. Performance of some trellis-coded 8PSK schemes and the RS (7, 5) coded

8PSK scheme over the heavy shadowed Rician fading channel.
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Fig. 7.4. Comparison of the bit error probability of RS (7, 5) coded 8PSK for different

decoding strategies over the light shadowed Rician fading channel.
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Fig. 7.5. Comparison of the bit error probability of RS (7, §5) coded 8PSK for different

decoding strategics over the average shadowed Rician fading channel.
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Fig. 7.6. Comparison of the bit error probability of RS (7, 5) coded 8PSK for different
decoding strategies over the heavy shadowed Rician fading channel.
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Fig. 7.7. Optimum fading amplitude threshold for errors-and-erasures decoding of the

RS (7, 5) coded 8PSK scheme for three different shadowed Rician fading chan-

nels.
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Fig. 7.8. Bit crror probability of RS (7, 5) coded 8PSK as a function of erasure threshold
ar, for different shadowed Rician fading channels.
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Fig. 7.9. The block diagram of a shadowed Rician fading channel simulator.
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Fig. 7.10. The effect of normalized fading bandwidth on the performance of new 4-state

TCM scheme over the light shadowed Rician fading channel.
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Fig. 7.11. The effect of normalized fading bandwidth on the performance of 8-state

Ungerboeck’s TCM scheme over the light shadowed Rician fading channel.
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Fig. 7.12. The effect of normalized fading bandwidth on the performance of the RS (7, 5)
coded 8PSK scheme over the light shadowed Rician fading channel using

errors-only decoding.
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Light Shadowed Rician Fading Channel with CSI
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Fig. 7.13. The effect of normalized fading bandwidth on the performance of the RS (7, 5)

coded 8PSK scheme over the light shadowed Rician fading channel using

Viterbi decoding.
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Light Shadowed Rician Fading Channel with CSI
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Fig. 7.14. The effect of normalized fading bandwidth on the performance of the RS (63,
42) coded 8PSK scheme over the light shadowed Rician fading channel using

errors-only decoding.
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bandwidth for the light shadowed Rician fading channcl without interleaving.
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Light Shadowed Rician Fading Channel with CSI
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Fig. 7.16. Performance comparison of RS coded 8PSK schemes with some trellis-coded
8PSK schemes over the light shadowed Rician fading channel.



CHAPTER 8

CONCLUSIONS

8.1. CONCLUDING REMARKS

A main goal of this work was to introduce strong bandwidth-efficient coded-
modulation for bandwidth-limited fading channels. In Chapter 2, using the random error
bounding technique we evaluated the error bounds for an ensemble of coded schemes on
fading channels. The cut-off rate was computed for some two-dimensional signalings on
a Rayleigh fading channel for different decoding strategies. We observed that using
bandwid h-efticient schemes one may expect reduction of 38 dB in SNR at error proba-
bility around 10 without sacrificing bandwidth efficiency. This improvement comes
from using the rcdundancy of an expanded signal set. Alco. it was shown that the reduc-
tion in SNR due to the use of soft-decision decoding in fading channels is more

significant than that in the AWGN channel.

Next, in Chapter 3, we presented a brief background on the aspects of trellis-coded
modulation and evaluated the performance of these schemes on a Rayleigh fading chan-
nel. We observed that the performance of the coded schemes on fading channel is deter-
mined by their time diversity and minimum product distances. In contrary with the
AWGN channel, the nimmum Euclidean distance has secondary importance in fading
channels, particularly at high SNR's.

Chapter 4 was devoted to the design of a new 4-state rate 2/3 8PSK TCM scheme
based on maximizing the time diversity and the minimum product distance. Three design

rules were introduced to avoid exhaustive computer search. The performance of the new
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scheme was compared with two other 4-state rate 2/3 8PSK TCM schemes by means of
upper bound analysis and simulation. This comparison showed the superiority of the new

scheme compared to the other ones.

We extended the design of the coded-modulation schemes to block codes in Chapter
5. In this context RS codes were chosen as a class of nonbinary block codes and com-
bined with MPSK signaling. The RS coded MPSK schemes were constructed by either
using the same symbol size for RS code and MPSK signal set, or concatenating two
MPSK symbols to form an RS code symbol. The second approach yields low rate codes
which provide higher time diversities. The lower bounds on the bit error probability of
some examples of RS coded schemes were evaluated for a Rayleigh fading channel. In
this evaluation we considered errors-only decoding as well as errors-and-erasures decod-
ing. The effect of channel state information on the erasure generation strategy was also
studied. It was shown that this information does not affect the performance of the coded
schemes at high signal-to-noise ratios. The tightness of the evaluated lower bounds were

confirmed by the simulation results.

The issue of soft-decision decoding of RS coded MPSK schemes was addressed in
Chapter 6. Unlike convolutional codes, n general, there 15 no low complex solution such
as the Viterbi algorithm for soft-decision decoding of block codes This issue was treated
separately for short high rate and long low rate RS coded schemes. Introducing a trellis
structure for the former codes the Viterbi algonthm was utihized for soft-decision decod-
ing. The upper bound analysis as well as the simulation results showed that the improve-
ment due to soft-decision decoding 1s considerable. For long low rate RS coded schemes
successive erasure mimmum distance decoding was applied. We observed that although
the performance of this algorithm is inferior to the maximum likelihood decoding, it can

be implemented with lower complexity.

Finally, in Chapter 7, we applied the obtained results in the preceding chapters to a

shadowed Rician fading channel with the parameters of the Canadian Mobile Satellite
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(MSAT) Communication channel. The performance of TCM schemes as well as RS
coded schemes was evaluated. We also studied the effect of imperfect interleaving on the
performance of the coded schemes by changing the normalized fading bandwidth and
observed that the RS coded schemes are less sensitive to the fading bandwidth than TCM

codes.

To summarize our achievement in introducing the bandwidth-efficient coded-
modulation schemes, we tabulate the coding gain of some coded schemes, constructed in
the thesis, compared to the uncoded QPSK, in Table 8.1. These coding gains are
evaluated at P, = 107. As a benchmark, the reduction in SNR due to use of bandwidth-

efhicient coded schemes predicted by cut-off rate discussion of Chapter 2 is also included.

8.2. SUGGESTIONSFOR FURTHER RESEARCH

There are several directions, related to this work, which can be the subject of
further exploration in the future. We may classify some of the most important ones as fol-

lows.

8.2.1. Rotationally-Invariant Coded Schemes

In coherent detection, the recerver extracts the frequency and phase knowledge of
the reference carnier from the received signal by means of carrier recovery circuits. In
this case. a rotation in the phase of the received sequence can cause errors in the subse-
quently detected data symbols. These errors last until the end of message and may there-
for severely degrade the performance of the system. The remedy for this problem in the
uncoded schemes is using the differential coding technique. However, this may not be
applied directly to the coded scaemes. For, in general, the coded sequences are not tran-
sparent to the phase rotations and hence they are not differentially decodable. This
difficulty can be removed by designing the noded scheme in such a way that a rotated
version of a given coded sequence is a valid code word. This imposes a constraint in the

code design procedure and may degrade the performance of the coded scheme. The
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design of the rotationally-invariant TCM schemes for AWGN channels are well treated
in the literature. However, it has not been extended to fading channels. Thus, construct-
ing rotationally-invariant TCM and BCM schemes for fading channels needs further

investigations.

8.2.2. Soft-Decision Decoding of Block Codes

The lack of low complex soft-decision decoding of block codes can be considered
as a drawback of these schemes compared to convolutional ones. This issue can be
important particularly on fading channels when the use of soft-decision information of
the channel promises a significant improvement compared to the hard-decision one. On
the other hand some features of the block codes make them a good candidate for con-
structing bandwidth-efficient coded schemes on fading channels. For example, 1t seems
that binary cyclic codes can be used in designing the rotanonally-invariant coded MPSK
schemes because of their cyclic shift property. Although in the past this 1ssue has been
the subject of extensive research, we feel that further effort can be devoted to this prob-

lem regarding to the evolution of the technology and advanced processing techniques.

8.2.3. The Effect of Imperfect Carrier Synchronization and Differential

Detection on the Performance of the Coded Schemes

Throughout the thesis the performance of the suggested coded schemes was
evaluated under the assumption of 1deal coherent detection. The results derived from
such evaluation only reflects the effect of the fading amphitude. However, in practice it is
difficult to maintain the phase coherency and the performance of the coded schemes may
degrade if the imperfect synchronization effects are tuken 1nto consideration.  Additional
investigations therefore should be made to study the effect of imperfect carrier synchron-

ization on the performance degradaton of the coded schemes.

The performance analysis of the coded schemes can also be extended to multilevel

differential phase shift keying systems. Although differential detection degrades the per-
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formance of the system, it has an important advantage over coherent reception in that a

means for extracting a carrier demodulation reference does not have to be provided.

8.2.4. Tighter Upper Bounds

We used the Chemnoff bound technique in the upper bound analysis of soft-decision
decoding of the coded schemes on fading channels. The simulation results show that this
bound is weak on fading channels unless there is a strong line-of-sight component in the

received signal. Developing the improved bounds can be considered as a future work.
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Table 8.1. Coding Gain of some TCM and BCM Schemes, Constructed

in the Thesis, Compared to the Uncoded QPSK

at Bit Exror Probability P, = 107

Coded EOD | EED | SEMDD | SEMDD VA VA Cut-Off Rate
Scheme wo/CSI w/CSl1 wo/CSI | w/CS1 | Prediction
dB dB dB dB dB dB dB

4S-N 22.0 237 38.0
RS75-8 17.6 20.0 | 22.6 23.4 24.0 254 38.0
RS158-16 || 21.0 240 | 26.0 26.6 38.5
RS6342-8 || 28.0 29.6 [ 30.4 31.0 38.0

EOD: Denotes Errors-Only Decoding

EED: Denotes Errors-and-Erasures Decoding

SEMDD: Denotes Successive Erasures Minimum Distance Decoding

VA: Denotes the Viterbi Algorithm

wo/CSI: Denotes without Channel State Information

w/CSI: Denotes with Channel State Information

4S-N: Denotes 4 State New TCM Scheme

RS§75-8: Denotes RS (7, 5) Coded 8PSK Scheme

RS158-16: Denotes RS (15, 8) Coded 16PSK Scheme

RS6342-8: Denotes RS (63, 42) Coded 8PSK Scheme




APPENDIX A

CALCULATION OF THE CHERNOFF FACTORS FOR
RICIAN AND RAYLEIGH FADING CHANNELS

In this appendix the Chemoff factors are derived for Rician and Rayleigh fading chan-

nels with and without the channel state information.

A.1. FADING CHANNEL WITH CSI

Assume that the channel state information is available at the receiver as
a=(aga,...ay ) for the transmitted sequence s = (5q, §¢, .., Sy_y) and the received
oner=(rory.."_y)- For two-dimensional signals the components of the vectors a, s,
and r are represented as complex numbers. Using (2.2.9), the ML metric of (2.3.9a) can

be written as
m(r,s,a)=-Ir-a.sl’, (A1)
where, for simplicity, the factor (E_/tN O)N/2 is ignored, since it would be absorbed in the
Chemoff bound parameter A anyway.
Using this metric, the Chemoff bound between the code words s and §, defined in
(2.3.12¢), is written as

C(s,§.k)=Ea[Er,s [cxp A(Ir—a.sl’~ lr—a.élz))] ]
N-1

= T1E, |, [exwhr, ~a5 %1r —a6 ]| a2)
j=0

where a ; and n, are the fading amplitude and the additive noise components in signal
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interval j and are assumed to be independent to the corresponding components of the

other intervals. Recalling that

r=a.s+n, (A.3)

after some simplifications, (A.2) can be written as
N-1
Ce.8,0)=1T] E"; [exp(—szlsj—s'J 12) E", [cxp(-ZMch{nJ(sj -.fj)‘} ] ] (A.4)
j=0
where Re and * denote the real part and complex conjugate of a complex number,
respectively. The statistical expectation with respect to the complex Gaussian random

variable can be simplified as

. N()
E, [exp(—Zl.a Refn (s,-5) ) ] = exp(~Aa(1 - — Mis, -§ 1. (AS)

s

Substituting (A.5) into (A.4) yields

N-1 N
0
Cs.8M =[] E, |exp-ha (1= — Mls, = £ 1%) |. (A.6)
! E
;=0 s
The above bound is minimized by setting
ES
A= Aopt = 2N0' (A7)
which, when substituted in (A.6), results in
N-1 Es ) ,
C@s, 8,0 =TJ]E, exp(———.aj ) Isj —S‘JI ) |,
, ! 4N,
J=0
N-1
= 1 CG,.5)). (A.8)
j=0

Dropping the subscript j, for simplicity, the Chemnoff factor of signals s and § can be

written as



ES
. _Ss 2 2
C(.s,§)=Ealexp(— a“ls=51%) |,
aN
oo ES :
= IPA(U) : Cxp(-—'—a"ls—s‘lz).da,
o aN
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(A.9)

where p ,(a) is the pdf of the fading amplitude. Now, consider a Rician fading channel

with the pdf given in (2.1.8). Abbreviating |s —§ IzEs/4N0 by 8 in (A.9), we proceed

as

oo

Cis. )= [ 2001 + K)o K240 +K1=a8Y 0, KR 5 1)) da.
0

This integral can be evaluated using [77,p.717]

2 1 _ 24
J'w—w .JO(BI).d =—¢ B/a,
20
0
where |77, p. 952}
J()(_il)=10(t),
as
2
1 +K KESI4NOIS—§I
Cis.S)= exp |- 3
1+K + E /AN ls -£17 1+K +E/4Nls - |

The Chernoff factor for a Rayleigh fading channel can be simplified as

1

C(s.)= ,
i+ E 4N yls -1

by substituting K = 0 in (A.12a).

(A.10)

(A.11a)

(A.11b)

. (A.12a)

(A.12b)



A.2. FADING CHANNEL WITHOUT CSI

The ML metric for the case of decoding without the channel state information is

given by
m(r,s)= —Ir-sl% (A.13)
In such a case, the Chernoff bound between code words s and § is expressed as
C(s.8,0)=E, [Erls [exp A(Ir-s1? = 1r-51%) ] ]
N-1
=T1E, [En) [cxp( A, =5, 1=1r = £ 12))] ] (A.14)
) =0

which simplifies to

N-1
C(s,80 = [T exphtis, 1715, 1%).

1=0
Ea’ [cxp(—?.laj( bs 17— Refs,$ ) E", exp(=2A(Refn (5 —s;)})) ] ] (A.15)

Following the same procedure as the case with CSI, the above expression can be further
simplified as
N-1 N

, 0
C(s,8. 0= T exp(hils, 17— 15, 1° + A—15, = £ 1%)

E
y=0 s

22 e e 2
'E“, [exp(ajk(ls}l I.sjl + I.sj sjl ))] (A.16)

Unlike the case with CSI, (A.16) cannot be optimized over A to yield a constant value for
this parameter. The optimization procedure should be done after averaging over the fad-
ing amplitude distribution. Therefore, replacing the Chemoff paramétcr A by AE N,

(renormalization), the Chernoff factor of signals s and § is obtained as
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ES
CGs,§,0) = exph—C(Is 12= 1812+ Als —£1%)
NO
ES
E, | epi—a(s 2= 1512+ 15 - £1%) (A.17)
NO

The above expression cannot be evaluated in a closed form for a Rician fading channel.

In such a case, similar to [2.10], this is expressed as

E

CGs,§,0) = exph—(Is 12= 112+ A1s = £1Y)
NO
n
e X 2
.—-—J(l — Vrerfc(v)e' v) . do, (A.182)
T
0

where

AE 2N (1517 = 1617 4+ 15 - §17)
v= ~VK cos(6). (A.18b)
Y1 +K

For a Rayleigh fading channel C (s, §, A) is expressed in a closed form. For K = O the

integral in (A.18a) is evaluated as

n
J'(l -\/_nerfc(v)evzv) .do = 1—\/1_terfc([5).e’32 . B, (A.19a)
0
where
AE,
B=—(Is12=1£1% + Is = £1%), (A.19b)
2'NO
and
ES
C(s,§,0) = exph—(Is 12 = 1§12 + Als = §1%)
NO

(A= merfc (). e . p). (A.19¢)



APPENDIX B

CALCULATION OF THE TRANSITION PROBABILITIES FOR
THE MPSK SIGNAL SET OVER A RAYLEIGH FADING CHANNEL

In this appendix the transition probabilities for an MPSK signal set over a Rayleigh fad-

ing channel are derived.

The decision regions for an MPSK signal set, in general, are shown in Fig. 2.7,
which include a null zone for the erasure decoding. Due to the symmetry of the MPSK
signal set the transition probabilities {g,; } are independent of the i -th signal. Thus, drop-

ping the subscript i, these probabilities are evaluated for signal 5. Then q, is defined as

ql =Ea

Ip(r l'sgpa).dr ]; 1=0,1,..,q-1 (B.1)
A

where A; shows the /-th decision region. Recalling that r, n, and s, are complex

numbers and using (2.2.9), (B.1) can be written as

] E, 2 2
Es - (ry-as5))" + (ry-as)" ]
q=E, JJ - e ° .dry.dr, |,
L A 0
] E,
E -— r,2 +r22—2a(s,r, +s,,rz)+a2(sl2 +.922)]
5 N, ‘
=E, Jj nNe dr.dry,|,
L A 0
E-—lri+ri-2ar+a’]
s N,
=E e .dry.dr, |, (B.2)
‘ N
L A, 0
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wherer =r, +jryand s, = s, + js, = 1. Introducing the polar coordinates as

rl =p . cosb,
, =P . sind,
dr1 dr,=p.dp.do, (B3)
(B.2) can be simplified as
E,
-—-——[p 2apcos9+a ]
.p.do.dp|,
ar 9 0
= —7\1_“’ —20pcosO+a 1
=I(2ae f J————e ’ .p.d6.dp).da, (BA)
0 ar a, 0

where o, = (2/ - 1)n/M and o, = (21 + 1)n/M . Interchanging the order of integrations

and after some simplifications, (B.4) can be written as

2apE,IN,

cos0]

)da )dp)d6, (B.5)

~(1 +E,INgla®-
El op J ae 1+E,INg

Ou, ar 0

The integration with respect to a can be expressed as

2apE IN
~(1 +E,/Ng)a’- ocosB] pE IN Vrcosd
1+E,IN, 1 s 0

ae da = [1+

2(1 +E,/Ny) T EN,

0

pz(E, IN o)zcosze
I pE /N ,cos6

‘ll_rEs/] ' 0

1+E,/N
.€ ° erfc(~

)1 (B.6)

Substituting (B.6) into (B.5) results in
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@+ 1)ywM o

E_IN E
s'*7 0 n ~E a; 3N
q = ( e Ty I de( I pz—-s-\/ifcose
n(1+E,INy) ME,IN, aomm o No
- PXE, IN o) cos’8
“EpINg+—————  _oF N cosB
E,IN 0
e PEN  orfe(————) dp)). (B.7)

QI +Esm0

The probability of the received signal being in the null zone can be obtained from {q, } as

q-1
qe = 1— Z ql' (B'8)
1=0

Note that the transitions probabilities for hard-decision decoding can be simply obtained

from (B.7) by settinga, = 0.1t is obvious that in this case g, = 0.




APPENDIX C

C.1. CALCULATION OF THE PROBABILITY OF CORRECT DECISION
OF A RELIABLE MPSK SYMBOL

The probability of the correct decision of a reliable MPSK symbol, Qf , is defined as
(5.3.15). For the equiprobable transmitted MPSK symbols this probability is independent
of the ith signal. Hence, dropping the subscript i, the probability of correct decision of a
reliable MPSK signal is evaluated for the decision region A,. This evaluation can be
simplified by interchanging the integration and averaging operations. Further
simplification can be obtained by introducing the polar coordinates p and 6 related to r,
and r, as

n=p.cosd,

ry=p.sind,
dry.dry=p.dp.de. (C.1)

Representing the radius of the erasure region by p; ( see Fig. 2.7 ), after some

mathematical manipulation (5.3.15) can be written as

2

2 = _p
E_ e—prlzoz VoY, J’ 2 _20‘(1 +v,)
B M(1+y,) ! 2na’(1 +7,)" b, -
WM ¥,p'sin’0 "
X j cosh . e w(“y'). j e™ .0 | .dp, (C2)
-wM i

i+,
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where v, = E /N, is symbol energy-to-noise ratio and o = Ny2. In general, this expres-

sion should be calculated numerically. However, applying the approximation

2 2 g
erfc(x)= — je-‘: .dt=—-e™", (C.3)
n

. Vix

the expression inside the parentheses in (C.2) can be simplified as

M y,p’sin’0 oo
I 20%(1 +7,) %
J cosB.e " I e’ .do=
WM P8
1+7,)
1,0’
on\2(1 +v,) Y, psin(vM ) 2no\T+7, 25 1)
= ———— . [1=erfc( )| - .e . (C4
M
P 2okl + %) PM 2y,
Substituting (C.4) into (C.3) and performing some calculations yields
3 2041 1 20801 +7) W, psin(n/M)
QE =e L S Ip.e h erfc(—).dp. (C.5) :

2
G (+%),, \26%(1 + 15)

Using integral by parts the integral part of (C.5) can be evaluated as

20%(1 +1,) Vi psin(/M ) ]

p.e erfc (——————) . dp :
Pr V21 + %) 2
Pr

K]
K
!
3
¥
“
I
3
a
)
3
K
H
i

—2o’(l +7,) \ﬁs-prsm(“/M )
erfc(—)

V2621 + 75)

Fo( +y)sinuM)  ppN1 + Yesin (M)
- erfc( ). (C.6)

21 + yssin(iM ) 261 + )

02(1 +v,)e

N =
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The final result can be obtained by substituting (C.6) into (C.5) as
pr
B 261 +7,) VY, sin(rvM ) pT\Jl + Ys sin2(1t/M )
Q =e¢ + .erfc( )
N+ gsin(um) V2621 + )
Pr
290+ P T SIn(IM )

- .erfc( ). (C7)

\Jzoi(l + Ys)

Defining the normalized erasure threshold region radius p, as p; =p,/yE, and using the

approximation ¥, =¥, + 1 at high signal-to-noise ratios, (C.7) can be written as

- P W, sin(rvM ) .
Q" =e "+ .erfc(\ﬁ + Yssin (WM )p, )

V1 + yssin>(wM)

—e " erfc(W,py sin(uM)). (C.8)

C.2. CALCULATION OF THE PROBABILITY OF CORRECT DECISION
OF AN UNRELIABLE MPSK SYMBOL

To find the probability of correct decision of MPSK symbol when the received sig-
nal falls into the erasure region we may follow the same steps as previous part. In this
case the integration with respect to r in (C.2) should be carried out from 0 to p,. Follow-
ing the approach of section I the probability of correct decision of an unreliable MPSK

symbol, QE , at high signal-to-noise ratios, is found to be

;o Y, sin(uM ) -7
=e " erfc(\Y,py sin(m/M)) + -e

\Il + Ys sinz(n/M )

Q

VY, sin(wM )
- cerfe(N1 + Yssin (M )py.). (C9)

V1 + yssin’(uM )
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C.3. CALCULATION OF THE PROBABILITY OF A RELIABLE MPSK
SYMBOL

To find the conditional probabilities P and Pg,, . the integration in (5.3.17) has

SMIE

to be evaluated. To avoid numerical integration using some approximation is necessary.
Interchanging the integration and averaging operations in (5.3.17) and introducing the

polar coordinates as (C.1) this equation can be written as

o 32 o ) o y,pcos’®
—— -—t
J' I( L% VZ¥,p"cosb , 26 201+
o, -2 2no a1+ y,) 21!0‘3(1 +y,)3'2
X f e dx).p.dp.d6. (C.10)
—ﬁpcosﬁ/xﬁo’(l +9,)

The interval of the integration with respect to phase, i.e., (-2, 32 ) can be divided into
two intervals (—n/2, /2 ) and (7/2, 3n/2 ). After some mathematical manipulations the fol-

lowing expression results

pr - PP

-

— 2
1 26° = PNV, . 20" 2071+,
1+7, b, 210701 +1)"

2 ¥,p’sin’6

Fa
w [ co.e " (1= erfe(—22 )y . 40 dp. (C.11)

-2 GQI""Y_,

Using the approximation of (C.3) and ignoring 1 with respect to y, at high signal-to-noise

ratios, (C.11) can be simplified as
2
T

-p
Pgy =€ "(1-erfc (\{r_rm‘ybpr.)) + erfc (\WYbPT_)- (C.12)

The probability of being in unreliable (erasure) region, P, is obtained as

PEM =1—PEM' (C.13)
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