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Abstract
Bifurcations In SQUIDs

Deming Li

A theoretical study of bifurcations in a system modelling Superconducting Quan-
tum Interference Devices (SQUIDs) is presented. This system also serves as a model
of a pair of coupled pendula. Maginu [1983] numerically studied bifurcations of the
damped SQUID system. His results indicate that the in-phase rotation is unstable
for a certain range of the coupling strength. Out-of-phase rotations bifurcate from
the in-phase rotation. In the unstable range, there is a chaotic motion. Doedel,
Aronson and Othmer [1988, 1991] studied the bifurcations of the system in both the
damped and the undamped case. The system undergoes period-doubling bifurcations
for suitable coupling strengths. 2T-periodic rotations bifurcate from the T-periodic
rotation. In the damped case, the system gets to a chaotic motion via period-doubling
cascades. These computational results yield some qualitative insight on the nature of

the solutions. They also motivate the theoretical analysis in this thesis.

Our study is divided into two cases: damped and undamped. In the undamped
case, the system is Hamiltonian. When the coupling strength is small, there are
chaotic motions on certain energy manifolds. When the coupling strength is not
small, the Hamiltonian system is not integrable. With Group Theory and Singularity
Theory, we have investigated the bifurcations from a family of in-phase rotations. It
is found that the system undergoes period-doubling ( Floquet multiplier = -1 ) and
fixed-point ( Floquet multiplier = +1 ) bifurcations. In the case of the period-doubling
bifurcation, 2T-periodic out-of-phase rotations bifurcate from the T-periodic in-phase
rotations. Depending on the solutions of the linearization, the system exhibits dif-
ferent kinds of bifurcations. The system has Hopf bifurcation if the linearization

has odd 2T-periodic solutions. If the linearization has no odd 2T-periodic solutions
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then the system has a degenerate Za & Z32 -bifurcation. In this case, the nonlincar
Zy & Z2 -symmetry bifurcation equation is shown to be degenerate and under cer-
tain conditions it is equivalent to a simplified normal form. Bifurcation diagrams are
presented. In the case of fixed-point bifurcation, T-periodic out-of-phasc rotations
bifurcate from the T-periodic in-phase rotations. The normal form and bifurcation
diagrams are qualitatively the same as the ones in the period-doubling bifurcation.
In the damped case, there is a period-doubling and therc might be fixed-point
bifurcations. Under certain conditions, a 2T-periodic out-of-phasc rotation bifur-
cates from the T-periodic in-phase rotation in a period-doubling bifurcation, and a
T-periodic out-of-phase rotation bifurcates from the T-periodic in-phase rotation in
the fixed-point bifurcation. The normal form and bifurcation diagrams are presented.

In all cases, the theoretical conclusions are compatible with the numerical results.
This thesis shows a systematic way to apply Group Theory and Singularity Theory

to bifurcation problems. It can be used to analyze the bifurcation in other dynamical

systems such as periodically forced oscillators with one degree of frecdom.

iv




Acknowledgments

It is hard to imagine that I could have finished this thesis without my supervisor’s,
Dr. E.J. Doedel, excellent guidance and moral support. 1 really enjoyed the research
and appreciate his profound knowledge and kindness

I would like to thank Mr. Xianjun Wang and Mr. Pankaj Kamthan for helpful
discussions.

1 would also like to thank Dr. Xinming Yu for his wonderful help in my course

study and in using computer systems.



Contents

List of Figures

1

Introduction

Chaotic Motion When Weakly Coupled
2.1 The Reduced Hamiltonian System . . .
2.2 Chaotic Motion . . .. .........

Symmetry and Linearization

3.1 Preliminaries ... ...........

3.1.1 Liapunov-Schmidt Reduction .
3.2 Symmetry . .. ... ... .. .. ...
3.3 Linearization . ... ..........

Bifurcations When Strongly Coupled

4.1 Somelemmas. .. ...........
4.2 Period-doubling Bifurcation .. .. ..
4.2.1 Hopf Bifurcation . ... ....
4.2.2 Degenerate Z; @ Z,-Bifurcation
4.2.3 Bifurcation Diagrams . . . . ..
4.3 Fixed-point Bifurcation. ... ... ..
4.3.1 Hopf Bifurcation . .......

4.3.2 Degenerate Z; @ Z,-Bifurcation

vi

viii

18
................. 21
................. 22
................. 23
................. 26




5 Bifurcations When Damped and Forced 7

5.1 Linearization and Symmetry . . . . .. ... ... ... ........ 72
5.2 Period-dou! ling Bifurcation ... .................... 74
521 NormalForm ... ........................ 7
5.2.2 Bifurcation Diagrams . . . . .. ... ... ... ... . ..., 84
5.3 Fixed-point Bifurcation. . . ... ... ... ... ... ....... 84

vil



List of Figures

1  Distribution of Floquet multipliers . .. ... ... ... . ...... 30
2  Bifurcation diagramse=4£1 ... ... ... ... ... ... ... 65
3  Bifurcation diagrams ) = e =%l ,ea =41 ... ... ... ... 66
4  Bifurcation diagrams ¢; #eg,ea =1 . . . . ... . oL 67
5  Period-doubling Bifurcation AB<0 . ................. 8H

viii



Chapter 1

Introduction

The Nobel prize in Physics was awarded to B. Josephson in 1973 for his discovery
of the quantum-mechanical tunnelling of carriers through an insulator sandwiched
between two superconduciing metals. The phenomenon has been termed the Joseph-
son effect since its discovery in 1962, and electrical devices which use this effect for
conduction are called Josephson-junction devices [23]. Circuits consisting of several
coupled current-biased Josephson point junctions are commonly referred as SQUIDs
(Superconducting Quantum Interference Devices) [1, 2]. They provide highly sensi-
tive field detectors and make the neuromagnetic technique for studies of the human
brain practical [3]. In the simplest detectors, two-point junctions are used, and the

dynamics are governed by the equations

b1+ edy+sin(é) = h+v(d—d)+H
(1)
I+ v(é1 — ¢2) + H.

$2 + €dz + sin(¢2)

Here ¢;(j = 1,2) denotes the phase difference in the electron wave function across
the jth junction, I; denotes the constant bias current, and H = H(t) is proportional

to the applied magnetic field. The dimensionless parameter ¢ measures the dissipation
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in the individual junctions, while 7 measures the strength of the coupling.

The system (1) also serves as a model for a pair of coupled pendula subject to
elastic and torsional coupling as well as some aspects of charge-density waves in
anisotropic crystals [24]. Mathematically, it can be obtained as the two-point dis-
cretization of the damped sine-Gordon equation on the finite interval with Neumann
boundary conditions [25, 26].

In the uncoupled case (y = 0), the dynamics of (1) is classical and quite well
understood [27]. It is well known that if the forcing depends periodically on time
the problem is beyond the possibility of complete analysis. In fact, the simple exam-
ple of the periodically forced pendulum exhibits virtually all the hehavior that has
been understood so far in low-dimensional geometrical theory of dynamical system:
IKAM theory [Moser, 1973], Aubry-Mather theory [Aubry & LeDacron, 1983; Mather,
1982],hyperbolic theory (horseshoes) [Moser, 1973; Guckenheimer and Holmes, 1983,
Salam and Sastry,1984; Salam, 1987], bifurcation theory[Arnold, 1983], etc, with

questions still unanswered.

The case of two or more coupled pendula offers even less hope for a complete
understanding. However, in certain parameter ranges, one can still obtain a good
understanding of the behavior; for instance, if the coupling strength v is sufficiently
larg2 and I, = 0, the system (1) has beating solutions; i.e it bchaves as a single
damped pendulum [Imry & Schulman, 1978; Zimmerman & Sullivan,1977]. In the
opposite extreme, that of small 4, the dynamics is more complicated but the system
is understood virtually completely in this range as well. In the range of moderate
coupling 7, the system has a family of homoclinic solutions in part of the parameter

space and exhibits rich dynamics {Henderson, Levi & Odeh, 1991].

A slightly different model is that where the two junction points have identical bias
currents, i.e Iy = I in the system (1). This system has been extensively studied when
H(t) =0 [4, 5, 6]. It is so complicated that this case is also the subject of this thesis.




Thus the system we deal with is

b1 +edy +sin(d) = T47(d2— 1)
(2)
b +edy+sin(¢a) = T4 7(d1— ¢2).

The equations (2) possess an in-phase (or synchronous) rotation [5]. A rotation
&,(¢) here means that °t is a solution of (2) and satisfies ¢;(t +T) = ¢,(t) + 27 for all
t € R and some T' > 0. Maginu (5] observed that this in-phase rotation is asymp-
totically stable when « is small and is large, but unstable for an intermediate range
of y-values for suitable values of € and I. His numerical results indicate the existence
of chaotic motion in the unstable range, but he did not study the transitions through
chaotic hehavior as 4 passes through this range. Doedel. Aronson and Othmer [4]
numerically obtained that the in-phase rotation is unstable in (—oc.0)U(71(2). v2(2))
for some nonnegative 4,(c) and 4,(¢), and stable otherwise. They also numerically
investigated the transitions to the chaotic motion. They found that there are period-
doubling cascades and infinitely many multiple-pulse homoclinic solutions that exist
in the unstable range. Aronson, Doedel and Othmer [6] also numerically studied the
rotations of damped and undamped pendula of the system (2). In the undamped
case, the system {2) is Hamiltonian . It is found thai it undergoes period-doubling
bifurcations and 27T-periodic rotations bifurcating from a family of T-periodic rota-
tions. In the damped case, the heating solutions are presented. These numerical
results yield some qualitative insight on the nature of the solutions. This is used in

this thesis to do a theoretical analysis of the problem.

There are different ways to study SQUIDs, mainly numerical computation and the-
oretical analysis. For the numerical computation, there are basically two approaches.
The first is to integrate the equations numerically. With appropriate initial condi-
tions, this allows stable periodic solutions to be found. The second approach is to
formulate a nonsingular, boundary-value problem for the periodic motions [Doedel
et al., 1984; Holodniok & Kubicek, 1984; Keller & Jepson, 1984; and others] and to

solve it using an iterative solver. This method has the advantage that both the stable
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and unstable motions are obtained, and that the period is explicitly computed.

A variety of analytic methods can be applied to SQUIDs, such as equilibrium
analysis [31], perturbation method [29, 30], Poincaré map {19, 20]. Mclnikov's method
(19, 20], implicit function theorem and group theory and singularity theory [32, 33].
In general, one can only obtain local information of the system based on these an-
alytic approaches. Numerical computations are indispensable to get global views
of the systems. Guckenheimer and Holmes [19], Wiggins [20] describe a systematic
procedure to investigate chaotic motions of two degrees of freedom of Hamiltonian
systems. We will follow this way to study the chaotic motion of the SQUIDs in ("hap-
ter 2. Aronson, Doedel and Othmer [6] apply Implicit Function Theorem to discuss
the continuation of rotational solutions to nonzero damping and bias current in the
system (2). Aronson, Golubitsky and Krupa [22] discuss bifurcations in coupled ar-
rays of Josephson junctions. They show that in-phase rotations lose their stability

via fixed-point bifurcations and period-doubling bifurcations.

In this thesis, we analytically study chaotic motion and bifurcations from in-phase
rotations of the system (2). Throughout Chapters 2,3 and 4, we consider the system
(2) without damping and bias current. In this case it is a Ilamiltonian system. The
bifurcations that we consider are the ones from in-phasc rotations. This is due to the
fact that applications such as microwave generators and parametric amplifiers [22
are desired to operate SQUID circuits in stable synchronous { i.c. in-phase) oscilla-
tion. Thus it is of interest to determine where in parameter space the synchronous
oscillations are stable and how the stability is lost.

In Chapter 2 it is found that there exist chaotic motions (Smale horseshoe) on
certain energy manifolds when the coupling strength is small.

In Chapter 3, symmetries and linearization of the system (2) are investigated.
There exist two distinct nondecreasing infinite series of bifurcation points at which
the Floquet multipliers are +1 or —1. Bifurcations from the in-phase rotations are
studied in Chapter 4. There are period-doubling (Floquet multipliers = -1) and

fixed-point bifurcations (Floquet multipliers = +1). In the case of period-doubling



bifurcation, it is found that 2T-periodic out-of-phase rotations bifurcate from the
T-periodic in-phase rotations. Depending on the solutions of the linearization, the
system exhibits different kinds of bifurcations. The system has Hopf bifurcation if
the linearization has odd 2T-periodic solutions. If the linearization has no odd 2T-
periodic solutions then the system has a degenerate Za @ Zs -bifurcation. In this case,
the nonlinear Z3 @ Z2 -symmetry bifurcation equation is shown to be degenerate and
under certain conditions it is equivalent to a simplified normal form. Bifurcation
diagrams are presented. In the case of fixed-point bifurcation, it is shown that T-
periodic out-of-phase rotations bifurcate from the T-periodic in-phase rotations. The
normal form and bifurcation diagrams are qualitatively the same as the ones in the
period-doubling bifurcation.

In Chapter 5, we theoretically investigate bifurcations from the T-periodic in-
phase rotation when bias current and damping do exist. In section 5.2, we discuss the
period-doubling bifurcations. It is shown that the bifurcation equation has Z2 sym-
metry on R?. Under certain conditions it is equivalent to a simplified normal form.
The bifurcation diagrams of the normal form are given. There are 2T-periodic out-
of-phase rotations bifurcating from the in-phase rotation. In section 5.3, we study
the fixed-point bifurcations. There are T-periodic out-of-phase rotations bifurcating
from the in-phase rotation under certain conditions. The normal form and bifurcation

diagram are qualitatively the same as in section 5.2.

In this thesis, we thcoretically obtained a set of results and indeed have new con-

tributions. A concise summary of the contributions and new results is given below.

¢ Results

1. Undamped System
i. 7 << 1, there exist chaotic motions on each energy manifold of energy
larger than 2.

ii. ¥ = O(1), There exist two distinct nondecreasing infinite series of




bifurcation points at which the Floquet multipliers are +1 (fixed-point. bi-
furcation) or —1 (period-doubling);

Period-doubling: 2T-periodic out-of-phase rotations bifurcate from the T-
periodic in-phase rotations.The system has Hopf bifurcation if the lin-
earization has odd 2T-periodic solutions. If the linearization has no odd
2T-periodic solutions then the system has a degenerate Za @ Z2 -bifurcation.
In this case, the nonlinear Za @ Z2 -symmetry bifurcation equation is
shown to be degenerate and under certain conditions it is cquivalent to
a simplified normal form. Bifurcation diagrams are presented.

Fixed-point Bifurcation: T-periodic out-of-phase rotations bifurcate from

the T-periodic in-phase rotations. Bifurcation diagrams are presented.

(3]

. Damped System

Bias current and damping are present. The uncoupled system has an
in-phase rotation. There are also period-doubling and fixed-point bifurca-
tions.

i.  The bifurcation equation has Zz symmetry on R?. Under certain
conditions it is equivalent to a simplified normal form. For the period-
doubling. there are 2T-periodic out-of-phase rotations bifurcating from the
T-periodic in-phase rotations. For the fixed-point bifurcation, there are T-
periodic out-of-phase rotations bifurcating from the T-periodic in-phase

rotations. Bifurcation diagrams are present.
e Contributions
1. Confirming numerical results such as period-doubling bifurcations, chaotic

motions etc.

2. Rigorously revealing some results which are not given by numerical compu-
tations such as chaotic motions on each energy manifolds of energy larger
than 2, infinite series of bifurcation points and Z2 @ Z2 -symmetric bifur-

cations.,

3. Proving a Theorem (Main Theorem 4.2.3) which presents a normal form

for a type of degenerate Za & Z2-symmetric bifurcation equations. To our
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knowledge, it is new and has not given anywhere.

4. Presenting a systematic way to apply Group and Singularity theories to
some physical problems. For instance, the method can be used to study

bifurcations in oscillators with one degree of freedom.




Chapter 2

Chaotic Motion When Weakly
Coupled

Chaotic motions of Hamiltonian systems have been extensively studicd. An ana-
lytical method to deal with chaos in two degrees of freedom systems is described by
Guckenheimer and Holmes [19]. Holmes and Marsden(8, 9] generalize this method to
n-degree of freedom systems. Numerical computation of chaos in Hamiltonian system
is given by Lichtenberg and Lieberman(40]. Under certain circumstances, SQUIDs
are modeled as a Hamiltonian system. In this case, numerical results in[6] show that
a variety of homoclinic orbits and heteroclinic cycles exist when the coupling strength
is small. In this Chapter, chaotic motion of the SQUIDs is investigated when bias cur-
rent and dissipation do not exist and the coupling strength is small. It is found that

the system has a Smale horseshoe on each energy manifold of energy larger than 2.




2.1 The Reduced Hamiltonian System

Consider the system

¢;1 +sin(¢1) = v(d2 - ¢1)

drtsin(¢s) = (41~ ) (3)
where the coupling coefficient 4 is small.
Let
a = $ (4)
@ = ¢ (5)
P = ¢;1 (6)
P2 = bo. (7)
Then (3) becomes )
QG = M
i = —singi+7(g2 - q)
G2 = p2
P: = —singz+v(q1—q2) (8)

The system (8) is HHamiltonian. Its Hamiltonian is given by

2

H(q1,p1.q2,p2) = %pf +1—cosq + ’—;3 +1—cosgs + %kfh - @)% (9)
Then . aH~
N = B
po= -2
Q@ = 5
pr = -9 (10)



Define new variables I and 6 by

g2 = 2arcsin (v g—g—l—)sn(%l\'(\/cg))a, \/G(QI) ))

N (%K(\/G(ZI))O,\/ '(2’)) (1)

P2

where G(I) satisfies

ain _ (12)
dl 2K (/40)
G(O) = 0 (13)

and sn(t,h) , dn(t,h) are elliptic functions. K(m) is the complete clliptic integral of
the first kind. As a reference for the rest of this chapter, some formulas of elliptic

functions are given below [39]:

sn*(u,m) + cn?(u,m) =1
dn®(u,m) + m%sn*(u,m) = |

sn'(u,m) = en(u,m)dn(u, m)

cn'(u, m) = —sn(u,m)dn(u, m)
sn(—u,m) = —sn(u,m) en(—u,m) = en(u,m)
sn(u+4h'(m),m) = sn(u,m) cn(u + 4K (m),m) = en(n,m)
_ 2r & (284 1)m
cn(u,m) = K (m) E%V, cos 2K (m) u (14)
£s+1/2
Vg = m (15)
K(l —m)

€ = exp(_ﬂ‘ K(m) )‘ (16)

10



A transformation ¢ = ¢(0,1) and p = p(0, 1) is called an action_angle transforma-

tion if it satisfies
(i) There exists a function H(g, p) such that H(q(9,1), p(8,I)) = G(I).
(i1) ¢(0,I) and p(8, 1) are 2r-periodic.
(iii) The Jacobian matrix satisfies | g((%% |=

Then we have:

Lemma 2.1 The equation (11) is an action_angle transformation.

Proof:
1. Let ,
H(q2,p2) = '2'1’3 +1—cosgq

Then

Hig) = %(\/mu Y \/G;”))

+1—cos(2arcsxn(@sn( K \[C(” \/G” )
ool )
= GU)en? (%K(\/G‘z”)o,\ﬁ"z”)+a(1)sn2( ([ E0)g, /A

= @ (en?(;’;-h'(\/ Ay, \/G(Q”)Jrsn%%zc(\/‘;;’ Dy, S )))

= G(I).

q2(1,04+27) = 2arcsin (\,-qusn(%[((‘/g(;_))(g+2,r)”’9_(2i)))

11




= 2arcsin( ﬂi)—sn(?-’%o_*.‘”\', G(l)))

2 2
= 02(1,9)
p2(1,0+27) = /2GI)en ( K( ('“))(0+2 ), 0(21)
= p2(1,0)
3.
2 = 2 L - \/_g-cn(Q-Ilo, \/—g)dn(‘l‘{\-O,‘\/—g)‘Z!\—
\/l—%sn2(2%0 g) 4 T T
= 2 ! \/;—-cn(2 0\/2)dn21‘0 %)2-"—
\/;in2(2!,§0,\/§) T
G . K G K
= 2\/:2:Cﬂ(2-;0,\/;)2-;.
By (13)
a 1
36 pz(I’O)GI(I)
- 1 om
—G(I)%
%T-;l = \/‘ZG‘.Z-];— (-—sn(7£-0 )(ln()-—ﬂ \/(2_'))
K, |G G
= ; -— ‘)
- V0 w2, [Sanelln, [9)
oH - SlHQ2—2Slﬂg—COSq2

g2 2

= 2sin (arcsm( —an( 2 0 \/‘) ) cos (\/:arcsm(sn( %)))
= \/:.9 (2 9, \/—)\Jl—sm (arcsm( ——.sn(2 0 \/— )

12




f(:' K G G K /G
2 2.sn( 7r0’ 2)\j1 2sn (27r0, 2)

1
il — —98H
= 73202 - GI 992
= gar) _ 9u0p; 3%
a6,]) — a8 a1 39 oI
= Lonap , 1onoy
- el épy Al G 92 8l
dup) — _}_dH
a(8,1) G dI
1 dG
ToGrdI
= 1

Therefore the Lemma is proved.

Explicitly finding an action.angle transformation is a difficult but essential step
in the analytical method in [19)].

Substituting (11) into (9) and using the first result in Lemma 2.1, H” hecomes

(q.p.0.1) = %pf +1—cosq+ G+

2
% (q — 2arcsin (\/ %an(%ls'(ﬁl))0, \/6(2]) ))) (17)

where ¢ = ¢; and p = p, for simplicity.

Write
F(g,p) = %p2+l—cosq (18)
H'(g,p.0]) = Fla,p)+G(I)+3(a—aa(8 D))’ (19)
H%g,p 1) = F(q,p)+G{) (20)

13



1
H'(¢,p,0,]) = 5(‘1--02(0,1))2 (21)
QN = % (22)
Thus, from (19),
o = 1) + 4%

Referring to (13), we have Q(7) > 0. Thus on each energy manifold with energy 4,

H" is invertible and can be solved for I if v is sufficiently small. Then
I=10"q,p,0,I;h) = L%(q,p; k) + YL (q,p, 0,; ) + O(v")
where

L = G'(h=F(q,p))
Il = H'(q,p,0. L(q,p. h))
Q(L°(g,ph))

1
H'(q,p,0,1) = (g~ q2(0, 1))

Under the action._angle transformation (11)- (13) , the equation (10) becomes

— BHY _BH"
q= ap ] dq
j . dH” j = _8H" e
0=5%r » 1=-%% (23)

which is as in [19, page 213] with ¢ = ¢; and p= p,.

Let
aH
r_98¢ _9_ Top
T=2 =3~ o=
ol
i %
p’:%%=5=-a’;7, (24)
oI
Differentiating (19) implicitly gives
H QHY ALY _
St =0
5+ = o (25)

14




The equations (24)-(25) imply
¢ = ~%(q,p0:h)
pl = ’"'aT(qapaos h) (26)

These equations are called the reduced Hamiltonian system{19]. Substituting L7(q,p, 9, I; k)
into (26) yields

q' = ap (qapa h) - 7%11_1(%1’,0' h) + 0(72)
P = %(¢,ph)+71% (0,0 k) + O(¥). (27)

The equations (27) have the form to which Melnikov’s method can be applied.

2.2 Chaotic Motion

To study the chaotic motion of the equation(27), we cite Theorem 4.8.4 and Corollary
4.8.5 in [19, page 224).

Theorem 2.1 Consider a two degree of freedom Hamiltonian of the form (19) and
assume that F contains a homoclinic orbit (¢°,p°) connecting a hyperbolic saddle
to itself (or F has a homoclinic cycle). Suppose QI) = G'(I) > 0 for I > 0.
Let h° = F(q° p°) be the energy of the homoclinic orbit and let h > h° and I° =
G~1(h — h®) be constants. Let {F, H'}(t+0,) denote Poisson bracket of F(q°, p°) and
Y (g, p°. Q) + 003 I°) evaluated at ¢° and p°. Define

o0
M(00)=/ {F, H'}(t + 0) dt

and assume that M(0q) is independent of 4. Then for v > 0 sufficiently small the
Hamiltonian system corresponding to (19) has transverse homoclinic orbits on the

energy surface H" = h.
This Theorem implies that

Corollary 2.1 The system has a hyperbolic invariant set A in its dynamics on the
energy surface H = h; A has a dense orbit and thus the system has no global analytic

second integral.
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Now we will apply this Theorem to our system (27). It has a homoclinic orbit on

the cylinder,

namely

(1)
o(t)

p(
Let h> 2 and L° = G~'(h —2).
HY(¢% p°, Q) + 6% 1°) is

{F’Hl} =

H'(q,p,8,])

=> {FH'}=-%

Flg ") =h"=2

+2arctan(sinh(t))

+2sech(t). (29)

The Poisson bracket of F(q°, p°) and

AF 8H!

1
= '2'(.

@
B

= {F,H'} = —(q4-pq2(0,1))

M(8o)

[
_ (1

59

Il

-0

AM (8o
9o

—(¢%"

+00

-00

+oc
/ {F, H'} (¢ + 0o) dt

— P°qa(Q°)t + 8o, (%)) it

400
_/ (:t?sech(t))‘h(n(lo)t + 0o, 1°) (”)

4+
+2 sech(t) qa(UI%)t + o, 1°) dt

400
+2 /_ ) sech(t) 2200)0) gy

G(1°)

) dt

1

————

/26" 5

12 /jw sech(t) 2\, G(2l°) G’:l“)cn

/_:o sech(t) cn(QL—

(/BT
2 oy + 0g), |

G(1°)
2

&)

2

(1)t + 0o), )dt

T
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4o
M(0) = £2 / sech(t) gz(Q(1%)t, 1°) dt.
By (11), q2(—0,1) = —¢4(0, 1) and so the integrand is odd in 2.
M@0)=0

Now we prove that 6, = 0 is simple. In general, this is not easy. Writing
m= \/ ; then substituting (14) into —“L&"J, we have

4 0 l

) o = 2 26(°) ey
+o0 r & (2s+ )x K(m)_, o
/_m sech(l) ml\,(m)s;ou,cos( SR L de

- 9
= £2,/2G(0) e i

G'(I% mK(m)

(25 + 1)7r K (m)
Z u,/ sech(t) cos( K (m) > 7 Q(I%)¢) dt

=0 -
However.
. f . !28-}-])?2 (m!Q 10
+x ) -
/ S(‘(‘ll(f) cos (':)31\::"11))7?2]\ (7:77)0(“ - 7I'S€Ch( 2l (m) 5 ( ))

> 0

Thus ﬁ-‘—{(s—@o _o > 0 and s/(f) has a simple zero point o = 0. From Theorem 2.1

and Corollary 2.1, we obtain

Main Theorem 2.1 On any energy manifold of energy larger than 2, there erists a

Smalc horseshoe and there is no global analytic second integral.
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Chapter 3

Symmetry and Linearization

From the Main Theorem 2.1, the system (3) is not integrable when 4 # 0. Thus
it is very difficult to analyze the bifurcations at a bifurcation point v # 0 in terms
of Poincaré map or averaging method, for both methods are based on integrability of
the system. Therefore we will use group theory and singularity theory to explore the

bifurcations of the system (3) when 7, 3# 0.

Golubitsky and Schaefter [32] present a theory to explore bifurcations via singular-
ity theory [34]. First the physical system is reduced to nonlinear algebraic equations
via a standard technique =uch as Liapunov-Schmidt reduction. Then one computes
some derivatives at a bifurcation point in order to put the bifurcation problem in
one of the normal forms. The bifurcations can then be described using the normal
form or its universal unfolding. This theory has also been generalized to dynamical
systems with symmetry [33]. Systems with symmetry are common in the physical
sciences, and it is well accepted that any reasonable model should yield governing
equations that reflect this symmetry. This leads to equations with special invariance
properties. It is natural to exploit the invariance, either to deliver special solutions
or to reduce the basic problem. Golubitsky and Stewart [10] discuss Hopf bifurcation

in the presence of symmetry . They also study some specific applications such as
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Taylor-Couette flow [11] and Hopf bifurcation with dihedral group symmetry {12].
Vanderbauwhede studies subharmonic bifurcations in time-reversible systems {14].
Aronson, Golubitsky and Krupa discuss bifurcations in coupled arrays of Josephson
junctions. They show that in-phase rotations lose their stability via fixed-point bi-
furcations and period-doubling bifurcation. In this chapter and in the next chapter,
bifurcations from a T-periodic in-phase rotation will be investigated. The study is
motivated by two facts. On the one hand, in certain applications such as microwave
generators and parametric amplifiers [22), it is desired to operate their SQUID circuits
in a stable synchronous (i.e, in-phase) oscillation. Thus it is of interest to determine
where in parameter space the synchronous oscillations are stable. On the other hand,
it is of interest to determine how the stability of the in-phase solution is lost, i.e., to
what types of behaviour these bifurcations lead. Maginu [5] numerically studied bifur-
cations of the damped SQUID system. His results indicate that the in-phase rotation
is unstable for certain range of the coupling strength. Out-phase rotations bifurcate
from the in-phase rotation. In the unstable range, there is chaotic motion. Doedel,
Aronson and Othmer [4, 6] studied the bifurcations of the system in both the damped
and the undamped case. The system undergoes period-doubling bifurcations for suit-
able coupling strengths. 2T-periodic rotations bifurcate from the T-periodic rotation.

In the damped case, the system gets to a chaotic motion via period-doubling cascades.

In Section 3.1, we introduce basic theory and methods used in the rest of the
thesis. In Section 3.2, we first define certain function spaces. The bifurcation prob-
lems of the equation (3) are then equivalent to those of an equation ®(U,7) = 0 in
these spaces. Then we define actions on the spaces and prove that ®(U,v) commutes
with these actions. In Section 3.3 we find the linearization of the equation (3) at
an in-phase rotation and we describe the distribution of Floquet multipliers as the

coupling strength varies.

Introduce variables r, s

r= 56~ )
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8 =

N —

Then (3) becomes

s" 4+ sinscosr

" +sinrcoss

Assume that we have a rotation:

where the period T = 4K (2/h)/v2h.

(&1 + 62).

0,

=297 .

r=0,

s = so(t;h) , so(0;h) =0,
so(—t; h) = —so(t; 1)

so(t + T h) = so(t;h) + 27

(30)

For simplicity, we will not explicitly write h in sy(¢; /) throughout the rest of the

thesis.
Set

s—s + sp(t).

Then (30) is reduced to

s" + sin(s + sp(t)) cos T — sin so(t)

" + sinrcos(s + so(f)) = —=2ry

where

8g+sinsg=10 .

From (29) and (31), we have

¢1 == S+T+So(t) ,

¢ = s—71+so(t) .

(33)

If (s,r) is a T-periodic solution of (32), then , from (33), (#1,42) is a T-periodic

rotation of the system (3).
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3.1 Preliminaries

For completeness we introduce some terminology and results from group theory and
singularity theory used in the thesis. The related material can be found in [32, 33].
Let £, denote the space of all functions g : R* — R?! that are defined and C* on
some neighborhood of the origin. Then &, is a vector space. An ideal Vin &, is a
linear subspace with the following special property:
ifge&, and f € ¢, then ¢f € V.

If p1, --+ , px are germs in &,, then the set of all linear combinations,

@ypr + -t agpy

where a, € &,, is an ideal in £,. We denote this ideal by < py,---, px >, and we call

P1,-- i the generators of the ideal. Let
U={fe&: f(0)=0}.

We claim that

U=< 29, ,Tn > .

Lemma 3.1.1 Let V and W be ideals in £,, and assume thatV =< py,-++,pi > is
finitely generated. Then V C W if and only if V C W +UV.

Definition 1.1 Let X' and ) be Banach spaces. A bounded linear operator L : X —

YV is called Fredholm if the following two conditions hold.

(i) WerL is a finite-dimensional subspace of Y.

(ii) Rangel is a closed subspace of Y of finite codimension.

Definition 1.2 If L is Fredholm, the index of L is the integer
(L) = dim Ker L - codim Range L.

Lemma 3.1.2 If L : X — Y is Fredholm, then there ezist closed subspaces M und
N of X and Y, respectively, such that

X=KerLdM , Y= N RangeL
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3.1.1 Liapunov-Schmidt Reduction

Let
. XxRTSY, ®(0,0) =0 (31)

be a smooth mapping between Banach spaces. Let L be the diflerential of ® at the
origin. We assume that L is Fredholm of index zero. Then the Liapunov-Schmidt

reduction procedure is as follows:

Step 1. Decompose X and ),

() X=KerLa M

(35)
(b) YV =N & Rangel.
Step 2. Split (34) into an equivalent equation pair,
(a) E®(u,a) = 0
(36)
() (I - E)®(u,0) = 0
where E : Y — Rangcel is the projection associated to the splitting (35h).
Step 3. Use (35a) to write u = v + w, where v € KerL and w € M. Then
E®(v + w(v,a),a)=0 (37)
Step 4. Define ¢ : KerL x R¥!' — N by
¢(v,a)= (I - E)®(v + w(v,a), @) (18)

Step 5. Choose a basis vy, -+,v, for KerL and a basis v§,---,v; for N. Define
g:R" x R*' — R" by

gi(z,@) =< v}, ¢(z 101 + - -+ + LTo¥n, @) > (39)
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Lemma 3.1.3 If the linearization L is a Fredholm operator of index zero, then so-
lutions of (34) are (locally) in one-to-one correspondence with solutions of the finite
system

gi(‘r’a)'—"oa i=l,...,n
where g, is defined by (39).

Let I' be a Lie group. We say that I' acts on the Banach spaces Y if for each
v € I' there is an associated invertible linear map R, : Y — Y with the property that
for ally,6 €T
Ry = R,y 0 R;
We say that a mapping @ : X — Y commules with the actionof ' on Y if X is an
invariant subspace of Y and the following holds for ally €' , u e X

®(R,u) = R, ®(u)

Now we assume that
(a) T acts on ).
(b) @ : A - Y commutes with I'.

Lemma 3.1.4 In the Liapunov-Schmidt reduction, if M and N in (35) are invariant

subspaces, then the mapping
é: Kerl x RF' S N
defined by (38) commules with the action of I'; in symbols
¢(yv,a) = 7¢(v,a) (40)

Remark 3.1 Let w(v, @) be the solution in Step 3. Then w(yv,a) = yw(v,a).

3.2 Symmetry

Fix the in-phase solution in (32). Define




UL N1) = s"(t) + sfn (s(t) + so(t)) cosr(t) — sin sp(t) m
() + sinr(t) cos (s(t) + so(t)) + 29r(t)

®(0,7) = 0. (42)
Introduce function spaces:
Coaal0, T) = {U(t)e R? |t e R, U(t+T)=U(t), U(~t) = V(1)
and U(t) has k continuous derivatives}

CHO,T) = {U(t)e R?|te R, U(t+T)=U(),

and U(t) has k continuous derivatives). (43)

Define actions on C*[0,T}:

(U)(t) = U(t+T) (1)
(BU)(t) = BU(t +T) (45)
(aU)(t) = —U(—1) (16)

where

Lemma 3.2.1

®(al,7) = a®(U,7)
o(8U,7) = po(U,7)
®(ol,7) = 00U, 7).

PROOQF: Let

ol B I B b

Then Ui(t)=oU(t)=U(t+T),andsos(t)=s{t+T),r,=r(t+T).
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d(al,y)(1) = @(Us,7)(¢)
[ %’;sl(t) + sin (81() + so(t)) cosr1(t) — sin so(2)
] %rl(t) + sinry(t) cos(s1(t) + s0(t)) + 2yri(t) ]
[ &t +T) +sin (s(t + T) + so(t)) cosr{t + T) — sin so(t)
i j’l—z,-r(t +T)+sinr(t+ T)cos(s(t + T) + so(t)) + 2yr(t + T) ]

U e CHo,T] = Ult+T)=U(t)
2
= -(—idt—zU(t +T)=U"(t) U't+T)=U"({t)

= ®(al,7)(t) = (U, 7)(2).

On the other hand

@O = s"(t+T)+sin(s(t+T) +so(t + T))cosr(t + T) — sinso(t + T') }

s"(
| 7"(t+T) +sinr(t + T)cos(s(t + T) + so(t + T)) + 2yr(t + T)
_ [ s"(t) + sin (s(t) + so(t) + 27) cos r(2) — sin (so(t) + 27)
| 7 (t) +sinr(t) cos(s(t) + so(t) + 27) + 297(t)
= O(U,~)(t)

(a®(U,7))(t) = (®(al,7))(t) Vte R'.
= a®(l,7) = ®(al,7).

Similarly

_ | "(t) +sin(s(t) + so(t)) cos —r(t) — sin sp(t)
(UG = —r"(t) — sinr(t) cos(s(t) + so(t)) - 2qr(t)
= B(®(U,7)(t))

= (BO(U,))(t)
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(®(ol,7))(t) = d"”‘

(@l 7)) = | —r"(—t) — sinr(—t) cos(s(—1) + sof
= —®(U,7)(-t)
= (e, M)D).
Furthermore, if
U(-t) = -U(1)

then
U'(-t) = =U"(1).
From the above we get ®(U,v)(—t) = —®(U,7)(¢t). Thus

b odd[OT]-—’(jdd[OT]L>2

3.3 Linearization

Linearize (32) about s =r =0:

il
=]

s" + cos sp(t)s
" 4 (cosso(t) +29)r = 0.
From
8g +sinsg=0
it follows that
sg' + cos sgsy =0
and

(L) = \/ZThdn(‘/—%—’_l,%) >0

(-
| dt2 r( t) + sin —r(—t)cos (—s(—t) + so(t)) + 2(

—8"(—t) — sin (8(—t) + so(—1)) cos r(—t) — (— sin sp(—1)) ]
_t)) -

2yr(—1)

1) + sin (—s(—1) + so(t)) cos —r(—t) — sin so(t)
—r{

o]

(18)
(49)

(50)

Thus so(t) is a solution to (48) , and sp(t + T') = sg(t). Up to a multiplicative con-

stant, sh(t) is the only periodic solution of (48).
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Lemma 3.3.1 s)(1) is the only periodic solution of the equation ({8) and it is even.

PROOF":

so(—t) = —so(t) = sp(—2) = s(t)

Substitute s = s{()y into (48) to get
1)y + 260(0)y" + sh(£)y" + cos sashy = 0
so(t)y" + 2s5()y' + (sg + cossp)y = 0

2sl
"o o_ [V}
= -7

80
r o _[2%%
¥ = Cexp( /36 dt)
= Cexp(-~]ns(';,2
C C

(i) mazsf

= y(t) 2 st — 00 as t — oo

marsg

Thus y(t) is unbounded and hence y(t) can not be periodic. Therefore sy(t) is the
only periodic solution up to a multiplicative constant.

The equation (49) is a Hill equation. It can be transformed into a standard Hill

equation [28] as follows. Let

t= -T—O
™

Then

d_d_xd & _5.d

dt dé Tdo di? ‘T’ dp?
and (49) becomes

7., d
(T) d02r+(cosso( 0)+2'y)r-
°' L T
2 2 I —
d02r+(( )¥2v + (— ) cosso(ﬂ_0))r 0 (51)

For the existence and distribution of the Floquet multipliers of the equation (51),

we have the following theorem.
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Theorem 3.3.1 Consider the equation jj+(a—¢(t))y =0, ¢(t+7) = $(t), where a
is constant and ¢(t) is assumed real and continuous. Then there erist two sequences

a<a <ay<--,af L£a3 <a3< -+ of real numbers, ax,a; = oo as k — oo,
@w<o;<ay<a<ar<azfa;<azlay<: -,

such that this equation has a periodic solution of least period = (or 2r) if and only if
a = ai for some n = 0,1,2...(or a} for some k =0,1,2...). This solution is stabir

in the intervals
(aOaa;) ] (a;,al) ’ (a29a5) s (021‘13)

and unstable in the intervals

(—oo,ao) L] (a;aa;) ’ (aha2) a(asva;) a(aSaatl) e

The solution is stable at azryy Or @gpya(or a3,y or aygz) if and only if ayyy =

Aok42 (O doky1 = Ggky2), B 2 0.

This Theorem is given in [28, page 128]. The intervals [azn-1,a2.) and [a3,_,, ¢3,,]
are called finite instability intervals.

Theorem 3.3.2 With the assumptions in Theorem 3.3.1, there cxisls just onc finife
instability interval if and only if

o(t) = 3¢*(t) + ag(t) + p
where o and B are constants.
This Theorem is from [21). Using the two Theorems in the above, we can prove

Corollary 3.3.1 With the assumptions and notations in Theorem 3.3.1,
1 Yo = 0 3

2. there exists exactly one finite instability interval.
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PROOF:

1. The T-periodic function r = sg(t) is a solution of the equation (49) when 4 = 0 be-
cause in this case (49) reduces to the equation (48). Thus v = 0 is a eigenvalue of the
equation (49) with the boundary condition r(0) = r(7") and r'(0) = '(T). The corre-
sponding eigenfunction sg(t) is strictly positive from (50). From the Sturm-Liouville

theory it follows that 0 is the smallest eigenvalue of this equation, and therefore 4 = 0.

2. Let ¢(t) = —cossg(t) for the equation (49). If the condition in Theorem 3.3.2 is
satisfied, then the Corollary is proved. In fact,

¢'(t) = sinso(t)sy(t) (52)
¢"(t) = cosso(t)si(t) + sin so(t)sq(t) (53)
= cos so(t)si(t) — sin® so(2) (54)
= cossp(t)s(t) — 1 + cos?® so(t) (35)
= cos so(t)s(t) — 1+ ¢2(t) (56)
= —¢(t)sg(t) — 1+ ¢(2). (57)
On the other hand,

%sg(z) +1—cossolt) = h (58)
s¢(t) = 2((h -1) + cos s(t)) (39)
= 2(h —1) - 2¢(1). (60)

Substitute (60) into (57) to get
¢"(t) = —2(h—1)4(t) +26"(t) = 1+ ¢°() (61)
= 3¢%(t) —2(h - 1)¢(t) - L. (62)

From the numerical computations in [4], it is found that the only finite instability
interval is [a}, a3]. Therefore the distribution of Floquet multipliers of (49) is as shown

in Figure 1.
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Figure 1: Distribution of Floquet multipliers
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Chapter 4

Bifurcations When Strongly
Coupled

In this Chapter we deal with bifurcations from the in-phase solutions when 4 is not
small. Numerical results [6] indicate that there are period-doubling bifurcations and
that 2T-periodic rotations bifurcate from the T-periodic rotation. These bifurcations
are theoretically confirmed in our analysis.

From the discussion of the distribution of Floquet multipliers in the last Chapter,

we classify the investigation into two cases.
e Bifurcations when Floquet multipliers are —1.
e Bifurcations when Floquet multipliers are +1.

Bifurcations with Floquet multipliers —1 or +1 are called period-doubling and fixed-
point bifurcations, respectively. In Section 4.1, some lemmas are presented to show
the linearization is Fredholm of index zero. It follows that the Liapunov-Schmidt
approach can be applied to our SQUIDs. In Section 4.2, period-doubling bifurcation
is discussed. It is found that 2T-periodic out-of-phase rotations bifurcate from the
T-periodic in-phase rotations. Depending on the solutions of the linearization, the

system exhibits different kinds of bifurcations. The system has Hopf bifurcation if
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the linearization has odd 2T-periodic solutions. If the linearization has no odd 21-
periodic solutions, the system has a degenerate Za @ Z3 -bifurcation. In this case,
the nonlinear Zz @ Z3 -symmetry bifurcation equation is shown to be degencrate and
under certain conditions it is equivalent to a simplified normal form. The bifurcation
diagrams are presented. In Section 4.3, the fixed-point bifurcation is studied. It is
shown that T-periodic out-of-phase rotations bifurcate from the T-periodic in-phase
rotations. Normal form and bifurcation diagrams are presented. They are similar to

the ones in the Section 4.2.

4.1 Some Lemmas

This section presents several lemmas. They will be used to prove that the lincarization

L is Fredholm of index zero. Consider

F+ot)r=0 (63)
where

$t+T)=¢(t) T>0 ¢(-t)=¢(t) ¢, teR

Lemma 4.1.1 There exist two solutions x,(t) and x5(t) such thai

1. y(—t) = 24(¢) T2(—t) = —za(t)

2, a1 (t)xh(t) = 2y (Hag(t) = 1

3 {t £ T) = a(T)r1(t) £ 27(T)za(2)
2t £ T) = 2ao(T)ay(t) + a5(T)xo(2)

4. z,(T) = 24(T).

PROOF:

If 2(¢) is a solution, then di;,-:t(—t) + ¢(—t)x(—~t) = 0. Thus Z(~t) + ¢(t)z(-t) = 0
because ¢(t) is even and d%w(—t) = £(—t). Hence z(—t) is a solution.

Assume that z;(t) and z,(t) are the solutions of (63) with conditions:

7,(0) =1, 1"1(0) =0, 200) =0, 3’2(0) =1
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Then we have the following results:
1. Let z)(t) = z3(=t) , z2(t) = —z2(—t), then

21(0) =x(0)=1 , 21(0)=-=z}(0)=0

=  z)=xz1(t) = =z (~t)=x34(t)

and
22(0) = —=22(0) =0 , 25(0) = 24(0) =1
= Zz(t) = Tg(f) = 1‘2(—t) = —-IL‘g(t)
2.
d ’ ’
Ses(tyei(t) = ()
= xq(t)ag(l) — z2(t)ai(t) = zo(t)(—d(t)z2(t)) — (S(t)ar(t))r2(T)
=0
and

ry(t)ry(t) — 25 (t)z2(t) = 71(0)x3(0) — 25(0)a2(0)
=1,

3. Both a(t£T) and ry(t £ T) are solutions of (63) because ¢(t) is T-periodic. Thus
.l‘|(t + T) = C]J‘l(t) <+ Czrg(t)
Att=0

$1(ﬂ:T) =¢ , = = .'l:](T)
+2(T) = 2;(0 £ T) = c123(0) + c225(0) = ¢y,

Similarly

zg(ﬂ:T) = , = = ﬂ:.’l)z(T)
'l';(:i:T) =C , = = :l;(T)
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4. From result 3,

1=x(T = T) = r(T)xr(T) — 21(T)ao(T) = 23(T) = =3(T)axo(T) (64)
0=2uy(T —T) = —ao(T)a1(T) + z5(T)r2(T). (65)
From result 2,
21 (D)YT) - 74(T)ao(T) = 1 (66)
From (65), ro(T)ao(T) — x,(T)) = 0.
Thus x2(T) =0 or xy(T) = a%(T).

If 2o(T) = 0, then by (64) and (66),
BT =1, wy(T)ayT) =1
2(T)=4+1 = +a4(T)=1 al(T) =+l
7(T) = a(T)

Now we investigate the Floquet multipliers of the equation (63). Given a)(¢) and

r2(t) in Lemma 4.1.1, the fundamental solution matrix X(t) is

X(t) = ay(t) zot)
ri(t) ay(t)

X(T) =

2i(T) a(T) ]
24 (T) a4(T)

The characteristic equation is
ot = (@i(T) +25(T)p +1 =0
By (4) in Lemma 4.1.1, 21(T) = zi(T)
p'—2zy(T)p+1=10

22:1(T) + \/‘E(?)_—4 — :rl(T) + 1/1‘%(71) -1

p: 2 =

We have four different cases.

(i) If | z:(T) |> 1, then p; , p; are real. Oneof | py |, | p2 | is smaller than 1, the
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other is larger than 1.

(ii) If | 23(T") |< 1 then p is complex, and | p |= 1.

(i) f  x(T)=1=z4H(T) then p=p2=1 and
1 T
X(T) = ’ z(T)
xy(T) 1
and
1 —2y(T)2y(T) =1 thus  2{(T)xx(T)=0
and hence ri(T)=0 or zT)=0

If 23(T) = 0, then x(t + T) = z1(t) because z{(T') = 1. Similarly, z2(t + T) = z,(t)

if 22(T") = 0. In this case there exists at least one T-periodic solution, which is odd

or even.
(v if  2(T)=-1=a}(T) then py=p;=-1 and
-1 o(T
X(T) = 22(T)
2 (T) -1
and
(—=1)(=1) —xo(T)a}(T) = 1 thus 2} (T)xo(T)=0
and hence r(T)y=10 or z2(T) = 0.

If 2(T) = 0, then &,(¢{ +T) = —u\(t) because a1(T) = ~1. Similarly, 22(¢ + T') =
—ra(t) if w2(T) = 0. Thus (¢t + 2T) = —2;(t + T) = x,(t) and x5(t + 2T) = x,(1).

In this case, there exists at least one 2T-periodic solution, which is odd or even.

In summary, we have

Lemma 4.1.2 [. There exists at least one T-periodic solution , which is even or odd
if the Floquet multipliers are +1.
2. There erists at least one 2T-periodic solution , which is even or odd if the Floquet

multipliers are —1.
Consider the nonhomogeneous equation corresponding to (63)
i+ #(t)z = f(2) (67)

35




where f() is continuous. The solution of this equation is given by

2(t) = ai(t) (w0~ [ va(o)f(6)ds) +2a(0) (w4 [ mla)(9)ds)  (69)

where z1(s) and z,(s) are the solutions in Lemma 4.1.1.
In fact

() = ai(t) (0 = [ ea(o)f(o)ds) + ra(0) (~ral 1 (11) +
i) (25 = [ 21(6)S(6)ds ) + a(0) (1) (1)
= z\(1) (mo-/(;ta:g(s)f(s)ds)+.rz (a‘o+/1‘, V(s ds) (69)

(0) = ai(t) (20— [ 012(3 () ds) + 24 (0 (~ea() (1)) +
#(0) (a5 = [ a(slf()ds) + 20) (a0 ) +

= —¢5(t):r1(t)(xo—- [ za(s)(6)ds) = gltyeatt) (1'(,-}- /, 21(s) ,zg)
OIEAL )xz(l)—h(t)’rl(’))
= —¢(t)x(t) + f(t).

Lemma 4.1.3 If equation (63) has odd T-(or 2T-) periodic solutions then x)(1) given

in Lemma 4.1.1 is @ T-(or 2T-) periodic solution.

PROOF: Assume that x(t +T') = z(t) or z(t + 2T') = 2(t) , 2(—t) = —x(t). Then
z(t) = a1x1(t) + c2z2(t), and ¢; = 2(0) = 0, so ¢, = 2’(0) # 0 and x, = 2(1)/2'(0).

Lemma 4.1.4 Assume that equation (63) has an odd T-periodic solution. Then the

equation
Z+¢(t)z = f(t)
has an odd T-periodic solution if f(l) salisfies

f(=t)=—f(t) , f(t+T)=[(t)

<o >E 5 [ fa)ealsyds =0,
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PROOF: By Lemma (4.1.3), z; is T-periodic. Then from Lemma 4.1.1 and z(T') =

ry(T) =1,
21t £ T) = z1(t) £ 27 (T)z2(t)

zo(t £ T) = +a(T)z1 () + z2(8).
Set 2o = 0 in (68), then

w(t) = aa(t) (- [ 22(8) f(s)ds) +aa(t) (sh+ [ “21(9) f(s)ds> .
Since a1(1) is even and both xz(t) and f(1) are odd, we have
2=t) = zu(~t) (—/‘)"m,( )f(s)ds)+:z:2( —1) (:1:0-!-/ z1(5)f(s) s)
= au(t) ([ aa(=5)f(=5)ds) = 2a(t) (5 ~ [ sr(~5)f(=s)ds)

= () (/ot:rg(s)f(s)ds) —:z'g(t)(a:f,+/0 21(8)f s)ds)

= —x(t)
which means that x(¢) is odd and z(0) = 0.
T T
o(T) = (T) (— /O za(s) f(s)ds) + 29(T) (x;, + /0 z4(s) f(s)ds)

T
= 0+ 25(0) (x;,+/o ml(s)f(s)ds)
= 0.

Now from (69),

T T
() = A1) (- [ anse)ds) +24) (26 [ o)1)
From the assumption that [ z(s)f(s)ds = 0 and 2}(T) = 1 we get

2(T) = o) — /0 " e ()f(s) ds

T T T
[ ads = [ ai(s)fe)ds - a4(T) [ aa(o)f(s) ds
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T

= /0 S(s)xr(s) = 21(T)xa(s)) ds
T

= [) f(s)ri(s=T)ds

/OT (1) f(7 +T)dr

= ./j;:r.('r)f(r)dr
= - [at-nf-ryar
T
= —/0 o(r)f(r) dr
= /OT i(s)f(s)ds =0
= (T)=ay = z(t+T)==z(t).

Corollary 4.1.1 Assume that equation (63) has an odd 2T-periodic solution. Then

the equation

&+ 9(0)w = f(1)
has an odd 2T-periodic solution if f(t) satisfies

J(=ty=-f(t) , f(t+2T) = f(t)
ar 127 -
< f,xy >= ~2—7/0 J(s)za(s)ds = 0.
PROOF: Replace T by 2T in the Lemma (4.1.4).

Lemma 4.1.5 Suppose that there is an even T-neriodic solution p(l) of the
equation {63) that satisfies p(t) # 0 for allt € R. Then there exists an odd 'I- (or

2T-) periodic solution for the nonhomogeneous equation if f(t) satisfies
f(=t)==f(t)  fU+T)=[{t) (or f(t+2T)=f(t)).
PROOF: Let z(t) = p(t)y(¢). Then & = fiy + 20y + pi.

fiy + 20y + pj + S()pu(t)y = f(t)
1y + 2y = f(1)
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2, 1)
Wt

Y ‘ i 1)

y = exp( 2/“dt) (C+/0exp(2/#dt) -“(—S-)-ds)
e t 1) .
= xi)( Inp?) (C+/o exp (In p?) (5) d.s)
= = (C+ [ Harfta)es).

= y(0)=[ ;;1(—75 (c+ [ ws)s(e)ds) ar

If(t+T)=f(1)

. l t+T
y(t+T) = ———(—t-m(C+/+ tsf(s)ds)

(e [T as)

Ty =) = LT _a
T =i = s [ wol(0)ds = o [ o)) ds

1 T/2
= =0 / M) (5) ds

= 0

Thus

> ge+T) = ).

y(—t) = /o_t " t‘f (C’-{-/T;t(s)f $ ) dr
= /ot p2 -T) (C+/ (s)/(s)d )
- /0 ‘ 5 (O [ =9 f=s)ds)
= —/otp?(r (C+/ p(s)f )dr
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So y(t) is odd. Also
y(t+T)-a(t)=0
y(t +T) — y(t) = y(T) - y(0) = y(T)
T 1 T
y(T):/0 ) (C’+/0 /t(s)f(s)ds) dr.

If we set y(T') = 0 then we can uniquely solve the constant (". Substitute this value
in y(t) to get an odd T-periodic solution. Similarly, if f(t+ 27T) = f(t) then

) ) 1 t+2T 1 2T
i+ =90 = s [ He )b = = [ pl) (o) ds
1 T
= = [ me)(s)ds
= 0
= g(t+2T) = j(t)

Also
y(t + 2T) - y(t) = y(2T')

A
y(2T) =/0 u"’(T)(C+/0 p(8) f(s)ds)dr.

Solving for C in y(2T') = 0, we obtain an odd 2T-periodic solution.

Consider the equations

&= A()r (70)
&= Atz + f(1) (71)

where A(t) is 2 x 2 matrix and f(t) ,z € R?; A(t+T) = A(¢t) and f(L+T)= f(1).
We cite the following Lemma from [28, page 146].

Lemma 4.1.6 The equation (71) has a T-periodic solution if and only iffoT y(O)f(t)dt =
0 for all T-periodic solutions y(t) of the adjoint equation

i =-AT(1)y (72)

40



If X(t) is the fundamental matrix of the equation (70) and X(0) = J, then (X~'(1))7
is the fundamental matrix of (72). Thus if equation (70) has Floquet multipliers
pli = 1,2,...,m) then, from Linear Algebra, the adjoint equation (72) has Floquet

multipliers p7'(i = 1,2,...,m). Thus we have

Lemma 4.1.7 [f the equation (70) has a simple Floquet multiplier +1( or -1), so

does its adjoint equation (72).

4.2 Period-doubling Bifurcation

Assume that the equation (49) has Floquet multipliers = -1 at 4 = 40 # 0. Then,
from Lemma 4.1.2, if it has one linearly independent 2T-periodic solution then this
solution is even or odd. If it has two linearly independent 2T-periodic solutions, then

one is even and the other is odd. We have two cases.

A1: there exists an odd 2T- periodic solution to equation (49).

A2: there is no odd 2T- periodic solution.

Assumption A2 means that there exists a unique, even, linearly independent 2T-

periodic solution to equation (49).

4.2.1 Hopf Bifurcation

Assume that A1 holds. Consider the map in (47)
o ngd[0,2T] - ngdlov?'T] (73)

Introduce a norm on C*[0,7)

k
- ()
IR j=0,rer;g§]IU I (74)




where U(t).V/(t) € R? and UV = £:U(t). Linearizing ® about U/ = 0 and 7 = 99
gives rise to

LU (do)U = t-l";@(o +7U) |r=0

o(rl) = %(‘rs) + sin{rs + sg) cos(rr) — sin sp
g:—,(rr) + sin(7r) cos(Ts + o) + 2y7r
do(rU) | _ %(s) + cos(rs + sg)scos(Tr) — rsin(rs + sg) sin{771)
dr """ | a’%(r) + 7 cos(77) cos(78 + sp) —sin(7r)sin(7s + sp)s + 2y o
_ [ " 4 cos S80S
B i 7" + (cos sg + 27901
" N
LU = s, -} COs $g8 . (75)
"’ + (cos sp + 2y0)r
Define
Lis = " 4 cossgs
Lar = 1"+ (cos sp + 270)r (76)

LU

L13

Lgl' '
Lemma 4.2.1.1 1. C%,[0,27) is a Banach space with norm defined in (74).
2. dimKer(L) =1
3. C%,[0,2T] = Ker(L) ® Range(L)

4. Range(L) is closed.
5. L is Fredholm of index 0.

PROOF:
1. Suppose that {U,} C C%,,[0,2T] is a Cauchy series. So

| USH) = UD(E) | Un = Un |
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Then {U,(t)} is a Cauchy series for any ¢ € R' and U)(1) converges uniformly to
UYt) (j = 0,1,2,... k) in R' Hence U(t) has kth derivatives. Also

Un(t 4 2T) = Un(t) Un(—t) = =Uy(t)
Asn — oo
Uit +2T) = U(t) U(-t)==U({t) = U(t) e C5,[0,2T)

2. L;s = 0 has a linearly independent even T-periodic solution from Lemma 3.3.1.
Thus it has only the zero solution in C2,[0,2T]. With A1, L,r = 0 has an odd
2T-periodic solution. By Lemma 4.1.3, one of them is z,(¢) with z3(0) = 0 and

x3(0) = 1. It has only one linearly independent odd 2T-periodic solution. Therefore

0
dimKer(L) =1 and Ker(L) = span( ).
.’l‘z(t)
3. First we claim YU,V € C%,[0,2T)
<ULV >=< LU,V >

where
re= L My V(s))d
< U, >_2Tf0( (5), V(s)) ds
and (U(s), V(s)) is the inner product in R?. Let

U v
U= V=
Uz U2
i " T ' 12T T AN
/ ujndt = / nduy = nu g —/ uy v, dt
0 0 0

T T,
= —-/ vldu1=/ vy uy dt
0 0
2T

=2 <ULV> = 2—1]; A (wa{vy + cos sgur) + uz(vy + (cossp + 290)v2)) dt
1

T 2T

= 5T /0 U] dt+j0 cos Sgu vy di+
2T 2T

/0 ugvy di + /0 (cos so + 270 Juqv, dt)

1 T
= -2-—7-,/0 (vi(uy + cos souy) + va(ug + (cos so + 2¥0)uz)) dt
< LUV >.
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VYV € Ker(L) , VU € CK,[0,2T), we have
<LUV>=<ULV >=<U,0>=0

Thus
KerT(L) 2 Range(L) (77)

Now YU € KerT(L) we have
<U Vo >=0 (78)
0 )
where Vp = € Ker(L). Let U = [ "‘] and W = [ i
22 U2
equation LIV = U , or

] . Cousider the

un

Lyiw, = uy Law; = uq

We have u(—t) = —uy(t), iy ({ +2T') = uy(t) , because U € C9,[0,27). Lys = 0 has
an even T-periodic solution s = sp(t) , and si(t) > 0 t € R'. From Lemma 4.1.5,

there exists a w;(t) such that
Lyw(t) =w1(t), wi(t +2T)=wy(t), ui(=t) = —u(l) .
From (78),

1 p2T
0=< Uy >= ——] (uy - 0 + uyrq) dt
T Jo

o

2T
= / Uz di = 0
0

Thus the requirements of Corollary 4.1.1 are all satisfied. So there exists a solution
wo(t) such that

Lawy(t) = ua(t), uz(t+2T) =uy(t) , uy(—t) = —uy(t)

Thus LW = U and U € Range(L). Hence Ker™(L) C Range(L).
Therefore
KerT(L) = Range(L)

Because dimKer(L) =1 < oo, we have
Cl0,2T) = Ker(L) & KerT(L) = Ker(L)® Range(L)
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4. V{U,} € Range(L) and

v.YWu , vec,o,2m
we have
<Un,V>=0VVE Ker(L)

Asn—-oc <U,V>=0, thus Ue€KeT(L)= Rangc(L). Therefore

Range(L) is closed.
5. From the conclusions of 1, 2, 3 and 4, we have

dimKer(L) =1 CodimRange(L) = 1

inder = dimKer(L) — CodimRange(L) =0

and Range(L) is closed. Thus L is Fredholm of index 0.

In terms of Lemma 1.2.1.1. we can employ Liapunov-Schmidt reduction with sym-

metry to study the bifurcations of the system (see § 3.1).

Define
E: °,]0.2T) = Range(L)

Then &(1°.4) = 0 is equivalent to

E®(li.4)=0
(/= EYO(l',7) =0 (79)

Furthermore the bifurcation equation is reduced to
W(Vi) =09,V € Ker(L)

and it inherits the symmetries from the system (41). Take the basis of Ker(L) to be

%=[0}
LTz
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Then the bifurcation equation is reduced to a nonlinear algebraic equation:

g(z.7) H< p(rVp,9), Vo >=0
g(az,7) = ag(r.v)
9(Bz,v) = Bg(x,v)
glox,v) = og(r,v).

Now we will find representations of the symmetries a ,  and @ on t'.
Let V = zVy,

(!V:V(t-}-'r):x[ 0 ]

Tt +T)
n
=r| ] —
—r,(t)
= or = -r
1 0 0
V= : = -tV
= gr=—r
oV =-V(-t)=1"(1) = or=r.

Then from (81), we have
9(—z,7) = —g(x,7).

This means that the bifurcation equation (82) has Zg-symmetry on 1.

Theorem 4.2.1.1 If g(z, ) is C™ on some neighborhood of the origin and

g(=z,A) = —g(z, A), then there is a smooth cocfficient a(u, A) such that
g(z, ) = a(z? X)x.

This Theorem is from [32, page 249]. Setting A = v — 7 then we have

glz,7) = a(«® v)z.
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Now we compute derivatives of ¢.

g = a,22% +a(stv) (84)
a(0,7%) = 9g:(0,%) (85)
gzz = @u(27)22% + 44,7 + a2z (86)
9:2:(0,%) = 4a.(0,70) + 2a.(0,%) = 6a.(0, 7o) (87)
9z4(0,%) = a4(0,7). (88)

Using the formula in [32, page 295], we get

9:(0,%) = 0 = a(U,7) =0

0:2(0,%0) = < Vo, (d®,)Vo — (d2®)(Vo, L™ ED,,) >

9eze(0,70) = < Vo, (d*®)(Vo, Vo, Vo) — 3(d?®)(Vo, Woo) >
Woo = LVE(d*®)(Va,Vh).

Now

" 4+ sinrcos(s + so) + 297

0

Q(Us 7) = [

s" + sin(s + sq¢) cosr — sin sg ]

Thus

and ®,(0,40) = 0. Hence

g:00,7%) = < V,(d®,)Vo > (89)
7] 0
()0 = o [ st ] (90)
t=0
0
= [ } =2V, (91)
2(112
= 92v(0,7%) =< Vo,2Vo >=2< Vp, Vo > > 0 (92)
= a,(0,0)=2<V,W>> 0 (93)
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From Implicit Function Theorem, there exists a solution ¥ = 4(u) such that
a(u,y(u)) =0. Thus we have

Main Theorem 4.2.1 For each in-phase rotation, there is an infinite series of bifur-
cation points v at which the Floquet multipliers are -1. Furthermore, an odd 2T-period

out-of-phase rotation bifurcates if the linearization at this point has an odd 2T-periodic

solution.

To get normal form of the bifurcation equation, we cite a Theorem
from [32, page 256].

Theorem 4.2.1.2 Let g(x,\) = a(u, )z be C® in the neighborhood of the origin.
Then g is strongly Za-equivalent to (eu* + 6X\)z if and only if

gk-1
— Oa _ —_ —_
=== Ouk“‘a 0
atu=\N=0 and \
= sgn Wa(O,O) 6 = sgn a,(0,0)

Thus if LT':"u'—‘,;a(O,"m) # 0 for some k > 0, we have the normal form (gu* 4+ v — 7)r
because 6 = sgn ax(0,4) = 1. In general, computing the derivative %}a(o, Yo) is

tedious. Here we only give the first order derivative. To do so, we first derive some

M:[Si] 1=1,2,3
ri

At UV =0 and 4 = 4¢, we have

formulas. Let

(L1581 + tasa)"” + sin(y8) + L2332 + sp)
0? cos(tyry + tar2) — sin sg
0Lt | (tyry + tar)" + sin(tyry + tors)
cos(t;81 + t282 + s0) + 27(ty7y + Lar2) |

d*®(W1, V2)

Ly =0

[ 85 + cos(t151 + t2sp + 80)32 cos(tyry + tary)— ]
0 sin(t131 + t282 + So) Siﬂ(tﬂ'] + tgrg)rg

atl 'l‘g + COS(tl'I‘l + tgrz)rz cos(t;s, + t282 4 30)

—sin(tyry + tar2) sin(ty8y + 233 + 80)82 + 27072 |
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[ — Sin 8p 8182 — Sin 8y a1y ]

— §in 8g 728; — sin 8g 7152

d*®(V1, 12)(0,%) = ~

$182+mrg |
sin Sg (94)
8172 + 7182

(t181 + t282 + t383)" + sin(tys1 + t82 + 1383 + <o)
o cos(tyry + tary + tar3) — sin sg
0106203 | (tyr) + tary + tara)” + sin(tyry + tory + tars)
cos(8)81 + t2s2 + t383 + 8o) + 29(tary + tary + tara)

oV, V3, Vs) =

=0

[ cos(ls; + t282 + tas3 + 8p)s3 cos(tyry + targ + tara)—
0? sin(f;8; + 283 + 383 + so) sin{tyry + tory + tara)rs

O0ts | cos(tyry + tore + tara)rs cos(1y8 + 1282 + tas3 + so)

- sin(t1r1 -+ t27‘2 + t37‘3) Sil’l(tlsl + tys9 + t3s3 + 30)33 J

1,=0
~sin(¢ys; + 282 + 1383 + S0)s352 cos(tyry + torz2 + 13r3)— ]
cos(t18y + t28 + t3sz + So)sasin(tyry + tary + targ)ro—
cos(2y8) + 1282 + 383 + So)sasin(tyry + torg + Larz)ra—
0 sin(ty8) + t2s2 + t383 + 89} cos(tyry + targ + tars)rers
oty | ~ sin(tyry + tore + tarz)rary cos(t1sy + 1282 + t3s3 + so)—
cos(tyry + tary + tar3)rasin(iys) + €28 + t383 + 89 ) 82—
cos(i1ry + targ + tars)ra sin(t 8y + 128 + 1383 + Sg)s3

| Sin(t17'1 + t27‘2 + t37’3) COS(t;Sl + thz + t333 + 80)3233

-

J¢,=0

[ — COS 89 818283 — COS Sg I";T283 — COS Sg I'1r382 — COS Sg I'a2Tr3sy }

— CO8 Sg I3 — COS Sp S18273 — COS Sg $18372 — COS Sg 828371

818283 + TT983 + T3Sy + 1738

d(W1, V2, V3)(0,%) = — [ ] €os So, (95)

ri7Ter3 + 818273 + 818312 + S28371

From equations (94) and (95),

2 ~z3 | .
d“®(Vo, Vo) = 0 sin g
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0
dBO(Ve, Vo, Vo) = [ . ] cos o.

But
< d*®(Vy, Vo), Vo >= 0
= d*®(Vo.Vo) € Range(L).
Thus
LW = Ed*®(Vo, Vo) = d*®(Viy, Vp)

where Wy is to be solved in Range(L).

Li(Weehr = —a2sinsp(t)

Ly(Wee)2 = 0

= (Woo)a = 0 (Woo € Range(L)).

Thus
gz:t.r(Oa ‘70) = < V(hdaq)( ‘,()1 Vo, ‘/E)) > “3 < V(h dzq)(v(hl’VOO) >
1 jor 1 T, , .
= —-571:/0 12(s)cosso(s)d.s+3ﬁ A 23(8)(Woo)1(s) sin so(s) ds

Therefore

1 1 T 1T _ )
a,(0,70) = AT :l'z(s)cos.so(.s)(ls+3§? ; To(s)(Wun)i(s) sinsy(s)ds ).
(96)

4.2.2 Degenerate Z; ® Z,-Bifurcation

Assume that A2 holds. That means that Lyr = 0 has a unique, linearly indepen-
dent, even, 2T-periodic solution. In this case, Z2 @ Za-bifurcation occurs. Instead of

considering the mapping ® on C¥,,[0,2T), we now have
®: C?0,2T] — C°[0,27) (97)
Similar to Lemma 4.2.1.1, we have
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Lemma 4.2.2.1 . C*[0,2T] is a Banach space with the norm defined in (74).
2. dimKNer(L) =2
3. C°0,27) = Ker(L) & Range(L)
4. Range(L) is closed.

3. L is Fredholm of index 0.

PROOF:

1. Proved in Lemma 4.2,1.1 1.
2. Lys = 0 has an even T-periodic solution sj(¢). It is also 2T-periodic. With A2,

Lyr = 0 has an even 2T-periodic solution, which is x(t) with 2:(0) =1, 2%(0) = 0.

- . so(?) 0
Therefore dimKer(L) =2 and Ker(L) = span( ), ).
0 xy(t)

3. Similar to Lemma 4.2.1.1,
KerT(L) D Range(L)

Now VYU € KerT(L), wehave <UV>=0 VVeKer(l)
Therefore < spouyp >=0 ., < T,up >=0 .

On the other hand. the adjoint equation of & + ¢({)x = 0 is itself. According
to Lemma 4.1.6, both equations L;s = u; and Lyr = uy have 2T-periodic solutions.
Thus U € Range(L) and Ker(L)T C Range(L). So Range(L) = Ker(L)T. And we
have ("°[0,27] = KNer(L) & Range(L)

The proofs of 4 and 5 are completely similar to the corresponding parts of Lemma 4.2.1.1.

Remark 4.1 Let C}[0,2T) (i = 1,2) be the ith components of elements U(¢)
in C*[0,2T]. ®,(s) = s” + sin(s + s0) — sinsp and ®; : C?[0,2T] — C?0,2T}.
Lys = (d®,)s = s" 4 sin sp s. Similar to the proof of the last Lemma, we conclude

that L; is a Fredholm of index zero.
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Having proved Lemma 4.2.2.1, we can use the Liapunov-Schmidt reduction to

investigate the bifurcations in this case. Take as basis of Ner(L)

’
0 I

Then the bifurcation equation becomes

a1(7,9,7) < Vi, (Vi + yVa + W(a,p,7)7) >
92(2,4,7) E< Vy, 0(aV; +yVa + W(r,3,7),7) > . (98)

These equations commute with the symmetries o, f and a. Representations of

those symmetries on R? are derived as follows. Let V = xV] + yV4

The last equation is from sg(t + T') = sy(t) and y(t + T') = —ry(t). Thus

xr Tr
a{ }={ ] (99)
y —y
gv=|1 V1 ® | cav—gu
0 -1 Yy

/2]-5]
[2]--L3)

With the equations (99)-(101) and the fact that the bifurcation equation (98)

commutes with the actions, we obtain

gi(z,=1,7) = gi1(z,9,7)

92(z,-9,7) = —g2(x,9,7) (102)
a(=z,~4,7) = ~q1(z,¥,7)
g2(=z,=y,7) = —g2(2,4,7)- (103)
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From (102) and (102),

gl(—m,ys7) = gl(—x’ —("'y)a’” = -‘gl(xa_ya )

= —gl( aya7) (104)
g2(—2,9,7) = g2o( 2, —(=y),7) = ~g2(z,-¥,7)
= g2(z,9,7) (105)

The equations (102)-(105) justify that the bifurcation equation has
Z2 @ Z2 -symmetry [32, page 419].
Now we will reduce the bifurcation equation to its normal form. First we will

compute derivatives to see what should be in the normal form.

A"-:-‘;,‘-,g,m = (< VPRV, Vi, W) - 3PB(V, W) >) (106)
1
R st = (< VLV, V) = d20(W, W)
—9d20(Vy, Way >) (107)
CY ey = 5(< VLB, W, Vo) = PO(Va, W)
—2d20(V;, Wy >) (108)
def 1 1
DY S = (< Vo, POV, Vi, Vo) = 3P 9(Va, Win) >) (109)
6§ gon = < Vo, (dD,)V; — (Vo LT ED, > (110)
Wy = LTECV,, V) (111)
2 2
LW, = E&o(V,V,)=E SUS“’S"]:[ ‘“05‘“3“] (112)
0 0
[ 0
LWy = Ed®(V;,V,)=E , = o (113)
I ~T38(sin Sp —z18fsin o
[ _ 2 2
LWy = Ed®(Vy,Vs) = E “”‘;’“5"]:[ ";’““]. (114)

The last three equations come from the fact that the right hand sides are all orthogonal
to Ker(L). Thus they are in Range(L).

Wy € Range(L)
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Ly(Wii)2 =0 (i =1,2)

=

=

From (94) and (95),

dzq)( "h”’u)

d2q)( ’fz, "VQQ)

2o (Vy, Wo,)

d*®(Vy, Way)

2@ (Vy, Woy)

d*®(Vy, Wiy)

d*®(V, 1, V1)

ds(b(vh V21 VZ)
dP®(Vi, V2, Va)
d*®(Vi, i, V2)
(d0,)V;
Therefore
6=2< Vo, Vo >

(""31)2 =0

Li(Wy), =0
(Wah =0,

[ !
so(Wuh | .
- sin 8¢
0
0 ,
- , sin sg
| 1 (War)
[ ]
so(Waa | .
- sin s
| 0
o -
0 .
-1, . sin g
5 so(War)2
-"31(”’21)21 .
- sin s
0
0 .
- sin sg
| 7 (Wi
.-
s
- COS 8¢
0
0
- €0s 8o
&
xisy
- €08 8¢
L.
0
- COS 8¢
| sgx
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(116)

(117)

(118)

(119)

(120)

(123)

(124)

(125)

(126)



2T
A = -6 (ZT./ t) cos so(t)dt — 3517—, .sé,’(t)(an)l(t)sinsodt) (127)

Bz_%(ﬁ [ absieycos oty = o [ s (O(Wanhitt)simsoft)

_257; “ s(',(t)xl(t)(ng)z(t)sinso(t)dt> (128)

C = —% (Elf /02wa(1)362( t) cos so(t)dt — ‘T./ z2(t)(Whi )i () sin so(t) dt

1 por, .
_2-2—7;/ so(t)m1(t)(DV21)g(t)smso(t)dt) (129) |

D = 1 | f27 i(4 Nt — 3 2T2t(W Neinedl) . (13
- T8 (E'T'/(; a(t) cos so(t) dt — 5‘7‘1/0 x (1) (Wa)i(t) sin ¢ )( 0)

Lemma 4.2.2.2 There are smooth coefficients p(u,v, A) and ¢(u,v, ) such that
gy y) =p(u, 0,0z ga(2,9,7) = qu, v, A)y
whereu =% , v=y?, A =4 -9 and p(0,0,0) =0 ¢(0,0,0) =0
PROOF": This is a direct application of Theorem 4.2.1.1 and
91:(0,0,7%) =0 ¢2,(0,0,%) =0
Lemma 4.2.2.3 p(u,0, \) is independent of ).

PROOF":

In L-S reduction, there exists a unique solution W(x, y, ) such that
E®(zVi + yVo + W(z,9,7), 7)=0 (131)
From Remark 3.1, W(BV,4) = SW(V,v). 1hus
(W)y(z, -y, A) = —(W)y(z,y, )
Thus (W)a(x,0,7) = 0. Therefore at y = 0, the equation (131) becomes

8" + es' + sin(s + sg) — sin ¢
0

E =0
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where s = asy + (W)1(2,0,9), ie. ,

@1(1'86 + (u")l(‘ra 0»’7))
0

E =0 (132)

where ®, is defined in Remark 4.1.
On the other hand, applying the L-S reduction to @, on C?[0,2T] in the Re-

mark 4.1, we have a unique solution w = w(x) such that

E\®y(xsp+ w(z)) =0 (133)
where E; : CP[0,2T) — Range(L,) is a projection. Now
' 1/ -
< | 2@+ (Wh(,0,7) ] Ve>=0
0
Then
vo! he . v ! V4 N
(bl('l‘b()+(” )1(‘13017)) =E q)l(-'30+(” )1(‘1',017)) +J"""l (l:;‘l)
0 0
where
¢
<| 'ivs>
. = 0 <y, 8>
o<V Wi> T <l s>
So <&, —a"s;.s)>=0. Thus E¢; = &y — a*sf,. From (132) and (134),
LY 7
E ‘bl — q)] I S, _ Lﬂb] -0 (]3'))
0 0 0
or
E\®(zs + (W)y(x,0,7)) =0 (136)

By the uniqueness of solution in equation (133) and (136), we have
(W)l(xso,‘)') = w(z)
Now

91(27,0,‘7) = < Vlaq’(m‘/l + W($$0$7),7) >
= < 36,‘1’1(1086 + (W)l(za077)) >

= < s, P1(zs; + w(z)) >
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This implies that ¢{(z,0,7) = p(u,0,A)z is independent on 5. Thus p(u,0,1) does
not depend on A,

Lemma 4.2.2.4

plu,v,) = hi(u,0) + m(u,v,A) (137)
(I(uﬂ”’\) = hz(",va/\)'*'ﬂz(u’vw\) (138)

where

hy(u,v) = Au+ Bv
hao(u,v, A) = Cu + Dv + A
71 (1.0, A) = py(u)u? + pra(u, v, A)uv + pog(u, v, \)v? + pas(u, v, A)Av
def p(w)? + pa(u,v, Mo
n2(u, v, N) = gy (1, v, Nu? + gi2(u, v, Nuv + qra(u, v, A)ud + goo(u, v, A)v? +
q23(tty vy A0 + gaz(u, v, A)N?

and A, 8, C', D and 6 are constants.
PROO}":

By Lemma 4.2.2.3, we write p(u,0,A) = pp{u). From Taylor’s Theorem(32, pages
6N} and py(0) = p(0,0.0) = 0, we have

po(u) = Au+ Py(u)u?

p(u,v,A) = po(u) = pa(u,v,A\)v

and
pa(w,v, ) = p2(0,0,0) + prz2(u, v, A)u + paa(u, v, A)v + pas(u, v, A)A

The first formula is obtained by taking B = p;(0,0,0). Similarly, applying Taylor’s
Theorem to ¢(u,v, ) at (0,0,0), the second formula follows.

From this Lemma, QE—%’;"'—’\-I = 0 if v = 0. Therefore the bifurcation equation is
degenerate and not discussed in [32].
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Write
h(u,v, ) def (hy(u,v), ha(u,v,A)) (139)
n(u, v, A) € (i (2,0, A), na(a, v, N)). (140)
Main Theorem 4.2.2 I[f ABCDé # 0 and AD — BC # 0, then

RT(h +tn,Z2 @ Z2) = RT(h,Z2 @ Z3).

PROOF:
According to Table 3.1 in [33, page 177}, RT(h + tn,Z2 & Z2) is generated by

[P,O] ) [O?(I] ) [O,UP] 3 [vq,O] ) [upus“(lu] ) [UPm?’(lu]

where p= hy +tg ,g = ha + 2 and t € [0,1].
Let Q, be generated by

z[p, 0], 2[0,4] , 2[upu,uql] , z[opo,vqe] 4 [0, up)

where z =u , vor A. Obviously @, C RT(h + tn,Z2 & Z3).
2 is generated by

[4%,0] , [uv,0] , [u)0], [v%,0], [v),0]

0,27 , [0,uv], [0,ud], [0,07] , [0,04] . [0,A%].

We claim
Qg = Q. ( 141 )

If (141) holds, then
QCRT(h+ 1,220 2Z5) , (142)

and

RT(h+ tn,Z2 ® Z3) = Q4+ < [p, 0], [0,q], [upy,uq.], [vpu,vq.] > (143)
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where < fy,--+. fi > stands for the ideal generated by fi.: -+, fr. In fact, up and vg
are guadratic for any t € Ry. Thus [0,up] , [vq,0] € 2. Now we establish (141).
Write the generators of RT(h + tn, Z2 @ Z2) as

[p.0]
[0, 4]
[0, up)
[vg, 0]

[h1,0] + [tn, 0]
[0, k2] + [0, tn2]
[0, uhy] + [0, tun)
[vh2,0] + [tvn2.0]

(upy, ugy] (uhyuy whay,] + [tuniy. tuna
[vpe.vqy) [vhyys vhoy] + [tomy, trna) (144)
and
[M.0] Alw. 0]+ Blv. (]
[0, h2) C[0.u] + D[0,v] + 6[0. A}
(0. uhy) A0, u?] + B[0. ut}
[thy.0] Cluv.0) + D[¢?.0} + [u),0]
[whyy. uhyy) Alu.0] + C[0. u)
[ehy vhy,) Blv.0]+ D[0.¢] (145)
[t 0] = tpr(w)]e®, 0] + tpalu, . A)[e.0]
[0.tum] = [0.tpy(w)u® + tpa(u. vA)ur]
Me = Piud +2piu + pa fu,v, M.
Thus

[tm. 0], [0,tn2) , [0,tun], [tvnz,0], [tunie, tuna) 5 [tvme, tonz) € Q. (146)
Expanding the generators of Q; as
ulp,0] = ulhy,0]+ ufty,,0]
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v[p.0) = v[h. 0] + v[tn. 0]

Ap,0] = ARy, 0] + At 0]

u{0.q] = [0, h2] + u[0,tn,]

v[0,q] = v[0,ha] + v[0,1n,)

Al0,q] = A0, h2} + A[0, tny]
dupecugs) = ki whad + ultwg tuna
vlupu,uq) = vluhiy, wha) + vftum, tuna)
Mupu.uqy) = Muhyg,uhyy] + Mtumy, tun,)
ulvpy.vq)] = ufvhye. vha] + ufteme. tona)
v[opy,vq) = v[vhi.vha)] + vtei, ten)
Mepe,vq] = Mohi, vha] + Alfenue. tena)

[0.up] = [0.uhq]+ 0. tun). (147)

From (143) - (147). we have
Q, C Q. (148)
If
QCQ+ U, N (119)

where U, .n =< u.v. A >. From Nakayama's lemma (see § 3.1), we have
QCQ,. (150)

By (148) and (130), we get ) = Q.
Now we claim

Q + Upwn = Qo + Uy o\ (151)

) is the ©; when t = 0. By (146), all t-terms in the right hand side of (147) belong
to Uy 2. Therefore all the generators of €2, are in (g + Uy, 2SN

= Q C o + Uy 22

Qp + U o nQ C Qo + Uy 22 (152)
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Moving all t-terms in (147) to the left hand side , we conclude that all generators of
Ny are in Qy + U, 2. Thus

Q0 + Z'lu.,u,,\sz g Qt + uu,u,,\no (153)
From (152) and (153), (151) is established. From (149) and (151), we have to prove

0 C Qo + Uy s 2. (154)

Define

X =[[u?0], [uww,0], [¢v*,0], [uX0], [v),0],
[0,47], [0,uv], [0,0%], [0,ul], [0,0A], [0,A] )T

b=[u[h1,0] , v[k,0] , v*[R1v, h2u] , A[h1,0], vA[h1y, h2o)
[0, uhy], wolhyy, hau] , v[0,h2] 5 u[0, k2], uA[h1y, hou] 5 A[O, A2) 7.

Expanding the generator vector b of Q0 as the linear combination of the one X of 0,

we have
X =b
where O is given by
A B
A B
B D
A B
B D
A B
A C
C D 6
¢ D 6
A C
C D 6]
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The determinant of this matrix is ASB*C'§D(BC ~ AD), which is not zero by as-

sumption. Thus X is a linear combination of 4. Hence
NC (155)

and (154) is proved. By (144) and (145),
p,0] , [0.q) , [upu,uqu], [vpu,vq) € Q+ < [h1,0], [0, hy] , [whyy,thyy) , [0hye, vhy) > .
From (143),

RT(h+ 10,22 ® Z3) C Q+ < [1,0], [0, k2] , [uhyu,uhal] , [vhi, vhy] >,
But
(11, 0], [0,h2] ; [uhiu, uhad] s {vhivha] € Q4 < [p.0], [0,q]), [upusugu] s [0pesegl] >.
So

RT(h+ tn,Za® Z3) 2 Q+ < [h1,0], [0,ha] , [whiuyuhay] , [vhie.vhay] >,
Thus

RT(h+tn,22 & Z3) = Q+ < [h,0], [0,hy] , [ubiy,uhay], [vhiy, vhy)] >
which is independent on {.

Main Theorem 4.2.3 If ABCD6 # 0 and AD —~ B(C' # 0, then the bifurcation
equation(98) is strongly Za & Za-equivalent Lo (hy(u, v, A)x, ha(u,v,\)y).

PROOF: This is from applying Theorem 1.3 [33, page 168] to the result of last

Theorem.

Main Theorem 4.2.4 If ABCDé # 0 and AD — BC # 0, then the bifurcation
equation(98) is strongly Za @ Za-equivalent to

(6123 + e22y?%, nzly + £3y> + €4)y)
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where
g1 = sgn(A) , €3 = sgn(B)
€3 = sgn(D) , €4 = sgn(6)
and
n =| B | C \n # €162
- AD [ 1€2¢3.
PROOF:
Take

Z(z,y,A) = (azx,by) , A(A)=0cA

S(z,y,A) = [(C] 3]

where @ , b, ¢ and d are positive constants. In terms of the definition of equiva-

lence [32, page 398], we have

S(x,y,A) (hy{ax,by) a x, halazx, by, o) b y)T =
r
(12° + e2zy?, naty + exy® + €4 My)
= (ca®Ax® + cab®Bry?, da®bC %y + db® Dy® + dbsb)y)

= (e12° + e22y® na’y + eay’ + 4)y).
So
ca®| Al = 1
cab?| B| =
a*|D| =
dhalé| =

[ G w—y

Thus

| B]
—b
|A|
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1 ]

© T @147 8 [,
LAl 1By By g
/Al
| B |3 b
1
d =
| D} b
o = 1Dl
|5|
1 |B]
= 2 b2
n da*bC = |D|b3|/” c
_ 1B]
- |DA|C'

Define
9(z,y.2) = (p1(1, 0, M), g, 2, A)y).
Then g(x, y,A) has different types of solutions.
(1) Trivial solution: =0, y=0
(2) x-mode solutions: p(u,0,A\)=0, y=0, = #0.
(3) y-mode solutions: x =0, ¢(0,v,A)=0, y #0.

(4) mixed mode solutions: p(u,v,A) =0, q(u,v,A\)=0, ##£0, y#0.

Define:
P=ciu+ &0 ¢ =nu+eyr+ 4
where
u=a2 o=y e, =%l (1 =1,2,3) n# e
From (126), we have § > 0. So ¢4 = 1. Hence we have
(1) Trivial solution: =0, y=0
(2)There is no x-mode solution.
(3) y-mode solutions z =0 , A= —eay®.
(4) Mixed-mode solutions £ # 0 y # 0
Solving the equations p(u,v) = 0 and ¢(u,v,A) = 0, we have

A = eqfe1€3 — £2n)u
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Figure 2: Bifurcation diagrams ¢ = %1

A= —61(6163—6271)0 (157)

u = —£160 (158)

4.2.3 Bifurcation Diagrams

The bifurcation diagrams of normal form (eu ++v —4o)x = 0 for the case A1 are given
in Figure 2.

The equations of the bifurcation diagrams in the case A2 are presented below:
(Neyr=cer=e3=1landn#1.
y-mode: A = —y?
mixed-mode: 22 4 y? = 0, no non-zero solutions.
(2)ey=c2=1, e3=—1and n# —1.
y-made: A = y?
mixed-mode: &? 4+ y? = 0, no non-zero solutions.
B)er=e2=—1,eg=1andn#1.
y-mode: A = —y?
mixed-mode: z? 4+ y® = 0 , no non-zero solutions.
M) er=e3=ea=-1land n # -1.
y-mode: A = y?
mixed-mode: z2? 4+ y? = 0, no non-zero solutions.
(B)e1=1,ea=-1,¢e3=1andn# —1.
y-mode: A = —y?
mixed-mode: A = —(1 + n)z? and A = —(1 + n)y?
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(1) (2)

— —

(3) (4)

Figure 3: Bifurcation diagrams ¢; = 3 = £1 , €3 = *I

(6)er=1,¢e=~1,c3=—1landn # L.
y-meaer A = y?

mixed-mode: A = (n —1)2? and A = (n — 1)y?
(Me1=-1,e,=1,¢e3=1and n#-1.
y-mode: A\ = —y?

mixed-mode: A = —(1+ n)z? and A = —(1 + n)y®
B)ey=-1,e=1,e3=~landn #1.
y-mode: A\ = y?

mixed-mode: A = (1 — n)z? and A = (1 — n)y?

The corresponding bifurcation diagrams are shown in Figure 3 and Figure 4.
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(5) n>-1 (5)n<-1

(6) n>1 (6) n<l

RN

V

(7) n>-1 (7) n<-1

\/"

(8) n>1 (8) n«<l

Figure 4: Bifurcation diagrams €; # €; , €3 = 1
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4.3 Fixed-point Bifurcation

Assume that equation (49) has Floquet multipliers = +1 at 4 = 99 # 0. Then,
from Lemma (4.1.2), if it has one linearly independent T-periodic solution then this
solution is even or odd. If it has two linearly independent T-periodic solutions then

one is even and the other is odd. Therefore we have two cases.
B1: there exists an odd T- periodic solution of the equation (49).
B2: there are no odd T- periodic solutions.

The assumption B2 implies that there exists a unique, even, lincarly independent,
jue, )

T- periodic solution of equation (49).

4.3.1 Hopf Bifurcation
Assume that B1 holds. Consider the map in (47)
®: CLI0.T] — C5ul0,T] (159)

Similar to the case A1, we can get a Lemma like Lemma 4.2.1.1 and apply the
L-S method to get the reduced bifurcation equation and finally derive representations

of the symmetries on R!. In summary, the results are given below.
Lemma 4.3.1.1 1. C*,[0,T] is « Banach space with norm defined in (74).
2. dimKer(L) =1
3. C8,0,T] = Ker(L) ® Range(L)
4. Rangc(L) is closed.
5. L is Fredholm of index 0.
The reduced bifurcation equation is
9(z,v) =0 (160)
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0
and Ker(L) = span(Vy) , Vo = [ ]

T2
Let V = a2V
oV=V(i+T)=V(l) = ar=zx
oV=-V(-t)=V({l) = oz==<
1 0 0
V= z
= —zlyg
Thus
fxr=—z
Therefore
9(-z.7) = —9(z,7) (161)

which implies that g(x, ) has Zz-symmetry on R!. Then similar to the calculations

and analysis in the case A1, we have

Main Theorem 4.3.1 For each in-phase rotation, there is an infinite series of bi-
furcation points v at which the Floguet multipliers are +1. Furthermore, an odd
T-periodic out-of-phase solution occurs if the linearization at this point has an odd

T-periodic solution.

4.3.2 Degenerate Z; @ Z,-Bifurcation

Assume that B2 holds. This means that Lyr = 0 has a unique, linearly indepen-
dent, even, T-periodic solution. In this case, Zz @ Zz-bifurcation occurs. Instead of

considering the mapping ® on C%,,[0, T}, we now have
®: CYo,T) - C°0,T) (162)

Then we have
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Lemma 4.3.2.1 1. CN[0,T] is a Banach space with norm dcfined in (24).

2. dimKer(L) =2
3. C°0,T) = Ker(L) @ Range(L)
4. Range(L) is closed.

5. L is Fredholm of inder 0.

Take a basis of Ker(L) as

wfé] el

Then the bifurcation equations become

a(2,y,7) E< Vi, 0V + yVo+ W(a,p,1)01) >
< Vo, ®(aVi + yVo+ W(a,y,7),7) >

lef
g2(%,y,7) E

These equations commute with the symmetrics o, 4 and o.

« =
Y ¥ ]

(163)

(164)

(165)

(166)

The bifurcation equations have Za (b Z2-symmetry and we have similar conclu-

sions about normal form and bifurcation diagram as those corresponding to the case

A2,
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Chapter 5

Bifurcations When Damped and
Forced

In the preceding two chapters, we studied the bifurcations in SQUIDs without
bias current and damping. What will happen when these are present? This is the
subject of this chapter.

Consider the system

'2;1 + Ed;l +sin(¢y) = I+1(d2—- 1)
62+ co1 + sin(¢s) I+ v(¢1 — ¢2). (167)

When v = 0, this equation is reduced to that of a single pendulum with constant

external force,

¢+ ed+sin(g)=1, (168)

for which the dynamics are well understood [5]. The system (168) possesses an asymp-
totically stable rotation i.e., ¢(t + T') = ¢(t) + 27, when I > Iy(¢) and € > 0 . This
rotation is also a monotonically increasing function of £. Throughout this chapter,

we assume [ > Ip(e)and €> 0.
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For the system (167), Maginu [5] observed that the in-phase rotation ¢y(1) =
#2(¢) = #(t) is asymptotically stable when v is small and large, but unstable for an
intermediate range of v-values, for suitable values of € and /. His numerical results
indicate the existence of chaotic motion in the unstable range, but he did not study
the transitions through chaotic behavior as 4 passes through this range. Doedel,
Aronson and Othmer [4) numerically obtained that the in-phase rotation is unstable
in (—o0,0)U(71(¢), 72(€)) for some nonnegative v;(¢) and 5,(¢), and stable otherwise.
They also numerically investigated the transition to chaotic motion. They found that

there are period-doubling cascades.

In this Chapter, we theoretically investigate bifurcations from the T-periodic in-
phase rotation. In Section 5.2 we discuss the period-doubling bifurcations. It is shown
that the bifurcation equation has Z: symmetry on 22 Under certain conditions it is
equivalent to a simplified normal form. Bifurcation diagrams are presented. There are
2T-periodic out-of-phase rotations bifurcating from the in-phase rotation. In Section
5.3 we study the fixed-point bifurcations. There are T-periodic out-of-phase rotations
bifurcating from the in-phase rotation under certain conditions. The normal form and

bifurcation diagrams are qualitatively the same as in Section 5.2.

5.1 Linearization and Symmetry
With the transformation (29), (167) becomes

s" +¢es +sinscosr = 0

r"” +¢er' + sinrcoss -2, (169)

The in-phase solution is given by
s=38p(t) , r=0 so(t+T)=30(t) +27 .

Transform

s — s + so(t), r—r.



Then (169) becomes
"+ cs' + sin(s + so(t)) cosr —sinsg(t) = 0
" +er' +sinrcos(s +so(t))+2ry = 0 (170)

where s/ + esf + sinsg = I. The 2T-periodic solutions of (170) are 2T-periodic rota-

tions of the equation (167).

Define
s"(t) + £8'(1) + sin (s(t) + so(t)) cos r(t) — sin so(t)

Pl = r(t) + &s'(t) + sinr(t) cos(s(t) + so(t)) + 247(t) 17y
Then
¢(0.4)=0 (172)
Lemma 5.1
o(al’.q) = a®(l'. %)
G(3U.~) = 30(L.~)
where a and 7 are defined in Chapter 3.
PROOF: Similar to Lemma 3.2.1.
Linearize (170) at s =r =0 to get
o+ cs’ +cossp(t)s =0 (173)
1" 4 s’ + (cosso(t) +29)r =0 (174)
The Floquet multipliers of the equation (173) are
p=1, pp=e*<l
The Floquet multipliers of the equation (174) are
paps=e " <1
Possible bifurcation occurs when | p3 |= 1 or | ps |= 1. Thus. without loss of

generality, we have two cases:




¢ Period-doubling bifurcation ( Floquet multiplier = -1 ) .

o Fixed-point bifurcation ( Floquet multiplier = +1 ).

The linearization of ®({',4) at s =0, r =0 .5y = 4 is given by

. s" + s’ + cos sps | Lys
LU = ° def | M2 (1
" 4+ er' 4 (cos s + 299)r Lyr

-1
it }
—

5.2 Period-doubling Bifurcation

In this section we assume that one of Floquet multipliers of the equation (174) is -1
at 4 = 7.

Consider the mapping
$: (¥0.27T) — C°0.2T (176)
Then L is Fredholm of index zero.
Lemma 5.2.1 /. dimKNer(Ly=2, dimKer(L™) =2
2. CY0.2T) = Ner(L™) = Range(L)
3. Range(L) is closed.
4. L is a Fredholm of index 0.

Above. L= is the adjoint operator of L. which is defined as
) s" —¢s' + cos sgs AT
LU= el
r" —er’ + (cos sg + 270)r Lyr
Proof:

1. L5 = 0 has a T-periodic solution s;. According to the assumption, Lys = 0 hus it

2T-periodic solution. say, ry(t). Then

/ 0
Ker(L) = span(V1, V2) Wi = [30 ] vy = [ ] :

T2
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Both L; and L; have simple Floquet multipliers. So do L} and L; from Lemma 4.1.7.
Therefore Lis = 0 has a T-periodic solution s*(¢) and Lir = 0 has a 2T-periodic

solution »(¢), and
- » - - s- - O
Ker(L') = span(Vy',Vg) Vi = [ ] V= [ ]
Thus dimKer(L) = 2.

2. From integration by parts, wehave < U,L*V >=< LU,V >, Thus VLU €
Range(L),  we have < LUV >=< U, L*V >=0 VV € Ker(L") and

hence

Range(L) C KerT(L7)
Ou the other hand
ViV e ]\’67‘7'(L') <WV>=0 VVe&Ker(L).

Thus < (W);,s* >=0 < (W)oyr >=0.
* From Lemma 4.1.6, there exists a 2T-periodic solution for the equations Lys = (1),
and Lyr = (W), respectively. So W € Range(L) and Range(L) D KerT(L*).

A

Thus

Range(L) = Ker™(L")

Now (0.27) = Kar(L*) & KerT(L™) and so
C°0,2T] = Ker(L") & Range(L)

3. and . are straightfoward.

Remark 5.1 Ker{(L*) is an invariant subspace of the symmetries a and 5. In
fact, gV = Vi, BVy = —Vy and oV*(t) = V(t + T) = Vy(t). Then gV, BV,
and oV} are all in Ker(L*). oaV3'(t) = Vi (1 +T) = [ 0 ] Lr(t+T)=0

r(t+T)
and r*(t + T) is 2T-periodic. Thus, for some constant ¢, r*(t + T) = cr*(t). So

aVy = cVy € Ker(L™).
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With this Lemma and Remark 5.1, we can use the L-S reduction with symmetry
to study the bifurcations. The bifurcation equations are reduced to
ai(2,4,7) E< V', @ (2Vi + yVo + Wiz, 5,7),7) >
9:(2,4,7) E< V5,0 (aVi + yVa + W(a,5,7),7) > (177)
where V", V;* € Ker(L*).
Let V =aV] + yV5, wien

AV =V —yV2

L)L
y =Y

To get the representation of a, we do the following. ro(t + T') is a 2T-periodic
solution of Lor = 0. So ra(t + T') = cry(t), where ¢ is a constant. Then
ro(t)y = ra(t+2T) = cra(t 4+ T) ro(T) = ery(0)
and
ra(0) = eno(T) = c(era(0))  74(0) = ery(T) = clery(0))

At least one of r5(0) and 5(0) can not be zero; otherwise ry(f) = 0. Therefore
c?=1. And c must be —1; otherwise ro(t + T') = ry(t) , which is a contradiction.
S0

ro(t + T) = —ra(t)
and
aV=V({it+T)=aW(t+T)+yVa(t+T) = 2Vi(t) = yVi(l)

a[ﬂ:{“’l (179)
y —y

g1(z,-y,7) = gi(z,9,7)
92(2,=9,7) = —g2(z,9,7) (180)

Thus

which means that g(z,y,7) has Z,-symmetry on R? [33, page 417].
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5.2.1

Normal Form

Let A =7 —

Lemma 5.2.1.1 There are smooth cocefficients p(u,v, ) and q(u,v,X) such that

91{z,y,7) = p(u,v,A) g2(x,9,7) = q(u,v, Ny

whereu=1z ,v=y*, A =~ and p(0,0,0) = 0, ¢(0,0,0) =0, p,(0,0,0) =0

PROOF: This is a direct application of Theorem 4.2.1.1 and

91:(0,0, 70) =0, g2y(0a 0, '70) =0

Lemma 5.2.1.2 p(u,0,)) is independent of A.

Proof: Similar to Lemma 4.2.2.3.

Lemma 5.2.1.3

where

plu,v,A) = hy(u,v) + py(w)u® + pau,v, Ao (181)
glu,v,A) = ha(u, A) + qa(u,v,A) (182)

hy(u,v) = Au® + Bo

ho(u, Ay = Cu+ 86X

pa{u, v, A) = pay(uy v, A)u + paa(u, v, v + pas(u, v, M)A
g2(u,v, M) = Do + qui(u, v, \u? + qra(ut, v, Muv +

(IIS(U' v, A)u)‘ + Q22(U, v, ’\)v2 + QQs(u, v, ’\)‘UA + q33(u’ v, ’\)’\‘2

and A, B, C, D and é are constants.

Proof:

By Lemma 5.2.1.2, one can write p(u,0, ) = po(u). From Lemma 5.2.1.2,
0 = p(0,0,0) = po(0) and 0 = p,(0,0,0) = p4(0). By Taylor Theorem [32, page 60)

po(u) = Au? + py(u)u®

7




plu,v. XY = po(u) = pp(u, v, Ao

and

p2(u,v, A) = pa(0,0,0) + paa(u, v, M) + paaee, v, A)A

Setting B = p,(0,0,0), we derive the first formula. Applying Taylor’s Theorem to

q(u,v, M) at (0,0,0) again, we get the second formula.

Define

h(u,v,A)

n(u, U’A)
mu,v,A)

n2(u, v, A)

(h1(ll, ‘U), h?(u» v, A))

= (mlu,v,A),m2{u,v,}))
= p(u)u’ + pa(u,v, A\

g2(u, v, A).

(183)
(181)
(185)

(186)

Now we compute their derivatives to obtain the normal form. Straightforward

computation leads to

1
= 5,’/11‘1‘(0» Oa 0)

1
= Eglyy(o,o’o)
= g2ry(Os 0, 0)
= .(f?y'\(OaOaO)-

Using the formulas in [32. page 295]. we find

Jizr
Y1yy
g2zy

gy

< W, 2oV, W) >
< W, d*o(Vy, V) >
< Vo, d*®(W, Vi) >
< Vi, (dO))Vy > .

(187)

(188)
(189)
(190)

(191)
(192)
(193)
(194)

The damping terms have no effect on the second order derivatives , so we can still

use the formulas (94 ).

POV, V) = [ —s¢ sin 8g ]

1?2

0
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[
FURARE 0 ]

;e
L —~T25¢SIN 8

dl2o(Vp, Vo) =

[ —r2sin s
i 0
(doy)Ve = 2V,

So
A = —-% < sh, st sinsg > (195
B = ——% < sp,r2sinsg > (196)
C = ~ <rg,rp85sinsg > (197)
6 = 2<rre>> 0. (198)

Main Theorem 5.1 [fA#0,B#0,C #0and § #0, then
RT(h + tn,Z2) = RT(h,Z3)

PROOF:
According to Table 3.1 in [33. page 177}, RT(h + iy, Z3) is generated by

[p,0] , [vq,0] , [0,])] s [O,(I] ) [vp.,,qu] y [uPuyugy) [vpuavqu] v AlPurgul

where p=hy +tn ,q=hy+ty; and t € [0,1].
Let ©, be generated by

0] , [vq,0), [0,p] , [0,¢]) , [vPv,vqs] , ulvpv,vq) , [upu,uqs) , [VPuvG)

Obviously, &y C RT(h + tn, Zg).
(1 is generated by

[v,0] , [uv,0] , [«*0], [vA,0], [0,4] , {0,v] , [0,A], [O,u?.

We claim
=0 Vte[0,1]. (199)
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If (199) holds, then
RT(h + tn,Z2) = Q+ < [u),0] > (200)

which is independent of ¢ and the Theorem is proved. In fact, from the generators of
Qta

RT(h+tn,Z2) = Y+ < A[pu,qu) > . (201)
From Lemma 5.2.1.3,
AlPusqu] = Alpu,0] + u[0, ] (202)
= A2Au+3py(u)u® + 20,0 + qu(u, v, A){0, A] (203)
= 2A[u), 0] + 3py(u)A[u?, 0] + A%2[v, 0] + qu(i, v, N)[0,A].  (204)

All the terms except 2A[u),0] in the right hand side of (204) are in Q. So

AlPusqu) € Q4 < fuX, 0] > . (205)
If A#0, from (204),
[uA, 0] € Q4 < Apusqu] > (206)
By (205),
O+ < Apusqu] >C Q4 < [0, 0] > (207)
By (206),
O+ < [uX,0] >C Q4+ < A[pusqu] > (208)
Thus
O+ < [ur, 0] >= Q4+ < Alpu,qu) > . (209)

From (199), (201) and (209), (200) is true. To finish the proof, we must establish
(199). Write the generators of , as

[,0] = [h1,0]+ {tm,0]
[vq,0) = (vha, 0]+ [tvn2,0]
[0,p) = [0,h]+(0,im]
[0,9] = [0, k2] + [0, ¢ne]
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[opo,vg)] = [vhiy,vh2] + [tonie, tene)]
ulvpy,vg)] = ufvhiy,vha] + ultvn, tun)
[4puyuqu] = [whiu,uhoy] + [Eunru, tunz)
[(Vpu,vq] = [Vh1u,vh2u] + [to71u, tUn24] (210)

and

[vhiy, vhoy) = Blv,0]
u[vly,,vhy) = Bluv,0)
[1,0] = A[u?,0]+ B[v,0]
[vhy,0] = Cluv,0]+ 8{vA,0]
[0,hy] = A[Q,u?+ B[0,v]
[0,hy] = C[0.u]+6[0,A)
[whyy, thyy] = 2A[u%,0] + C[0, ]
[vhyuvha,] = 2A[uv,0]+ C[0,v). (211)

Irom Lemma 5.2.1.3, we have

[tm, 0] = tpi(u)ulu?,0] + tpa(u, v, A){v, 0]
[to,0] = tiefv,0]
= t(Dv + quu? + qrauv + qiaud + g220* + qa3v) + 33A?)[v. 0]
[0.00) = tpi()u]0, ) + t(par + prav + p23r)[0. v]
[0,tn,] = tD[0,v] + tq11u{0, u] + 1g12u(0, v]
+1q13uf0, A] + tg22v(0, v) + tq23v[0, A] + tgazA[0, A]
[tvme, tomey] = tm[v, 0]+ t72,{0, v]
ultomu, tong,] = tuny,[v,0] + tuns,[0,v]
ultnietnz] = tul3pi(uv)u? + %’i’—v,O] + tn24[0, u}
o[t tyze] = tmufv,0) + tn24[0, v). (212)
By (211) and (212), all terms in the right hand side of (210) are in Q. So

0290, (213)
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On the other hand, if
Q g. Qt + uu.v,.\Q

then, from Nakayama’'s Lemma, Q C Q,, and the claim is true. Now we claim
Qt + uu,v,/\n = QO + uu.u..\ﬂ

Actually, by (212)

[tn1,0] , [tvna, 0], [0,4m] , wftome,tona), w[tyie, tyz)
[0, tn2] — tD[0,v] , [tvmu, tvna] — tD[0,v] , v[tmu,in2] €17 A€

From the second and last equations in (211),

2A

]
[0,v] = F(v[h,u,hgu] - -b—u[vhh., vha,]) €

Therefore,

[tv'll Uy tv’hu] ) [Oa tn’Z] € Q0 -+ Llu.v.,\Q
And all the generators of Q; are in Qg + U, 1. So

Qt + uu,v.AQ ..C_ Q0 + Z'lu.v,.\Q
However, from (210) and (216),

[h1.0], [0h, 0], [0, 04], w[ehy,, vha)
ulhius hau] s olhiu hau] € Qo+ Ui Q

The fourth and fifth equations in (210) give

[0,h2] = (0,9} —t[0,72 — Dv] — tD[0,v]
[vhiy, vh2y] = [vPy v@] — ([Lon10 o] — ED[0,v]) — 1[0, v]

The sixth and last equations in (210) give

ulvpy, vgy) u[vB, 0] + u[tvyy, tunz,]
v[p"’ q“] = 2’4[“”’ O] + 0[01 v] + v[t”lua t7}2u]
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By (220) and (221)

] 2A
0.0 = 5 (vlps ul = 25 (ulepes 0] = ultons tomad) = oltmastnadd)

and, from (216),
[01 U] € Qt + uu,v,AQ

From (216) , (219) and (222)

[03 h2] ) [vklu’ vh?u] € Qt +'L(u,u,.\Q
D C O+ Uy, 10

= Q0 + uu,u,,\Q g Qt + Z'lu,u./\Q

By (217) and (223), we have (215).
From (214) and (215), if

Q g Q! + Z'{u,v..\Q = Q0 + uu,v.,\Q

then (199) is true. Define

X ={[v,0], {uv,0]. [«%0], [vX,0], [0,u], {0.v], [0,A], (O, u?] ]T
b=[v[hi, h2], wvlhiewha] o [,0], [vhe,0], [0, Ry], [0,Rs] ,
u[hluah'lu] L) v[hluﬁ h‘lu] ]T~

By (211)

X =0
where O is given by
5 .
B
B A
C 6
B A
C )
24 C
2A C |

83

(222)

(224)



The determinant of this matrix is —A?B2C%8% # 0; X is also the linear combination

of b. Thus
QCQ (225)

Main Theorem 5.2 If A #0 , B# 0, C # 0 and § # 0, then the bifurcation
equation(180) is strongly Zz-equivalent to (hq(u,v), ho(u, A)y).

PROOF: This is from applying Theorem 1.3 [33, page 168] to the result of the last

Theorem.

5.2.2 Bifurcation Diagrams
The solutions of the normal form can be solved from the following equations.
hiy=A2?+ By’ =0 h,=Cay+6iy=0
det dh = hy hgy — hyyhow = —BC

Notice that 6 > 0 from (198), we have
(1) Steady-state solution: z =0,y =10}
(2) Periodic solutions: A = —4Cx and A = %} ll%le if AB <.
Thus

Main Theorem 5.3 If AB < 0, there exists a 2T-periodic rotation bifurcating from

the T-periodic rotation.

The bifurcation diagrams of A = }Cx are thus shown in Figure 5

5.3 Fixed-point Bifurcation

In this section we assume that one of Floquet multipliers of the equation (174) is +1
at v = vo.
Consider the mapping

®: C*0,T) — C°0,T) (226)
Then
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C>0 C<0

Figure 5: Period-doubling Bifurcation AB < 0

Lemma 5.3.1 1. dimKer(L) =2, dimKer(L*) =2
2. C0,T) = Ker(L*) ® Range(L)
3. Range(L) is closed.

4. L is Fredholm of index 0.

Also Ker(L*) is invariant under the symmetries o and B. Thus the bifurcation
equation is reduced to

gl(l‘,yaal.) =0

g92(2,y,7) =0 (227)

which commutes with the symmetries a and 3.

Now aV = V(t 4 T) = V(t), then the representations become
y y
y -y

Thus the bifurcation equation (227) is Z,-symmetry on R?, and the analysis,
normal form and bifurcation diagrams are qualitatively the same as the ones in the

last section.
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