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ABSTRACT

Bolted flanged connections with full face gaskets were very popular
when pipe and pressure vessel flanges were made in cast iron only. It was
felt that such gaskets were necessary to limit the deflection of flanges made
of brittle material. When steel replaced cast iron as the preferred material for
piping and pressure vessel construction, full face gasketed flanges became
unpopular, for the simple reason that metallic or composite gaskets could not
be used for large seating areas because of limited bolt area in standard
flanges.

Full face gasketed bolted flanged connections nevertheless remained
popular, in particular, among low pressure applications in water works, paper
mills, food industry, also for non-circular flanges which are difficult to seal
with ring or strip gaskets.

In spite of the continuous use of such flanges, no design rules are

contained in the ASME Boiler and Pressure Vessel Code.

i




In this thesis, full face gasketed bolted flanged connections are
analyzed by implementing a design method that is similar to the ASME Code
design method used in ring flanges. Results of the analysis are compared
with existing simplified design procedures and with results from a series of
experiments made on three different test pressure vessels. A finite element
analysis is performed to explore the effect of a number of design parameters

and results are used to propose a new design method for such flanges.
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CHAPTER ONE

INTRODUCTION

1.1  Scope of Work

Bolted flanged connections are widely employed in pressure containing
apparatus, such as pressure vessels and pipes. They provide a convenient
method of joining together pieces of equipment.

The analysis and design of bolted flange connections are governed by
various pressure vessel rules and standards. In north America, for example,
the ASME Boiler and Pressure Vessel Code is used. The code contains
extensive procedures on the design of pressure vessel components, including
rules for the design of a number of different circular and non-circular bolted
flanges. The ASME Boiler and Pressure Vessel Code includes design
procedures for ring type flanges and flanges with metal-to-metal contact
beyond the bolt circle. No rules are provided for Flat Faced Flanges with
Full Face Gaskets.

The objective of this thesis is to investigate the problem of full face
gasketed bolted flanged connections, to evaluate the methods of analysis used
at present, and to produce a simplified design method, which is based on the

ASME Code criteria for flange design.




In order to do so the ASME Code method is briefly introduced. and
related to the design problem of full face gasketed flanges. An analytical
solution that is based on the theory of shells and plates is employed and
verified through finite element analysis. Experimental testing is then
employed to further verify the results. Finally a simplified design method that

follows the analytical solution is presented.




1.2 Literature Review

A survey of the literature on bolted flanged connections gives little of
interest prior to the first quarter of the present century. Bzfore that time
flanges were designed by a rule of thumb based on a good grade of grey cast
iron from patterns that adhered dimensionally to traditional practice. What

little analysis one finds was approximations from simple beam theory.

1.2.1 Early Methods

In 1891 Bach‘[l]', in Germany, proposed the earliest method of
calculations, to receive wide attention. In 1905, in the United States, the
"Locomotive" Method [2], generally accredited to Dr. A.D.Risteen, was
introduced. Bach's method assumes that bending is taking place on a section
along a diameter of the flange. Circumferential stresses are then calculated
by dividing the external moment by the section modulus of the whole
section. The Locomotiv.: method, or the other hand, considers the flange to
be made up of sectors bent along a circumferential part of the hub. Both of
these methods are based on the flexure of beams, and only tangential stresses

are calculated.

* Numbers in square brackets [ ] refer to references.



An extension of Bach's method was proposed by Crocker [3]. In this
method it is assumed that, for ring flanges, the ring is fixed at the base of the
hub. It is equivalent to a cantilever beam with the load being distributed
along a width equal to the circumference. This gives radial stresses near the
hub, by dividing the bolt moment (W. a), by the section modulus ;

Z' =xD.t"/6, as shown in Figure 1.

1.2.2 Exact Methods

None of the foregoing methods took into account all the conditions
present in the flange, and only in 1927 Waters and Taylor [4] presented the
first exact method based on the theory of a beam on an elastic foundation
and the deflection of flat circular plates. A schematic diagram is shown in
Figure 2. This method is based on a discontinuity analysis between a
cylindrical shell and a flat circular plate with a central hole. It was the first
instance in which the stress conditions in the three principal directions,
tangential, radial and axial were explored. This method was included in the
ASME Code [5] in 1934.

Timoshenko [6] later proposed a simplified version of this method in
which he applied the theory of ring bending to the flange, as shown in

Figure 2. This theory is based on the assumption that the flange thickness is
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much heavier than the thickness of the connecting hub, hence the rotation of
a circular ring may advantageously be used instead of the more complex
plate bending formulation. Timoshenko's method has been used in the British
standard B.S.10 for low pressure mild steel flanges connected to thin pipes.

Later contributions by Wahl and Lobo [7] on ring flanges and
Holmberg and Axelsen [8] on ring and hub flanges, paved the way to a

better understanding of flange behaviour.

1.2.3 Development of the ASME Code Method

The development of fusion welding as a joining method in the process
industry established the need for flanges that could be butt welded to the end
of a pipe. Higher operating pressures led to the development of tapered hub
weld neck flanges. This prompted Waters, Wesstrom, Rossheim, Williams
[9] [10] to modify the original work done by Waters and Taylor, and to
publish their well known method "The Taylor Forge method". The refined
method consisted of a complete elastic analysis of the pipe, hub, and flange
ring assembly, as shown in Figure 3. This method was included in the
ASME Boiler and Pressure Vessel Code in 1938 and 1942. The method in
the 1938 ASME Boiler Code left the determination of gasket loads to the

designer. In 1942 gasket loading constants were included as described by




Rossheim and Markl [11], which completed the ASME Code Method as the
valuable design method that is still used in boiler and pressure vessel codes

of many industrialized countries

1.2.4 Other Elastic Methods

Based on the ASME Code method, Schwaigerer and Kobitzsch [12]
added the effects of bolt strains during gasket seating, Wesstrom and Bergh
[13] included the effect of the radial displacement of the flange ring due to
internal pressure, and Kraus [14] [15] included the eftect of bolt holes on

stresses.

1.2.5 Elasto-Plastic Analysis

Lake and Boyd [16] suggested a method that includes plastic analysis
in the design of hubs. Schwaigerer [17]{18][19][20], based his design on the
concept of a plastic hinge. He used a plastic collapse moment at a critical
section between the flange and hub to govern the design of the flange. The
German Standard. DIN 2505, was based on Schwaigerer's work [17]. It also

addresses in detail the tightness of the joint.



1.2.6 Flat Faced Flanges

Flat faced flanges with full contact across the flange face were
recognized early to minimize bending. This is especially important in cast
iron, glass, and ceramic flanges. The arrival of the O-Ring and other self
energizing gaskets simulated interests in flanges with metal-to-metal contact

over most of the flange surface.

1.2.7 Flat Face Flanges with Metal Contact Beyond the Bolt Circle
Several papers were published on the subject. In 1968 Schneider [21]
published his general method for flanges with metal-to-metal contact beyond
the bolt circle. Waters [22] [23] suggested simplifications to Schneider's
work that led to the adoption of this method by the ASME Code , covering
the formerly called "Part B" flanges. At present this method can be found in

Appendix "Y" of this Code.

1.2.8 Flat Face Flanges with Full Face Gaskets

This type of flanges is used widely in low pressure applications, for
circular and non-circular flanges. Not many methods exist to treat flanges
of this type because of the complexity to predict gasket reactions. In 1951

the Taylor-Forge & Pipe Works Inc. [24] produced a design method that




prompted some attention. In this method it is assumed that the full face
gasket can be replaced by two ring gaskets, one inside, one outside the bolt
circle, both gaskets under uniform compression. A systematic computational
procedure is included, that follows the nomenclature of the ASME Code.
Schwaigerer [20] applied a simplified method based on plastic-elastic
analysis, where he included the uneven compression effects of the gasket.
Later in 1986 Blach and Bazergui [25] published a detailed method that
includes a linear uneven gasket compression based on the Taylor Forge
method [9][10], using a beam on an elastic foundation for the pipe and the
deflection of a circular plate with centre hole for the flange ring. Blach also
compared his results with those of the Taylor Forge [24] method showing the
later to be very conservative. In 1985 Blach [26] published a paper on

reducing flanges and on non-circular flanges with full face gaskets.



1.3 Summary

Although many papers were published on the subject of flange design,
not many have addressed the design of flat faced flarges with full face
gaskets. The ASME Boiler and Pressure Vessel Code, mandatory for the
design of pressure vessels in many industrialized countries, contains rules for
the design of flanges with ring gaskets in Section VIII, Division I, Appendix
2, and also for flanges with metal-to-metal contact beyond the bolt circle in

Appendix Y. No rules exist at present for flanges with full face gaskets.
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CHAPTER TWO

THEORY AND ANALYSIS

2.1  General Review of Flanges
2.1.1 Flange Types

To understand the theory behind flange design it is important to
distinguish between the different types and to put into context the factors that
most influence the strength and integrity of the flanged joint. Flanges used
in pressure vessels are classified in the ASME Boiler and Pressure Vessel
Code [27] as per the location and type of the gasket, ~hown in Figure 4. In
flanges per Appendix 2, called "Raised Face" or "Ring" flanges, the gasket
ring 1s located inside the bolt circle. Flanges with self energizing gaskets
such as "O" rings, have metal-to-metal contact outside the bolt circle and are
included 1in the non-mandatory Appendix "Y". One other class of flanges
exist for which the ASME Code contains no rules for their design. These are
flanges with full face gaskets, that is gaskets covering the entire face of the
flange. Flanges are also divided into loose, integral and optional flanges
following the method of attachment between the flange and shell, as shown

in Figure 5.

11
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2.1.2 Advantages and Disadvantages

Ring Flanges tend to rotate about the gasket as a pivot. One way to
describe a ring flange is shown in Figure 6. This ability to rotate freely about
the gasket causes high longitudinal bending stresses in the hub and high
tangential stresses in the flange. Comparison of ring flanges without hubs and
hubbed flanges indicate that hubbed flanges are stiffer and give better
support to the connecting pipe and thus reduce considerably both the
maximum longitudinal and hoop stresses in the hub. The stiffening effect of
the hub, studied by Waters [9], is found also to cause a reduction in the
angle of rotation of the flange, which in turn reduces the tangential stress and
increases the radial stress in the flange ring. Ring flanges, because of smaller
gaskets, require less bolt area and can be used for higher pressure
applications. Pressure-temperature rating for standard flanges with ring
gaskets can be found in standard ASME / ANSI B 16.5.

Flanges having self-energizing gaskets, like O-rings, eliminate the
rotation and thus minimize the stress, their disadvantage, though, 1s the
limited material choice for gaskets and the required accuracy in the design

of the groove.

13
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Figure 7: Forces Acting on Ring Type Flange

14



Flanges with full face gaskets, like flanges with self energizing
gaskets, tend to resist rotation and thus reduce stresses in hub and flange.
They are easy to fabricate, however, their disadvantage is that they require
a large bolting area to seat the very wide gasket. Only relatively soft gaskets

are used, hence they are applied in low pressure applications only.

2.2 The ASME Code Design Method for Flanges with Ring Gaskets

The ASME Boiler and Pressure Vessel Code [27], Section VIII,
Division 1, has given the design engineer a systematic and simplified way
of calculation that allows for a safe flange design. It is therefore important
to review briefly the design approach used in the code and to be able to
build a design method following the same nomenclature. It is equally
important, though, to recognize that standardization follows not only
experience, but also has to keep in step with new scientific methods and
engineering developments. Based on the work of Waters [4] and the so-called
Taylor-Forge method [9], [10], a set of rules for the design of bolted flange
connections for ring type flanges were published in the ASME Code and,

except for minor revisions and additions, they are still in use.



The design method is based on the theory of thin elastic plates and the
theory of a beam on an elastic foundation where the later i1s used to calculate
the stresses existing in the hub. The Code design is based on the following:

1- Operating condition: The conditions required to resist the

hydrostatic end force tending to part the joint , and also to maintain
sufficient compression on the gasket to assure a tight joint.

2- Gasket seating: The condition when the gasket is seated (initially

compressed) is purely a function of the gasket properties and the

contact area, and bolt cross section area.

2.2.1 Gasket Seating (Pre-Load)

The bolt load depends on both the effective area of the gasket, Gnb
and the seating contact stress "y" which is the minimum stress in the gasket
required to prevent leakage. The minimum bolt load required for this
condition is found by multiplying the effective gasket contact arca by the

gasket seating factor W_,= n.G.b.y, where G is the gasket effective diameter.

2.2.2 Operating Conditions
The bolt load for the operating condition must be equal to the total

hydrostatic pressure force acting on the flange, given by G’Pn/4 and a

16




multiple of the force on the gasket due to internal pressure, given by,
2bnGmP, where "b" is the gasket width. The equation for the operating bolt
load is:
W= H+H, = G*Pn/4 + 2bnGmP

The multiple of the pressure on the gasket given in the second term of the
equation is a function of the maintenance gasket stress constant "m". This
maintenance gasket constant is used to maintain the gasket stress during
operating conditions. The ratio between contact pressure and contained
pressure must be greater than unity. Both the seating and maintenance
stresses are experimentally determined gasket properties and were described
initially by Rossheim and Markl [11]. A modified list of the original "m" and

"y" factors are included in the current ASME Code.

2.2.3 Flange Dimensions and ASME Design Equations

After having made the choice of gasket and the bolting required to
maintain a sealed joint, the designer then tums to the problem of flange
dimensions required to withstand the bolt load with stresses which are within
allowable limits. The outside diameter of the flange must be large enough to
seat the bolts with some manufacturing tolerance to spare. The next step is

to determine the lever arms of the various forces shown in Figure 7. The

17




stress in the flange is then determined for both the operating and gasket
seating conditions, and the more severe will control the design. At this point
the designer has all the information necessary to determine the flange and
hub thickness in accordance with stress formulas given in the Code [27].

This is a cut and try process in which the designer varies the ring
thickness, hub diameter and height until he or she achieves a combination
which gives stresses in the flange and hub within limits specified in the
Code, with reasonable economy of materials. The formulas given in the Code
were developed based on the following simplifying assumptions:

1) Complete elastic behaviour under axisymmetric loading.

2) The flange is assumed to follow thin plate theory, loaded by a force
couple acting on the inside and outside diameter of the flange, and
uniformly distnbuted.

3) Neglect the radial displacement of the flange ring at the junction.

4) The bolt load is assumed to be constant all through the operation.

5) The location of the bolt circle and the moment arms are assumed
not to be effected by rotation.

6) Bolt holes effects are neglected.

18




2.2.4 Comments on the ASME Code Design Procedure

Despite the fact that the code method avoids defining the gasket load,
the implication is there. The "m" and "y" factors provide minimum indication
of the actual behaviour of the gasket. It is understood that the gasket contact
surface should not be less than "m" times the internal pressure nor so great
that an ultimate compression of the gasket is reached that may cause crushing
of the gasket. Since the gasket in ring flanges covers a small portion of the
flange, it is assumed that the gasket compression is constant and the gasket
reaction moment arm remains constant. In the design of full face gasketed
flanges, although the same design approach is taken, a more elaborate gasket

reaction force is needed.

2.3 Flanges with Full Face Gaskets

For many years flat face flanges with gaskets extending to the outer
periphery of the flange, called also "rigid flanges"”, have been used in
industry. Due to the large area of the gasket much higher bolting pressure is
required and consequently such flanges are used with soft gaskets such as
synthetic rubber or compressed asbestos. They are also usually limited to
straight hubs and are often cut from steel plate and welded directly to the

pressure vessel shell.
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The ASME Code states that such flanges may be used provided they
are designed in accordance with good engineering practice. Until now no
design criteria have yet been recognized. Any development in design codes
or any unconventional design of bolted flange connections require a thorough
analysis of all the underlying elements that constitute the flange, including
assumptions made to put the said flange design problem in a mathematically
sound easily to handle model.

There are three separate elements in a bolted flange connection. they
shall be considered in the following order :

Gasket, bolting and finally, flange design.
A well designed flange joint must hold the joint tight at all times without

over stressing the three elements that constitute it.

2.3.1 Gaskets and Their Behaviour

Gasket selection for full face flanges is confined to relatively soft
elastomeric compounds or compressed mineral fibre compositions that require
low unit joint compression to keep them tight. The main difference between
full face gaskets and ring gaskets in a bolted connection is the resistance to
rotation of the flange produced by the uneven compression of the gasket.

It 1s assumed that a gasket which has yielded during initial bolt loading
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is most likely a relatively inflexible component, compared to the axial
flexibility of bolts. This assumption means that, as the internal pressure load
is applied, the bolt load remains unchanged while the gasket load is
redistributed to resist the overall external moment. Since the flange can only
supply a resisting bending moment necessary to keep the system in
equilibrium and no force loads, it is evident that the gasket load must always
be equal to the algebraic sum of the bolt load and the pressure load. Having
assumed that the external moment is restrained almost exclusively by a
redistribution of the gasket pressures, it is necessary to determine possible
redistribution patterns. Three critical stages for the bolted flange probable
gasket compression are shown in Figure 8. Stage (a) shows full compression
during initial bolt up. Stage (b) assumes zero gasket compression at the
flange inside diameter. Stage (c) assumes initial joint separation, and the
possibility of leakage. The following analysis will considzr only case (a) pre-
load, and (b) operating since they assure a tight joint, while case (c) may

cause leaks through the bolts and will not therefore be considered.
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Full Gasket Zero Compression Partial Gasket
Compression at Inner Diameter Compression
(a) (b) (c)
—— Linear
~=-=- Parabolic

Figure 8: Suggested Gasket Compression Force Distribution

2.3.2 Gasket Force Distribution Profiles

Since gasket behaviour is complex and there are no accurate methods
for actually measuring the gasket distribution pressure, assumptions must be
made to simplify it. Two force distributions are assumed, one is linear and

the other is parabolic.
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2.3.2.1 Gasket Compression Force in Bolt-Up Condition (Seating)

The bolt circle is larger than the mean gasket diameter which will
cause limited rotation of the flange. The rotation, however, is small and will
be neglected, and uniform compression of the gasket during bolt-up is
assumed. The gasket compression force passes through the flange centroid
and is equal to the bolt load. The proposed compression profile is shown in

a broken line, in Figure 8(a).

2.3.2.2 Gasket Compression in Operating Conditions

The linear gasket behaviour was addressed by Blick [28],
Schwaigerer [19], and Blach [26]. It assumes that during operating pressure
conditions, the flange goes through a rigid body rotation. The gasket will
compress in the triangular form shown as a thin line in Figure 8(b). Although
a linear force distribution is fairly true for thick, short flanges [29], it proved
to be sensitive for relatively thin flanges. If the stiffness of the flange ring
is low, solid rotation is accompanied by limited bending of the flange face.
The gasket compression follows the deformed flange face, and the centre of
gasket pressure shifts. To accommodate for this change, Blach, Naser [30]

suggested a simple parabolic distribution, shown as a broken line in Figure

8(b).
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2.3.2.3 Gasket Unit Compression " c."

To calculate the gasket unit stress, the reader must keep in mind that
the gasket is pre-stressed in seating conditions (bolt up), the pre-stress value
"g," is assumed uniform. As pressure is introduced, the flange rotates and the
amount of gasket compression released at the inside diameter of the flange
is gained at the outside. The compression (energy) lost on one side of the
gasket is gained on the other side. The amount of compression at the outer
periphery of the flange will be (20,) for a triangular distribution. Similar
analogy can be followed for a parabolic distribution, where the compression

stress at the outer periphery is taken as (g,).

2.3.3 Bolting

Recommended bolts for medium to low pressure applications are either
SA-307 or SA-325, since they provide an optimum balance between high
strength, moderate uitimate elongation and low cost. The bolt material is heat
treated (Quenched and Tempered) and made of medium carbon steel.

After establishing the size and shape of the gasket, and selecting the
contact pressure, bolt loads can be calculated as per the ASME Code for
gasket seating and operating conditions. Selection of bolt size and spacing

can follow the recommended ASME and ANSI Standards. It is recommended
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to use severzal slender bolts instead of few heavier ones, since larger number
of bolts result in better uniform load distribution on the gasket. Pre-loading
is of great importance in bolted flange connections, it is usually
recommended to tighten the bolt slightly beyond its allowable stress. It is
also recommended to use hard plain washers under the bolt head and nut.
The washer serves primarily as a bearing surface and distributes the bolt load

over a larger area.

2.4 Summary

The chapter has discussed the theory behind flange design by taking
the ASME Code method as the basis for the design of flat faced full face
gasketed circular flanges. A review of the different types of flanges and how
they compare with full faced flanges is also given. The parts that constitute
the full face flange and how they influence its design are discussed.

The next chapter includes a detailed analysis of the geometry and

forces that act on the flange ring.
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CHAPTER THREE

ANALYTICAL DESIGN ANALYSIS

3.1 Flange Geometry
3.1.1 Centroid of Unit Sector
Due to axial symmetry, the complete flange ring can be replaced

by a unit sector, shown in Figure 9.

CENTRO!D
oF da

Figure 9: Flange Unit Sector
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The centroid of the unit sector "x," can be located as follows:

From Figure 9, defining "x,", the centroid of a circular arc

x = R-cos(¢)-dd dA = R-(2-a)-dx

|r cos(d) do-dx

where,

< (2aR
° \2aR) (a
d¢ dx
R
| R-sin(a)
x o v
i

b=1/2( A-B) and 1/B

R
I

"da" is the differential area of the unit sector "a

/B )
da - 2:R-o-dx da =2‘(X.'l\—2‘*XJ'dX
b B
a-2-a (—-+x\dx
0
/ 2
a :2-a-\Bl—)+b—\
2272
a -ob(B-+Db)
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and, integrating over the sector area

1 fb
x] 'gl xoda
40

1 2
X, =— 1 2-sina|— + x| dx
1 a *
<0
2-sin(a) : b 2 b3\‘
xl = —_— sz_ -~ B.A;. v
o-b(B -~ b) 4 3.
s K2
L 3-a k K-+1/ (2)
where,
K=A/B

3.1.2 The Gasket Effective Diameter

The effective diameter "G" is located at the centroid of the unit sector,

G :2X1
2\
B:-2-s1 i
G - sinou - K |
3(1 K*]/
G:2-B—s' /lk‘l?—i—i
3 B/l K-1! (3)




32 Forces Acting on the Flange
3.2.1 Hydrostatic End Force "H,"
This force "H," is assumed to act on the inside diameter of the flange,

Its moment arm "h,;" can be seen in Figure 10.

Hq - PB 4)

1 5
hg - >(G- B - g) )

3.2.2 Hydrostatic Force Acting Under the Gasket "H,"

As in the design of flanges with ring gaskets in the ASME Code, it is
assumed that some fluid leaks under the uneven compression of the gasket
face causing an additional hydrostatic force, acting somewhere between the
inside diameter of the flange and the effective gasket diameter. However in
flat face full gasket flanges, this force can act only inside the bolt circle and

can be calculated as follows:

f 2
"l

n 2
Ht:Z'(C_D)'B P (6)
The moment arm is
1
h‘=Z'(2G~B—C+D) D
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Figure 10: Forces Acting on Flat Face Full Gasket Flanges



3.2.3 Total Gasket Load "H,"

It was assumed that the gasket exclusively resists the flange external
moment by a redistribution of the compression pressure "g,". For this case,
a value for the total gasket force H, can be calculated by relating it to “a,"
for different pressure distribution patterns that may exist in both, gasket

seating and operating conditions.

3.2.3.1Gasket Force During Bolt Up
For the bolt up condition, the flange is assumed not to rotate, which
means that the gasket is compressed uniformly. Since the gasket compression
force is the only force reacting to the bolt load, they are numerically equal
and so it is simply taken as the total bolt area times the maximum allowable
stress of the bolt material [23]. The seating gasket load is thus,
Hy=A, S, (8)
The moment arm "h," is the distance between the bolt circle and the

effective diameter "G", from which

hy=1/2 (C-G) 9)
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3.2.3.2 Gasket Load During Operating Conditions

The gasket reaction force "H,", causes a moment "M," that resists the
flange rotation.The line of action of the gasket reaction "H_" is assumed to
pass through the centroid of the gasket compression sectorial wedge profile.
The Gasket load "H," can be found for previously proposed linear and
parabolic gasket compression profiles. A linear profile implies a solid body
rotation of the flange, while a parabolic profile takes flange bending into

account.

3.2.3.3 Triangular Gasket Force Distribution

"

The line of action of the gasket force " H," passes through the
centroid of the gasket compression force profile. The moment arm "h," for
a triangular gasket force, is the distance between the centroid of a triangular
sectorial wedge and the centroid of the sector of unit width located at "G/2".
The centroid of the triangular sectorial wedge can then be found from

Figure 11(a), by first calculating the volume of gasket compression sectorial

wedge "V" [29]: From Equ. 1,

sin(at) /(B \

= ol — 4 X‘

0 a 2
2:x'c

dv - (2-R-a)-—-l—)~—g-dx
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c .
av - 2»a-—b§~\/B-x - 2:x%)-dx
V - E. <B-x + 2~x2) dx
b o
cg-b

Centroid of sectorial wedge x, ,

re

} .
X] = —i]—]. xo dV
~b 5
. 40, sing / \
X, T 27 Tgsma (B &
AV b a 2
SO
2 bq e 2
Xy —E~--sin'lf-!l+-3K ! (11)
4 \B/’ \\ | 2K/
where K=A/B . The moment arm h, can now be found:
G
hg : Xl - —2~
2 , ! 2
\
h :B—-sin/l‘-il+3- K S (12)
g8 4 \B/| 1+ 2K/ 2
From Figure 11(a) and Equ. (10), the gasket load H, as a function of "V" is:
Hg Ogh (13)
= (1 +2-K
n-G 3 ( )
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Figure 11: Location of Centroid of Gasket Compression Force
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3.2.3.4 Parabolic Gasket Force Distribution

The triangular gasket compression distribution, discussed earlier, is a
first degree polynomial which accounts for linear gasket behaviour. It is a
fairly accurate presumption provided that the flange remains straight during
solid body rotation, commonly seen in thick and narrow flanges.

In the case of relatively thin wide flanges where the flange face may
bend, the linear triangular force does not account for the actual curvature of
the flange face. The actual behaviour is therefore approximated by a second
degree polynomial function, provided as a parabolic force distribution acting
on the gasket side of the flange, shown in Figure 11(b). The total gasket load
"Hg", from the parabolic distribution, acting at its centroid, can be calculated

by assuming a parabola of the following form,

y =___g_.(l\2.b.x__x (14)
2
b

R :E*»x
2

Xq :R.sm(a)

a

B

b - —(K -1
5 ( )

where,
K= A/B
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The volume of the compression force"dV" is

dV = 2R-a-y-dx

from Equ. 14, substitute for "y"

200, | 2
dVv - . (Bbx - Ei + 2~b-x2 - x3 -dx
b
200 [ 2 \
V- 8] |Bbx-2X .20 3 dx
b | 2
.0

Rearranging and substituting for K=A/B this becomes:

c.'b

g

The centroid "x," of the volume sectorial wedge is

]
Xl :V. [ xodV
b
Xy ® L sna) (B + x\] &iBbx-BE 2bx X !dx
\" o} 2 /J b2 /|
Jo ‘
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Integrate the above equation and arrange

'sin(a)_(Bz~b3 2B-b* B%b

O'g \‘
x] = "_2 J
\Y b2 4 3 12 2 4 5)

X)

6-(2-sin(a)-cg-b) /BZ 2>Bb B2 b2 Bb b2
"o 0b-(4B + 5b) \4 " T3 12 2 4 5,

. 125sin(a) 10-B” - 25Bb - 184’
160 o 4B~ 5b

\
2 Sin(a) (2 + 35K + 4.5K?)
5 . 15+25K !

XIIB

Substituting for « =1/B, "x," then becomes:

B> /1,[4-7K-9K? (16)
xl oS — ey !
5 \B. | 3-5K I

The moment arm of the parabolic gasket reaction "h," is

G
hg rx] ‘3
X, - 52~Sin /l\)<4 - 7K - 9K? G
LSBT 35k 2 (7)

From Figure 11(b) the gasket load H, related to the volume of the parabolic

sectorial wedge given in Equ.15 is

. 5. (18)
Hg _ 3-5K

-G g 12
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3.3 Flange Angle of Rotation Due to Gasket Compression

As the flange rotates, it causes a deformation of the pgasket
accompanied by uneven compression. If, for simplification, this uneven
compression is assumed either triangular or parabolic, it is then possible to
relate the angle of rotation of the flange to the uneven compression force of
the gasket.

Assuming the gasket to be completely elastic, the gasket compression
force will be proportional to its displacement "$", thus

o, =(8.Ey) /t, (19)

where, E_ is the gasket modulus and t, is it's original thickness.
If the gasket rotates about its centroid that is located at "b/2", the angle of

rotation "0" can be found as follows [29] (see Figure 12):

8/2 R
l
sni————__ 4
of

Figure 12: Flange Rotation and Gasket Compression

06=4/0b (20)

Substitute for 6 in Equ.(19),
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0=0a,b.t,/E, @1)

For a triangular force distribution substitute "a," from Equs. (13) & (21)

( [(Mgt (nGEb h\ll
1+2K/! j (22)

For a parabolic gasket distribution substitute "g," from Equs. (19) & (21)

( 12 1 o1
(23)

T SK)[MgtgntGEb ‘hy| |

3.4 Moments Acting on the Flange Ring
3.4.1 External Moments
In the operating conditions, the flange ring is subjected to an external

moment "M_" acting about its effective gasket diameter "G", from Figure 10,

M,=Hy h, + H, h, + W, - H, h,
=M, +M,+(Hg+H + H; )h

g

=Md+Ml+(Hd+Hl )hgs- (l- hgs/hg)Mg

=M;+M + M, - u M, (24)
where,

My = (Hy+H, )hg (25)

u = 1- h,/h,

39




3.4.2 Discontinuity Moments and Force

Discontinuity moment "M" and force "Q" are accounted for by the
sudden change in cross section at the shell flange junction and tend to resist
rotation caused by the external moment "M_". The discontinuity force. when
applied at the junction, causes meridional moment equal to Q.(t/2). Both
"M" and Q.(t/2) are moments per unit circumference acting on the shell-

flange junction.

3.5 Summary

The analytical analysis, based on a fully symmetric structure, defines
the flange geometry, and all forces and moments acting on the flanged ring,
The analysis also formulates the gasket reaction force based on linear and
parabolic distribution profiles and produces a relationship between the flange
angle of rotation and the gasket compression. The next chapter will discuss
a inethod that applies plate and shell equations to the solution of the flanged

structure.

40




CHAPTER FOUR

SOLUTION OF THE FLANGED STRUCTURE PROBLEM

4.1 General

Factors that most influence the flanged structure have been defined.
They include the flange geometry and all the forces that act on it. In this
chapter equations for the shell and ring are developed and solved for the
unknowns. The flanged structure is a statistically indeterminate problem
having the following unknowns: M, Q, H,. From continuity at the junction
and rotation caused by gasket compression the solution for the three
unknowns can be found.
42 The Shell
4.2.1 General

The membrane action of the shell is incapable of withstanding any
bending moments. Loads are carried by internal forces induced in the surface
of the shell, called membrane stresses. In most cases, though. shells are
subjected to external moments, so the membrane theory is not sufficient to
solve the problem. A more complex theory that is based on the principles of
a semi-infinite beam on an elastic foundation can be applied to find

deflections and rotations of shells.
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During seating of the flange, the shell is subjected to a discontinuity
moment and shear which causes only bending stresses. When the vessel is
pressurized (operating conditions) the shell is subjected to membrane forces
caused by the uniform internal pressure. Membrane stresses must then be
superimposed to the bending stresses.

4.2.2 Shell Equations

Shell equations have been derived in many reference books, the fourth

order differential equation for circular cylindrical shell loaded symmetrically

is given by Timoshenko [31],

D (d'wdx*)+ (Egha®)u=2Z (26)

B‘E.g/B?D =12 (1-v?) /B’ g? (27)

d*w/dx*+ 4 ' u=2D (28)
where,

D=E g¥/ 12(1-v¥) and p*=6(1-v?)/B.g’ (29)

which is the same equation obtained for a bar supported by a continuous
elastic foundation and submitted to the action of a load of intensity Z. The
general solution of Equ. (28) is well known,

: (30)
e"3 x-{C:&-cos([}-x) + Cy- Sin([}-x)/ + f(x)
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During flange seating the vessel walls are subjected to a bending
moment "M" and a shearing force "Q", both uniformly distributed at x=0.
There is no pressure distributed over the shell surface, and so f(x)=0. Since
the forces "M" and "Q" applied at the end produce local bending that tends
to die as the distance from the edge is increased the first two terms of the

equation vanish, and C1= C2=0, so we obtain

(31

u. - eB'x-(C3-cos(B-x) + Cy Sin(B-x)

S

The two constants can be determined from the boundary conditions,
Mx»‘nz M and Qx=o = Q

Substituting back into Equ.(31) to get the constants of integration

1
C3 : WW(Q*BM) 32
2.83D (32)
Cy - “__1\_;_1“ (33)
2:-8°-D

The final expression for "u" is,

. B.x
ug - e (B M (sin(x) - cos(Bx)) - Q-cos(Bx)) (34)

2-8°D
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The deflection at the shell flange junction (fx=0) is then found.

u,=1/2 D) . (BM+Q) (3%)
The rotation is,

6,=1/2 D) . 2 PM+Q) (36)

Using k, the spring constant of shell

k=4 Eg/B?
u=2Qp/ k - 2M p*/k (37
0,=4MpP¥k -2QB*/k (38)

The effect of the internal pressure on the radial displacement "u,"
u,= (2-v) B2P/ 8E.g (39)

add it to the bending effects,

-V Q 61 VM 2szF

%= —— (40)
E°g-B3 iy ste
me-g
%:——~E— Q8" #’ (41)
Egp
(1. \).M {13
0 § 3\?, 61 3\?,:(_) )
Egp Eg
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4.3 Plate Theory Applied to Flange Design
4.3.1 General

The flange ring may be treated as a flat circular plate with a central
hole subjected to external bending moments that cause it to rotate. From the
point of view of plate theory, some typical flanges are in fact thick plates.
However, for practical reasons it is customary to treat flanges in theoretical
analysis and even in experimental research as thin plates. Consequently, the
typical mathematical models assumed in engineering practice as the basis for
bolted flange connections, are based on the assumptions of thin plate theory,
or what is the so-called Kirchhoff’s Theory. Solutions supplied by the thick
plate theory are not yet practical.

Common mathematical models in the field of linear thin plate theory
as applied to the flange problem can be based on the following assumptions
[31]:

1- The material is linearly elastic, homogeneous and isotropic.

2- The flange ring is initially flat.

3- The plate thickness is small compared to other dimensions.

4- Deformation exists such that straight lines originally normal to the middle

surface remain straight and normal to that surface.
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5- The stress component normal to the middle surface is small to the ones
parallel and thus can be neglected in relations between stress and strain.
6- Strains in the middle surface are small compared to strains resulting
from bending ( neglect stretching of middle surface).
7- Bolt holes effects are neglected
8- Bolt loads are uniformly distributed along the bolt circle
4.3.2 Plate Equations
The general differential equation for a symmetrically loaded circular

plate is der’* «d in many books [31][32],

df1d dz |_
Fdr D (43)

Zi; r df . dr
where "Qo" is the shear force per unit length of circumference and "D" is the
flexural rigidity of the plate D = E.t'/12(1-v%). The plate differential
equation can be applied to the flange problem, and the solution can be
simplified by replacing the moment on the flange by a twisting couple
located at the inside and outside diameter of the flange. This implies that the
effect of the external moment on the flange, which is equal to the product
of the bolt load and lever arm, is the same in all cases regardiess of the

location of the bolt circle. This assumption may not appear rational but

studies were made that indicate this is true. Equations by Holmberg and
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Axelson [8] enable a study of the effeci of applying external loads at various
diameters and it has shown that points of application can be varied over wide
limits without effecting the results to any particular extent. This assumption
has been used in most major flange theories including the present ASME
Code rules for flanges with ring gaskets [27]. The rotation of a circular plate
with central hole subjected to a twisting couple, can then be solved by
substituting Q.=F/2n.x, and integrating Equ. (43),

44)
-F-x X 1 (
0 - (2In(x)- 1)+ Cyz+ Cy-

gap ) - D= Crg g

where "F" is the twisting couple acting on the inside and outside of the
flange ring. The boundary conditions for a plate with edges free to rotate are

zero radial (M,) and tangential (M,) moments at the inner and outer edge of

the plate.
M=0 and M= 0
M, = D(d6/dx + vb/x) (45)
M, = D(6/x + vdb/dx) (46)

Evaluating C1, C2 and substituting back into 6 gives,

6:-F

X _lr K2In(K)|  1:v(B

2 i
‘ | 1+ —'-——\. - Iny— |
4nD| g2 | 1-vi2x \B/ 1-v

(47)
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The total couple acting on the flange ring "M1" is given by,

M1 - A-B F
2 Bmr
K-1
M1 - ‘F
o (48)

The rotation at the inside diameter of the flange "6," as a function of "M 1",

(49)

The flange parameter "Y", which is used in the ASME Code, can be applied

' .'/‘ 2, L
Y - ____1_~.i§.(1 - V) - 9.(1 “ v)'l.( ]n_(K) f;
K—lin \Y \ Kz-l,/j (50)
from which
B-n-Y-Ml
Op - — (51)
E-t
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From Figure 12, the net moment per unit length transferred to the

inside diameter of the flange ring "M1" is

Ml : — -M-Q (52)

The radial displacement of the flange "U," is found using the theory

of thick walled cylinder Blach [29], Timoshenko [33],

. P Q
U -B.._.* ~BA_____
f PV 5% 2 t.E (53)
2
2 B 2
J - A+ - -B v
54
A2 (54)

Having found all the equations required for each part of the bolted
flange connection, it is now necessary to relate them to solve for the

unknown discontinuity moment "M", shear "Q", and gasket moment "Mg".
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Figure 13: Flange-Shell Junction
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4.4 Compatibility:

In order to seek an acceptable solution to the stress distribution in the
flange and shell, it must insure a piece wise-continuous-deformation of the
whole structure, that is the stress distribution and the resulting deflection
must be compatible with boundary conditions and a continuous distribution
of deformation. This, in turn, insures the requirement of continuity at the
flange-shell junction for both rotation and displacement, hence deflections
and rotations must be equated.

Assuming the same modulus of elasticity for both shell and flange,

rotations Equs. (40), (53) and displacements Equs. (42), (51) are equated.

_6,;(\_1.:1.2_,>‘Q 61 V') (2-v)B*P BjP BjQ (55)
3.3 3 .2 .EF. . .t.
Edp B p 8-E-G 2E  2tE
120- M 6l1-v¥Q YBr Mo M- ol
E'g3'B E.g3.B2 E't3 \B-m 2) (56)
M = C7 B Mo -C8 P/p? (57)
Q = C9 B* Mo +C10 P/B (58)

where C7,C8,C9,C10 are dimensionless coefficients, listed in Appendix "A".
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The external Moment "Mo" contains the unknown gasket moment
"M". This is a statically indeterminate problem with two equations and three
unknowns M, Q, M. To arrive at an additional equation, analysis of the

rotation of the flange based on gasket reaction profiles, can be implemented.

‘ 4.4.1 Triangular Gasket Distribution
The flange rotation based on a triangular gasket compression Equ.(22)

can be equated to the rotation of the ring Equ.(51). This gives,

B-n-Y-Ml 3 -_____Evl_g,-tg (59)
, Et I+ 2K o Ep.G b2 hg
from which
Mg - Cl4-(Md - Mt - Mb) « CI5- P3 (60)
B

4.4.2 Parabolic Distribution
Following the same steps as used in the triangular distribution but
using Equ.(23) instead, the flange rotation based on a parabolic gasket

reaction profile is equated to flange rotation due to ring bending.

B-mY Ml 12 Mg tg 61)

3 3+ 5K EoGbihe

E-t
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The above equation can then be solved for "Mg",
. P
Mg Cl14-(Md - Mt - Mb) - ClS-—3 (62)
B

were C14 and C15 are parabolic dimensionless coefficients, given in

Appendix "A".

4.5 Simplifying Assumptions

The flange ring is usually of substantial thickness when compared to
the shell. It will resist the expansion of the shell, and the radial displacement
of the flange can be neglected. This assumption is valid and has been applied
[33].

Let " U in equation (40) be equal to zero,

61 V@ 61 vV (2-v)BiP )
Eg’p’  Eg’p’ 8EG “
assume also that
(1-v%) = 1/2(2-v)
Substitute back into Equ.(63)
g3-B3-B2-P
BM - Q - = (64)
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The above assumptions simplify the expressions in the previous
articles, and a new set of equations and dimensionless coefficients is defined.
Following the same steps, the flange rotation is equated with the shell

rotation and solved for "M" and "Mg" [29],

) wl~ Mo BE ) KZ\\ ; gz_ngzp '
KI-K2' Br 2 ;'\ 24 . (65)
Mg - K4-(Md - Mt - Mb) - K5-g>-B-P (66)

A list of the new coefficients "K" is given in Appendix "A". Details
of the derivation of the equations can be found in [29], where it was referred

to as the Simplified Method of Solution.

4.5.1 Effects of Intemal Pressure on Flange Neglected

Most methods of design analysis for flanges with ring gaskets neglect
the effect of internal pressure on flange stresses, with little error. For full
face gasketed flanges this is not the case, since internal pressure causes
bending moments that affect the gasket moment "Mg".

Blach [29] suggested that it is possible to neglect the internal pressure
only when computing flange moments and stresses, but include pressure

effects in computing direct shell stresses.
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This means it is possible to neglect the pressure term in Equ.(64) and a very
simple relation between "M" and "Q" is obtained
BM=Q (67)

which, if substituted into Equ (42), results in the following shell rotation:

61 - v2)
3
E-g° B

Repeating the same steps as before, the following moment equations are

B, =

(68)

derived:

Mo

M) B ©)

Mg - L4-(Md - Mt - Mb) (70)

New coefficients "L" are given in Appendix "A", for both triangular

and parabolic solutions.
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4.6 Ring Theory Applied to Flat Faced Flanges
4.6.1 Design Equations

To simplify the tedious work involved in plate theory, Timoshenko[33]
proposed a method that applies the theory of a narrow ring . In this section
Timoshenko's method will be applied to the design of flat face flanges with
full face gaskets. It is assumed that under the action of forces, the cross
section of the ring is rotated without distortion. Denoting the angle "0" as the
angle of rotation, the radial displacement of any point "a" distance "z" from

the middle surface of the ring is (z.0), shown in Figure 14, from which,

€ = (6z)/x and o, = EOz/x
A/Z N
e Bf)
1 a)
- If\".\""‘_ ~
| ] 8 1y
F j\‘ F

Figure 14: Ring Theory
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It is explained that the stress o, = E@z/x, varies directly with the

distance "z", therefore all the stresses over the cross section can be reduced

to a couple "M1", acting at the centroid, in a plane perpendicular to the "x"

axes. The magnitude of this couple is:

Where

a t2 "
M1 - [ E-z— dx dz
N

| X
Jb Jt2
E-e-t3
M1 : ——In(K)
12
K = A/B
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The same theory can be applied to a narrow ring twisted by moments
uniformly distributed along the edge, after transforming "M1" to the inside

diameter of the ring.

3
E-O-t
M1 = ———In(K) (72)
6-B

Since the flange is assumed to go through a rigid rotation, a triangular
gasket force distribution is used. Following assumptions used in plate theory
and simplifications described in sections (4.5 & 4.5.1), the solution of the
unknowns, M, Mg and Q can be found as follows, From Equ.(68),

61 - v} M
E-g’ B

Neglecting (1- v?), and substituting for "6" in Equ.(72),

9 -

3
: t
W - M) ¢ )
p g
Mo t
M1 - M- Q-
n-B Q 2
M-In(K) Mo M-/l ; BI;
BB 7['B \ /
Mo '/ £ In(K) £
oM s B e
n-B a 2 BB 3
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Mo

(L1 + L2)B'm (74)

Applying Equ.(67), and substituting back into Equ.(52)

Mo t)
s {1« B— |
M1 _ ( B 2) M
Ml - Mo L1 .Mo
B L1 +L2 #n:B
... L2-Mo (75)
(L1 - L2):B'=n

If flange rotation due to gasket compression force Equ.(22), is used

6-M1-B

]
12K G-n-Eg-b3 E-t.In(K)

(“3 \_.th o Mo ;L2
1+2K E 9 In(K)\L1-L2

. /1:1_+ L2\\

(0]

‘Q‘LS'Mg (76)

where the following non-dimensional parameters are defined.
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L6 =1+ —
P 2
3
L7 - l'gK) 15
B g
3
L8 = — In(K)
b3
3 w E
l1-2K Eg G

Substituting for Mo, from Equ.(25)

Mg R _Mg: Mi' MP_ - (77)

4.7  Stresses
Stresses in the flange and shell are caused by both membrane forces

and bending moments caused by pressure and flange rotation respectively.

4.7.1 Shell Stresses
The longitudinal shell stress at the junction "Shl" is found by
combining the membrane stress caused by the internal pressure and the

bending siress caused by the discontinuity moment "M" at the junction.

Shl = (PB/4g) + (6M/g?) (78)
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The tangential (hoop) stress in the shell "Sh2"is found by combining
the pressure stress (PB/2g) and the Poisson effect of the longitudinal

discontinuity stress (6.v.M/g?> ) to the direct extension shear stress

[(BB/g)(BM-Q)], which gives

P-B M .B
g 6-v-;2— * B-E-(BM - Q) (79)

In applying the simplification of Article (4.5), the last term of this equation

Sh2 -

reduces to (PB/g)(g’f’BP/24) and Equ.(78 ) becomes

{ 2\‘
P-B ! 2 4 B7! M
Sh2 - -——- 1. g“B"— -6 v—
2g 1 EP 2 (80)

If the internal pressure is also neglected as shown in Article (4.5.1), then the

last term of Equ.(79) vanishes, and the tangential stress becomes

sha - 0B 6w M @)

2'g

T

The tangential stress is reduced at the junction due to the influence of the

flange ring which prevents extension of the shell.

4.7.2 Flange Stresses
Radial stresses in the flange are caused by discontinuity moment
applied at the junction. The radial bending stress is found by dividing the

moment "M", by the section modulus (t/6),
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S = 6M/1 (82)
From Equ.(51) the tangential stress caused by flange rotation is:
S; =YMI1/#’B
For integral ring flanges the ASME Code applies the following equation
S; = YMo/t’B - ZS,
where, Z = (K*+1)/ (K31)
For loose type flanges the Code uses the following equation:
S; =YMo/t’B (83)

which may be applied in the case of flat faced full face flanges.

4.8 Results of Analytical Analysis

Results of analytical methods are plotted in Figures 15 through 21 for
three vessels A, B , C, having different K values (1.175, 1.416, 1.5) based
on three different analytical solution procedures. Comparing these methods
it is seen that the ring theory, section (4.6), gives results that are similar to
a triangular gasket distribution in plate theory given in Article (4.4.1) and
they both have results that are less than the experimentally measured data.
The parabolic gasket force distribution gives the safest results for all the
vessels and gasket types. It will be the only method considered for later

design work.
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Figure 15: Maximum Tangential Flange Stress vs Flange Thickness for
Flange Connection With "1/16in" Full Face Asbestos Gasket
Results From Theoretical & Experimental Data
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Figure 16: Maximum Tangential Flange Stress vs Flange Thickness
Flange Connection With "1/16in" Full Face Rubber Gasket
Results From Theoretical & Experimental Data
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Figure 17: Maximum Tangential Flange Stress vs Flange Thickness
Flange Connection With "1/16in" Full Face Asbestos Gasket
Results From Theoretical & Experimental Data
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Figure 18: Maximum Tangential Flange Stress vs Flange Thickness
Flange Connection With "1/16in" Full Face Rubber Gasket
Results From Theoretical & Experimental Data
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Figure 19: Maximum Tangential Flange Stress vs Flange Thickness
Flange Connection With "1/8in" Full Face Rubber Gasket
Results From Theoretical & experimental Data
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Figure 20: Hub Stress, 1/16 in Rubber Gasket, Vessel "B"
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Figure 21: Hub Stress, 1/16 in Rubber Gasket, Vessel "A"
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49 Summary

Equations to describe the flanged structure were developed and solved.
The vessel wall is represented using shell equations. Flange equations are
derived using two methods, plate theory and Timoshenko's ring theory, using
both, linear and parabolic gasket force distributions. From continuity at the
shell-flange junction a solution for the unknown discontinuity moment and
force is obtained. Finally equations for stresses in shell and flange were
developed. The flange tangential stress is based on the ASME Code "loose
optional" type flange equations. Results from a parabolic gasket force
distribution proved to be the safest, and the method is chosen for the design
of bolted flat faced full face gasketed flange cennections. In the next chapter
stresses calculated from this method are compared with finite element and

experimental results.
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CHAPTER FIVE

FINITE ELEMENT ANALYSIS OF FLANGED STRUCTURE

5.1 General

To verify the analytical solution presented earlier, two approaches are
undertaken. A finite element approach presented in this chapter is followed
by an experimental work discussed in Chapter 6 .

The work that follows pertains to an axisymmetric finite element
model based on a linear analysis of the flange. The gashet is modeled in two
different ways. The first takes into account the gasket by replacing the
contact gasket force by a parabolic force distribution, thus following the
earlier analytical design work. The second incorporates the gasket into the
model by representing it with nonlinear gap elements instead of the

approxiinate parabolic force distribution.
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5.2 Introduction

The Finite Element method [36] is a piece-wise approximation where
the approximating function is formed by connecting simple functions, each
defined over a small region called element, by interpolation from nodal
values on the boundary to maintain inter-element continuity.

Finite element analysis has become popular with fast digital computers,
The ability of computers to solve a large number of simultaneous equations
in a relatively short period of time opted engineers to utilize numerical
approximation methods for the analysis of complicated structures. The power
of this method resides principally in its versatility. It can be applied to
various physical problems with arbitrary shapes, loads and support
conditions. A finite element analysis applied to a bolted flange connection
can be a very helpful tool, because of its flexibility and ability to calculate
strains and deflections anywere in the structure, unlike experimental
verification, which can only measure surface strains at limited points, and is

also costly and time consuming.
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5.3 Finite Element Model of The Flanged Structure

Many satisfactory elements have been formulated and reside in popular
programs. Properties of the structure, the finite element program, the purpose
for the model and the computer working space and CPU time control the
type of elements to be used in a specific model. For the purpose of
verification of design of circular flat faced flanges with full face gaskets, 2-D
linear axisymmetric elements are sufficient to accurately model flange and

shell.

5.4  Structural Symmetry

Both, the cylindrical shell and the ring flange are solids of revolution
that are generated by revolving a plane about an axis, that is most easily
described in cylindrical coordinates r, 6 and z [34] . Since this geometry 1s
axially symmetric, it is called Axisymmetric Structure. In this case the
material is isotropic and material properties, loads, and support conditions are
axially symmetric, also displacements and stresses are independent of "@"
which means the circumferential displacement is zero and only radial and
axial displacement components exist. This concludes that the flange-shell

problem is mathematically two-dimensional. Taking advantage of this full
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axial symmetry, the flanged structure can be modeled using 2-Dimensional

(2D) axisymmetric elements.

5.5 The ANSYS Finite Element Program [35]

The ANSYS software, a production of Swanson Inc.. is a large scale
general purpose finite element program that has capabilities for linear and
non-linear static and dynamic analysis. It can handle small and large
displacements and solve elastic and plastic problems. It utilizes the matrix
displacement method for the analysis and the wave front method for matrix
reduction. Over a hundred different elements are available in its library.

Three phases are involved in the ANSYS finite element analysis. The
pre-processing stage, where data such as geometry, materials and element
types are provided, either interactively or through a baich file. The solution
stag: where the analysis type and options are defined, loads are applied and
the program initiates the element solution. Post processing, where results can

be reviewed through graphics displays and tabular listings.
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».6 Element Types used in Model

An assemblage of axisymmetric shell and plane elements are used for
the shell and flange, respectively. In order to verify the analytical approach
used earlier, the gasket is first replaced by a parabolic force distribution
acting on the flange contact face. To test the effect of the gasket material on
flarge stresses, the gasket is included in the model using interface elements

with a relative stiffness that is a function of the gasket material used.

5.6.1 Axisymmetric Shell and Plane Elements

Axisymmertric elements take advantage of the axial symmetry of the
structure, thus reducing a complicated modelling task to one that is straight
forward and easy to review. 2-D Axisymmetric elements, if they can be
applied, give better results when compared with 3-D analysis [35].

For elements that are based on displacement fields, the general
equation for the element stiffness matrix is given below,
K= ’,.[B]T [E] [B]. dv where
[B]. = [8] [N] where [0] is the derivative
[E] : Is the material property matrix

[N] : Is the shape function matrix

75



5.6.2 Three Dimensional Interface [36]

This element represents two surfaces that may maintain or break
physical contact and may slide relative to each other. The element is capable
of supporting only compression in the direction normal to the surfaces and
friction shear in the tangential direction, it has three degrees of freedom in
X, y, z directions. When applied in the bolted flanye connection, the element
is only given a normal stiffn=ss "K " that corresponds to the gasket material
used. "K," will resist the flange compression only. This element has an
advantage over using plane elements with different material properties for the
gasket, because it allows possible separation along the gasket-flange contact
area, common in flanged connections under pressure.

The stiffness matrix, also element properties for planc, shell and

interface elements, are given in Appeandix "B".

5.7 Parameters Applied to the Model
5.7.1 Dimensional Parameters

Dimensional parameters for the F.E. models are based on the
dimensions of the pressure vessels used in the experiments described in

Chapter 6.
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In addition to the three different flanges tested with "K" values at
1.175, 1.416, 1.5, flanges with "K" values at 1.6 and 2 were also modeled.
To find the effects of shell thickness on flange stresses, shells ranging in

thickness from 1 to 4 times their basic thickness "g" were also modeled.

Input parameters for the three vessels are given in Table (1).

5.7.2 Loading and Boundary Conditions

The bolt pre-loading is assumed to be uniformly distributed along the
bolt circle which in an axisymmetric model is applied based on a 360° basis,
that is the load value used is given in terms of the total load around the
circumference, and applied at a node that lies on that bolt circle. Pressure
load during operating conditions 1s applied uniformly on the shell elements
representing the inside vessel walls. Parabolic gasket reaction force is applied
on the flange surface elements in contact with the gasket. Boundary
conditions are applied to prevent rigid body motion, they consist of

constraints applied at the symmetry planes.
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TABLE (1)

INPUT DIMENSIONAL PARAMETERS

I VESSEL Vessel A Vessel C Vessel B
K= A/B K=1.175 K=1.416 K=1.50
A (in)

B (in) 10.0 12.0 10.0
C (in) 11.0 14.5 13.0
t (in) 0.25-1 0.25-1 0.25-1
g (in) 0.065 0.18 0.12
Bolt No. 16 16 12

P (psi) 200 200 200
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5.7.3 Material Properties

Materials for the flange and vessel are made of crbon or stainless steel.

The gasket materials used are either synthetic rubber or compressed asbestos.

":S‘YMBOL DESCRIPTION VALUE “

E Modulus of easticity of | 29x10° psi (C.S)
flange and shell 28x10° psi (S.S)
v Poisson's ratio of flange | 0.3
and shell

5.8 Mesh Configuration

The advantage of the 2-D axisymmetric model is its simplicity and
ease of generation, where node points are cross sections of nodal circles. To
build the model, a direct node and element generation approach is applied.
After performing a number of initial analyses with various mesh refinements
it was concluded that twelve (12) plane elements in two layers along the

flange width and twenty four (24) axisymmetric shell elements along the

shell length are sufficient to give good results.
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5.9 Results of the Finite Element Analysis
5.9.1 Stress and Deflection Profiles In Operating Conditions

Under operating conditions the flanged structure is loaded with boit
load and pressure load. From input parameters given in Tuule (1), the results
of the modeled structures, based on a parabolic gasket reaction force give
certain deflection and stress profiles that are shown for the experimentally
tested flanges in Figures 22 and 23. From the stress profiles it is observed
that the maximum flange stress is the tangential stress located near the shell-
flange junction. The maximum radial stress, iocated at the junction is lower.
It is also observed that, as the flange thickness is reduced, the flange
tangential and radial stresses tend to increase and, for very thin flanges, may
exceed the tangential stress. This, however, is unrealistic for flat faced
flanges where the flange thickness is always much greater than the shell
thickness and only relatively soft gaskets are used.

In the shell, as the flange thickness increases, the longitudinal
maximum stress tends to move away from the junction, exceeding the
tangential stress at certain points. The tangential (hoop) stress is higher due
to the membrane effect of the internal pressure, except at locations where the

bending moment effects are high.
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5.9.2 Effects of Flange Thickness on Stresses

As mentioned earlier, the tangential stress increases in the flange as its
thickness is reduced, which is shown in Figure 24, for a number of "K"
values. The radial stress may become significant for thin flanges used with
stiff gaskets, this however occurs when the flange deforms which can cause
leakage. It is also clear that as the ratio (K=A/B) increases, the stresses also
increase. This is also expected in circular flat plates with central holes
subjected to a couple.
5.9.3 Effects of Hub Thickness on Flange Stresses

In order to completely understand the behaviour of the bolted flanged
connection it is necessary to consider the effect of the hub thickness on the
maximum stresses in the flange, it is after all the interaction between the
shell and the flange that determines the amount of fixation at the shell-flange
junction. In practical applications the ratio of flange to hub thickness usually
exceeds 3. The model thus uses hub thicknesses that give ratios (t/g) ranging
from 2 to 8. For a given flange thickness the maximum stress results are
plotted in Figures 25 and 26, respectively, for two structures (K=1.175 and
K=1.5), and for hub thicknesses ranging from .065 inch to .25 inch. Thesec

results indicate clearly that for the thick 1 inch flange the hub influence is
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negligible. For the thinner .50 inch flange, though, the radial flange stress
tends to increase as the hub thickness increases, while the tangential
maximum stress goes down. This, however, does not become significant until
the ratio (t/g) is less than three. In low pressure applications for flat face
flanges higher ratios exist.
5.9.4 Gasket Materials

The most ambiguous part of a flanged joint is the contact area between
the flange and the gasket; any non-linear behaviour of the gasket can only
be speculated and incorporated into the flange design based on simplifying
assumptions. To evaluate the effect of the gasket material on flange stresses,
the gasket is included in the model as an interface element possessing normal
stiffness in compression. The gasket is assumed to be elastic and to follow
Hooke's law. Results indicate that, as the stiffness of the gasket is increased,
the radial stress increases until a point is reached where the radial stress
exceeds the tangential stress; at this stage the flange is deformed

considerably and is expected to leak.
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Figure 24: Effect of Flange Thickness on Tangential Stress
For Different "K" Values
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Figure 25: Effect of Hub Thickness on Flange Stresses
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5.10 Summary

It is apparent that a simple finite element model like the one that was
used can give results that experimental work will take a lot of time to
accomplish. It is also clear that a flanged structure has many interrelated
parts, the effect of which may be great or may not have much influence on
the structural behaviour. Such a number of variables may confuse and even
discourage many engineers from attempting to design a bolted flange.
Results from finite element analysis can very much limit and clarify some of
the ambiguity associated with analytical and experimental results. It is
concluded that the tangential (hoop) stress is to a certain extent dominant in
flat faced flanged connections under operating conditions. In pre-load
conditions lower stress profiles exist and the tangential stress is not as

gl

significant as in operating conditions. The larger the "K" ratio, the larger the
stresses become. The longitudinal hub stress is higher near the shell-flange
junction, the maximum value tends to move away as the flange thickness is

increased. Finally the hub thickness has little effect for t/g ratios more than

three.
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CHAPTER SIX

EXPERIMENTAL WORK

6.1 General

Experiments are the means by which analytical and numerical results
can be verified. The objective of the experimental work is 1o find the actual
behaviour of the bolted flat face flanged structure. From measurement of
strains on the surface of the shell and flange, stresses are calculated.
6.2 Experimental Setup
6.2.1 Description of vessels

Three Pressure vessels are fabricated in accordance with the ASME
Code, Section VIII, Division 1 design rules. Their dimensional and material
specifications are given in Table 2, see Figures 27 through 31.

The required thicknesses are calculated based on the following
ASME Code equations :
The shell as per, UG-27 (c)
t=PR/ (SE-0.6P)
Flat heads as per UG-34(c)(2), with 100% joint efficiency;

t= d(CP/SE)®  where "E" is the joint efficiency and "C" is a fixation factor.
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TABLE -(2)
VESSEL SPECIFICATIONS

I Vessel A Vessel B Vessel C

Allowable P 200 pst 200psi 175psi

Design Temp. 200 F 200 F 200 F
Material SA-240-304 SA-516-70 SA-516-70

" Allowable stress 17800 psi 17500 psi 17500 psi o
Bolts. Matenal SA-193-B7 SA-193-B7 SA-193-B7

Bolt All. Stress 25000 psi 25000 psi 25000 ps1

|

6.2.2 Description of Flange

Flanges are welded to the shell with full penetration welds which allow
the gradual reduction of the flange thickness f-r different tests. A fillet weld
along the back side of the flange reduces stress concentrations at the
Junction. Flanges for vessels "B" and "C" were fabricated, 1 inch thick;
vessel B, however, was received with undersize flanges and was machined
at Concordia to 0.875 inch thick. Vessel "A" was ordered 0.625 inch thick,

and also received with rough surfaces, that required machining to 0.562 inch.
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FLANGE PARAMETERS

TABLE-(3)

VESSEL A Vessel B Vessel C
K value 1.175 1.50 1.416
Bolt Hole Dia. | 7/16 in 7/8 in 7/8 in
No. Of Bolts 16 12 16
Bolt Diameter 3/8 in 3/4 in 3/4 in
Bolt Circle Dia. | 10 in 13 in 15 in

6.2.3 Description of Gasket

1/8" Neoprene, 75 - 80 Durometer

1/16" Neoprene, 75 -80 Durometer

1/32" Neoprene, 75 -80 Durometer

1/8"  Compressed Asbestos (anchor packing)
1/16" Compressed Asbestos (anchor packing)

1/32" Compressed Asbestos (anchor packing)
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Figure 30: Photo of Test Vessel "A"
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Figure 31: Photo of Test Vessel "B"
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6.3 Data Measuring Equipment
The following instruments were used during the experiment:
1- Two Pressure Dial Gages up to 600 psi reading. One installed at the top
of the vessel, the other at the discharge nozzle of the pump.
2- Computer: 486, 33 MHz Dx, IBM compatibie, loaded with a data
acquisition software from "MatLab".
3- Data acquisition instrument digital/ analog: Fluke, John Fluke MFG. Co.
The Fluke machine has 32 digital and analog input / output channels.
The digital board receives electrical signals or voltage from the gages and
converts conditioned signals into a digital machine format that is readable

by the PC. A schematic diagram [38] is shown bellow, Figure 32.

: ST, pieg
2hysica Transducer L Signal, @ A/D 2
“System Sensor Conditioning Converter RO

a :.'b K .,.-{;" . "_‘, T v
. o1
= ‘ i
-/ Wr/l"’ 8-8u 1110110
Resolution 10011100
, i
Physical Noisy Filtered A %3 }?g}
Variable: Electrical And 11010100
Temperature Signal Am'plmed wot‘)} ]
Pressure Signal PerCycle \. 01101101
Mo‘ign 00101100
Flow 00100001
Digitized 8-Bit
Signal Binary Code

Figure 32 : Data Acquisition System
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6.4 Strain Gages

Gage type selection depends on many factors, and the quality of the
selection may effect the precision of the results considerably [37]. Thus
following the guidelines and recommendation given by the manufacturer (M

& M) the set of strain gages used were as follows :

Vessel A Vessel B
Shell EA-09-125TM-120 EA-06-125TM-120
Flange : EA-09-062TT-120 EA-06-125TM-120
Bolts : CEA-06-125-UN CEA-06-125-UW

The difference in selection depends on the size of the gage and
material type of the vessel. Thus, EA-09 is selected for Stainless Steel and
EA-06 is selected for Carbon Steel, and all are selected based on room

temperature operation.

6.4.1 Location of Strain Gages

Six strain gages are cemented to the outer pipe walls and the back
faces of flanges, on a symmetry line that crosses the bolt circle at a point
half way between two bolt holes. Since the vessel is symmetrical the location

of the line is not important, and the measured strains are the principal strains.
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6.4.2 Instrumented Bolts

In order to insure uniform bolt loading each of the vessels was used
with four bolts equipped with strain gages, on the unthreaded portion,
mounted on opposite sides to average bending effects. The bolt diameters
were machined down to the tensile stress area, holes drilled through the bolt
head, and gages mounted with their wires passing through the drilled holes.
The stress area of 3/4 inch bolts is .334 in®, of 3/8 inch bolts it is .077 in°.
The instrumented bolts were installed at four opposite locations. A torque
wrench was used to tighten the bolts to a predetermined stress. the torque
level was adjusted according to the bolt strain gage readout. To reduce
friction in the bolts, a spray lubricant was applied to bolts, threads, washers
and nuts,
6.5 Test Procedure

A high pressure pump, capable of delivering up to 400 psi pressure,
is connected through an opening at the bottom of the vessel. The vessel is
mounted on a fabricated steel table 3 feet above ground level, the table is
constructed so that it can hold the vessel in place during bolt-up and keep it
aligned and levelled at all times. A pulley is installed directly above the

centre line of the vessel, it is used to lift the top portion of the vessel,
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allowing easy exchange of gaskets. After lifting the top portion of the vessel
a gasket is installed and aligned with the bolt holes. The top portion is then
lowered, bolts are inserted, and are tightened systematically until the required
uniform torque (and stress) is reached. Strain readings are taken at 60 second
intervals. Then the pump is operated and the vessel filled up while venting
through an opening at the top. When the vessel is completely filled, the vent
valve is closed, and pressure and strain gage readings are taken every 50 psi
increments, until the flange leaks or the permissible design pressure of the
vessel is reached (300 psig, including 50% over pressure for a hydrostatic
test). The pump is then stopped and a discharge valve located at the bottom
of the vessel is opened to drain the water. The process is repeated for all
vessels with four different gasket types. Finally the vessel is dismantled and
sent to the machine shop where the flange thicknesses are reduced for a new
series of tests. Damaged strain gages are replaced and checked, and the
whole procedure is repeated.

The following flange thicknesses were tested:

For Vessel "A": Flange thickness in inches tested are: 0.562, 0.50, 0.437,
0.375, 0.325 inch, each thickness tested with 1/16", 1/32" asbestos and

rubber gaskets.
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For Vessel "B": Flange thicknesses in inches tested are: 0.875, 0.75,
0.625, 0.50 inch, each thickness tested with 1/8", 1/16" asbestos and rubber

gaskets.

For Vessel "C": The vessel was tested in earlier work, for flange

thicknesses: 1",.75", .625", .5", with 1/8", 1/16" asbestos and rubber gaskets.

6.6 Experimental Data Results
Results from experiments are plotted in graphical form for the two
vessels tested recently, "A" and" B". Data for vessel "C" are tabulated in
[29]. Plots of experimental data results for K=1.175 and K=1.5 relate
pressure, thickness and stress for the different gasket materials, The
maximum tangential (hoop) stresses are shown in Figures 34 through 37, in
the following order:
Vessel A (K=1.175):
1/32" and 1/16" Rubber Gasket.
1/32" and 1/16" Asbestos Gasket.
Vessel B (K=1.5):
1/16" and 1/8" Rubber Gasket.

1/16" and 1/8" Asbestos Gasket.
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Figure 36: Experimental Stress Data, Rubber Gasket
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6.7 Concluding Remarks on Experimental Data

Measured data provide important clues to the behaviour of the flanged
structure. The following conclusions are made.
6.7.1 Maximum Stresses

The maximum flange stress is observed to be the tangential stress
located in most cases at gage number "3" (see Figure 33), which is halfway
through the flange width. The radial flange stress is compressive and
insignificant. In rubber gaskets (softer), stresses are higher and the location
of the maximum tangential stress tends to move closer to the shell flange
junction. In the shell the hoop stress is observed to dominate, with a
maximum located at gage number "5". Stresses in the operating condition are
higher than stresses during bolt-up and gasket seating for both, flange and
hub. The operating pressure has more influence on stresses in flanges having
small "K" values. For vessels "B" and "C" (K=1.5, 1.417) increases in
pressure do not significantly affect the maximum tangential stress in the
flange. For vessel "A"(K = 1.175), for the same pressure increases a greater

influence on the tangential stress was observed.
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6.8 SUMMARY

Strain gages were mounted on two pressure vessels which were tested,
using a number of flange thicknesses, gasket types and varying pressures.
From results of strain gage measurements, stresses were calculated and a
stress profile was obtained. Based on these values, conclusions can be made
about the behaviour of the flanged structure. In the next chapter the
experimental data will be compared with results of analytical and finite

element calculations.
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CHAPTER SEVEN

PROPOSED NEW METHOD OF DESIGN

7.1  Introduction

The chapter starts by comparing the analytical, numerical and
experimental results. It then leads to a simple method of design that is based
on the numerical analysis described earlier. The favourable parabolic force
profile 1s used to account for the gasket reaction force. Finally a numerical

example is given based on the new developed method of design.

7.2 Comparison Between Results

Results from analytical solution, finite element and experimental data
are compared for maximum tangential flange and hub stresses, in operating
conditions. Calculated stresses from an analytical solution are based on plate
theory using the parabolic force profile for the gasket reaction. Data is
compared for the three pressure vessels A, B, C, using the maximum stresses
obtained with rubber gaskets. The calculated stress values, compared with
finite element and experimental values, are given in Figures 38, 39, 40, for

K=1.175, 1.416, 1.5, respectively.
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From the above plotted data it can be seen that the analytical method
is the safest. The finite element results follow the analytical method closely
for thick flanges, they tend to deviate more as the flange thickness is
decreased. This deviation is attributed to the effects of the shell, because the
stresses calculated in the analytical method are based on a loose type flange
where the contribution of the connecting shell is neglected. Finite element
results have little difference when compared with experimental ones. It is
thus concluded that the analytical method used with a parabolic gasket force
distribution can safely be applied to the design of bolted flat faced flanges

with full faced gaskets.

7.3 The New Design Method

Design of bolted flanges can be tedious and time consuming, often
engineers tend to shy away from such work. Blach and Naser [30] devised
a design procedure for flat faced flanges with full faced gasket that is simple

and practical to apply for any engineer.
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7.3.1 Basis for the New Design

The new design procedure is based on resulis of analytical and finite
element analyses discussed earlier. Stresses calculated in the analytical
method rest on the assumption that follows "loose optional" flange design
rules, described in the ASME Code [27], which means that the effects of the
shell are neglected and both flange radial stresses and hub longitudinal
stresses are small and can be assumed to be zero. Finite element results in
Article 5.9.3 reinforced this assumption for t/g ratios grater than 3, usually

valid for low pressure applications used with flat faced flanges.

7.3.2 Non-Dimensional Parameters
The following non-dimensional parameters are defined:
K : outside to inside diameter ratio of the flange
t/B : flange thickness to inside diameter ratio of the flange
P/S: operating pressure to maximum tangential stress ratio
From the above parameters values are calculated for P/S and plotted,
in Figure 41, for ranges of "K" from 1.1 to 2, and for /B from .025 to .150.
When plotted on log-log graph results yield straight lines, with little

deviation attributed to the bolt loading.
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7.3.3 Design Procedure

Design steps are based on design conditions available, so for a given
inside diameter, a flange outside diameter is assumed based on expected bolt
size from the pressure in question. The non-dimensional parameters are then
calculated. From Figure 41, the parameter "t/B" is obtained and from it the
required thickness. For a given flange thickness subjected to a certain
pressure "A/B" and t/B are calculated and "P/S" is obtained. "S" is then
compared with the allowable stress. To verify the adequacy of the bolt area
provided, an assumption will have to be made based on the final flange
geometry. From experience, it can be safely assumed that the gasket reaction
force is accounted for by using (1.5) (H,+H,), for the total end flange force.
For gasket seating conditions, the bolt area may be calculated, as for "ring

flanges" based on the ASME Code [27].

7.3.4 Verification of Design Curves

Design curves are superimposed on analytical, finite element results
and experimental data, shown earlier in Figures, 38, 39, 40, from which it
can be seen that results using the proposed new method are in good

agreement and on the safe side.
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7.3.5 NUMERICAL EXAMPLE [30]

A stainless steel pressure vessel is required with a full face flanged
joint. A vessel inside diameter of 10 inches is required and, a design pressure
of 200 psig and a temperature of 200° F are specified. A flange outside
diameter of 11.75 inch is assumed to be used with 3/8 -16 UNC bolts. The

allowable vessel stress is 18800 psi, the allowable bolt stress is 25000 psi.

Solution:
As a first step, a minimum flange thickness i1s obtained by calculating "K"
and "P/S"; then from Figure 41, "t/B" is found which is then used to find "t".
K =A/B = 11.75/ 10.0 =1.175
P/S =200/18800 =.016
t=(0.035) (10) = 0.35 in
The minimum thickness is rounded off to 0.375 in and the stress is
recalculated using Figure 41,
t/B = 0.375/10.0 = .0375
P/S= 0.011 [from Figure 41]
S =200 /.011 =18180 psi

This value compares well with experimentally calculated ones.
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To check for bolt adequacy, the assumption given in Article 7.3.3 is

applied. For a safe operating bolt load W= 1.5 (H,s+H,), may be used, [30].

7.4 Summary

The results of the analytical analysis are compared with both finite
element and experimental data. It is concluded that they correlate well and
that the analytical analysis is on the safe side. Thus a new design method is
derived, which permits a simple analysis of full face gasketed bolted flanged
connections. The method proposed determines only the maximum tangential
stresses in the flange, in accordance with an "Optional Loose" classification

of the ASME Code [27], Appendix 2-4(a)(3).
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CHAPTER EIGHT

CONCLUSIONS

8.1 Concluding Remarks

The design method for full face gasketed bolted flanged connections
presented in this thesis is based on analytical, numerical and experimental
results. It includes 2 modified method of design that takes into account the
possibility of bending of the flange face.

A new design procedure based on the modified design method was
proposed. The procedure is a function of non-dimensional parameters and can
easily be applied to other methods of solution. Due to the complexity of the
problem, certain simplifying assumptions have been made to arrive at
manageable equations. The effects of the assumptions on the confidence level
of the method were shown to be within acceptable limits on the safe side.
The method of design has shown good agreement with experimental and

numerical analyses.
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8.2 Recommendations For Future Work

The modified method presented thus far has shown much improvement
when compared with the original work. The behaviour of flat face flanges
with full face gaskets is a function of the gasket reaction force, and unless
more information is obtained about it, the design will be incomplete. It 1s
thus recommended that more experimental work be done for other flange

geometries and also for the determination of more viable gasket properties.
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Appendix A

DIMENSIONLESS COEFFICIENTS

Coefficients for Complete Solution using a Parabolic Gasket Force:

2
1 _
Cl - Vw
g B
B.
c2 - =X . eCl
2.t
Y B-
C3 - " .a.Cl
ca . BT
12:B-t
cs - Y
6333
2
B 2 _ . B
ce . PBY (2-v)B
2 8-g
_ C2-C5
- 6-C1-C4 + C2-C3
C4-C6

" 6-C1-C4 - C2-C3
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~ 6CI:C5
C1-C4-6 + C2-C3
C3-C6

C10 -
6-C1-C4 + C2-C3
ci - —— -~ c7-gtcy
B-B-m 2
C12 - C8 - [s-t—%l—o
CI13 - I-Cll + -2 g3 '
3+5K B-G-n2-Y-Eg-b%-hg-B
cis - ¢l
C13
cis - &2
C13

For a triangular gasket reaction force only C13 is adjusted to,

3 'E't3' tg
*2K  B.G-n?Y-Egbihgp

Ci13(t) = I'-Cl11(t) ~ 1

Coeficients from simplifying assumptions given in Articles 4.5 & 4.51] are:

t
Kl =1+8—
P 2
2 3
1 -
K2 - 6._____1__.(1)
3
K3 - % Y
n-Y-hg b2
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where,

1

]
K4 - | T + K3 (l)+—-“
t | |
202 [T
(1 - pt)yKa-p2B2 [ E|
e 2
t
Ll -1+ B-
g 2
2 ,..3
1 -
L2 - 6 Ty (1\1
B-nfY
\ 3
L3 - g.i t
Y \b/
L1 !
L4 .- | T + L3(t)- 1y
[ l 2]
/ 25
2" y
B - |12 I-v \ and r 1 l;]gs
Bzg / g
12 t
a - 3+ 5 K'E.E gG For parabolic distribution
+ 5. g
R
1+2K EgG For triangular distribution



APPENDIX B

STIFFNESS EQUATIONS OF FINITE ELEMENT

Stiffness matrix for plane axisymmetric elements;

Displacement Function:

L
. e 1Y
Vi i al ]
| a |
/u
u L IN]- IN. IN] IN
‘v, J
with a; - bi-r - ¢,z
N L
2°A
ai rj'Zm - rm°2j
b, (z.i) - Z, : Zim
Ci rm - J: rmj
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Where A is the area of the element.
N,: The shape Function
a“: Is the element displacement victor

Strains are:

dv
, L 82
£
z du
& or
g -
o u
y r
” T
dz or
e
SNi
O R .
oz -
Bl = r
1
r
o,
. 8z Sr
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From which the stiffness matrix is given by

Bi-E-Bj-r-dr dz

o
° t
J

where, (r.dr.dz) is the volume
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G, G 1
—_— = — = m -
E, E 1-(1 +v)
'l v v
l-v 1 -v
1 Y
E:~_E(]—v) . 1 - v
(1 -+ v)(1 - 2v) I

0

0

0
2 - 2-v_
2:(1-v) |





