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ABSTRACT

BOOTSTRAPPING GENERALIZED TWO STAGE LEAST SQUARE ESTIMATES

IN SIMULTANEOUS EQUATION MODEL WITH BOTH FIXED AND RANDOM COEFFICIENTS

Shanshan Wang

The bootstrap is a technique for estimating standard errors. the
idea is to use Monte carlo simulation, based on a nonparametric estimate
of the underlying error distribution. A simultaneocus equation model with
both fixed and random coefficients is fitted by generalized two-stage
least-squares. It 1is shown that ©bootstrap approximation to the
distribution of the estimates is asymptotically vallid where the technical

difficulties include simultaneity and random coefficlents.
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CHAPTER ONE

SIMULTANEOUS EQUATION AND ITS ESTIMATORS

1.1. Introduction.

Simultaneous equation model is one of the most important models in
Econometrics, and 1s well developed by many econcmlists and statistliclans

such as Thiel [1961], [1971] and Goldberger [1964].

In section 1.2 the model, structural form and reduced form are
introduced. The identification problem is solved in section 1.3. Since
we will mainly discuss the single equation in the system and the two
stage least square (TSLS here and after) estimator in the iollowing
chapters, so we focus on the TSLS estimators in this chapter. The TSLS
estimators and the generalized TSLS (GTSLS here and after) are derived
in sections 1.4 and 1.5. In section 1.6, we discuss the bias, the moment

matrix and some asymptotic properties of the TSLS estimators.

1.2. The Model, Structural Form and Reduced Form.

In this section, we present the simultaneous equation model, its

structural form and its reduced form. First, we take a look at the model

from both economic and statistical phenomena.

From economic phenomena, economic variables are generally declderl




by a group of equations respectively instead by one equation . The
objective of such equation system is to describe a subset of its
variable in terms of the other variables. The former variables are
called endogenous, the latter exogenour The Iintultlve background of
their distinction is that the values of variables are determined from
the outslide,that is in a way which 1is independent of the process
described by the equation system, they are also called predetermined
variables, whereas the values of the other endogenous variables are

determined Jjointly and simultaneously by the equation of the system.

The statistical formalization of this idea is the assumption that
the value of the exogenous variables are stochastically indepen-iunt of
the disturbances of the system. This assumption enables us to operate
conditionally on the exogenous values, so that we may regard them as
constants. The current endogenous variables are called jointly dependent
variables. Meanwhile, either lagged or exogenous variables are called

predetermined.

Now, we should design a systematic notation to a complete linear
system in M jointly dependent variables and K predetermined variables.
Write Yia for the t-th value of the m-th dependent variable
and X for the corresponding value of the k-th determined variable. The

number of observations i1s n, each consisting of M+K values, such as (ytl

y

e Y

o % Ko xlx) where t=1, 2, ..., n.

The system consists of M structural equations and can be written as

follows,




+ +, .. + X + ...+ +
Bilytl 321yt2 ’Blllyﬂl 111 t1 121xt.2 7[1"0.! etlgo

+ 4, .. + cos
Bizyu 322)'&2 ’anyt.f?:zxu ’22*0.2* *1‘2)('.‘0'0‘2-0

+ +... + + +,..* +
B Badi’  Badut o T (W N

t=1, 2, ..., n. (1.1)

The J-th equations will be,

K
= t=1, 2, ..., n
Baim * L% * €= 0 (1.2)

1 k=1 J=1, 2, ..., M

M=

where ::U is the disturbance of the t *h observation in the J-th

equation and the B‘’s and %’s are parameters to be estimated. Using

matrices, we can write,

X1 xiz e X
X=[x1]-= Xa1 ¥ap v Xx (1.3)
tk
n1 " n2 Xx nxK
Vi1 Y12 0 Yy
Y = [y“] =| Ya1 Y22 ' Y (1.4)
ynl ynz * Yon nxM




€1 C32 €
E=[e 1=|%: €22 ' oy
to .
€ Cn2 " € nxM
= [51 sz b En]
Bu B:z Buq
B = [Bﬂ] = 821 Baz an
Bnu an * Bnn(
¥ 7 ¥

11 %12 " %
Tr=1Ily 1-~= Vo1 Voo = Ty

then we can write (1.1) in the following form:

YB+ XI' + E=0,

(1.5)

(1.8)

(1.7)

(1.8)

The matrix B 1is square because there are as many equations as Jointly

dependent variables. It Is assumed to be nonsingular, so that the system

can be solved for these variables,

~1 -1

~ EB

;

X+ v

where

(1.9)

(1.10)




and

vV=-g8. (1.11)

This is the reduced form for all n observations and all M Jolintly

dependent varlables.

The assumptions on the disturbance moments of the first and second

order are as follows,

E(g) =0 J=1, 2, ..., M, (1.12)

the g here is the j-th column of the disturbance matrix E described in

formula (1.5), and

E(sucnn) = O‘Jm when t = 7 (1.13)
=0 othervise
then
! = =
E( 51 g_)—crjnl Jm=12, ..., M. {1.14)
The covarliance matrix of [cu. oo em] for any value t is
13 12 ° 1
T=[oc 1= %2 T22 " o , (1.15)
n
"1 Tnz " " MxH




therefore, £ is symmetric and positive semidefinite.

Now, we can rewrite (1.11) as follows,

11 12 1
v
V= 21 22 24
v v
ni n2 nM J
11 12 1M
€
= - 21 22 24
€
enl n2 nM

Then we can have

So that
ECy, )= -B* T'E( g) =0
or
E(V) =0 ,
and

B . (1.16)
nxMN

J=1,2,...,M (1.17)

(1.18)

(1.19)



’ 1'1 ’ -1
EY Y 'E[B 51518]
~1 -1
= B "'E ‘|8
[51 51]
- -1 J=1,2,...,M, (1.20)
=Bz B
=0

say, where 2 1s MxM nonnegative definite matrix or the contemporaneous
covariance matrix of the disturbances in the different equations 1s the

same for all t, that is

E(vUvm) wj. when t = g

=0 otherwise

(1.21)

i.e., the reduced-form disturbance vector 1s temporally uncorre- llated.
And for knowledge of the Jjoint distribution of the dependent varlables
for all sets of values of the predetermined variables implles knowledge
of the conditional expectations of thls distribution, as a function of
the predetermined variables. But this function is Just the reduced-form

coefficlent matrix I:

’ ’ = -’ ’ ’ = ey’
E[y‘ | xt] —E[xtﬂ-rvt | xt] x. 1. (1.22)
Furthermore, knowledge of the Joint distribution of the dependent
variables for all sets of values of predetermined varlables impliles
knowledge of the conditional covariance matrix of this distribution. But

this matrix is Just the reduced form-disturbance covariance matrix




t t t
- E[ v,v: ] (1.23)
8 n L)

Similarly, higher moments of the Jeint distribution of the dependent
variables may be identified as further parameters of the reduced-form.
Thus the reduced-form parameters are always identified since they are
uniquely deducible from the parameters of the Joint distribution of the
obgervations. Indeed it is easily seen that knowledge of the reduced
form parameters implies knowledge of the conditional distribution of the
predetermined variables. Therefore, we may conclude that a structural
parameter ls identifled if and only if it can be uniquely deduced from
the reduced form parameters. This Introduces the identification

problens.

1.3. Identification.

The notation (1.8) is compact and elegant, and it is very useful
for the reduced form (1.9), but it is not really convenient when we want
to estimate the parameters of our particular structure equation. The
reason is that the parameter matrices B and I' are "wasteful" in the
sense that normally a large majority of their elements is known to be 1,
0, or -1. Therefore, we shall consider matters of notation prior to
estimation. When attempting to estimate, however, we shall find that

there is ldentification problem to be solved prior to the estimation.




We may belleve that a structural parameter is identified if and

only if it can be uniquely deduced from the reduced-form parameters.

Now, the connections between the structural parameters N and Q1 are as

follows,

T =-r B}

KxH KXK KXM

pn=plgp?

then, we can have,

»
MA=0

vhere
. *
nm =(0n { I)
KX(M+K) EXH  KXK
ann
A =
rxxn (M+K) XN
and suppose that @y @y eeey « denote the columns of A

(1.

(1.

(1.

(1.

(1.

(1.

24)

25)

26)

27)

28)

29)

This implles that « represents the parameters of the i-th structural




equation, and

»
n

« = 0 (1.30)
Ex(M+K) (MeK)x1

provides us with K homogeneous linear equations in M+K varlables. So the

L J
rank of NI cannot exceed K. This is the rank condition. Furthermore, let
$a = 0 (1.31)

is a priori restriction on m1 and rows in ¢ are equal to the number of
restrictions on . Suppose R restriction are imposed, the, ¢ is a

Rx(M+K) matrix and
»
[} )
¢

(K+R)X (M+K)

« = 0 . (1.32)
(HoK}xl

We have K+R linear homogeneous equations in M+K. This equation will have

solutions 1if

L]

Rank [ g ] <MK . (1.33)

If we normalize one element of a, we will have K+R homogeneous

equations in M+K-1 variables and then K+R = M+K-1, or

Rz M1, (1.34)
that is the number of prior restriction must be greater than the number

10




of columns of Y minus 1. This is the order condition.

In practice, the most common type of a priorl knowledge consists of
"zero-restrictions”. That 1s some coefficlients being zero. Now, suppose
m+l1 of M Jointly dependent and xl< K predetermined variables have
nonzero coefficients, and the structural equations have been normalized
by dividing with nonzero coefficients of Jointly dependent varlables. We

may write the equations then in the form

» K
l —
Yy = s§1 B‘y'_l +k§1 L + e, t=1,2,...,n (1.35)

and we assume that the equation (1.35) is one of a complete system of M
stochastic linear equations in M Jjointly dependent and K predetermined
variables. And this system can be solved for the Jointly dependent

variables. We also can write (1.35) in following form

¥=Y13+x17 + e (1.36)

where
¥y is the nx1 vector whose coefficlent is -1,
Y1 is the nxm matrix whic non zero coefficients,
B is the mx1 vector of coefficlents of Y:’
X1 is the nxl{1 matrix of observations on the included predetermined
variables,
7 1s the lel vector of coefficlents of these included
predetermined variables,

€ is the nx1 vector of disturbances in this structural equation,

11




and m<M-1, K1<K.
Now, in our original model (1.8) we let

Y=[yi Ylé Y] (1.37)

and

X = xlz le (1.38)

vhere

Yz is an nx(M-m-1) matrix which are Jjointly dependent variables

with 0 coefficients.

)(2 is an md(2 (K;K-K,)matr'lx which are predetermined variables

with 0 coefficients.

Then in the reduced form (1.9) we can have

y = Xiu' o £ (.39)
L ]

Y, =X + XN+ V (1.40)
[ ]

Y, =XIL + XN +V (1.41)

vwhich gives us

12



[ ] ' L ] ' ]

1 2
M= K,X1 K xm KX(N-2-1) (1.42)
| ;
H “‘ H “2

x K _X N~
Kz 1 o » sz( 1)

Then the reduced form is

o . n i nim
ly i Ylg YZ] = [x15 le : , + v Vi V2 ] . (1.43)

Suppose (1.35) is the first equation of the complete system, that is

0
from (1.10) and (1.11) we know that IB=-I' and VB=-E . That 1s

1
[ -B ] is the first column of B and [-7 ] is the first column of I'. Also
0

niMim 1 _
wiNim 0 0
* 1 2
and
' . 1
Lviviy, ] | -B|=c¢ (1.45)
0
then
r - n:3=7 (1.46)
n - nlsso (1.47)
v-V‘B=c (1.48)

13




From (1.47)

n B = = (1.49)
!2XI ax1 xle

we can see, there are three situations,

1. 1f Kz-m the equations will give unique solutions and we call it

exact identification,

2. if K2>m the equations will have more than one solution, and we
call it over identiflcation,

3. ir K2<m the equation will have no solution and we call it under

identification.
1.4. Tuo Stage Least Squares.

The first method to estimate the coefficients is the two stage
least squares which is developed by Theil [1953, 1961, pp 225-231,
334~344). Ve rewrite the (1.36) and (1.40) here,

y=YB+Xy+e (1.50)

and

*
Y1 = xlnl + )(z'll1 + V1

"x“xi "‘V1 (1.51)

14




n
where X=[X | X] and W, -[ n‘]. Inserting (1.51) into (1.50) and
1 1

rearranc. g, we can have

y= )mxlp + xlw + (e + Viﬂ) (1.52)

Since the predetermined variables are contemporaneously uncorrelated
with all disturbances (structural and reduced form), if we take the
classical least-squares regression of y on 71-xnx and x1 we would
1
obtaln consistent estimates of B and ¥. This procedure is not avallable
to us because we do not know llx and hence do not have observations on
1

?1. We can however, conslistently estimate “x by ﬁx and hence estimate
1 1

'Y'1 by Xlﬁx . These considerations here suggest the following two-stage
1

procedure,

Stage one: Obtain the classical least-squares estimator ﬁx of “x
1 1

by regressing each column of Y1 on X; this is the sub matrix of N. Where
= (x0xy (1.53)
and

— ’ -1 .
ﬂx1 = (X'X)7RY, . (1.54)

We then obtaln the calculated values in these regressions,

15




Qf xh . (1.55)

X
1

Stage two: Take the classical least-squares regression of y on 91
and Xl. The resulting coefficients are the two stage least-squares

estimators of B and 7.

Thus the two-stage least-squares estimator of [5 ] is the [

> T

)

defined by the normal equations

9;91 ?‘;xl [
x'Q XX,

11

2> T

Q;y
]- Ky | - (1.56)

A system of m+l(1 equations in m+K1 unknowns which will, in general, have

a unique solution.

To establish the consistency of the twe stage least-squares

estimator we might write the equation as follows,
y=¥B X7+l + (v -%)8] (1.57)

and show that Qx and )(l are independent of compound disturbance term in
brackets, in the sense that the probability 1limits of the sample
covariances are zero. Alternatively, we Interpret (1.56) as the normal
equations of instrumental variable estimation, which will allow us to

draw on the results of (1.?) for standard errors as well. Suppose, then

16



T

that we estimate (1.50) by instrﬁnental variable method with calculated
values of the right-band dependent variables as instruments for the
corresponding observed values and with the included predetermined
variables such as their own instruments. Then the estimator of [?] would

be defined by

[?éy’ Qix’ [ﬁ']_ Qéy (1.58)
xy, xix| oo = | xy

L

and supposing that the instruments were legitimate, that this estimator

would be consistent; that its asymptotic covariance matrix would be

’ ’ -1
nle® plim n? [qui QfXI]
1Y1 x1x1

4 ’
«|p1im n~? [1191 Qxxx]
’ [
] AR
2 ’ [ -1
x|plim n? ﬁlQ! le‘]]

’ ¢
L 1Y1 xaxx J

(1.59)

where 0_2 is the structural disturbance variance; and that this matrix

would be consistently estimated by,
¢ x Yt x e fx ?
52[11 11][11 11][11 11] (1.60)

‘ ’ ¢ ' ‘ ’
xlql xixl xlql xlxl XIQI xlxi

where s° is the sum of squared residuals divided by n. Now the

instruments are legitimate and

17




plim n"x;e =0

and since ﬁ is consistent,

From the definition of 91 in (1.55), we can have

and

Since

=10, = -1 ’ =1y, =
plim n Qlc plim n ﬁx ch = ﬁx plim n Xic 0.

’ = VY’ PRTILS PP rwoy-lys
9191 YIX (XR)TRX (KXK',

x¢

11

- ’ -1y,
= Y;X (X'X) XY1

- ’
- ?1Y1

= YIQI

XX (X X)"xy

(IO)[

X:‘Y1 .

1

1

’
xl] y
X2 1

18
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(1.61)

11.62)

(1.63)

(1.64)

(1.68)




X; = (10)X . (1.66)

Thus we see th#t TSLS 1is identical with an instrumental variable
estimation which establishes its consistency. In addition, in (1.59) and
(1.60) the middle matrix has as its inverse the third matrix so that
these two matrices “"cancel out”. We also see that there is no need to
compute explicitly the individual calculated values. Rather, the

computationally efficlent formula for TSLS estimations is given by

. ’ -1 "y ’ ' ] -1y,
Y X(X' X)XV lei] [9] i [Y1X(x X)X y] .

(1.87)
’ ’ 4
XlY1 xlxl ; le
The asymtotic covariance matrix may be written as
msn mwx )t
z, a = nl? [ X, xxx X x ] (1.68)
B?.87 0 z,

1

where }:“ and Zu are submatrices of Exxa'-'plim(nq){'x). To see this, note

that,
Plim n“x'\(1 = Plim n"x'(xux + V)
1
= Plim n“x'xnx + Plim m“x'v1
1
=z M +0
1
=z I . (1.69)
1
So that

19




1y, = -1y,
Plim n )(1\'l Plim n xx(xnx: Vl)

-1, -1y,
= Plilm n xxmx + Plim n )(1\11

1
= 21 x“xi .

The estimator of (1.68) may then be written as
VX0 %y yex )t
=g?| 1 1 11
’ ’
[ XIYI x1x1
It may also be seen that s2 may be computed,

computation of the residuals, by

2_ -1, _ v Ay L v A
s=n (y Ylﬁ Xlzr) (y Ylﬁ Xlw)

ny'y + BYY B - 2B Yy - XX D)

(1.70)

(1.71)

without explicit

nl(y'y - 2B'Yly - 20 Xly + 2R YIXE 4 BYiY B+ XX D)

11

(1.72)

using the second row of (1.67), namely, "} = (X;Xl)-l(—xg\'lﬁ + X;y).

From the point of view of instrumental variable estimation, the

calculated values of the right hand dependent variables are desirable

instruments since they are contemporaneously, uncorrelated with the

disturbance and yet are correlated with the observed values of the

variables for which they serve as instruments.

20



Finally, we show that when the equation is Just-identified, the
TSLS estimators are identical with the indirect least squares estimators

of (1.44), such as,

L o n, 1 -3
. B =- (1.73)
L m, o o
which in view of the definition of f! is
-1 -1 -7
(X X)Xy ";’[ 9] = [ ;] : (1.74)
If we premultiply (1.74) by Y;X ve find,

A
vy -1 -1 = ’ -7
VXXX + VRO TRY B =YX xz)[ : ]

A

- VY’

= Y1x17 (1.75)
If we premultiply (1.74) by (X;X) we find,

A
—y 1y~ 1y ’ ryy 1y = X/ -7
XXX X)Xy + XXX X)X vlﬁ X! (X, xz)[ o ]

v A
= -Xixlz (1.76)
[}
and notice that we can write X;=(I 0)[xf]=(l 0)X, then we have
xl xl
-(1 o)[ ’] y+ (1 m[ ‘] Ylﬁ = -x;xﬁ (1.77)

Xa X

or

21




—y ‘ -y'y d
Xy + XIYB =-XX7 (1.78)
Now, (1.75) and (1.78) will be recognized as the first and second "rows"
respectively of (1.67). Thus when they are defined the indirect least
squares estimators satisfy the same (nonsingular) system (1.67) as do
the TSLS estimators, so that they are identical with the latter.

The following assumptions will be made.

Assumption 1.1. Equation (1.36) is one of a complete system of
M(zm+1) linear stochastic equations in M Jointly dependent variables and

K predetermined variables. The reduced form of this system exists.

Assumption 1.2. The matrix Hi. which is in (1.42) with the order of

szm. has rank m.

Assumption 1.3. The matrix X, which 1ls of order nxK has rank K and

consists of nonstochastic elements.

As to the n vectors of M disturbances corresponding to each of the

M structural equations, we need,

Assumption 1.4. The n disturbance vectors are independent random

drawings from the same M-dimensional normal parent with zero means.

Following all the discussion, we present the theorem 1.1 here.

22




THEOREM 1.1. (Theil [1971]) pp497)
Suppose that the assumptions 1.1 to 1.4 ware satisfled, its

disturbance variance ¢° being positive. Then the TSLS estimator [ § ] in

(1.56) is consistent for [ B ] and n-wz[[ e ] - [ A ]] has a normal

(4 (]

distribution with zero mean vector and the following covariance matrix

Eﬁ" 8 which is described in (1.68). Also, the statistics s° in (1.72)
T PY

is a consistent estimator of the variance o°.
1.5. Generalized Two Stage Least Squares.

A generalization can be obtained for the case of autocorrelated
disturbances. We assume that first the disturbances of (1.35) have a
finite and nonsingular covariance matrix, E(ee’)=Z. Secondly, for each
pair t, t‘'(=1, 2, ..., n) and for each pair i, 1’(=1, 2, ..., m) the
parent reduced form disturbances A and v;l corresponding to the right
hand variable Y, and y;. respectively, of this equation has zero mean

and satlisfles

. (1.79)

U S T RAL X Y

where Y is independent of t and t’, and LA is the (t, t’)-th
element of E. This condition is weaker than the one which it replaces.
Still it imposes rather strong restrictions on the probability structure
of the disturbances, because the covarlance matrices of those in the
reduced form -— at least in that part of the reduced form that

corresponds to the dependent explanatory variables of the equation —
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are supposed to be '"proportional" to the covariance matrix of the
disturbances in the structural equation under consideration. A
sufficient condition under which this situation is reduced is that the
equation system 1s linear and that the disturbance vectors of each pair
of its equations have a covariance matrix equal to I except for a
scalar. When viewed from this point, we can conclude that the
assumption, although still rather restrictive, is certainly much weaker
than the assumptions which it replaces. It allows us to take into
account one of the important and almost common feature of disturbances

in time series, viz, their positive first autocorrelation.

Suppose then that the reduced form 1is estimated according to
Altken's method of generalized least squares (Theil [1861]1). This gives
Y, - V= xeez sy, (1.80)

V' being the matrix of resulting, estimated, reduced form disturbances.

Consider also the estimation equations
L J L ]
Yl_v ’ Yl_v ¢ ﬁ
1 1 -1 _ 11 -1 y*
[ X; ] Ty= [ x; ] z (Y1 V1 Xl) [9] (1.81)

the last vector being an estimator of 7y and B is an immediate
generalization both of two stage least squares and of generalized least
squares; so we shall call this method that of "generalized two stage
least squares”. Writing A for the product of the first three matrices in

the right hand side of (1.81), such as

24




A= L7 £y v x)
= xl 1' 1 1 (1.82)
1

2‘1y
= -1 -1 v* B8
R [”1"1"1’ [ ]u:]
: y-v'
= -1 -1 R . B =1 1 1 -1
A X’ J z (Yl V1 XI) [7] + A [ X’ ] e

L ]
) Y-y
= A"A [B] + A"[ ! ] £l . (1.83)
1

Whence it follows that the estimator is asymptotically unblased.

Further, 1if e. is the sampling error, we find for the asymptotic

covariance matrix

1im E(ne’e”’) = plim (nA™)

nN—® N~ -1
r_y* -
= plim n [Yz Yy ] sy -v' X)) (1.84)
n X; 1 1 1

vhich is again an immediate generalization.

1.6. The Bias and Moment Matrix of The TSLS Estimators

We know for the equation (1.36) the TSLS is in (1.56) which can be

written as
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A T AR () (1.85)
X xi\{1 xlxl A

where Ol-vl—x(x'xf‘x'v‘ is the estimate of V1 in (1.45) from the first

stage.
We can write
V1 =¢gpr’ + W (1.86)
which describes the (normally distributed reduced form disturbances as
consisting of a part which 1is proportional to the corresponding
disturbances of (1.36) (l.e. er’, r’ being a column vector of m
components) and a part (i.e. W) which is also normally distributed but

independently of the £ vector. Consider the vector of covariances of the

disturbances of and the right hand variables of equation (1.36):

Y'e EVie r
1 1 _ 1 1 _ 2
q=— E[x,e]-—-—n [ 0 ]—cr [0] (1.87)

where 0-2 is the variance of the disturbances of (1.38).

Further, we write

vy vx1? Q. Q
_ 11 11 11 12
Q= [X'Y x,x] = [Q 0 } (1.88)

26



, -1
where Q“ = (YiMlYl) '

= - ’ =1y, ’ -1
Qiz = Qm (xlxl) Xin(YthYi) ’

and Ml = ] Xi(XIX\.) X1 .

THEOREM 1.2. (Nagar [1958])
Under assumptions 1.1 to 1.4, the blas (to the order of n'i) of the

estimator [f] is given by
7

E(e) = (L-1)Qq (1.89)

where e 1s the sampling erior:

e=[g]-[:] (1.50)

and L=K-K1—m.

From (1.86) we can write for the moment matrix of V:

1

’ = afrnt 1 ’
'—n-— E(Vivl) =s=orr + _h— E(W'W) (1.91)

and bordering these matrices with K1 rows and l(1 columns of zeros; we

obtain three square matrices of order m+Kl:
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czrr' 0
C = = _l._ q’'q (1.92)
1 0O 0 2 ' :

—;—ztwu) 0
C2 = o 0 {(1.93)

and

@]
]

C1+C2

[ o'zrr'+—lll—E(W'U) (o]
0 0

-

1w o
0 0 (1.94)

-

THEOREM 31.3. (Nagar [1959])
Under the assumptions of theorem 1.2, the moment matrix, to

the order of n'z, of the estimator [f ] around the parameter [ B ] is
4 ¥

given by:

E(ee’) = ¢°Q(1 + D) ; (1.96)
where D' is a matrix of order n '

D' = (-(2L - 3)tr(C,Q) + tr(C,Q)I

+ ((L-2>*%2)cQ -~ (L-2)cQ . (1.97)
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Then the estimators of Q, C, q and tr2 are as follovs;

192 ’ -1 ’ ’ ’ -1
A [9191 QIxi] _ [vlw1 Y1X1]

Q = (] ’ (1.98)
qui X{X, XY, XX
A -1
Q= (Y;(P- X (XX) X)) (1.99)
A A
A 1/LE(VIV, ) O
C= 0 0 (1.100)
1 A A
4 = [—n—Yl(I-P)(y-Ylﬁ-Xlw) ] (1.101)
0

where P = X(X‘X ]'1)(’ .

In this chapter we studied the two-stage least-square estimates and
the generalized two-stage least-square estimates of the simultaneous
equation model and thelr asymptotic properties. More specifically, in
this system we have to solve the 1identification problem. More
complicated model will be discussed in the next chapter based on the

discussions in this chapter.
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CHAPTER TWO

SIMULTANEQUS EQUATIONS WITH
BOTH FIXED AND RANDOM COEFFICIENTS
AND THE GENERALIZED TWO STAGE LEAST SQUARE ESTIMATOR

2.1. Introduction.

As observed by Klein {1955, pp 212-216], it 1is unlikely that
interindividual differences observed in a cross section sample can be
explained by a simple regression equation with a few Iindependent
variables. In such situations, the coefficients can be treated as random
to account for interindividual heterogeneity. This random coefficient
regression model has been extensively investigated by Hildreth & Houck
[1969], Swamy [1970, 1971, 1973], Swamy & Mehta [1975, 19771, Swamy &
Tislay [1980], and Harville [1976, 1877]. They have proposed methods of

estimating the mean parameters of such model.

Meanwhile, 1identification and estimation concerning simultaneous
equation models with random parameters have been considered and some
results have been derived by some authors such as Nerlove [1965],
Zellner [1968], Kelejian ([1974], and Raj, Srivastava and Ullah [1980]

(R&S&U [1980]) here and after).

The coefficients of simultaneous equation model discussed in

previous chapter are fixed. Here we consider that model while the



coefficients of exogenous variables are random and those of endogenous
variables are fixed. We also show how to estimate consistently a single

equation in the system and state some asymptotic properties.

2.2. Model Specification.

The model considered here is a simultaneous equation model in which
the coefficients of endogenous variables are fixed as usual and the
coefficlents of exogenous variables are random. A generalized two stage
least square estimator for a single equation in the model 1is then

derivead.

The single equation (1.35) in a complete system of M structural
equations in N Jointly dependent and K exogenous variables is rewritten

here

m K
y, = L By, +Y¥ vx +¢ t=1,2,...,n. (2.1)

Now, the Bl's in (2.1) are fixed as usual and 7k's are random, so (2.1)

may be rewritten as follows,

K

1 =
Blytl +k£i LA t=1,2,...,n. (2.2)

Yy, _
t=y

Lo

Assuming that xt{=1. for t=1,...,n, we assume the usual disturbance term

in the equation (2.2) into the varying intercept term.

In more compact matrix notation the equation (2.2) can be written
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y=YpB +Diag( X! X ... X )(wg,

=YB8 + Dx11

where y is a nx1 vector

<
-

71

’ '
(2> °°° 7(n)J

(2.3)

(2.4)

Y1 is a nxm matrix of observations on the other endogenous variables

which appear in the equation, that is

Y11 Yi2 *** Y1
Y1 = yzx yza 72-
ynl ynz vnn

(2.8)

nXm

X1 is nxK1 matrix of observations on l(1 exogenous; variables which appear

in the equation, such as

X X ... X

11 12 1:1

x1 = 21 22 2K
X oo

nli n2 xnx

(2.6)

while )(;t is the t-th row of Xi, and 8 and 7(” are coefficient vectors
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of dimensions mx1 and Kxxl respectively, such as,

X

1t
X
X = | 2
X
‘1" xixx
B1
g=| B2
B- mx1
and
Yo
v =] T2qun t=1,2,...,n.
(t) ' '
r
K1(t.) R X1
Furthermore Dx is of order n><nl(1
1
[ x“ 0 0
[
Dx = 0 x12 0
S S
4
0 o ... xm .

and ¥ is of order nK1x1
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(2.8)

(2.9)

(2.10)




LATY)
7= (2) . (2.11)

(n) [nK X1

As the assumption at the beginning that the elements of B are fixed
while the elemznts of 7 in (2.11) are random and are independently and

identically distributed about a mean vector 7 such that

=y teE t=1,2,...,n (2.12)

where 7 is a lel vector with nonstochastic elements and £ is a nl(lxl

discrepancy vector,

n
7 [ t§1 LTRVAE
Y
¥=1.%. = | & T/ (2.13)
§x K x1 Doy
1 4N | t§1 Kx“‘)/n_ K x1
and
€ ]
€ = e(t) (2.14)
e(n) nK1x1
where
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[ €10

€
€ = 2(t) . (2.15)

€
K, (0) K x1
Substituting (2.12) into (2.3), gives,

y = Yaﬂ + xi'f + W (2.16)

B
and let A=(Y1§ Xl]. 6=[ ;] and w=D_ €, this equation can be written as
1

y=AS +w . (2.17)
We assume that
Assumption 2.1.
(1) Ee(t) =0 t=1,2,...n.
61 0 0
0" o . 0
(11) Efe,,8r)) =8=] .. 2
00 Bx K xK
1 171

where e“u is the j-th element of € J=1.2....,K1.

(ii1) The elements of Dx are independent of the elements of €.
1

e
Clearly, under Assumption 2.1
E(w) = E(Dx €) = Dx E(e) = 0 (2.18)
1 1
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and
Eww’ = E:Dx cc’D”‘
1 1
= D Eec’'D’
X, X,
=D 8D
X %
= 0 (2.19)
where
A O . 0
g=|0 8 0 (2.20)
0 O A
nK, Xnk,
0's are I(1><l(1 null matrices.
91 o . 0
a=19 1%, 0
0 0 0
n nxXn
xuquun 0 0
= 0 xa(z)Axua) 0
.. ,
0 0 xl(n)Axl(n)
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- 1 -
) xfjaj 0 0
=| j3=1 K, . o (2.21)
0 ) X0
253
3=1
...... K,
2
i Y x 6
0 ym1 2) 3
K
2
nt 3§1 xtjej t=1, 2, ..., n. (2.22)

Now a necessary and sufficlent condition for the identifiability of
B and 7 in equation (2.21) is exactly as it would be in the fixed
coefficients version of (2.1). Then we can have another assumption as

follows.

Assumption 2.2. Equation (2.21) is identifiable.

Assumption 2.3. The rank of matrix X is K<n.
Then, we can discuss the estimaes of coeffcient of the model.
2.3. Consistent Estimators.

The Two Stage Least Square (TSLS) estimator of & which does not

take into account the heteroscedasticity of w as described in (1.67) is

A
TR AN t A
3= ] (v, x)| (v, x)v

. X’
1

L g

2l

P YR X)X " - »

= e x7xY XJ1 (YOXXX)TX X )y

L' X’ 11 1 1
1
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[ YXOONTRY YXOe TR )™ »
. (v X0 7'x X Jy
XXX X)TXY, XX

r -1
YI
- [ '](X(X’X)"X)(YIX)] [(v x)(X(x'X)"x')]y
xl 1 1 1
- 1

= (A’PA)"*A’Py

(2.22)
where P=X(X'X)”'X’ and X:P'=(1 0)X'P=(I 0)x'x(x'x)"x'=x;.
From Chapter 1, we know that under general conditlons the TSLS
A

estimator 8 is consistent and the second order moment matrix of the

A
asymptotic distribution of vh (3-8) is given by

P1im n(A’PA) 'APAPA(A’PA) ™" . (2.23)
n—aw

When n=c?In. we easily verify the conventional result of (2.23) as

Plim n(A’PA)"'APoT PA(A’PA) ™
n—o n

=o°Plin n(A’PA)~. (2.24)
n—xo

Now, since E(ww’') = Q = o?In. an efficient TSLS estimator of & in
(2.17) can be obtained as follows. Given that Q is positive definite, we

can apply the generalized TSLS in Chapter 1 equation (1.81) to (2.17)

A
Y = xcx'n“‘x)"xn"y1 (2.25)

then
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and

A A A
Y’ Y’ A !
[ ’]n"y = [ ‘] (Y, x)s + [ ‘]n“w,
X X! 1 X!
1

so we can have

The first three matrices in (2.28) can be written as

A
’
ryi -1 A
.xl] a (v x)
1

(v o txx a7 i) "k
1 10 vialyrysa-tyi-ly
= (v ety X))
xl 1 1 1
- 1
’\r;n"X(x'n“xf‘x'n"\(1 \(;n"x(x'n“x)"x'n"x1
relurvr mmluy=1us m=1 r =1
| X7 ka0 ey, x:a7'x,
Y:RY, Ylei]
Rxl

, ’
| X{RY, X!

A’RA

where
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(2.27)

(2.28)

(2.29)




R= o xxa'x) xa? (2.30)
and

!
XX
PP U b |
(10) xa X[o]
reviurvs a=lvy=lus ot [
(1 0) x’@ XX Q" X)"x'A x[O]
raxfl
[IO]XRX[O]

,
XiRXI. (2.31)

Furthermore,

A

nY; -
]n
uxi

[ v;n“X(x' o 'x)x g
| (z o)x'a™?
i Y;n"xcx'n"x)"x'n"
(1 o)x a 'x(xa7'x) " 'xr ™!
[ Y'R ]
1
,
| X(R

= A'R . (2.32)

All these would lead to the generalized TSLS estimate of & as

8= (ARA)'ARy . (2.33)
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Without knowledge of 94.8 it is natural to conslider the possibility
of estimating ej’s and substituting the estimators for ej's involved in
(2.33). Thus, to estimate ej’s are both of interest in themselves und as
aids in obtaining improved estimates of &. For this purpose some
consistent estimators of 8, 0. 's are proposed here.

J

First let,
y.gy—Yxplxl;-o-w. (2.34)

Replacing B by its consistent and approximate unbiased TSLS estimator
A

B' as shown in chapter 1,

" A A
B" =B - (kK -n-1)Q,q . (z.ai)
where B consists of the first m elements of & in (2.22), and Qu and a,

25 in (1.98) and (1.100). Then the estimator of y  1in (2.34) is

A"

y =y- Y13. (2.36)

using §' instead of y* used in (2.34) we obtain

A
[ ] —-—
y = X11 +w, (2.37)
then,
A A
— - ’ -1,,..*
T = (xlxl) le (2.38)
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A
and the vector of the residuals from the least square regression of y'

on )(1 is

A' A' ﬁl
w =y -Xvy
1
9 - X (XX ylxey"
y 1" "1™ R4
A.
= Mty
= le (2.39)

= - ’ -1y,
where M1 1 xl(xixl) Xi.

Secondly, we define the Hadamard products “*" which is to multiply

corresponding elements in two matrices such as

2 2 2
X1 %52 xixi )
. 2 2 2
X =X* X =| 21 %22 " *x . (2.40)
1 1 1 1
%2 X2 o
L nl n2 3

K
1
— 2 -— Y r-y -~
B, =L x0 =X3 t=1,2,...,n, (2.41)
J=1
where
61
g= |91, (2.42)
9
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A
Then the variance matrix of w' is

A.A.
E(ww’) = E(waluz)

= MIE(ww’ )M1

= Mlml (2.43)
from which
A
(X ) [ J—
Ew = 1ﬂ (2.44)
here & = w2 b =w, £ =1,2
where wt = wt , m't = m“. or s,t=1,2,...,n, and
r nl x“e 3
g=]%|- 129 | = 5(16' (2.45)
L nn lne J
é' 4' é. ¢ & o
let u=w - Ev = w - Mixle, then
Ne L.
W = Mixle +u (2.46)

Since ﬁxkx is a known function of ){1 which is also a known matrix, then
(2.46) is a linear model and !'41)'(1 is rank of K. Applying the least
squares method to (2.46), an operational version of the estimator of 6
ylelds as

A

-1
AACRANCES T

(2.47)
1

o -
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It has one clearly undesirable feature as an estimator of
A
variances; namely, some elements of 8. may be negative. The simplest
A
remedy would be to use the alternative estimator e"‘l defined by

A A
9:" = max {6, O} k=1,2,...,K (2. 48)

A
In order to show the consistency of e'. first we observe that

AC A‘
w = Mly
[ ]
=M(v-Yg)
A A
=M (- Ylﬁ + (K-K -m~1)Y,Q, q,

A A A
M (A8 + w - A5 + (K=K -m-1)Y,Q q,)

]

A A A
M (v - A8 - 3) + (KK -m-1)YQ q,)

A A A
Mi[w - A(8 -3) + (K-Kl—m-l)YlQ q]. (2.49)

A AA
Let v=3-6 and D=(K-K1-m-1)Yqu. (2.49) can be written as

A'
w =M1(w-Av+D] (2.50)

A
W =id‘(§:+h')+f)+(':] (2.51)

where G represents those crossing terms of Hadamard product.
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Substituting (2.51) in (2.47), we can verify that

- - [(.15‘13'&1*1: -1('1*1]""1(‘.' thoed+6)-3
S CEACA NI A RE R
- (B i) " G i 66 « B+ ¢)
=7 (2.52)

From chapter 1 we see that the elements of n are of order Op(n"’).

g=1/2.

Now a consistent estimator ﬁ. of fl can be constructed by replacing
A
the unknown 8 in (2.21) by its estimates e’ in (2.47). And using (2.52),

we find that
A
Q'-Q = op(n"). gz1/2, (2.53)

A
whence n' is a consistent estimator of Q.

GTSLSR estimator (R8S8U [1980])

By using 3', the estimator of & in (2.47), to construct the ?!'. the
estimator of & in (2.33) is named the Generalized Two Stage Least Square
estimator to simultaneous equation with both Fixed and Random

coefficients (GTSLSR here and after) such as,

A A
3" = (A'R'A)A'R'y (2.54)

A
where R' is the estimator of R' in (2.30), such as
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A A A A
R = @ 'x(xa"'x)"'x 0" (2.55)

Aoy
provide 1 exists.

GTSLSRM estimator (R&S8U [1980))

Using 3.". the modified estimator of @ in (2.48), we may obtain
another estimator 1™ instead of @ used in (2.33), which gives another
estimator of & which may be named the GTSLSRM (here and after estimator
where M stands for Modified. The GTSLSRM will be the same as GTSLSR if

A
none of elements of G. is negative. Which is

A A
3™ = (A'R™A)aR™y (2.56)

A
where R.’l is the estimator of R' in (2.30), that is

A A A A
R = o™ x(x 0™ x) 1x ™! (2.57)

Aep-q
given N exists.
2.4. Asymptotic Propeities.

In this section we shall show that the TSLS estimator of the
parameter vector & of (2.17) is asymptotically normally distributed.
shall also show that the 1limiting distribution of V:T(S' - &) is the
same as that of vh (3 - 3). The lemma, the theorem and the proof about

the properties in R&S&U [1980] are presented.
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We set another two assumptions here by following Fuller and Battese

(1973, p628) and Swamy and Mehta (1£77).

Assumption 2.4.
(1) The elements of R in (2.30) are functions of the parameter vector

@ such that the matrices [—gg— » 1=1,2,...,K, vhere o, is the i-th
1

element of 0, are continuous functions of 6 in an opened sphere of 6°.
the true value of 6.

(11) The matrices A and R are such that

Plim -rll— A’RA = M(0) (2.58)
n—x0n

is a finite matrix, M (@) exists for all ® in S, and

1 ,,.8R _
Plim ++ A [_ae A= H‘(e) (2.59)
n—0 i

is a finite matrix whose elements are continuous function of o,

1=1,2....,K1;
A A A

(111)an estimator R ®R(8') for ReR(8°) is available and o satisfies the

condition

A
0’ =0° + opr,:a"') 2>0. (2.60)

Assumption 2. 5.
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(1) Let f! be the t-th row of 02, Then the elements fiw=f/D e

1

1
t=1,2,...,n, are independent and f:v has distribution function Ft(f’w).

t=1,2,...,n, such that

sup I (f’w)zdFr(t"w) — 0 as ¢ — (2.61)
t=1,2,...n Ir'w|>c

(11) Plim max (x.2/n)=C, J=1,2,...,K, where x> 1is the (t,J)-th

n—)© 13tSn 1t 13t
element of 0 1/%;

(111)Plim (X’Q-IX/n) is finite and nonsingular, and Plim(A’n'l}{/n) is
n—30 n—x

finite.

Lemma. (R&S&U [1980])

If Assumptions 2.1, 2.2, 2.3, and 2.5 are satisfied, then the
limiting distribution of vh (8 - &) is normal with mean vector 0 and

variance-covariance matrix Plim(A’Q*A)7).

n——3w0
Proof.
Write
vn (3 - &)
-1 =1,y =1y s =1 ,9~1 -1 =11 -1yr -1
= |AfX X'Q°X] 'X'0 A AR X (X' X} 'xX'n w (2.62)
n n n n n v

By Assumption 2.5 (111)

48



PP | ra~ vy “lvra~123-12r "} PGS TS WP |
Pum[Anx[xnx]xn A]Anx[xnx]xn WoE (2.63)

n
n—o n n n n e

a finite matrix.

It follows from Anderson’'s [1971, pp. 23-25, 585] Theorem 2.6.1
that under Assumptions 2.5(i) and (11), X'quyVE" converges in
distribution to normal with mean vector O and variance covarlance matrix

Plim X'0'X/n.
n—30

Now applying the limit theorem (x)b in Rao [1973,2c.4,p.122], we

have the result of the Lemma.

Theoren 2.1.(RRS&U [1980])

Suppose that Assumptions 2.1, 2.2, 2.3, and 2.4 are true. Then the

limiting distribution of v (3 - &) 1s the same as that of vh (3 - &).

Proof'.

Write

~e

A. A.
§ - 5= (AR(6)A )AR(O W (2.64)

A A A A
where R(8') = o  'x(x'a"'x)'x 0"

By a Taylor’'s expansion with remainder about the true parameter §°,

we obtaln,
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A‘ - A‘ 1 o -1 1 °
[A'R(e )A ) A'R(e )W = [TAIR(B )A] [-—n—'A'R(e )H]

K
1 -1
1 1 1 8
¢ T [—A'R(O )A] [—-— A’ [—R(e) w]
i=1 n n 86'- 0201

=1
1 1 1 8
[ n n 96t 0=61

SV bl o S *» o
. [—n—A R(® )A] [T A'R(e )w]} G, - e,) (2.85)

where @' is between 6° and @. By Assumption 2.4 and 1imit theorem (x)a

in Rao [1973,2c.4,pp.122], it follows then

3* s (R -(1/2+9)
8 -8=@-28+0(n ) (2.66)

or

i@ -8 =va @ -38) + o[ (2.67)

which, in view of the theorem (x)d in Rao [1973,2c.4,p.122], gives the

result of the Theoren.

The problem of estimation of simultaneous equation models with
fixed and random coefficlents was studied and some useful estimators
were discussed. An efficient single equation method or estimating the
structural coefficients of endogenous varliables and the means of
structural coefficlents of exogenous wvariables was shown and its
asymptotic properties was established. A reformulated Klein Model 1 and
corresponding GTSLSR estimates of the coefficients will be shown in the

section 3.6.
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CHAPTER THREE

BOOTSTRAPPING GTSLSR ESTIMATORS
IN A SIMULTANEOUS EQUATION MODEL WITH

BOTH FIXED AND RANDOM COEFFICIENTS

3.1 Introduction.

In this chapter, we consider the bootstrapping GTSLSR estimators of
simultaneous equation model with both fixed and random coefficlents
(FRSE model here and after) which we have studied in chapter two. As
discussed in chapter two, existing methods are largely asymptotic, and
may anot apply with finite samples. We use "the bootstrap", a computer-
based methodology, to check the accuracy of the asymptotic results and
to make alternative estimates of the standard errors that are more

reliable.

The bootstrap methodology will be introduced in section 3.2. In
section 3.3, we wil. glive a brlef review of FRSE model and some kind of
notations of the consistent GTSLSR estimators. Then, the large sample
properties and the finite sample properties of bootstrap GTSLSR
estimators will be studied in section 3.4 and 3.5 respectively. An
experiment based on bootstrapping Klein model I will be shown in the

last section and some empirical results will be presented there too.




3.2. Bootstrap

Bootstrap is a relatively new statistical technique which was first
introduced by Efron (19879). This nonparametric method resamples the
original observations in a suitable way in order to construct "pseudo
data" on which the estimator of interest is exercised. Efron (1982}
considered some general problems, such as median, blas, and regression

model.

Asymptotic properties of the bootstrap were first studied by Bickel
and Freedman [1981] (B&F here and after) and Singh [1981]. Freedman
[1981] developed some asymptotic properties for the application of

bootstrap to the regression model.

Freedman and Peters [1984a] (F&P [1984a] here and after) discussed
estimating standard errors for regression coefficients obtained by
constrained generalized least squares with an estimated covariance
matrix. In Freedman and Peter [1984b] (F& [18984b] here and after), they
applied the bootstrap to an econometrics model which is fitted by three
stage least squares. In his paper "on Bootstrapping Two-stage Least
Squares Estimates in Stationary Linear Models" (1984), Freedman showed
that for large samples the bootstrap will give the right answers even in

the presence of heteroscedastic errors.

Bootstrap provides a very useful tool for assessing statistical
accuracy. Consider for example estimation of the variance of a statistic

T under a true distribution F, 1i.e. VARrT, the bootstrap works by
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replacing the unknown distribution F by the empirical distribution
function ?’ and the bootstrap estimate of VARQT. Unless T is very simple,
this cannot be computed analytically, and hence must be approximated by
a Monte Carlo simulation. To do this, we sample n times with replacement
from the original data (n is the sample size), then evaluate the
statistic of interest for this "bootstrap sample. This process 1is
repeated B times, where B is typically 100 to 1000. the Monte Carlo
estimate of VAR}/;T is the sample variance of the B bootstrap values of T.
We can see that sampling with replacement from the data is equivalent to
A

sampling from F. That 1s, in bootstrapping, only the observed data are

required and no other extraneous data are needed.

Suppose that our data consist of random sample xl,xz....,xn from
an unknown distribution F. The statistic of interest is some symmetric
function T(xl,xa.....xn). An estimate of functional Q(T,F,X) 1is
required. Using £ to represent the empirical distribution function, the
bootstrap =stimate 1s defined as Q(T.;,X). Usually, we cannot compute
this analytically, so we estimate it through a Monte Carlo simulation.
This can be done by writing Q(T.l?‘.X) in terms of quantities of the form
Ef"R and estimating each quantity by a Monte Carlo estimate of
expectation. For example, in the case of Q(T.F.X)=VARFT. we write
VAR9T=E9T2-(E9T)2. We draw B bootstrap samples which are size n drawn

with replacement from Xl. Xz. cees Xn and compute the bootstrap values

B .B B B ..B2 B.B, 2
Tx'Tz" .. .TB. The Monte Carlo estimate of VARFT is ):me /B-(fbabe/B) .

In the regression case the bootstrap is useful for investigations

when mathematical analysis can give only asymptotic results. More
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particularly, in the model discussed 1in chapter two, when the
simultaneity and random coefficients involve, the bootstrap will be
applied to check the accuracy of the asymptotic and to make alternative

estimates of the standard errors that are more rellable.

3.3. The Model and the Consistent GTSLSR Estimators.

The model discussed in the second chapter is

<
f

Yxﬁ + Xi'ar + Dxxe (3.1)
AS + w

where Ee=0, Eec’=60, Ew=0 and Eww’=fl.

Whatever the variance-covariance matrix I may bf, 1t is possible to

linearly transform the errors w by a matrix H, so that

Cov(Hw) =1 (3.2)

Since Q is the variance-covariance matrix of w, it s positive definite

and symmetric, therefore there exists an invertible matrix H, so that

HOH' =1 (3.3)
It is easily to verify that
HH=q". (3.4)
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E(Hww’'H’) = HE(ww’)H’ = HQH’' = I . (3.5)

Premultiply 3.1 by H, then

Hy = HAS + Hw (3.6)

Now the design matrix X‘H’ is orthogonal to the Hw in equation (3.6),

also

E(X'H’Hw) = E(X0"lw) = 0 (3.7)

Premultiply 3.4 by X'H’ and use the assumed orthogonality,

x'aly = x'Q°'As (3.8)

To get the standard theory in the present setting, let

Q= ExX'n’ly) (3.9)
R = E(X'Q1A) (3.10)

and
s = E(x'a7'x) . (3.11)

Take the expectations of (3.5) and use (3.4), we have
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Q=R3 . (3.12)

Assumption 3.1.

(1) (y, A, X) is a random observable vector of dimension 1+L+K uhere

L-ml(‘.
(11) E( lv» A X|?) €.
(111) E( lvo A X|*) ¢ =
where | | represents the Euclidean norm.

Assumption 3.2. System (3.9) is identified, 1l.e. K=m+K1. rank(R) is

m+K1 and S is invertible.
From chapter two we know the consistent GTSLSR estimators of & is
3= (aexex a0 e ke i T xealy (3.13)
Using (3.9)-(3.11), we can have
3= (R'S"R)'r's™Q . (3.14)
We shall use the notations formulated here in the next two sections.
3.4. Large Sample Properties of the Bootstrap GTSLSR.

Here, we show that the bootstrap gives the right answers with large
samples, so that the bootstrap is at least as sound as the conventlonal

asymptotics.
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Following the discussion in section 3.3, the data are modeled as a

sample of size n from this structure. More particularly,

(1) The vectors (yl.A’.X‘.w‘) for i=1,2,...,n, are irZependent with
the common (unknown) distribution as (y, A, X, w) in 2+L+K dimensional
space,

(1) e, _ N0O,0),

(111) X;H’ is orthogonal to le in the sense E(xin"w‘)-o.

The quantities Q, R, and S can be calculated as

s 1 - 1q-1
Qn = - )X )(l v} Y, (3.15)
1=1
1 2,
R =— Y X‘Q°A (3.16)
n n 1 i
t=1
s =-L 7 x-a'x (3.17)
n n i i
1=1
and one more,
1 XLt
A =— Y X‘Q'w . (3.18)
n n 1 i
1=1
The model can be written as
Q =RS& + A (3.19)
n n n

and the GTSLSR estimator is
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~ PP | -1, so~1
3 (Rnsn Rn] R’SQ . (3.20)

Since Qn — Q, Rn — R, and Sn —3 S by the law of large numbers,

and from the lemma in chapter two, we know
-1, y-1 -1
vn (@ -3) = (RSCR)TR’S" (VT A) (3.21)

is normal with mean vector 0 and variance-covariance matrix

Pim(R’ST'R)™. The V0 A satisfles the central limit theorem in K -
N—»

dimensional space.
The residuals from the fit are

A e
"l yl Al 6n

=y - ‘s 'RV Rrs?
=y, - A[RSR) RS Q . (3.22)

As data, the HW will not in general be exactly orthogonal to the Xiﬂ. To

keep this property, let ‘b~l‘ be part of the Ql:
~ A ~
W =W -Xb i=1,...,n, (3.23)

where '5=S'1(Q - R3). So that when we use the vector sign in (3.23)
n n n nn

and multiply it on the left by X’Q "}, we can have
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xatvw=xa- xa'xs(Q- RE)
n n nn
-‘ ~ -~
= X'Q (yn- Anan) Q+R3
aly, - wala 3 o K3
=x'a'y - X'07"A3 -Q+R3E

s 0, (3.24)
This means Hw is orthogonal to the X'H’.

Bootstrap method can now be used to generate the "pseudo data". In

(3.1), A=(Y1' X1) and w=Dx e, where Y1 and )(1 are related to w. So it is
1

inappropriate to resample the residuals, for the dependence. Instead, it
is necessary to resample the vectors. More specifically, let ﬁn be the
empirical distribution of the vector (Al,xi,;‘) for 1=1,2,...,n. Thus ﬁn

is a probability on Rk

, putting mass 1/n at each vector (A‘,xl,ﬁ‘).
Given (yl,A!.Xl) for 1=1,2,...,n, let (AI:, X?, 33) be independent, with
common distribution ﬁn, for J=1,...,n. Informally, data from a small
sample can be used to Judge the likely performance of a large sample.

Resampling the data this way, any relationshlip there may be between

instruments and disturbances can be preserved. Let
ye = A"Sn + 0. (3.25)

The data with B superscription can be used to get some bootstrap results

as follows,

B —
o = Dx;’ 8 Dx': , (3.26)
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where the 8 is as defined in (2.20) and the Xf is the last K1 columns in

the matrix AP,

and

The bootstrap estimator of GTSLSR is

SB = [ ,SB 1RB) -1 B.SB 1QB

1

n
B, .B~1_By-1_B, 1
(RS, RJ RS, T§x§ g,

- (RB‘SB" B] 1RP’SB 1R + & ,SB IRP] -1 a, B~ IA:

BIB

§ + (R'sT'R) ‘R"'s
n

The bootstrap principle 1s that the error structure

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

of the

estimates with B superscription, which can be computed directly from the

data, approximates that in the original estimates. It will be shown that

the conditional law of ¥ n A: must be close to the unconditional law of

v n An. i.e. the bootstrap approximation is valid.
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We can nu- use lemmas from B&F ([1981] and lemmas and the theorem in
Freedman [1984]. The only difference in our estimates from Freedman
{1984) is that we use GTSLSR estimators for the coefficients and suppose
the variance-covariance 8 of € is known. But it does not change the
dimension of the space. So Freedman's theorem can be wused here.

Following are the relative lemmas and the theorem.

First, the definition of "Mallows metrics" discussed in section 8

of Freedman [1981] is given here

Definition.

Let df be the Mallows metric for probabilities in RP, relative to
the Euclidean norm | |. Thus, if p and v are probabilities in R®,
d’:(u,v) is the infimum of E(|U - V|l)"l over all pairs of random
vectors U and V, where U has law pu and V has law v. Abbreviate di for
d:. Only i=1 or 2 are of present interest. Let 1 s p s w; only p=1 or 2

are of present interest.

Let B be a separable Banach space with Hh’ Let I‘p=l"p(B) be the set

of probabilities ¥ on the Borel o-field of B, such that lelpw(dx)<m.

For a« and B in I'p, let dp(a.B) be the infimum of E[IU - VH"]Vp over
palrs of B-valued random variables X and Y, where X has law « and Y has

law 8.
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lemma 3.1
(a) The infimum is attained.

(b) d is a metric onT.
P P
See proof of lemma 8.1 in B&F [1881].

leonma 3.2

Let v v be probabilities in R). Let azl, and suppose the Mallows
metric dp(vn, v)—0. Let Mn be a linear map from R’ to Rk, also equipped

with the Euclidean norm. Suppose M —M. Then d:(vnM:,vM.l)-—)O.

Proof. Construct Un an® U with distribution v, and v respectively, and

ETTL L . S
E(Ju_ - ul|") d (v, ») (3.32)

which is from lemma 3.1. The |+| is a operator norm, so |Mnu|s||Mn|' ul.
Then
k -1 - ayi/a
d (v M uM") s E(|MU - MU|T)
=E(|MU - MU + MU - MU|%)"®
nn n n
_ oy 1/0; _ oy 1/
sE(M (U - 0|T) + E(J(M_ - MU[")
ay1/0 ay1/a
s M J-E(Ju, - U[7)" + M - M]-E(|Y]")
—> 0. (3.33)
Lemma 3.3

Let X‘ be independent B-valued random variable., with common

distribution u € I‘p. iet H be the empirical distribution of xl,....xn.
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Thend (v, v) 5 0 a.e.
P n

See proof of lemma 8.4 in B&F [1981].

lemma 3.4
Let U be the empirical distribution of (yl. A‘. X‘) for 1sisn. Let

p be the common theoretical distribution of (y‘. A:' X‘). Then

dloLoK

A (un.u) — 0 a.e.

Proof. Same as lemma 3.3.
Lemma 3.5

Let TL be the empirical distribution of (A, X, W) forlsisn.
n 1 | 1

Let ﬁ be the common theoretical distribution of (A‘. xl. w‘). Then

14L+K, ~ ~

d‘ (un.u) — 0 a.e.

Proof. This follows from leuama 3.2 and 3.4, because ;nis the image of pn

under the linear mapping Ln:
Ln(y. a, x) = (a, x, y-a&n- bnx) (3.34)

and Sn — 3, gn — 0 a.e. So, ;n tends to the image of u under the

linear mapping
Ln(y. a, x) = (a, x, y-ad) . (3.35)

This is ;i
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Lemma 3.8

Let U, be independent; likewise for VJ; assume the laws are in rp.

Then

n n n
dp(l'.[,luj. ngvj ) s ,E:,d"[u" v’) . (3.38)

See proof of lemma 8.6 in B&F [1981].

Lemma 3.7

Suppose B is a Hilbert space with inner product <-«.<>, and p=2.
Suppose the UJ are independent, likewise for VJ; assume the laws are In
r., and E(UJ)=E(VJ). Then

2

n n n
2 2
d2(,§1UJ av) )° s ,§,d2(ul vj) (3.37)

J

See proof of lemma 8.7 in B&F [1981].

Theorem 3.1.(B&F [19841)
Along almost all sample sequences, as n — ®, conditionally on the
data:
(a) Q: — Q and R:'—e R and S: —> S in conditional probability.
(b) the conditional law of VA bas the same limit as the

unconditional law of vV n An.

Proof'.

(a) Let U = x’;'n"y';/n and V, = x;n“yj/n. and their laws be in T . The
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Uj's are independent, so are Vj's for j=1,2,...n. Let

E( v, - vil ) =dlu v) (3.38)
and d(U’ VJ) — 0 as n 5 . Using Lemma 3.6, then

n n n
d (LU, IV . )s Td(u Vv (3.39)
1(M 34 ) it vy

i.e. Q: — Qn as n — o. From the large sample theory, we know that

Qn —> Q. Then

E(Q-ae) =g(Q -0 +Q -Q)
sE(Q-0q ) +E(Q-Q) (3.40)

So Q: — Q in conditionally probability.

(b) Let U = x‘;'n“?«‘;/n. be independently, likeulse V = x;n}’wj/n.
Indeed, E( U) = E( x'j’n“&‘; ) =0 due to the orthogonality, and by lemma
3.5, its conditional law is close in d: to the unconditional law of

Xj’ﬂqwj. Now suppose the assumption 3.1 1is true, using lemma 3.7 we can

have

n

n n
a(Lyu, ¥v )s fd [, Vv). (3.41)
2(J=1 R ) o1 AL

That is as n—w, glven the data, the d:-dista.nce between the conditfional

law of vV 1 ‘A: and the unconditional law of V'h A_tends to 0.
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Corollary 3.1.(B&F [1984])
The conditional law of vV n (5: - an and unconditional law of

v n (Sn - 8) have same limit.
From (3.31), we have

B % B, «B-1,8y-1,B, <B-1 B
va @ -3)=@'SSR)R'S VRA (3.42)

is a continuous function of v n A:. An application of Slutzky’s theory

indicates that the conditional law of ¥ n @: - En) is the function of

conditional law of v n A:. Similarly, the conditional law of
v -3)=@®'s'R)R'SVTA (3.43)
n n n n nn n
is just a function of unconditional law of V' n An.

The corollary now is followed directly by using theorem 3.1.
3.5. Finite Sample Properties of the Bootstrap GTSLSR Estimators.

As we stated In section 3.2, the principle of bootstrap is to
resample the pseudo data from the original data with replacement B times
and each time to construct a statistics of interest, we then use the
mean and standard error of the bootstrap statistics to approximate the
real distribution of the statistics. We are showing here, when n is

finite, the bootstrap actually outperforms the conventional asymptotics.
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First, an algorithm is given to obtain G(b

for b =1, 2, ..., B,

)

vhere B is usually between 100 to 1000.

Algorithm 3.1.
Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

and

Step 8.

Obtain 3 in (3.17) and w in (3.20) respectively.

Fit a nonparametric MLE of F,

;‘: mass 1/n at (A‘.Xt,;x). i=1, 2, ..., n.

Choose a random seed. Then set this value in the UNIFORM
function which is a scalar function returning one or more
pseudo random numbers with a uniform distribution over O
to 1 in SAS IML procedure.
Generate a random integer 1<j<n by wusing the number
obtained in step 3, draw a bootstrap sample (AJ.XJ.;J)
with replacement from (A,X,w).

Repeat step 3 n times to construct (A(b) X? .;!:b))
Reconstruct the linear responses as

B B ~B

Yoy = A(b)a VY (3.44)
Compute

B _ 1

Q(b) T n x'(’b)n (b) ’ (3.45)
B _ 1

R(b) " "n X? ﬂ (b) ’ (3.46)
B 1

S(b) n X? a x?b) ’ (3.47)
B 1 -158

oy = x? Ve (3.48)
3B ' -1pB, B -1 B

8w R(b)s(b) (b)) (0151 Yoy (3.49)

Repeat steps 3 to 7 for b=1,2,...,B.
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The following theorems concern the finite sample properties of the

bootstrap estimates Sfb)for b=1,2,...,B.

Theorem 3.2.

Let n be finite and

B
~B 1 ~B
as[—za ] (3.50)
B bet (b)
Then
P53 (3.51)

in conditional probability.

Proof.

Substitute (3.35) into (3.36),

B = ._1_— ! -1 B % ~B = B ~ B
Qw =0 x?b)n [Ama + w(b,] Ry * 8 (3.52)
then
i * (R(b)s(b) m) R(b) m By - (3.53)
So
- | J—— ’
s ? B E (R(b)s(b) (b)] R(b) (b) A(b) (3.55)

Jpon the application of large sample theory and the assumed
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o i e =

orthogonality. &° - 3 — 0 in probability follows directly.

Theoren 3.3.

Let n be finite and
~B 1 B ~B ~B ~B ~B
B eomm— - ’
SD(8) = b§l[( 3.~ J(3, -%) ]
Then
sp(3%) —— Cov( §)
in conditional probability.

Proof.

From (3.53)

3?!:) -¥-3- @ (;)s?;:R?b) -IR(b)S(b;lA?b) - &
- (R(b) ?;: (b)) 1R(») (b;lA?b)
1 d B ~B ~B ~B v,
B b§1[( S =8 )8, =3 )}
-4 LfE-) -7y
+2(3-8 ][R(b) (b)R?b)) 1R(b) (b)lA?b)
(R(b) ?b: l(’b) (b) (b) A(b)A(b;s(b) (b) (R(;)S?b;R(b))-l]
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The theorem 3.2 indicates that the first two terms in (3.58) tend to O

when B goes to infinite. Since the (A‘(’b,.x'(’b,.ﬁfb)) are sampled randomly
A

from F, as B — ®, the third term in (3.58) is nothing but the estimate

of variance covariance of 3.

In section 3.3 and thlis section only the properties of 3 are
discussed but not the 3'. In practice, the variance covarlance of w,
i.e. 1], is almost impossible to know, so 3 is not available most of
time. But theorem 2.1 indicates that \’T(S. - 6) has the same limiting
distribution as that of v n (3 - &). So the 3" may be bootstrapped and
the same properties as 3 may be obtalned. We will show some empirical

results in section 3.5.
3.6. Bootstrapping the Klein Model 1.

Klein Model I will be first introduced in this section. The TSLS,
GTSLSR, and GTSLSRM estimates of coefficlents will be calculated and
shown in table 4.1. In the last section, we bootstrap the Klein Model I
to get some empirical results for our studies in the two previous
sections., To do this two algorithms are constructed. The mean and

variance of bootstrap GISLSR estimators are shown in table 4.2 and 4.3.

I. The Klein Model I and The Estimates.

The model we willl discussed here is one of the models constructed

by L.R. Klein [1950}, the so called Klein Model I. It is eight-equation
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system based on annual data for the United States 1n the period of time
between the two wold wars. Furthermore, it is dynamic in the sense that
it is formulated in terms of variables belonging to different points or

periods of time. It is formulated as follows:

c = me M Bcaw * 7c1P-1 *To Y 6 (3.60)
I = BHP + 111K-1 + 712P-1 * 710 + 82 (3'61)
Vo= BoE + 7B RNt G (3.62)
E =Y+T -V (3.63)
Y =C+I +G-T (3.64)
P =Y-W -W" (3.65)
K =1+K, (3.66)
Vo=W e W (3.67)

Where the endogenous variables are
C = consumptlon,
I = investment,
W = private wage blll,
E = private product
Y = national Income, P = profits,
K = end-of-year capital stock,
W = total wage bill,
and the exogenous and lagged varlables are
1 = unity,

W”= government wage bill,

T = indirect taxes,
G = government expenditures,
YR= time,
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K_ls the lagged varlable of K,
P_iz the lagged varlable of P,

E-x- the lagged variable of E.

We will treat the lagged endogenous variables K_l, P

exogenous variables.
The structural form of this system is
BY + X'+ E=0

where

Y=(CIWEYPKW),

- *s
X=(k, P X W GTYR1]).

The coefficients of the structural form are

-1 0 0 0 -1 0 O

0 1 0 0 -1 0 -1

o o 1 0 0 1 O

p=| € O -Be 1 0 0 O
0o o 0-1 1 0 0

-8, B, 0 0 0 1 0

o o 0 0 0 0 1
|8, © 0 0 0 0 O

and
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, and E_1as the

(3.68)

(3.69)

(3.70)
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f0 =4, 0O 0 0 0 -1 0,
ey Vg2 ¢ O o o
0 0 "‘lu‘l 0O 0O 0 O
r-=(°% ©¢ ©° -t o101 (3.72)
0 0 0 0 -1 0O o 0
0 0 o -1 1 0 0 o
0 0 '7"‘2 0 O 0 O 0
Lo T30 Ty 0 0 0 0 0

The first three single equations in the system (3.48)-(3.55) which

has fixed coefficlents can be written as

y =Ad5d+e d=¢C, I, W, (3.73)

and the TSLS estimators are

O >
-3

- ’ -1, = *
= (AJPA ) APY, d=¢C, I, W, (3.74)

where P=X(X’X)-1X'. These estimators are given in the table 4.1 column
(1) . The standard errors of the estimators are calculated from the

A2¢s, -1
matrix o'd(AdPAd] , where

A
2

o* = = (v, -A&][y ] =L oee (3.75)

Then, a.nother kind of standard errors is calculated from the matrix

A
-1 O
PAd(A Ad] , here the nm is the modified variance

(a7PA ) A m“

covarliance matrix Q. These standard errors corresponding to the TSLS are

listed in column (2). If the model (3.58)-(4.65) with random
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coefficlertg 1is true, a comparison of standard errors in column (1)
(2) tells that the conventional estimators of the variance of TSLS

be underestimators.

Now, suppose that the coefficlents of exogenous variables in

Klein model ! are random while those of endogenous variables there

fixed. The first three single equations in the system (3.48)-(3.55)
be written as
-

Y, = Aaaa t W d=C, I, W, (3.
the GTSLSR estimators are

~® ) -1 Ae »

- 4 s -
5, = (ARA) ARy d=cC, I, W, (3.
Re  Pey Me_yy =1y, e

where Ra = nd X(X’nd X) x'nd is the one defined in (2.55) and

~h ~® L]

W=y -ASd d=¢C, I, W. (3.

The 3; are glven in the table 4.1 column (3). The standard errors of

estimators ar~ also presented there. The column (4) .n table 4.1 is

and

may

the

can

76)

77)

78)

the

the

GTSLE"~ _suvimators 3; and thelr standard errors, the only difference is

A
here we use ﬂ:d The modified Q.
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COEFFICEINT OR MEAN COEFFICIENT ESTIMATES

TABLE 3.1

AND THEIR STANDARD ERRORS

E \']
Coefficient or mean coefficlent estimates
Q A
U R (standard Errors)
T 1 (1) (2) (3) (2)
TSLS TSLS GTSLSR GTSLSRM
P B 0.0173 0.0173 0.02086 0.02086
C c1 (0.1180) (0.1308) (0.1300) (0.1300)
TR 0.8102 0.8102 0.8128 0.81285
c2 {0.0402) (0.0447) (0.0447) (0.0447)
P y 0.2182 0.21862 0.2118 0.2118
-1 c1 (0.1073) (0.1192) (0.1184) (0.1184)
INT o 16.6548 16.5548 168.4798 168.4788
co (1.3208) (1.1583) (1.4589) (1.46588)
p 8 0.1502 0.1502 0.1251 0.1403
1 I (0.1732) (0.2707) (0.2233) (0.2764)
K y -0.1578 -0.1578 -0.1571 -1.6624
-1 11 (0.0381) (0.0518) (0.0421) (0.0638)
P ¥ 0.8159 0.6168 0.68422 0.82438
-1 12 (0.1628) (0.2565) (0.2104) (0.26980)
INT 7 20.2782 20.2782 20.1388 19,8048
10 (7.5427 (11.3435) (8.7283) (11.2188)
F B 0.4389 0.4389 0.4288 0.4288
W W1 (0.0358) (n.0371) (0.0317) (0.0317)
E 7. 0.1487 0.1487 0.1528 0.1528
-1 ‘w1 (0.0388) (0.0380) (D.0334) (0.0334)
YR 7. 0.1304 0.1304 0.1324 0.1324
W1 (0.0201) (0.0323) (0.0314) (0.0314)
. . . 1.8343
INT 7 ¢ 1.5003 1.5003 1.8343
WO (1.1478) (1.1827) (1.0413) (1.0413)
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I11. Bootstrapping the Klein Model 1I.

What we discussed in the section 3.5 will be executed to the
Klein Model 1. Since I, the varliance covariance matrix of w, 1s not
avallable in Klein model. 3;. the estimate of Q, is used here. The
algorithm 3.2 is given here to show the steps of the experiment. We omit
the subscript d to simplify the formula in the algorithms. The same

algorithm will execute to each of the three equations.

Algorithm 3.2.
AO AO ~8

Step 1. Obtain 8 defined in (2.47) to get nd. Obtain also & in

(3.75) and w in (3.76) respectively.
Step 2. Fit a nonparametric MLE of F,

P mass 121 at (A,X,w), 1=1, 2, ..., n.
Step 3. Use O as the seed in the 'JNIFORM function which is a
" scalar function returning one or more pseudo random numbers with a
uniform distribution over O to 1 in SAS IML procedure.
Step 4. Generate a random integer 1<j<21 by using the number

obtained in step 3, draw a bootstrap sample (AJ'XJ';"_;)

with replacement from (A,X,w).

. B ~B
Step 5. Repeat step 3 21 times to con. ruct (A(b),x‘(’b).w(b)).
Step 6. Reconstruct the linear responses as
B B g* , ~%B

Yin A(b,a + L (3.77)
Step 7. Compute

3 - (AB’ aB-lAB ]'IAB’ as -1 B (3.78)

(b) (b) (b) (b) (b)) Vv )
Step 8. Repeat steps 3 to 7 for b=1,2,...,B.
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TABLE 3.2

MEANS AND STANDARD ERRORS OF BOOTSTRAP ESTIMATES

(200 REPLICATIONS)

E v
Q A (1) (2) (3) (4)
U R GTSLSR | BOOTSTRAP | BOOTSTTRAP t
T I SE MEAN SD
(3.50) (3.56) (3.79)
0.0208
C P B, (0.1323) 0.06887 0.10834 -8.4314¢
0.8125
.7 17 .
¥ Bea| (0.0488) 0.78381 0.17172 0.2388
- 0.2118
.22891 . -7,
Pa T (0.1204) 0.2299 0.03333 7.8114
- 16.4798
. .47 -0.
INT 700 (1.4818) 13.17201 5.47857 0.3848
n.1251
. . -8.51886
I P Bll (3.2712) 0.34487 0.34457 8.518
- -0.1571
=v. 2 0.0877 -0.5580
Ky il (o.0s11) 0.1224 3 0
- 0.6422
. o . -0. 4
Py 12| (0.2888) 0.45504 0.37271 818
- 20.1388
. p.18 6.8803
INT 751 (10.5983) 12.55243 1 148
0.4288
* . . -0.7184
W E B (0.0221) 0.43744 0.16884 0.71
= 0.1528
* . . .0301
E1 %% (0.0233) 0.14352 0.12741 1.03
= 0.1324
y * . 0.088 -1.33866
YE 7% (0.0219) 0.14187 18
= 1.5003
' -
INT W%! (1.1478) 3.24648 17.680862 1.1224
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The compuvtations described in the algorithm 3.2 were performed by a
SAS IML program. The procedure was repeated 200 times. Column 3 and 4 in
Table 4.2 show, for each parameter in the original model, the sample
mean and sample standard deviation defined 1a (3.50) and (3.56)
respectively. These SD's are the bootstrap estimates of variability in

the parameter estimates. The t statistic in column 4 is defined as

t = (ESTIMATE - MEAN)/(SD/V' B ) . ' (3.79)

For example, the t statistic of Bca' the coefficient of W in consumption

equation, lis

(0.8125 - 0.78351)/(0.17172/v 200 " ) = 0.2388 (3.80)

Compare to t 1.645, the small sample blas is statistically

®, 0.05
significant in four of the estimates; however, the practical
significance may be small because the means are so close to the assumed
values. On the whole the GTSLSR 1is performing well: blas in the
coefficient estimates is small in practical terms. Much of the bias may
be due to the impact of fitting, in making the residuals smaller than

the disturbance terms. On the whole, the conventiocnal formulas seem to

be doing very well.

The shapes of the bootstrap distributions may be interesting. The
coefficient estimate like Bw'x is close to normally distributed, as may

be anticipated. with a discrete error distribution, the bootstrap
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distribution of coefficlent estimators will usually have moments of all
orders. With a continuous distribution like the normal, moments mey not
exist. Still, there 1is good evidence t> show that the bootstrap
distribution can be well approximated by a normal distribution whose

first and second moments can be estimated by the method indicated here.

The use of the bootstrap to attach standard errors to GTSLSR
estimators in the FRSE model was demonstrates in this chapter. Inste:d

to resample only the residuals,we resampled the vectors (A‘, X‘, ;:) for
i=1,2,...n, to show the relationship between the A, X and w. The

asymptotic formulas for coefficlient standard errors performed reasonably

well.
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