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BOOTSTRAPPING SINGLE EQUATION REGRESSION MODELS:
SOME FINITE SAMPLE RESULTS

Ah Boon Sim, Ph.D.
Concordia University, 1989

The bootstrap is becoming a powerful tool in regression analysis.
It can be used as a bias correction procedure. It can also be used to
construct confidence intervaly for the unknown parameters. However,
many studies have found that the empirical coverages of these intervals
are significantly smaller than their nominal values. This study
provides an insight into the above probiem and proposes a few solutions.
The concept of a ‘selection’ matrix is introduced in this dissertation.
Throughout this study, various properties of the selection matrix are
derived and applied to different regression problems. Several important
results concerning the bootstrap estimates of regression coefficients

are also obtained.
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CHAPTER ONE

INTRODUCTION AND AN OVERVIEW

1.1 Bootstrap: The Euphoria

During the earlier years when the bootstrap method was first
introduced, there was much euphoria over its general applicability to a
wide range of statistical and ecounometric problems. Efron (1878), in an
effort to show the superiority of the bootstrap method in comparicon
with the Jackknife, labels the bootstrap method as being more widely
applicable and more dependable than the jackknife. This pioneering
paper started the initial euphoria and there was much enthusiasm in

applications of Efron’'s bootstrap.

The first reaction to this new development, which was Jjust another
by-product of the computer revolution, also led to investigations into
its asymptotic properties. Asymptotically, under general conditions, 1t
was found to have nice properties. However, its finite sample
properties are generally unknown. In many applications, researchers
utilized Monte Carlo simulations to obtain some estimates of its finite
sample properties. Much to their disappointment, the bootstrap seems to
perform poorly. Many suggestions were subsequently put forward, mainly
as a result of Monte Carlo simulation studies. Nevertheless, only a few

of these suggestions have a sound theoretical basis.

Unlike the literature on the jackknife, which is well developed and
understood, the literature on the bootstrap is often confusing. This is
noted in Wu (1986). Although the euphoria has since faded away, there

is still much interest in applications of the bootstrap. The bootstrap



must be recognized as a potentially very powerful tool for statistical
analyses. However, in order for the bootstrap to be u<eful, one must
find appropriate ways to apply it. This should be the direction for

future research. This dissertation represents an attempt to work in

this direction.

1.2 Bootstrap and Regression Models

Efron (1979) advocates the use of a sampling-with-replacement
method in statistical computations, and this gave birth to the concept
known as the ‘"bootstrap". It was presented as a refinement of the
Quenouille-Tukey Jjackknife. Why the term "bootstrap"? The connotation
of this name for a statistical method may be as astounding as its
predecessor, the "Jjackknife"”. 1In statistics, the "Jackknife" gets its
name from the household Jjackknife, which is a simple household tool
This name is used to reflect the fact that the " jackknife" is a simple
statistical tool. 1In bootstrapping, only the observed data are required
and no other extraneous data are needed. Thus, one is in fact pulling
oneself up by the bootstraps. This is how the "bootstrap" gets its

name.

The bootstrap method provides a useful tool for estimating the
sampling properties of a given statistic. This is done without prior
knowledge of the parent distribution of an observed zample. To a
certain extent, this is similar to the Jjackknife method. For this
reason, both the Jackknife and the bootstrap methods are often referred
to as "distribution-free methods". A statistical method |is

distribution-free provided its application is valid, regardless of the



underlying distribution. However, the accuracy of Efron’s bootstrap
does vary with the class of statistics and with the underlying

probablility distribution.

Asynptot ic properties of the bouotstrap were first studied by Bickel
and Freedman (1981), Freedman (1881) and Singh (1981). While both
Bickel and Freedman (1981) and Singh (1981) focussed on the general
properties for a wide class of statistics, Freedman (1981) focussed on
the application of bootstrap to regression models. Various extensions
and applications have been made. Recent papers include Wu (1986),
Diciccio and Tibshirani (1987), Efron (1987), Loh (1987), Ra.. and Wu

(1988) and Tibshirani (1988).

Inferences on the application of bootstrap to regression models are
mainly based upon Monte Carlo simulations. These can be found in
Freedman and Peters (1984a and 1984b) and Wu (1986). On the other hand,
2 coherent finite sample theory of the bootstrap in the context of

regression model is nonexistent.

In Chapter 2, some finite sample properties of the means and
variances of bootstrap estimates of regression coefficients are obtained
analytically. This is done for the case of a simple linear regression
(LR) model. In most applications, OLS residuals are used for
bootstrapping. Probably, this is because these residuals are simple to
compute. In the literature, Freedman and Peters (1984a) have suggested
the use of either BLUS [see e.g., Theil (1965)] or inflated OLS
residuals for bootstrapping a LR model. Infiated OLS residuals are OLS

residuals multiplied by a factor depending on the sample size and the



number of regression coefficients to be estimated, such that the second
sample moment of the inflated residuals is an unblased estimate of the
second moment of the trwue errors. On the other hand, BLUS is the
acronym for best linear unbiased with a scalsr wvariance-covariance
matrix. However, thls suggestion goes unheeded, as no coherent finlite
sample theory is available to support (or reject) the use of elther or
both types of residuals. The results in Chapter 2 support the use of
either BLUS or inflated OLS residuals for bootstrapping, depending on
the sample size and on the number of regression coefficients. These
results re ject the use of OLS residuals, especially when the sample size

is small.

1.3 Bootstrap and the Selection Matrix

The LR model is defined in Section 2.2 and the results in Chapters
2 through to 4 are based upon this model. The derivations of these
finite sample results are made possible with the use of a selection
matrix. This selection matrix is defined In Section 2.4. Basically, an
mxn selection matrix is a binary matriXx which randomly selects m
elements with replacement from a set of n elements, and each of the n
elements has the same probability (n™') that it will be selected. Each
element takes on the value 0 or 1, and it has probability (n~') that its

value will be 1.

The purpose of the selection matrix Is to select, just as its name
suggests, at random an element from a set of n elements. The selected
element is then returned to the original set and at the same time, that

element is recorded in the new set. The column in the first row of the



selection matrix corresponding to the location of the selected element
in the original set is then assigned the value 1, and zero 1is assi gned
to the remaining columns of the first row. The same procedure |{s
repeated for the second row. For an mxn selection matrix, the above

procedure must be repeated m times.

Various properties of the selection matrix are derived, as they are
needed, in Chapters 2 through to 6; except for Chapter 4, which makes
use of theorems already obiained in Chapters 2 and 3. Although all
lemmas and theorems relating to the selection matrix are equally
important with respect to the main results, the fundamental ones can be

found in Chapters 2 and 3.

Application of the selectlon matrix to bootstrapping is one
innovation of this disertation, a term coined during a private
discussion with my thesis supervisor, Professor Gordon Fisher. Its
properties may be difficult to understand and for this reason,
alternative proof's for two of its main lemmas are given in Appendix A,
It is also discovered that some of its properties are related to that of
a binonial probability distribution, It must be mentioned that the
selection matrix c an integral part of the results obtained in the

fr1lowing chapters.

1.4 Bootstrap Estimates ¢f Regression Coefficients

One of the objectives of Chapter 2 is to investigate whether OLS
residuals are sui table for icotstrapping when the sample size is small.
Asymptotically, Freedman (1981) has shown that OLS residuals canbe used

for bootstrapping. It is now common knowledge among many authors that



OLS residuals are not sultable when the sample size is small. However,
nost of the inferences come from Monte Carlo simulations. Thus, the
cause of the problem(s) associated with the wuse of OLS residuals for
bootstrapping Is still unknown. A few authors have suspected that the
problem stems from the fact that the OLS residuals do not have a scalar
variance-covariance matrix. {[{See e.g., Stine (1985).] Nevertheless, It
is shown that this conjecture 1s incorrect. On the other hand, the

suggestion that BLUS residuals be used for bootstrapping is vallid.

When OLS residuals are used for bootstrapping, it 1is shown 1In
Chapter 2 that the arithmetic mean of bootstrap estimates of B (a
regression coefficient) is an unbiased estimate of its exact value,
provided that f§, the OLS estimate of B, is also unbiased and provided
that the regression model has an intercept. When the regression model
does not have an intercept, the OLS residuals must be centered to mean
zero such that the sample mean of these residuals is zero. This Is true
for any type of regression residuals. It is also shown in Chapter 2,
that whenever the sample mean of regression residuals used for
bootstrapping is =zero, the arithmetic means of bootstrap estimates of
regression coefficients approach their OLS estimates as the number of
bootstrap replications goes to infinity. This observation appllies to a
general class of regression residuals. Thus, the arithmetic mean of
bootstrap estimates of a regression coefficient is not sensitive to the

type of regression residuals used for bootstrapping.

On the other hand, higher sample moments of bootstrap estimates of
regression coefficients are not invariant tc the type of regresslon

residuals used for bootstrapping. For a general class of error



distributions, bootstrapping based upon OLS residuals will in general
lead to underestimation of higher moments of OLS estimates of the
regression coefficients. In particuvlar, if K 1is the number of
regression coefficient, the sample variance of a bootstrap estimate of a
regression coefficient will underestimate its exact value by the factor
(kn"!).  Also, bootstrapping based upon either BLUS or inflated OLS
residuals leads to unbiased estimates of the second moment of é This

is also shown in Chapter 2.

The main cause of the poor performance associated with OLS
residuals can be attributed to the fact that the sample variance and
higher sample moments of the OLS residuals underestimate the error
variance and higher moments of the error distribution, respectively.
This problem can be partially alleviated by multiplying the OLS
residuals by the factor'[n(n-K)-l]l/z. With this correction factor, one
would be able to obtain an unbiased estimate of the error variance. In
fact, it is shown that the bootstrap estimate of D(é), the dispersion
matrix of é, approaches D(é) as the number of bootstrap replications

goes to infinity.

The preceding correction procedure is only valid up to the second
moment of f3 This alleviates slightly the underestimation of higher
noments of f3 but the underestimation that remains can cause serious
problems. Another alternative is to use Theil's (1965) BLUS residuals.
When the objective is to obtain bootstrap estimates of the first two
moments of é, bootstrapping based upon either inflated OLS residuals or
the class of BLUS residuals yields identical results. On the other

hand, when the objective is to obtain bootstrap estimates of higher



|

moments of B, it is better to use BLUS residuals for bootstrapping
provided that the number of regression coefficients is large relative to
n. When K is small, the difference between the two sets of bootstrap
estimates is negligible. However, BLUS residuals are cumbersome to
obtain. Thus, when K is small and when n is moderate to large, it may

be preferable to use inflated OLS residuals for bootstrapping.

Chapter 3 examines closely the relative effectiveness of BLUS and
inflated OLS residuals, when used for bootstrapping. This i{s done by
comparing the sample moments of these residuals with the exact moments
of the true errors. Analytical results are obtained for the third and
fourth moments. A Monte Carlo simulation study is also conducted to
compare the performances of the first ten sample moments of a few

selected regression residuals.

The main lemma in Chapter 3 is Lemma 3.10. It demonstrates that
sample moments of bootstrap estimates of regression coefficients can be
expressed as linear functions of sample moments of the underlying
residuals. This forms the basis for all the main theorems in Chapters 3
and 4. Lemma 3.10 is important because of the following. By applying
least-squares theory, it can easily be shown that moments of [§ are
linear functionals of the underlying error moments. Thus, one only
needs to examine the sample moments of the regression residuals when the
objective is to examine the sample moments of bootstrap estimates of f.
Using this procedure, one is able to reduce the computational costs for

a Monte Carlo study considerably.



1.5 Bootstrap Confidence Intervals of Regression Coefficients

Bootstrap distributions have been studied by, among others, Singh
(1981), Babu and Singh (1983), Abramovitch and Singh (1985), Wu (1986),
and Hall (1987). However, most of the results were obtalned for the
case when the statistic of interest is the arithmetic mean of n
observations on a random variable. Most of these studies rely on the
Edgeworth expansions. The focus of Chapter 3 is on the bootstrap
distributions of é In particular, the focus is on the sample moments
of bootstrap estimates of B and on the moments of B It must be
mentioned that this type of analysis is based upon the assumption that
the probability density function of é is uniquely determined by its
moments and that these moments exist. It is also based upon a similar
assumption that the probability density function of the bootstrap
estimates of B is uniquely determined by its moments and that these

noments exist.

When the true errors are observable and when a sample of size n of
these errors can be obtained for bootstrapping, the naive bootstrap
confidence interval (BCI) of B is similar to those BCI's considered by
Efron (1985, 1987). Improvements can be made to this BCI by adopting
the method of either Diciccio and Tibshirani (1987) or Loh (1987). The
first method consists of the composition of a variance-stabilizing
transformation and a skewness-reducing transformation. On the other
hand, the second method involves computer simulation and density

estimation.

The approach adopted in Chapter 4 is based upon an idea similar to



that of Babu and Singh (1883). One proolem pertaining to distributions
of bootstrap estimates of regression coefficients 1is the lack of a
coherent finite—sample theory. It is shown that it would be
inappropriate to apply existing theorems to bootstrap estimates of
regresslon coefficients. This is true especially when the true errors
are nonobservable and when regression residuals are used for
bootstrapping. The discrepancy can be large, and this happens when K is

large relative to n.

Three types of BCI's are studied in Chapter 4. These are BCIO,
BCI1 and BCI2. BCIO is the ‘nmaive’ BCI obtalned by ordering the

bootstrap estimates of 8. Let 0-2 be the variance of f3, and let s2 be an

B B

unbiased estimate of 0"23. Also, let t1=0';(é—3) and t2=581(é-6). Then,
BCI1 and BCI2 are based upon t;1 and t2. respectively. When the sample
size is small to moderate, BCI2 would be the appropriate interval.
Nevertheless, BCI2 is still shorter than the exact confidence interval
and the difference is at most O(n'). The terms O(n™') and Op(n—l) are

used interchangeably throughout this dissertation.

In the case when a sample of size n of the true errors is used for
obtaining the bootstrap estimates of the regression coefficients, it s
shown that both bootstrap distributions of t1 and t.2 adnit O(n™")
errors. This is consistent with the results of Efron (1979, 1985),
Singh (1981) and Abramovitch and Singh (1885). The bootstrap
approximations are more accurate when the error distribution Is

symnetric.

However, for the case when OLS, inflated OLS or BLUS residuals are

10



used for Dbootstrapping, the results in Chapter 4 are no longer
consistent with existing results in the literature. This suggests that
one should treat bootstrap distributions of regression estimates as a
separate and distinct problem. It would be erronecus to assoclate the
regression estimate.. with a general class of statistics, The
performances of boctstrap approximations in the regression framework can
be wvery poor, especlally when either OLS or inflated OLS residuals are
used for bootstrapping and when K is large relative to n. These poor
performances can be improved slightly by wusing BLUS residuals.
Nevertheless, the better of these bootstrap approximations of t1 and t2

can still admit errors which may exceed O(n-l).

1.6 An Application of the Bootstrap to a Multiplicative Model

In Chapter 5, the methodology developed in Chapters 2 through to 4
is applied to a problem associated with multiplicative lognormal models.
An  important difficulty in this type of regression models is the
estimation of the constant term and its standard error. Let B be the
coefficient to be estimated and B be an unbiased estimate of B. A
nonl inear function of f§, say g(é), is generally a biased estimate of

g(B).

A bias—correction procedure based upon Finney's (1951) g-function
has been suggested by Bradu and Mundlak (1970). The g-function requires
extensive tables and may sometimes yleld unacceptable negative values
for some of its arguments (see Teeken and Koerts, 1972 p.84). A simpler
procedure which does not require the use of Finney’'s g-function is given

by Srivastava and Singh (1989).

11



Tne estimation of a confidence interval for the constant term |is
often a difficult task. One eiternative is to apply wsymptotic theory
and use the normal or t-tables, depending on the sample size. The
Jackknife method has beer. considered by Chaubey and Singh (1988), and

the bootstrap method is proposed in Chapter 5.

It is shown that bootstrap confidence intervals obtajned by
ordering bocistrap estimates of the constaui term are biased and should
be awvoided. This result applies to  both  the Bradu-Mundlak and
Srivastava-Siugn estimates. Alternative bootstrap confidence iatervals
are proposed, and the one based upon the bootstrap t-distributlon is
found to have the best empirical coverage. However, this method may

somet imes yield an infinite upper bound.

The lognormality assumption is crucial for the results in Chapter
5. The validity of both Bradu-Mundlak and Srivastava-Singh estimates
depend on this assumption. In this study, the bootstrap method is only
considered for the construction of confidence intervals. Nevertheless,
the role of the bootstrap can be ephanced. When the lognormality
assumption is violated, both estimates will no 1longer be reliable and
better estimates need to be constructed. Two feasible alternatives are
the Jjackknife and bootstrap estimates considered in Chaubey and Sim

(1988) .

1.7 Application of the Booistrap to an AR(1) Process

In Chapter 6, an almost unbiased estimate is ohtained for the
parameter of an AR(1) process. This estimate is based upon the results

of White (1961) and Marriott and Pope (1854). The distribution of this

12



ectimate (or a sinmlilar estimate) had been studied by several authors
including Tanaka (1983), Phillips (1984), Durbin (1986) and Phillips and
Reiss (1986). Both Tanaka (1983) and Phillips (1984) showed that
Edgeworth approximations to the exact distribution of the above estimate
perform poorly, especially in the tails, when the model is close to the
border of nonstatlionarity. The normal approximation 1is not very
satisfactory for sample sizes of less than or equal to 20. Phillips
(1984) proposed a method based upon extended rational approximants
(ERA’s), which yields very close estimates for the parameter of an AR/1)
model, when the sample size is greater than or equal to 5. Neverthe -»ss,

this method requires that the distribution of the time-series be known.

The bootstrap method is used in Chapter 6 to approximate the exact
distribution of the above estimate. This latter method does not require
the underlying distribution of the time-series to be known. Some
results are obtained for the mean and wvariance of the bootstrap

est imates of the parameter.

Simulation results are also obtained for comparing the bootstrap
with conventional confidence intervals when the underlying time-series
Is a first-order stationary Gaussian process. The results suggest that
the conventional confidence intervals are not reliable and should not be
used when the true value of the AR(1) parameter exceeds 0.5, On the
other hand, bootstrap confidence intervals provide fairly good
approximat.ions to the exact confidence interval when the parameter value

Is positive.
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CHAPTER TWO

BOOTSTRAPPING LINEAR REGRESSION MODELS: SOME

FINITE SAMPLE RESULTS

2.1 Introduction

Prior to the introduction of the bootstrap by Efron (1979}, the
Jackknife had been applied by Miller (1974) and Hinkley (1976) to linear
regression (LR). Efron had shown that the Jackknife ignores a crucial
assumption of LR analysis; namely, the assumption that the errors are
independently and identically distributed (i.1.d.). On the contrary,
the bootstrap presumes that errors are i1.i.d. When applied to a LR
problen, therefore, bootstrapping is much more efficlent than
Jackknifing, provided the errors are indeed 1.1.d. However, the
bootstrap does have its own disadvantages; for example: (1) it is
computationally intensive and hence, fcr some problems, it may be rather
costly; (2) it may not be appropriate for small samples, because it 1s
accurate only up to O(n-l) in probability; and (3) the true sampling

distribution of the errors cannot be observed.

The fact that the bootstrap is a computationally intensive method
is not in itself a problem. It is the availability of a relatively less
costly alternative that makes the bootstrap unattractive. QOne such
alternative Is an existing analytical (conventional least-squares)
met hod. Yet another alternative is the Jackknife method. With the
advent of modern electronic computers, the bootstrap has become more
practicable for many applications,. I1ts fundamental attraction 1is the
ability to transform an otherwise complicated problem into a

comparatively simple one.
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In the application of Efron’s bootstrap to LR analysis, the main
drawback is in problem (3) above. Nevertheless, Freedman (1981) has
derived some asymptotic results for bootstrapping a LR model with
respect to (w.r.t.) ordinary least-squares (0LS) residuals, these being
the practical substitutes for the unobservable errors. Although this
method 1is asymptotically wvalid, it may not be appropriate when the
sample size is small. This problem was addressed by Stine (1985), who
suggested a rescaling scheme for the OLT residuals to correct for some
of the deficiencies. However, Stine's rescaling scheme, in general,
leads to further complications. This becomes evident in Theorem 1. 11

below.

Other related papers on bootstrap theory are Singh (1981), Bickel
and Freedman (1981) [hereinafter B&F (1981}1, Freedman and Peters

(1984a, b’, Berar (1984), Efron (1985) and Wu (19886).

In Section 2.2, the LR model is introduced to establish notation
and the underlying —=ssumptions. A Monte Carlo interpretation of the
classical results will be given in Section 2.3. The purpose of this
section is to serve as a link between the classical and the bootstrap
results. It may also assist in understanding the fundamental objective

of applying the bootstrap to the LR model.

Much of the bootstirap titerature has been based on the assumptiocn
that a random sample of size n can be obtained from the population under
study. In Section 2.4, the procedure for bootstrapping the LR model
when the true errors are observable is illustrated. This is compared
with the Monte Carlo simulation described '. Section 2.3. Section 2.4
also serves as a bench-mark for comparison with the case when the true
errors are not observable and must be replaced by estimates. This case

15



Wwill be discussed in both Sections 2.5 and 2.6 below. Two estimators of
the true errors that are considered in this chapter are OLS and Theil's
(1965) BLUS residuals. The problems associated with the use of OLS
residuals for bootstrapping the LR model are highlighted in Section 2.5.
In Section 2.6, the derivation and use of BLUS reslduals for
bootstrapping the same model are demonstrated. Section 2.4, 2.5 and 2.6

contain the maln theoretical contributions of this chapter.

In the literature, Freedman and Peters (1984a) have suggested the
use of either BLUS or inflated OLS residuals for boolstrapping the LR
model. Inflated OLS residuals are OLS residuals multiplied by a factor
depending on the sample size and number of coefficients to be estimated,
such that the second sample moment of the inflated residuals 1is an
unbiased estimate of the second moment of the true errors. However, no
coherent finite sample theory is available to support (or reject) the
use of either o both types of residuals. In thlis chapter, a finite
sample theory is developed, w.r.t. the use of bootstrapping in LR
molels. This is done in Sections 2.5 and 2.8 below. Some finite sample
results were obtained for the first two moments of the bootstrap
est imates of the regression coefficients, when OLS, inflated OLS and
BLUS residuals were used for bootstrapping. The main results in
Sections 2.5 and 2.6 reject the use of OLS residuals but support the use
of either BLUS or inflated OLS residuals, when the objective of applying
bootstrap to the LR model is to obtain unbiased estimates of the
regression coefficients and their dispersions. Since BLUS residuals are
computationally more burdensome to obtain, preference is given to use of
inf'lated OLS residuals. Moreover, when n Is large, the cost of

computing BLUS residuals will be prohibitive.
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When the sample mean of the residuals is non-zero, it will be shown
below that bootstrapping based upon these residuals leads to blased
estimates of the regression coefficients. In some situations, it may
also lead to biased estimates of the dispersions of these coefficients.
Thus, the task of centering the residuals (to sample mean zero), before
bootstrapping, 1is crucial for a successful application of Efron’'s
bootstrap. However, one degree of freedom is lost due to centering and
this must be corrected. The error is O(n-l) and this can be corrected
by scaling the centered residuals by the factor [n(n-l)-l]l/a, although
this procedure is effective only for the first two moments. It is
partially effective for the higher moments (see Chapter 3 below). The
results obtained in this chapter are consistent with the asymptotic

results of Freedman (1981).

Finally, it 1is shown below that both the bootstrap and
conventional least-squares approaches yield the same estimate of B.
Also, the bootstrap estimate of the dispersion of the OLS estimate of B
is exactly the same as its OLS estimate, provided that an infinite
number of bootstrap replications and the correct residuals are used.
When mathematical expressions for the statistics of interest concerning
the regression coefficients are difficult to obtain, Efron’s bootstrap
may prove to be a useful (and powerful) technique for econometric
analyses. A few such examples can be found in nonlinear regression,
seemingly unrelated regression ard two-stage least~squares regresssion
models. However, for the LR model below, one does not need to apply the
bootstrap method to obtain the bias and dispersion of the OLS estimate
of B. This is true regardless of the type of error distribution,

provided that its second moment exists.

17



2.2 The Model

Let the LR model to be considered be
y=X8 + ¢ (2.2.1)
in which y is a nxl1 vector of observations on the dependent variable, X
is nxK matrix of observations on K exogeneous variables, B is Kx1 vector
of unknown coefficients to be estimated from the data, and € is a nxl

vector of unobservable random disturbances.

The assumptions underlying the model are those of Freedman (1981)

which are:
A.2.1: The exogeneous observations, x” {1=1,...,n33=1,...,K) are
assumed to be nonstochastic such that the matrix X = [x ] has full

1)
column rank K for all n and
nxTX) 2= M,
n xX
the KxK matrix Mxx being positive-definite (p.d.) of finite elements.

This assumption excludes variables which grow indefinitely, as n goes to

infinity (see e.g. White, 1984 p.42).

A.2.2: The components of € are i.i.d. with common unknown distribution
function, F, having mean zero and variance 02. The error varlance lis

assumed to be finite.

As a consequence of A.2.1. and A.2.2,
n"xTe] _Eti;a 0.
In regression models, the regressors are not necessarily fixed; they are
assumed fixed here, for simplicity. Thus, the finite sample bootstrap
results below are only applicable to LR models with fixed regressors.
No attempt will be made here to extend the results to models with

stochastic regressors.
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2.3. Classical Results

Attention is restricted to the OLS estimate

model. An estimate é of B iIs selected according to

é: Min {eTe} = Min {(y-XB)T(y-XB)}
B

4

B
ylelding

B = (X"x) xTy.

Substituting (2.2.1) into (2.3.1),

B =g+ (X% x"e.

The OLS predictor of ¢ is E, given by
e=y-XB=Me
in which M = [In - X(XTX)"XT]
Taking expectations of (2.3.2),
E(B) = B
by A.2.2. The dispersion of B is D(B) and

D(B) = o2 (X™X)?

(OLSE) of the LR

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

by A.2.1 and A.2.2. Thus, for given n and X, f3 is distributed with mean

B and varliance UZ(XTX)-l. Subject to the normal regularity conditions

(see e.g. White, 1984 p.2), é is a consistent estimate of B and

{nl/z[fg—B]} is asymptotically normal having mean zero and variance

{crzM;:(} (see e.g. White, 1984 p.14). Finally, an unbiased estimator of

0'2 is given by
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0: = {(n-x)" [ETE]} (2.3.8)

and E{*ETE] is a maximum likelihood estimator of o2, provided that the

errors are normally distributed.

Results (2.3.4) through (2.3.6) can be confirmed by Monte Carlo
simulation for fixed n and a sufficiently large number of trials. Monte
Carlo simulation is a method that "consists in drawing a large number of
samples from the population in question, computing the value of the
statistic of interest for each sample, and recording the empirically
observed sampling distribution of that statistic" [Christ (1958,

p.513)].

Let j be the index corresponding to the j'th trial. For n finite

T

and all j=t,2,...,J, € =
(j)

F: ye s € ] is drawn from the known
(i (j)n

distribution F. The vector yu) is then constructed for given B and X
as

yu) = X8+ eu)'

From (2.3.1), (2.3.3) and (2.3.6), we have

(1) é(J) (x"x) Ty

(3

(ii) e(”

Y XB(J) '

(111) s°

-1f{~T =
o {(n'K) [eu)cu)]}'

The classical results then imply that for n finite,
o a.s.
B} e

20



1.

"~
m i ]

: N
Nl

| S
r
t
]
o

1
wn f
J

(111) {
J

Thus, for J very large, Monte Carlo results must coincide with the

o=
i~

[~ p T a.s. 2, 4Ty -1
RGO ]} a2, FixTu

classical results for finite n.

2.4 Bootstrapping the LR Model: The Case

when ¢ is Known

Let (cl....,cn) be a known random sample of size n from a
population with distribution F and let Fn denotes the distribution
that puts mass (n"') at each points €,..,€ . If Ble,...,e:F) is the
speciflied random variable of interest, then Efron’s bootstrap can be
used to approximate the distribution of B(el,...,en:F) under F by that
of B(c:,...,e;:Fn) under Fn, in which (8:....,8:) denotes a bootstrap
sample of size n from Fn. The bootstrap procedure for the LR model was
first described by Efron (1879, Section 1.7) and, recently, by Wu
(1986). Singh (1981) gives asymptotic results when the bootstrap is

applied to the LR model.

The bootstrap method is similar to the Monte Carlo method, except

that in the bootstrap experiment, c:” is drawn from Fn instead of F.

The reason for using Fn is that it is attainable, whereas F is neither

known nor observable. For all j=1,2,...,J, e' =[e. ,...,e' ] is
(3 (3 {())n
drawn from Fn, and y:J) is constructed as
* L 4
Y, ., = XB ¢ (2.4.1)

(n c(j)°

By analogy with (2.3.1), (2.3.3) and (2.3.6):
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¢ Ty -1, T ¢

B'J) = (X'X) X y(”, (2.4.2)
~n - L ] *

€ "V - XB(J)' (2.4.3)
2 _y-1[2eT 2

5%, - {(n K) [e(”c(”]}. (2.4.4)

Corresponding to (2.3.2),

B S (xTx)"xTe:j (2.4.5)

(5 )y

In order to investigate the properties of B:J). some new notation

is required.

Definition 2.1: Let S”), a mxn matrix, be the selection matrix
corresponding to the j'th bootstrap replication, where j)=1,...,J. Each
row of S(J), denoted by S”)r (r=i,...,m), has zero everywhere except In

one position which is unity. Let this one position be denoted by S(J)rl

in which i is an integer randomly selected with replacement from the sel
S=(1,2,3,...,n). For each r, S(j)rc(°=1’2""'") is a random variable
which takes on the values O or 1 and each point has probability (n-I)
that its value will be 1. In essence, S(J) is a binary matrix which
randomly selects m elements with replacement from a set of n and each of

the n elements has the same probability (n"') that it will be selected

on each draw.

T

Definition 2.2: Let the transposes of S and S be (S )" and
(Jir. () ()r.
SIJ), respectively. Also, let SIJ) . denote the r’th column of SIJ)
It is straightforward to show that (s ) T=gT .
(yr. (p.r
Hereinafter, the transpose of S(J)r will be written as S.(rj) o

Lemma 2.1: Let J be the number of bootstrap replications and n be

finite. Then,
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B SR a )

and E(m,n) represents an mxn matrix with unity everywhere.

Proof:

Note that for each r(r=1,...,m), S(J“_ randomly selects an

element from a set of n elements and each of the n elements has
probablility (n-l) that it will be selected. Consequently, each of the

elements S (c=1,...,n) equals zero and unity with probabiliiies

(J)rc

(1-n"') and (nnl). respectively. When this selection process is

repeated J times, the observed frequency of the c'th element, from the

set of n, in the r'th element of a bootstrap sample of size m is
J

{l Z PSL”PC]}. As J goes to infinity, the latter quantity converges

J
=1

a.s. to its theoretical value of (n~!), for all r,c. Q.E.D.

Lemma 2.2: Let both m and n be finite. Then

J
1 T a.s. -1
{FJ;[SU)S(J)]} -5 [(n m).In].

Proof:

Let ST =[sT ...,ST ]
(.1 () .m

Then

m
T _ T
Sy T {rzl[s(_l).rs(j)r.]}'

T

Note that ES S
()).r (Pr.

], r=1,...,m, are nxn matrices with =zero
everywhere except for one of its main diagonal elements which is unity.
Note that for each r, the 1xn vector of the main diagonal elements of

[sT S ] is exactly the vector S The theoretical

(P.r (J)r. (§)r.’
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probability that a particular diagonal element is unity is (n"*). It is

then stralightforward from Lemma 2.1 that

J
! T a.s. -1
{3,;[3 U)-:Sun.]} - [(n ).In]

for all i=1,...,m and

J m
1 T .8, -1
{FZ Z [S(J).is(J)l.]} aJs [(n m).In]. Q.E.D.

J=1 131

An alternative proof for Lemma 2.2 1{is also given in Appendix A.
The following corollary states the result of Lemma 2.2 when n elements
are selected with replacement from a set of n. This is common when the

bootstrap method is applied to regression models.

Corollary 2.1: When mn=n and n is finite,
1 J T s
a.s.
3);[8(1)8(1)] 5 e

This is a direct result from Lemma 2.2.

Lenina 2.3: Let both m and n be finite. Then,

{ 3
1 T a.s. -1, -1
{FJZI[S(NSU)]} T {[" (n 1)]-1m + (n ).E(m.m)}.

Proof':

First note that the mxm matrices [S(”S'(r“], (3=1,...,3), can

also be written as

T - -
(s T ) = [S(J)m]' (hist,....m).

(3
= [S N ]
(PHh. (). 1

Since Su)h (h=1,...,m) is a binary vector, comprising =zero elements

24



except for one which is unity, the inner product of one such vector and

its transpose is unity. That is, S”)m=1 when h=i. When two such

and S(J are different, the inner product of one vector

vectors S
( )1,

h.
and the transpose of the other will be zero. Also, when h is different
from i, the probability that S ==~ and S = are identical is (n”)
and the probability that they are different |is (l-n'l). Thus,
S(yp (M1=1,-.um) equal unity and zero with probabilities (n"!) and
(1-n'1), respectively. Consequently, when both m and n are finite,

J
1 — —-—
{32 [smm]} = 1 when h=i
J=1
{1
J
3

The remainder of the proof is then straightforward. Q.E.D.

J

np~—1a

[s ] 2:5 5 (n"') when h=i.
Y (3)ht

An alternative proof for Lemma 2.3 can also be found in Appendix
A. Corollary 2.2 below gives the result of Lemma 2.3 when a finite
number (say, m) of elements is being selected from an infinite set.
When m=n and both are infinite, the result of Lemma 2.3 is given in

Corollary 2. 3.

Corollary 2.2: Let m be finite. Then, as n goes to infinity,

J
1 T a.s.
{3' Zl[s(j)s(j)]} T Im'

J

This corollary is stralghtforward from Lemma 2.3.
Corollary 2.3: When m=n, as n goes to infinity,

TR HT e

This result is apparent from Lemma 2.2 and 2.3.
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Lemma 2.4: Let there exist a matrix A, such that A=[am] and let the

arguments ahl(h,l=1,....n) be real. Also, let n be finite. Then,

b L bost)) e (L fren)
AL} o)) eem- ]}

i~

Proof:
Note that the mxm matrix
T _ T ~
[S(.”ASU)] = [ S(j)v.AS(j).w ] , (v,w=1,...,m).

Let the 1xm vectors Yv(v=1,...,m), comprising elements yvl'yvz,...,yvn.
be defined as

Y = [S A] , v=1,...,m.

v (§)v.
For any (v=1,...,m), the relative frequency of am(h=1....,n) in You of
each bootstrap sample is (n"') when 1 equals k(k=1,...,n) and zero when
i is different from k. When v equals w and yw:am(l:l"'"")' the

relative frequency of Yo in [szfj) "] is 1 when i=h and zero when i is

different from h. When v is different from w, the relative frequency of

. T -1
y, 1in [YVSU).“] is (n") for all i=1,...,n. Consequently, when v
equals w, the probability that (S”)v AS'(IJ) w) equals a particular

element of A is (n'2). Thus, for n finite,

J n
1 T a.s. -1 _
{33; [S(J)vAS( j)u]} T {1; [n (a“)]} when v=w

or

n n 2
Z Z [n' (am)] when v#w. Q.E.D.
h=1§=1
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With the above lemmas, it is now possible to state the following
theorems which will help illustrate some of the finite sample properties

of bootstrap estimates of the regression coefflicients.

Theorem 2.1: Let e=(eip..,en) and the sample mean of € be

n
E={z [ -1c‘]}. Also, let both m and n be finite. Then,

{},Z[S”’e]} 2 [E.E(m.n].

Proof:

Upon applying Lemma 2.1,

{},i [S(,,e]} — {(n”) [E(m,n)e]}.
[E(m,n)c] - {(ns) [E(m.l)]}.

However,

Consequently,

{(n") [E(m,n)c]} - {(n_i)(nE) [E(m,l)]} - {E[E(m,n]}. Q.E.D.

Theorem 2.2: Let both m and n be finite. Then,

J
1 T a.s. -1,,T
{3,2-, [x sme]} 2t e[X E(m, 1)].

Proof:

The proof is straightforward from Theorem 2.1.

Theorem 2.3: Let the notation be that of Theorem 2.1 and s:=[FTc/n].

Then, for both m and n finite,

J
1 T a.s. 2
{FJ;[(SU)C) (S(ne)]} — (msn].
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Proof:

Note that

J J
1 T R 4 B T
{jj; [(Su)e) (S(J)c)]} = g {;J; [SU)S(J)]}C'

The remainder of the proof becomes straightforward upon application of

Lemma 2.2. Q.E.D.

Let the bootstrap errors be defined as c:“ = S”)c.

Theorem 2.2 states that the expectation of XTe:“ is zero, provided that

the sample mean of ¢ is zero. Theorem 2.3 states that the second moment

Then,

of converges a.s. to the second sample moment of €, as J goes to

*
€
(S}
infinity. The following corollary states that the same moment of c:”
converges a.s. to the exact second moment of €, as both n and J go to

infinity.

Corollary 2.4: Let m be finite. Then, as n goes to infinity,

J
R 1 T a.s. 2
(ii) }})éno {_—,— z [(S(j)c) (S(J)e)]} —— mo”.

Statement (i) is true by the Strong Law of Large Numbers (SLLN) and (ii)
follows from (i) and Theorem 2.3. [C.f. B&F's (1931 p. 1197) Theoren 2.1,

and Singh (1981)].

Theorem 2.3 states that as J goes to infinity, the variance of the
bootstrap errors approaches the sample variance of the observed true
errors. As for the empirical distribution of the observed errors, B&F's
(1981, p.1212) Lemma 8.4 shows that this distribution converges almost

everywhere to the actual error distribution. This is possible because
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of the SLLN. Thus, statement (i) of the above corollary is implied by
this lemma. The main statement of Theorem 2.3 and corollary 2.4 is that
the variance of bootstrap errors converges almost surely to the sample
variance of the observed errors, as J goes to infinity; and, when n also
goes to infinity, it also converges almost everywhere to the actual

variance of the true errors.

Theorem 2.4: Let the matrix A in Lemma 1.4, be replaced by the error
sample variance-covariance matrix, [ccT]. Also, let both m and n be

finite. Then,

J
1 T.T a.s. 2 -2
{312‘1 [Smce SU)]} — {[(sn)lm] + € [E(m,m) - Im]}.

Proof:

Upon application of Lemma 2.4,

{} Z [smeeTsf”]} YL [{,Z [n"(ef)]}lm
. {j:, [n-z(chel)]}[E(m,m) - Im”.

However,

OO
1
(11) L

Statement (ii) is true because

B lresl} - E Pl {E e} -7 oee

"~

[n“(ez)]} =g?
i n

1

l[n'z(t:ht:i)]} = g2,

-~
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Corollary 2.5: Let m be finite and let e=0. Then, as n goes to

infinity,

J
1 TT a.s. 2
{3 ) [smee sm]} 2 o'l

=1

This corollary follows from Theorem 2.4 and applications of the SLLN and

B&F’s Lemma 8.4.

Theorem 2.4 states that the variance-covariance matrix of the
bootstrap errors converges a.s. to [(s:)lm], as J goes to infinity,
provided that the sample mean of € is zero. Otherwise, it will only do
so when n goes to infinity and this is stated in Corollary 2.5. The
following tbh=orem concerns the mean of the bootstrap estimates of a
regression coefficient. It must be noted that, hereinafter, only

bootstrap samples of size n will be considered.

Theorem 2.5: Given a finite sample of size n,

J . -
5]} - cownefnes)

351

Proof:

First, let m=n in Theorem 2.1. The proof then becomes apparent

upon application of Theorem 2.1. Q.E.D.

Let e be the equiangular line in Rl. i=1,2,...,n. Then,

eme:=E(m,n) and en=E(n,1). The sample mean of € can also be written In

terms of e as &=n ‘e'e=(e'e ) le'e, because (e'e )"'=n"'.  Since ¢ is a
n n nn n nn
scalar, (¢.E(n,1) in Theorem 2.5 can also be written as

(E(n,1).8)=e (e'e ) 'eTe=P ¢, where P =e (e'e )"'e’ 1is an orthogonal
n nn n n n n nn n

projection onto the equiangular line. Thus, the R.H.S. of Theorem 2.5

can also be written as [B+(xTx)-1xT!Pnc].
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Theorem 2.6: For n finite,

1

J

J ~
1 * . T a.s. - T. .-1.T{-2 T, .-
{‘J; [‘3(,,‘3)(3(”-3) ]} —2:215 D(B) + (X'X)7'X le .E(n.n)]X(X X)

in which D(B) = [QZ(XTX: 1], and ¢° = decre - Ez].
S

Procf:
From equation (2.4.5), EB:J)-B] = (XTX)-1XTS(J)

Consequently,

& J
1 L4 L ] -r _ T _1 ,r l T T T -1
{31)_;1 (85,8287 - ]} - [(x %)% {Jj);l (50,5 sm]}X(x X) ]

Applying Theorem 2.4 and setting m=n, for n finite

J
1 T-T a.s. 2 -
{3—’; [S(j)cc S(J)]} — {[(sn).ln] + e[E(n.n) - In]}.

Let o°= (52-52), then for n finite,
1 d . hd T a.s
) [(BU)-B)(B”,-B) ] 22

Jj=1
[(xTx)"xT{["“ln] + EZ[E(n,n)]}X(xTX)“]. Q.E.D.

Corollary 2.6: Let the sample mean of (el,...,en) be zero,

J=1

J
1 b . T a.s. ~“2ruTys "1
{-J— Z [(B(J)—B)(B(J)—B) ]} J—) o (X X) .

This is a direct result of Theorem 2.6.

Note that the R.H.S. of Corollary 2.6 is exactly the OLS estimate
of D(é). Thus, Corollary 2.6 states that the bootstrap estimate of D(é)
converges a.s. to D(B), as J goes to infinity, provided that the sample

mean of € is zero. When o=c and J is very large, another result of
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Theorem 2.6 can also be derived. This result states that the bootstrap

estimate of D(é) converges a.s. to the Monte Carlo estimate of the same

quantity.

When n is finite, the sample mean of € is often non-zero. This
problem can be overcome by subtracting from each element of € its sample
mean. In the sense of Efron (1978), this procedure is Kknown as
centering. The transformed sample of € will be referred to as the

centered sample of €.

Nevertheless, by centering £ at its sample mean, another problem
is being created. The reason is that one degree of freedom is lost due
to centering. If E is the centered sample of g, then 5‘2 will
underestimate o° because E[n'léré]=[n-1(“1-1)]0‘2. Thus, ¢ will not be
suitable for bootstrapping when an unbiased bootstrap estimate of D(R)
is required. However, by an appropriate transformation, ¢ can be made
suitable for obtaining an unbiased bootstrap estimate of D(fi). A Monte
Carlo simulation study is also required to determine the effect of using
£ on the higher moments of the bootstrap estimate of B This will be

done in Chapter 3.

Theorem 2.7: Let [_3'.={l

J
E{l
J
3

J
in which z =[n-1(n-1)].

I~

[B‘ ] , then for finite n
\ (1)

0~

L4 . =T a.s. A
(O ]} o, funi]

Proof:

In Theorem 2.5, it has been established that for n finite
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[B 'B] —-——-> (x'x)"? [E.E(n.l)] = (XTX)-IXT!PHC.

Further,

J
1 = T _
{3,2 DISRINE ]} -
Tyy-1,Tj1
[(x X' {7,

J
1 a.s. ~2
E{j zx[ U)(e -€)(e~¢) S ]} —— [(z.c- )In].

Hence,

[ (e-8) (e-8) sm]}x(xTx)"]
1

T~

and

G|
'-II-M(..

[(B -B')(B:J)-B')T]} s, (xTx)"xT[(z.{ra)In]X(xTx)’1
1

and the R.H.S. of this latter expression reduces to [z.D(é)]. Q.E.D.

Theorem 2.5 states that when the sample mean of € is not zero, the
bootstrap estimate of B will contain finite sample bias. Theorem 2.6
establishes an estimator of D(f3) which will have zero finite sample
bias, provided that the sample mean of £ is zero. When the sample mean
of € is not zero, Theorem 2.7 shows that an unbiased bootstrap estimate
of D(f}) can still be obtained. This can be done by scaling the

bootstrap estimate of D(é) in Theorem 2.7 by a factor [n(n-l)q].

The subsequent two sectinns deal with the case when tiie true errors
are unknown but are replaced by estimates. Section 2.5 investigates the
casz when OLS residuals are used as estimates of the true errors for
bootstrapping. The case when BLUS residuals are used for bootstrapping
will be discussed in Section 2.6. Both OLS and BLUS residuals are
derived from the fitted model. Thus, both Sections 2.5 and 2.6 assumed
that the current model is being fitted. No attempt will be made here to
Incorporate model misspecification into the results below.
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2.5 Bootstrapping the LR Model: The Case of

OLS Residuals

In applications of Efron’s bootstrap to the LR model using real
world data, both B and £ ar: nnt observable. However, the fact that B
is unknown is not a problem because it could be replaced by its OLS
estimate, é as defined in (2.3.1), without distorting the main results
in the preceding section. If B is replaced by é in equations (2.4.1)
and (2.4.5), Theorems 2.5, 2.8, and 2.7 and Corollary 2.6 still hold.
On the other hand, when € is replaced by é, bootstrapping the OLS
residuals leads to some difficulties. Freedman (1881) has shown that
the bootstrap procedure using OLS residuals is valid asymptotically for
the LR model when m=n or when the OLS residuals are certered. However,
small-sample properties of the bootstrap estimates ot the regression
coefficients are still unknown. 1In this section, it is shown that for
the LR model, the bootstrap estimates of a regression coefficient and
its dispersion are identical to those obtained by the conventional
least-squares method, provided that the bootstrap method is correctly

applied.

In the literature, difficulties associated with the use of OLS
residuals for bootstrapping the LR model have been partly attributed to
the fact that, although £ is asymptotically an appropriate estimator of
e, it has a covariance matrix which depends on the design matrix X.
Stine (1985) has proposed a rescaling scheme which allegedly produces
better results. In this section, it is demonstrated that Stine's
rescaling scheme can lead to further complications. It is also
demonstrated that by inflating the OLS residual by a factor of

172

{n/(n-K)} bootstrapping based upon the inflated residual will yield
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reliable estimates of the bias and dispersion of é, provided that the

sample mean of the OLS residual 1s zero.

The bootstrap algorithm for the LR model, whose purpose is to

generate B:J) for j=1,...,J, is described as follows:
Algorithm 2.1:
Purpose; To obtain B' for 3=1,...,3, where J is usually

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Attention

(J)
between 200 and 10, 000.

Obtain é and ¢ according to the specifications of

(2.3.2) and (2.3.4) respectively.

Choose an arbitrary double precision SEED. Then,
set this value in the system through RANSET(), an

internal subroutine of FORTRAN V.

Generate n random integers, drawn with replacements
from the set (1,2,3,...,n), by using the FORTRAN’s
random generator RANF(). This returns a different

seed on each subsequent call.
Construct S(” according to definition 2.1.

Reconstruct the linear responses as

- ~ EN

y(n = X8 + Su)e. (2.5.1)
Compute

¢ LT, -1,T
B(J) = (X'X) X y(J). (2.5.2)

Repeat steps 3,4,5, and 6 for j=1,...J.

is now directed to the bootstrap estimates,
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(B(J) O ) The following theorems concern the finite sample
properties of bootstrap estimates of the regression coefficlents, when

OLS rsiduals are used for bootstrapping.

Theorem 2.8: Let & = Me be the OLS residual and its sample mean be

n
given by & { z [n'lcl]}. Also, let n be finite. Then,
1=1

AS J
- B )} e om0 e ),

Proof:
Upon substitution of (2.5.1) into (2.5.2),
. _ - Ty\-1,T -
B(J) B+ (X'X) X S(J)s. (2.5.3)
Consequently,

0 ~1%

J
1 . -1 T 1 -
= B ] = B + (X X) ES e] .
{JJ 1[ (9 } {JJZ1 ( }

The remainder of the proof is then straightforward upon application of

Theorem 2.1. [See also Freedman (1981).] Q.E.D.

Generally, when the regression model has an intercept, £=0. For
any regression model without an intercept, £20. Corollary 2.8
illustrates the consequences for the mean of bootstrap estimates of f3

when 5:0 and when §=0.

Corollary 2.7: Let B(é.) be the sample bias of th:. bootstrap estimates,
(B:J);J=1p..J). Then, if the OLS residual is centered at mean zero,

B(B")=0. This is apparent from Theorem 2.8. Otherwise,

B(B") = (X"x) X" [Z:‘.E(n,n].
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Theorem 2.9: Let n be finite and let

J

[ ] _ 1 L 3 -0 ] -‘\ 'r
D,(B) = {3 z [(Bw B)(B,,~R) ]}

=1
Then,

D () ==, [n"(n-x)]n(é) + {(x‘xf’xT [éz.s(n,n)]xthX)"}.
in which D(B) = ¢c(X'X)™! and o2 = [;:TE:/(n-K)].

Proof:

From equation (2.5.3),

LA CUPI, JURS S SER
(B(”-B)— (X'X) 'X's €.

(1)
1 ~aT - Tyy-1,,T]1
{jj 1(SU)&:(: S(J)]} = [(X X) X {Jj

By applying Theorem 2.4 with m=n,

{1
J
J

Hence,

AsT T T, -1
1[5(“88 SU)}}X(X X) ]

[ o I

[} e ()

~~T a.s. -1~T* X2
1[S(J)t:c S(J)]} — [(n € e).In + (€ )[E(n,n) - In]].

i~

However, (::Té)=cTMc. and tr(M)=(n-K). This means that
6% = [(ET;:/(n-K)] is an unbiased estimator of o°. Consequently, for n
finite,

J
1 * o . ay T a.s. Tyy=1,T
{IJ;[(BU)—B)(B”)-B) ]} 22 (XXX

{[(n-K)n'lo;'z].In + (::(2).E(n,n)})((XTX)-1
and the R.H.S reduces to

[(n-K)n"].&z(xTx)“ + {(xTX)"‘xT[(’éZ).E(n.n)]X(xTX)*}. Q.E.D.
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Corollary 2.8: When the sample mean of the OLS residual is zero and
OLS residuals are used for bootstrapping, Di(B') will underestimate D(B)

almost surely. Specifically, the ratio
* A 2 a.s.
{[Dl‘ﬁ‘ ) - D(B)]/D(B)} 28, (-k/m).
This result is straightforward from Theorem 2.9.

Theorem 2.10: Let n be finite. Then, using the notation of Theorem

2.8,
. 1% LT N R | a.s -1), 4
D,(8") = 3121[(3(”—3 TORE S ] LH N {[(n—K)n ]n(m}.
—» 1 2 .
in which B = {7,;[(8‘”)}
Proof':

Using Theorems 2.1 and 2.9, the proof for this theorem is siwnilar

to the proof of Theorem 2.7. Q.E.D.

Theorem 2.8 states that when the sample mean of the OLS residuals
is zero, bootstrapping based upon these residuals yields unbiased
estimates of B. This happens when the regression model has an
intercept. However, the ©bootstrap estimate of D(B) tends to
underest imate D(é) almost surely. When the number of coefficlents |is
small relative to n, this underestimation will be =a negligible
proportion of D(B). On the other hand, when number of coefficlients is
large relative to n, the above wunderestimation of D(ﬁ) can be
significant. This underestimation of D(B) by either D (B) or D(§")
becomes more significant when the model does not have an intercept and

when the OLS residuals are centered before bootstrapping.
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Stine (1985) suggests rescaling the OLS residuals by dividing each
residual by the square root of the corresponding main diagonal element
of M. That Is, let

é (1-h )-1/2

>
]

for i=1,...,n, in which

_ _ Ty -1.T
hlj = [6U xl(x X) xj]

where 1i,)=1,...,n; and 6lJ is the Kronecker delta. Alternatively, the

nx1 vector r comprising elements FTy-- . T maY be written as

r = Re (2.5.4)

in which R comprises M with its r’th row divided by a factor (1-11“)“2

(1=1,...,n). Unlike M, R is neither idempotent nor symmetric.

The bootstrap algorithm for the LR model wusing rescaled OLS

residuals can be set out as follows:

Algorithm 2. 2:
Purpose: The purpose of this algorithm is the same as that of

algorithm 2.1, except that e is now replaced by r.

Steps 1 to 7 are the same as those of algorithm 2.1, except for

step 5§ which has the following modification.

Step 5. Reconstruct the linear responses as
. - -
Yip = ¥+ 5T

Note that the sample mean of r is non-zero, even when the sample
mean of the OLS residual is zero. Thus, ; has to be centered before

bootstrapping and this can be done by subtracting from each element of r
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its sample mean. The following theorem considers the first and second
moments of the bootstrap estimates of 8, when the centered x: is used for

bootstrapping.

Theorem 2.11: Let r be centered such that its sample mean is zero and

B‘ - B ( T )

-1,T -
X S(J)r‘.

Further, let n be finite. Then,
1 o d a.s o
(1) 31;[3(3,] =258,
')_1" * eyt -a)T a.s.
(11) D (8) = 33;[(3(”—3 (BU)-B)] St

[[(n-mn“] R z{i [“-lnlsRsx]HD‘f”

in which

_ _ _n 1172
R = {(515 h, ) (1-h ) }

for 1,s=1,...,n.

Proof':
The proof for part (i) is straightforward upon application of

Theorem 2.8. For part (ii), it is necessary to know that

tr(R'R) = [(n—K) . z{is[R“RB‘]H'

For any real nxn matrix R,

tr(R'R) = {121 szx [Rstsa]} ) {:

40

I~

- o )



However,

2 _ li1=h Y2(1-n Y = (1-
R n - [(1 hln (1 hll) ] (1 h“)

and

{Z {l—h“]} = tr(M) = (n-K).
1=1

The remainder of the proof is then straightforward upon application of

Theorem 2.3. Q.E.D.

Corollary 2.89: When n 1s finite and J goes to infinity, D(B;) will

underestimate (overestimate) D(é) almost surely, when the sign of

o8 b} - o

is negative (positive). Thus, Stine's rescaling scheme does not, 1in
general, correct the underestimation problem of DZ(B'). This is

obvious from part (ii) of Theorem 2.11.

“131/2 and the

Let the OLS residual be scaled by a factor {n(n-K)
transformed residual will be referred to, hereinafter, as the inflated
OLS residual. The following theorem concerns the bootstrap estimate of
D(fS) when inflated OLS residuals are wused for bootstrapping.

Nevertheless, the result of this theorem is strictly restricted to

regresssion models with intercepts.

Theorem 2.12: Let the sample mean of € be zero and

. _ . Ty -1,T o112
B(J) =B+ [(X X) X S(J)]{[n(n K) ] e}.

Then,
» _ 1
04(3 ) = {_

J J

It ~—7

. o * ~\T a.s. o
, 1[(B(J)-B)(B(J)-B) ]} 2205 D(R).
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Proof:

The proof for this theorem is straightforward from the proof of

Theorem 2.9. Q.E.D.

Theorem 2.2 states that when inflated OLS residuals are used for
bootstrapping, the bootstrap estimate of D(é) converges almost surely to

its conventional least-squares estimate, as J goes to infinity.

Although OLS residuals can be used for bootstrapping, one needs to
be careful when applying these residuals. For a regression model which
has an intercept, these residuals have to be multiplied by the factor
(n(n—l()-l]uz. Additional care should be taken when the model does not
have an Intercept. For this type of regression model, the residuals
have to be centered by subtracting from their original values their
sample mean and the resulting values have to be multiplied by the factor
[na(n—l)-l(n—l()-l]uz. When the original OLS residuals are used for
bootstrapping, the consequence will be an underestimation of the
dispersion of é The severity of the consequence for not following the
correct procedure depends on both the sample size and the number of
coefficients to be estimated. For example, when np=100 and K=2, the
underestimation is only two percent. On the other hand, when n=10 and

K=5, the underestimation will be an enormous fifty percent.

2.6 Bootstrapping the LR model: The Case

of BLUS Residuals

In the preceding section, bootstrap results based upon untreated
OLS residuals have been shown to have poor properties. When the sample
size is small, tests based upon such results are misleading. However,

bootstrap results based upon well-conditioned OLS residuals are
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equivalent to the conventional least-squares results, at least for the
first two moments of B These residuals can be obtain:d by applying
simple transformations to the OLS residuals. Alternatively, one can
also use any class of residuals that satisfy A.2.2 and A.2.3. One of
these is the class of BLUS residuals (see e.g., Theil, 1965). The
acronym BLUS stands for Best Linear Unbiased with Scalar covariance
matrix. The BLUS residual vector is linear in y and its second moment

is an unbiased estimator of the exact second moment of € (see e.g.,

Koerts, 1967 p.170).

The objective of the BLUS approach is to construct a partial
isometry of order (n-K)xn such that, (i) for every x lying orthogonal to
the span of X, the norm of Bx equals the norm of x, i.e. xTBTBx = xTx,
and (il) for every x in the span of X, Bx=0. Then, BBT=In_k and BTB=M.

Thus, B has rank (n-K).
Let X be partitioned as
T _ T:yT
X = [X0=X1]
where Xo consists of the first K rows of X and let )(1 be the remainder

of X. Xo is assumed to be nonsingular. Subsequently, B can be

constructed as [see e.g., Neudecker (1869, p.949)]
B = [On.kBl]

gt = [M-UZM M-uz] i

in which

11 10 11

Ty -1,T
M= [—XI(X X) X”] .
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_ _ Tyy-1,T
M, = {In_k X, (X'X) xl}.

Attention is now focussed on By, the (n-K)xl vector of BLUS
residuals. It 1s shown below that this residual is suitable for
bootstrapping the LR model, provided that its sample mean is zero.
However, its sample mean is usually non-zero, even when there is an
intercept in the regression model. When the sample mean of the BLUS
residuals is not zero, it will also be shown below that BLUS residuals
will still be suitable for boorstrapping, provided that an appropriate
transformation is applied to them prior to bootstrappirg. For
notational simplicity, E is again used here but it should not be
confused with £ in the previous section. Note that there are only (n-K)
BLUS residuals, as compared to n OLS residuals. However, bootstrap
samples of size n are still required and these have to be selected with

replacement from a set of (n-K) elements.

The following theorems examine the finite sample properties of
bootstrap estimates of the regression coefficients, based upon BLUS

residuals.

L
Theorem 2.13: Let e=By and & = [% Z (c‘)] in which L=(n-K). Then,
1=1

e - Ty -1,Tq  ~
B, =B {[(x X)71x S”)e]}.

Then, for n finite,

[é‘ ]} a:ls' N fg + (XTX)-IXT[E.E(HJ)]'
1

Proof':
There is a similarity between this theorem and Theorem 2.8. The
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only difference 1is that SU) is now nxL instead of nxn. Upon

application of Lemma 2.1 ard letting n=L and m=n,
{1
J

J

Corollary 2.10: When the sample mean of the BLUS residuals is zero, the

J

n~7

[sm]} SLILLEN [(L").E(n.l_)]. Q.E.D.
1

~®

finite sample bias of the bootstrap estimates, {B”);3=1,...,J], will

also be zero. This is a direct result from Theorem 2. 13.

Theorem 2.14: Let n be finite. Then, using the notation of Theorem

2.13,
. 1 J ~. - o ~.T a.s -
p(B") = 71;[(3‘”—8)(3’-“—3) J} 2220 0
+ (xTX)"xT{é[E(n.n)-In]} X(x"x).
Proof:

The proof for this theorem is similar to that of Theorem 2.9,
except that

J
1 ~aTT a.s. “1,°7" K2
{'] z [S(J)cc SU)]} — [L (e e).In] + € [E(n,n) In].

v =1

Also, &2=(E:TE/L) is an unbiased estimator of 0'2. Thus, for n finite,

J

1 ~e pat ~e A8 T a.s. ~2. Ty -1
{3121[(8‘“—3)(8”’—3) )} RILHNPLO

+ (xTX)"xT{i:‘2 [E(n, n)—ln]}X(x"xf‘. Q.E.D.

Theorem 2.14 states that when the sample mean of the BLUS residuals
is zero and, when n is finite, the bootstrap estimate of the dispersion
of B approaches D(é) almost surely, as J goes to infinity. However, the
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sample mean of the BLUS resliduals is usually non-zero. Both lheorem 2.5
and 2.6 below consider the bootstrap estimation of D(B) when the sample
mean of the BLUS residuals is non-zero. The results of both theorems
are ldentical, despite the following differences. Theorem 2.5 assumes
that the original BLUS residuals are being used for bootstrapping and

that the OLS estimate of 8 in Theorem 2.14 is replaced by the mean of
the bootstrap estimates of B. On the other hand, Theorem 2.16 assumes
that the centered BLUS residuals are beilng used for bootstrappling and

that the OLS estimate of B is retained.

Theorem 2.15: Let B = {} [B' ]} Then, for n finite,
1

J
1 ¢ Zw o —aT a.s. p
{31;[(3(”—3 Y(B,,-B) ]} ~2:25 2D(R)

in which z=[L"(L—1)].

Proof:

The proof is straightforward from the proof of Theorem 2.7
Q.E.D.
Theorem 2.16: Let & be the centered BLUS residuals, having sample mecan
zero and let e be used for bootstrapping. Further, let n be finite.

Then,

J
1 a2 PR 2T a.s. - I A
E 3521[(60)-8)(BU)_B) ]} ——;——)ZD(B) in which z—[L (L l)].

Proof:
The proof is straightforward from the prc~¢ of Theorem 2.6, by

taking note that

46



EP:J(ETE)] = zo°. Q.E.D.

The results of Theo'ems 2.15 and 2.16 indicate that, when the
BLUS residuals having non-zero sample mean are used for bootstrapping,
bootstrap estimates of D(é) will underestimate D(é) almost surely, as J
goes to infinity. However, an unbiased bootstrap estimate of D(é) can
still be obtained by scaling the bootstrap estimate of D(é) in either
Theorem 2.15 or 2.16 by a factor [L(L-l)-i]. Alternatively, it can
easily be shown that the same result can be obtained by either (i)
scaling the bootstrap estimates of B by a factor [L(L—l)-l]llzor' (11)

scaling the centered BLUS residuals by the same factor.
2.7 Summary

In this chapter a 1ink has been established between the
classical, Monte Carlo and bootstrap results for the LR model as defined
in Section 2.2. In the LR model, the true disturbances are unobservable
in empirical applications to real world data, but the OLS residuals can
easily be computed. If the sample size is sufficiently large, the use
of OLS residual for bootstrapping the LR model poses no great problem.
This is evident in Theorems 2.8 and 2.10. On the contrary, when tLhe
sample size is small, the same theorems indicate that the bootstrap
results based upon OLS residuals will lack the properties to yield
reliable inferences. Hence, OLS residuals should not be used for

bootstrapping.

Stine (1985) recognized that OLS residuals are not suitable for
bootstrapping. However, Stine attributed the problem to the fact that
OLS residuals do not have a scalar covariance matrix and, hence, that

they are not i.i.d. Consequently, Stine introduced a rescaling scheme
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which he claimed would produce better results. This rescaling scheme
has been used by Wu (1986, p.1282), when applying the bootstrap
technique to regression analyses. In Theorem 2.11 and Corollary 2.9,
it {s shown that this rescaling scheme can lead to further

complications. Thus, Stine's rescaling scheme should also be avolded.

Freedman and Peters (1984a) have advocated the use of either BLUS
or inflated OLS residuals, but neither of these residuals has actually
been used in the literature. For the BLUS residuals, one likely reason
is the computsational burden; another is the absence of any ready made
BLUS subroutine. A common reason regarding the non-usage of both
residuals in bootstrapping 1is the lack of a coherent flinite sample
theory for bootstrapping LR models. This leads to the notion that the
errors caused by the use of OLS residuals in bootstrapping the LR model
are not serious. Yet, from Theorems 2.9 and 2.10, it is clear that when
the sample size is small, the problem can be serious. It has been shown
in Theorem 2.12, that by scaling the OLS residuals by a factor
[n(n-K)_I]i/z. the bootstrap :~timates of ‘“he regression coeificlents
will have the desirable first and second moments. The use of BLUS
residuals for bootstrapping has also been considered here. The results
of Theorems 2.14, 2.15 and 2.16 suggest thei bootstrap results based
upon BLUS residuals also have deslrable properties, provided that

appropriate adjustments are made prior to bootstrapping.

In this chapter, attention has been focussed on the means and
variances of bootstrap estimates. Higher moments of bootstrap estimates
of the regression coe’ficients will be studied in Chapter 3. Bootstrap
prediction (and confidence) intervals are difficult to evaluate

analytically. Hence, a simulation study is needed to complete thec
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analysis of the application of Efron’s bootstrap method to LR model,
when the sample size is small. This will be done in Chapter 4 below. In
Chapter 5, the results of this chapter and the following two chapters
are applied to a multiplicative Cobb-Douglas regression model. AR(1)
models are common in applied econometric works and Chapter & examines
the problems of applying bootstrap methods to these models. In both
Chapters 5 and 6, problems relating to the construction of bootstrap
confidence intervals and the bootstrap confidence intervals themselves

will be discussed and alternative solutions will be suggested.

The bootstrap method is useful especially in cases when analytical
formulas are not readily available. For example, in seemingly
unrelated and nonlinear regression models, the exact variance-covariance
matrices of least-squares estimates of the regression coefficients are
difficult to obtain. These difficulties can easily be overcome by
applying the bootstrap method, provided that the appropriate regression
resliduals are used for bootstrapping. However, the application of

bootstrap methods to these problems is left for future research.

Applications of the above results are not restricted to
regression models. For examples, these results can be applied to the
estimation of tail indices as in Kryzanowski, Rahman and Sim (1986) and
to the weighted-mean problem. Finally, the selection matrix introduced
in this chapter can be used Lo :btain extensions of the above results
for accommuodating other interesting problems. For examples, extensions
can be made to study the bootstrap distributions of sample correlation
coefficients, sample means, sample variances and covariances, and robust

estimators.
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CHAPTER THREE

BOOTSTRAP DISTRIBUTION OF é AND HIGHER MOMENTS OF THE

BOOTSTRAP ESTIMATES OF 8

3.1 Introduction

In Chapter 2, it 1is shown that bootstrapping leads to unblased
estimates of the dispersion of é, provided that either inflated OLS or
Theil’s (1965) BLUS residuals are used for bootstrapping. When the mean
of the OLS residuals is zero, bootstrapping always leads to unblased
estimates of B. In this type of situation, the mean of bootstrap

estimates of B approaches 8 when J, the number of bootstrap

replications, goes to infinity.

As a sequel to Chapter 2, the focus is now on the bootstrap
distribution of I§ In order to determine the closeness of the bootstrap
distribution of f§ to its exact distribution, higher moments of the
bootstrap estimates of B are examined. The accuracy of this approach l1s
subject to the assumption that the probability density function of fi is
completely determined by its moments. Theoretically, a set of moments
determines a distribution wuniquely only under certain conditions.
Fortunately, these conditions are met by most of the distributions
commonly arising in statistical practice, with the exception of the
lognormal distribution (see Kendall and Stuart, 1977, pp. 89 and 192).
The assumption that the probability density function of [3 is uniquely
determined by its moments is maintained throughout this chapter. Thus,
in order for the bootstrap distribution of é to qualify as an exactl

distribution of é, all moments of the bootstrap estimates of 3 must be
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exactly the same as the corresponding true moments of fS

Bootstrap distributions had been studied by among others, Singh
(1981), Babu and Singh (18983), Abramovitch and Singh (1985) and Hall
(1987). Let 6 be the parameter of interest and én be 1its sample
estimate. Further, let v: be a consistent estimate of c?. where o° is
the variance of én. Singh (1981) gives assymptotic results for the
general bootstrap distribution of én, whereas Babu and Singh (1983)
compare the bootstrap distributions of (én-a) and v;l(én-e).
Abramovitch and Singh (1985) used information from the bootstrap
distribution of v;l(én-e) to obtain better approximations of the
distribution of én. Recently, Hall (1987) proposes a continuity
correction procedure for obtaining smooth bootstrap distributions of

vi(e -9).
n n

All the above studies are based on Edgeworth expansion approach.
Moreover, most of the results were obtained for the case when én is the
arithmetic mean of n independent observations on a particular random
variable. The present approach focuses on bootstrap distributions of é;
in particular, on sample moments of bootstrap estimates of B and on some

of the moments of é.

It will be shown below that, for a fixed design matrix, X, the
moments of é are uniquely determined by a set of moments of the
underlying disturbances, €. Similarly, it can be shown that the moments
of the bootstrap estimates of B are uniquely determined by a set of

moments of the residuals, (51,5 ,”.,én), that are used for

2

bootstrapping. Consequently, when the moments of £ correspond exactly
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with the moments of €, one can conclude that the bootstrap distribution

of B corresponds exactly with the distribution of é.

Notation and assumptions will be established in Section 3.2.
Extended properties of the selection matrix, S(J). which are relevant to
the discussions of this chapter will also be presen:ed in this section.
In Section 3.3, higher moments of the bootstrap estimates of 8 will be
examined analytically. Owing to mathematical complexity, only the third
and fourth monents will be considered. 1In statistical practice, sample
moments ot order higher than the fourth are rarely required and in many
cases are subjected to a large margin of error (see, e.g. Kendall and
Stuart, 1877, p. 58). Consequently, these higher moments are of little
practical value. Further, the influence of a particular sample moment
of é on the distribution of é declines as its oraer increases. For
comparison purposes, a Monte Carlo simulation study will be conducted in
Section 3.4. In this section, the first ten sample moments of several
regression residuals will be compared to the corresponding exact moments
of the underlying disturbances. The underlying disturbances are assumed
to be normally distributed. Finally, a brief discussion of the results
obtained in this chapter and some concluding remarks will be presented

in Section 3.5.

The objective of this chapter is to examine the bootstrap estimates
of B Leyond the first two moments. One of the main contributions here
is to show that the sample moments of the bootstrap estimates of f3
depend on the sample moments of the regression residuals that are being
used for bootstrapping. Thus, one only needs to examine the sample

moments of the regression residuals when the objective is to examine the
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bootstrap distribution of é. This leads to much simplification in

general and a reduction in computational costs for a Monte Carlo study.

3.2 Preliminaries and Notation

The focus of this chapter is on the closeness of the distribution
of the bootstrap estimates of 8 to the exact distribution of é. A
review of the following statistical theorems may be helpful. The
notation is mostly that of Kendall and Stuart (1977, vol.1),

fhereinafter, K&S].

The Inversion Theorem: The characteristic function of a random variable
uniquely determines its distribution function

Proof: See K&S p. 97.

The First Limit Theorem: If a sequence of distribution lunctions {Fn}
tends to a continuous distribution function F, then the corresponding
sequence of characteristic functions of (F;} tend to the characteristic
function of F uniformly in any finite t-interval.

Proof: See K&S p. 107.

Converse of the First Limit Theorem: If the corresponding sequence of
characteristic functions of {F;} tends to the characteristic function of
F uniformly in any finite t-interval, then the sequence of distribution
functions (F;} tends to F.

Proof: See K&S p. 108.

The Second Limit Theorem: Let {pj(n)) and uJ be the j'th moments of the
sequence {Fn) and F respectively, and j be non-negative. Then, if (F;}

converges to F, all the moments {pj(n)} converge to uj respectively.
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Proof: See K& p. 118.

Converse of the Second Limit Theorem: Let (;ﬁ(n)} and M be the j'th
moments of the sequence {F;) and F respectively, and j be non-negative.
Also, let the moments {uj(n)} exists. If the sequence (ujin)) converges
to nj for all j, as n goes to infinity, then the sequence {F;) converges
to F, provided F 1s uniquely determined by its moments.

Proof: See K&S p. 119.
The following lemmas may also be stated:

Lemma 3.1: Let r be some function of n and J, where J is the number of
bootstrap replications. Also, let (Gr} converges to G, the
corresponding sequence of characteristic functions of (Gr) converges to

the characteristic function of G. The converse is also true.

Proof:

The proof is apparent from the First Limit Theorem and its

converse. Q.E.D.

Lemma 3.2: Let r be as defined in Lemma 3.1. Also, let the moments
{uj(r)} corresponding to {G;) exist. If the sequence {p)(r)) converges
to uj for all j, as both n and J go to infinity, then the sequence (Gr)
converges to G, provided G is uniquely determined by its moments. The

converse is also true.

Proof:
The proof is straightforward rrom the Second Limit Theorem and its

converse. Q.E.D.
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Although the condition in Lemma 3.1 is less restrictive than Lemma
3.2, the latter has more practical value. This is because sample
moments are easier to compute than characteristic functions. With Lemma
3.2, one needs only to examine how closely the sample moments of the
bootstrap estimates of B mimic the exact moments of é. Nevertheless,
Lemma 3.2 1s useful 1if the distribution function of é is uniquely
determined by its moments. This happens if and only if all absclute

moments of G exist. This condition can also be stated as:

Lemma 3.3: Let G be the distribution of é and uj be the j'th moment of

G. Also, let the characteristic function of G be written as

]
- 3
c(t) = Z {(m uJ/,j!}
J=0

where 1i°=-1. Then if the series on the right hand side of the above
equation converges for t®0, a set of moments will determine the

distribution function G uniquely.
Proof: See K&S p. 113-114.

In addition to the above lemmas, the following lemmas concerning
the extended properties of the selection matrix S(J) are also needed for

subsequent discussions in this chapter.

Lemma 3.4: Let S(J) be an uxn selection matrix, and let SU)r be its
r'th row (r=1,2,...,n), comprising elements S(J)M,S(j)ra,...,Su)m.
In addition, let v be an nx1 vector of real arguments UV, U, Y and
let
v=ntlv + v + v
\ 0 SRLNE
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Let n be finite. Then,

Proof':

Note that for each j=1.2,...,J, an element is being drawn at random
with replacement from v, a sample of size n. The relative frequency of
each element of v in each bootstrap sample is (n™'). For J samples, the

relative frequency of each element being selected will be (n'tﬂ. Thus,

1 a.s. 1 L -1 _ -
3{, 1[5(1"'1.)]} e ?[l;(vl)}(n J)=3v. Q.E.D.

Lemma 3.5: Given the notation of Lemma 3.4 and n finite,

2 n
! a.s. 12 _
3{1; [(Su)q.”)(su)r.”)]} B — {‘;[ v|]} for g=r

o

and

Proof':

When g=r,

_ 2
{(S(J)r.v)(s(j)r.v)} - S(j)r.[vl]

in which [Pf] denotes an nx1 column vector whose i'th observation is the
square of the 1'th observation of v. Given Lemma 3.4, the remainder of

the proof for the first statement is straightforward.

For the case when g#r,
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(s v)(S v) = v v

(3q. (3)r. a b
for some a,b=1,2,...,n. Note that the matrix
"= ]
vu = v v , a,b=1,2,...,n,
ab

has n° elements. The relative frequency of each v v in each bootstrap
sample is n?. For J samples, the relative frequency of each element is

(n"%J). Thus,

J n
1 a.s. 1 -2, _ =2
I{ng[(s(”q'v)(s(j“\v)]} — 3{;2;(vavb)}(n J) = v°. Q.E.D.

Lemma 3.6: Using the notation of Lemma 3.4, for n finite,

J
1 a.s.
3{1); [(S(J)p.v)(S(j)q.v)(SU)r.v)]} 25

when p=q=r,

n n
(11) { Z [ -%J]}{ z [dqu]} when any pair of p, q and r
1 i
1=1 1=1 are the same,

n 1 3
(111) Z [ _1“] when p#g#r.
1=1

Proof:

In the first case where p=qg=r,

_ 3
[(S(J)r.v)(S(j)r.v)(s(j)r.v)] B S(J)r. [vl]
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in which [v?] denotes an nx1 column vector whose t'th observation is the
third power of the 1'th observation of v. The remainder of the proof

for the first statement is then straightforward upon application of

Lemma 3. 4.

For the case when any two of the vectors S(J (1=p,q,r) are

).
identical,

[(S(J)p.v)(s(j)r.v)(S(J)r.v)] = [(S(j)p.v)(s(j)r.v)] '

in which p#r. From this point, the remainder of the proof for the

second statement is straightforward upon application of Lemma 3.5.

Finally, for the case when none of the vectors S(JH (1=p,q,r) are

the same,

[(S(J)p.v)(s(j)q.v)(S(J)r.v)] = [vavbvc] !

for some a,b,c=1,2,...,n. Note that the three-dimensional array
[vavbvc] is of dimension nxnxn and, in each bootstrap sample the
relative frequency of [vavbvc] is . For J samples, the relative

frequency of each element is (n-sJ). Thus, for n finite,

: n
: a.s. 1 -3 R
J jzi[(S(J)P.v)(S(j)q-v)(s(j)r.v)]} —_ 5 ]{a Zc[vavbvc]}(n ) = .

Q.E.D.

Lemma 3.7: Let n be finite. Then,

J
! [(s v) (S v) (S v)(S u)] a8,
J j; ())n,. ())h,. ($h. ())h,. J
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Proof:

Lemma 3.8:

s v] = [(s V(S v)...(S v)]
[(j)hr. } (Db, ($h,. (h .

let pt be defined by

and ,

.,
n=— w
-

when h =h =h =h ,
1 2 3 &

(1)

1
(11)

1

(111) {
(iv)
{

[

(v)
i

I ~—12
|
1= 3
c
Ratlle

1.

}
)
f

e
=]
1
cl

} when any three of the h"s

are lidentical,

n |vl=,

when any pair of the h s are ldentical

| M:

and the remaining pair are aiso identical

but not the same as the first pair.

n 2
Pf‘vf]}{ z Pflvl]} when only two of the h"s are
1 1=1

identical,

1 [~12

np~1s

4
Pfdui]} when none of the h”s is the
1

same as another.

The proof is similar to that of Lemma 3.6. Q.E.D.

Let

Then, for n finite,
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(1) u when h=h=...h
1 2

R R’
(i11) HenonyMy when (Rr-1) of the hl's are identical,
(ii1) “(R-2)Mf when (Rr-2) of the hx's are identical,
(iv) Hip-nyPa when (Rr-z2) of the h"s are lidentical and the

remaining palr are also identi<ul but not the same

as the other (r-2),

(v) “(R-a)“:: when (R-3) of the hl's are ldentical,

(vi) H gz Moty when (RrR-3) of the hl's are identical, and two of
the remaining three are similar but not the same
as the other (Rr-3),

(vii) Higoayfs when (Rr-3) of the hl’s are lidentical, and the
remaining three are similar to other but not the
same as the other (Rr-3). The 1ist continues
until

(R-2) ,

(viii) MM when any two of the hi s are identical,

(ix) u? when none of the h"s are similar.

Proof:

The proof is similar tc. and can be deduced from, the

proof of Lemma 3.6. Q.E.D.

For a real vector v, Lemma 3.4 relates the mean of the ('th
observation in a bootstrap sample, S(J)v (jy=1,...,3), to the sample mecan
of v. It must be mentioned that this lemma is a slight variant of

Theorem 2.1. Lemma 3.5 relates the second moments of observations in a
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bootstrap sample to the flirst and second sample moments of v. The
results of Lemma 3.5 agree with those of Theorem 2.4. Similarly, Lemma
3.6 relates the third moments of observations in a bootstrap sample to
the first three sample moments of v. Lemma 3.7 extends the results to
the fourth moments of observations in a bootstrap sample, while Lemma

3.8 generalizes to the n'th moments.

Lemmas 3.4 through to 3.7 are needed for analyzing the higher
moments of the bootstrap estimates of B. It must be mentioned that
these lemmas will be applied to the regression residuals,
(51,52,....?:"). that are wused for bootstrapping. Thus, in the
application of the above lemmas, one only needs to replace v by €. This

i possible because f)‘ is a linear function of €. As a result, B:j) is a

linear function of «¢.

In the subsequent section, a comparison will be made between the
relation of fi with £ and the relation of B:” and €. The two relations
share common similarities but they are not exactly the same. The focus
of the following section will be to investigate how these similarities

P

and differences affect the bootstrap distribution of 8.

3.3 Higher Moments of the Bootstrap Estimates

In Chapter 2, it 1is shown that, when € is the OLS residuals,
[n'l::T;:] underestimates crz. This causes the bootstrap estimate of D(é)
to be biased downward, and is true when, in fact, the bootstrap
estimates of B are obtained by bootstrapping e. This deficiency can be
corrected either by inflating £ by a factor depending on the number of

coefficients to be estimated or, by using BLUS residuals. One need not
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go further when the sole interest is to obtain an unbiased estimate of
D(é). On the other hand, a confidence interval of B ls often required
fer testing among competing (nested or non-nested) hypotheses and in
regression diagnostics. From the Converse of the Second Limit Theorem,
it 1s clear that this confidence interval is an unique function of the

moments of B. However, the importance of a sample moment of ,'J to this

declines as its order increases.

The following lemmas and theorems investigate the relatlon between
the sample moments of the bootstrap estimates of B and the moments of f3
It is assumed throughout the investigation that the design matrix, X, is

fixed. Consequently, fB can also be expressed as

B =P+ Ac

in which A = [am] = [(XTX)-IXT] is a real Kxn matrix and € Is a nxli
vector of true disturbances. It is convenient to derive the moments of
f3 about B8, which happens also to be its mean. Let E=({§—B). Then, E(ig)

gives the m’th central moment of f}h(hﬂ....,x).

Since the proofs are rather straightforward, the following lemma

will be stated without proof.

Lemma 3.9: Let E(e )=0 V i. Then, for n finite,
n

zl[ablacladl] Hyr

i=

PPN ~ n 2
o efiiifi) - {Hlen )b}

(1)

>
«“r>
(2]
I
[

bch

>
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The above lemma gives the moments of é while the following lemma
gives the samples moments of the bootstrap estimates of B. For the
following lemma, let El(1=1p...n) be the residuals wused for

bootstrapping and the co-responding bootstrap estimates of B be

[ ~ -~

By =B * A5

for the j'th (j=1,...,J) replication. The sample mean of the ci’s which

i)

is assumed to be zero. Also, let

(1) ﬁ2= {
i

(i1) ﬁa

Is given by

=

(1i1) ﬁi

i
n~1s
=]

1
(=3
™
L.

}
[ 55 }
}.

Lemma 3.10: Let the above notation be used and let n be finite. Then,
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(1)

I~

Cot o

- n
a.s,. -~
. f'(j)bt(j)ctu)d]} T {121 [ablacladl]} Hyr

b

(i1)

Co )+
[ e [
[ ]
g
-
—
-4
oy
(4]
=
-8
o
A
[ ]
| SN
(W
o
[
[ ]
P S,
Lgon v
IIIVI:’
f
=
[+
g
»
0
-
[+
a2
o
C—
| S
~
=
-
1
W
=
NN
| S
———

J

~ N r R
n p n LS -
~2
+ a a a a H
bi di cl el 2
i=1% 1=1 7 ’
r \r
n n )
~2
+ a a a a u
bl el cl di 2
1=1 i=1

*
in which t(j)k- [B(j)k—Bk] Y k=1,...,K.

Proof:

Note that the L.H.S. of (i) and (ii) can also be written as

n
X [ab achadl] ; [S( 13.55(n.5S )1 E]
g, m, L P9 1 J)g. 1h. .

T~

and

n J
y [aaaa]lz[s is s &S z] ,
AR bf cqg dh el JJ=1 (3)f. (J)g. (j)h. (j)i.

Lkt

f,

respectively.

Upon applications of Lemmas 3.6 and 3.7 and replacing v with €, the

remainder of the proof is then straightforward. Q.E.D.
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Lemma 3.9 states that the third and fourth central moments of é are
linear functions of the moments of e. This result can easily be
extended to higher moments of é. On the other hand, Lemma 3.10 states
that the observed third and fourth sample moments of the bootstrap
estimates of B are linear functions of the sample moments of &, as
defined above. This result can also easily be extended to higher sample

moments o~ 3: (3=1,...,3) with the application of Lemma 3.8,

[}

The above results show that a set of moments of € uniquely
determines the mecments of é. These results also show that a set of
sample moments of ¢ uniquely determines the sample moments of the
bootstrap estimates of 8. Thus, the results of Lemmas 3.2, 3.3, 3.9 and
3.10 suggest that; (i) the moments of & uniquely determine the
distribution of é; and, (ii) the sample moments of P uniquely determine

the sampling distribution of the bootstrap estimates of B.

With Lemmas 3.9 and 3.10, it is now possible to investigate how the
use of uifferer.. residuals for bootstrapping affect the third and fourth
sample moments of the bootstrap estimates of 8. Only the OLS residuals,
inflated OLS residuals and BLUS residuals will be considered here. To
facilitate the derivations of the main theorems, the following three

lemmas are needed.

Lemma 3.11: Let E|U=1.“.,n) be replaced by the OLS residuals and let

n be finite. Then,

~ _ & 3
(1) nE(pa) = Zjﬁm”] M.
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(11) nE(@) = {,TZ, [m: J]}[u‘-Bp:] + {lii (mfl]}[&lz].

Proof':

Note that the proof for part (1) 1is straightforward from

least-squares theory. For part (11), the proof 1is rather

straightforward with the help of the following relations;

(1) te(M) = {,21 [mfl]} . {ﬁ,[m?’]}'

LT

(i1) {‘Z {mfl]} = {ii) [m‘l‘j]} . {h'id[m:i-mfj]}. Q.E. D.

*h

172,

Lemma 3.12: Let El=[n(n-x)”] € ¥ 1, in which éln=1p.”n) are the

OLS residuals. Also, let n be finite. Then,

‘ 2 e, 3
(1) nE(us) = [n(n-K) ] Z EMJ]}“B'

1,)
~ R 2 (2 2
= - - 2
(11) nE(u4) [n(n K) ] ,zjbmj] [p4 3u2] + ,Z,[m“] [Vuz] :
0.E.D.
Lemma 3.13: Let L=(n-K) and &=Be in which é=(£1,éz,....én)T is the nxl

vector of OLS residuals and such that BM=B, BBT=IL and BTB=M. Note that

¢ is the Lx1 vector of BLUS residuals. For n finite,

L n
~ . _ | 3
(1) EG) = {51;,; [bu]}pa.
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L n

~ .y _ 4 a2 2

(11) E(#‘) = {E z X [b”]}[p‘ 3“2] + 3u2.
1=1§=1

Proof:

Note that the proof for part (i) 1is straightforward from the

definition of €. For part (ii), one needs to note that;

(1) tr[BBTBBT] = L.

L n
1 2.2 _
(11) {E Z Z [bublk]} = 1.
1=t j,k

The remainder of the proof is then straightforward. Q.E.D.

Theorem 3.1: When the error distribution is symmetric, the third sample
moment of the bootstrap estimates of B will be an unbiased estimate of
the third moment of B. This is true regardless of whether the OLS
residuals, inflated OLS residuals or BLUS residuals are used for

bootstrapping.

Proof':

Apply Lemmas 3.9, 3.10, 3.11, 3.12 and 3.13. Q.E.D.

An important corollary can be derived from Theorem 3.1 for the case

when the error distribution is normal. This is Corollary 3.1 below.

Corollary 3.1: When the errors are normally distributed, bootstrapping
based upon OLS residuals, inflated OLS residuals or BLUS residuals will

lead to unblased estimates of the third moment of é.

Theorem 3.2: Let the error distribution be nonsymmetric. Then,

bootstrapping based upon OLS residuals, inflated OLS residuals and BLUS
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residuals will lead to biased estimates of the third moment of é The

directions of blas depending on the quantities

i n
(1) n"{ Z [mfj]} - 1].
ROy
(11) n“z(n-x)':”z{izJ [mfj]} - 1]

L n
1 3
(ii1) Hl-‘a;j; [blj]} - 1]. respectively.

and

Proof:

Same as Theorem 3.1. Q.E.D.

In most applications, the three quantities in Theorem 3.2 can be
computed directly. It must be mentioned that the first quantity will
always be negative and that the second would most often be negative.
Thus, bootstrapping based upon OLS or inflated OLS residuals when the
disturbances come from a nonsymmetric population would lead to a
downward bias in the estimation of the third moment of fi The first
result is straightforward. On the other hand, it is not clear when the
second quantity of Theorem 3.2 will be negative. The following example
shows for the case when the design matrix is random. Since the deslign
matrix is assumed fixed for bootstrapping, the result of the following
example would not be exact for the above bootstrap problem.

Nevertheless, it does give a general idea about the underlyling problenm.

Example 3.1: Let
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- - -1 —
mlJ = [6” (n K)J (t,3=1,...,n)

in which 6” is the Kronecker delta. Then, it can easily be show that ¥V

| (l=1,...,n),
&, 3 2 3
z("'u) = [n_a(n +3K2-3nK-K )].
351

When K=1, it follows that

n’! {): (m?J)} = [n-a(n-l)(n-Z)] <1,
i,

)

and

a2[ o vae
n! [n(n-l)"] Z(mu) = [n(n-l)'1] {n' (n-2)} < 1.
1)

For finite n, it can be shown that the following equation
n"2(n%+3K%-3nKk-k%) =1

has three roots; one real and two imaginary roots, and the real root is

K=0. Thus, for n finite and K0,

n~! Z(mf) < 1.
1,) J

On the other hand, no general result can be obtained for

372 n
n! [n(n—l)-i] { Z (mi’])} = [n-z(n-l)'3/2(n2+3K2—3nK—K3)J.
1

For any known integer K, the right hand side will be less than 1 when

n>n(K), where n(K) is the largest real root of the solution to

n 2(n-1)""2(n%+3K%-3nk-k%) = 1.
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For example, n(1)=4/3, n(2)=3 and u(3)%5.2. Note that the ratio
{K/n(K)} is quite large. When K=1, 2 and 3, this ratio Is 3/4, 2/3 and
37(5.2), respectively. Thus, when K is small relative to n, one can be

sure that

4 IRET (N
n [n(n—-l) ] Z(ml )} < 1.
A (R

When the design matrix is random, E(m”)=[6U—(n'1K)]. Thus, in
this case, bootstrapping based upon OLS residuals will always lead to a
downward biased estimation of the third moment of é When the design
matrix is fixed, bootstrapping based upon OLS residuals will also lead
to a biased estimation of the third moment of f3 However, 1its direction
of bias depends on elements of the design matrix and the amount of
percentage bias can be determined from the data. ©On the average, one

would expect this bias to be a downward bias.

On the other hand, when the design matrix is random, no general
conclusion can be made with respect to the third moment of B for the
case when inflated OLS residuals are used for bootstrapping. The
direction of bias in the third sample moment of bootstrap estimates of f8
depends on both n and K. However, when K 1Is relatively small as
compared to n, this bias will also be a downward bias. The implication
for the case when the design matrix is fixed is that, on the average,
one would also expect a downward bias in the third sample moment of

bootstrap estimates of B.

Attention is now focussed on the fourth moment of l% Lemmas 3.14

and 3.15 below investigate the fourth sample moments of the OLS and
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inflated OLS residuals, respectively. The results are then summarized

in Theorems 3.3 and 3.4.

Lemma 3.14: Let ¢ be a normal variate, such that p4=3u:. Then, for any
K, the fourth sample moment of the OLS residuals will underestimate

B, The degree of underestimation will depend only on M.

Proof:

1]
™

Let ¢ Then, wupon application of Lemma 3.11 part (ii),

o - G4

However,

{.Z[mf‘]} = (nK) - {’ij[mfj]}.

J#

The proof becomes rather straightforward since

K + {xi,[mf’]} > 0. Q.E.D.

J=i

Lemma 3.15: Let the error disturbances be normal. Then, for a given
nK, the fourth sample moment of the inflated O0LS residuals will

underestimate M, provided that

n(n-l().l{lzJ [mfj]} < K.

131
Proof':
. 172
Let c=[n(n-l() ] €. Then, upon application of Lemma 3.12 part

(i1),
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Since

the expectation of ﬁ4 can be written as

n
E(ﬁ‘) = n(n-K)-z[(n—K)-{ z [me]Hu‘.
1,)

J*i

The remainder of the proof is then straightforward. Q.E.D.

Example 3.2: Let the notation be that of Lemma 3.15. Also, let

M={1n—n'1 [E(n,n)]}. Then,

J#1
Upcon substitution of this relation into E(p ) of Lemma 3.15, one obtains
~ -2 -1
E(uq) = n(n-K) [(n—K) - n (n-l)]uq.
When K=1, it can be shown that E(ﬁ4)=u4. In cases when K>1, E(ﬁ4)%u4
when n%(n—l)'l(l(z—l). Since it can be shown that [(K-l)-l(Kz-l)—1]=K,

it follows that E(ﬁ4)>p4. The reason being that n is normally required

to be greater than K in regression models.

Upon application of Lemma 3.15, one can show through Example 3.2
that when the design matrix is random, bootstrapping base? upon inflated

OLS residuals will lead to biased estimates of the fourth moment of e.
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This bias will always be upward, irrespective of the type of error
distribution. The result of Example 3.2 implies that, on the average,
bootstrapping baseu upon inflated OLS residuals will lead to an upward
bijas In the estimates of the fourth moment of £, in the case when the

design matrix is fixed.

Lemma 3. 15 states that for a given design matrix, ithe fourth sample
moment of inflated OLS residuals will underestimate (or overestimate)
the fourth monent of g, depending on K and the off-diagonal elements of
the projection matrix, M. This is true regardless of the type of errcor

distribution.

Even in the case of normal errors, bt-oth OLS and inflated OLS
residuals will perform poorly as estimates of €. However, inflated OLS
residuals are slightly better than OLS residuals. One reason is that
the former’s second sample moment is an unbiased estimate of the second
moment of €, whereas the latter's second sample moment is biased
downward (c.f., Chapter 2). Secondly, the former's third and fourth
sample moments are closer estimates of the corresponding exact moments
of €, when compared to the latter's third and fourth sample moments,

respectively.

Lemmas 3.14 and 3.15 are useful for proving Theorem 3.3 below. No
i.eparate lemma 1is required for the BLUS residuals since it is
straightforward from Lemma 3.13, that the fourth sample moment of the
BLL. residuals is an unbiased estimate of H, provided € is a normal

variate.

Theorem 3.3 below investigates how well the bootstrap method
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estimates the fourth moment of é for the three cases when OLS, inflated
OLS and BLUS residuals are used for bootstrapping. It assumes that the

disturbance terms are normally distributed.

Theorem 3.3: Let € be a normal variate and let & be used for

bootstrapping. Also, let n be f'inite. Then,

(1) When &=, bootstrapping will lead to an underestimation of the
fourth moment of é. For any given n>K, this underestimation

increases as K increases.

172
(2) When E=[n(n-K)-1] €, bootstrapping will, on the averag:,

lead to biased estimates of the fourth moments of é. For
given n, K and M, the direction of bias depends on the sign of

the following quantity,

[K-n( n-K) "{1 i) [mfj]H

¥

a

(3) When ¢€=Be, bootstrapping will always lead to unbiased

estimates of the fourth moment of &.

Proof:

Upon application of Lemma 3.10, it can be observed that fourth
sample moments of bootstrap estimates of B depend only on the second and
fourth sample moments of €. It can easily be shown that the second
sample moment of OLS residuals underestimates My, while the second
sample moments of both inflated OLS and BLUS residuals are unblased

estimates of H,
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The remainder of the proof 1is then straightforward, upon

application of Lemmas 3.13, 3.14 and 3.15. Q.E.D.

Theorem 3.3 1llustrates only for the case when the rzndom
disturbances are normal. It states that when these disturbances are
normal, bootstrapping will lead to a downward bias in the estimation of
the fourth moment of B. provided that OLS residuals are used for
bootstrapping. Bootstrapping based upon inflated OLS residuals will
also lead to biased estimates of the fourth moment of é r.owever, the
bias can be in either direction, depending on the sample size, the
column rank and elements of X. On the other hand, bootstrapping based
upon BLUS residuals will always lead to unbiased estimates of the fourth

moment of fa‘

When the disturbances are non-normal, the results will be
different. The following lemma and theorem examine the case when € is
elther platykurtic or leptokurtic. Note that e is platykurtic when

p¢<3p: and is leptokurtic when u4>3p§. For the following discussion, let

n

H =TH,, in which (1-3) is a measure of kurtosis.

Lemma 3.16: Let ¢=[E(ﬁ4)—u4].u;1. Then,

(1) When &=e. ¢EO provided that r%% and
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172 -
(i1) Wwhen E=En(n-1)-l] €, ¢§0 provided that T%t and

{‘ij ["‘:] *{h.):“l{m:‘mij]}n-i(n—K)K

(111) When &=Be, 920 provided that 723.

Also, for all three cases above,
a¢ .1>0.

Prcof:
With the substitution of u4=tp:. the proof is rather

straightforward upon application of Lemmas 3.11, 3.12 and 3.13. Q.E.D.
Theorem 3.4: Let the notation be that of Lemma 3.16. For finite n;

(i) Bootstrapping based upon OLS residuals will lead to biased
estimates of the fourth moment of é. The direction of blas will be

downward when T<%, but it will be uncertain when TZ%.

(11) Bootstrapping based upon inflated OLS residuals may lead to

unbiased estimates of the fourth moment of é. This happens when T=1.
Otherwise, these estimates will be blased downward (upward) when T is

~

less (greater) than z.

(iii) Bootstrappi.ng based upon BLUS residuals will lead to unbiased
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estimates of the fourth moment of é. provided that the error
distribution 1is normal. When this distribution 1is platykurtic

(leptokurtic), these estimates will be blased downward (upward).

Proof:
The proof is straightforward upon application of Lemmas 3.9 and

3.16. Q.E.D.

The above results have serious implications for the bootstrap
confidence intervals, which will be examined in Chapter 4. It is usual
in the applications of linear regression models to assume that the error
distribution is normal. When this assumption is valid, bootstrapping
based upon BLUS residuals will yleld unbiased estimates for the first
four moments of é. On the other hand, the use of OLS residuals for
bootstrapping should be avoided, especially when the sample size Iis
small, However, it must be mentioned that BLUS residuals are quite
cumbersome to obtain. In most applications, one may use inflated JLS
residuals for bootstrapping. On the other hand, the resulting bootstrap
estimates should be used with caution, especially when the number of

coefficients is large as compared to the sample size.

To complete the investigation of the higher moments of é, a Monte
Carlo simulation study is conducted below to examine the first ten
sample moments of several regression residuals. Only the case when the
error distribution is normal will be considered. Consequently, only the
even moments will be reported. This 1is because when the error
distribution is normal, all odd moments will be unbiased, irrespective

of the type of regression residuals.
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3.4 A Monte Carlo Simulation Study of the Sample

Moments of Some Selected Residuals

It has been illustrated in the preceding section that onc can
examine the sample moments of the underlying residuals for variatlons
(like bias and MSE) in the sample moments of bootstrap estimates of B.
This reduces the zmount of computation considerably. The reason is that
bootstrap estimates of B requires additional computations which have to
be repeated J times, J can be as large as 10,000. On the other hand,

the residuals need only be computed once.

In Chapter 2, it is shown that bootstrapping based upon either
inflated OLS or BLUS residuals (under some general conditions) leads to
unbiased estimate of D(é). When £ is a normal variate, it 1s also shown
in the preceding section, that bootstrapping based upon either i1nflated
OLS or BLUS residuals leads to unbiased estimate of the third moment of
é. However, when € is not normally distributed, both procedures will
yield biased estimates. Bootstrapping based upon BLUS residuals wlll

also yield unbiased estimates of the fourth moment of B. provided that ¢

is normal.

It must be mentioned that in most regression models, BLUS residuals
may not have 2zero sample means. Since one of the requirements for
bootstrapping in regression models is that the underlying residuals have
zero sample mean, these BLUS residuals must first be centered, by
substraction of the sample mea-. The resulting BLUS residuals will be
known as centered BLUS residuals. For reporting the simulation results,

the criginal BLUS residuals will be represented by BLUS1 while BELUS2
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represents the centered BLUS residuals. Likewise, OLS residuals will be

represented by OLS1 while OLS2 represents inflatea OLS residuals.

The use of centered BLUS residuals for bootstrapping will lead to
downward bliases in all estimates of moments of é, except the first
moment. When the error distribution is normal, all estimates of the odd
moments of é will still be unbiased. The expectations of these
estimates will all be zero. Let € and & be the OLS and centered BLUS
residuals, respectively. When centered BLUS residuals are multiplied by
the factors [n{n—l)-l]l/2 and [n(n-K)-l(éTé)(ETE)—I]i/z. the transformed
residuals will be acnoted BLUS3 and BLUS4, respectively. It can easily
be shown that the second sample moment of BLUS4 will be exactly the
second sample moment of either BLUS1 or OLS2. However, the same cannot
be said for BLUS3. Second sample moments of both BLUS3 and BLUS4 are
unbiased estimates of the second moment of €. On the other hand, fourth
sample moments of both BLUS3 and BLUS4 will be biased, even for the
normal case. Looking at the brighter side, one of these biases may be

less than when inflated OLS residuals are used.

The objective of this section is to examine sample moments of the
various residuals beyond the fourth. It must be recognized that Monte
Carlo pseudo-random samples generated by computer subroutines are only
approximate random sample, drawn from the true population. The accuracy
of each sample is difficult to assess. [See e.g., Bronshtein and

Semendyayev (1985, p.938).]

In addition to the above residuals, the transformation suggested by

Stine (1985) will also be applied to the OLS residuals. The transformed
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residuals are represented by STINE. Stine suggests dividing each OLS
residuals by the square-root of the corresponding main diagonal elements
of the projection matrix, M. That is, when ;1 is the 1'th observation
of the OLS residuals and m, is the 1'th element along the maln dliagonal
of M, the 1’th observation of the rescaled residuals is r =(m )7'% .

The simulation results are all based upon the simple LR model of
Section 2.2 above. When K=2, the intercept and slope of the regression
line are assigned the values 1.0 and 2.0, respectively. Both the
disturbances and values for the independent variable are generated by
IMSL's GGNPM subroutine. The disturbances are assumed to come from a
normal population having zero mean and unit variance. The observations
of the independent variable are assumed to come from a normal population
with mean zero and variance 4.0. For each n, these observations are

drawn once and then fixed throughout the experiment.

Two separate experiments are conducted (for n=10,20), to determine
the effects of sample size on the results. For each experiment, 500
trials are conducted. In each trial, the first 10 sample moments of the
pseudo-normal errors and the regression residuals are computed. These
sample moments are tbh.a compared with the theoretical moments of a
N(O0, 1) distribution. Sample moments of the regression residuals are
also compared with sample moments of the pseudo-normal errors. Both the

bias and MSE are used .s yardsticks for comparison among the residuals.

The simulation results are reported only for the case when the
error distribution is normal. In this case, all odd moments will be

zero. Consequently, it would not be of interest to report the results
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for odd sample moments. Hence, only even sample moments are reported.

These results are tabulated in Tables 3.1 and 3.2.

From Tables 3.1 and 3.2, it can be observed that for all cases and
for all even moments, the absolute bias of STINE is the largest. This
is followed closely by OLS1. Thus, it is again demonstrated that for
small samples (ns20), both OLS residuals and residuals obtained via

Stine’'s transformations are unsuitable for bootstrapping.

Of the BLUS residuals, BLUS2 has the largest absolute blas for all
cases and fo: all even moments. These biases are also larger than those
of OLS2. 1In practical applications to real world data, the sample mean
of BLUS1 1is rarely =zero. \lhen the sample mean 1is non-zero,
bootstrapping based upon BLUS1 and BLUS2 will yield the same results,
provided that sample moments of bootstrap estimates of B are computed
about the sample mean of these estimates. Consequently, both BLUS1 and

BLUS2 should also be avoided when the sample is small.

The residuals that remain to be compared are OLS2, B'' "? and BLUS4.
When n=10, the results of both tables indicate that OLS2 and BLUS3 are
very similar. However, this may be true only for this example. When
n=20, the two seils of results become slightly different. However, it is
not absolutely clear which of the two residuals is better suited for
bootstrapping. Results in Table 3.1 indicate that OLS2 is better than

BLUS3 while the reverse is implied by the results of Table 3.2.

Between OLS2 and BLUS4, the results in Table 3.1 clearly indicate
that OLS2 is better suited for bootstrapping. On the other hand, Table

3.2 indicates the contrary. Thus, there is uncertainty over whether
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Table 3.1: Bias and MSE of Sample Moments of Residuals when
Compared to the Error Population Moments (k=2)!
a) n=10
Sample

Moments OLS1 OLS2 STINE BLUS1 BLUS2 BLUS3 BLUS4
ﬁz -0.256 -0.06 -0.389 -0.968 -0.)7 -0.06 -0.06
(0.42) (0.43) (0.48) (0.43) (0.44) (0.486) (0.43)

ﬁ‘ -1.40 -0.50 -1.90 -1.52 -1.08 ~0.49 -0.58
(1.97) (2.22) (2.13) (2.29) (2.10) (2.41) (2.24)

ﬁs -9.86 -4.96 -11.98 -5.18 -8.27 -4.96 -5.48
(12.17) (14.80) (12.75) (15.83) (13.25) (16.22) (14.80)

ﬁa -84.10 -54.05 -94.50 -55.44 -75.07 -53.93 -58.26
(85.1) (121.2) (97.4) (130.9) (102.9) (131.7) (115.5)

ﬁxo -845.5 -641.4 -901.8 -648.6 -787.8 -638.6 =-676.5
(802) (1156) (914) (1219) (952) (1222) (1035)

b) n=20
Sample

Moments OLS1 OLS2 STINE BLUSI BLUS2 BLUS3 BLUS4
[zz -0.13 -0.04 -0.21 -0.04 -0.09 -0.03 -0.04
(0.32) (0.32) (0.34) (0.32) (0.32) (0.33) (0.32)

ﬁ4 -0.85 ~-0.35 -1.19 -0.36 -0.66 -0.42 -0.40
(1.61) (1.72) (1.88) (1.77) (1.87) (1.76) (1.72)

ﬁe -6.98 -4.00 -8.71 -3.91 -5.84 -4.52 -4.41
(10.54) (11.58) (10.76) (12.67) (11.14) (11.96) (11.72)

ﬁa -87.34 -47.58 -77.40 -45.11 -860.64 -51.80 -~50.36
(85.36) (93.06) (86.89) (108.2) (90.26) (97.33) (95.35)

ﬁlo -740.4 -598.4 -804.2 -561.2 -692.2 -630.6 -616.6
(833) (880) (8439) (1044) (868) (929) (3801)

1.
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Table 3.2: Bias and MSE of Sample Moments of Residuals when
Compared to the Erreor Sample Moments (K=2)1
a) n=10
Sample

Moments OLS1 OLS2 STINE BLUS1 BLUS2 BLUS3 BLUS4
ﬁ2 -0.20 -~0.01 -0.34 -0.01 -0.12 -0.01 -0.01
(0.28) (0.22) (0.40) (0.22) (0.28) ({(0.27) (0.22)

54 -0.78 0.13 -1.28 0.10 -0. 46 0.13 0.07
(1.32) (1.32) (1.74) (1.52) (1.43) (1.88) (1.41)

;]6 -3.44 1.47 -5.58 1.24 -1.85 1.46 0.94
(7.95) (10.67) (9.27) (12.768) (9.51) (12.95) (11.09)

ﬁa -16.76 13.30 -27.13 11.91 =7.72 13. 41 9.08
(53.0) (94.7) (55.3) (110.9) (70.1) (109.5) (80.1)

ﬁxo -87.2 117.0 -143.5 109.7 -29.5 119.7 81.9
(377) (899) (350) (1001) (548) (1008) (748)

b) n=20
Sample

Moments OQLS1 oLs2 STINE BLUS1 BLUS2 BLUS3 BLUS4
ﬁz -0.09 0.01 -0.17 0.01 -0.05 0.01 0.01
(0.13) (0.10) (0.20) (0.10) (0.13) (0.13) (0.10)

ﬁ4 -0. 41 -0.09 ~0.75 -0.08 -0.22 0.07 0.04
(0.72) (0.87) (0.99) (0.79) (0.79) (0.83) (0.75)

ﬁa -2.15 0.83 -3.88 -0.80 -1.11 0.58 0.42
(5.00) (5.56) (6.19) (7.41) (6.08) (B.91) (6.54)

ﬁe -12.56 7.18 -=-22.60 9.66 -5.87 5.53 4,42
(38.5) (49.3) (43.7) (72.1) (50.5) (61.1) (57.8)

g:o 78.4 63.6 -142.2 100.8 -30.2 53.5 45. 4
(311) (453) (329) (714) (437) (565) (522)

1. Root MSE's are reported in parenthesis.
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OLS2 or BLUS4 is better suited for bootstrapping. One possible reason
for this uncertainty is that K=2, which is small. Consequently, another
experiment is conducted with K=5, representing the case when K is
moderate to large. It must be noted that the case with n=10 and k=5 may
not be very useful in actual appiications of the bootstrap. However,
the purpose of this experiment is to highlight the difference in using
OLS2 and BLUS4 for bootstrapping, and to determine which of the two ls
better suited for bootstrapping when K;%n and n 1s any positive even
integer. The design of this experiment is the same as for the previous
experiment, except that only OLS2 and BLUS4 are ~ompared and only the

case when n=10 is considered. The results are reported in Table 3.3.

It can be observed from Table 3.3 that BLUS4 is more suitable for

Table 3.3: Bias and MSE of Sample Moments of OLS2 and BLUS4'

a) When Compared to the Error Population Moments

-~ -~ ~

My He Hg Mo
OLS2 0.54 6.05 62.08 638. 1
(4.40) (43.2) (510) (6669)
BLUS4 -0.19 -3.15 -41.00 -539.6
(3.42) (23.6) (187) (1619)

b) When Compared to the Error Sample Moments

Hy He Hg Hio
OLS2 0.75 8.58 89.87 954.0
(3.02) (31.3) (380) (5057)
BLUS4 0.10 0.89 9.95 106. 3
(2.41) (18.2) (154) (1361)

1. Root MSE's are reported in parenthesis. [n=i0, K=5].
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bootstrapping relative to OLSZ when K 1is moderate large. This
conclusion is restricted to normal errors and further work is needed
before this conclusion can be generalized to a broad class of error

distributions. This is left for future research.

The emphasis of the above analysis has been on blas. The reason
for this emphasis is that the bias of sample moments of bootstrap
estimates of B affects empirical significance levels and the bounds of
bootstrap confidence intervals. In considering confidence intervals, an
appropriate criterion for judging their reliability is the MSE. Judging
from the results of Table 3.3, of OLS2 and BLUS4, BLUS4 is still more
sultable for bootstrapping because the MSE's of sample moments of BLUS4
are considerably smaller than those of OLS2, regardless of whether these

sample moments are compared to population or sample moments.

When K=2, the results of both Tables 3.1 and 3.2 suggest that OLS2
and BLUS4 are very similar in terms of MSE. Thus, in most practical
applications, 1t may be more economical to use OLS2 for bootstrapping
when K is small relative to n. It is convenient too, since BLUS4 is
quite cumbersome to obtain; moreover, the gain in efficiency from using

BLUS4 may only be negligible.
3.5 Summary

The focus of this chapter has been on higher moments of bootstrap
estimates of B. Applying least-squares theory, it can easily be shown
that moments of é are linear functionals of the underlying error
moments. Using techniques developed in this chapter, sample moments of

bootstrap estimates of B are shown to be linear functionals of sample
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moments of the underlying residuals. The two procedures above lead to

quite similar results.

The most important lemma in this chapter is Lemma 2.10. It forms
the basls for all the main theorems. For simplicity and convenience,
this lemma is applied to the third and fourth sample moments only.
However, an extension to higher sample moments can be obtailned by
applying Lemma 3.8. The first and second moments of the bootstrap
estimates of B have been investigated in Chapter 2. For most purposes,
moments higher than the fourth order have little practical value. In
the literature, several methods have been suggested for obtaining
bootstrap estimates of B. Associated with these methods is an array of
transformations applied to OLS residual, prior to bootstrapping. of
these, OLS, inflated OLS, BLUS and Stine residuals have been studied in

this chapter.

When the error distribution is symmetri=, both analytical and
simulation results show that the third sample moments of the bootstrap
estimates of B8 will be unbiased estimates of the third moment of é.
This statement remains valid regardless of the type of residuals used
for bootstrapping. By the same token, it can easily be shown that all
odd sample moments of these bootstrap estimates will be zero, provided
that sample means nf the underlying residuals are zero. Consequently,

the odd moments have been omitted in Tables 3.1. 3.2 and 3.3.

When the error distribution 1Is nonsymmetric, it s shown
analytically that all third sample moments of the Dootstrap estimates of

B will be biased The direction and proportion of this blas can be
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obtained directly from the data. Mo simulation results are undertaken

for this case.

The fourth sample moments of bootstrap estimates of B depend on
both second and fourth sample moments of the residuals. Let the second
sample moment be an unbiased estimate of My K, being the second moment
of underlying population disturbances. Then, fourth sample moments of
bootstrap estimates of B will be unbiased, provided the fourth sample
moments of the residuals are unbiased estimates of M, This property
can only be found in BLUS residuals when the error distribution lis
normal. When this distribution is not normal, all the fourth sanple

moments will be biased.

Although both second and fourth sample moments of BLUS residuals
are unbiased estimates of u2 and Hyo respectively, the sample means of
these residuals are rarely zero. Since one of the requirements for
bootstrapping in regression models i{s that the underlying residuals have
zero sample mean, BLUS residuals have to bhe centered. This
transformation leads to further complications. Consequently, BLUS
residuals 3hould be avoided whenever K is small (relative to n). When K
is large, relative to n, a slight variant of the BLUS residuals may be
used for bootstrapping. This is suggested by the results of Table 3.3

when the error distributinn is normal.

Results of both Tables 3.1 and 3.2 above suggest that, when K is
small (relative to n), inflated OLS residuals and the better variant of
BLUS residuals are very similar in terms of both bias and MSE. In most

applications, BLUS residuals are quite cumbersome to obtaln, whereas,
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inflated CLS residuals can easily be computed. Thus, it may be more
economical to use inflated OLS residuals for bootstrapping. In many
cases, the gain in efficiency from wusing BLUS residuals for

bootstrapping may be very small.

Both OLS residuals and the residuals obtained by Stine's procedure
are once agalin, found to be unsuitable for bootstrapping. Stine's
procedure 1s bassd upon an idea borrowed from Hinkley's (1877)
weighted-jackknife methodology. Although sulitahle for the
welghted- jackknife, this transformation does not do well i
bootstrapping. On the other hand, OLS residuals can still be used for

bootstrapping, provided that both n is large and K small.

The above results have important implications for the bootstrap
confidence intervals, which is the focus of Chapter 4 below. The above
simulation results are restricted to the case when the error
distribution is normal. Further work needs to be done before one can
generalize these results to a broad class of error distributions. It

will be of interest to incorporate this type of work in future research.
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CHAPTER FOUR
BOOTSTRAP CONFIDENCE INTERVAL OF 8

4.1 Introduct:lon

The sample moments of the bootstrap estimates of B have been
examined in Chapters 2 and 3. As a sequel to these earlier two
chapters, the focus of this chapter is on the bootstrap confidence
intervals (BCI's) of B. Three different ways of constructing BCI's will
be investigated. These are based upon OLS, inflated OLS and BLUS

residuals.

Wu (1988) proposed several methods for obtaining BCI's of B and
found that empirical coverages of these BCI's are generally lower than
nominal, which is disappointing in view of the second-order asymptotics
on the bootstrap. Singh (1886) suggests that second-order asymptotics
may not be sufficient and third-order asymptotics are necessary for
comparing BCI's. However, these third-order asymptotics are rather

rare, at least for the present moment.

Thus, it would be of interest to 1incorporate some third-order
asymptotics on the bootstrap in the present context. Also, it would be
Interesting to compare the properties of different BCl's when OLS,
inflated OLS and BLUS residuals are used for bootstrapping. This makes
use of the results obtained earlier in Chapters 2 and 3. The present
approach is also different from the approaches of existing works in that
both Edgeworth expansions and sample moments of bootstrap estimates of f
are used to compare bootstrap confidence intervals. None of the

existing literature uses the sample moments of bootstrap estimates of S8
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(or any other statistic).

One method of constructing BCI's 1s to sort the bootstrap estimates
in ascending order and then record the appropriate percentiles of the
sorted bootstrap sample. Let a BCI of this type be known as a naive
BCI. For a naive BCI to qualify as an exact confidence interval of B,
all sample moments of the bootstrap estimates of B must be exactly the
same as the corresponding moments of é This, of course, requires the
assumption that the probability density function of é be completely

determined by its moments.

In Chapter 3, it is shown that for a fixed design matrix X, the
moments of é are unliquely determined by a set of moments of the
underlying disturbances, €. Also, the sample moments of the bootstrap
estimates of B are uniquely determined by a set of moments of the
underlying residuals, c. These resliduals can be the OLS residuals,
inflated OLS residuals or BLUS residuals. Thus, when the sample moments
of ¢ correspond exactly with the moments of €, the naive BCI qualifies

as an exact confidence interval of B.

The bootstrap method 1is normally used for small to moderate
samples. Moreover, for most economic data, a large sample size is
rather rare. Also, moments of € higher than the first order are
generally unknown, especially in empirical applications to real world
data. Although unbias=>d estimates of these moments of & can easily be
obtained from sample moments of the OLS residuals, it is difficult to
obtain an € whose sample moments correspond exactly with the moments of
€. Hence, in practice, the naive BCI seldom qualifies as an exact

confidence interval of 8.
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For a simple class of parametric problems with multinormal
variates, Efron’s (1985, p. 53) Theorem 2 shows that the BCl s
accurate to Op(n-l). 1his is subject to the assumption that samples of
these random variables can be obtained for bootstrapping. When € is a
normal variate and a sample of € can be obtalned for bootstrapping, it
is shown below that regression analysis belongs to this simple class of

parametric problenms.

Unfortunately, 1in regression analysis, € 1is generally not
observable and has to be replaced by €, € being a suitable estimate of
€. When all moments of € correspond exactly with the moments of €, a
naive BCI based upon € will qualify as an exact confidence interval of
B. When the exact moments of £ are unknown and when sample moments of ¢
can be computed, a naive BCI based upon a sample of ¢ of size n is
accurate to Op(nq). Further, when sample moments of € are unbiased
estimates of the means of sample moments of £, a nalve BCl based upon a

sample of € of size n will also be accurate to Op(n-iL

When the above conditions are not fulfilled, a naive BCI based upon
€ will no longer be accurate to Op(n'l). In such case, alternative
methods are needed for constructing better BCI's of é. One such method
is proposed in this chapter. The proposed method is based upon the
theoretical results of Babu and Singh, [hereinafter, B&S]. Other

related papers include Singh (1981) and Beran (1982).

It is shown in Chapter 3, that sample moments of BLUS residuals and
inflated OLS residuals do not always coincide exactly with the sample
moments of €. It is also shown that not all of these sample moments are

unbiased estimates of the means of sample moments of g£. Thus, a najve
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BC1 of é based uy :n either BLUS or inflated OLS residuals is unlikely to
be accurate to Op(nq). Hence, there is a good reason to adopt the

proposed method.

The organization of thlis chapter §s as follows. In Section 4.2,
the use of Edgeworth expansions is discussed and notation is established
along with some preliminaries. In Section 4.3, the fccus is on the case
vhen a sample of € can be obtained for bootstrapping. Thls serves both
a5 a bench-mark for further discussions and as a focal point from which
further insights can be gained. The case when a sample of € 1is replaced
with £ is discussed in Section 4.4. Only the cases when the true
disturbances are replaced with the OLS, inflated OLS and BLUS residuals
are Iinvestigated. n Section 4.5, the robustness of BCI's against
alternative distributions is examined. The definition of robustness is
that of Hampel (1971). Lastly, a summary of the main results |is

presented in Section 4.6.

4.2 Preliminaries and Notation

The following theorem establishes the notion of robustness, which
is introduced by Hampel (1971), for a general test statistic. However,
the notation is mainly that of Huber (1281}. No originality is claimed
for this theorem, which somewhat brings together the various concepts
discussed in Huber (1981, pp. 27-42). This theorem 1is wuseful for

studying the robustness of bootstrap confidence intervals.

Theorem 4.1 (Hampel): Let XiveonsX be 1.1.d. with common distribution
F, and let Tn=Tn(x1,..,,xn) be a sequence of estimates or test

statistics with values in R*. This sequence is robust at F=FO when the
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map
F - LF(Tn)

is equicontinuous at Fb. L 1s a linear functional on M, the space
of all probability measures on (Q,B), where B is the Borel c-algebra and
1 is a topological space whose topology is metrizable by some metrix d,
such that Q is complete and separable. That is, V €>0, 3 &>0 and an n

such that, V Fand V nano,
d.(F.F) s dP[LFO(Tn).LF(Tn)] s ¢

For any two distribution functlions F and G, dL(F.G) and
dp(LF(Tn).LG(Tn)] denote the Levy and Parohorov distances between F and

G, respectively.

Consequently; (1) when T is weakly continuous at F, (Tn} is consistent
at F, in the sense that I;—»T(FJ i.p. and a.s.; (2) when (Tn) is
consistent in a neighborhood of Fb, T is continuous at FO iff (Tn} is

robust at Fb.

Proof:
Part (1) follows from the Glivenko-Cantelli theorem and the

Kolmogrov distance that, i.p. and a.s.,

dL(F,F;) = dx(F,Fn) — 0
in which d (F,F )=sup|F(x)-F (x)].
K n n

For part (2), when T is continuous at Fo

dP{LFO(Tn)’LF(Tn)] = dp[aT(Fo)’LFO(Tn)] * dP[aT(FO)’LF(Tn)]
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in which & is the degenerate law concentrated at T(Fb). The

T(Fb)
remaining of the the proof 1is then rather straightforward upon
application of Lemma 3.6, Theorems 3.7 and 3.8 of Huber (1981, pp.

27-28). (C.f. Huber, 1981 pp. 40-42). Q.E.D.

One other useful tool for studying conflidence intervals is the
traditional Edgeworth expansion. Let xl,xa,....xn be an i.1.d. sequence
of random variables with absolute continous cummulative density function
F(x) and let Gn(x) be the cumulative distribution function of the

1/zo-). in which p and ¢® are the mean

normalized sum (xl+...+xn—nu)/(n
and variance of F. Also, let &(x) and ¢(x) be the cumulative
distribution and density functions of the stande:'d normal distribution,

respectively. In terms of central moments of -, the Edgeworth expansion

for Gn(x) can be written as (see eg., Patel and Read p. 157)

2 2, 5 3
uy(x7-1) H 3_ 10 u(x°-10x"+15x)
Gn(x) = &(x)-¢(x) __§~_______+ n'i{[ 4_3]{x 4?x] + 3 }

o>31vn °6!

*

| s . 2 6 4 2

_ T M x -6x°+3 M [ 35(x -15x +45x"-15)
| + 02102 | ———| ¢ 5|53
| o o 51 o |o 7!

r 280u° (x®-28x%+210x*-420x%+105)
3 =-5/2
+ +0(n )

o 9!

To obtain the cumulative density function of ((xi-u)/c), one only needs

to put n=1 in the above expansion.

| This type of expansion gives a somewhat poor approximation in the

tails, which is precisely in the region of most interest. Saddlepoint
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techniques (see e.g. Daniels, 1954) and Hampel's (1973) procedure are
two of the exlsting methods that can be applied to obtalin very accurate

approximations.

Although inadequate for some other purposes, the Edgeworth
expansion is essential for the maln discussions of this chapter. Other
methods may be more accurate but these methods normally require
numerical computation and do not have explicit expressions. For this
latter reason, Saddlepoint techniques and other numerical procedures are

not considered here.

The use of Edgeworth expansions as approximations to the finile
sample distributions of econometric estimators has been considered by
Sargan (1976), Phillips (1978) and Sargan and Tse (1979). A general
theorem on the validity of Edgeworth expansions, with respect to lits
applications to finite sample distributions of econometric estimators,

can be found in Sargan and Satchell (1986).

4.3 Bootstrap Confidence Intervals of f3

When £ is Observable

When £ is observable and when a sample of size n of & can be
obtained for bootstrapping, the naive BCI of B is similar to those BCl's
considered by Efron (1985, 1987). Improvements can be made to this BCI
by adopting the method of either Diciccio and Tibshirani (1987) or Loh
(1987). The first method consists of the composition of =&
variance-stabilizing transformation and a skewness-reducing
transformation. On the other hand, the second method involves computer

simulation and density estimation.
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The present approach is based upon a similar idea of Babu and Singh
(1983). The following discussion is on bootstrap estimates of 1linear
regression coefficients, Bﬁ(k:xp...x). For simplicity, the subscript k
will be omitted. Let BCIO be the nalve BCI, based upon the percentiles
of the bootstrap distribution of é. Also let BCI1 and BCI2 be the BCI's

based upon the percentiles of ordered samples of bootstrap estimates of

2 2

oél(é-ﬁ) and sBI(é‘B), respectively. The variance of B is og and Sg is
an unbiased estimate of ez. The three BCl's are then compared when OLS,

B
inflated OLS and BLUS residuals are used for bootstrapping. This will

be done in the subsequent section.

The case when € can be observed will be used as the bench-mark for
comparison. In this section, Edgeworth expansions are derived for
bootstrap distributions associated with BCIO, BCI1 and BCI2, for the

case when a sample of € is used for bootstrapping.

Let £ be obtained from a normal population, and let t1=a-1(é-B) and

B

-1(5—8). From least-squares theory, it is known that é follows a

B
normal distribution. Subsequently, it can easily be shown that t1 and

t =s
2

t2 follow standardized normal distribution and Student-t distribution

with (n-K) degrees of freedom, respectively.

One problem pertaining to distributions of bootstrap estimates of
regression coefficlients is the lack of a coherent finite-sample theory.
In most cases, one has to rely upon existing theorems for a general
class of statistics or for a statistic which is not related to
regression coefficients. These theorems many sometimes be
inappropriate, especially for the case when a sample of € is not

available for bootstrapping.
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For the case of sample means, Beran (1982) suggests that the
bootstrap distribution of vn s;’(é-e) has a faster rate of convergence
to its exact distribution that that of the bootstrap distribution of
\/R(é—e). The sample and population means are denoted by 0 and 0,
respectively, and s; is a consistent estimate of the variance of 6.

Beran also conjectured that the rate of convergence of \/Hs;l(é-e) is

(n™hH.

For the same statistic, Babu and Singh (1983) show that the
bootstrap approximation is asymptotically more accurate for s;(é-B)
than for (@-f}. For a general class of statistics, the histogram of the
bootstrap values of t2 approximates the Student-t distribution with

(n-K) degrees of freedom with a remainder of o(n™%). [C.f. Efron

(1979), Singh (1981) and Bickel and Freedman (18981).]

The lack of a coherent finite-sample theory for the bootstrap
confidence intervals of regression coefficlients leads to speculations
that these confidence intervals also admit errors of O(n-l). The

following results show that some of these speculations can be erroneous.

For convenience, the subscript k is again or!**ed here. Llet

B:J)(j=1.....J) be the bootstrap estimates of B and let

e L)

Further, let

t) =0 (B -B)

wn B B(,) B
and

L ] - .-] [ ] -"'.

tzu) = SB (B(J) B ),
in which j=1,...,J,
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oy = (J-1) { ) [B(’J, ] }

and s.2 is an unbiased estimate of lim o"z.
B o B

The following lemma compares the Edgeworth expansions of t:1 and t:

for the case when a sample of € ~an be obtained for bootstrapping and

~

when ¢ comes from a normal population. Let F1 and l’1 denote the
distributional laws of t1 and t:, respectively. Also, let #(x) and ¢(x)
be the cumulative distribution and density of the standard normal

variate, respectively.

Lemma 4.1: Suppose that t1 admits the following Edgeworth expansion

k=1
P{tisx} = d(x) + {,Zln-“apl(ﬂ'x’} + 0/n™¥?)

where the p"s are certain polynomials in x and ¢(x), whose coefficients
depend upon the first few central moments of Fx' Also, assume that t:

admits an Edgeworth expansion

- k-l ~ -
P{tisxlFI} = o(x) + {’;n"/zP‘(FI.x)} + o(n™%).

In the case when £ comes from a normal population and when a sample

of slze n can be obtained for bootstrapping,

(1) p{t15x|fl} = p{tXSx} + o(n"V?).

The above is true when n is finite. As ns», (1) becomes
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(2) p{t:sx} = p{txsx} + 0(n’9).

Froof:

When € is normal, all odd central moments of é will be zero and

u‘=3cr‘. In this case, t.1 follows a standard normal distribution.

p{tISX} = &(x).

However, t: does not always follow a standard normal distribution, and

2
p{t:5x|7:‘1} = B(x)-p(x) [n'“z[ﬁaﬁ;a/"] [xa! 1] R n"{[ﬁ‘i}:’a]

3 5 3
[x 3x] . 10&2;‘3[ X -10x +15x]}] + 00" ¥?,

Hence,

41 32 6!

in which ﬁ‘ (1=2,3,4) are the sample moments of €. Thus, it can be
shown that t: follows a standard normal distribution, provided that
u = a = T s1)or ] ] =
(T 0 and M, (2'r!) {uz[(Zr).]}, in which r=1,2,
~ ~=3/2

In the leading term of O(n"'"?), [uu

] is 0(1), because
3 2

2
both ﬁz and ;'13 are C(1). Consequently, the term {n'l/z[ﬂaﬁ;s/z] [x—:ﬁl]}

-1/2
),

is O(n and

P{tzsxlil} = &(x) + 0(n™'"?).

The remainder of th- proof for part (1) is then straightforward.

For the proof of part (2), slight variants of Theorems 3.2 and 3.3

above are required. However, these variants can easily be obtained.
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One needs to show that E(j_)=0 and that both E(j) and E(ﬁ‘) adnit
errors O(n™). The proof then becomes straightforward from the

Edgewort h expansion above. @Q.E.D

The results of Lemma 4.1 are not restricted to the case when the
error distribution is normal. Both results also apply to the case when
the error distribution is symmetric but not normal. However, it must be

noted that for the latter case,
-2
p{tISx} = §(x) +0(n7).
This assumes that [u4u;2-3] is o).

The following lemma compares the Edgeworth expansions of t, and t:
for the case when the error distribution is skewed and when a sample of

e is used for bootstrapping.

Lemma 4.2: Let e comes from a skewed distribution. Then,

(1) p{t;sx |f‘1} = p{tfx} +0(n"173),

(2) p{t:sx} = p{tISx} + o™,

Proof:

The proof for part (1) is straightforward from a similar proof in
Lemma 4. 1 above. For part (2), one needs to know that all E(ﬁa) , E(ﬁa)
and Z(ﬁ‘) admit errors O(n-i). The remainder of the proof is then also

straight forwvard from Lemma 4. 1. Q.E. D.
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In must be mentioned that the results of Lemma 4.6 agree with the
earlier results of Efron {1979, 1985), Singh (1981), and Abramovitch and
Singh (1985). Thus, those earlier results apply to the more general
case when the error distributlon 1is unknown. Yhen the error
distribution is symmetric, bootstrap approximation of t1 is more

accurate than what have been suggested by earlier results.
The following theorem concerns the empirical coverages of BCI's
based upon t:. Let

tl(a)
J ¢(x)dx = a, a=a, (1-a).

-0

Also, 1let t:(a) be the (100a)’ th percentile of the bootstrap

distribution of t:.

Theorem 4.2: let the error distribution be symmetric and let
=af;i(f§—B). The lower and upper bounds of X are tl(a) and t.l(l-a).
respect ively, such that p[t1(a)5)(5t1(1-a)] = 1-2x.

Then,

p{t:(a)sxst:( l-a)} < 1-2a.
The dif ference is 0(n~2).

Proof:

From the proof Lemma 4. 1, it can be shown that

p{t:(a)stl(a:)} Ca
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and p{t:(l-a)stl(l-a)} < (1-a)
Consequently,

p{x<t:(a)} > a
and p{x<t:(1-a)} < (1~a).

Upon application of lemma 4.1, the remainder of the proof 1is then

straightforwvard. Q.E. D.

Theorem 4.3: Let the notation be that of Theorem 4.2 and 1let the error

distribution be nonsymmetric. Then,

p{t: ( a)sxst:( l-a)} < 1-2a

and the difference will be O(n™}).

Proof:
The proof 1is similar to that of Theorem 4.2. It is rather

straightforward upon application of Lemma 4.2. Q.E.D.

Both Theorems 4.2 and 4. 3 above suggest that the empirical coverage
of BCI1 will be lower than nominal when observations of the true
disturbances are used for bootstrapping. However, this coverage will be
slightly higher when the error distribution is symmetric as compared to

the case when error distribution is nonsymmetric.

The following lemmas compare the Edgeworth expansions of t2 and t;.

As in the earlier case, it will be assumed that a sample of € can be
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obtained for bootstrapping. An unbiased estimate of 02 can be obtained

from € E e nE . Consequent 1y, t2 follows a Student-t distribution

with (n~1) degrees of freedom, provided that ¢ comes from a normal
population. In this case, the distribution of t2 is not affected by X
Further. let F, and F, derote the distributiomsl laws of t and t,

respectively.

Lemma 4.3: let the error distribution be normal and let

k=1
_ -1/2 «k/2
p{t;x} = ¢(x) + {l;n Pl(Fz'X)} + O(n ),

Further, 1let

. k=1 . i
p{t;-x} = ¢(x) + [Z n"”zPl(FZ.x)} + on™?),

i=1

Then,

(1 p{t;sxlf’z} = p{tzsx} + o(n™?).

(2) p{t;sx} = p{tzsx} + 0(n”%).

Proof:
First note that t2 is a Student—t distribution with (n-1) degrees
of freedom. Since the distribution of t2 is symmetric, all its odd

moments equal zero. Hence,

SRR (SeS Rie

in which p4=E[s;(f3—B)‘]. The results are not affected by the

assumption that ﬁ2=u2=1. Consequently, it is possible to write
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2
p{t;sxﬁ‘z = §(x)-¢(x) [n'"z[ﬁa] [ xs-l] + n'l{[ﬁ‘-a]
s

3 3
X =3x ~2 xT=-10x +15x% «3/2
[ - ] - ,,3[ O ]}] + o3

Thus,

2
i scol ) ()

3 s 3
[ x -Sx] . ﬁz[x -19,>z( +15x]}] + O ¥?)

p{t ;sx | ?2}

This assumes that both ﬁa and ﬁ‘ are 0(1).

Secondly, it can be shown that E(ﬁ3)=0 and E(ﬁ‘)=u4+0(n'1). Hence,

3
p{tzsx} = P{tzsx} + ¢(x) [n-vz{[E(ﬁ‘)-ui] [_)ﬁé_qu_x_]}] + O(n-z)
= P{tzsx} +0(n"%), Q.E.D

The problem of deriving Edgeworth expansions for Student’s
t-statistic 1is quite an old concept. It dates back to the work of
Pearson and Adyanthaya (1929) and Bartlett (1935). Recent examples

include Cressie (1980), Hall (1983) and Abramovitch and Singh ( 1985).

The Edgeworth expansions in Lemma 4.3 are sinmilar to an Edgeworth
expansion obtained by Hall (1983) for the sample mean of a random
variable. Sinilar expansions are also obtained for a general statistic
by Abramovitch and Singh (1985), whose motivation is to obtain a

modified t—statistic which can be closely approximated by the standard
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normal distribution. In contrast, the motivation in Lemma 4.3 is to

compare the bootstrap distribution of tz with its exact distribution.

For a general statistic, the bootstrap distribution of t2
approximates 1its exact distribution with an error term of order otnt).
This 1is stated in Efron (1979), Singh (1981) and Babu and Singh (1983).
However, in the case of é. Lemma 4.3 demonstrates that this statement
understates the accuracy of a bootstrap distribution of tz when the
error distribution is normal. The results of Llemma 4.3 are not

restricted to the case when the error distribution is normal. Both

results also apply to the case when the error distribution is symmetric

but not normal.

Lemma 4.4 below compares the Edgeworth expansions of t2 and t; for
the case when the error distribution is nonsymmetric and when a sample

of € can be obtained for bootstrapping.

Lemma 4.4: Let the error distribution be nonsymmetric. Then,

*eu |l = < -1/2
(1) p{tz-x]Fz} = p{ta-x} + O(n ).

(2) p{t;SX} = p{tzsx} + o).

Proof:

The results are similar to those of Lemma 4.2. The proof for part
(1) can be obtained in a straightforward fashion from a similar proof 1in
Lemma 4.3. For part (2), the same arguments for Lemma 4.2 apply and the

proof is also straightforward from Lemma 4.3. Q. E.D.

The following theorems concern the empirical coverages of BCl's
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based upon t;. Let T(x) be the Student's density function and let

tz(a)
J (x)dx = a, a=q, (1-a).

Further, let t;(a) be the (100a)’'th percentile of ordered samples of t;.

Theorem 4.4: Let the error distribution be symmetric and let
x=s;(é-ﬁ). The lower and upper bounds of x are tz(a) and tz(l-a).

respectively, such that p{tz(a)sx.ﬁ:z( l-a)}sl-za.

Then,

p{tz(a)SXSLZ( 1—a)}=1-2a.

The difference is 0(n2).

Proof:
Upon application of Lemma 4.3, the proof is similar to that of an

earlier theorem, Theorem 4.2. Q.E.D.

Theorem 4.5: Let the notation be that of Theorem 4.4 and let the error

distribution be nonsymmetric. Then,
t(a)sxst (1-a) }p < 1
pyt, (e)sxst, 1-a)} < 1-2«x

and the difference will be O(n’)).

Proof:
The proof is similar to that of Theorem 4.2. One needs only to

apply Lemma 4.4 to complete the proof. Q.E.D.

The results of Theorems 4.4 and 4.5 are similar to those of two

1086



earlier theorems, Theorems 4.2 and 4.3, respectively. One interesting
observation is that the rates of convergence of the bootstrap
distributions of t.1 and tz to thelir respective exact distributions are

of the same order. This result is not affected by the underlying

distribution of e.

For bootstrap estimates of regression coefficlents, the bootstrap
distributions of (é-B) and cr;(é-B) are similar, except for a scaling
factor. Thus, the rates of convergence of these two bootstirap
distributions to their respective exact distributions are identical.
Consequently, it can be stated that, for the case of linear regression
coefficients, the rates of convergence of the bootstrap distributions of

0';(5—3) and (é-B) to their respective exact distributions are of the

same order.

In most applications, o2 is generally unknown and has to be

B
;. For these cases, the student-t distribution 1s the

replaced with s
appropriate distribution for constructing confidence ‘ntervals.
especially when the sample size is small. Using the same analogy, it
can be stated that BCI2 is the appropriate BCl for obtalining confidence
intervals. It must be mentioned that both BCIO and BCI1 will give the
same confidence intervals. This happens in the case of linear

regression coefficlients, provided that € 1is observable and that ¢ is

172
scaled by the factor [n(n—l)-i] prior to bootstrapping.

The subsequent section investigates the three cases when the OLS,
inflated OLS and BLUS residuals are used for bootstrapping. The results

are not substantially different from those obtained in this section.
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4.4 Bootstrap Confidence Intervals of 8

When € is Not Obserwvable

In applications of Efron’'s ©bootstrap to the estimation of
confidence intervals for the unknown regression coefficlents using real
world data, e is not observable in practically all cases. This poses
some problems for the unsuspecting investigator. This investigator is
mostly likely to use the OLS residuals since they are relatively easy to

compute,

The most serious problem arises when the naive BCI is used. In
th!s case, the estimated confidence intervals is much shorter than the
exact confidence interval of B, and the coverage of this BCI is very
poor, especially when the number of regression coefficients is large
(relative to n). Besides the OLS residuals, two other types of
regression residuals, the inflated OLS and BLUS residuals, can also be

used for bootstrapping.

In this section, the effects of the cholce of residuals on the
accuracies of BCIO, BCI1 and BCI2 are 1investigated. The choice of
residuals is limited to the OLS, inflated OLS and BLUS residuals. In
the case when inflated OLS residuals are used for bootstrapping, the
result of Theorem 2. 12 guarantees that both BCI0O and BCI1 will yield the
same results, provided that J goes to infinity. Similarly, the result
of Theorem 2.15 guarantees that, when BLUS residuals are used for
bootstrapping and when J goes to infinity, both BCIO and BCI1 will yield
the same results. The difference between BCIO and BCI1 lies in the
difference between the dispersion of the bootstrap estimates of B and

the 1least squares estimate of D(é). Both Theorems 2.12 and 2.15
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guarantee that this difference goes to zero as J goes to infinity.
Thus, using the result of Theorem 2. 10, it can be shown that when OLS
residuals are used for bootstrapping, BCIO and BCI1 differs by scale
factor [n(n—l()_i]. Specifically, BCI0 will be shorter than BCI1 and
this difference can be corrected by multiplying both lower and upper

bounds of BCIO by the factor [n(n-l()-l].

The following is also In order. Namely, the same BCI1 is obtalined
when either OLS or Inflated OLS residuals are used for bootstrapping.
The same is also true for BCI2. Consequently, one only needs to
investigate the properties of BCI1 and BCI2 for the two cases when

either inflated OLS or BLUS residuals are used for bootstrapping.

The notation used for the following lemmas Is the same as that used
for Lemmas 4.1 through to 4.4. Lemmas 4.5 through to 4.7 below concern
the case vwhen inflated OLS residuals are used for bootstrapping. The
case when BLUS residuals are used for bootstrapping is 11llustrated in

Lemmas 4.8 through to 4.10.

For the following three lemmas, it is assumed that Inflated OLS

residuals were used for bootstrapping and that J goes to infinity.

Lemma 4.5: Let the error distribution be norml. Then,

(1) p{t:5x|f“l} = p{tlsx} + 0(n™""%).

(2) p{t:Sx} = p{tISX} + O(kn-z).
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Proof:
The proof for part (1) 1is similar to that of Lemma 4.1. In fact
the two results are identical. When € is normal, it is easy to

establish that

p{tlsx} = ®(x).

Let ﬁl(i=2,3.4) be sample moments of the inflated OLS residuals. Then,

it can easily be shown that

. - ~ - 2! - ~ ~e
R e o | O R o

3 5 3
[ x4'3x] + 10[1:,‘1:[ X lgf +15x]}] . 02y,

Note that ﬁa(i=2’3'4) are 0(1). Consequently,

p{tzsx]ﬁ‘l} = &(x) + 0(n~V3).

For the proof of part (2), one requires the applications of
Theorems 2.12, 3.2 and 3.3. It remains to show that both ﬁz and ﬁa are
unbiased estimates of K, and p,, respectively, and that E(ﬁ“) admits
errors O(Kn-l). The proof then becomes rather straightforward from the

above Edgeworth expansion. Q.E.D.

The results of Lemma 4.5 are not restricted to the case when the
error distribution is normal. Both results can also be applied to any

ca-¢, whenever the error distribution is symmetric.

Lemma 4.6: lLet e comes from a nonsymmetric distribution. Then,

(1) p{t:sxli,} = P{tlsx} + o(n"V?3),
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(2) p{t:sx} = p{tISX} + O[n_iff] .

Proof:

The proof of part (1) Is straightforward from a similar proof in
Lemma 4.5. For part (2), one needs to know that E(j ) and E(u,) eadnit

-1/2

errors of O{n VE] and O(Kn"!), respectively, while ﬁz is unbiased.

The remainder of the proof is then also straightforward from Lemma 4.5.

Q.E.D.

lemmas 4.5 and 4.6 compare the bootstrap distribution of t.1 with
its exact distribution. The results are similar to those of Lemmas 4.1
and 4.2, respectively. When K=1, the two sets of results are ldentical.
As the number of regression coefficlents 1ncreases, bootstrap
approximations of t1 based upon inflated OLS residuals become less

accurate.

The following theorem gives the accuracies of BCl's based upon t:.
when inflated OLS residuals are used for bootstrapping. The notation is

that of Theorem 4. 2.
Theorem 4.6: (1) Let the error distribution be symmetrric. Then,
- -
p{t1 (a)sxst1 ( 1-a)}<1—2a

and the difference will be 0(Kn™2).

(2) The difference will be O[n-x\/f] when the error

distribution is nonsymmetric.

Proof: With reference to the proof of Theorem 4.2, the proof is rather

straightforward upon applications of Lemmas 4.5 and 4.6. Q.E.D.
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Simllar extension can also be made to the bootstrap distribution of
t2 in the case when inflated OLS residuals are used for bootstrapping.
Since the proofs of the following [emmas can easily be adapted from the

proofs of Lemmas 4.3 through to 4.6, Lemma 4.7 below will be stated

without proof.

Lemuma 4.7: (1) Let the error distribution be continuous having finite

moments up to the fifth moment. Then,

. - -1/72
p{tZSx]Fz} = p{tzsx} + 0(n""%).

(2) p{t;sx} = p{tzsx} + 0(Kn™2) in the case when the

error distribution is symmetric.

(3) Let the error distribution be nonsymmetric. Then,

. 3 - -1
p{tz- j - p{tz_x} + O[n V/E]

Theorem 4.7: Let the notation be that of Lemma 4.7 and Theorem 4.4.
Then,
- L]
p{t (a)sx=t (1-a)}<1-2a.
2 2
The difference will be O(Kn'z) when the error distribution is symmetric.

Otherwise, it will be O[n-iﬁ].

Proof:
Upon application of Lemma 4.7, the proof is similar to that of

Theorem 4.2. Q.E.D.

It is obsérved again in Theorems 4.6 and 4.7, that the rates of
convergence of the bootstrr: distributions of t.l and t2 to thelr

respective exact distributions are of the same order. Both theorenms
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suggest that the empirical coverages of BCI11 and BCI2 will be lower than
nonminal, when inflated OLS residuals are used for bootstrapping. These
coverages are also lower, when compared to the case when observat ions of
the true disturbances are wused for bootstrapping. However, these
coverages are slightly higher when the error distribution is symmetric,

as compared to the case when the error distribution is nonsymmetric.

The results of Theorems 4.6 and 4.7 suggest that, when K 1s small
and vhen the error distribution iIs symmetric, bootstrap approximations
of both t1 and t2 are more accurate than what have been suggested by the
results of Efron (1979, 18985) and others. The 1latter results suggest
that the bootstrap approximations admit errors O(n'l). On the other
hand, when K is large relative to n and when the error distribution is
nonsymmetric, bootstrap approximation of both tl and t2 are poorer than
expected. In this latter case, the bootstrap approximations may admit

/2)

errors O(n'1 , rendering the BClI's to be of no practical value.

One other type of regression residuals that can be used for
bootstrapping is the class of BLUS residuals. When bootstrap
approximations based upon inflated OLS residuals failed to admit errors
up to O(n'I), bootstrap approximat ions based upon BLUS residuals are
Feasible alternatives. This is illustrated by the following lemmas and

theoremss.

To fix ideas, let L=(n—-K), and let &=Be, in which E:=(::l,t:'2. e )

is the nx1 vector of OLS residuals and such that BX=0, BBT=IL and BTB=M.

It is further assumed that £, the Lx1 vector of BLUS residvals, 1is used
for bootstrapping and that J goes to Infinity. The remaining notation

is mainly that of Lemma 4.5.
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Lemma 4.8: Let the errors be normally distributed, and let & be
centered prior to bootstrapping, such that the sample mean of € is zero.
Further, let the centered BLUS residuals be multiplied by the factor

3172
[n(n—l)'} . Then,

. -
(n p{tisxlF }
(2) p{t 5x|f=‘2} = p{tzsx} + o(n™'?)
(3) p{tl.'Sx} = p{tisx}
(4) p{t;sx} = p{tzsx} + O[(nL)—l]

Proof:
The proofs of parts (1) and (2) are similar to those of Lemmas 4.1
and 4.3 above, respectively. For the proof of parts (3) and (4), one

requires the application of Lemmas 3.13 and Theorems 2.14, 3.2 and 3.4.

Note that while the fourth sample moment of Be is an unbiased
estimate of H, the fourth sample moment of the tranformed BLUS
residuals admits an error O(L™}). On the other hand, the second and
t} " ~d sample moments of the transformed BLUS residuals are unbiased.
The remainder of the proof is then straightforward from the proofs of

Lemmas 4.1 and 4.3. Q.E.D.

Lemma 4.9: Let the notation be that of Lemma 4.8, and let the error

distribution be symmetric. Then,
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(1) p{t:sx} = p{tisx} + O(n'i)
(2) p{t;sx} = p{tzsx} + 0 Y

in which n<n<n3. the value of m depending on the type of error
distribution. Specifically, 1':=I..n2 for a certain leptokurtic error
distribution on the one hand, while on the other hand, n approaches n
when the error distribution is either extremely platykurtic or extremely

leptokurtic,

Proof':

The proofs are similar to those of Lemmas 4.1, 4.3 and 4.8, except
for the application of Lemma 3.16. Upon application of Lemma 3.186, it
can easily be seen that when the error distribution is leptokurtic, the
fourth sample moment of Be overestimates H, On the other hand, the
fourth sample moment of the transformed BLUS residuals can be an
unbiased, over or underestimate of M, depending on the leptokurtosis.
For small leptokurtosis, it is likely that E(ﬁ4)<u4. In the case when
the leptokurtosis is very large, one would expect that E(ﬁ4)>u4. Thus,
there exisis a leptokurtic error distribution such that E(ﬁ4)=u‘. When
this happens, it can be shown that E(_55)=0 and that E(ﬁe) admits an

error O(L-:). Consequently, for this particular case, 1)=Ln2.

When the error distribution is platykurtic, the fourth sample
moment of the transformed BLUS residuals underestimates M, However,
this underestimation can at most be 0O(1). This only happens when the
platykurtosis of the error distribution is extremely large. In other
words, the error distribution should be extremely flat in order for the

above to be observed. 1In this case, n approaches n.
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When the leptokurtosis of the error distribution is extremely large
or when the error distribution is extremely peaked, one wuuld observe an
overestimation of H, by the fourth sample moment of the transformed BLUS
residuals. This overestimation can at most be 0(1). Consequently, the

least value which n» can attain is n. Q.E.D.

Lemma 4.8 states that when the errors are normally distributed, the
rates of convergence of bootstrap distributions of t1 and ta to their
exact distributions are the same. Both bootstrap approximations of t1
and t2 admit errors O[(nL)-l]. When K is large relative to n, these
approximations are better than those based upon inflated OLS residuals,
which admit errors opo{e]. However, when K is small, the gain (in
terms of accuracy) in using BLUS residuals for bootstrapping may be

negligible.

In the case when the error distribution is leptokurtic, there
exists a leptokurtic distribution such that the bootstrap approximations
can be extremely accurate. This is one of the statements of Lemma 4.13.
When the leptokurtosis of an error distribution is small to moderate, it
is better to use BLUS residuals (in comparison to inflated OLS
residuals) for bootstrapping, especially when K is large relative tc n.
On the other hand, when the leptokurtosis (or platykurtosis) is

extremely large, one is better off using inflated OLS residuals.

The results of Lemmas 4.8 and 4.9 have implications for the
empirical converages of BCI's. The following theorem examines the
accuracies of BCI1 and BCIZ2, when transformed BLUS residuals are used

for bootstrapping. The notation is mainly that of Lemma 4.8 and
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Theorems 4.2 and 4.4. It is assumed that J goes to infinity.

Theorem 4.8: Let the error distribution be symmeiric, such that moments

up to the sixth order are finite. Then,

(1 p{t:(a)sxst:(l-a)} > 1-2a.
(2) p{t;(a)sxst;(l-a)} > 1-2a.

The differences wi-ll be O(n-x). n<n5n3, depending on the kurtosis of the

error distribution.

Further, let u4=1:u: and let there exists a 'r” such that E(ﬁ‘)=u‘.
Then, the left hand sides of (1) and (2) are less than (1-2a) when 1=t .
Otherwise, the contrary holds. When T=‘t'. n=n3; whereas, when =3,

m=nL. In the extreme case when T (or-w), m-=n.

Proof':

The proof is rather straightforward upon applications of Lemmas

4.8 and 4.8. Q.E.D.

The results are different for the case when the error distribution
is nonsymmetric. This is evident in the following lemma. The notation
is that of Lemmas 4.1 and 4.8, and it Is assumed that J goes to

infinity.

Lemma 4.10: Let the error distribution be skewed. Then,

(1) p{t:lef‘l} = p{tlsx} + 0(n™V?)

(2) p{t;sxli‘z} = p{tzsx} + o(n"V?
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(3) p{t:sx} = p{tISx} + 0[(1’11.)-1/2]

Proof:
The proof is similar to that of Lemma 4.8. Upon application of

Lemma 3.13 and Theorem 2. 14, one needs to note that E(ﬂaﬁ:yzl admits an

172
).

error O(L™ The rest of the proof i1s then rather straightforward

from the Edgeworth expansions of t: and t;. Q.E.D.
Theorem 4.9: In the case when the error distribution is nonsymmetric,

(1) p{t:(a)sx.St:(l-a)} < 1-2a.

(2) p{t;(a)SXSt;(l-a)} < 1-2a.

The differences will be O(an. n=nL. The notation is mainly that of

Lemma 4.8, Theorems 4.2 and 4.4.

Proof':
The proof is rather straightforward upon application of Lemma 4.10.

Q.E.D.

It is apparent from Theorem 4.9 that when the error distribution is
nonsymmetric, 1t would be advantageous to use BLUS residuals for
bootstrapping, especially when K is large relative to n. When K |is

large, BCI's based upon inflated OLS residuals are shorter than the

-1/2
).

exact confidence 1interval and the difference 1is O0O(n In

comparison, BCI’'s based upon (transformed) BLUS residuals admit errors

-1/2
)

O(n , m=nL. This is slightly less than the on™!) accuracy, which
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is suggested by earlier studies. However, it is still an improvement

since conventional approximations admit errors o(n™'?).

4.5 A Note on the Robustness of Bootstrap

Confidence Intervals of 8

The bootstrap method has generally been thought of as a
distribution-free method when it "does not rely for its validity or its
utility on any assumptions about the form of distribution that 1s taken
to have generated the sample values on the basis of which references
about the population distribution are to be made." (Maritz, 1981 p.1).
Based wupon this ©broad definltion, the bootstrap method |is
distribution-free since its validity does not depend on the underlying

distribution. This is the view of existing results in the literature.

In this section, Hampel's definition of robustness (Theorem 4.1
above) is used to study the robustness of BCI's against alternative
distributions. The results of Theorems 4.2 through to 4.5 suggest
that when a sample of size n of the true errors are used for
bootstrapping, both BCI1 and BCI2 are robust to alternative
distributions up to o(n™). With proper scaling of the
observations on the true errors, BCIO is also robust up to o(n™').

Otherwise, it is robust up to O(n™'’?).

When 1inflated OLS residuals (or OLS reslduals) are used for
bootstrapping, the results of Theorems 4.6 and 4.7 suggest that both
BCi1 and BCI2 are robust to alternative distributlions up to O[n-lﬁ].

=~1/2

BCIO pased upon OLS residuals admits an error O(n } while that based

upon inflated OLS residuals admits an error of at most O[n-iﬁ].
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On the other hand, when properly transformed BLUS residuals are
used for bootstrapping, the results of Theorems 4.8 and 4.9 suggest that

-1/2 m=nL. Thus, the

BCIO, BCI1 and BCI2 are all robust up to O(n
conventional view that the bootstrap method 1is robust against

alternative distributions up to O(n'l) is somewhat erroneous.

4.6 Summary

Edgeworth expansions are used to ~compare the bootstrap
distributions of t1 and t2 to their exact distributions. The speeds of
convergence of both bootstrap distributions to their exact distributions

are shown to be the same for all types of error distributions.

In the case when a sample of size n of the true errors is used for
obtaining the bootstrap estimates of the regression coefficients, it lis
shown that both bootstrap distributions of t1 ard t2 admit errors of at
most O(n™}). This is consistent with the results of Efron (1978,1985),
Singh (1981) and Abramovitch and Singh (1985). When the error
distribution is symmetric, the bootstrap approximations are more

accurate than the O(n-l) accuracy suggested above.

Three types of bootstrap confidence intervals are al. studied.
These are BCIO, BCI1, and BCIlZ2. BCIO is the ‘naive’ BCIl obtained by
ordering the bootstrap estimates of B. BCI1 and BCI2 are based upon
t1 and tz. respectively. When the sample size is small to moderate,
BCI2 is the appropriate interval. Nevertheless, BCI2 is still shorter
than the exact confidence interval and the difference is at most O(n™').
When the error distribution is symmetric, this difference will be

2).

O(n These results are valid for the case when the true errors can
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be observed.

When the true errors are nonobservable and when regression
residuals are used for bootstrapping, the bootstrap estimates may yleld
inferior results, especially when the number of regression coefficients
is large relative to n. When OLS or inflated OLS residuals are used for

bootstrapping, the bootstrap approximations of t.1 and t2 admit errors

-1/2
)

O[n-xﬁ]. In comparison, these approximations admit errors O(7q

7=nL, when BLUS residuals are used for bootstrapping.

It has been shown that existing bootstrap results for a general
statistic cannot be applied to the bootstrap estimates of regression
coefficients. One reason is that the true errors are nonobservable.
When K is small and n large, the discrepancy between existing results
and the results obtained here is negligible. On the other hand, this

discrepancy can be significant when K is large relative to n.

For the case when OLS or inflated OLS residuals are used for
bootstrapping, the empirical coverages of BCI1 and BCI2 are lower than
the nominal coverage. The difference 1is O(Kn—z) when the error
distribution is symmetric and O[n-lV?] otherwise. In the case when OLS
residuals are used, BCIO should be avoided because it 1is extremely

short, especially when n is small and K large.

In comparison, when BLUS residuals are used for bootstrapping the

above difference will be O(n—l), n<n5n3, depending on the kurtosis, when

the error distribution is symmetric. Yhen the error distribution ls

normal, #n=n(n-K). For nonsymmetric errors, bootstirap approximations
-1/2

admit errors O(n "7), 7m=n(n-K).
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Thus, when K is large relative to n, BLUS residuals should be used
for bootstrapping. This is consistent with the results of Chapter 3. On
the other hand, BLUS residuals are cumbersome to compute. Also, the

-1/2
difference between n VK and {n(n-K)} is negligible when K is small.

Hence, when K is small, it is recommended that inflated OLS residuals be

used for bootstrapping.

The bootstrap method has generally been thought of as a
distribution-free statistical method, at least up to O(n-lL, Again,
this generalization cannot be applied to the case of regression
coefflicients. Hempel's definition of robustness is used to study the
robustness of BCIl's agalinst alternative distributions. It is found that
both BCI1 and BCI2 are robust to alternative distributions up to O(n'IL
provided that the true errors are observable. Otherwise, they are
robust up to o[n"ﬁ] and 0(n"'"®), #=n(n-K), when inflated OLS and BLUS

residuals are used for bootstrapping, respectively.
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[T e N

CHAPTER FIVE

BOOTSTRAPPING IN A MULTIPLICATIVE MODEL

5.1 Introduction

Double-logarithmic models are commonly wused in economics,
especlally as production, utility and demand functions. The simplest
form is the Cobb-Douglas model, which is a basic tool in economics,
especially In production and consumer theorles. [See e.g., Bodkin and
Klein (1967).] Examples of higher order double-logarithmic models are
the transcendental logarithmic (translog) and generalized Cobb-Douglas
models. [See e.g., Guilkey, Lovell and Sickles (1983).) These types of
models are used in production [see e.g., Fuss, McFadden and Mundlak
(1978), and MaCurdy and Pencavel (1986)), utility [see e.g., Jackson
(1984)]) and demand functions [see e.g., Pollak and Wales (1980), and

Lurano, Pierse and Richard (1986). ]

These models are useful for situations in which factor shares are
required to be conctant. This type of situation is likely to prevall
when both product and factor markets are assumed to be perfectly
competitive. Moreover, by assuming a multiplicative lognormal
disturbance term, an apparently nonlinear model may be transformed into
a2 linear one and estimated by the least-squares procedure. Although
there are several other nonlinear functions which are better suited to
production functions, the multiplicative double-log model is the least
complicated in .erms of the estimation of its coefficients and thelr
standard errors, and the construction of confidence intervais for these

coefficients.
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An important difficulty in a log linear model is the estimation of
the constant term and its standard error. Let B be the coefficlent to
be estimated, and let é be an unbiased estimate of B. A nonlinear
function f3, say g(é). is generally a biased estimate of g(B). [See
e.g., Goldberger (1868).] In this chapter, attention is restricted to
the case when g(.) is an exponential function. One reason is that this
functional form 1is frequently used in the econometric literature.
Another reason is that an unbiased estimate of exp(B) is readily
available, and this can be obtained by applying Filnney's (1951)

procedure.

Based upon the assumption that a double-log model has a
multiplicative error term, the model can be iinearized using lcgarithms.
Although the model can be linearized by taking any form of logarithmic
transformation, the natural logarithm is often used because of the
common practice in assuming that the errors are identically and
independently distributed with a 1lognormal probability distribution,
having unit mean and finite variance. Let vt be one such error and 0'12)
be 1its finite wvariance. Then, it 1is well known that E(log
vt)=-élog(1+¢r2). Consequently, when 61 is the intercept term of the
linearized model and when f31 is 1its OLS estimate, there will be a

downward bias in f‘31. However, this bias can eacily be corrected.

Let B be the constant term of a double-log model. A ‘naive
estimate’, defined as exp(éi). will also be a biased estimate of B.
Unlike the bias 1in é:’ which is easy to correct, it 1is somewvhat
difficult to correct for the bias in exp(éi). Bradu and Mundlak (1970)

[hereinafter, B-M] suggested a blas-correction procedure based upon a
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g-function, introduced by Finney (1951), which requires extensive tables
and may yield unacceptable negative values for some values of Its
arguments (see Teeken and Koerts, 1972, p.804). Recently, Srivastava
and Singh (18889) [hereinafter, S-S] proposed a bias-correction procedure
which 1is simple to use and does not require the use of Finney's
g-function. It is found in the Monte Carlo simulation study below,
using B-M’s original example of Israeli agriculture, that the B-M and
S-S estimates are almost the same under the assumption of multiplicative
lognormal errors. This is because the B-M estimate is a uniformly
minimum variance unbiased estimate (UMVUE) of B and the S-S estimate has
negligibly small bias (less than 0.05%). Both estimates were found to
be better than the naive estimate, in terms of both bias and dispersion.
However, for other examples, the S-S estimate can be blased and its bias
can be large enough to be of some concern, especially when the error
variance 1is large. In these situations, Efron’s bootstrap can be
successfully applied to obtain an unbiased estimate of B, using the S-S
estimate. Alternatively, by applying a blas-correction formula given
below, the S-S estimate can be modified to be almost UMVU. This latter
method gives almost exact results, whereas, the bootstrap modification
of the S-S estimate is only accurate to O(n'j). When the bias |is
smaller than O(n‘l), the bootstrap modification of the S-S estimate may
not outperform the original S-S estimate. In the Monte Carlo study
below, it is found that both the B-M and S-S estimates have almost
similar dispersions; these are both significantly smaller than the

dispersion of the nalve estimate.

In order to construct a confidence interval for the constant term,

the distribution of its estimate needs to be known. Even under the
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assumption of lognormality, these distributions are difficult to obtain
and are not available in tne literature. For both the B-M and S-S
estimates, unbiased estimates of their standard errors can easily be
computed. One of the alternatives, then, 1s to apply asymptotic theory
and use the normal or t-tables. The Jackknife method has been
considered by Chaubey and Singh (1988). Other methods have also been
considered by Dhrymes (1962), Goldberger (1968), Heien (1968), Teeken
and Koerts (1972) and Evans and Shaban (1976). Phillips (1984, 1885)
shows that exact confidence intervals for finite samples can be
obtained, provided that the distributions of the estimates are known.
However, Phillips’ method which 1is based upon extended rational
approximants is rather cumbersome and requires the use of symbolic
operators. These symbolic operators are computationally intensive and
may sometimes yleld estimates which admit errors of order 0O(n '"?).
Moreover, when the distributions of the estimates are unknown,
Phillips’ approach is not applicable. On the other hand, the bootstrap,
Jackknife and other resampling techniques [see e.g., Efron (1978) and Wu

(1986)), being distribution-free methods, can still be used. Only the

bootstrap method will be considered here.

It is shown in Chapter 4, that naive bootstrap confidence
intervals (BCI's), obtained by ordering the bootstrap estimates of the
regression coefficients, are inferior compared to other BCIl's.
Moreover, It is demonstrated below that for the constant term of a
multiplicative double-log model, the nalve BCI is biased and should be
avoided. One reason is that when either the B-M or S-S estimate is used
to construct this BCI, the mean of the bootstrap estimates will be a

biased estimate of the constant termn. Secondly, the variance of the
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bootstrap estimates will be larger than the variance of either the B-M
or S-S estimate, depending on which of the two estimates 1s subjected to
bootstrapping. In what follows, two alternative BCI's are proposed and
evaluated by Monte Carlo simul.tions. The BCI's are examined by
comparing their empirical coverages with a pre-determined nominal value.
The empirical coverage of a confidence interval 1is defilned as the
observed frequency that it contains the true value of the unknown

parameter.

Section 5.2 iIntroduces the model and establishes notation.
Least-squares estimation of the model 1s discussed in Section 5.3. In
Section 5.4, Monte Carlo simulation results for the various estimates
are compared. In Section 5.5, bootstrap theory is developed for the B-M
and S-S estimates, followed by theoretical developments of two
alternative BCI's for both the B-M and S-S estimates of the constant

term.

5.2 The Model

Let the mode! to be considered be

K Bl
Yt =B4{M [Ztl] v, (t=1,...,n) (5.2.1)
1=2 J

in which Yt is the t’'th observation on the dependent wvariable, ZU is
the corresponding observation on the 1’th (i=2,3,...,x} non-stochastic
independent variable, B and BI (1=2,3,...,K) are the unknown
coefficients to be estimated from the data, and v, is the t'th
observation of the disturbance term. The disturbance term, v, is

required to satisfy the following assumptions:

(A.5.1) vt>0 and E(vt) =1 V t=1,...,n.
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. _ 2 _
(A.5.2) var(vt) =0, Y t=1,...,n.

(A.5.3) Cov(vs.vt) =0 V g*t.

Although there are other distributions which satisfy all the above
assumptions, it 1s customary (especially, among applied econometricians)
to assume that the disturbances are lognormally distributed.
Asssumption A.5.1 is essential for most economic data to ensure that,
for example, ©prices or quantities demanded (or produced) are

non-negative.

When the disturbances are ! :znormal, the above model can be

transformed by taking natural logarithms on both sides of (5.2.1) into

X
y, = Bo + lZ:Z[B‘xu] + £, (t=1,...,n) (5.2.2)

in which yt=log(Yt). x“=log(2u), 1=2,...,K, Bo=log(B) and t=1<>g(v'~).
Note that (5.2.2) can also be written compactly as

y=XB + € (5.2.3)

in which xu=1 (t=1,...,n). The design matrix X is presumed to satisfy
assumpt ions (A.2.1) and (A.2.3), as stated in Chapter z. Under the
lognormality assumption of the disturbance term in (5.2.1 satisfies

(see e.g., B-M),

= - 1,2
(1) E(ct) = -0,

2

(11) Var(et) =0 Vi,

(131) Cov(cs,et) =0 V s®t,

in which o“=log(1+c.).  Let B =10g(B)-30° and w=e +i0°. Then, the
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regression model

y=X8+uw (5.2.4)

becomes the linear regression model of Chapter 2, satlsfying assumptions
(A.2.1), (A.2.2) and (A.2.3). Later, the bootstrap theorems of Chapters

2 and 3 above are applied to (5.2.4).

5.3 Estimation of the Modeil

The OLS estimate of B in (5.2.4) is given by
B = (X™X) Wy, (5.3.1)

Note that é is BLUE but an estimate of 3 given by exp(él) would be
blased. Since Bi=log(B)-%cr2, an estimate of B given by é1=exp(l§+%az)
has B as it: median and is a ‘median-unbiased’ estimate of B. [See

e.g.,Goldberger (1968) and B~-M.] An unbiased estimate of o is given by

s? = {(GTG)/(n-k)} (5.3.2)
A
in which w=My.
However, the expected value of é1 is not B. When the errors are
lognormal, B-M showed that Finney's (1951} g-function can be used to

obtain an unblased estimate of B. This approach had alsoc been adopted

by Heien (1968) and Goldberger (1968).

Using Finney's g-function, an unblased estimate of B can be

obtained as

- - 1_-1 el
B2 = {exp(Bi)}{gm[ém (m+1)(1-h)s ]}
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in which

g_(t)

E m’ (me2) {m/(m+1)} {23/ )
% m(m+2). .. (m+2)) ’

T= [%m"(mﬂ)(l—h)sz].
m= (n-K),
h=a(XX)'a, and a' = (1,0,...,0).

B-M mistook éx as an unbiased estimator of log(B) and, consequently,

erroneously gave

faa = {exp(fa‘l)}{gm[- %m'I(m+1)hsa]}.

as an unbiased estimate of B. Note that fiz is the UMVUE of

B and that éa is biased downward.

The variance of 82 is

Var‘(fia) = Bz[2¢"¢(a2)-1] (5.3.3)
in which
1
8(o®) = j[vr(1—v)rexp{2¢2[(v—%)+h(1-v)]}]dv,

0
[ \ 2 -1

¢ = {I‘[E(mﬂ)] }[l"(m+1)] )
L

N
r = é(m 3)]

B-M (p. 204) suggest estimating Var'(éz) with
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Var(Ba) = th\1

in which
A2 =11 -1 ( 2 1 -1 2|17
, = |1798,|n (m+1)(1-2h)s 3.,[5'“ (m+1)(1-h)s .

The g-func’ ‘on 1s somewhat difficult to use and it may sometimes
yield unacceplable negative values, especlally for és when s 1is large.
To overcome this diificulty, several alternative (but biased) estimates
have been proposed. A promising estimate Is recently proposed by S-S

and is glven by

- ~ U
84 = exp[B1 + 5(1 hls ]

It is shown by S-S that
- 1, 2 1 2)"™?
E(B4) = {exp[f31+éh¢r ]}[1-m' (l-h)o-] (5.3.4)

and

-m/2
Mss(fa‘) = [[exp(261)]{[exp(2h02)] {1 - 2m“(1-h)a2]

-u/2
- Z{exp[%( 1+h)a'2]}[1-m'1( 1-h)cr2] + exp(crz)H . (5.3.5)

Since MSE(é‘) depends inter alia on B1 and crz, which are unknown, S-S

suggest
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e - -1 2) ™2
MSE(B,) {exp(ZBi) [1-2m (1-h)s ]
1 2 w2 2
- 2{exp[5(1—3h)s ]}[1-m"(1—h)s2] + exp[(l-Zh)s ]

be used as an unbiased estimate of MSE(ﬁg).

From equation (5.3.3), the bias of ﬁ‘ is given by
- - 1, 217! -1 2)™™2
Bias(B4) = E(B‘) -B=B 1-[exp(5h0' )] [l-m (1-h)s] .

An estimate of this bias can be obtained by replacing B and o° with 1’34

and sz, respectively. This estimate is

A - 1, 27! -1 2)™2
Bias(Bi) (B4) 1—[exp(§hc- )] [l—m (l-h)s] .

A A .
Note that Bias(B‘) is a biased estimate of Bias(BA) because both B4

and exp(%hsz) are biased estimates of B and exp(%hcrz). respectively.

-~

The variance of 84 is often needed for the construction of

confidence intervals. By definition, this variance is given by
R R Y-
Var(B4) = MSE(B“) - [Bias(B‘)] .

and an estimate of it can be obtained as

A A A, N2
Var(B‘) = MSE(B‘) - [Bias(B4)] .

A A
Vheareas MSE(B‘) 1s an unbiased estimate of MSE(B4), Bias(B4) is a

biased estimate of Bias(é‘). Consequently, V;r‘(é.) would be a biased
estimate of Var'(é‘). This estimate can be improved by replacing
Bigs(é‘) by a better estimate of Bias(é‘). One such estimate of
Bias(ﬁ4) can be obtained by replacing B and exp(%ho-z) with unbiased

estimates.
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When the naive estimate

és = exp(éi)

was used to estimate B in thelir example, B-M estimated that the blas is
nearly 14.91% of the true value. However, their estimate was based upon
the erroneous assumption that éa is an unbiased estimate of B. In the

-

Monte Carlo simulation study below, when Bl. éa and és are used as
estimates of B, their ‘actual’ biases were found to be approximately
14.64%, -7.05% and 5.17%, respectively. These values were obtained from
Table 5.1 and adjusted for simulation errors. Note that the discrepancy
between B-M's estimate of the bias of fas and its ‘actual’ blas arises,
because §3 was used in B-M's calculation instead of faz and that f33 is

biased downward. Thus, the actual bias in using f35 is less than B-M's

estimate. The simulation results suggested that éa should not be used

in the first place.

When both 81 and 0'2 are unknown but are replaced, respectively, by

f31 and s° in (5.3.5), the resulting estimate is obtained:

R . -n/2
M§E(B4) = {[exp(ZBl)]{{exp(Zhsz)] [1-2m-1(1-h)52]

2 2) ™2 2
- z{exp[%(hh)s ]}[l-m'l(l-h)s] + exp(s) }|.

This estimate will overestimate MSE(I%A). Monte Carlo simulation results

below indicate that the mean of M§E(§4) is almost twice MSE(fB4). Let

o ony o om2fo -1, 20
Var(B) = B2[2¢ o(s2) 1]
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in which the functions ¢ and & are as defined in (5.3.3).

Since Var(ﬁz) is similar to MSE(ﬁ‘), to the extent that both are
functions of B and exp(o®), one would also expect that Vir(ﬁz) will
also overestimate Var(éz). However, due to difficulties 1involving
numerical 1integration, the estimate Vir(éa) is not included in the
simulation study below. This has implications for the bootstrap
estimates of B, when either the B-M or S-S estimate is subjected to
bootstrapping. These implications will be discussed in Section 5.5

below.

5.4 Small Sample Properties of the Estimates:

Some Monte Carlo Results

All the simulations below are based upon the data given in B-M's
example of Israeli agriculture. The sample size, n, is 10 and the
number of exogeneous variables (including the intercept), K, is 4. A
total of 800 trials 1s conducted and the parameter values are set at
B=36. 237, Ba=2'840’ Bs=-0.355 and c'2=0.1384. All of the above values
correspond to the OLS estimates of the linearized model, using B-M's

example.

Monte Carlo simulation results are reported in Tables 5.1 and 5.2.
In Table 5.1, the means, standard errors and percentiles of the five
estimates of B are tabulated. All results are adjusted for simulation
error. To study the effects of a scale change in 0'2. the variance of ¢
was multiplied by a factor of five and the results are reported in Table
5.1(b). Finally, Table 5.2 reports the biases and confidence intervals

of estimates of the variance of éz and MSE of §4.
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Pseudo-normal errors are first generated by IMSL’s GGNML subroutine
with an initial SEED value of 9999. These are then transformed to
conform with (A.5.1), (A.5.2) and (A.5.3). In other words, let
(ui,u

2.....un) be the N(0,1) errors generated by GGNML. The varlables ¢

and V are then generated as

= 12
(1) €, = uc - -0,
(11) v, = exp(et),
in which t=1,2,...,n.

Given Y, the +t’th observation on the dependent variable |is

reconstructed as

K Bl
Yt = B ‘]-12 [Z“] v, (t=1,2,...,n). (5.4.1)

Taking natural logarithms on both sides of (5.4.1), and writing

- - - - 12
log(Yt)—yt. log(th)—xtz, log(Zw)—x and Bl-log(B) 59

L3

y, = Bx + 132)('_2 + Bax,.3 ‘o (5.4.2)

Equation (5.4.2) may then be written as
y= XB + w

in which X is a nx3 matrix comprising of unity in the first column and
X,y (t=1,2,...,n) in the 1'th column for 1=2 and 3. The least-squares

estimates of B and o can then be obtalned in the usual way.

Since exact confidence intervals for the various estimates are

difficult to obtain, calibrated confidence bounds based upon the
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percentile method are obtained by Monte Carlo simulations. These are
used as proxy measures of the corresponding exact confidence bounds.
The calibrated confidence bounds are obtained for 800 trials. The
corresponding values of the varlous estimates of B are reported in Table
5.1. The following remarks are in order. First, all distributions are
heavily skewed to the right. Secondly, as the nominal bias of an
estimate of B increases, the distribution of that estimate shifts away
from the origin and its dispersion increases. Thirdly, as the nominal
blas of an estimate increases, both its lower and upper confidence

bounds shift to the right and away from the origin.

The results in Table 5.1 also indicate that among the blased
estimates, the S-S estimate (154) has the least bias and its standard
error is almost identical to that of the UMVUE of B. They suggest that
the S-S estimate 1is the best among the four alternative estimates
considered. When the variance of ¢ is multiplied by a factor of 5, it
is observed from Table 5.1(b) that, the bjases of all estimates increase
by more than five-fold, except for the UMVUE of B. The S-S estimate is
still the best among the four alternative estimates, but its bias

increased considerably from 0.02 to 0.512.

To complete this Monte Carlo simulation study, Table 5.2 reports
the blases and confidence interwvals of the estimates for the exact
variance and MSE's of the B-M and S-S estimates. In this table, two

other variables were also included. These are

" A . . -2
(1) A1=[Var'(82)][82] .
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Table 5.1:

Means, Standard Errors and Percentiles of

Several Estimates of B1

a) o= 0.138
Std. _ Percentlles
Estimate Bias Error 2.5 5.0 10.0 90.0 95.0 97.5
fal 5.304 22.91 13.85 15.68 19.00 67.54 80.39 102.57
fa?_ 0.000 19.28 11.82 14.19 16.71 60.16 71.18 83.75 -
1§3 -2.555 17.78 11.01 13.01 15.45 55.86 66.20 76.39
1‘34 0.020% 19.30 11.83 14.22 16.73 60.17 71.35 83.91
fas 1.873 20.80 12.82 14.77 i7.75 63.73 75.81 91.01
b) %= 0.690
Std. Percentiles
Estimate Bias Error 2.5 5.0 10.0 90.0 85.0 97.5
1§1 38.95 136.6 5.77 7.23 10.13 158.9 221.6 409.3
éz 0.00 50.4 3.80 4.66 5.96 77.3 114.3 154.0
1“33 -11.18 33.3 2.81 3.43 4.36 53.9 80.4 112.3
1“3‘ 0.54° 51.5 3.80 4.71 6.12 79.1 115.0 157.9
és 13.81 77.1 4.63 4.69 7.69 106.1 155.8 233.7

1.

All results are based upon 800 trials and are adjusted
The exact value of B is 36.237.

for simulation error.

2.

3.

b Juad

Actual bias of 1“3‘ is 0.018 when o°= 0.138.

Actual bias of fa‘ is 0.430 when o°= 0.690.
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Table 5.2: Biases and Percentiles of the Estimates of

Var(éz) and MSE(ﬁ‘)1

Bias Percentiles
Estimate (% Bias) 2.5 5.0 10.0 90.0 95.0 97.5

A
Var(Bz) 44.78 22.75 30.68 47.17 1840.1 1270.2 848.9

A (12.6%)

MSE(B4) 19.63 22.12 29.82 45.94 1701.1 1181.7 806.5
(5.5%)

M§E(é‘) 443. 30 28.94 40.76 64.25 5053.4 2700 4 1607.2

(124%)

Al 0.0068 0.061 0.073 0.102 0.511 0.449 0.401
(2.91%)

A 0.0007 0.060 0.072 0.100 0.463 0.411 0.371
(0.31%)

1. All results are based upon 800 trials and all unknown

true values are replaced by the corresponding Monte Carlo
estimates. Exact values of B and o° are 36.237 and 0.138,
respectively. On the other hand, the Monte Carlo estimates

of Var(éz), MSE(éA). A1 and A2 are 355.22, 356.80, 0.2388
and 0. 2267, respectively.
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. AL A . a2y e 42
(11) A2={MSE(B‘)- [Bias(B‘)] }[ ‘] .

The corresponding true values of R. and 12 are

-~ -~ —2
. [Var(Ba)] [92]
N A . NZyp 82
y {MSE((B‘)- [Bias(B‘)] }[B‘] ,

>
0

and

>
[}

respectively.

A
The results in Table 5.2 show that the bias In MSEZ(B‘) is less than
A A
the bilas 1in Var‘(Bz). In particular, MSE(B‘) has a bias of 5.6%4 as
A, A
compared to a blas of 12.6% In Var(B4). When B2 Is used as an estimate
A

of B, both ég and Var(éa) are needed for constructing confldence
intervals of B. Cn the other hand, when f32 is replaced by fa‘ as an
estimate of B, both f34 and MgE(éq) will be needed for constructing these
intervals. Consequently, the results seem to suggest that conflidence

intervals based upon é& may have better empirical coverages than those

intervals based upon l§2.

It will shown in Section 5.5, that the MSE of bootstrap estimates
of B based upon é‘ converges almost surely to M§E(f3‘), and that the
variance of bootstrap estimates of B based wpon f32 converges almost
surely to VEr‘(fBz), as J goes to infinity. The results in Table 5.2
indicate that the mean of M§E(é‘) is more than twice the actual MSE of
é4. Although no result is obtained for Var‘(éz). because of difficulties
relating to numerical integration, one would expect the mean of Vir‘(é4)

to be about twice the actual variance of f32. This is because Var(éz) is
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very similar to MSE(é‘). to Lthe extent that both are functions of B and
exp(trz). Consequently, the simulation results suggest that naive
bootstrap confidence intervals should not be used for constructing
confidence Iintervals of B. This 1is Iirrespective of whether the

~

bootstrap estimates of B are based upon 82 or é‘. The resulting
confidence intervals will be too wide and in most cases, the length of
these intervals will be at least twice the length of the exact
confidence Interval of B. Consequently, the empirical coverages of

nalve bootstrap confidence intervals will be larger than their nominal

coverages.

Bet ter bootstrap confidence intervals of B can be constructed by

-~

obtaining the bootstrap distribution of ;\1. when B2 is used as an
estimate of B. When 54 is used =s an estimate of B, these intervals can
be constructed by obtaining the bootstrap distribution of 32. From
Table 5. 2, Al has a bias of 2.3% whereas 2\2 has a bias of only 0.3%.
Thus, a confidence interval of B obtalned by using the bootstrap

distribution of ;\2 would be more reliable than a similar confidence

interval based upon Al.

5.5 Bootstrap Distributions of éz and l§4

In Section 5.2, the n components of the <disturbance vector
v‘-‘-(v.....vn) are assumed to be 1.i.d. with unknown distribution
function, F, having mean unity and variance o'ﬁ. For any random sample of
v, the sample mean and variance are not necessarily unity and 0'2.
respect i vely. However, these sample measures are unbiased estimates of

their respective population quantities.
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The OLS residuals of (5.2.4), w=Me has sample mean 2zero and

n"E(&T&)=a?[n“(n-K)]. Let t=1,2,...,n and let 5t=exp(ét). in which
- - 412 a2
€, =0, [(rz-K) n] - 38 (6.5.1)

and s° is as defined in equrtion (5.3.2). Then, it can be shown that {)t

is always positive, provided that létlm' Also, it can be shown that

n . _ n . 2
E{"‘-1 Z [vt]} =1 and E{n Itzl [vc-l] } = a':. The objective of the above

t=1

transformation: is to obtain a sample of random values that closely
resembles a sample of lognormal errors with mean (-%o-z) and variance o°.
This is possible, provided that the underlying distribution function of

the true errors is in fact lognormal.

Given é and € of (5.3.1) and (5.5.1), respective'y, the bootstrap

responses can be obtalned by first bootstrapping € and then

reconstructing (5.2.3) as

y”) = XB + C(J) (5.5.2)

in which € = S e and B'=|(B +s%).B B for each bootstra
N &) 12 M-S Y P
replication (j=1,...,J). The estimate B is used instead of B, hecause 8

is unknown and 3 is an unbiased estimate of B.

The OLSE's of B and s°

o2

and s , respectively. These bootstrap quantities are obtained as

in (5.5.2) are the bootstrap estimates B:j)

L % =
B, = XXXy (5.5.3)
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2
L -1, T *
Sy * {(n K) [w(”w”)]},

2
in which w:”=m:“. Note that s:“ is a bootstrap estimate of o° and,

besides it, another bootstrap estimate of o° is

2
L] -1 * - T . -
Sap = {(n 1) [(e(” eu)) (C(J) e(”)]}

where

n
£ n € .
1§ D) tz; (jr
2 -2

Theorem 5.1 and 5.2 below show that both s:J and Sz(j) are
2

unbiased estimates of (rz. Thus, either s. or

s can be used
(5) 20))

without atffecting the bootstrap results. The following lemma states
another useful property of the selection matrix, S(J)' Lemma 5.1 below

will be used to prove Theorem 5.1.

Lemma 5.1: Let S(J) be a nxn selection matrix and let A=[am] be a real

nxn matrix of finite elements. Then, for n finite,

332:1 [SIJ)ASU)] 2o, {n'lhz:l [ahh]}ln + {n-l':[:z:[am]}[ﬁ:(n,n)].

Proof:
Let sf” = [sf“_l,....sf”_n]. Then,
sT As = i i{sT a S }
(J) (j he 5y (J).h hi (§)1.
and li[TAS}— iia lf:[sT S ]
Jj=1 ()] (y) 1SS hi Jj=1 (§).h (31,
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From Lemma 2.2

1 T a.s8. -1
{3, [S(j).hs(j)l.]} J a[n In]

when i1=h. Also, it is straightforward from the proof of Lemma 2.4 that

il o b

when i1 is different from h,

{3,21 [Sf“.hs”“.]} ILEN {n'z[E(n.n)]}.

The remainder of the proof is then straightforward. Q.E.D.

Theorem 5.1: Let n be finite. Then,

LR e

J

Proof: o

Note that s:“ can be written as

2
L _eytfeT ot _ TgT -
s(j) = {(n K) [c(j)Mc(J)]} {(n K)~ [ (J)MS(J)C]}.

Thus,

(n—K)I [[ U)]} - “T{jj; [sfj)ns”)]}é.

Upon application of Lemma 5.1,
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Note that §2= -%sz and [;:T;:]= {[n(n-l()q] [&T;] - [%nsa]}. Further note

that the linearized model always has an Iintercept tern. From
least-squares theory, it is known that when the regression model has an
intercept, the mean of the OLS residuals will be zero. This implies

that

& A n n
- N _ .
{l Zl [‘“J} 0 or {’Z ;[muwj]} 0. Since E(wJ) 50

T
———
"
——
~-~1=
—~1o
__3

[

_E
L
—
"

!
N -
qI\)
| S——

n

This requires that {Z
f

['"U]} e

The remainder of the proof is straightforward upon substitution of

“~75

the appropriate terms and noting that tr(M)=(n-K) and {(n-K)"1 [;JT;J]}=52.

Q.E.D.

Theorem 5.2: For n finite,

Proof:
Note that this theorem is a slight variant of Theorem 2.3 above.

Further, note that
2
L J-] -1 'T L ] -
52(1) = {(n 1) [e(j)e(“ ne“)]}

n
—_ _ -1 .
in which c(’) = {n l; [c”)]}.
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Upon application of Lemma 2.2,

1 *T * a.s.  ATA _ 2_ 1.2
{3J []} s, ot 1),

Also, it 1is straightforward to show that

2 n n
— =2 *1 -2 “"T T
e(j) {n [ 3 (J)]} {Z*Z[ (J)h S(j).l]}

and, from Theorem 2.4,

0~

Upon substitution of the proper terms,

L ED)E =5 ool ) ) ()

The R.H.S. simplifies to [n—lsz—%sz] and the remainder of the proof is

then straightforward. Q.E.D.

2 2

The next step is to replace é and s> by B:“ and s:” (or s;(”).

respectively, in order to obtain the bootstrap analogues of the B-M and

S-S estimates. These bootstrap estimates are

2
Ba(j) = {exp[ﬁ(”]}{g [ Ym+1)(1- h)s(“]}
* - 2
B“J) ~ exp BI(J) + [(1 h)S(J)]

Let the sample variance of B;(” and sample MSE of B:(“ be definecd

and
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as

- 1J [
in which B = 4~ X B . and
2 Jj=1 2(3)

& >
D)
——
.hm-
—
fl
Gl

S
[ B
o
- e

oy
|
(L]
X
e )
o
_VJ
N
e

Also, let

~ - L ] 2.2
Var(B ) = [B ] A
2()) 20 Ty

and
MSE(B. ) = 28", IHf1-[encaoms” NV
ap) = 15°P12R, ) [ m S(J)]
2 2 §-m/2 .2
- 2lexp|i(1-3n)s’ 1-n"(1-h)s’ + exp{(1-2h)s
2 N n SN
o 2 2 2

in which AI(J) is obtained by replacing s with s(j) in A1'

Theorem 5.3 below concerns the mean of the bootstrap estimates of

B. It is used to prove Theorems 5.4 and 5.5.

Theorem 5.3: Let § = [f3+%s2] and let n be finite. Then,
1
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and

(ii1) E|lim
J -0

e~1a

[y N

. +1 2 a.s.
L Bin*z® ] 7By

Proof:

First, note that B:,, can be written as

¢ _ = T, Ty =1, T *
Bl(j) B1 +a(XX)'X c(Jr

Upon application of Theorem 2.1,

b= ()

Since

a’(xTX)'1xT[E(n,1)] =1,

the first part of the theorem is then rather straightforward.

The proof for part (ii) follows directly from part (i) and Thevrem

From Section 5.3, it is known that E(él) = [Bl—%az]. The remainder

of the proof for part (iii) is then strajghtforward from part (ii).

Q.E.D.

Theorem 5.4 below concerns the relation between the mean of
VEP[B;L”], {j=1,...,7), and Var[B;]. On the other hand, Theorem 5.9
concerns the relation between the mean of M§E[B:(J)], (j=1,...,1), and

MSE[B:]. Both Theorems 5.4 and 5.5 rely upon the results of Theorems

5.1, 5.2 and 5.3.
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Theorem 5.4: Let n be finite. Then,

J
1 ~ L a.s. .
{} { [VaP(szp)]} — Var(Bz)

J=1

where

Var(Bz)

J 2
-1 . -
[lim {(J-l) Z [Bz(“ - BZ(“] H
Jo o 1=1

Proof':

]

Note that Var(B;) and Vir(BaL“) are the bootstrap analogues of
A A
Var(Ba) and Var(Bz). respectively. Since Var(Bz) is an unbiased

estimate of Var(éz). it is not surprising that

1 ~ L4 a.s. .
{s Zl[Var(Bz(J))]} — Var(Bz).

Nevertheless, the proof is not complete without the applications of

Theorems 5.1 (or 5.2) and 5.3. Q.E.D.

Theorem 5.5: For n finite,

J
1 = . a.s. .
{jj; [MSE(B“J))]} —2:%-; MSE(B,)

where
. 1 & . - 2
MSE[BJ = |lim {3 [ [Bm) - exp(Bi)] )
Jyo |Ty=1

Proof':
The proof is rather straightforward upon applications of Theorems
5.1 (or 5.2) and 5.3. It is also based upon the fact that MSE(B:) and

A

M§E(B:U)) are the bootstrap analogues of MSE(é4) and MSE(@4L
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A
respectively, and that MSE(B‘) Is an unbiased estimate of MSE(E‘).

Q.E.D.

When ér = [(él+és2).éz. . .ék]. it can be shown that

{exp [zél+sz]}[2¢“¢(sz)—1]

in which the functions ¢ and & are defined in (5.3.3).

Va.r(B;)

It can alsc be shown that

. . Y _ -m/2
MSE(B ) = {exp [2{3 +sz] ' rr===,xp(2hsz)] [1-2m 1(1—h)sz]
4()) 1 l.L

1 2 -1 w2 2
- 2exp[é(1+h)s ][l—m (l-h)sz] + exp(s”) }.

Note that MSE(B:) is similar to M§E(f3‘). and Monte Carlo results in
Table 5.5 indicate that the latter estimate is a biased estimate of
MSE(@Q). This implies tnrat MgE(B;) is a biased estimate of MSE(é4).
Since Vir‘(éz) and M§E(f34) have similar characteristics, this also
implies that V;r'(éa) is a biased estimate of Var(ég). Thus, bootstrap
confidence intervals obtained from ordered samples of either B;”) or

B:(J) are biased. The reason for this is that both Var‘(B;) and MSE(B:)
contain the expressions exp(2f31+sz) and exp(sz), which happen to be

biased estimates of B and exp(cra), respectively.

One alternative is to replace exp(2f31+sz) and exp(sa) by unblased
estimates of B and exp(cra). Although an unbiased estimate of B can bc
obtained, it is difficult to obtain an unbiased estimate for exp(vz).

The second alternative is to define
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. . O N
t”“ = [Bzu)-Bz] [Var(Bz)]

and t:(a) and t:(l-a) be the a'th and (1-a)’th percentiles of the

ordered sample of t;( J=1,2,...,J. The bootstrap confidence interval

n'

of B is then constructed as

. R . A N172
Bz(z) = B2 + tl(z)[Var'(Ba)] , 2= a,(1-a).

In Chapter 4, it is shown that a BCl based upon t: is accurate to

o(n"'"?). Confidence intervals obtained in this form would be
acceptable for large samples when the difference between 0(n™?) and
O(n'i) is negligible. For small samples, the accuracy of these
conflidence intervals can be improved by constructing

: 5 g [varce® )

tayy = [2())— 2][a'“ 2(3)] ‘
The bootstrap confidence interval associated with t;-(J) can be obtained

as
B'(2z) = B At'()-1 = a, (1-a)
22—2{1 1[22] , Z = a, a).
This 1s because
A N1/2 ..
[Va“(Bz’] = (B)(A).
Nevertheless, t; is applicable, provided that {I-Ai[t;(l-a)]} is

restricted to be positive. It can be shown that this restriction always
holds for the lower bound. However, it does not always apply to the

upper bound and this leads to the possibility of an open upper bound.

Monte Carlo estimates of the empirical coverages of conventional

and bootstrap confidence intervals are reported in Table K.3. The

150



results for the éa and é‘ are somewhat similar. The simulation results

indicate that BCI's based upon t; have the best performance in terms

(S}
of its empirical coverage. In Table 5.3, BCI2 represents one such BCI.

The empirical coverages of BCI's based upon t.: and conventional

'
confidence intervals based upon Student’s t-distributicn, are not
well-balanced. Both coverages are smaller than the nominal coverage for
the lower bound but are greater than the nominal coverage for the upper
bound. These two confidence intervals are reported in Table 5.3 as BCI1
and CCI1, respectively. Two confidence intervals are also constructed
by taking into account the fact that varlance of elther f32 or é4 is
dependent upon B. They are represented by BCI2 and CCI2, and their
coverages are also not balanced. This time, however, the coverage of
CCI2 1is greater than the nominal coverage for the lower bound but
smaller than the nominal coverage for the upper bound. On the other
hand, the coverage of BCI2 tends to be more balanced, when compared to

the coverage of either BCI1 or CCI2. Thus, the results suggest that one

should use BCl2.
5.6 Conclusion

It is shown in this chapter, that Bradu and Mundlak (1970)
mistakenly give a wrong estimator for log(B), where B is the constant
term of a multiplicative model. Consequently, they erroneously give an
incorrect estimator for B. This estimator is shown to be blased

downward.

The focus of this chapter is on the estimation of B. Both the

correct Bradu-Mundlak's estimate of B and a similar estimate glven by
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Table S5.3: Empirical Significance Levels of Bootstrap

and Conventional Confidence Intervals1

Confidence Interval True B-M Estimate S-S Estimate
2.5 0.4 0.4
Lower 5.0 0.8 0.8
10.0 1.8 1.9
CCIlt
2.5 12.3 12.8
Upper 5.0 18.3 18.6
10.0 24.1 24.5
2.5 4.3 4.3
Lower 5.0 7.0 7.3
10.0 9.9 10.4
CCl2
2.5 0.4 0.5
Upper 5.0 1.4 1.4
10.0 5.8 6.0
2.5 2.5 2.6
Lower 5.0 3.6 3.8
10.0 5.4 S
BCI1
2.5 11.6 13.3
Upper 5.0 17.5 19.1
10.0 26.0 27.5
2.5 2.0 1.9
Lover 5.0 3.3 2.9
10.0 7.0 6.3
BC12
2.5 1.1 1.5
Upper 5.0 2.4 2.5
10.0 5.0 5.1

1. All results are based upon 800 trials and 200 bootstrap

replicatlions. Exact values of B and o'2 are 36.237 and

0.138, respectively.
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Srivastava-Singh are re-examined for bias, and confidence intervals have
also been constructed. These estimates are denoted by éz and é‘.
respectively. The distributions of both estimates are found to be
heavily skewed to the right. It 1s also found that, when the wvariance
of the error term becomes larger, the bias of f3‘ increases and 1its

distribution shifts to the right.

It is also shown in this chapter, that the MSE of bootstrap
estimates of B overestimates the actual MSE é‘. when the bootstrap
estimates are obtained in a similar fashion as é‘. Similarly, the
variance of bootstrap estimates of B overestimates the true variance of
éz' vhen the bootstrap estimates are obtalned in a similar fashicn as
éa' Consequently, bootstrap confidence intervals obtained by ordering
the bootstrap estimates of B are biased and should not be used. This is
true when the bootstrap estimates are obtained in a similar fashion as

either éz or 84. In general, the lengths of these bootstrap intervals

will be longer than the length of the exact confidence interval.

Alternative BCl's are proposed and the one based upon the bootstrap
t-distribution is found to have the best empirical coverage. It is the
only confidence interval whose coverage is relatively balanced. However,
it does have its own problems. One such problem is the possibility of

obtaining an open upper bound for the true value.

The assumption of lognormality 1is cruclal in both estimates. In
this chapter, the bootstrap method is only used for constructing
confidence Iintervals. However, the role of the bootstrap can be
enhanced. When the lognormality assumption is violated, both estimates

will no longer be reliable and better estimates need to be constructed.
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Two feasible alternatives are the Jackknife and bootstrap estimates

considered in Chaubey and Sim (1988).

In a related area, Rukhin(1986) showed that when the error variance
exceeds one, the MSE of the B-M estimate can be significantly reduced by
using a Bayesian estimate. However, the results of this chapter will
not be significantly affected by not Iincorporating the Bayesian
estimate, because the error variance had been chosen to be less than
unity. Nevertheless, future research may Iincorporate cases when the
error variance exceeds one, and it would be interesting to compare the
bootstrap confidence intervals of the modified B-M estimate with those

of the original B-M estimate,
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CHAPTER SIX

BOOTSTRAPPING THE PARAMETER OF AN AR(1) PROCESS

6.1 Introduction

Autoregressive models and the more general ARIMA models have become
very useful tools in applied econometrics. These models have many
applications, one of which is an application to test whether an observed
time series is a random walk. In such an application, one is in fact
testing for unit roots. This application itself his become an important
topic in time series analysis. For a simple AR(1) process, an estimate
(é) of the AR(1) parameter (B) 1s first obtained and then tested for

unity. [See e.g., Evans and Savin (1981, 1984), and Phillips and Perron

(1988).]

To test for unit roots (or serial correlation) in an AR(1) model,
it is necessary to know the distributions of é for B=1 (or B=0). The
distribution of é has been studied by many authors including Tanaka
(1983), Phillips (1984), Durbin (1986) and Phillips and Reiss (1986).
It had been shown by Tanaka (1883) and Phillips (1984), that Edgeworth
approximations to the exact distribution of é perform poorly, especially
in the talls and when the model 1is close to the border of
nonstatioﬁarity. Phillips (1984) proposed a method based upon extended
rational approximants (ERA’s) which yields very good approximations and

requires that the distribution of the time-series be known.

It is known that the OLS estimate of B has a degenerate |imiting
distribution unless uitably normalized. This normalizing factor Iis

given in Evans and Savin (1984, p. 1245). Unlike conventional



normalization which has the serious disadvantage of discontinuity in the
limiting distribution, this normalization procedure is continuous. [See
e.g. Evans and Savin (1884, pp. 1254-1256.]1 The normalizing factor is
not a serious concern when 0=£s<0.9, because the conventional
normalization is still continuous within this range. On the other hand,
wheni B Is close to the border of nonstationarity, it may be necessary to
examine the distributlon of the continuous normalized OLS estimate of B.
This topic is set aside for future research and the focus of this

chapter is on the case when 0s£=0.8.

When the distribution of the time-series is unknown, one may use
the bootstrap method to approximate the exact distribution of f3
Although the bootstrap method has been applied elsewhere, no one has
actually studied its applications for a pure AR(1) processes. In a
related area, Kiviet (1984) applies the bootstrap to a linear regression
model which has lagged dependent explanatory variables and 1i.i.d.
errors. Based upon Monite Carlo simulation results, Kiviet concludes
that bootstrapping is not very useful in lagged-dependent variable
models. This view is shared by Veall (1986), for highly trended
explanatory variable modeis with AR(1) errors, and Prescott and Stengos
(1987), for a dynamic model with AR(1) errors. This is an interesting
area for further research. The results obtained in this chapier may
help to further the understanding of the underlying problem(s). This
chapter examines the problems associated with bootstrap applications for
a simple AR(1) model, and attention is restricted to the ordinary

least-squares estimate (OLSE) of B.

Let the time series Y ¥pre o on¥, be generated by the AR(1) process
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y, =By,  +¢ , (t=1,2,...,n) (6.1.1)

in which Bz<l.y=e ,E(e )=0 and E(e%)=0® V t=0,1,...,n, and E(e e ‘=0 V
o o t t t's

t#s. The errors co,cl....,en are nonobservable, and the obJjective is to

obtain a consistent estimate of B given yi.yz. ....yn. One such estimate

is the OLSE of B, which is given by

i (Lbe LB

When Yo is fixed and when the errors are normally distributed, [3 is also
the maximum-likelihood estimate (MLE) of B. On the other hand, when y

]

is also random such that each y, is N{0,0%/(1-8%)}, the MLE of & will be

(e

The derivation of émle is quite tedious and can be found in White (1961,
p.B68). Since the two estimates are asymptotically the same, only the fi

will be considered here.

In the time-series literature, B is known as the first-order
autocorrelation coefficient. Kendall (1944) first employed "he terms
serial correlation for the calculated value of the correlation in time
series and autocorrelation for the population value. [See e.g.,

Bartlett (1946, p.27}).1

When E(et)=0 V¥ t=0,1,...,r, it can e¢asily be shown that the mean of
y is zero, and the ordinary definitioan of the k’th serial correlation

coefficient can be written as

157




e

.= . (6.1.3)
~{ LB

Bartlett (1946) derived a general formula for the variance of rk. and

showed that it depends on all the autocorrelations of the time series.
Among several authors, Marriott and Pope (1954), Kendall (1854),
Quenouille (1956), White (1961) and Shenton and Johnson (1865) showed
that the serial correlation is a biased estimate of the autocorrelation,
and that the bias is generally downward. For the Markov scheme defined
in (6.1.1), Marriott and Pope (1954, p.394) showed that, when £ is a

normal variate with mean zero and unit variance,

E(r) = {Bk - 2n"kf3“] + 0(n™%).
When k=1,
-1 -2
E(r1) = [{3 - 2n [3] + 0(n").
The difference between r and fs‘ lies in the denominator. Writing

N] for the numerator of (6.1.3) when k=1, the relationship between r“1

and fi can be written as

-1 -1
o _ 2 _
g = {n[(n 1)r1] yn[Nl(n 1)] } (6.1.4)

or
-~ 2 -1
B = {[(n-l)rlNl] [nN1+r'1yn] }
It will be shown, in Section 6.3, that the difference between the
expectation of f3 and that of r is of O(n'a). Therefore, the mean and
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variance of r can be used to approximate the mean and varlance of fi

respectively. This follows directly from the work of White (1961).

The organization of this chapter is as follows. The following
section gives an overview of the difficultles in obtaining
approximations of the exact distribution of f3 The bootstrap method is
suggested here as a better alternative. Section 6.3 consists of a short
discussion on the mean and variance of é, and it is shown that f3 is
biased downward. An unbiased estimate of B is suggested in Section 6.4.
Although this unbiased estimate of B is easy to obtain, its distribution
is generally unknown and has to be approximated by using the bootstrap
technique of Efron (1979), especially when the error distribution Iis
unknown. Details regarding the bootstrap procedure are also discussed
in this section. In Section 6.5, a simulation study is conducted to
obtain empirical significance levels of the BCI's of f. This is done
for the case when the value of B is unknown. The bootstrap distributlion
of fi when B=0 is examined in Section 6.6. In Sectlon 6.7, two
additional lemmas concerning the properties of selection matrices are
derived. A theorem on the mean and variance of bootstrap estimates of 3

is also obtained in this section.

The simulation results suggest that conventional confidence
intervals (CCIl's) should be avoided whenever B is positive. The reason
for this is that CCl's are no longer reliable, since the normal
approximation is poor when B approaches unity. One alternative is to
use the methud based upon ERA’s, which is quite cumbersome to use.
Another alternative is the bootstrap procedure, which is computer based

and is quite easy to implement. In constructing bootstrap confidence
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intervals, critical values from the Student’'s t~distribution are

replaced by the corresponding bootstrap t-statistics.

A common situation when confidence intervals are constructed, is
one in which the variance of the estimator is not a function of the
estimator itself. In the present case, this only happens when B=0.
Otherwise, the variance of é will depend on the value of B. Simulation
results suggest that the relationship between é and its variance should
be acccunted for whenever B#0. Dnly BCI's that account for this
relationship should be used. It is then not surprising, that the
suggested BCI has the best performance in comparison to other confidence
intervals, at both the 5% and 10% significance levels. Narrower BCl's
should be avoided, because of possible problems relating to an

underlying restriction.

6.2 The Distribution of B

The statistic é is a non-circular serial correlation coefficient
whose distribution is supported over the entire real line; its exact
distribution is difficult to approximate. When B=0 and when the error
distribution is normal, the distribution of é is symmetric. However, as
B approaches unity (say, B=0.9), its distribution becomes heavily skewed
to the left. When this happens, the normal approximation will be very
poor, and alternative methods which give better approximations have to
be used. One such alternative is the approximation by the method of

Edgeworth expansions.

The distribution of é had been studied by many authors including

Tanaka (1983), Phillips (1884), Durbin (1986) and Phillips and Reiss
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"1986). Both Tanaka (1983) and Phillips (1984) show that Edgeworth
approximations to the exact distribution of é perform poorly, especially
in the tails, when the model 1is close to the border of statlionarlty.
They also show that the normal approximation is not very satisfactory
for sample sizes of less than or equal to 20. Although the Edgeworth
approximation is generally more accurate than normal approximation, its
poor performance in the tails makes it unreliable for constructing
confidence intervals. One other alternative is the method based upon
ERA’s. Phillips (1984) shows that the method based upon ERA's yields
very close estimates for B when n is greater than or equal to 5. This
method requires a spenial computer function routine which can be found
in Phillips and Reiss (1886). The use of this computer routine is
restricted to an AR(1) model. For some practitioners, this can be a
major inconvenience. An important shortcoming of this approach is that
it requires the distribution of the time series be known. When this
distribution is unknown, two possible alternatives are the methods based
upon the Jjackknife and the bootstrap. Both are nonparmetric methods and
they are both distribution-free. While the Jackknife is only applicable
when the sample size is large, the bootstrap can be applied to both
small and large samples. Thus, when the error distribution is unknown
and when the sample size is small, the bootstrap method 1is the only

viable method for approximating the exact distribution of fi

The focus of this chapter will be on the use of Efron's (1979)
bootstrap for aproximating the exact distribution of the least-squares
estimate of a stationary AR(1) process, which can be Gaussian or
non-Gaussian. However, for the Monte Carlo simulations below, only the

stationary Gaussian process will be considered.
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The problem of approximating the exact distribution of é is a
common Interest shared by all applied statisticians, including
econometricians. This chapter is essential for a better understanding
of the application of bootstrap to this problem. Also, the results of
this chapter provide a foundation for future applied econometric work in

this area, especially when it involves the bootstrap.

6.3 The Mean and Variance of é

The first and second moments of é are given by White (1961, p.89)

as

E(B) = [1 - 2n”]f3 + 0(n™®) (6.3.1)
and

E(R%) = {n"—n‘2+ [1—5n"+22n‘2]}32+0(n'3). (6.3.2)
Thus, 0

V(B) = E(8°) - [E(r})] = [n"(l—s"‘)] + 0(n™?).

The corresponding values for r are given by Marriott and Pope (1954,
p.394); E(rl)=E(é). V(r1)=V(é). The reason for this similarity is
that the difference between E(é) and E(rl) is O(n_zL This may be

shown as follows.

-1
Since E(ytyt_l) = B[var(yt_l)} and var(yt_l) = 02[1—82] (see

e.g., Marriott and Pope, 1954 p.394), it follows that

E[N"‘yz] =g + o(n7?).
1 "n

Taking expectations on both sides of (6.1.4), the expected value of é

can be written as
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- -1 -1
E(B) = {n[(n-l)l’:‘.(rl)] - (n—1)“s[N;‘yi]} .

Upon substitution of E(rl) and E[N;‘y:] into this expression and after

some algebraic simplification,

E(B) = [(n-1)(n-1)(n2-n+z)"]s + 0(n?).
Since

[(n-1)(n-21(n2-n+2)“] = [(1—zn"‘) - zn"“] +a(n™),
it is clear that

[E(fs) - E(rl)] = 0(n™%).

6.4 An Almost Unbiased Estimate of B and its

Bootstrap Distribution

It follows from (6.3.1) that, to O(n-”, an almost unbiased

estimate of B is
- -1)-
B = [1-2n ]B.
[}
The variance of this estimate is, from (6.3.2),

-

V(B ) = [(1-2n“)‘2]wf3) - [n(n—2)_2(1-f3)2] + 0(n™3).

Since the distribution of Bc is similar to that of é, it Is difficult to
approximate this distribution using Edgeworth expansions. As shown by
Phillips (1984), this difficulty becomes more apparent, especially in

the tails of the distribution, when B approaches unity.

Although the exact distribution of é is difficuit t¢ obtaln, a
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reliable approximation to it may be obtained by applying the bootstrap
method. However, before discussing the bootstrap method, it would be
useful to note certain properties of the OLS residuals of (6.1.1), since

these will eventually be used for bootstrapping.

The OLS residuals of (6.1.1) are gilven by

€ =y - By (t=2,...,n).

Since the model (6.1.1) does not have an intercept, the sample mean of
these residuals is generally not equal to zero. Consequently, to be
suitable for bootstrapping, they have to be centered at their sample
mean. (C.f.Chapter 2). Also, B is independent of the error variance
and the bootstrap estimates of B are independent of any scaling factor.
Thus, it Is not necessary to rescale the residuals by a constant factor
here. Multiplying the residuals by a constant factor here will leave

the bootstrap estimates unchanged, regardless of the value of n.

Let ¢ a vector of properly conditioned OLS residuals, be used for

bootstrapping. This is obtained as

in which & is the sample mean of the OLS residuals. As explalined above,

1/2
it is not necessary to multiply each €, by the factor [n(n-l)-l] .
For each bootstrap replication 3 (j=1,2,...,J), the bootstrap errors are

obtained as

L ] S ~

oy T Pt
in which S(J) is an (n+1)xn selection matrix and
DT [ ] » .
€4y = [c(j)o'e()n""’eu)n]' The bootstrap responses are constructed
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as

] - . .

y(])t B ch(J)t~1 * C(J)t {t=1,...,n) (6.4.1)

-
in which yU)o c(j)o.

To obtaln a confidence interval for B, the conventional method |is
to apply the critical values from the standard t-table. However, when
the distribution of éc is not normal, the conventional method falls to
yield reliable estimates for the confidence bounds. One alternative is
to replace the critical vaiues from the Student's t-distribution by the

corresponding bootstrap t-statistic, which is defined as

» . —o) [~ » -is2
tepy = [Bc(J)_Bc] [V(Bcu))] '

in which

= (1-2n" 1718,

-1
L J n - L ] n .2
= L e HE BT
N {LZZ (Pt ()t-1 LZZ (Jit-1
1[BC(J)‘}' and

. _ =1y -2) 5 2®
Ve ) = [(12n 7 #vee; )

-1 2
_ _onm1,2 P
= [n(l 2n ') ] [1 B(J)]'

Note that t:m is identical to

o
|
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in which
-9 1 J L ]
B = JX[BU)] '
3=1

This 1is no surprise, since éc is actually é multiplied by a constant

whose value depends only on n.

The critical values of t:J can be obtained by arranging all its

}
values In ascending order and taking the values corresponding to the

respective percentiles. Let one of these values be t: corresponding to

the z’th percentile. One confidence bound for B based upon t: will be

-

B

z

. .. 12,
B * [V(B )] t, (6.4.2)
< c z

in which

V(B ) = n(n-2)"2 [1-;‘33].

[

However, thls confidence bound assumes that the variance of éc is

Independent of {%c. This assumption is not appropriate here, since
V(B) = (nm)"[1-mf32],
c [
-1 -2
in which m = [1-2n ] .

Confidence intervals obtained via (6.4.1) are also not reliable,

especially when

P[ézl|3]zz.

The reason for this is that, whenever ézl, it is usually restricted to
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be 0.9899 or some other wvalue which Is less than but close to unity, to

avoid the problem of complex roots. When
P[ Bz1 | B] < z,

the reliability of the confidence interval is not affected, because
these cases belong to the rejection region. On the other hand, when the
proportion of the above cases exceeds the re jection wvalue, confidence
intervals with significance levels less than or equal to =z serve no

useful purpose.

Hence, a better confidence bound for 8 based upon t:” needs to be

constructed. As is explained below, one such confidence bound would be

- . 1/2 -1

B =4{-v. + [v - 4vv ] |'2v ] , (6.4. 3a)
z b b ac L a

in which

v =1+ n(n-2)-2t.2,
a 2

vb = -ZBC. and

v = {§2 - n(n2)"%"
c [ Z

This is the upper bound, when t.; is positive. When t: is negatlive, the

corresponding confidence bound is

- 2 172 -1
Bz ={vy - {vb - QVaV:] [Zva] . (6.4. 3b)

This procedure is based wupon
~1/2

to = (B -8)(1-57) 7%,

and the extreme bounds are obtained by soclving for B in the guadratic
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equat fon

2
v + v+ v =0,
aB bﬁ c

Confidence intervals obtained by this latter method are better than
those obtalned via the earlier method. One Iimprovement 1is that the
second procedure accounts for the dependence of Q(EC) on éc. Also, the
second confidence interval is less restrictive, especially in the tails
of the distribution. For any given value of t:, the value of éc must

not exceed 1ts critical value given by

172
B, = [1 + n(n—z)'zt;z] : (6.4.4)

This restriction is necessary in order to avoid the problem of complex
roots, but poses no problem when the value of t: is large. This is true
especially in the tails. However, when the value of t: is small and the
corresponding value of fic is so large that it exceeds l§cr“, one would
have to restrict the value of l}c to its critical value. VWhen this
happens, the corresponding bootstrap confidence interval becomes
unrel i able. This usually occurs for large values of éc, and when the

conf i dence intervals are constructed near the center of the

distribution.

6.5 Empirical Significance Levels of Bootstrap

Confidence Interwvals

In this section, a simulation study will be conducted to obtained
empirical significance levels of the wvarious bootstrap confidence
intervals, and to compare these levels with the significance levels of
conventional confidence intervals. The results are obtained for 500

trials and 200 bootstrap replications, in order to avoid using too much
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computing time.

The initial valne for the double precision SEED is set at 12345 for
both the random variable generator and the bootstrap procedure. The
Gaussian errors with mean zero and unit variance are generated by the
IMSL’s GGNPM subroutine. The range of values for B s chosen to 1lie
between zero and unity, because muany economic time-series data are known
to be positively serially correlated. Two sample slizes, n=10 and n=20
are selected, since they are normally chosen for small sample studies.
Finally, the nominal significance levels are 2.54, 5% and 10% for both

tails.

The simulation results are reported in Tables 6.1 and 6.2. For
reporting the results, bootstrap confidence intervals based upon (6. 4.2)
and (6.4.3) are denoted by BCI!1 and BCI2, respectively. When the
bootstrap t-values are replaced by the corresponding Student's t-values
in (6.4.2) and (6.4.3), the resulting conventional conflidence intervals

are CCI1 and CCI2, respectively.

From the results of Tables 6.1 and 6.2, 1t can be concluded that
BCI1 is inferior to BCI2. BCI1 is also inferior when comptred to elther
CCI1 or CCIZ2. When compared to CCIZ2, BCI2 performs better when the
value of B lies between zero and 0.75 (both values inclusive), and its
performance is marginally inferior to that of CCI2 when f£=0.9,
especially in the lower tail. When the value of B llies between 0.5 and
0.9, the reliability of either BCI1 or CCI1 is questioprable. This is
because of the restriction [1-—&2]>0, which is imposed to avoid the

problem of complex roots. As the wvalue of B approaches unity, the
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Table 6.1: Empirical Significance Levels of Conventional

and Bootstrap Confidence Intervals for B When

the Errors are Normal [n=10]"

Conf'idence True B
Interval % 0.0 0.25 0.50 0.75 0.90
2.5 1.5 2.6 4.9 14.3 26.8
Lower 5.0 4.6 4.6 9.0 18,6 30.1
10.0 9.2 11.7 17.0 25.9 36.5
CCIl1
2.5 2.1 1.7 1.3 1.3 1.2
Upper 5.0 4.8 3.7 2.9 2.3 2.4
10.0 8.7 7.1 6.9 5.8 4.8
2.5 0.4 0.3 0.1 0.1 0.2
Lower 5.0 1.5 1.1 0.6 0.9 2.3
16.0 7.6 6.5 6.4 7.4 12.5
CCl2
2.5 0.2 0.8 1.4 2.6 3.8
Upper 5.0 2.1 3.4 3.6 4.4 5.3
10.0 6.7 7.1 8.1 8.7 8.3
2.5 3.4 5.6 8.6 19.0 31.0
Lower 850 7.0 9.2 13.0 24.2 34.0
10.0 11.4 14.4 22.6 33.6 40.6
BCI1
2.5 1.8 0.8 0.4 0.6 0.8
Upper 5.0 4.2 3.2 2.4 1.8 1.6
10.0 9.6 7.0 5.6 5.2 4.2
2.5 1.8 1.8 0.8 0.4 2.0
Lower 5.0 4.6 5.2 4.0 3.6 8.2
10.0 9.8 11.0 14.0 18.0 21.0
BCI2
2.5 0.4 02 0.6 1.6 1.8
Upper 5.0 3.0 2.8 2.8 3.8 4.8
10.0 8.2 7.0 7.4 7.0 6.4

1. Results for both CCI1 and CCI2 were based upon 1,000
trials, while results for both BCI1 and BCI2 were based upon
500 trials and 200 bootstrap replications.
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Table 6.2: Empirical Significance Levels of Conventional
and Bootstrap Confidence Intervals for B When
the Errors are Normal [n=20]"

Conf'idence True B

Interval % 0.0 0.25 0.50 0.7 0.90
2.5 2.8 3.6 4.8 10.3 18.6
Lower 5.0 5.2 5.7 7.4 12.6 23.6
10.0 10.0 11.2 13.2 20.5 30.0
CCI1
2.8 1.4 1.2 0.8 1.0 1.1
Upper 5.0 3.7 3.2 2.5 2.3 2.7
10.0 8.2 7.9 7.2 5.9 6.1
2.5 1.7 1.2 0.8 0.2 0.1
Lower 5.0 4.0 3.5 2.5 1.3 2.1
10.0 g.2 8.1 7.8 9.6 10
CcCi2
2.5 0.9 1.2 1.6 3.0 4.7
Upper 5.0 2.8 3.4 4.3 5.5 7.0
10.0 7.4 8.0 8.2 9.0 9.4
2.5 4.0 5.8 6.8 12.4 22.8
Lower 5.0 6.2 8.2 11.2 18.4 30.0
10.0 11.3 14.4 17.6 25.6 36.4
BCI1
2.5 1.4 1.2 0.8 4 0.8
Upper 5.0 3.4 2.6 1.4 1.8 1.8
10.0 8.6 6.6 5.2 4.6 4.4
2.5 3.2 3.2 2.0 1.0 1.0
Lower 5.0 5.4 5.4 5.4 4.2 4.4
10.0 10.6 11.86 12.2 12.8 16.8
BCI2
2.5 0.8 1.0 0.8 2.0 3.0
Upper 5.0 2.8 2.8 3.0 3.8 4.6
10.0 8.0 6.8 6.8 6.4 7.0

1. Results for both CCI1 and CCI2 were based upon 1,000

trials,

while results

500 trials and 200 bootstrap replications.
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proportion of é’s exceeding unity increases. When this proportion
exceeds a critici. level, the bootstrap confidence bound corresponding

to this critical level can no longer serve its purpose. Consequently,
BCI's that do not require this restriction would be expected to perform
better. This explains why the overall performance of BCI2 is better

when compared to BCI1, especlially when 0.5s8s0.89.

When B=0, the simulation results ind:cate that CCI1 is better than
CCl2, and BCI1 is better than BCIZ2. This is because, when B=0, the
variance of é is independent of 8. The normal approximation is good in
this case and, hence, there is little to gain from bootstrapping. When
the value of (3 approaches one, CCI2 is better than CCIi, and BCI2 is
better than BCI1. This result is e:rnected, because both CCI2 and BCIZ2
account for the dependence of V(éc) on éc. as mentioned in Section 6.4

above.

The bootstrap confidence interval BCI2 generally performs well,
especially in the five percent tail. Its perforanance in the 2.5 percent
tail is poor because BCI's admit errors of O(n_1L Lastly, 1its poor
performance in the ten percent tail can be attributed to the above
restriction that éc not exceeds émqt' whose value is given by equation
(6.4.4). This type of BCI is generally not needed because, in the ten
percent tail, CCl’s are adequate approximations of the exact confidence

intervals.

Generally, for 0=8=0.9, BCI2 exhibits the best performance in terms
of its empirical coverage at both the 5% and 10% levels. At the 20%
level, the empirical cuverage of CCI2 1is closest to the nominal

coverage, among the confidence intervals considered here. The empirical
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coverage of a confidence interval of B is the observed frequency that
the true value of B lies in that interval. When B=0, both CCI1 and BCI1
are fairly accurate. Since BCI1 requires more computation, therc is no
advantage to be gained from bootstrapping when the autocorrelation is

suspected to be zero, especlally when the error distribution is normal.

6.6 Bootstrap Distribution of éc When B is Known

Both the confidence intervals discussed above are based upon éc,
and the null hypothesis that B=Bo will be rejected, when the value of B0
lies outside the relevant confidence bounds constructed at the z'th
level of significance. Let this set of confidence intervals be known as
the set of confidence intervals based upon the alternative hypothesis
that B:Bo. One other set of confidence Iintervals is the set of
confidence intervals based upon the null hypothesis. This latter set of
confidence intervals is based upon Bo’ and the null hypothesis will be

rzjected when the value of BC lies outside the calibrated confidence

bounds.

When the distributions of n“z[fac—a] under each of the two
hypothesis are identical, the two approaches will be equivalent. This
happens only when the distribution of nllz[éc-B] is invariant to a

change in location. Otherwise, the two approaches will be different.

In the first approach, the distribution of éc has ﬁc as lts
location parameter. Subsequently, the bootstrap distribution of ﬁc when
B is unknown, must also have éc as its locatlion parameter. On the other

hand, the distribution of éc is obtained around Bo, when it is known

173




that B=3o. Hence, the corresponding bootstrap distribution of éc when B

s known, must have Bo as Its location parameter.

When the first set of confidence intervals become unreliable, it is
natural to seek for alternative confidence intervals. One such
alternative is to assume that B=Bo under the null hypotheslis, and use
the second set of confidence intervals. When Bo=0, the normal
approximation can be used for constructing these intervals. The normal
approximation will be poor when Boto, and it will become poorer as Bo
approaches the unit circle. When this happens, the bootstrap
distribution of éc, with Bo as Its location parameter, can be used for
constructing confidence intervals. In the event when BO is known, the
bootstrap distribution of éc can easily be obtained. This distribution
has Bo as 1its location parameter. The only change to the above

bootstrap procedure is to replace éc by Bo in equation (6.4.1).

Under the assumption that the bootstrap estimates

[B:”).(J=l“..,J)] are unbiased estimates of Bo,
ptd 1 J . a.s
B, = 3’; [Bcu)] 7 By

Nevertheless, preliminary simulation results indicated that there is a

small upward bias in B. Thas is probably due to the over-correction

c(Nn’

of the initial underestimation in é. In other words,

= .5.
B 25 aB
c J (o]

in which a>1. Hence, an unbiased estimate of the bias of B:(JV
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pas(s’) = (5"

“) - )

and an unbiased bootstrap estimate of B can be written as
[ ] _ Ld BiA -9
Ban = By as[Bc].

In the subsequent section, it will be shown that the bias in the
variance of the bootstrap estimates is O(n_z). The same order of blas
also holds for the mean of the bootstrap estimates. Whea B 1is known,
the bias in the mean (i.e. location bias) of Bc can easily be corrected.
On the other hand, it is rather cumbersome to adjust for the blas in the
variance of the bootstrap estimates. Since this blas is generally
—2)

O(n ), it will be ignored, and this will not affect the results

significantly.

From the analytical results of White (1961, p.90), the exact
location of the mean of éc is approximately [n-2(48+233+235)] above Bo.
Preliminary simulation results showed that the empirical significance
level of the bootstrap confidence intervals is very sensitlve to this
bias. This is true especially for the upper confidence bound which
happens to have a larger variance than the lower confidence bound. The

results reported in Table 6.3 have been corrected for bias.

From Table 6.3, it is without doubt that the bootstrap confidence
interval can serve as a reasonably good approximation to the exact
confidence interval. Thus, the bootstrap distribution of éc may be used
for approximating the exact distribution of éc. Since the method based
on ERA’s to obtain the exact distribution of éc is difficult to
implement, the bootstrap procedure thould appeal to both applied

econometricians and statisticians.
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Table 6.3: Empirical Significance Levels of Bootstrap

Conf'idence Intervals for B8 when the errors are

Normal and When the Value of B is Known1

Confidence True B

Interval % 0.0 0.2% 0.50 0.75 0.90
2.5 2.0 2.4 2.4 3.0 3.0
Lower 5.0 5.0 4.8 5.2 5.6 5.2
10.0 9.6 9.2 10.0 10.4 8.8

BCI3
[n=10] 2.5 1.2 1.0 1.2 1.4 1.0
Upper 5.0 3.2 3.8 3.8 3.0 5.2
10.0 8.8 8.8 8.4 10.8 11.6
2.5 2.0 2.4 1.6 2.2 2.8
Lower 5.0 4.6 4.6 4.0 4.4 4.8
10.0 8.4 6.6 8.6 8.4 8.0

BCI3
[n=20] 2.5 3.2 3.0 2.4 2.8 2.2
Upper 5.0 4.8 5.8 5.8 6.0 5.4
10.0 8.8 9.8 11.8 12.0 11.4

1. Results for BCI3 were based upon 500 trials and 200
bootstrap replications.
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6.7 The Mean and Variance of the Bootstrap

Estimates of B8

Let B be known and E be the OLS residuals. Also, let the bootstrap

responses be constructed as

L ] L ] [ ]

y(j)t-— By(jn_1 + z:“)'~ , {t=1,...,n), (6.7.1)
in which y. * ‘=5 & and S i (n+1) lectt
= = +

C y(j)o 8(])0' C(J) (J)C an (9 S an n n selec on

matrix,as defined in Chapter Two. The bootstrap estimates of B in

(6.7.1) are

. n o - n '2 -1
B = { Ey y ]}{ [y ]} , (3=1,...,3). (6.7.2)
() LZZ (LY (-1 tZZ (Jt-1

In matrix notation, (6.7.1) can be written compactiy as

L ~ ~

= 6.7.3
y(” Aslu)c * Sau)c ’ ( )
in which A is the following lower triangular matrix,
rﬁ
2
B B
A=|8 B8 B :
-1 2
A : SR B~ B |
Siu) is an nxn selection matrix whose components are the first n rows
f S(”. and Sau) is also an nxn selection matrix whose components are
the last n rows of S(jf Also, let A and A be (n-1)xn matrices whose

components are the first and last (n-1) rows of A, respectively.
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Further, let Smj) and S4U) be (n-1)xn selection matrices, such
that the components of SGU) are the last (n-1) rows of S(JV and that
S4(J) be S(J, with the first and last rows removed. The bootstrap

estimates given by (6.7.2) can now be written as

T
[Asm)c ¥ Sau)s] [Asuj)e * Suj)e]
.

B = . (6.7.4)
w ] i T . i
[Abupc * S4(J)C] [Asuj)e ¥ Sl(j)e]

Note that equation (6.7.4) can also be written as

* viow! (6.7.5)
= + .
By =8 [u) (J)] !
[ ] [ ] [ ] L ] 1 ] L ] L ]
in which V' = [v +v], W= [w +W +w],
(5 1 2 () 1 2 '3

A
v = |[gTsT  &s E].
1 L 3(3) 1(3)

v = [¢7sT & E],
2 3()) "4y

.

W o= |&8'sT A'As &,
1 L T 1))

w o= |28TsT ATs E}, and
2 1 Caen

-

)
w o= [eTsT s gl.
3 [ TapTagp

The subscript 3 in V., , V_, w: * and w; has been dropped for the

ease of notation.

For comparison purposes, let

B =8+ (V/W) ,
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n n
-~ -~ 2 -~ -~ -
in which V = {;Zz[y‘c‘]}’ W= {mZz[y“‘}} and E(V/W) is the blas of B.

From the results of White (1961, p.90), it is known that the ratio (V/W)
is of O(n™'), and both V and (n"'W) are of O(1). Also, let v=E(V) and
w=E(W). Further, for any bootstrap variable 2:3) corresponding to the
3’th (j=1,...,3) replication, let the notation En(Z.) represents the

J
limit of E{; ) [z:”]} as J goes to infinity for finite n. This assumes
=

that the corresponding limit exists. It will be shown that,
. -1
(1) E(V) =v+0(n"),
(11) E (n7W) = (n"'w) + O(n™)).

Note that both V and V‘ are 0(1), whereas both W and w are 0(n). The
following results are not surprising, since it 1is well known that

bootstrap estimates of the above type admit . rrors o(n™!).

lemma 6.1: Let A={am} be a real nxm matrix of finite elements aad let

SU)(}=1,...,J) be an mxr selection matrix. Then,

1 T a.s c -1 & -2

3 [S(J)AS(J)] — Z[ath [(r' )Ir] + Z [am} (r )[E(r.r)].
3=1 h=1 h#1

Proof:

e~

Note that this lemma is a slight variant of Lemma 6.1. Let the

elements of S(J be (Shp}. The subscript (j) is dropped to avoid

)

confusion. For each § (j=1,...,J), the element corresponding to the

p’th row and q'th column of the matrix [STJ)AS(“] can be written as
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"

m m
STAS]= [SaS]= [Sas]1+ [SaS].
[ ()] (J)jp,q h; hp hi iq hZi hp hi quJ’ h.zi hp hi iq
1=h 1#h
When  i=h, Prob. [Shp=Siq=1] = (r"') when p=q, zero othervise.
Consequently, when p=q, (Shpawsiq):am and zero with probabilities
(m™") and (l~r-1), respectively. When p=q, (Shpahlslq) = 0 with

probability one.

pEes)

Thus,

i {h;(ahh)

} with probability (r~!) when p=q

O with probabilities (1-r"') and one, when p=q

and p#q, respectively.

On the other hand, when i#h,
Prob. [s =1, S =1] = (n?) ¥ p,q
hp iq
and
m m -2
Z [shpamslq] = Z [am] with probability (r ) V p,q.
hit h,i
I1#h 1#h
Therefore,

T
J)

a.s.
—

I~

¢

which is the desired result.

IS

)

AS
(J)]p.q}

U
s

r 9 m
- _2 _
roa., } + {z [r am] when p=q,
- o h,l
{#h
r - -
‘r' a when p=q,
1Zh
Q.E.D.

Lemma B6.2: Let Sp(” and Sq(“ be any two selection matrices of finite
order mxr such that the r’th (r=1,...,n) rows both matrices are
different. Then,
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[(mr-l)lr] when p=q,

[ST S ] a.s.
L Pl aly J {(mr-a)[E(r.r)]} when p=q.

N e )

{1
J
J

Proof:

The proof is straightforward from the proofs of Lemmas 2.2 and 2.3.

The notaticn of Lemmas 6.1 and 6.2 will be used in both Lemma 6.3

and Theorem 6.1 below.

Lemma 6.3: Let m=n and n be finite. Then,

(1) E (V) = E(V) + 0o(n™Y),
n 1 1

(i1) En(Vz)

i
0
=

n
e

(111) E (n”"'W) = E(n"'W.) + o(n™),
n 1 1

(iv) En(n"w;) E(n"ﬁz) + o(n™),

-1

(v) E(n w;) E(n™'W) + o(n™).
Proof':

For the second statement, first note that
E(V.)=EET1§:ST s ¢
n 2 e U3nrag '

Upon application of Lemma 6.2 and let m=(n_1) and r=n,
. ~T ~T S <2
E(V) = E[c [E(n.n)]s] = Elm:] =0

- n
since EEn-1[2:51]=0. The application of Lemma 6.2 is also required to
1=1

show that

-1 -1~T~

E(n W) = E[n € e] = F(n 'W) + o(n™h).
n 3 3
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To prove the third statement, one needs to apply Lemma 6.1, and

obtains

E (n"W) = E[b T2+ b ET[E(n.m] z]
n 1 1 2

E[b e’ + b 52]
1 2

~

= E[b1eTE] = E(n'iﬁi) + o(n™Y) ,

n n
in which AA={a }, b =n" Za and b =n? Za ]
hi 1 L “hn 2 Lom

1#h

For the proofs of both the first and fourth statements, slight

variants cf Lemma 6.1 are required and these modifications are as

follow. Let r = h + &, then

{:[ n"la hzl ,Z 2 ]} when p=q

T =T a. h#(1+68)
1[S ASB(J)]p.q J

(i) U
n n-1

1
J

T~

-2

[n am] when p=#q
h=1 1=1
h=(1+38)

in which 8 = 2,

n n=-1 -2
{:{ n_ a + z Z[n ahl] when p=q
h=1 1=1
1 & a.s. h#(1+38)
(11) 32[1()) 4(5)]p’q J

n n-1 -2

Z z [n a ] when p#q
LI& L hi

=1 1=1

h#(1+68)

in which 8 = 1.

Upon applications of the above moditications,

-1

E (n v:) = E{baéTE + ngT[E(n,n)]E]
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= E[baéTE] = E(n"\'ll) + 0(n™Y)

and

E (W) = 2E[b &’ + b ET[E(n,n)]E]
n 1 S 6

_ ~T~] _ -1 -1
= ZE[bS:: e] = E(n Wz) + 0(n ),

” n-2 n n=1 -2
in which b, =n [Zla‘m""]' b, = hZ ) [“ am] '

h= =1 1=1
h#(1+2)
-1 n-1 n n-=1 -2
b5 =n Z [a(hu)’h] , and b8 = Z z [n am] .
h=1 h=1 1=1
h#(1+1)
Q.E.D
[ ] L ] L ] [ ] » -
lemma 6..: Let v=E(v) and w=E (w). Note that V and W are 0O(1)
n n n n n n

and O(n), respectively. Also, let n be finite. Then,
. -1
(1) vn=v+0(n ),

(i1) (n_lw:) = (n"'w) + o(n”h).

Proof:

The proof is straightforward upon application of Lemma 6.3. Q.E.D.

With Lemma 6.4, it now becomes possible to state and prove the

following theorem:

Theorem 6.1: lLet n be finite. Then,
(1) e{l ) g | 2:5:, E(B) + O(n"?)
JJZI (N J !

-

J 2
s 1 . et a.s. - -2
(i1) E{‘;j;[ﬁ(“—ﬁ] } —5— V(B) + O(n %),

in which
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1
[ ]
Wit
ol
—
e~
[ aregn)
w
-~ .
[y
[ S—
Y

Proof':

Using the results of Marriott and Pope (1954, p.392), the following

approximation is accurate to O(n 2);
. . s o . . P . |
E [V /N] = tv /w ]{1-covw,w )[wv] + Var(w)[w] I
n n n nn n

Since the second and third terms are already of O(n-z), the focus will

be on the ratio (v:/w:). Upon application of Lemma 6.4, it can easlly

be shown that

» - -2
(v/w ) = (v/w) + 0(n %)
n n
and the first statement becomes obvious.

In a similar fashion, a proof of the second statement can also bc

obtained. Q.E.D.

In t%is section, the mean and variance of the bootstrap estimates
of B are examined with the help of come new notation. Two additional
lemmas concerning the selection matrices are also given in this section.
Lemma 6.1 deals with the quadratic form of a selection matrix, whereas
Lemma 6.2 deals with the product of two different selection matrices.
Boih lemmas are used to examine the mean and variance of the bootstrap
estimates of B, and this is done in Lemmas 6.3 and 6.4. The final
theorem is given in Theorem 6.1, which states that the difference
between the mean of é and the mean of bootstrap estimates of 8 Iis
0(n-2). The difference between the variance of f3 and the variance of

bootstrap estimates of B is also o(n™%).
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6.8 Conclusion

In this chapter, attention 1is focused on é, the least-squares
estimate of the parameter of the first-order statlionary Gaussian
process. Unllke most least-squares parameter estimates, the variance of
é depends on B, which ir the unknown parameter. It is important to take
this into account when constructing confidence intervals for B. When
this is not taken into account, confidence intervals of B will not be
reliable, especially when 0.5s8s0.9, This 1is true for both the

conventional and bootstrap cont'idence intervals.

Conventional confidence intervals are generally not reliable and
should be avoided when $>0.5. On the other hand, bootstrap confidence
intervals provide fairly good approximations to the exact confidence
interval of B, when 0s<8=0.9 and when n220. When n=10, the bootstrap
approximation is fairly good when 0=8<0.89, but it is poor for the case
when B=0.9, especially in the lower tail. Thus, bootstrap confidence

intervals should be used with care when n=10.

The simulation results show that bootstrap coni'idence intervals are
best used for constructing ninety percent confidence intervals. For
ninety-five percent confidence intervals, the bootstrap confidence
intervals are still better than conventional confidence intervals,
especlally when the parameter value is close to unity. The simulation
results also indicate that bootstrap confidence intervals should not be
used for constructing eighty percent confidence intervals. This
suggests that narrower bootstrap confidence intervals should also be
avoided. However, these confidence intervals are seldom needed, and can

be replaced by conventional confidence intervals in empirical
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applications.

When B=Bo and Bo is some known constant, bootstrap distributions of
éc with Bo as the 1location parameter can be reasonably good
approximations to the exact distribution of éc. Judging from the
simulation results, the bootstrap method may be suggested as a simpler
alternative method to the procedure based on ERA's for approximating the
exact distribution of é. Although the simulation results are based on a
stationary Gaussian process, the general results can be extended to
include stationary processes which are not Gaussian, except for the case
when B is zero. When B=0, the normal approximation will be poor if the
underlying distribution 1is significantly different from the normal
distribution. This is an additional reason favouring application of the

bootstrap method.

In this chapter, B is restricted to lie between zero and 0.9
because for 0.9<fB=1.0, the proportion of é exceeding unity will be
large. When é>1.0, the estimate of its variance given by (1-&2) will be
negative, and the t-statistic given by [[3(1-[}2)'“2] will take on
imaginary values. To avoid this problem, é is assigned the value 0.99
whenever é=0.99. When 0=3<0.9, this restriction poses no problem
because the proportion of 520.99 will be small. However, this
restriction becomes a serious problem when 0.9<Bs1.0, especlially when

B=1.0.

Also, in the chapter, a theorem is given on the mean and variance
of bootstrap estimates of B. It is shown that the difference between
the mean of é and the mean of the bootstrap estimates of B is o(n™?).

It is also shown that the same O(n'z) applies to the difference between
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the varlance of é and the variance of the boctstrap estimates of B.
This 1is done with the help of two additional lemmas concerning the

selection matrices, which are also obtained in this chapter.

To test for unit roots in an AR(1) model, it is necessary to know
the distribution of é for B=1. A bootstrap distribution of ﬁ can be
obtained by setting B=1, and by bootstrapping the regression rcsiduals
to obtain estimates of B. This is a direct method whose results are
inferior, when compared to the results obtained by using an alternative
method. [C.f. Chapter 4]. This is done by obtaining the bootstrap

distribution of

R -1 n o 172
T =5 { z [yt_l]} (B-1)
t=2
o -1 n N 2
s” = (n-2) {z [yt-Byt_l] }
t=2

A detailed explanation of the statistic T can be found in Fuller (1976,

in which

p.372). A table for the distribution of %, when B=1 and when the errors
are normally distributed, is also available in Fuller (1976, p.373).
When the errors are not normal, the distribution of ;: is generally
unknown, and the better way to approximate this distribution is by
bootstrapping. It is noted here that the method based upon ERA’s cannot
be used in this case, because this method requires that the error
distribution be known. On the other hand, the bootstrap method does not

impose this requirement.

At this point, it is important to note that at B=1 the usual
asymptotics do not apply. [See e.g., White (1958, 1953).]) In

particular, assumptions A.2.1 and A.2.2 will be violated when B=1. As
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noted earlier in this chapter, é has a degenerate limiting distribution
unless sulitably normalized. Also, the usual t-statistics do not apply
in this case and the usual bootstrap procedure would be 1lnappropriate.
However, this does not prevent one from applying the bootstrap to this
problem. One alternative method is to obtain the bootstrap distribution
of 1 by assuming apriori that B=1. For continuity in the limiting
distribution of %, one may apply the continuous normalization factor
suggested by Evans and Savin (1984). This should be a subject of future
research and no claim 1s made here about the accuracies of beotstrap

approximations of the exact distribution of %.

One other alternative method is the method of Jjackknife, which is
also a distribution-free non-parametric method. For its application to
a regression model, a good reference can be found in Hinkley (1978).
For future work, it may be useful to compare the relative performances
of the bootstrap and jackknife techniques. This is possible only when n

is large.
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CHAPTER SEVEN

SUMMARY AND DISCUSSION

7.1 Introduction

This dissertation provides a systematic study of bootstrap
estimates of regression coefficients. It examines the moments of these
bootstrap estimates and compares the bootstrap confidence intervals with
conventional intervals. It also studies how the use of different types
of regression residuals for bootstrapping affects these bootstrap
estimates. In particular, it looks into how the moments of bootstrap
estimates are affected, and it also looks into how to obtain a more
accurate bootstrap confidence interval. The regression residuals
studied in this dissertation are the OLS, inflated OLS, BLUS and Stine's

(1985) residuals.

In the literature, two main approaches are used to investigate the
properties of bootstrap estimates. The first approach uses asymptotic
theory, while the second makes inferences from Monte Carlo simulations.
The current approach is different from both existing approaches. It
first examines the finite sample moments of bootstrap estimates, and
then infers from "these moments, the characteristics of bootstrap
distributions of the OLS estimates. The derivations of the finite
sample results are made possible with the use of a selection matrix.
With the selection matrix, one is able to obtain exact finite sample
results, without resorting to an extensive use of Monte Carlo
simulations. It is a major innovation of this dissertation. The

present approach is also able to reproduce some of the existing
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asymptotic results concerning bootstrap estimates.

The selection matrix is defined in Chapter 2, and four lemmas
concerning its properties are also given in this chapter. Chapter 2
then focusses on the first two moments of bootstrap estimates, when OLS,
inflated OLS, BLUS and Stine's residuals are used for bootstrapping.
The higher moments of these bootstrap estimates are examined in Chapter
3. A relationship between the error moments and moments of OLS
estimates of the regression coefficients is established in Chapter 3. A
similar relationship is also established in this chapter, for the sample
moments of regression residuals used for bootstrapping and moments of
bootstrap estimates of the regression coefficients. Chapter 4 deals
mainly with the bootstrap confidence intervals, and its objective is to
find the most suitable method for constructing bootstrap confldence
intervals. The approach used here is also different from the existing
approaches, in that both Edgeworth expansions and sample mements of
bootstrap estimates of the regression coefficients are used to compare
bootstrap confidence intervals with conventional inter-als.
Nevertheless, in Chapters 2, 3 and 4, attention is restricted to the
case of a simple linear regression model. An old problem 1in
multiplicative models is studied, in the bootstrap context, in Chapter
5. This problem concerns the estimation of the constant term. First,
an unbiased estimate of this term has to be obtained. Secondly, a
confidence interval for the constant term has to be constructed.
Lastly, in Chapter 6, the problem of constructing a confidence interval

for the AR(1) parameter is examined.
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7.2 Some Properties of the Selection Matrix

The selection matrix plays an important role in this dissertation.
Let S(J) be an mxn selection matrix, and let A and B be real nxn and mxm
matrices, respectively, of finite elements. Then, some of the main

results concerning the properties of the selection matrix are:

J
Lemma 2.1: lin {; Z [Sm]} = n*E(m,n).
Jj=1
J
Lemma 2.4: 1im {1 X [S AS! ] = {c I +c [E(m,m)-l ]}.
J53 szl (N 1'm 2 m

n n
. _ - _ -2
in which c:1 =n [Za“] and c2 =n [Zam].
1=1 h
1 2 T
Lemma 6.1 }_@)énu JJZI [S(J)BS(J)] = {c31n+c4E(n,n)}.
-1] @& -2| ¢
in which cC_ =n Zb and ¢ =n b |.
3 E 11 4 & ht

Note that both Lemmas 2.2 and 5.1 are special cases of Lemma 6.1,

when m=n. In addition, Lemma 2.2 sets B=In. When A=In. Lemma 2.4

becomes lLemma 2.3. The case for two different selection matrices can be

found in Lemma 6.2. In particular, let both Sp(j) and Sq(“ be two
different mxn selection matrices. Then,

1R (o1 -2
Lemma 6.2: .111{:"0 3,; [Spu)sq(”] = [mn ]E(n,n) when p=q.

When p=q, Lemma 6.2 becomes Lemma 2.2.
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The application of these results is not restricted to a linear
regression model. They can be applied to obtain the means of bootstrap
estimates of sample means, sample variances and covarlances, and sample
correlation coefficlents. They can also be applied to obtain the
variance of bootstrap estimates of the sample mean. For the varlances
of bootstrap estimates of sample variances and covariances, and sample
correlation coefficients, extensions of the above results are needed.

These extensions are left for future research.

7.3 Moments of Bootstrap Estimates in the

Linear Regression Context

Asymptotically, Freedman (1881) has shown that OLS residuals can be
used for bootstrapping. This is because bootstrapping based upon OLS
residuals leads to consistent estimates of the exact moments of OLS
estimates of regression coefficients. Let B be the vector of regression
coefficients and let B be its OLS estimate. Then, when OLS residuals
are used for bootstrapping, the sample moments of bootstrap estimates of
B are consistent estimates of the exact moments of B. However, the
biases in the sample moments of bootstrap estimates of B can be
substantial, especlally when the sample size s small and when the

number of regression coefficients is large.

It is now common knowledge among many authors that OLS residuals
are not suitable for bootstrapping when the sample size 1is small.
However, most of the inferences come from Monte Carlo simulations.
Thus, the cause of the problem(s) associated with the use of OLS
residuals for bootstrapping is still unknown. One conjecture is that

the problem stems from the fact that the OLS residuals do not have a
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scalar variance-covariance matrix. [See e.g., Stine (1985)]. This
conjecture {s proven to be incorrect in Chapter 2. It is demonstrated
in Chapters 2 and 3, that the problem with using OLS residuals for
bootstrapping is due to the fact that the sample moments of these
residuals underestimate the exact moments of é. Thus, when one is
interested in only the first two moments of bootstrap estimates of B,
the conjecture of Freedman and Peters (1984a) is correct. Freedman and
Peters suggest that the OLS residuals be transformed, prior to
bootstrapping, either by the BLUS procedure or by multiplying the OLS
residuals by the factor [n(n—KYq]1/2. It is shown in Theorems 2.12 and
2.14, that this conjecture is correct, provided that only the first two
moments of bootstrap estimates of B are required. For higher moments of
these bootstrap estimates, this conjecture is incorrect. It is shown in
Chapter 3, that when the errors are normally distributed, the use of
BLUS residuals for bootstrapping may lead to better estimates of the
fourth moment of B. In this case, the use of either BLUS or inflated

OLS residuals for bootstrapping leads to unbiased estimates of the third

moment of é.

The main contribution of Chapters 2 and 3 is that they provide a
systematic understanding of the finite sample properties of the
bootstrap estimates of B. The results of these two chapters enable one
systematically to unveil and understand the problems of bootstrapping,
especially in the regression context. However, these results are not
restricted to the regression problem. Difficulties do exist 1in
applications of the bootstrap to other areas of statistical estimation.
The above results can be applied, with possible modifications or

extensions, to resolve these difficulties.



7.4 A Note on Bootstrap Confidence Intervals

A general result, concerning bootstrap confldence intervals (BCI's)
of an unknown parameter, suggests that these intervals admit errors of
o(n"'). ~his result is glven by Efron (1979, 1f’S), Singh (1981), and
Abramovitch and Singh (1885). It applies only to a special case in the
regression context, and this happens when the true errors are
observable. Otherwise, this result is not applicable to BCI's of 8.
This is demonstrated in Chapter 4. Depending on the type of regression
residuals used for bootstrapping and depending on the method of
constructing these BCI's, the accuracies of these intervals vary; they
can admit errors as small as O(n™>) or as large as O(n"'). BCI's which
admit errors of O(n"') are of no practical value, since conventional
confidence intervals, which are easy to construct, also admit errors of

the same order.

It is also shown in Chapter 4, that the ideal BCI is based upon the

bootstrap distribution of tz' where t2=[(B—B)s'l] and s2 is an unblased

B B

estimate of the variance of é. Either the OLS or BLUS residuals can be
used for obtaining the bootstrap distribution of tz. depending on the
sample size and on the number of regression coefficients. When the
sample size 1is small and when there are many coefficients in a
regression model, BLUS residuals should be used. On the other hand,
when the sample size is large and when there are a few coefficlents to

be estimated, OLS residuals should be used. The use of either OLS or

inflated OLS residuals leads to the same bootstrap distribution of tz.

The naive BCI, obtained by ordering the bootstrap estimates of f,

should be avoided because it can be extremely short when compared with
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the exacl confldence interval of B, especially when the sample size is
small. This problem becomes more cserious as the number of regression

coefficients increases, whlile holding the sample size constant.

7.5 Consequences of Using OLS Residuals for Bootstrappirg

Since OLS residuals are easy to compute, an unsuspecting researcher
is likely to use these residuals for bootstrapping. This researcher is
also likely to use the naive BCI’s for constructing confidence intervals

of B. Marais (1984) and Veall (1987} are two recent examples.

In Marais (1984), which studies the two parameter capital asset
pricing model, the consequence is not serious. This is because when the
sample size is 50, the variance of bootstrap estimates of 8
underest imates the variance of é by 4 percent; when the sample size is
200, this bias is only 1 percent. This is evident from Theorems 2.9 and
2.10. On the other hand, the consequence is serious in Veall (1987).
In this example, there are two models of peak electricity demand. The
first model has two parameters, while the second model has four. For
both models, the sample size is 20. As is evident from Theorems 2.9 and
2.10, the variance of bootstrap estimates of B underestimates the
variance of é by 10 and 20 percent in the first and second models,

respectively.

Consequently, in Veall's (1987, pp.210-211) Table 1, the correct
values are much smaller (larger) than those reported for the I'ower
(upper) tails. Improvements can be made to the results in Marais’
(1984, p.48) Table 4, especially for n=50. This can easily be

accomplished by using inflated OLS residuals for bootstrapping. On the
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other hand, this Is not adequate in Veall's case. The proper approach,
then, is to use the bootstrap distribution of t2 for the construction of

BCI's of peak electricity demands.

7.6 The Role of Bootstrapping in a Multiplicative Model

In double-logarithmic models, which are commonly used in econo ‘ics,
an important difficulty is the estimation of the constant term and its
standard error, especially when the errors are multiplicative. Let this
constant term be B. When the error distribution is lognormal with unit
mean and finite variance, this difficulty is partially resolved. This
is due to fact that an unbiased estimate of B can be obtalned by using
Bradu and Mundlak's (1970) estimator. It is shown in Chapter 5, that
the original Bradu-Mundlak estimator has a downward bias. Consequently,
an unbiased estimator is duly given in this chapter. This estimator is
denoted by éz' However, it remains difficult to obtain a confidence
interval for B. For this reason, BCI's are suggested h:ie as practical

alternatives.

It is shown in Chapter 5, that the variance of bootstrap estimates
of B overestimates the actual variance of the éz’ when the bootstrap
estimates are obtained in a similar fashion as éa‘ Consequently, one
should not use the nailve BCI's for constructing conflidence Intervals of
B. The consequence of using tne naive BCI’s here is much more serlous,
as compared to the case of linear regression coefficients. Alternative
BCI's are proposed in this chapter, and the one based upon the bootstrap
t-distribution is found to have the best performance, in terms of its

empirical coverage. It is the only confidence interval whose coverage
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is relatively well-balanced. However, it does have a problem, which is

the possibility of obtaining an opern. upper bound for B.

One other estimate of B, which is suggested by Srivastava and Singh
(1989), is also examined in Chapter 5. This estimate is simpler to
compute than }32. but it has a blas, whose magnitude depends on the
variance of the error term. However, this blas is easy to correct, when
the error distribution is lognormal. When the lognormality assumption
s violated, both estimates become unreliable and better estimates need
to be constructed. Two feasible alternatives are the Jackknife and
bootstrap esiimates considered in Chaubey and Sim (1988). Thus, the
role of the bootstrap is not restricted to constructing confidence
intervals of B. Its role can be enhanced to obtain unbiased estimates
of B, especially when the error distribution is not lognormal and when

the error variasice iIs large.

7.7 Bootstrap Confidence Intervals of the AR(1) Parameter

In Chapter 6, the focus is on the le=st-squares estimate of the
AR(1) parameter. let B be the AR(1) parameter, and let Iits
least-squaics estimate be é It is demonstrated in this chapter that,
for constructing confidence intervals of B8, one should take into account
the fact that the variance of é depends upon B. It is also shown in
this chapter, that conventional confidence intervals of B are unreliable
in the tails, especially when n=20. Bootstrap confidence intervals are
suggested here as simple alternatives. Another alternative is the
method based upon ERA’'s introduced by Phillips (1983, 1884). However,

this method is rather cumbersome to use, and it also requires that the
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distribution of the underlying process be known. On the other hand, the

bootstrap method is simple to use, and it is a distribution-free methad.

With regard to bootstrap confidence intervals, the following are in
order. First, for constructing confidence intervals of B, one should
use the bootstrap t-distribution, and one should also account for the
fact that the variance of f3 depends upon B. Secondly, when nz20 and
when 0sBs0.9, BCI's provide fairly good approximations to the exact
confidence interval. When n=10, this observation is restricted to the
case when O0sB<0.9. Thirdly, BCI's are most reliable when used for
constructing ninety percent confidence interwvals. For ninety-five
percent confidence intervals, BCI’s are still better than conventional

intervals, especially when B is close to unity.

A bootstrap theorem is also given, in Chapter 6, on the mean and
variance of bootstrap estimates of B. This is done with the aid of two
additional lemmas concerning the properties of selection matrices. This
theorem and its corresponding lemmas are not restricted to the current
example. They can also be used to extend the current application of the
bootstrap to the Durbin-Watson statistic, and statistical tests like the

F, LM, Wald and unit root tests.

It is also shown in Chapter 6, that bootstrap approximations to the
exact distribution of é, when B8 is some known constant, are reasonably
good. Thus, it may be suggested as a simple alternative to the met hod
bacsed upon ERA's for approximating the exact distribution of B This
can be very useful in the case when one is testing for unit .oots,

especially when the underlying distribut ion is wunknown.
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7.8 Applications of Bootstrapping in Econometrics

The bootstrap can be applied to a general class of econometric
probl ems. This is demonstrated by the growing literatutre on the
application of bootstrap in econonics. However, the bulk of the
literature consists minly of applications and Monte Carlo results.
Only Freedman (iS81, 1984 ) gives asymptlotic resuits for regression
models; namely, single equation and two stage lesast—squares models.
Earlier appl ications of the bootstrap to a system of 1linear seeningly
unrelated regression equations can be found in Freedman and Peters
(1984a, 1984b) and Korajcyk (198S5). Other earlier applications to
lineay- regression models include Peters (1983), Daggelt and Freedman
(1884) and Marais (1984). Flood (1¢85) applies the bootstrap to a

system of seemingly unrelated Tobit equat ions.

Recently, bootstrapping has been applied to many areas in
economics. For examples, see Tayler et al (1986), Green et al (1987)
and Vinod and Raj (1988). Other recent examples can also be found in

Economics Letters Volume 22. The applied areas include demand

homogeneity, standard errors for elasticities and economic issues in
system divest iture (Vinod and Raj, 1988). Applications of bootstrap to
forecasting elasticity demand can be found in Bernard and Veall (i1887)

and Veall (1987).

Among tii theoretical applications, Hsu et al (1986) wuse the
bootstrap as a bias reduction method for two stage least-squares
estimates. Application of bootstrapping in regression models with
dependent errors is also an interesting area. Recent studies in this

area include Kiviet (1984), Veall (1986) and Prescott and Stengos
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(1887). One other interesting problem in econometrics is the case when
the design matrix is 1ill-conditioned. Recent examples of the
application of bootstrapping in this area can be found in Delaney and

Chatterjee (1986, 1987), and Nebebe and Sim (1989).

7.8 Conclusion

This chapter summarizes the main results obtained 1n this
dissertation. It alsc presents a discussion of some of these results.
The main contributions of this dissertation are:

(1) It introduces a nevw method, based upon the selection matrix,
for studying the finite sample properties of bootstrap estimates. The
selection matrix itself is a new innovation, at least in the bootstrap
context.

(2) 1t locates the problem associated with bootstrap estimates of
regression coefficients and, consequently, suggests the appropriate
measure for correcting this problem.

(3) It explains why naive bootstrap confidence intervals are
unreliable, especially when the sample size is small and when the
parameter to be estimted is other than a simple 1inear regression
coef'ficient. Hence, more reliable bootstrap confidence Intervals are
also suggested.

(4) The results obtained in this dissertation are not restricted
to the current examples, and have general applications to a wider class

of statistical and econometric problens.
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Appendix A

Alternative Proof for Lemma 2.2: Let

T _ [oT T
Sin = [su)""’su).m]

and
sT s = |S (n,1=1 )
(N7 (pny] 0 IEReeen D
e (.1
- rzi[s(_i).rs(])r.] '
First note that for each r (r=1,...,m), there are n ways to place one

unity in S(j can be arranged

.’

In other words, the elements of SU)r

in n different ways. Consequently, there will be (n™) ways to arrange

the elements in S( Of these (n") arrangements, there will be

»

(i) Cn =1 matrix with unity in the first column,

(11) (mCm_l)(n-l) matrices with unity in (m-1) positions and 1

zero in the first column,

(iii) (mCm_z)(n—-l)2 matrices with unity in (m-2) positions and 2
zeroes in the first column,

(iv) (mCI)(n-l)“‘_2 matrices with unity in 2 positions and (m-2)
zeroes in the first column,

(v) (mC1) (n-1)™! matrices with unity in cne position and (a-1)

zeroes in the first column.

Secondly, whenever unity is in q positions in the first column of

S(J), Su)u=q for all g=1,...,m. Thus,
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r~1-

1 a.s. o m.. m-1 ~-m
{3 [s”m]} 8., HZ[( c)(n-1"" (1) (n )]H
J=1 J 1=1

{z [('"cl)(n-l)“‘"(i)]} = mn™!
i=1

and the R.H.S. becomes (n"'m). The same conclusion can be made for the

However,

other columns of S . Thus,

J
1 a.s. -1
{FJZ1[SU""‘]} "'T_> (n"m), (h=1,...,m).

The proof 1is then straightforward. Q.E.D.

Alternative Proof for Lemma 2.3: Let the mxm matrices

T F— -

First note that S(“hh=1 for all h=t1,...,m. When h and i are different,

S =1 ir s =S . Since there are n columns in S, this can
(3)ht (Hh. (P, (3

occur in n ways. Suppose that the unit values are in the first columns

of S”)h and S”“ . Thei, there will be (n™?% ) arrangements for the
remaining (m-2) rows. Subsequently, there will be [n(nm-z)] and
m-2 - -

[n(n 1)(n )] ways of arranging S(Jl so that S(“M—l and S(J)m 0,
respectively. Thus, when h#i,

1 & a.s m-2, -m

FJZI [S( j)hh] J {n(n )n }
and the R.HS. reduces to (n™) The ©proof then becomes

straightforward. Q.E.D.
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