BUILDING A USER INTERFACE FOR A LENICON BROWSER
SYSTEM.

JENNIFER ScoTT

A Malor REPORT
IN

THE DEPARTMENT
oF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDMA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 1996

© JeNNIFER ScoTT , 1996

l* l National Library
of Canada

Acquisihons and

Bibliotheque nationale
du Canada

Cirection des acquisiions el

Biblingraphic Services Branch des services bibliographiques

Y Welline ton Steet 395 rue Wellngton
Ontawa (Ontana)

(MANAg Trtaneg
V1A OHA 1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canacia to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any rorm or format, making
this thesis available to inteiested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Yone Bl St epigrence

e hate eterence

L’'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18438-2

Canada

Abstract

Building a User Interface for a Lexicon Browser System.
g A

Jennifer Scott

The AETNA (Analysis of Fnglish Texts from Newspaper Articles) Group at Concordia
University is attempting to build a Lexicon with detailed semantic and syntactic informa-
tion. This report describes the construction of a graphical user interface - The Lexicon
Browser System - to be used to help build the A TN Lexicon. Some of the problems as-

sociated with Lexicon building in general and of intetface design in particular are described.

Acknowledgments

I would like to thank my supervisor, Sabine Bergler, for all her help and advice during the
project, Professor R. Shinghal for his extensive comments, and my husband, Andrew Scott,

for his continuing support and patience.

Contents

List of Figures

1

Introduction
1.1 Whatis alexicon Fatev? o 00 000000 000
1.2 The Rationale for Building a Lexicon Browser System

1.3

1.4

Why Build an Interface for Lexicon Construction?

The Rationale for Interface Design L.

Developmental History

2.1

2.2

2.3

2.4

The First Prototype P
The Second Prototype,
The Third Prototype i
Combining Two Systems to Make the Lexicon Browser System

The Fourth Prototype o e e,

viii

11

12

14

14

15

3 Using the Lexicon Browser System

{1

3.2

o r ey ot e L

3.1.1 UINM/N Tool

3.1.2 Rationale for using UIM/X

l\! ‘\ l\u\'

Technical Details of the Lexicon Browser System, Buttons, Menus, Windows,

3.2.1 Getting Started

3.2.2 The Menu Structure

323 FILE.. ..

324 DATA MENU

325 STRUCTURE MENU

326 EDIT ...

3.27 RESET ..

3.28 TEXT BOX

3.29 SCROLLED

3.2.10 HELP . . .

...........................

......................

................................

................................

........................

4 System Evaluation and Suggestions for Future Developments

4.1

Svstem Evaluation

Vi

(3]
-1

29

30

3

36

37

37

12 butwre Deselopment s

5 Conclusion

Bibliography

B

40

List of Figures

1 An example of an on line dictionary. It shows the verb deny. 4

2 An example of a WordNet entry, using the verb deny. 5
3 Anexample of an AETNA Lexical entry. It shows the verb deny. 7
4 Anexample of a Noun Hierarchy: tahen trom WordNet .0 000000 0L]
5 'The Class Hierarchy for the AETNA Lexicon 10
6 Diagram of the Lexicon Browser Interface. The Third Prototype. 17
7 An Overview of the Lexicon Browser System: showing how the Browser
System interacts with Galina’s System 19
8 Galina’s Lexicon Editor] |
9 An example of a Scheme entry. It shows the verth deny.. 21
10 A Schematic View of the Functionality of the Fourth Prototype 22
11 The Fourth Prototype 23
12 The Lexicon Browser System with the File Choice Boxopen . 0000 00 L. 29

i

13 lhe Nena Strocture e e e s, . 29

] Fhe oo Bon ~or s e shonw .t I TIEH

Chapter 1

Introduction

1.1 What is a Lexicon Entry?

A Lexicon entry consists of a headword (the word we are interested in) plus all its associated
syntactical and semantical features. These features are arranged in various fields. Each field
is built up from a slot name (giving the name of the feature) and a slot value (giving the
value ascribed to the feature). The slot names are static and are the same for each word
in a particular class of words, but the slot values vary. Some slot values will be inherited
from classes higher in the class hierarchy and others will be specific for each word. Entering

these specific values makes up the bulk of the work of building a Lexicon.

Syntactic fields, including those that give the part of speech, the forms, the number,
and gender of the word, are used to parse sentences. It is not possible to understand the
meaning of a sentence without understanding the structure that lies behind it. Other fields

are concerned with semantics or word meanings.

In Fanglish, one word can have several diflerent word senses. which denote different
e~ v henat o sad nd Serent cont cas Prontod divtiomaces eive Tists ol these wond!
senses. It is easy for humans to know which word sense is being used in a certain context but
very difficult for a machine without our background of world knowledge. In order to lessen
this ambiguity, there is a need to minimize the number of word senses in each lexical entry.
(4 Al . . . 3 .

I'he entries need to be interrelated according to semantic field and to have a meta-structure

that serves different purposes.

‘The Lexicon should have a dynamic structure and not just the static structure of printed
dictionaries. It should be a dynamic structure that derives its power from linking infor-
mation between lexical entries, from a hierarchical structure, and from a rich meta-lexical
structure [Ber95]. Each lexical entry should try to capture the essence, the concept under-
lying the different word senses. There should also be a way to derive non literal or new

word senses from the conventional meaning of a word.

1.2 The Rationale for Building a Lexicon Browser System

In natural language processing, it is important to have large lists of words and their asso-
ciated syntactic and semantic features (on-line as a Lexicon) for other systems to access.
Computational lexicography is concerned with developing computer programs that use ma-
chine readable dictionaries in language analysis [BB89]. A machine readable dictionary is
an on-line version of a printed dictionary. Syntactic parsing, speech recognition, speech
generation, and semantic analysis are natural language processing tasks which could make

use of these machine readable dictionaries.

[

Many groups have built Lexicons tor special purposes. Most of these are small (often ol
a few hundred word<) ard s wah o speahc apphvation mead Dords sastem callod
UNITRAN, has about 150 entries and is used for machine translation between Paglhish,
Spanish, and German [Dor93] and Nirenburg has developed KBMT-89, 4 system with about
900 entries, to translate between English and Japanese [(GN91]. Even though both these
Lexicons serve the same purpose, i.e. machine translation, they have very little in common.
To enter a new entry, in these two systems, one has to understand the theoretical basis of
the user systems. Qur Lexicon is designed to have a more general structure and so will be

easier to reuse.

There are also several machine readable dictionaries designed for human use that give
syntactic information for each word entered e.g. Longman’s Dictionary of Current English
[Pro78]. These dictionaries have the advantage that they are large databases alot of the
work has already been done. The disadvantage is that they are not structured in a form
that can be casily adapted for natural language processing by machine. They were designed
to make the printing of dictionaries easier and so contain extra information for this purpose.
An example of a typographer’s tape from the Collin’s English Dictionary [Col79] is shown

in Figure 1.

While the Longman's Dictionary of Current English is the most studied machine read
able dicticnary, the Collin’s English Dictionary on CD-ROM was used as an example as this
was a machine readable dictionary that our group is able to access [CD-91]. Dictionaries
give soize of the semantics attached to the word, but not enough to make a reliable Lexicon.
They were designed for human users and so can assume the reader has a large amount of

background knowledge. They do not contain all the information that is needed if a machine,

lacking the human world knowledge. is to use the system.

#Hde®s ny #S5(dSI#!nasSl) #6vb. #l#+nies, #+ny#+ing,

s+nied “n#s5(#6tr.#5)%1481SD. #5to declare (an assertion, statement,
etc.) to be untrue: #the denied that he had killed her.3n#1SD. #5to
reject as false; refuse to accept or

believe.tn#1SD. #5to wit!“"21d; refuse to

give.¥n#1sD. #5to refus: to 11lfil the requests or

expectations of: #6it is hard to deny a child.@n#1$D. #5to refuse to
acknowledge or recognize; disown; uisavow: #6the baron denied his
wicked son.@n#1SD. #5to refuse (oneself) things

Jesired.em[C13: from 0ld Trench #6denier, #5from Latin
#6d+_eneg*_are, #5from #6neg*_are#5]

Figure 1: An example of an on line dictionary. It shows the verb deny.

Printed dictionaries are all organized as lists of lexical entries sorted alphabetically. This
makes for limited access to a specific word and makes comparison or generalization across
lexical entries a difficult process. WordNet [MBF*90] is an attampt to organize the words

differently.

WordNet is an on-line lexical reference system whose design was inspired by current
psycholinguistic theories of human mamory. It is a network of sense relations. WordNet
stores English nounrs, verbs, and adjectives organized into synonym sets instead of grouping
the words alphabetically as in traditional dictionaries. WordNet contains approximately
54,000 different words organized into about 49,000 word meanings or sets of synonyms
[MBF*90]. WordNet does not give enough syntactic or semantic information for it to be
used directly as a basis for our Lexicon. It gives information about synonyms and antonyms
but is still too limited and does not go far enough for our analysis purposes. Figure 2 shows
a typical WordNet entry. WordNet was constructed more for humans to use than for
machine reading. The Lexicon being built by the AETNA (Analysis of English Te :ts from

Newspaper Articles) group is to be more detailed in semantic and sy itactic information.

Antonyms of verb deny

Sense 1
<verb.communication>deny, declare untrue -- ("He denied the allegations")
<verb.communication>=> admit, acknowledge -- (declare or
acknowledge to be true; "He admitted his errors”;
"She acknowlenged that she might have forgotten")

Synonyms (Ordered by Frequency) of verb deny

Sense 1
<verb.communication>deny, declarc untrue -- ("He denied the ~llegations")
=> contradict, negate, contravene

Hypenyms of verb deny

Sense 1
<verb.communication>deny., declare untrue -- ("He denied the allegations")
<verb.communication>=> disclaim, make a disclaimer about --
("He disclaimed any responsibility")
<verb.communication>=> disavow, refuse to acknowledgel

Hypernyms (Ordered by Frequency) of verb deny

Sense 1
<verb.communication>deny, declare untrue -- ("He denied the allegations")
<verb.communication>=> contradict, negate, contravene
<verb.communication>=> disagree, diffe:., take issue --
(be at loggerheads; "I beq to differ!")

Sample Sentences of verb deny

Sense 1

<verb.communication>deny, declare untrue -- ("He denied the allegations")
*> Somebody ----s something
*> Somebody ----s that CLAUSE

Figure 2: An example of 2 WordNet entry, using the verb deny.

i

The AETNA group has an overall goal of improved information retrieval. The aim
is to antomaticalll find information fiom documents or newspaper articles for a specifie
purpose. At present many information retrieval systems still rely on matching keywords to
find a document or part of a document. The AETNA group is trying to use computational
linguistics methods to analyze a text fully and thus to provide the basis to retrieve texts

based on more fine-tuned information leading to more accurate retrieval.

The AETNA group has focused on the Newspaper Article domain for two reasons: first,
newspapers provide a vast and important fact base with commercial interest and second,
there is a lot of cheaply available data that is already on line. Most major newspapers now
publish daily on the internet. In this context the proper analysis of reported speech is very
important. In order to make a proper analysis of reported speech an improved Lexicon is

required.

A useful Lexicon would contain thousands, maybe millions of entries. One method of
Lexicon development is to use a machine readable dictionary as a starting point. ASCOT
(Automatic Scanning system for Corpus-Oriented Tasks [AMMS85]) is a project to develop a
computerized Lexicon using Longman’s Dictionary of Current English as its base. This is a
difficult and complex task and the results seem to be more useful in the syntactic held than
in the semantic field that the AETNA group is more concerned with. Also the developers
of ASCOT found there was a conflict between the ways information can be made clear to

human beings and to computers.

The AETNA project is trying to enrich existing lexical semantics. Therefore the entries

are crafted by hand and are structured in a way to be maximally consistent, given the

6

AETNA Lexical Entry

CLASS <rv>
ROOT: deny
FORMS : denies denied denying
PART OF SPEECH: verb
SENSE: 1
ARGUMENTS: 2
SUBJECT: AGENT
REQUIRED: yes
SUBCATEGORIZATION: human
METONYMIC-EXTENSIONS: document, company, institution
OBJECT1: theme
PREPOSITION:
REQUIRED: yes
SUBCATEGORI ZATION: information

METONYMIC-EXTENSIONS:
LEXICAL CONCEPTUAL PARADIGMS

EVENT-TYPE: transition
TEMPORAL:
DEFINITION: to declare to be untrue
EXAMPLES:
HYPERNYMS:
SYNONYMS:
ANTONYMS:
SEMANTIC-CONCEPT: RV
LEXICAL CLASS
VOICE: unmarked
EXPLICIT: explicit
FORMAL: unmarked
AUDIENCE: unmarked
POLARITY: negative
PRESUPPOSITIONS: presupposed
SPEECH-ACT: inform
AFFECTEDNESS : unmarked
STRENGTH: unmarked

DISCOURSE-POLARITY:

Figure 3: An example of an AETNA Lexical entry. It shows the verb deny.

-1

known limitations of manual lexicography. Figure 3 shows a typical entry in the AETNA
Pesicon. ‘o sewantically complox lexical cntiies have heew desaibed in wore detail by
Sabine Bergler [Ber®3] and [Ber953). This type of entry gives the user access to much mere

semantic and syntactic information about each word than other on-line dictionaries.

The part of the AETNA project I have been involved with is the building of a user
interface for the AETNA Lexicon: The Lexicon Browser System. This interface is a tool to
aid in the building and maintenance of the AETNA Lexicon. An easy, efficient method of
entering and reviewing data about words, abstracting similarities and differences of mean-
ings related to the word would be very helpful. This Lexicon Browser System is an attempt

to do the above. It will be most useful when adding data to the Lexicon.

The Lexicon Browser System will give a user the ability to navigate acound potentially
thousands of entries. It will be able to display a typical entry to give the user an idea
of how to enter details for similar words. Word entries are entered in the Lexicon as
templates constructed with many slots. The AETNA Lexicon will be a hierarchy of entries,
programmed in the object oriented language TINY-CLOS. Tiny-clos is a variant of CLOS,
the Common Lisp Object System [Pacd3], embedded in Scheme used to define classes,

multiple inheritance, generic functions and primary methods.

The hierarchical structure of printed dictionaries has been shown to be a broad but
shallow hierarchy. Amsler [Ams80] in his work with the Merriam-Webster Pocket Dictionary
has shown, for example, that noun hierarchies usually have only about 8 levels (maximum
18 levels). Figure 4 shows WordNet’s noun hierarchy for different types of chair. This has

implications for lexicon data entry. After a stage of building up a basic stock of semantic

classes for the upper levels, later data entry would counsist of adding entries to the system

oS l“n\'(‘.\.

hactacinead lesels

l entity
2 object, inanimate object, physical object

artifact, artefact

4 instrumentality, instrumentation
5 fumishings
6 fumiture, a piece of fumiture, article of fumniture
7 seat
! . I P 1
8 chair armchair lawnchair deckchair kitchenchair bosun’s chair

Figure 4: An example of a Noun Hierarchy: taken from WordNet

The dictionaries’ hierarchical structure [Ams80] has been made explicit in WordNet,
Making use of hyponymy and hypernymy (two semantic relations between word meanings),
WordNet creates an inheritance system. Hyponymy / hypernymy is a semantic relation
between words and is also called subordination / superordination, subsel / superset, or
the “isa” relation. For example “maple” is a hyponym of “tree”, and “tree” is a hyponym
of “plant” - a maple is a kind of tree [MBF90]. A hyponym inherits all the features
of the more generic concept and adds at least one feature that distinguishes it from its

superordinate and from any other hvponyms of that superordinate [MBF+90].

It is important to allow for related words to inherit default slot values. {(e.g. a “musician”
is a kind of “human” and so the word “musician” should inherit human characteristics. A

“violinist” should inherit characteristics from both “musician” and “human”.) Allowing

new words to inherit default slot values would simplify and lessen the task of data entry. It
wonld ent denon on repetition and vonld help in keeping entries accirate. CHOS [Paetd].,
an object oriented language, is being used to make building the hierarchy and incorporating

inheritance easier. Figure 5 shows the proposed class hierarchy to be used in the AETNA

Lexicon.
Object
Word
|
r 1
Closed Class Open Class
| LN | |
Pronoun Noun Adjective * Adverb* Verb
Event Entity RS Verb +

* These Templates have not been developed yet
+ For the definition of RS Verb see Chapter 3, Section 3.2.4

Figure 5: The Class Hierarchy for the AETNA Lexicon

The system should also facilitate checking entries for accuracy and consistency. Using an
object oriented hierarchy with inheritance should make this checking easier. The Browser
should give the user an alphabetically sorted list of words already entered in the Lexicon
and should show the user specific words with all their related semantic and syntactic details.

It should show details of the different senses of the same word.

The only users of the system are at present members of the AETNA group, but if the
project is successful the Lexicon Browser System could be used by others interested in

building a lexicon for computational purposcs.

{0

1.3 Why Build an Interface for Lexicon Construction?

There are several problems associated with data entiy. Firsth, the AL TN group is still
in the process of deriving the format of the entries for our Lexicon. This means the system

must be flexible enough to change as the style and contents of individual entries change.

Secondly, the size of the finished Lexicon poses many problems. It is hard to develop a
small accurate system, but it is very much harder to scale up a small system to one that can
cope with thousands of words. It will take many man hours of work to complete the task.
The system must be robust enough to cope with many different people, with varying levels
of computer literacy, working on data entry. Dataentry is time consuming, the development

of a regular dictionary involves tens of lexicographer-years [BB89).

Thirdly, data entry is a task where it is easy for the human to make mistakes. The
Lexicon interface should provide for some automatic spell checking, checking for data con-
sistency, and should allow the user to view entries for similar words so that the user can

get the format correct.

In this project the language used for the application is SCHEME. The tool for graphical
interface development is UIM/X. The object oriented hierarchy is being implemented with
TINY CLOS. The 1eason for these choices is to use Public Domain software. This is to
make the Lexicon and Lexicon tools easily portable so that they can eventually be used by

as many people as possible.

1.4 The Rationale for Interface Design

Good intertace design is very impottant for the quality of the finished product in software
engineering. The most important factor affecting productivity is the complexity of the user
interface. A simple interf. ce is very much easier for the user to understand and to learn
to use. It is very hard to define what is a good or bad interface as this involves subjective
judgment. A very good application can fail if the user is irritated with the user interface,
and a mediocre application may succeed with a good user friendly interface. The interface
is the only part of an application the user interacts with and so it contributes a great deal

to the ultimate success of a product [Som89, pages 489 - 491].

A badly designed interface can cause the user to misunderstand the meaning of a pre-
sented item leading to mistakes. An interface that is hard to understand and hard to use
will result in a much higher error rate when the user is entering data. The interface must
be designed with the needs of the user in mind. The components of the interface should be
those the user is already familiar with and actions associated with the components should

be consistent.

Interface design is often an afterthought tacked on to the end of product development.
This often leads to a bad interface. In this project the interface is being developed in parallel

with the rest of the application and has changed as the needs of the project have changed.

Colour can be used for emphasis in interface design and to make an interface more
interesting to the user. Too many colours should not be used as this makes an interface
confusing and more complicated. The use of colour should be consistent [Som89, pages 283

- 285).

The interface has been designed in colour but works as well in monochrome. Colour
lias been wsed to hichlieht parvts of the display and to distianishe hetween different areas
of the windows. Colour has not been used to convey meaning as the user may only have a

monochrome monitor or the user may be colour blind.

Chapter 2

Developmental History

2.1 The First Prototype

The Lexicon Browser System was started as a simple command line application written in
scheme on an IBM compatible PC. The first prototype was developed using Texas Instru-

ments PC Scheme, briefly referred to as TI Scheme.

This was a small version of the Lexicon system with routines to add words, delete words,
show word details, show a list of all words in a list of mock entries called the Lexicon, save
words and to do the same with reported speech verb entries. The LISP and Scheme data

type “structure” was used to implement reported speech verb templates and slot values.

Choices were made from various menus using the k-yboard. The letter entered from the

keyboard called up the next menu level or showed the required entry.

This first prototype could handle only a very small, simulated Lexicon. The screen was

1

small and parts of the entries for the reported speech verbs would seroll off the screen. For
a lexicon of thowsands of wordscas is planned this sostem wonld tahe too Tong to Joad 10

sort entries, and to scaich for words.

The templates, slots and slot fillers that go to make up a reported speech verb entry
were bound together using structures. There was a problem with this because T1 Scheme
is limited to 32 of these slots. This was a drawback as each reported speech verb requires

more slots than this to fully characterize each verb.

The first prototype helped to show what was possible and what would be needed later. A
more flexible user interface was required. An interface with windows and mouse capabilitics
would allow the user to scroll up and down the long entries and lists of words in the lexicon.
The availability of more than one window would let the user view a completed entry while

adding to or developing similar entries. For the above reasons the system was ported to the

SUN UNIX System.

2.2 The Second Prototype

This was the Lexicon Browser System running on UNIX. It was necessary to change from T1
Scheme to Gambit to get the system to work on the UNIX system. Gambit was chosen over
MIT Scheme, both are Public Domain software. Gambit is an IEEE and R4RS-conformant
small implementation of Scheme [KR92}, which is faster, runs on different platforms, and
has both an interpreter and a compiler. Scheme is a language that has a formal d=finition

of both syntax and semantics.

Several alterations to the Scheme code were necessary at this stage. ‘1 he most difficul

15

problem was that Gambit does not provide a procedure to read in structures fiom a file.

T he second protony pe was st a connmand line application,

2.3 The Third Prototype

For both the first and second prototypes a simulated Lexicon had been constructed to
simplify the task. Now it appeared that the simplification was causing most of the problems
and the third prototype was a step to interface ultimately with the tools for real Lexicon

storage and maintenance already developed.

It was decided to develop a more user friendly interface with windows and » - capa-
bilities. To do this it was decided o use the UIM/X Graphical User Interface Tool. UIM/X
is a complex tool and to get to know it [followed the series of 9 tutorials provided by Visual

Edge Software Ltd. in their “Getting started with UIM/X” package [Vis93a].

The third prototype consisted of a small UIM/X interface that worked with the second
prototype. When the application was called, a bulletin board containing a scrolled window
popped up on the screen. Push buttons activated pull down menus to allow the user to
interact with the application. Messages were sent to the Gambit subprocess and results

were shown in the scrolled window. A diagram of the third prototype is shown in Figure 6.

The command line menus were converted to pull down menus that could be used with
a mouse. In order to get the third prototype to work, the Gambit code had to be modified
again, Less Scheme code was now needed as the menus were implemented Ly the graphical

interface.

16

butletinBoard2 \ / abe {
THE LEXICON BROWSER SYSTEM
pushButtond 1 scrudledText!
T~J'staRT MENU
pushButton2
i
pushBution6
\’\ OPEN EDITOR
pushButton9
\\l RFsETn,\\mrr‘
pushButton| \
\
\I EXIT l i
) |
T rollbars
Wbzt TEXT BOX L T e — abels
textField!1 I] I] textfield?

Figure 6: Diagram of the Lexicon Browser interface. The Third Prototype.

2.4 Combining Two Systems to Make the Lexicon Browser

System

At this stage it was necessary to use code developed by Galina Kolesova (Systems Analyst
in the Department of Computer Science, Concordia University) to manage the ful! size
Lexicon. It would not be » ~imple matter to scale up my system to at one point ma;lage a
Lexicon of several thousands of laige entries. Galina developed a systew, Galina’s Lexicon

Editor, to manage editing, saving and sorting functions. This required complex management

strategies and the use of hash tables.

As explained previously, words need to be placed in a hierarchy so that related words can
inherit slot values. Galina is working in Tiny Clos with its object orientation to impl 'ment

this

The Lexicor Browser System was developed by combining ideas developed in the thi~d
prototype with Galina's system. The third prototype allowed the user to open the Galina’s
Lexi~on Editor window to edit the Lexicon entries. The relationship between the two

systems can be seen in Figure 7.

This was a difficult stage as it was hard to work with code written by two people. It
later required a major revision into the fourth prototype as there was still some conflict

between the two subsystems: they did not commaunicate as well as they should have.

The third prototype allowed the user to open files necessary to start Gambit and to
start the Browser system. The user then used the Main Menu to review previous entries

(verbs »nd rcported speech verbs, only as nouns are not finished yet). The user could use

I8

Overview of the Lexicon Browser System

Open Browser Window
|

I -

| | | { 1
File Operations Browser Functions Gambit Functions Help Functions Editing Functions
Open Files View Entries Recovery after Information Open Editor
I I Errors about Browser
Exit System View Structure
Retum to UNIX

Galina's Lexicon Editor Window

Menu Access

|

Edit Ent‘ries Change 'Format :\ccless to Save belxicon Close li(llilor
of Entries WordNet using Hash Tables Retum to
Add New Entries (in Scheme format) Browser Window
I Nice Format :.

Delete Entries to Scheme Format

Figure 7: An Overview of the Lexicon Browser System: showing how the Browser System
interacts with Galina’s “ ystem

10

the Text Hox to enter words to chech whether they were already in the Lexicon. The File
Bos allowed the wser to enter the fll path name of the Lexicon il he was interested in.
When the user wished to edit or save work done on an entry. the Open Editor button gave

access to Galina’s Lexicon Editor. The user ended a session with the Exit button.

The Lexicon Editor developed by Galina is shown in Figure 8.

1E0coN EoNon

[Qmacv PR OEQITE] [!ISPUW B SV ANTINS]

I

- | 1 - I START 1

|
)

) —

| —
I

[2ok to tp 1ot | [Cload bingndd |

- =
L CLERR WINOOM 2]

CLEAR NIMBOM 1

Figure 8: Galina’s Lexicon Editor

Galina’s Lexicon Editor allows the user to perform the following useful tasks associated
with entry management. The user can add, delete, edit, and save entries. Entries can
be added to the Lexicon either by typing data directly onto the screen in a window or by
reading an entry from a file in the “nice” format. The “nice” format is a form of the Lexicon

entry that is casily readable and understandable by the user whereas the “scheme” format

20)

is a more machine readable format. The Lexicon Editor can automatically convert from
the “pice™ format to the “scheme™ format, The entiies are aved in the “sdicme”™ format,

Figures 9 and 3 show examples of entries in the “scheme™ and the “nice” formats.

Galina’s Lexicon Editor also provides the user with the option of automaticaliy convert-
ing WordNet entries into the slot-filler structures used for Lexicon entries which can then

be edited and saved in the Lexicon files. The user can access words via the root of the word.

(make-obj <rv> "deny"

'FORMS "denies denied denying"

'POS "verb"

'SENSE "1"

‘args (list ‘()(list 'THETA-ROLE "theme" 'REQ "yes" ’'SUB
CAT "information"))

'DEFINITION "to declare to be untrue"

'SEMANTIC-CONCEPT "RV"

'POLARITY "negative®

'PRESUPPOSITIONS “"presupposed"

)

(make-obj <xrv> "deny"

'FORMS "denies denied denying"

'POS "verb"

"SENSE "2"

‘args (list ‘()(list 'THETA-ROLE "SCOMP" ’‘PREP "optional
that scomp ‘'‘that’’" 'REQ "yes" ’'SUBCAT "information"))
‘DEFINITION "to declare to be untrue"

"SEMANTIC-CONCEPT "RV"

'POLARITY "negative"

'PRESUPPOSITIONS "presupposed"

Figure 9: An example of a Scheme entry. It shows the verb deny.

2.5 The Fourth Prototype

For the fourth and final prototype, the system has been revised to make the interface more
attractive and easier to use. The menus have been totally redesigned to be more logical and

user friendly. The conflicts between the two subsystems have been resolved and the system

21

as a whole works better. An overview of functionality of the fourth prototype can be seen

in Piguie 10,
The Lexicon Browser System
Browser Window
Browser Menu
I, b JLo [, L
File Operations Browser Functions Gambit Functions Help Functions Edit Functions
Open Files Recovery after Information
Error Messages about the
Close System - System
Retum to UNIX
Access to Galina's
' I Lexicon Editor
View Entries View Structure
View Lexicon View Class
I Hierarchy
View a Specific l
Entry View Templates
I for the
Is a word different
already in the Entry Types
Lexicon

Figure 10: A Schematic View of the Functionality of the Fourth Prototype

The fourth prototype allows the user to review previous entries, to check whether a
word has already been entered in the Lexicon, and to review template structures. It allows
the user to make choices between the various Lexicon files to work on. The user can now
see which files are available rather than having to remember this. When the user needs to
save or edit an entry there is access to Galina's Lexicon Editor by using the Open Editor

button.

The system now loads Gambit automatically. A view of the system as it opens can

=
o

Ganmbit (v2.2)

THE LEXICON SYSTEM .
* The files for the Lexicon Brouser Systes have been loaded. *
*“/mnt/pr ivi/oetna/ jenn ifec/LEX/ jsetuph . s™
1

Figure 11: The Fourth Prototype

23

be seen in Figure 11. This was previously done by the user having to click on the START
GAMBLH batton after selectine the START MENULD NS this wascomethiv e the user needaed
to do before using the rest of the system, it made more sense to initialize this for the user.
The system now also loads the several files needed to start the application. This was
changed for the same reasons the method of loading Gambit was <hanged. The user will

see a message in the scrolled window if the system cannot find or load the necessary files.

The FILE BOX where the user had to eater the path names for lexicon files to be loaded
(by clicking on a LOAD FILE push-button) has been removed in the fourth prototype. It
has been replaced by a FILE CHOICE BOX opened on the screen by clicking on OPEN
FILE in the FILE menu. The FILE CHOICE BOX shows the user all the files available.
There is a filter mechanism to show the user files in different directories as well. It is easier
for the user to make a choice of files from those displayed to remember all the details of
a complex path name. Once the relevant file has been selected, a click on the OK button
loads the file. An easy method for loading files is essential as the final lexicon will be stored
using many files (e.g. at least one file for each letter in the alphabet). Figure 12 shows the

Browser System with the File Choice Box open.

The menu system has been pruned and simplified replacing the third prototype version.
The number of menu items has been reduced. The menu has been changed from a system
of push buttons clicked on with the left mouse button and pull down menus activated with
the right mouse button to an easier to use menu bar with pop down menus activated using
only the left mouse button. The system is now more consistent with what happens when
other commercial windows systems are used. It is now easier to follow and the duplications

of the previous version have been removed. Every push button at the end of each menu

@Lsacm
L FILE DATA HENU STRUCTURE HENU EDIT RESET HELP]
THE LEXICON BROWSER SYSTEM
| Loading File from File Choice Box. H'
I FILE CHOICE gl
Filter
‘;Ubergla-/uw.laml far/q]
Directories Files
WINX, op
QUINX. prj
Jaccessl,s
Jaddd, s
JoddS. s
| | Jadd6, s
B T
Selection
| /mt/bergler/ectna/sennifer/ |
L®] ([Fre]l feace] [clone]

a
| - o 1+ |
TEXT BOX
[t]

Figure 12: The Lexicon Browser System with the File Choice Box open

path now have an effect when clicked, even if it is only to give the user a message - as in
tHie case of nonns - that this part of the sestem has not heen developed vet, ("The structinge

of nouns is still being discussed by the AETN.\ group).

The EXIT function no longer has a separate menu button and is incorporated into the
FILE menu as this is where it is found in most other windows applications. It is better to

give the user a familiar pattern so that it is easier to learn how to use the system.

A HELP menu has been added on the far right of the menu bar. Again this is the
most common position for help huttons. The help system is at present limited to short
descriptions of the functions of the other buttons, but it should not be too difficult to add

to this later.

Chapter 3

Using the Lexicon Browser

System

3.1 Description of the UIM/X Tool

3.1.1 UIM/X Tool

UIM/X is a Graphic User Interface builder developed by Visual Edge Software Ltd., Quebec.
It was produced to allow software developers to interactively create, test, and generate code
for user interfaces. Graphical interfaces can also be created for keyboard applications with

little modification of the existing applications.

UIM/X is integrated with the OSF/Motif tool kit. Many add-in features called widgets
such as push buttons, scroll bars, popup menus are available for designing user interfaces.

It provides for the use of multiple windows and interactions with a mouse.

UIM/X contains a ' interpreter. There is a large library of working UIM /X functions.
CINE/N will aomtomaticallc senerate enar fice C oo Cp b ocode to go with the widgets, Tt

will also generate a customizable main program.

3.1.2 Rationale for using UIM/X

UIM/X was chosen as a development tool because it was available on the UNIX SUN system
and to use such a tool would make development of the Lexicon interface quicker and easier.
UIM/X provides a comprehensive tutorial “Getting started with UIM/X” [Vis93a] and the
“UIM/X Developer’s Guide” [Vis93b] to help the novice developer. It is a complex tool
and takes quite a long time to understand and make use of its full potential, but it would
have taken very much longer and been much more difficult to get to the same stage from

scratch.

The menus, push buttons, and scroll bars and other widgets are standard and so familiar
to the user. This means the interface is easily understandable and the user should need little
learning time. The interface is more user friendly than one produced from non standard

parts.

3.2 Technical Details of the Lexicon Browser System, But-

tons, Menus, Windows, etc.

3.2.1 Getting Started

To start the Lexicon Browser System the user types LEXBS [enter] at the UNIX prompt.

28

The main Lexicon Browser System interface then appears on the screen after a short
panse as shown in Tignre T The interface consists ol the main Serolled Window 1o
system/user communication, the Menu Bar at the top of the interface, and the Text Box

used to enter data at the bottom of the interface.

The Lexicon Browser System interface has a light blue background. The Menu Bar and
pull down menus have black text on a light gray background. The main Scrolled Window
and the Text Box show bold black text on a white background. Blue and grey are colours
that are restful to the eyes and serve to emphasize and contrast the working areas with the
white backgrounds. The system works as well using monochrome monitors where the text

is black on a white background.

3.2.2 The Menu Structure

The menu structure is as shown in Figure 13.

FILE DATA MENU STRUCTURE MENU | EDIT RESET HELP
OPEN FILE | VIEW ALLWORDS | VIEW HIERARCHY |OPENEDITOR |RESET GAMBIT |FILE
EXIT FIND A WORD VIEW TEMPLATES DATA MENU
VIEW AN ENTRY STRUCTURE MENU
EDIT
RESET
TEXT BOX

Figure 13: The Menu Structure

The items in the menu are set out in the order that the user is most likely to use them.

3.2.3 FILE

(C'licking on FILE with the left mouse button displays the following pull down menu:

29

FILE

Gyon Lab

Exit

OPEN FILE

Clicking on OPEN FILE pops up the FILE CHOICE BOX interface on the screen. This
allows the user to look through the available files and choose a Lexicon file to load. It shows
the user all the files in the directory and the filter option lets the user find files in other
directories. A Lexicon file should be chosen and loaded before the user starts browsing

through entries.

EXIT

If this button is clicked on with the mouse, the Lexicon Browser System will be closed.
The user is returned to the UNIX prompt. The EXIT button does not save any changed
or added entries to a file. To do this, the user should use the SAVE function in Galina’s

Lexicon Editor Window.

3.2.4 DATA MENU

Clicking on DATA MENU displays a series of menus used to browse though the entries in
the Lexicon. Clicking on DATA MENU with the left mouse button displays the following

pull-down menu:

30

DATA MENU

TONTEN N T WORDS N) b

TO FIND IF A WORD IS INTHE FILY

TO VIEW AN ENTRY

‘O VIEW ALL WORDS IN THE FILE

This menu button displays a list of all the words in of the Lexicon in that particular Lexicon
file. Figure 14 shows the Lexicon Browser System displaying all the words entered in the
file HashTable.scm. The words are accessed by the root and the display can be scrolled up
and down using the scroll bars attached to the Scrolled Window. This button currently
does not interact with the real Lexicon files and uses temporary files instead, since the real
Lexicon has not been developed yet. The files used to display entries have to be loaded

using the OPEN FILE button in the FILE menu.

TO FIND IF A WORD IS IN THE FILE

If a werd is typed into the Text Box, this function will check if the word is present in that
particular Lexicon file. If the word is present ti.c Browser will say that it is present; if it is
not, a message to say that it is not present appears in the Scrolled Window. If there is no
word in the Text Box, a message asking the user to type in a word appears in the Scrolled

Window.

31

[
-
!
i
i
3
}
L
s
?.
R i
|
j
H
!
§
}
|
i
|
|

x

Figure 14: The Lexicon Browser System showing all the words in a file.

TO VIEW AN ENTRY

This cascade button shows the lolowing menu itens:

TO VIEW AN ENTRY

View a Verb Entry
View a RS Verb Entry

View A Noun Entry

Notice that for the work being done by the AETNA group, it is important to distinguish
semantic as well as syntactic categories. The class - RS Verb - denotes the class of reported

speech verbs, a subclass of verbs.

TO VIEW A VERB ENTRY
This uses a Verb entered in the Text Box to display the entry in the Scrolled Window. If
there is no Verb in the Text Box a message appears in the Scrolled Window asking the user

to type one into the box.

TO VIEW A RS VERB ENTRY
This uses a RS Verb entered in the Text Box to display the entry in the Scrolled Window.
If there is no RS Verb in the Text Box a message appears in the Scrolled Window asking

the user to type one into the box.

TO VIEW A NOUN ENTRY
A message in the Scrolled Window tells the user that nouns are not available yet. Noun

entries are still being developed. Other word types will be added later (adjectives etc.).

33

3.2.5 STRUCTURE MENU

Cliching on STRUCTURL MENU allows the user to biowse through the structure of the
lexicon. It lets the user view the word templates and shows the class hierarchy. Clicking on

STRUCTURE MENU with the left mouse button displays the following pull-down menu:

STRUCTURE MENU

TO VIEW THE CLASS HIERARCHY

TO VIEW TEMPLATES

TO VIEW THE CLASS HIERARCHY

Clicking on this menu button shows the Class Hierarchy in diagrammatic form. The hierar-

chy is not complete. More word classes will be added to the diagram as they are developed.

TO VIEW TEMPLATES

Templates show the user which slots are defined for entries of each type. This is to be
used when making a new entry. The user can view the template in the Scrolled Window
while editing an entry in Galina’s Lexicon Editor Window. This cascade button shows the

following menu items:

TO VIEW TEMPLATES

View a Verb Template

View a RS Verb Template

View a Noun Template

TO VIEW A VERB TEMPLATE

When this menu button is clicked on the Scrolled Window shows the structure of a verb

31

template.

FONVIEW VRS VERBIVMPENLE

C'licking on this menu button gives the user a RS Verb template in the Scrolled Window.

TO VIEW A NOUN TEMPLATE

A message in the Scrolled Window tells the user that this has not yet been completed.

3.26 EDIT

Clicking on the OPEN EDITOR push-button pops up Galina’s Lexicon Editor Window.
This is the part of the Browser System where editing - including adding, deleting, saving -

entries can be performed.

3.2.7 RESET

The RESET GAMBIT push-button is used to return Gambit to its top level after an error

message.

3.2.8 TEXT BOX

This is the area to enter words to be accessed in the Lexicon.

3.2.9 SCROLLED WINDOW

This is the area of the interface where messages are shown and the entries of the Lexicon

are displayed. Long lists or entries can be scrolled through by using the horizontal and

35

vertical scroll bars attached to the Scrolled Window.

3.2.10 HELP

When the mouse is clicked on the HELP button, the following menu choices appear:

HELP

FILE

DATA MENU
STRUCTURE MENU
EDIT

RESET

TEXT BOX

Wlhen an item in the above list is highlighted and clicked on, a short explanation of the

function of each widget pops up in the Scrolled Window.

36

Chapter 4

System Evaluation and
Suggestions for Future

Developments

4.1 System Evaluation

The Lexicon Browser System has not been formally tested, but at each stage in the design
I have been in consultation with the users. Memt~+s of the AET'NA group have tried the
interface and made suggestions for improvements which were incorporated into the later

prototypes.

The interface has been checked to make sure what is expected to occur does occur when
each item or push-button is clicked on and that the actions produced by each button are

consistent.

37

When the whole system is ready for the start of serious data entry, the actual people
who are to enter the data shonld be observed enterine sample words, Their opinions of
the system and complaints about the system should be noted and improvements should be
added then. In a large task such as Lexicon building, ease of data entry and consistency of

entry are very important.

4.2 Future Developments

At present a few verbs and reported speech verbs are the only classes of words with their
lexical structures developed. When the noun templates have been developed, actions and
behavior will need to be added to the relevant buttons and menu items to enable the user
to look up noun details in a similar fashion to reported speech verbs. Following nouns, the
development of templates for pronouns, adverbs, and adjectives are envisioned. When the
final structure and inheritance patterns of the different word classes has been worked out,

this can be added to the interface.

When we have a real Lexicon with hash tables for looking up words, menu items such
as VIEW ALL WORDS IN THE FILE will be changed to VIEW ALL WORDS IN THE

LEXICON and the behaviour added here will look the words up in the hash tables rather

than just looking for them in the chosen Lexicon file.

Other windows or interfaces can be added to this application. Later in the development
of this tool, Galina’s Lexicon Editor Window could be removed and exchanged for a new
and improved version without too much difficulty. This is at present under development by

Gialina.

38

Chapter 5

Conclusion

The Lexicon Browser System interface is now working well and should make it easier for
AETNA group members to enter the large amounts of data necessary to complete the

project of building a meaningful Lexicon.

I have gained insight into the use of a GUI building tool, LATEX, and XFIG while

working on this project.

The endeavor of designing and developing a Lexicon for general use is an ongoing project;
the tool is therefore not complete. Other members of the AETNA group are still researching
and discussing the best possible lexical entry structures. At present the reporting speech
verbs are the class of words that have been studied the most. The interface I have designed
is flexible enough to change and improve as the needs of the group change. Building a
usable Lexicon is a very large and complex task and having a graphical user interface will

make this task a little easier.

39

I now understand more about how complex and diflicult natural language processing

teatlv is awnd how Luee and complivated a problem building up a neaninaful Texicon will

be.

10

Bibliography

[AMMS5] Erik Akkerman, Pieter C. Masereeuw, and Willem J. Meijs. Designing a Com-

[Ams80]

[BBS8Y)

[Ber93)

[Ber95]

[CD-91]

[Col79]

puterized Lezicon for Linguistic Purposes. Rodopi, Amsterdam, 1985.

R. A. Amsler. The Structure of the Merriam-Webster Pocket Dictionary. PhD

thesis, University of Texas, 1980.

Bran Boguraev and Ted Briscoe, editors. Computational Lezicography for Nat-

ural Language Processing. Longman, London and New York, 1989.

Sabine Bergler. Semantic dimensions in the ficld of reporting verbs. In Making
Sense of Words, Proceedings of the Ninth Annual Conference of the UW Centre

for the New OFED and Text Research, Oxford, 1963.

Sabine Bergler. Generative lexicon principles for machine translation: A case

for meta-lexical structure. Machine Translation, 9:155-182, 1995.

Association for computational linguistics: Data collection initiative CD-ROM 1,

1991.

William Collins, editor. Collins English Dictionary. William Collins Sons and

Co. Ltd., 1979.

[Dor93]

[GN91]

[KR92]

Bonnie J. Dorr. Interlingual machine translation: a parameterized approach.
Votificial Totelligeree 6.3, 1993, Special Volume on Natural Fanauage Process-
ing.

K. Goodman and S. Nirenburg. The KMBT Project: A Case Study in
Knouwledge- Based Machine Translation. Morgan Kaufmann Publishers, San Ma-

teo, CA, 1991.

William Klinger and Jonathan Rees. The Rivised? Report on the Algorithmic

Language Scheme. LISP Pointers IV, 3:1-55,1992.

[MBF+90] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and

[Pae93]

[Pro78]

[Som89]

[Vis93a)

[Vis93b)

Katherine Miller. Intoduction to WordNet: An on-line lexical database. Inter-

national Journal of Lezicography, 3:235-244, 1990.

Andreas Paepke, editor. Object-oriented programming: the CLOS perspective.

MIT Press, Cambridge, Mass., 1993.

P. Procter, editor. Longman Dictionary of Contempory English. Longman,

London and New York, 1978.

Ian Sommerville, Software Engineering. Addison-Wesley Publishing Company,

1989.

Visual Edge Software Ltd., Quebec, Canada. Getting Started with UIM/X.,

1993.

Visual Edge Software Ltd., Quebec, Canada. fhe UIM/X Developer’s Guide.,

1993.

