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‘systems, ﬁsing symmetry and dyhamfFal groups. The study

CHAPTER I
Introf8uction ' e
s ’ §

In elemehtary particle physics there is not any well

a

formulated dynamical theory q'pause the exact poteptial

is not knownJ For this reason it is useful to study con-

servation laws and interactions of the elementary® particle
of elementary particles using\group theory began after the
introduction of the isospin®quUantum number by\Heiqgnberglf
v - B

The three components ofsthe isospin given by the Pauli matrices

' generate the algebra of the special unitary group SU(2).

Uh&er the SU(2) group all the hadrons are classified in
isoplets (i.e. multiplets having the same isbspin value) .

The SU(2) group gives the symmetry correspondind to the charge
indepéndancy of the stgong forcés.
was rconsidered among isopléts‘because of the relatively small

difference in mass between them. As is discussed in chapter

- two, this‘gave rise to the necessity of the extension of the

su(2) group in a larger group, the SU(3) group,qb}0posed by
3

Gell-Mann~ and Ne'emap4. The introduction of the' charm

guantum number resulted in a further extension of <he maximum
sgﬁmétry of the hadrons SU(3) to SU(4). This symmetry

group provides a very good scheme of classification for the
[ !

~
'

‘hadrons.

N 2

If a dynamical p‘i:ess is to be studied by means of group
-theory one must break the existing symmetry of the systeg-in,

order to oﬁéerve the evolution of the system'during this proces

)

Later on a larger symmetry ~
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. generate -the algebra. of the dynamical group. Ig chapter three

o } s ) .

An algebralc mechanism of breaklng the symmetry is the dynamacal _

=

group. A dynamlcal group is equlped w1th.the operators assoc~-

iated with a_dynamlcal process. These operators together with

the.generators of the maximum symmetry group of a system,,
/ ' « - * .

|
an example is given about the choice of a dynamical group.

! .
The subject of this thesis is the calculation:of cross-

The work done in this

‘cross-section (see chapter V) where some of the parame?é;s

were determined. In this thesis the same model was considered,

Our calculation uses thé lasger symmetry group SU(4) and the

cofrespohding dynaﬁidal group SU(1,4).~7 It provides the ‘same

type of equation for the cross- sectlon as the one: of Barbar1

- -

‘and, Kalman. Using the larger symmetry lt is posslble to det-

ermine the important parameter of the model which specifies the

irreducible represeritation of”SU(l,4): A partial calculation

of some other parameterg is also podsible. In chapter five our

v

. I
calculation are presented. An analytical example of our cal-

cllation of the equation for the cross-section .is presented in
éppenaix A,
Our calculation is based on the consideratiom of baryons

as orthonormal vectors of a basis of an, irreducible represen-

tation determined by .the Gel'fénd—Graev method &nd of mesons

2
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as the corresponding operators. The Gel! fand-Graev method -of

v

the determination of finite dimensional irreducible repre-

. ( .
‘sentations of the Lie algebra of the uqiﬁary special groups

is described ;p chapter four. In,chapigr six we present our

'

conclusions. . " .
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“tric charge,between°almost identical particles. .Sections

Unitary Symmetry ‘ . ‘

P

Physical entities are called symmetric, or we

say that they exhibit a certain symmetry, if they remain

. invariant under a certain transformation. For instance,
A .

‘a sphere viewed from any podint in space has the same

éppearance.‘ Therefore we say that the sphere is symme-

tric under rotation. Symmetry and invariance may be ,

dealt with using group theory. The application of group
theory in- physics is very important and helpful especial- (J

1 » A

ly for systems .of unknown Hamiltonians as is the case of ﬂy
elementary particles. ¥

1 i
4

+ In this$cﬁaptér the uhitary symmetry of ha@-
rons is discussed. 1In the first section we present the
isospinrsymmetry-in.hadrons. Isospin symmetry }s very
si;ilar éo spatial symmetry. It expresses the‘inv;ri-
ance of the Qtrong forces ‘'under an interchange of elec~ f
1

two and three deal with the hypercharge and qparm sym-'
metries»respecti@eiy. Finélly, in seétion four -we brief~-
ly(discuss the qu;;k model in tﬁe éontekt of the symme-

tries of elementary particles.

-

N

ISOSPIN SYMMETRY - 7/

To introduce the isospin symmetry we will first

give an analogous examble of syhmetry from a more familiar
- ‘ ) . "\\.l
l * . ) !
4.
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1

dpma.m, atomlc phys:.cs. ‘ S &

’

[
-~ 4

- ConSLder an atomic level of angular momentum

4
I, in tﬁk absence of-an electromadnetic field. Any rota-

tion of the spin angular momentum vector yill result in '
tte same atomic level without any chenge in the

energy. Thus spatial symmetry results i§ the'Qegenerecy
of the,enetgy. The Hamiltonjan of this level is‘the&efpre
invariaht unae;.the spin rotation. This 1nvar1ance can\

° ve- expressed in mathematical language by the commutatorl
[H,S} % 6. The 3-dimensional rotatlenal symmetry caq béd

given by a symmetry group whose generators w;}l be the

’three/components of the spin vector given by the Pauli

‘ . L
matrices. The commutation relations of the Hamiltonian
' ' >

and the spxn, the spin ma‘lices bmong themeelves and the

~+taising and lowering operators which we can construct from

..

-

the ?aull matrlces,,glve a Lie algebra which is the alge-

r N
bra of the special unitary group, SU(2). .

{

rection, say along the 7 axis, the spin will af}@n itself

A

. -»
If we apply an electromagné’ic field B with di-

along the same direction. The E-M field breaks the exist- _
iné symmetry. Any rotation of the spin vector will result
in another sublevel with the same total angular moﬁentum,
"but with different energy. There are (25+1) such sublevels.

The-breaking down of the symmetry removes the degeneracy

(R

of the energy and allows ui'to dlstlngulsh the (28+1) sub-

Il

levels.
. q

The‘pfoton and neutron have the same eiterqal

properties. . They are only distingdished by a small d¥fference

N

N R e ' L




.would obtain the same single particle as in the above exam-

) .
| S - . 4
J .

in mass. Wthh results from their dlfferent 1nteract10ns .. ‘

(bedause of their charges) with the electromagnetlc field. ¥
In the absence of this.field the electrlc cHarge is not re-

wealed and the two particles appear xdentical. We_ooseqve

[ (- A

that in this case there is a symmetry similar ‘to the -above .
- - ’ R - . . »

example. In the absence of the E-M field the twg particles

- ' . T N .
‘appear as a single‘one. I;dwe perform a charge rotation we -

Ple with -the.spin.  In the presence of the E-M fie;d the v {

ellectric charge'#s revealed Like the spins, it aligns itself *© °

along the E-M fleld and consequently the srngle partlcle we.

had before splits Ln two, the neﬂtron and the proton. Alunl-

tary charge rotation will resolve elther of these two partl—

-

-clés. 1In other words in" this case we have degeneracywln

charge whlch is remoued by the E—M fleld.

r. In 1982 Heisenbergl introduced the isospin opera-

tor, I;‘in order to formulate mathematztallyfthis symmetry,

The isospin, or isotopic spin, operator is analogous to the . \V

-

ordinary spin operator but it performs unitary rotational e

operations~in the'pharge spacg. As the ordimary spin distin-

guishes electrons with i and -} spin so I (the third compo- | ,

3
nent of isospin) distin ulshes the two st es of the single. . -4n. ;
Fis

partlcle ‘the nucleon, (proton and neutron) The Hamiltonlﬁn
7
of the nucleon commutes- Mrth the isospin and we write [H fj o,°

when the E-M field is not preSent. When it is present, H and

I'do nét commute anymore but the new Hamlltonlan (H + HEM)
. . L] '
does commute with the third component of the isospin. This

»

¢ * ' ' A
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. N ' ' . 3
means that-an operation, done by I on a state of the nu-
‘ . P3 v . X

‘cleon, leaves this state unchanded. The, components of v
: i
thenisospin are also given by the Pauli matrices. The "

commutathn relations of the Hamiltonian and the lsospln

§
the ones in the previous. ex-
i

Hence, the

comppnents are t@e same as
amples and therefore have the same algebra.
isospin symmeétry can also be expressed by the S5U(2) group.

-

. ’

.In the isospin space, particles with the same

physical properties (baryon number, spin, parity etc.) and

very close mass are placed inbisoplets2 For exampie, the

proton and neutron‘form an isodoublet, the nucleon. The ’

three pions form an isotripIeii The different states of

* an isoplet'are*distinguished by the third cémpopent, I3,

- . of thé isospin. : The multiplicity of an isoplet is given

; : by (2I '+ 1) where i,is‘the isospin of the isoplet. All

" ] R X ok
the isoplets can be fepresented in- terms of the SU(2) al-
- ' : vy . . ’ . ! :
gebra by its irreducible representations.

~

representation'is4the 2-dimensional ir;educible‘represenf‘

“ - tation. With the kronecker product of .copes of .this fun-
L s
’ 8/ damental representation all the ereduclble representa-

tions of SU(2) cen.be ponst;ucted.

The symmetry of SU(Z)

'

The fundamental :l»uum,ﬂh

“approximata.

.or the gsospin summetrﬁ'is-exac

e

tg$or strong

t

interactions.

If we include the E-M lnteractzon, _the symmetry is only

N
The .E-M field bre

as 1t breaks the spin degenerac

gzi the symmetry down’ Just

n atoms, as we saw 1n

‘the previous example,

The'breaklng of . symmetry in the

[N

-

Y

. ‘case of SU(2) is not large since it results in a mass dif-

. e T
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ference of the order of a few Mev for particles if their
mass is ;oughly‘iOQO Mev.- ‘

R

sy(3) swwETRY |,

24 N ’ L
~ A

Mass differences between neighboring isoplets

-

,
of the order of Y00 Mev of baryons each with the same

J?, led to the consideration of the existence of another

3

larger symmetry broken by some interactiod’as the isospin

symmetry is broken bywthe'Electromagngtic‘interaction.
i Q -

In analogy to Fhe isospin symmetry, this symmetry, in the
absen&é of such intéraction, resylts in the degeneracy
in paﬁs of all the isoplets of h§3¥ons with tﬁe same
béryon numbér and JP. These isoplets'appear‘as a single

- multiplet as the proton and the neutron appeér‘as a sin-

°

gle particle, the nucleon, in the absence of an E-M field.
(e}é. The -four baryon isoplets, N,Z:,/\ JE:, consider=- ,

:ing this' larger syﬁmétry& appear as an octet with dege-

-

nerate mass).. In order to distinguiéﬁ the ?éopiets.of-a
multiplet, we need anéthér qhantﬁh nuﬁber, the hyper-.

charge, Y. 'The hypercharge is consefyed'bynthe E-M and
the‘strong i tefactions, but it is violated by fhe:weak.

interactions. 'As I, distinguishes the proton from the -

a

3

neutron, so does the hyperéhqrge distinguish the Esoplets

: |
from each other. !

\

. In analoéy with the isospin, it was thought
tﬁat symmetry coculd be ekpress?d by ‘means of a Lie group.

Many‘groups were proposed corresponding to different mo-

A
ey

>

o i 87 ssaabin | oA i 4y
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dels of hadronez. Finally the group SU(3), proposed by
4

“‘Gell'-Man3 and Ne'eman” independently, was accepted bei'

3.

cause 4ts predictions were very close to the experimen~-

tal situation. SU(3) has eight generators: Three of
them are the lsospln generators and the remalnlng five
mix the 1sosp1n and hypercharge quantum numbers . The

generators and their algebra can be found ln Llchten-
5 . N o~

e

berg

PR . .
As in the case of isospin where we -can repre-
4

sent all’ the 1soplets by the 1rreduc1ble representatlons

4

of ‘the SU(2) group, SO also in SU(3) we can represent the’
multiplets by.1rreduc1ble representations. -These are'ob-.

tained by the kronecker product of the conies of the fun-

damental 3-dimensional representation and its donjugaté.
, A i - A
The SU(3) symmetry is presumed .to be broken
. “ §

N

by‘medium-strong interactions., Their presence removes .
the degeneracy in mass andkailows‘us to distinguish the
different isoplets. The charge férmula of ‘a hadron is
given in SU(3) by, S

ev . )

Q=I,+4¥, S 6§

3 and Y expressed by the generators ofvSU(3):
™ ’ . .
‘ The 5U(3) symmetry group provides a very Bood

with I

. scheme for the classification Of the hadrons.

°

SU(4) SYMMETRY

‘

In)1974, a new particle, the meson J/yl,'was

12
. -
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’

discovered.* This particle was very heavy cémpeéid with
the old mesons and it had a very narrow width. There .
were two explanations for this peculiarity. ' The eéxpla-
nation that was accepted was that a new quantum number,
charm; introduced previeusly by Bjorken and Glashows,
was involved. The introdection of the charm quéptum
number makes SU(3) symmetry inadequate to give the sym-'
metry of all hadrons. It must be éxtended just ae Su(2)
symmetry was extended by hypercharge, in SU(3) The

charm quantum number, just like hypercharge, 1s~conserved

by the strong and electromagnetlc lnteractlons but lt

¥

is v101ated by ‘the weak 1nteractlons

The Hamiltonian ofva hadron can be written‘

a

H =By *Hpy ¥ Hyg ¥ Hy @)
If we neglect all the three, e ctromagnetic, medium~
strong and weak interactions the remaining part of the
Hamiltonian Ho is invariant undet astransformation belop-
ging'to’a'smecial‘unitary group of higher dimension sU(4).
The SU(4) grdup has fifteen generators. ' Eight ef them
are the generators of SU(3) and the remaining seven mix‘
the isospin and hypercharge with the new quantum number.
charm. The generators and their algebra can be found’in
Lichtenbergs. The SU(4) symmetry is very badly broken
compared to the SU(2) and SU(3) eymmetries. The mass

splitting in SU(4) is of the order of 1000 Mev. The charge

of a*hadron in SU(4) is again given by the Gell Mann—

. lehijlma formula extended to:

, 10 - . o .
A - - d Lw R




J

~ can point out three puzzling points:

s

QUARK MODEL .

L ]

Frem our discussion of unitarw\ symmetry we

The strong interactions are a properky'only of hadrons.
Comparing SU(2), SU(3) and SU(4),we bbserve that, for
higher Symmetry we have greater splitting in mass. _When

SU(3)‘was accepted as the symmetry group of Y and I all

the then known hadrons were placed in multipleté.whose~ -

. irreducible representations'we:e not the fundamental. 3- T,

dimensional representation of SU(3). . .

I1f‘we assume that the hadrons|are not elementary but they
- . ) .

are made up by some funaamentai\particle!*wh&eh‘interact .t

strongly it is easy to explain the mass difference by

t '

‘assuming that the different members of a uléiplet dre
<

made up by different combinations of these'fun

particles. Gel’i.-Mann7 and 2weig8 proposed three such
fundamental particles, the quarks, that would fit in the

fundamenth} 3-dimensional representation of SU(3). . Those

particles are'the u, d and s (up, down and strange),

" "quarks. 'The up and down quarks have almost the same mass

and they are responsible‘for the isospin symmetry. : The

strange quark is more massive than the other two -and it
is xresponsible for the hypercharge symmetry. Later on,

the charm quark, c, was introduced to complete the funda-
mental quartet in SU{4). The ¢ quark is the most massive \
one. \ . S / P ’ N .

11 : ‘ Y

——— =
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(4

., The quarks have fractional charge, hypertﬁafge

and baryon, number. Their baryon number is 1/3. A baryon

(B = 1) is made up By three quark$ and a’meson (B = 0)

by a quark-antiqﬁark pair. In table 1. the quantum num-

bers of quarks are given and‘in table 2. the 'specific

‘combinations of quarks that make up each ha&ron appear.

The kronecker product of the, fundamental re-

presentations of quarks gives us all the possible repre-

K

Y e s
.For example’'one can obtain the

]

sentations of hadrons.

mesons representations in SUCé) by taking the kronecker .

prcduct of the 3- dlmenglonal representation’ by the 3-d1-

-
mens1onal one, glVlng the anthuark triplet. e.q.

; 3x3-1n8 !
That means, that mesons can form a 51nglet or'an octet
in SU(3). . o
. gg ) |
v : N - , The quarks hé&e not. been observed experimen-
N tally. Although, there is indirect experimentai evidence

which supports the theory of the guark model? .
" R + 1 "

It is

also believed that two more quarks exist, ;the t (top)

10

*

5 . ) 4

and b (bottom) gquarks

»

~ !

r . .
We have  seen that the simllarlties ‘in symme-

try between the well-known Zeeman effect and nucieons

helped to introduce the isospin conagpt and the SU(2)

, Symmetry-
™ ‘ -

the SU(3) and the SU(4) groups as the symmetry groups of

0

A generalization of this'symmsfry results in

12
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hadrong. The upitary sjm\met‘ry proves itself useful from
the point of view of a classificz;xtion scheme. Using';.he
sym'etxz'y\. group it wa{s possiblé to prgdict' the‘lexisten'ce ‘
of"fmt}iéﬁ’\éarticles which were con*firn.\led experimgnt’ally

, later onw
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group for charmed hadrons.

' motion, the angular momentum

- CHAPTER IITI

<

Dynamical Groups

Jisoplets of hadrons with the same baryon number J
are degenerate in mass and cannot be distinquisted. To

~ Y
distinguish different states, the existing symmetry must

break down, so the degeneracy will be removed. An alge-

v

braic mechanism for break;}g.the symmetry is the dynami-

The symmetry breaking is due to the fact that

» .
some of the generators of the dynamical group d

cal group.

° ' . N

mute with the Hamiltonian of a given system, therefore

they are not symmetry ogerators.

In the following,iin the first section, we give an ex-

ample concerning the choice of a dynamical group in the
In two

case of the well known hydrogen atom. In secti

we give the maximum symmetry group and the dynamical
‘ - L : ‘ .

HYDROGEN ATOM

1

The Hamlltonlan of the hydrogen atom lS

A-—— L (4)
with A ac 2 :a 32 o , k =7e° and r :(‘x12+x22+x32')#
Bxlz Bx Bx -

Aside from the energy, there are two constants of tﬂé
2=7x3D . (5)

14 -

not com- .

AN s <ot
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-

_',,—.M IR i - e

+

i’0(4).

and. the Runge-Lenz vector

oy
M= o1 [.sxz - zxgs]r -
2fb .

Their corresponding operators comgyte with the
. ‘ W@ép

(6)

Lo
ﬂlﬂt. :

Hamiltonian of the atom and thérefore generate the symmetry

.group. "of the atom Since there are no other operatorsll.

whlch gepend .on the position coordinates that commute

with the Hamxltonlan, the angular momentum and the

%unge—Lenz operators form the maximum symmetry group of the
. - . .

atom. The commutation relations of the L and M are given in -

_ Bander and Itzykson'? for the bound stftes. 'These commutation

relations correspond to tho algebra of the orthagonal group
6(4). For the scattering states they correspond to the aigeb;a
of the ps;udo-orthogonal group 0(1,3). -)
In both grodps; the eﬁpression for the energy can be obtained
simply‘by thg commutation relations without solving an§
Schrodinger equation. ( C 8 .

We will show how the energy can be,obtained in the case of

"

(

The commutator of M gives

- - S|
[M  ¥s 1 21‘63 ik Tk (7) *
To express!this commutator exactly as 1n 0(4) the M can be
written as M, = o -§ (8) .
i — My
=2E o .

The energy in terms of the L and M's magnitudes, is given by

L - P , = E (9) - -

2% ]
2(m2+ 1% +%%) N

' ~
In addition the two Casimir operators C1 =[ 5'(L'*M)] 2,

c, = [}i(L - ﬁ)']2 of the two 0(3) .subgroups contained in
’ ‘t
&




-O 03 ® O have same eigenvdlue because

[iwei ]2 . k] ?

3 [(L*M)]-z =} L2+ﬁ2 + L‘.ﬁ + ﬁ.L]

}I:(L-M)Jz "}E.+M2—LM~ML] _‘

- 1t is not clear 1f j can take integer or half integer values. =

< s
However we may assume that 2j is an integer. .. @ -

- From equations; (10) we can then write wo

°

M2+L +k2= 4'[{(L+3:1)Jz+i2 =

2[43 (3+1)+1] =42 (23 + 1)? SR ¢ 3
. \
On the other hand eq. (9)" can be written as
2z (2 4+ 12 4 4B = -2 (12)
From (11) and (12) 2§ £2 (25 + 1)% = -x®and therefore -
- , - 2 N i »
X (__) - a
E XL (23 1)
Identifying 23j + 'l with the n principal quantum number we get
: " [
' 2
- 1
Bz T W : (14)

which is the energy of the levels in the Coulomb p,ote‘ntigl.
/n can take every positive int-:eger value ‘and theréfgfe j can ta-
ke positive integer .or half integer ‘yalues. For every

z 23 -+' inthere are 2j possib’l"e vaﬁ]&i;u-a's for { .If we want to
distingui‘;h,, the levels labeled by different { we must remo-

ve this degeneracy. This can be obtained by using a dynami-

_cal group. This group must have as generators

y

16
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v

the generators of 0(4) and in addltlon, operators that

- will shift the .{ quantum number, so éhey will llft the (T

degeneracy. This group generated by such operators is

<

the 0(1,4) pseudo—orthégonal:grguplz. Furthermore, if
we woﬁld like to calculate transition rates between
0sfates, we must introduce the magnetic dipole operator./
With'the introductione of this bperator the 0(1,4) muif
be extended. Barut and Kleinert13 have shown that the
resultingldynamical gioup is the group 0(2,4). With
‘thia latter group transition rates cap be calcula7ed
. without ;esorting to the Schqﬁdinqer equation for the

Hydrogen atom.

2. DYNAMICAL GROUP OF CHARMED HADRONS

In this thesis the cross sections of meson-

baryon reactions are calculated. The SU(4) symmetry

o

qroup is considered to be the maximum symmetry group for

the charmed hadrons. But this group, as in the previous

example does\:ot provide meaﬁg to calculate results from ’

*

dynamical‘processes. Ka].man_l‘4

has shown that SU(1,4)

. \ .

. can be taken to be the dynamical group for calculationsm
of properties of charmed hadrons. His method is based:

Consider

on the Kaiiyaﬁ-Sudarshaﬁ stroﬁg coupling model.
a Hamii;oaian of the form ‘ ’ : , .
H = Hopart+ Hofield+ H' “(15) -
" where Hopart is the Hamiltonian of the free pafticle,
field is the Hamiltonian of the free field and H' is
Ehe lnteractlng part of the Hamlltonlan.. part and
Bo™e1d are inbariant under SU(4),smeetry.
17
“ g

:

!
/ .

/




) § N |

a . 3

‘ g

. %

. _ Then H' can be expressed in thq’form? ,§
B = ) Ay My (16) ! f
,S

where the Mijfs correspond to mesong’operators and Aij are
scalars in SU(4). -
In the frame of the quark mo?el the interacting part of the

o »ﬁgamlltonlas is due to the lnteractlaﬁ//b€ the quarks.in the
.'s by

ﬁfﬁhence of a field. 'Therefore we can express the-MiJ
- S, :
Since mesons are bound states, of a

. the means of quarks.
Al \ l“\ . R
quark-antiquark pair the Mij's can be expressed as
) k‘ ..l ' . ‘t
‘ " . L. Mij - c.ij qi qj 1.] - 1' 2' 3’ 4 ‘ (17)’
“ where g‘svafe quark operators and Cij‘coeffiéients depending %
- . on the‘structure of the mesons. - ’
$ The algebra of SU(4) is. given by: N
N SRR I Y SJk A 10 S
4 A -

iul . ' ,

Taking: the commutator of A qenerators of SU(4) and 9

r

operators we get:
-/ ' ) ! L - ‘ ) = PR . .
. | S [Aij, qk] _ Sik % - , (20) .

o | [ 2530 &)= - S & (20
’ R All these‘operétorsc

“tors Aij; e must be closeg to fofm a Dynanical group.
undésiraple to add a 1aége number of aéditional operaﬁors in

°

orrespond to phy51cal entities. The.op§fa;

It is

S

S i ‘
; L making this closure since they will not correspond to physical

. “
H X, ’
% .
° * . o~
. . %
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- ‘ventities. For this reason we consider the’ smallest Qossibléu\_}

v #

.

¢losure of the algebra of Q's\ana A's which is

[qi'qj] = 8 8y A T Ay
This condition gives three possibilities. : - .
. L] ‘
For ® = +t1 we obtain the Lie algebra of SU(5).

u

- For © —x‘ we obtain the one of SU(1,4).
e~ “ . ’ \

o For ® = 0O we obtain the one of Ti—\ R su(4).

[

- The last possibility is ruled out he it dods not predict

transitions from one s%pée to the othe hermore, the

group SU(5) has only integer parameter reprgsentations. Since™

scatterlng states correspond to a continuops spectrum of enerqgy-

3

¢ _ : the non-compact SU\i 4) is the appropriate dynamlcal group.

", . ‘ .v N I . ' . . , \

. . ’ b
» It has been shown in t;e cas€ of the hydrogen‘atcy ‘
- o ' . that by means of the dyﬁamical group we\can break . the symmétry
allowing the observation of different states and also the
calculation ofytransition probabilities. sSimilarly, for

* scattering of hadrons, the approg;iate group has been shown
R . to be SU(L,4). - V

N ' . -
” - . . : B
i

b
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CHAPTER IV -
Bepresentaiion of SU(i,K)‘ " - i

. M R \
henerally, it is not the group itself but the Lie
n < , j’ :/) 3

1" algebra of the Lie-gfoup which is of interest.’ A’Eepresenfetion

of the_LieJelgebra in a Hilbert space is given by a set of

operators, defined ip this space which have the same commu-

v hd /

tation relations as the abstréct algebra.

As we saw in the previous chapter the maximum sym-
N4

metry gréup for the bound states of the hydrogen atom lS the
L

group 0(4) All the degenerate levels, of the atom, in e ergy
constltute the basis vectors of an 1rreduc1ble representata

A
of the Lie algebra of group 0(4).. Slmllarly, in general,
. ' . : : C )
guantum mechanical states which are degenerate under a unitary

transformation may be identified with the basis vectors of an

irreducible repfesentation of the Lie algebra of their sym-

metfy group. In this chapter we present the Gel'fanerraevl5 &5

-

.method of the determlnatibn of flnlte dimensional‘irreducible

representations of the\ Lie. algebra’of the unimodular unltary

groups. We first consider the compact groups in particular,
2 ! .
the group SU(4) and follpwing that, the non-compact group, .in

particular the group SU(1,4).

GROUP SU(n)

A

Let G" be’the group of nonsingular vomplex matrices

th order and L its algebra. Suppose that a basxs of the

algebra L is constituted by matrices e, k., L =1,2,...,n where

their elements satisfy the conditxon.

(g mn = $yn 5Ln




¢

: - ‘ /
‘ | . [ eik" et ]: €. for 1l
L ik ki IE €ii-%k L, o
[: k'e(m] ifEK AL and iZm

[l
The .group f linear operatcrs by Awh:.ch this algebra “is

'

represente

are the linear operators, we can write

S

[ Eig ¢ Eyxg |7 Byq for. 141

,[Eik‘ ,aELm;] o) 1f i ;l m. and k 4

|

Considerlng three success:.ve\ m order operators Ekk' ‘

they must satz.sfy .

[ Ei;. v B

<2

"

[Eii' Ei. 1-1 ] [El i-1' Bi-1, 1—1] = Fili

[Ei.,i:l-’ 'Ei-i.i] = [En - Fi-1,i-1 ] '

[Eih-l' Ek-l,-}d’]’ o fop k#i

N

" - Y The commutation relaéiops of exL matrices, ‘are /

(22)

. in the Hilbert space must have thé same com-
. - "

mutation relations with the matrices lekt' Therefore if"Ek‘L

[ Bix » Buy )= Eii- E{;k (23)

E, E 11 \ th tat 1 t that,
k-1 * l&-l k' we wi gwe e commu ation relations tha

. o‘..«
ot [Eiz’Ekk-l] EE ‘klk] ofor:.(]vcl."

!
f[gj.?l,i-l' EJ.-J. 1.] [E’-l if Eli] E,J."l,l a

I o S
e ' [E‘ili"l' Ek'k_§]= [Ei,-:l’i,'/kli)k ]: Q for’k 1zt 1 ’

3

[ VIPSN NN

(24) ’

f ‘ 1
o .«
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Every oberator Ekl' can be determined using -the formulas
)

ey T By, x-p = [Ek,k;}é Ex-1,k-p ] ‘ N tL)

{ Fx-p,x * [ék—p,k-l, Fx-1,x }

[N

‘1
’ . The orthonormal vector basis of ad irreducible
1 .
representation hay be constituted by triangular arrays of
- . , .
Y the type: . S ° s
[}
———an m -
nn (26) -
g ~ m = Co ’ .
/ : mn-t " ®ho1,n-1 -\ .
- ' ‘: ’ ' ’ . —— M :
/) L . \
! : . I . ’ m.." 4
' ) . ' ® ) 11 * . . .

.

- called Gel'fand-Cetlin pattern... Thé n integers ml;’ o
. . . ' Lp = = a

m__ specify the representatién i.es 1if it is a representation

nn
. Of\SU(4) etc. All the integers mij of the triangular array
. ‘ satisfy the conditions?®: - ' B .

t

. R ' " . ﬂ. . "\ ' '
mij:: Mi,9-12> M+, 5 ‘ . % en )
" The action of E Bl x dperators‘op the m trian-

. xk, Sk, k-1,
' . gular array is defined as:

v

&

' . R a

Eix @ = (rk - rk-l) .ml' St o (28)

- N

“ N ) - -
With Ty = My 4 Mok +eeer Mk,

k = l{...ﬂn and r, =0

a

! _1 1 k=17 k-1 .
c B,k-1 ™ F 3 Mgy Pt ) My L o (23
‘gv 7 . . § o :
‘ 5 the array obtainéd from m by replacing the 4Z)4
N
1 . B
22

N - ' . PR
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. k=2 — — —
ad P e B R P i"?Hmi,k-l my oy~ i*3-1

3 4

7
-

element My, k-1 by my k-1 -1. The Ek,k-l is a“lowerlng
operator. It can .lower one element of each row of m at the
time, preserving always the relationship (27). . . R
The coefficients ai_l are given by: . C
. . : ;o :
. '

Dot

k s k=2, - iy | 172
U ek T el T T e T My e Y )

iel (30) .
i‘ml k-1 .rk"ﬁl -’i+j+13 imilk"wl-mjlkfl-if'j)

Al
-

'-l
}:I

‘The Ek—l,ﬁ is ralslng’operator.'.mhe application of Ek—l,k .

on the m pattern leads in to the change of m array as ‘ t !

1 -1 k-1 <k-1

-Ek-l,k’“-bkl’“kl vt Ppl] My B ‘

*

wherentqes time ﬁi-l 'is the array obtaine&ffioﬁ,m by re-

placing My k-1 by my k-1 + 1. ' The bg_l\are given hy: A

R ' I
-k ’ ) RTINS V7 3
TT My =My 1 ”J) ( i,k-27 j,k-l‘”i'l) (;2)

1 ‘ . \ ‘ .
Again the operator Ek-i\k can raise one element of each row
\ . ’ R .

of the pattern m preserving the relation (27) .

[

Each row of the Gel'fand—Cetlln pattern can be related to the

well known Young tableau17. For the k row of the array (26)

the Young's tableau has the‘arrangemeﬂt “

mlk boxee

e

/ -t
R | . ™2k boxes
X, i ' L . { “_

- Mkk bokes” &

23




The top row as we said before is fixed:and specifies : }

the representatiog?which belofg to let's say U(n). The next 5

' - " v N
rows correspond each one to successive subgroups of U(?) -

4 i

-

(e.g. the row My n-1 carresponds to U(n-1), m tq U(n-2), )
N ' ’

1l,n-2
mll;to U(l)). The Young's tableau for a representation of
SU(n) has the same form. But in the case of $U(n) we can
subtract the number of boxes, common to each row, because they.

do not affect the dimensionality of the'representationlg.' Co . \N

. (R4 - i _ - %
For exaqple if My = 4, My, = 3 and Myp = eo0 =My = 2
‘the representation having this Young's tableau has the same
dimensionality as the representation with My = 2, Moy = 1, 1
Map Seee = My = o, where the rows with the e number of -
boxes have been removed. If we put Myp = My, the remaining
rowa’can bexwritren as m,, = mlk'-l, My Feeo =My = mlk-l. .
According to this example we can write the 20-dimensional .

-

representation, ‘with mixed symmetry, of SU(4) in terms of .the

2 — - _ - ) ]- -
parameter m l1.e. m14 = m m24 = mr4 1' m34_ m44 = m14 21

14 14,
For non-charmed baryons, the seoond.row of the array corres-
'pondlng to the above representation of SU(4) is the 8-dimen- -
s;onal representat10n<of SU(3) which from the Young's tableau
corresponds to my; = Mg, M,y = Mygq -1, Myy = Myg =2. From-
the triangular inequallty (eq.27) this corresponds to

-1, -2. The Gel'fand-Cetlin , |

13 = 14'\ 23 = 14 33 = 14
pattern corresponding to this case is then . ’

N

: 24 : »: #




(33)

' ‘ { ; :
where m12' m22' m g satisfy the‘cogﬁitions (27). For differgnt}//>

-

permissible values of My mzéf m;, one obtains different

members (states) of the 20m -dimensional representation.
(e.g. for myy = Myyr My =Myt and My =My one obtains

the proton).

° ’

"As Jakimow and Kalmanli® have shown, the quantum"

. numbers of a state can be obtained by linear combinations df, '
" .the ihtegefs of each row. For the SU(4) group then, we have

the following relationships:

Charm: c = m14+ mé4+ LIV -,(ml3+ m23+ m33)‘
Hypercharge: " Y =.m12+ myn= _g_(ml3+ mé3+ m33) .
' Isospin: I=im, -'mzz)' | ‘ " (38)
Third component of I: | I3= m - 5(m12+ m22) /
Charge: Q = It 1Y+2c

; . v 2 3

2. NON-COMPACT GROUP, SU(1,4)

3
[

v ~ b L]

»

F?r irreducible representations with cGonti-

. nuous parametersls, the elements

, m, ad m ., change
to -i(n-1) + @ and i(n-

1) + & respectively, Here, o

18 a complex number and & ig its conjuéate; All other ele-

ments aré integers and they satisfy the conditions (27) except

-

25




L

the,ml’ni and mo-1,h-1 elements. The operators Ejk, by
l 'n-l

which the algebra L is fepnesented in the Hilbert space,
sati’sfy also commutation rélations,of eq. (25) and theyl
I'operate,iﬁ the same way on the array m as the operators of

- a compact group. Specificly the fgpresentation of SU(1,4).

which contains the 20m- dimensional representation of SU(4)

- and the 8-dimensional one of SU(3) is expressed by the array:

APPLICATION TO MESON-BARYON REACTION

As we noted in the previous chapter, the dynamical group
of thé~hadr6ns, h;ving as maximum symm;try group the SU(4f
group, which permits a calculaéion of the cross-sections of
meson-barfon reactions, is Su(l,4). ' ,

2

Following Xalman 0 thé’baryons can constitute the

orthonormal basis of an irfeducib1e<representation of the
algebra I.]'.’4 and the meson; expressed as a quark-antiquark'
pair will be the operators assoclated with the repfesenta-
tion. The qudimensioéal-repiesentatibn §f the ﬁncﬁar@ed

baryons is givgn by:

P




Ky N et

0

. .
For the charmed baryons the representation is obtained by

changing the values of m, ., M,yr My in the third

row. . By giving approptiéte\values in mlz, My, My we ' ‘
‘ . . [ ’
* N 1 ]

_obtain all the 20. baryons charmed and non-charmed.
! ¥

¢ . *
The mesons, as we saw in the previous chapter

are given by: .
\h ) . Mij - Cicj qiqj (37) ‘
The 9 §j quark operators are the operators of the Gel'fand~

Cetlin basis. We identify them as follows:

Eyg—u Egym U, , ’
Eys—d Eg— d
E35_..)s" Eg 4~ s (38)
. ,E45—§c o ] E54—»E . L : " ' ‘
W - . . R R J J
l,n-1

The L", L algebﬁps can be represented in. the
‘Hilbert space by a set of operators having the same commutation
relations with the bﬁsis elements of this glgebia. The oftho-‘

normal”basis of -an irreducible representation is given by the

LoD

“.. 27,




/

* ) ’ j

N t
Gel'fand-Cetlin pattefn. This pattern is a very cdhpact
way of’ representing a state giving all the information
about it. [Thus considering SU(1,4) as a dynamical group

we have identified the scattering states of charmed and - °

.non-charmetl baryons with_a particular set of represehta—

'S

tions of the Lie algebra of SU(l,4) described in terms of

.

these patterns.

R L aGias gy
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CROSS~-SECTIONS USING SU(1,3)

CHAPTER v

¥

Calculation of Cross-sections .

21

Barbari and Kalman®™ calculated the crosgiS¢ction§_

of uncharmed meson-baryon reactions using as symmetry group-
1 . :

the SU(3) group and as dynamical group the group SU(l,3).

-They obtained- the following expression for the cfbssﬁsec-

tion.

S

L]

They were able to gvaluate some of the parameters of the
above equation by means &f ' a least sqﬁareg fit. ‘

It was thought that by.using the SU(45 as symmetr&
groﬁp and the SU(1l,4) as dynamical gf@up'it would be pos-

sible to evaluate the rest of the parameters.

In section one we briefly fgp}eseht the work done by Barbari

and Kalman a?d in section twWO we present our calculations

and resulés.‘

4

The reactions considered by Barbari and Kalman21

are of the type:
3 + ° ) + ]
Ml Bl-—i M2 B2 ) | .(40)

where Ml' Mz are meson operators belonging to the SU(Q)

~ meson octet and Bl’ 32 are barfgﬁ states .belonging to the

SU(3) baryon octét. The baryons' are expressed by the
Gel'fand-Cetlin patterns discussed in the previous chapter

and the mesons by the non-charmed operators of eq. (38).

. Y

~

. I .29 : ' g
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The expression for the cross-section is given by:

) &tét N ‘E{t <‘Bz Bine”<Bint ,lMc;pl l?1>'2 - (41)

states

Mop2

The intermediate states are obtained'by operating with the -

meson operators on the Gel'fand patterns corresponding to ,
baryon states. The initial and finai states of baryons f
are as ;lready‘noted members of an SU(3i octet. The in-
ﬁermediéte states may be members either of‘SU(3{ octet or
decuplet or 27-p1e§. After the summation‘oﬁ-the interme-
_ diate states eq. (41) takes the form of thé eq. (39) stated )
in the introduqtion, In eq. (39)the.CMl, qﬂz are édef- '
£icients of thé meson operators depending on the mesons'.
_structure. The A, B and C are polynomials of my,, of

ﬁourth, second and zera order respectively. The parameter

KZ is identified with the lab momentum given to the meson. -

e

- 2 -n - ~
X X =(PLAB) ., where P_ is a constant yavlng the mo

. mentum dimens?bns and n is a positivs\constant.' From a’

22

least squares fit to the experimental da%a Barbari and

) . Kalman21 obtained a satisfactory value of n (n = %).

’ '.A - "Following them, let us now set
: ” . A' =2 (C, Cy )
. B T
u\ - ’ [ { —i : ) s ‘ ‘
’ : . . B' = B (ch cMZ)/ Po (42) |
| ‘ Ctmco(cy C )/ BE ' | Ve
| ' . ’ M M Ko ‘
» . ‘ ' 1 2 J

Substituting in egq. (39) the above vai*ss we get: .
3 ~ N j I

3 . -} = '

of = AUHB! Prap T TC Prap . (43)

-

¢
4
!
2

2 _ .2 e o ‘
-B® Ay 0. Using this
[L% b oo P

For n = % it™was observed that A

< 30




¥ .

relationship the quadratic in P,. ca% be wxitten:

L.l‘\
o’é‘:'P “i,p Zxc ¢ P'—k or also .
'r‘ =2 .
] g LAB 3G Ml M2 o} .
- -3 _ 4 , (44) o
g = ? PLABI D .
p "
o A ]
where E = ct x Cy Cy and D = at LX Cy Cy D
R ( 12 \ 1 2 ...
, L No3 &%
Comparing equation (44) with Morrison's

~

formula F- &

oA PLAB
! P
o.

we see that they are in agreement if E

" I 1

-n
L. )

s

PLAB
P

N
and the momenf:um is not t‘oo large. To fitihigh momen tuf®va-
lues, D must be zero, this is because for high momentum value‘s
the number of chahne'ls increases and the total cross-section
would a{pp'roac‘h infiﬁity if the c::'oss—section of the indivi-

dual channels remains finite. It is impossible, however,

to sét.D = O because D is function only of m 5. However,

ff)-f the region of momentum values for which experimenta
data exists, equation (44) seems to bé valid. The modellis
not, however, entirely satisfactory -as the authors were
unable tc\r. obtain value of m;, and thus coald only make usé of

parametefs A', B', C' derived from the least iquares fit.

v

CROSS~SECTIONS USING SU(l,4)

In the hope of deriving th7 value of all parame-

ters in the model, in this thesis we will consider the ex-

tension of the symmetry group to the charm group SU(4) as

31

=0
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noted in Chapter III. The corresponding dynamical group is

Su(l,4).
' - The reactions are tdaken to be of\tfe type of
eq. (40). The expression of the cross-sections is the same

as in eq. (41). 'The baryons are expressed by the Gel'fand-

" Cetlin patterns'and the meson€ by the pperiyofs of eq. (38).

’

The baryons of the initial and final states are considered

"to be members of the,20M - dimensional representation. In
. * 7’

table 3. the Gel'fand patterns corresponding to the baryons

members of the 20, -~ plet are given. s
b

The expression df the cross-section in eq.(41l) -is obtained
by summing over the intermediate states obtained in 'the pro-
cess M Bl_ainterustates.;gz B,. As we noted in e;apter

III the Weson operators correspond to a l5-dimensional re-
presentétion'ané'the baryons to a ZOM—dimensional repre-
sentation of SU(4). To obtain the representations corres-
ponding to these intermediate states we take the.kreqeéker
product of the SU(4) lS-dimenéional representation for me-

v .

sons wi%h the 20 -dimensicnal one for baryons.

15 X ZOM = 2 X‘20M + 20S + 36 + 140 + 60 + 4

5

From all these representations we are interested in the
ZOS because it is known24 to contribute a great deal to the
scaftering cross-sections and also in the 20M since\it is

the representation of the initial Q&d final states and is

clearly also of importance to the scattering cross-sec-

tions. The top row og?the Gel'fand pattern must specify

" such a representation of SU(1,4).which contains the 20&’—

and 20, representations. According to condition (27) we
“ . :

32
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have the following permissible inequalities for the inte~-

gers of the first row.
M4 > M5 2 Mg .
my iy mys M,
myg"2> My P42

Therefore the first row can be written in four ways.:

-

N ‘ D
1)' -2 +¢o My, ml4-l S Mg ,m2 2 +0

2) -.2 +o Myg. ., ~2 ml4-2 2+<;:r

14
. : ~ ' - '
3) -2 +o mlq—l nl“-l ., m‘u-z 2+ R
N ' ’ ’ e
-2 - P - & A
4) ¢?._+cr M4 1 my 4 2 Myy 2 2 +o ‘

For case 4) operating on the.‘Gel;f'and"pattern ’with meson
opferators yi;lds intermediate statgs. The second rows of
the'patt‘ern corresponding to the intermediate states and‘ %
the corresponding SU(4) representations that these belong

to, ‘are as follows: ' |

-

mil mpm2 mg,-2, $ 20, .

N
.

My

. \ . ’
+1 m -1 m14-2 m14—2 : 140

M4 14

60

Mg Mg Mpgm2 Mg et >
Similarly for the case 2) we obtain: ‘ .

m,, m14-2 m14-2 ml4-2 | ZOM ’
- my,tl my,=2 my,n2 '{“1:4 2+ 204

ml4+1: m']_;—l m, 42 m -3 : 140

Mg Mg Mgm2 Mtz 2 20g
For th@ case 3) | >

~ ] -

P
-

st o g e .

o




g’
: N

Mg MgTh Mpgt? Wygn2 20y

b omgtlmclomp2 o ompe3oor 140 |
my -1 m;é-lf My, g ¥ mi4-2. 4 5
Co- | - )
For the case 4} . ~ g

mig  my,el o Mgt My, 20y
m o, +1 ! mma m =3 @ 140 '

ml4 2 m

' ' r . l: N
' m.., +1 ﬂﬁ{ - -2 @ ' ‘ -
/\J 514 ) . ' - on
s . Lo ¢ FYRRD)

dlearly cases ‘1) and -3) must be rejected since they de not

centain the 20 Case'Z) must be rejected because it con=-":

talns ‘the 5_ and therefore “contains antibaryons, 3&« Such

a 51tuat10newheqe Ml Bre-B->M2 32 1s‘clearly impogsible.

Therefore case 4) is the Lie algebra of SU(l,A)’to be used

»

to con51der two body exclu51ve strong lnteractlons of ‘mesons

and baryons. In our representatlon of\baryons, for 31mp11—

cxty we have con51dered only the 1mag1nary part (ldentlfled

. -

2

" w1th i) oﬁﬂzhe complex number O.

‘

The way. that .mesons operateson baryon patterns

~

is given in chapter'IV by eq. (29 or 31) and the coefficisnts

correspondlng to each intermediate sﬁate by eq. {30 or 32).

] For the reactlon'nﬁ .,kOA the appllcatlon of the operators .

and the,resultlng coefficients is descrlbed in detail 1n

<

. \
appendix .A, For thxs particular reaction after the evalu-
ation of the coeff1c1ents and the summatlon on the interme~

diate states equatjon (41l) takes the form:

" © . o=c¢l cd| dor2a my, - 0.3185 m3, 4 0.4287 mi4
- " ' 21 A 2 (45)
} 2 0.472 ml4+.2.5‘952~+uy (0.1447 m;, - " 0. 3135m14
s ~ 4 |2 N
. I 0.%633) t 0.0724 § X |
‘ﬁ - " s ~ T 7

- S 34 :

2
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;

.
v
L Y,

v

B i L e,
-

CloL . . - . )
e ‘ . L
The first polynomlal is idenfAfied with the,éarameter A '
4 3 2 Y '
. 0.07£l my 4 e/o.;les mi, + 0:4287 my4 0.472 m 4
+ 2.6952 m A o
“The second polynocmial with B . . )
0. 1447 ml4 - 0.3{85 Mgt 9.9633 £ B ’ '

) \ . ” R [ !

. The constang.multiﬁlying‘the parameter 34 is identified
Lot ‘ . « & '

with C ' ) C -

)

"o. 0724 = ¢
21

~

Follow1ng Barbari_and Kalman we identified the parameter .
£ ) )

‘YZ with the laboratory momentum as follows:
. ne

S 71 - 3

‘gﬁquétion {45)can then be rewritten: ' ’ "

2 2 -1 2
U"C Cko -i !

v
P .
[ N

-3 (47)
| PLAB +' C (P
i3 ‘f;' R PQ R Pb

21 used 4aCc 1.

Ay
A+ B LAB

¢

“

Barbati and Kalman But the'least‘squares
f o - 1

fit resuits given in Barbali's dis‘sertatign22 we can see

that there is a 5;tter agreement with the experimEntal values

Taking the ratio

of cross~sectlons it 4AC € [ 8,_ 9]
% .

\,‘32 .
a'4Ac in this reglon we were ‘able to obtain a value of m,
Bz . .

>

.,which~satiafies most of the reactions considered. Some of

S

the values of the ratid 4AC and of the parameter ml; are

.' % .
given in table (4 ) for all the reactions consldered.‘ It
can}ﬁe seen that the valie m14=-‘9 is sultable~fbr most of

the reactions. ' , ) -

i

T g, "
-
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.Using this value of m,, wWe can calculate the values of\phé

S

pardimeters A and B. Table (5) gives the values of A, B and
o -~ : .

C for ‘each reaction. Hence .in equation (47) three parameters

remain unevaluated, the qﬂ—.CKo and P. An~attempt’to eva-

Iuéte in génefal the cn's and Po-was made by taking the

ratios A', B' apd C' where a', B'&Sij are:

. A B - C &
ST .
A= a CM1 cMz R |
' 8’ =B (c, c, /P "}
My Mo .
Y= ey oy /e, TH
: 1 M

; and are evéluated by the least squares fit'&n.Barbari-Kalﬁanzl

for each reaction. The A, B and C are given in the above

table for. each reaction; Since mesons are made up by aTr L

@
H

quark-antiquark pair it was thought to express each CM coef~

L

v

‘ficient by a product of coefficients depénding on the quarks
that they form the considered-meson f(e.g.j{” meson is. formed:

by a 4 and u quarks. Therefore Cy- can be written‘a‘s.lcd X

C_ considering that C_ = C=. ‘
u g q q
The ratio A' is not used in the calculation of
A e

1 . ' ¥ .
'qus even though it provides a straight forward cglculatlon

of them.-' Theoretically A' should be zero, af it is: noted

in the first section of this chapter, to preserve finiteness
'bi the cross-section. Equatian(395 ob;aihed by Barbari and
Ka'lman21 for valués of the iabora;ory momentum (PLAB) cor;
’respondiﬁg to(aQai}able data iﬁ in agreeﬁ!nt witﬁ'Morrisoh's:

n, Sf}ce Morrison's formula does not

P

formula, ¢ ~ ;PLAB
o




[

o

contain a parameter like A', it is clear that Barbari'szz"
least squares fit is not sensitiwve to the parameter A', For

these reasons the calculatlon of CM's is done using the

ratios B' and g' .
B C

We give an exanple of our calculat:.ton of C's using the three

_following react%ons :

B

LY

}

g lfa')‘[ G e

2

d

R L BN Kp — = K
‘7 = A X° \ - '
Fb;; the X n —-)JIO:i_ o - . _
= ‘ - : 2 .2 . 7
gAa_' = 0.00425 = ¢ C, | ¢, - ¢ ]
. oY
V= ) 3
,.% 3792 = (c ) (€,) [ - % ]Po :
1 = '_ 2 - 2 i |
g 4’1.3143_. = (C) (cu)[ Gy Oy ]Po

]'X (CS) (Cu) = 04.00348

¢

Similarly for the remaining reactions, we have:

e

2
QsCqu = 0(.00466

= &' ~

KPpPe—

a2 .2
s Cg

- pa, Y
" = 0.004696

Prom the reactions Kn=>»7°3 ~

.

.obtaln '

<

o: 1. c

d 0 Zu - 1] = 0.7466 = C,

‘2 *
Ca

Also, from the reactions K p—s =" K

»

and)t p-—-)/\K y 1f we

div;Lde the product. of the coefflcz.ents of each other, we

-'1.32Cd (48)

and X n -> z: 'j{o,‘

o L e

dory




we obtain,

»

[

a2 _ a2 g '
,Cu - Cd 0.0508 i (49{.

.
.
'

From (48) and (49), we obtain

C, = 0.3447

= 0.2608. L.

Cd

Attempts were made to.evaluate C, for all the reactions.

Reéul_ts for those reactions with a large.amount of experi-

. mental data are given below.

’ K p —> nk® .= 0.1854
N ‘Kp—> T2 ‘ C, = 0.0795
K—I;\-—-> K+=~ ' Cg = 0.1988 T
K — 7°5 " c = 0.1988
'A ¢
a K'n — 773° = 0.0455

TP — A x°  c = 0.1988

.. AP — K'EZ" ¢, =o0.0826 u
o .

The Son that in the reactions K-§->K+ = ', KXn —>sz -
and " p —3 AK® we obtain the same value of C_ is that
‘these 'threé'reac;ions were used to calculate C_ and Cy and
thqrefore the vélues of Cu aﬁd Cd satisfy them exactly.
Among the gther reacti;_pns, the K'p —>nk° is consistent with
Kp—> Z+ ‘

- + - ..
and { p — K Z are consistent with each other but not

the others with only 6.7% difference.

.

"with the rest of the presented reactions. The reaction

K n—7 2 °

the least squares fit in Barbari's??

dissertation, we see '

that it does not include'all the experimental points.

.

is.not consistent with any. _Re=-examining . _—




in

In figure 5.1 we give’a semilog plot of versus P, .
for' the reeqtiqn A p—> K°/\ . From equation (39) it is
expected that in the plot appears a sefies‘df straight
lines. This is/éicause eqg. (39) coptains different powers
of the variable PL#B' The data indeed does seem to haQe ‘
the appearence as indicated by the two lines drawn dn

the graﬁh The model we use for the calculatlon of the
cross-secﬁlons does not provide any means for ﬁhe,calcu-
lation of the cross—eection near the threshold point.
Therefofe the first region of the graph is not taken in-
to'aecount. The third region contains the points used by‘
Barbari23 in his least squares fit. The results of thetgeast
sguares fit are indicated by the curve maéé by the pqints
which are circled. The points of region 2. are not included

ih'Barbari's least squares fit. It_Can'be'easily seen from

Barbari's curve extended to region 2. that the equation used

- for the cross-section (eqg. 39), lndeed roughly gives the be-

I

hav1our of the reaction even ln this reglon. However 1f the
——

points of region 2. were included, one could obtain a better:
f1t This might be the reason for the apparent 1nconsxstency

in the above values of C ' .
-3

The parameter Po was also calculated for all the

reactxons. The interval of Py 's values is [ 94.95, 214 92]

Mev/ units. An attenbt was made to £ind a value of P,

C

. L

which satisfies most of the reactions but there was no satis-~
B ' -

factory result. -

Calculations about charmed reactions were also

made. But in absence of experimental data it is not possi-.
39, o g :

I

o

e e kit
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uncharmed reactions.

i e
| P s i e . l

VS

ble to calculate the producf df‘the coefficients dgpending
on the quarks.. To evaluate the parameters A, B, and C, we
usedm 14 = 9 since the charmed baryons are in the same

representation as the uncharmed. In appendix B. we give the

final exprgséipns of ‘the cross-sections for' charmed and
’

21

The calculation by Barbari and Kalman for

c;oss=secti6ns qf mesonrba;yon reactions using the dynamical

group SU(l,3) was extended using the dynamicaﬁ:ﬁroup Su(l,4).

As it is noted in the introduction, it was, thought that

using a larger gfoup it could be possible éo evaluate more
parameters og the model—bresented by Barbari and KalmanZlﬁ\

Indegd it was possible to determine the parameter ml; which o ’
along with PEAB defines the represeﬁtatioﬁ of the dynam%cal
group.

It was tried also to calculate th coefficients

\
Cmtof the meson operators which are associated with the

- meson structure. In this calculation there were some in-

consistencies. Re-examining the least squares fit of

Barbari'522

[§
dissertation, it was seen that not all the
experimental points are included. This might be a reasan !
for the above inconsistency. ’

»
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Conclusions

N ™
For the exclusive cross-sections of two bedy strong

interactions there is Q:F any theoretically derived equa- el

-tion. The only existing equation is an empirical formula <

-

called Morrison’s formula. ' .
. : : * y ,
‘ Barbari and Kalman sought to derive an equation fo . '

such cross-sections-using: the dynamical group method. This
method provides an explicit model for the exclusive cross-

sections of the two body strong-interactions. Using the

_Gel'fand-fetlin basis it is pdssibﬂe to find all the inter-
. , > : i
mediate states of a reaction. Barbari and Kalman considered

-~

SU(3) as the maximum symmetry dgroup for the hadrons, and

’ SU(1,3) as the dynamical group for the procéss of meson-

i R
baryon interactions. The equation that they obtained is

: | '-"-c'cl' Alm,.) + B(m, ,)y> +c‘?]
| S Mle_[ 13 EY !

They identified the pau:ameterx2 with (PLAB / PQ)_n. The
.

parameters n and

B NN e 230 s e s+
-
1
0
@]

1

(@)
[
0
o
[@]
~
g
o
-

‘ aL;:e evaluated by a least squares fit. The value of n was

LIS

s L '
a1 ’\ . v, . ,
‘ 41
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found t6 be %.

The above equation for cross-sections’ is in agreement

r .

‘with Morrison's formﬁla, given in the previous chapter, for

the range of momentum for which fhe}e is experiment data. .
If 511 éggéqeters of the above eqﬁétion wer;’:iiI;§§;;;3

one could obtain the cross<section of any reaction. However

four parameters remained undetermined; m.., C._, C and P
> 13 M1 M2

It was thought that considering a %;f@er symmetry one

0

would be able to determine the remaining parameters. In this . .

thesis, the larger group » SU(1,4), is taken to be the dyha;
mical group for the brocess. As maximum symmetry group. for
the hadrons, SU(4) is considered.

The calculation of the cross-sections using SU(1,4)

»

resulted in the same type of equation as the one of Barbari
and Kalman, as expected. The only difference is that the terms

A and B are polynomials of m,, which is the discrete para-

14
meter of the irreducible representation of the group SU(1,4).

Using the larger dynamical group SU(l,4), it was possible

indeed, to determine the parameter Mg ,

The irreducible representation of SU(1,4) that was used

for the hadrons, is specified by two parameters; a discréte'

parameter m., and a ¢ontinuous parameter j . xz was already

14

identified by Barbari and Kalman to be proportional to PLAB'
With the determination of M40 the representation is now

known.

Besides My 40 the evaluation of the parametgrs CMl, CM2

‘

H "

i




. would be able to obtain good values for the C

AX

and PO’ was also attempted. In the calculation of the CM's,

some inconsistencies ‘appeared. Re-examining the least squares

N »

fit that we used, it was seen that not all theé points of the

'expe;imental data were included. This might be a reason for

the "apparent inconsistency. As far as’ the P0 parameter is

concerned, it was not possible to find a unique value which

-would fit satisfactorily all the reactions considered. If one

MEF then it

would also be possible for one,éo calculate P0 as P0 can be
. t

obtained from the ratio Cy C, /( B'/B). - s
. MM,

The model provided by the dynamical group. is totally

.

determined since the two parameters of the irreducible

representation used, X and My, are determined. The evaluation

L

of the parameters CM and PO’

be of interest ifrone would use another least squares fit

is a matter of fitting. It would.

includipg all’the poihts of the exp?riméntal data; to recal- -
culate the parameters CM and Py This also wéuld be a.test‘
for the model used.DIf one.finds satisfactory values for the-
se parameters one could also test the model by making pre-

dictions about cross-sections already evaluated éxperimental-

v

“ly. The equation obtained by the dynamical group method con-

tains relatively few parameters compared with the number

~of reactions on which we can apply this equatioﬁ to the

cross-gsection. It is therefore very easy to test the model
once' we have consistent values for the parameters CM and
PBi“IT the model is succesful thenwe have a theoretically
deriﬁed equation for the cross-gection o§ two'bgdy strony

s

interactions.

o
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Avpendix A

Reaction  yr'p —— K° A
Operating with the JL meson operator (C -125 51) on the
Gel *fand pattem of the proton ' -

vy

yields the following intermediate states.(The,top row is

- unchanged and hence we omit it). o :

\ Piymt o myy-l N"flu’z my=3 [ . - I
myyl | = I B> ’ '
My
my gy =L R ’

myy-2 M2 mpy-2
my-? myy-2
.ml 4'1 my 4-2
my 4-1

! .
“

mlu-l Iﬂlu‘l . mllu-Z mlu"B

myml o My my,-2
myg-l my =2
Myl

44 -
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T K i ety b S e &

7t ompsl Mmooy
T my=1' my,-3
myy =L m, ), =2
B Compytl
M4 m-l o omy -2 myg-2
| Ml Myt MR
My m]_u,'l !
my g -1
mle-]:.\‘ ml'-&-l mlu-z \mlll-B
M1k My -1 m) ), -2
N e
' ' mlu-l

ni
m
-

4

On the other hand operating‘with the X° meson operator

. “ _ . |
ﬂQKé 125153) on thé Gel'fand patt

ern of the lamda particle

‘ \‘Z.‘iUm-‘ 1oomy,-2 j“l#'z, 2-1y
My M=l omp2 w2
Mg -l w2
myl Myt
my g =IN A -

yields fheA following intermediate
~ the first row ).

My Ml My my =2
Myy-. Myl myy-2
T o Manl /

-»,,mllr~(‘ )
b 45 |

states (omiting aéain

Mh ’ ‘

In>

.




myy,-1

my 4

my -1

By

mlu-z

mlu_-l

my 4y =3
Miu-z

fos

e o i

mlu“l

My =3 |
3 [ = ]8> .
mlu‘l . " e %

my-l o myy-2
my -1

m, -1
Myl

L

. m -1 , .

\The common intermediate states of ;7 p and K°[\are the

In>, |A) 4B}, and are the oOnes that contribute in the ex-
press:.on of the cross-section glvén by equation (41)

~ Co ~ The meson operators are a comb:.nation of raising and <M ‘
lowering operator (e.g. 7 = Cp- 125151 ) where Cy- is

aconstant associated to the meson's structure. 125 is a -

raising operator that raiseg one element of the f(gurth \

o dbger o

‘third and the secoqd rows, The 151 is a lov‘vering operas=
tor and it lowers one element of the fourth till the fi-
rst row included.If for example 125‘ rajises the first ele-
. | , 'ment of each of the three rows .and 15y lowers the second- | .
: element of each of the four rows “the resulting state is '
| ‘ \'rlrltten_ mi‘%%ﬁ xﬂ%}; .Thg m represents the lowered state
= h and i the raised state. The sups‘éripts 1,2,3,4 represent
the rows and -the superscripts the éhanged elements of
each row. Analogously the coefficients corresponding to

A

!




B

"the net action of these operators. - ' o . % '
s
i

lowing elementss-

|

Q\

n
%
G s ;’%ﬂ. w;

3

/ 3

: i
¥ & , N ) . , I

. the opérators are written aiggi bééi If both operators. o

Isl' and IZS operate on the first element of each row then-:.
the resulted state would be represented by m:][ which givesl

1222

Exialicitly m123,+ correspohds %o chenges of the fol-

—_

mll __-_’ mll“l . ' ‘ } N '
. m22 — m22—l (

"23 = 237t »

.analogously ﬁ%% ‘
My oy 'm12+1'

/ my 4 — m13+l : .
Tomyy — myy+1 o
ST~ : y n . '

T‘hu? n-pz Cp 125151]p) \ | e L
222 a1222) (bl?h (31134) 1‘_(bz:»:u) ( 122u) . \ z3u) 1234 .
z3u 1234 ¥ (P234/ | f1234 234 121234 b23y 1ge 1i)
131 113#} p221Y 122 231)( g1234) | 1471 %

*‘tbz3u](3123u ( 234)8 123»} (b 3 )( 123uﬂ \ml4mu§>

1134 211Y, 1234 134 :>
Jesitam ] |42 |

ponds to the pattern my in eq. (A.l&) and th

In) is

R

of

1222
123u

From eq (A.1) and (A.3) we note thét'the 8t

°

1"1:%%‘,:) (

mu} + (

81234 234 || %1234
\

. X/ T IR

zzu)( a1224

? +[v

ate {ny corres-

the coefficient’

234

zgu 1234)

81234




N o
- ~
' { - .
J N o L ‘\, )
N
'
4
. f‘]

Similarly that corresponding to.]A} is~

(w131)f 1134 221)[ 1224 231 34\ :
(bzgm) 1234) + (b23u){a1234) * ("23#1 1234
. That corresponding to (B) is - '
SW11I\( 1134 221 1234 ' .
\‘%34)[31234) * ( 34) 1234) A T
For K° A\ t‘he- ‘coefficients corresponding to stdte |n) is
pL11)[,11 114 [ 1k 136 \(, 3% e
> 23#)( 3}) + (b231+)( ) + [233:)(= 31») -
o . . ) - . ‘ '. .
That corresponding to state. |A) is

CpwNgGER)

and that corresponding to state |B) is .

M) 0

Ty . . P
Eveluating these coefficients using equations (30 and 32)

we obtains
For i | X - : Y
State [n}vy. ’ : o

222) (1222 Nat A
_(bz:-m) 1231;)' -105k [(1’“‘1u Wi .

L1348 (1134 2, 29
( 2%#) %x;gb)= -0208 [(“““‘m) + J

(bggﬁ) (aﬁ%ﬁ) .0139 [(u-ml“t)2 2]

48

b . . .
. !




-
w

(b221 122
" 234 1234

b))

_ St&te ‘B)
oo tbln) ( 1134]
F1234

211} °(.123%
(bzau‘) (a123 4)
Similarly for

State n> A

bBH(SE
[

114) (a ff)
] 23 )
( State |A
(111 {a )
b131 (ayp)

34
Btate |8 >

e

" I

3
4
23l

H

.
)

B
’ -

'Nh._‘ - “ +
4 - o
p234) (1234 2,2 '
' w(?-%ﬁ)(m%u) sy fmp®ep] L
. State: px) Lo S C
v ‘ : , - o,
- 134 2, 2 2, 2
"i' : 23u L) ’°°352. B%-mlu).‘rﬂ*[(z*mu») *ﬂ‘*.

07 [’(‘*‘mw’zfx@]* femze At

oot [om
o A . | . ’

66§'[(u-m;4)2“+f§* [(2+mi[,;)?+ f’]}"

.01626[(‘/31,1#)24,{]‘}[(%_ L"’ +‘ ]‘!‘

K°A

L2449 [(“‘.‘“14)_2*7?]
2.

.01021[(4-m1u) +’]

.05103[(4.,3,14) *IJ e Ly

+04313 [(H-mlu)z-»f]* [(zmi,;)zq- 2] L3

.00863 _[(#_-n;lu )24 f J 4 [( Zﬁ*mlu) 2*.)’ zj i

[]

.16.? . -[( ‘*""‘1_4 ﬁ*’zj 3 [(2 g, )'.2 + XZ]'}

St

4

4'

iy




A

. Summmg up for —mn)we obtaln

. 0764 [(u"ml’-l—)z*l ]{, 1054 [(1_,,,14 "6 ]+ 1076[(14—m14) +J/] l:(z.pmlu)v‘]‘f"
, s

\

vena

SimiYarly for Kol\

0612[( o) +x]+ 2n5 [(1+mlu)2q2]+ 2208 [(u-mw) +, [(Zmlu'ﬁd/
The equatlon (41) 'after taking the scalar product becones
-cn.c oou%[u-mw)zqrz]: % 019 [(L»-mm) J'XJ [1+m14) W] N
.00645[(14-m14) +3 ][(l-m ", +3 t. 0258[(1+m 2+K L(l-mlu')ij

+.023?[('+-—mlu_) +a ][(Zi-mlu) +JJ ' §/ . \Z )

1

Exnandmg 'the brackets the above equatlon takes the forn
o’ LI o[_ 072’4me" - 3185 | +. 428?m -.472 +2 6952 -
7 Cx 14+ 318om7yy, 1y HTem+e. 69 ‘ ¢

+x‘(.1zm7mw -.3185my;, +.9633)+-0?2{+34~] .




Appendix B

@ & '
e U — ° -
.

W

iven below. A detailed represem:ation of how one ar-.

_ Thei‘znal expression of the cross—section glven by eq.47
ar

rives at this expression is given in the prevmus ~appendix., ‘

The parameterx is _;dep'g;;fied with( PI.AB) =+

-—p—"o |
The eoefficients Cp sz can be eXpressed in terms of the :
quarks coefficients in the following way 3
: %y’
Co~ = G+ = C,Cy °1r° T—-'l ¢ -o5)
. ' s ‘ N 2 s 1
' GRO = CKO = Cscd CK+ =,CK- = cucé
- - - ' - - ¥
CI‘):" = Cp~ = GGy CDP = Cpe = 9ccu .
3 ’ _ '
CF# = CF". = Ccc;:

~

, Reactioﬁ K'p — x*
et ’GK*E) 1305,,.1”-0 2715mm+o 627lmlu -0. 0575’“14

+2. 6663+f(o 26lm1u'° 2715m1u+1 .2511) 40. 13053’]

"Kp — k°=°

etz Cg~Cgo o2 576m‘l’,+-o 4878M3,, +1. 661)3m24- 0.9339m, ,
+ 4, uuugq (0. 3153m1,+ -0. “873”‘11;*1 7965)+o 1576&]
K'p —-oz-( .
. o-* h“’x"crt'E’ 0791m‘{u-0 3176m2u_+0 6022m“-o 8469qu
+ 2. 3965+K (0.158202,-0.3176n 14#0-848)40. 0791,1_3]




K-p by Kon

H

c

; \
 K'p —s 37T

1

.Kp-—-OZTF

P =

i
R\ o’

r

TTP"’/\K

‘.

R 6144-6 (O.2868m14-0. 3226m1,++1 +5827)+0 .14346{{

4 3
- Cp-Crm E) l’+62m14-0 -4689m7), +1. 565l+mll+-2 1005m14
+a 4471+6 (o 2923m14-0 L»689mm+1 6131 )+o 1462ﬂ

-

o4 = C -C +E) lOZUrmL{u’-O 5125m1u+1 LI»OLLZmlu—Z 805m14

. . u , 3 ~s2 ‘a
= Cy-C.0 [E).Z:S?Smw-l.1829mw+o.983211114-0.863&:114
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Table 2.
Quark structure of hadrons.
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S 9 \ Table 3.

Gel fand-Cetlin patterns for the ¥ =4 baryons. ,
The " first two rows corresponding to the SU(1,4) and SU{L)

groups are omittedsince they are the same:.for all baryons.
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PRI TRy

The yariation of the ratio l&AC/B2 Qith mlu-for non-

charmed reactions.
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