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NORM}/,MOUE§ OF WIBRATION OF A CALENDER STACK (

L} ’ . v .
The barring phanomenon Whtch occurs 1n paper machlne

- calanders is investigatéd. The. available information on “~the
'subjact is raviewed, summaggzed and presented in a condensed-
form. Froms- the literature survey the concnnsus of opinion

) emerged that bar?lng 1s caused by the resonant vibratlon of’

the' calender stack wi%}the paper acting, as both an elastic .

‘cofjponent of the system and . a source of excitation. Based on )
the various field obsorvations repOrted in the litqraqg e a
Iwo—dimensional physical \model of an closad-framo\calender:‘
stack is constructed. A mathematical model is dayqloped for

~the physical model to determine the undamped' n?tural'

.—froquenciqs and modes of vibraﬁion of. such ‘a systqm. The '
analysis ls proqramed for computar soluticn and tcstod by

. qpplying it to an operational calander stack. Tho rosults of ”.

1

© the computations .are in good agreement w;th fleld.

/' ob;chatlohs ot calender behaviour in,Qeneralp'
: , ‘ " B
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(a),

(A

| flexiéility matrix for the nth roll -

L

flexibilityimatrix ror the caggnder stack

the jth natural circulgr frequency or\thg\gzgfgﬁxg :

.

&y K constraynt matrix for the nth free-free roll-
- 1C] cqnstraintlmatrix for the cqlender stack © o
: d? flexurai displaééhont of 1th poiht’maSS'or A'roll

(ddn fYexural displacem;;t vector of the nth roll
. (d) " flexural displaéeméﬁt v?clor for the system

Dy aSsolutb displaqemént of 1th pOInt mass of a roll

(D) absolute displacement vector of the'nth\;qlf

(b '°',absolutg d;splaceﬁent vector fox:the gyétem‘

[ identity matrix " - ‘

[kr]; inbxﬁra; stiffness matrix for the nth roll L
{KF) flexural stiffness matrix for -the calender stack

(KS) stiffness matrix for calender stack due to papér
'[mla '\:' inertia matrix for nth roll | | .h | ,

(M) inertia matrixfor ‘the, calehder St;ck ' '\ Q' E
N number of point massas ‘per upper roll )
"NR, number of rolls 1n ‘calender stack g ‘

T' | kinetic energy of &alénder stack in rfeq vibration'"
:vg" erxural ‘strain snergy of the nth roll

VF , rlexural potential energy of the calender stack

Vé potantial anergy 1n compressed paper
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' C;Eenderinq ‘is' the. last Qtaqe of.papér making ‘where the

 The calender stack consists of a

'rqlls ého&e ft

_1.1 INTRODUCTION . . T

- o 19,
. [

final finish is given to thq:%aper; The finish 1is produced

in tﬁe calender stack by passing the sheet -bedveen cast iron

‘rolls‘ and subjeétinq it to higﬂ speed compressive stress

cycles.(In the case of certain types of bgperr the calender
. { .

applies chemicaf finish to the gaper in addition to'a

.. mechanical finish., However, this_study is -mainly concerned

'with the calenders of newsprint machines whose sole function

is to impart the final surface finish anq.céliper to the

paper. . : = T :

ame, and a number of.
i ] ,

calender rolls *étapked §% one’ another with 'their axis

qsuélly in the same vertical plane. The number ,of rolls thus
’ assémbléd may vary from four to eight }olls, to a'lcalender

§tabk."ln rare cases there'may be'ten rolls in a stack. The

upper rolls are of .equal diameter and are suppo}ted on

aﬁtiffibtiqn bég;ings;' The two .lower rolls, ,soﬁétimes L

referred to as.the queen-and king rolls may in some cases be."

& -

© running on sleéve'beafings. On modern machines 'the 1qheeh

roll 1is wusually the same size as the'intermeﬁiatg,oneslbut

Lty

on'qldar machines it is ia?ger than the intermediate rolls.

. o \ 4 »
The' bottom 1roll, 'the king roll is always larger than the
. ; ,'97 , , A

! . ( ’ - ‘
rest of the rolls. It s supforting the: weight .of &1l the

|

.
| <

and tends to de}iéct under\§h9‘load..ln order .

o

,//‘I

to compensate for the deflection ‘and to mafntaln a straight ©

;

i

ck
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tel Introduction (cont’d)

line of contact (called the ﬁib) between'nplls the king roll

is crowned, that 1s 1t 1is ground 1n such a way that 1ts

di ameter qradually decreases towards the ends. . On more
- N

/modernpcadenders a shell type kinq roll and pressure epplied'
- over a.segment’ of the lnside‘or the shell provide means for '

~ compensating for rell‘defleqtiep,~This has the advantage of

allowing. ‘veriat;on of the loadiqéf}conditions ori nip
bressureq. Most calender stacks'éantalg one hollow rell or
mdre which can be heated by passiqd steam through: the éore
elonq the center of the roll,’, The surface temperature of

such rolls 15 an importent operating factor,

-

‘The calander stack ma§ be open ,oF"cioSed deﬁending on

whether the bearing hoUé&ngs of ﬁhe rolls are set 1n a slot

in the frame or supported on a centilever. In the latter ‘

arrangemant, me ans of counterbalencing the weiqht _of' “the
roll not in contact with the paper 15 usually provided.
Figufes 1, 2and 3 schemeticelly illustrate the two types pf
celender stacks. The power input to the calender stack i3

most often through the king roll but in some cases the nueeﬁ

roll is driven, To ’the ’rest of the rolls “the necessaryt‘

-

drlvﬁi‘q power . is ‘transmitted throf \.the pmer helnq

6316ndered.'

N & . - . PR
The mechanism by which calenderinq imperts the finel finish

. and caliper to the paper 1is a complex one and not all

eSpeéts of it are hel; undersgood; The desired.end,resukt of
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l.1 Introduction (cont’d) i

uniform , finidh quallties and caliper . in the machine

'

i size, wbiqht. flnizh. dhd speed ot the rolls are the 'most
. e

<

direction is obtained throuqh the visco—elastic compression .

‘ “ﬁ 2, b ~r Ty N }:}\‘v Ny

and shear stress cycles the paper {s- suhtected to as it

passes through the nips.The perameters and factors affeotinq

. the'perfnrmance of the calender stack and therdfore the

quality of tng paper produced “are numerous. The ‘number,

»

\ £ ,
important ' desiqn -paremeters. Roll condltion.*? roll

tquerature and variables which affect nlp pressures are the

most lmertant operating factars. L,
. ¢ S

¢f

. . 5
éw;print machines operetino ‘at 564Eds ahove 1000 fpm -are .

very ‘often plaqued with operetinq problems commonly referred
to as barrinq. The visual manitesbation of barring 15 the
appearanre of shiny stripes, called bars across the width of

the papPr and axial markings on the calender rolls., The two

phenOmena appear to‘be related and usually. but not' always .

]

occur tngether. In the“@eper. barrihq is a‘quallty detect
manifested by periodic variation in the surface rinish and
caliper of the paper.. It- is a serious problem ‘that may cause

operatinq probl ems further down ‘the paper mechinei mekinq

the printing presses. Furthermore, the optical effect of
&

appearanre to the paper and is. in itself ”enough to nake

0\3 “\ ) . ) [ , .

L

A\
shiny streaks’ across  the peper gives . an undesireble:

v

" winding af tne‘paper into rolls difficult or it _may effe t
the' pri:fability of the peper-causing operatinu problem n ’

)
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"1.1 Introduction (eont’d) L ’
‘l‘ - . ' " ' ’ o ) . ° /.

/ - ‘ . ,
mayketina of’ such paper difficult. Dn the calender rolls,

—B

barrinq is tanqéntial corrugation runninq along the axial

.

direction necessitatinq the frequent regrinding of rolls
o

“resultina 1in lost production and increased maintenance

" costs.’

T

0 LN [\
i - 4 3

R

, Ty K . ) o ' ‘
- Although barring 1s& a  serious operating problem that has

-

‘been with'the industry for a‘'long time, there is.drelatively’
little published lbterature on the problem. Most of the

gvallable Iiterature deals with ‘Physical observations,

' meaeurements and descriptions of the numerous compl ex

phepomena associated with barring. There are .several

theories based upon the findinqs of these investiqetions to
explein the mechenism of barring . but none of them can
account for all. the obserded phenOmena. There is a generel
agreement amongst the investigators that the direct cause - of

barring iIs the bouncing and benging together of the celender
4 e &
rolls. The cause and the mechenism of ‘celender ‘roll’
vibratiqn however. ere not well understood*gConsequently.
!

N RN

5
’ sxstematic methods of _evoidinq or remedying celender

vibrations are not’ aveilenie. Rather, peper mills must

;depend g ﬂwe experience and ﬁntuition of mill personnel and

on triel and error procedures to deal with, the " barring

- .

problem when {t 1is encountered. qhis can become qui{e.

frustreting and expensive as one means thet hes been

sudﬂstfully ‘applied on one mechine may have no effect or

&Y

¥a
o~

-~
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i1 Introduction (cont“d)

0

2

may even have . an adverse . effect - when ,t{ied ‘on  another .

A\
tical models to hsimulate calendar siack behaviour,”

Because of the complexity 'of the problem éhe models used
were highly simplified but'did achieve .various deqrees 'o(

*«

.. such analyses. twooinvestiqators (8,16) proposed means , of

elimineting barring. One of these (16) is reported to, have

been successtuliy applted on & paper machine. The following
is a review of the pubiished . 1iterature related to the

problem of calender barring. The .available knowledqe has

been, organized into categorips in order to facilitate the -

use'gt this repert as a quick source of informaﬁién.. Each
category is rélevant to eehtein aspects of the phenOmenbn*yr
calender barring. .The literature reviewed is listed at the
end of this dissertation in chronoloqieei'orqer and a brief
-deseriptioh of the \gontehis of each publication 1s~elao

given. .

. o . 0\
m'chine. ~ There _.have .been a .few attempts to develop’“w?w

cess 1in siwulating observed phenomena. On the basis of
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- ’ 1.2 THE NATURE OF CALENDER BA?RING

, , n 4. - \ . . |
Calendor stack barring has long been an important operating
broblem of paper makjng. It has beﬁohe especially common éhd

. troublesome with the: advent of the high speed newsprimt

I

machine. The term barrlng describes the optical effect

produced by periodic variation tn‘ the surface texture of
both the ‘calondered paper and the calender rolls. The two

. phenomena appear to be related but dffrer‘ in?® severaw
. 4 . ‘t/ N 7

. ' {

i ' aspects. . s

;,Barrlno of Calender Rolls \
o . ) ‘ .' . |
{ © Calender rolls are madge from 'cast iron. ot a speclal -
, composition (3). They. are chilled 1ron rolls wlSh a 'chill
‘ '1 , dnpth €r 5/8 of an tnch to | inch erendlng on the size’ ot’
| " the roll. Roll size usually varies from LO inches to . 30
Y '-,_lnches diameter for 1ntermedlate rolls. The queen and king
"~ " rolls on some older chhine;oare larger thar- intermediate
rolls.. The surface hardness of %he chilled iron rolls is
j‘gﬁite high measuring 68-72 on the sol%§oscope soaloa'lp -has
B .,  been .found (3) that -this hardness further increases in .~
. 4 égrvlce Ehrough wor hardening reaching a'hafdnésoﬂof 84 on

q‘ | ¢ the above scale after four ﬁo slx;weeks of serviéea

1

, . ' 4
Bars on calender rolls are broa lnos on the roll surraca

along which the surface taxture has been altenad.\\Ibey are
y T beliaved ‘to .be the result of differential work hardonlnq'~

. I ' caysed by impact between ‘ad jacent - (rollsg- - The vlsual;

l‘ N

:5;4 :../,(-fp._‘gr T ;’}‘r »”' SRR £
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1,2 The Nature of Calender Barring (cont’d)

o

appearance of . the bars is di fficult to desggibe:and~uilllin

3 q A ¢ 4 !
general depend on the angle of indidence of light and the

position and distance of the viéwer from the roll.. The bars’
are usually straight and run parallel to the roll axis;
However.A wavy bars and bars runnlng at e considerable angle

-

'to the roll ‘axis are not uncommon. Bars may extend over the

°~entlre length of the roll ar more often only over a portion

of it. A bar-may also be 1nterrUpted at several pleces along

the face of the roll or it may ‘be lnterrupted and then-

continue pefellel to the roll eXls but slightly shifted in

the‘clrcumfenential dlrectlon. ﬁhe spaclng of the bars

- [}

-around the circumference 'of the roill is usually lrnegular

and ‘adjacent rolls show very different ber " speclng.

"Reference‘ (7) contains the most dstailed description of the

characteristics of calender roll bars,
“ ' ‘ o

Clbose examination of the barred rolls using a mlcroscoee

reveals llnes of~ severe pltting alternating with sllqhtly3

.pltted reglons. There are also signs “of circumferentiel

P e T ORI 2 Wﬂwb‘kwx,s:mww“w-'
- PR - v
!

'scratching end on some slower mechines bers were found to

consist of a series of closely s@aced, flne.-circumterential

" scratches (7). The size. shepe and depth ‘of the pits at the

bers and bgtween bers are not significantly different but
~

the intensity of the’pittlng is greater at the bars. whether

the strongly pitted bar eppeers darker or llghter éhan the

surroundtng area depends on the engle of illumlnation and

\
t .

“ile,
AU .
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" than about 4 points on the scleroscope scale.

for
A

~
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1.2 The Nature of Calender Barring (contsd) '

\

'wtewing. 0ne< investigator ¢7) attempted to ;easure the

hardness variation around the roll and to correlate 1t with -

the presence of bar. markings. Ihe results obt@ined showed no

obvious correlation and it was concluded that any variation

in hérdhesf'iassocia;ed with  the bars muﬁp'hgye been less

”
Mep 2 =

Barring 15 also accompanied by measurable corrugation of the-
3

rolls. At the location of éhe bars the surface 1is' sliahﬁly

.—

indented. On ‘a severely barred. roll the depth of the .

corrugation was found to be about . 0.0002 . inches (7). One
invegtiqato: (13) .using a'Bﬁecially constructed curvaturé
gage measured.cqrrugqfion depths up to 0.0003 lnches; He

also found that the severely piﬁted'line. which gives rise

_to the opt;cal effect of bars was not located on chF\é;ttomn

of the corrugation but rathe& on the: slope off-set the
dtrection Opposite_to thg Q{rect;on of roll ro;at;on. The
off-set was found. to' vary “within the range’of 40 to 70
degrees. He also found that the dapth of the corrugations

was the greatest near tha centre of xhe‘qgghine. o

barrinq_ shortly, ’éometimes¥ ‘1mmediately after- their
installation 1n the stack. The development” of

pattern . can be gradualy - starting with one r llpand then

spreading to other rolls or all rolls may appear to start—



g-2 The Nature of Calender Barring (cont’d) . .

. . rapid development of the former phenomenon. ght  barring
o ‘s * ’ * ) .

' sdoes not always ‘get ' worse with.time and stfong bars have

. been observed to rade completely (7). Most investigators

belieVe that the barring ‘patteﬁn on ' the - ro}l. changes

\ .
continualiy in An apparently unpredictabizfmanner. However. .

evidence, . is claimed by one jinvestigator (13) -tha} the
harrin& intensity grows exponegtially with time and that the
"* roll corrugation miarates in a direction, opposite to' the
’ direction of rotation. One piece of evidence supporting this
‘- is the offset position or the strongly pitted area on the
slope of the corrugation. °
’ Barring of Neasprint ) ‘
- ' , BN N ‘
s " The barring of paper in the caieneer'is usually evident from
‘a visual fnspection of the paper and is manifested by glos&x
) streaks running in the Cross machine direction. For the more
’extreme cases local blackening aiong the bars .may also be |
found. The bars usually run aﬁre;s the entire sheét'and are -
' 172 inch to 1 ﬂnch' wide. In the machine direction the
\{nmq&_*h*“ " streaks may. ‘66*“555&5& “th more ol or “Tess™ requl*riy’repeated—~~~"~
o patterns. In most instances the spacing is very regular. In."
- : refet&nce (7) based on ‘a survey of’ barring patterns on nine ]
f | ; newsprint machines. ‘the  following categories . were
. :hf )establiShed. : - | . * 5 ""
' ' . R h o -
" , (a) ‘gars spaced reguiarly‘{ﬁ mechine;directioh R . -
g - ’\\\ S . ‘. o e s o ,\7‘. N




%‘

Y o

18

1.2 The Nature of Calendér Barring (cohted)

© ' (b) barsaspaeed regulanly but seyerity'mociulatedo

| (c) bars spaced irregularly, - perhaps ° two ‘or ‘more
1 patterns superimposed ‘
vi (d) hars,spaced_irreguiaqu'kithin a grouo but groups

Spaced regularly. ' o

1

,\The most common categories were found,to be (a) and (b).

.
“t

Barring is also associated witn caliper changes in the paper’

and can be detected by taking machine direction caliper'

-
profiles. The thickness Tof the paper '1s reduced along the

bars and the reduction is more or less 1n prqportion to the
visuail:severity ‘of the bars. - In fact, caliper profile

.meesurements will detect bafring that 1is not visually

" apparent (IO,IIJ., Also, caliper measurements nake the

quantitative descriptron of barring 'intensity poséiblex A

barring intensity Sﬁale of | to 10 corresponding to ¥total

- caliper vaniation" of’ 0.00Q1 inches to 0.0010 1inches in’ 8

0.0032 inches thick newsprint sheet was proposed in (IO). It

'1s not quite . clear ~whether the word “total® stands, for .

"peak“ or““peak to- peak" values. Mogt -Hkely it reters to_
J'peak to peek“ values. This was the first attempt tOvdefine

‘and standardize berring severity quantitatively. However,

"~ . there is no reference in any of the subsequent litereturé to

this scale. Most Vinvestigators describe newsprint barring

uintensity on percentage peak ' to peek machine [difection

caliper variation. Barring intensities-or up to 12,5%, 14.0%

\ AN

<

s




1.2 The Nature of Calender Barrig; (cont’d) . e

“‘and 20.0% peak to peak variati ns are réported in (6,4,8)

respectively.'Alnewsprint cdnmitfee survey repoited barring

.

1ntensit1es of up to 28% caliper variation (IO). Caliper

A

./' :variatinn becomes visible barring in the r!hqe of 9% to 12%
' ' peaF to peak thickness variation (IO). The paper entering

: ' . the calendér would' normalgy have machine direction caliper
| variation {n the ondef of 9% peak %o peak (10)¢ TheSe

variatjons however. are usually completely random both ‘1

nagnitude and in machine direction spacing. However, on some
" occasions periodic caliper - variation of this magnitude -

o caused by certain forming conditions at the wet -end have

"been observed (6,12).

- . ¢ N

In a'cgmgrehen51ve observatiqnal investigation of barring in
newsprint one investigator (1) found - that the caliper
~\\\~' reduction along a bar was as much as threidtimes greater’ at ’
e

) ’
-~ —.—,  __ the centre of the machine than near the s of the calender

rolls. Intermediate .measurements indicated a nearly linear:
v R

decrease of paper caliper along the bar with the distance

from the edge or the paper. Another 1nvestigator (7) made

measurement of basis 5 weight variation in the machine

direction 1n-barred paper. Paper disks of 3/4 inch dlaqeter

dy @

| were punched out at half-inch Latervals along two . closely
l

: spaced rows ..in ‘the machine direction. He found no.obvious

‘ . coqrelation between the observed basis weight and caliper'

.

.variations. ' ’ ' C T
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‘1.2 The Nature of Calender Barring (cont’d) *

4

With certain types 'of continuous caliper profilers a

Y., - .,r

‘continusus analog recording oﬁﬂthe\iieet thickness™ in the

machine direction 'can be obtained. .Samples of' such recérds

representing newspri\t\harrinq on many paper machines Spread

over two continents are presented in references (7,8, IO-|3).'

‘ t

Some of the caliper. variations are almost sinusoidal in
’ n N 1

U

: appearance, with fairuy constant amplitude or with a beat.

Others show randon variation of amplitude and the ‘presence
of low' amplitude harmonlics. The range of the fundamental

frequency of the caliper variations. taking the, paper speed

_ into consideration, reported by the above investigetors is

surprisingly narrow, being 65-90 Hz: The hiqher frequency
camponent .is about four to five times the fundamental. an

all cases the fqﬁdamental component “is of considerably

greater amplitude than the high frequency“one and it is the .

visible bar across, the sheet. s

8

Summary

. Barg on calender folls ere axial streaks where the' surface

texture ot the rall hes been altered. Material q&png the bar

. A .
has been removed resulting in corrugation of the roll down

to depths Of '0.0003 inches, The depth of the corrugations is . .

greetest at the,mid-sectign of the roll. The chcumferentiah

specing'or the bars is usually quiteiirregulera Differential
work hardening due to impact between adjacent rolls. {s

'believed to ' be tne‘ cause, Bars in ‘newsprint are cross

Y
. PR .
- ’ . ~
.

20
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1.2, The Nature of Qalebder Barring - (cont’d) | , | B J

3 »

r

: machine di%ection, glossy,msome£1weswbiackened,§treaks along

which the paper caliper has been considerably redﬁced. The
qaliper reduction ’is .most severe at the centev portion of
the‘sheet. In most cases the bars are spaced Very regularly

in’ ﬁhe machinf dlreption;.Barring of rolls and,batfing of

) ’ Vs
' ¢ !
paper do not always occur toqether.
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'* 1.3 SURVEYS RELATED TO CALENDER BARRING
fhere is every ‘indication 1n“£he literature that barring is
';a widespread pfgolem,in the newSprintlindustryr’High speed

machines are generally moré prone to barring than Slower

F.4

“ones. However, barring probiems at speeds as low as IOOO fpm'.
hdave been reported. Two comprehensive surveys of the barrigg

problem have been conchted and reported.
. AN

The first survey' involved thirty heWspriht machines in
Canada (5)3 It wad found that all high speed conventional
calender stacks expérienced barring of various 1ntensities.

f"rrom the information gathered in the survey it “was coacluded
2
J')t:hat high Speed and high nip pressure were conducive' to

barring. One outs&anding“examplq of the effect of lawer nip
pressures was the case of two identical 2400 fpm newsprint
machines 1in< the same mill., One was edquipped with & breaker

: . ; .
stack and a four-nip calender while the other was operating

“

with a conventional six-nip calender. The machine thh the
- . i ¢ "~y . .

- ! i \ ? . N
breaker stack had no barring problem while on the other

mechine with the- six—nip conventional stack severe barring
\

r

occurred. : L T A

T/ - ..
[
-

The r,esults of a &iecond survey were reported in (10).
‘Seventeen low  spéed ;\mggPines (1100-1600  fpm). ahd
twenty-thr €peed machines (1800-2450 fpm) 1in forty
newspriht mills across’ the North Amerioan continent were .

surveyed. All the’ calender,_»characteristics , with the

P _exception of roll 1ength and-diemeters \ere recorded. No

[} ) [y ‘ . ] r
‘ . s
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1.3 Surveys Related to Calender Barring (dont’d)

defintite relationship between the occurance or the absence

number of rolls in ’stacm. number' of steam rolls, steam.
pressure. nip pressure, roll crowning or roll off-set qould
be established. However. the following observations were
“made. Of the seventeen low speed machines surveyed five had

no barring problem. fhe steam rolls in" the calenders of

these machines had much lower steam temperatures than the

23

'of barring and the calender characteristics such as speed, .

oy

oneglin the - other machines. The ~ three different newsprint

mills opegating'these barring free machines were quite aware
[
of a connection between steam roll temperatures and barring.

A higher ‘degree of deformation of the roll geometry and

-was suspected. Of the.t enty—three high speed’machines only

'f‘three ‘experienced no | barring problem at all. Another four

3

machines were consider d as having a minor problem and for

. -eleVen machines the roo}em was serious enough to produce

=]

press goom complaints. Tw of the three * machines without

barring problem had npon-conventional calender stacks. Ode

had a breaker stack and a/ four nip calender while the ’other
operated with ‘two_ thrge-nip calender 'stacts: The third
barring free machine employed a . conventionai six-nip
f-set roils. The mills that could pin
point where barring started in the stack indicated that the

second roll from t e top was the, fifStEto show evidence of

—

' associa€3d imbalance caused by the higher steam.temoératures,

-

|

barring. In all those cases, - the second roll from | the top \\

\‘.

.

rat
Y




l 3 SurVeyB Related to Calander Barring (cont’d)

. \ ' . . f
- was either a steam roll or a so;;q roll adjacent to a ‘steam

'

roll. Howeve¥, this. .may ‘oniy' be '_n :indicatioﬁ of ' the

practicn Aof locating steam rolls in the stack ard 1t 15 the

two top roll§ that have the tendency to bar fir&t because of-

their physical location., y p

summary

) T AN
Mpst of ‘the newsprint,maén}nag with ’conyentiogal calehder
stacks qere:fodhd'to experience'ﬁafring problems..Theré\waEI
ho clear avidense that any one desidn or operating pafameter
or combination of parameters was responsiblﬂ fer barring pdl
the convent%onal calender s;ack. The. few machines with
_breaker stack arrangement or,wttﬁ'tw cﬁleﬁder stacks- and
f;wer nips 1n'leach were free of barring. On low speed~

\

machineq calenders with higé;f temperature steam rolls were

-

found .more likely to haVe baﬁ%ing problems.
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1.4 CAUSE mf BARRING _ o ST

There is general agreement in the literature that the direct
. v ‘cause of tﬁeg barring of calender rolls and papeér ‘is the

SN L vertical bounclng of the calender rolls. -There is . ample

' observational evidence to support this hxpothesis. Extensive

1

. noise “and VTbration“measurements on—and 1n the vicinity-o£“w~m—u;;

)-

barrlnq calender stacks (6, 7 8, 1) indlcated the presence of w
~'_/jstrong vertical vibrations of the rollSc,and accbmpanying a 3

noise with a fundamental frequency'very near or identical to -

d

the’/ frequency ., of _ the bars on. the paper. In the case of * .
Wes o ‘
calender stacks where barring was 1nterm1ttent the vibration~ j

4

- and noise amplltudes were observed to 1ncrease greatly és

barring set in but remalned unchanged 1n their spectra. Yet.

the same calender stacks when driven with0ut paper in the
.nips vibrated and prOduced noise of considerably lower
1ampl1tude .and at much higher@trequencies than those observed )
during the caléndering process. It appeaﬁs éherefere that ° .
the 1nd1v1dual rolls in the calender stack. and the ‘paper . .
S 'bélng calendered form a vibratory system whidh 1s capable of

' large amplitude vibrations when - ‘excited near one of its .

natural frequencies. OVercalendering. the (biifkéﬁtng__bf—"’_;“—
, - newsprint in tﬁé’calender stack due to large nip pressures
¥ﬁ ' or high moisture content which causee excessive cdmpression .
of the paper '15 a familiar phenomenon 1n paper mills.
- Calender rolls bouncing and coll&dinq with™ one anotherz.ps
thg stack vibrates can. create very high 1nstantaneous nip

pressures and {t is generally assumed that the bars on the
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‘1«4 Cause¥of Barring (cont’d) ! ’ .
» C .

s

' paper are caused by such local overcalenderihg Qf the paper.

Paper qamples taken from each nip,of caIender stqcks during

'operatlnn (7,10) revealed that*practically all the caliper

,variation is put into. the paper. as it passes through the

o

of the motion of the calender rolls led some investigators

(I,ld) to conclgde that the vibration of the top roll is the

-~

cause of barrinq of the paper.

o

'Thefe is considerably less agreement amongst the various

*“1nvestiqators regarding the cause oOf 'ﬁhé calender stack

vibration and why some calenders bar and others do not or

wny—-thw——same——ea+ende;_stack_uLll_bar_5pgﬁ of the tlme'and

£1¥st Aip. This-and observations ofAthepralatizgp~ampl;;gggg_mL

"will operate free-~ of problems other. times. The various

N
N

opinions may be regarded broadly speaking to.represent two

schools of thought..

) . ' . -
¢

According to one  theory the major cause, of * calender
]
vibration 1s either the mechanical condition of the calender

stac& iteedf or.some external excitation transmitted through

i the Floor. ln6”“pUUrjbaiantiﬂg—e&Lfmmw;a}ignmekt of rplls=

R

the poor condition of bearings and chatter marks left on the
- .

calender- rq}ls aPter grinding ‘are the most often quoted

-causes. References - (1,2,4,5, 8-!0,13) bmphésize the

q

importance of thpse mechanical conditions of * the caiender‘

stack és the primary causes of stack vibration and barring

and provide field evidence to sup?ort their claim. The most

{

v
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- 1.4, Cause of Barring {cont’d) - o | .

f e
k-4

widely accepted 'gypothesis of roll barring is that small

amplitude vibratlons of the calender rolls due -to any of - the

N
‘above source@-of excitation will cause local work hdrdening °

-~ ‘along the rolls resulting in unsven wear and longitudinal
corrugation of the rolls which will then lead to greater

vibration amplitudes, more corrugation.and barring or both
F I N . c

\the rolls’ and the paper;' As evidence to .support this
. hypothesis instances where upon regrinding ,of rolls the "
barring problems disappeared are cited. In (I3) the spacing
of the corrugations on rolls’ were found to fit the bar

spacing on the paper. Removal of the corrugation from the

rolls eliminated the paper'barring altogether. The ract_that_——————
some, calender stacks will develop barring very shortly after «;
regrinding of the rolls whilé others will be barring free

for a long time is explained by emphasising the importance

of a careful start-up procedure (10) to avoid damage to the

rolls due to thermal shock and associated deformations 'or‘

~.

due “to the Jamming of the paper and the resulting bouncing
of fhe~rnlls_dunLng_tbe_start_up_ai_the_calender -stack.

\.

While the importance of the ~inechanical condition of’ the
.stack is. recognhized by all investigators, according to the
second school of thought thé condftion of the incominq paper
“to .the calquer is the most important facgpr‘ in the
excitation of stack vibration. Reference - 7) quotes.

& L
instances when barring of the paper occurred without any
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|.4 Cause of Barring (cont’d)

. \ " , o - s .

visible barrind‘of the rolls and claims that slight barring
of rolls will not cause barring.of the paper. ‘He considers
cyclic or random machine direction variation in basis weight

and wmoisture content ‘as important excitation sources for

J,Fourdrinier-wire to jump resulting in significant ‘cyciic

calender stack vibration. In reference (i1) incoming sheet

\

non-uniformity ls reéognized as a vibratioﬁ exciter and

o

examples of several calender stacks are quoted where all the

corrugation was. removed from the .calender rolls using
non-rotating stone,type'sdperrfinisher without significantly

affecting the severity of_ barring. .In reference (6) an o

extensive‘ekoerimental program on .an experimental .paper

machine to determine the .‘effect of wet-end sheet forming

L)

ol

. was — round

L2

that table roll vibration' caused the stock on the

acnyge _ direction basis 'weight varietion. ‘Subsequently
barrinq improvement was achieved on .three paper machines and
on one maqhine barring was virtually eliminated as a resUTf N

of balancing of table rolls.,Another case’ is ment;oned 1n

(.
Lﬁ) where theostiffenina,of table rolls. forming__hoa:d__andﬁ_______

/

—
PR R oy o A I ¥ L R S S s

'Fourdrinier wire. Reference (12) also traces ‘barring "to

'is proposed linking the somewhat thicker edgesl of the

headbox lip eliminated barring by ﬁliminating "chop" on the

sheef non-uniformity due to sheet forming conditions on the

wire or at the headbox slice. In (14)~gn 1qterest1ng theory

incoming shéet to the phenomenon of calender_'barrino;

L3




1.4 Cause of‘Barring (cont’d)

*+

According to this theory the excess material -at the edges is

nof able o pass through the nip/but flows in opposite

' directlon to the travel of the sbeat until . ths accu?agated'

‘ bulk is caught and pulled tn;oaah\ghe nip imparting a «iargé
¢
-—r--“——————~——beunee~t0—the_stack,_Ihe*cyclis_rgp tition of the process

results in barring of the rolls and leads to the barring of
the. paper. Severe barring on several machines (other than
newsprint) , was’ eliminated by either trimming the incoming »
sheet or by slightly relieving the ends of the top roll . in
the ‘stack. | . '

Summary = C Co

\

-

There 1is . a great deai of evidence that—the—barr&ﬁg—e%——f————
calender folls and the paper is caused by calender stack » -
vibration. The .vibration of the top roll appears to be
rgsponsiblo for most of the caliper variation. associated
with barred paper. There ,appoar to pe 'many‘sourCES of
excitation to cause and maintain ihe-vibfation of a calender

’

stbck. The most. §ugn1f1cant ones are roll unbalanée, roll

m1§ETTqnment7*ro1Tfsurfacefcofruga%%en—and-maeh%ne—din

\

variation in the. properttes 'of the - incoming sheet. The .
1attefuqb‘ndf‘notosgéff/Q have to ‘be cyclic to cause barring
as the calender 'spaCK will respond at ‘its natural

frequencies ;ir_ the random excitation tontains sufficient

energy at fhose<freQUancies‘1n,its spectrum. Most likoly 'a

combination of several sources of excitation is involved in .

- . ., ~!
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~ ] Ve »
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1.4 Cause of Barring (cont’d) , .
N ! v ’
. pvery harrinq problem making. each b 'rrinq case unique.
Regardleqs of» the sources of excita 1on 1nvolved. the
°concqnsus, of opinion of the investiqators is that calender
{
‘ - \ . .
N stack vibration is the’ major cause of - the barring
.o . ' - § .
' phenomenon. o - v ; . '
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145 MECHANISK OF CALENDER BARRING -~

L4

1 - o : .
TNespite of the fact that calender barring is a serious and

‘common problem thgt has been with the péper industry {pr a
: ' . , ) - I3 ) ", ‘ ' R !
’ long .time there. have been relatively few . published

g investigations of ‘the mechanism of calender vibration.

rﬁ—ff”*““_*—__7L—“Exper&meﬂta1~data‘iLQm*ggg;gg;;gg_ggggiigéEEE“;to d;termiﬁe
the effect of tﬁe various“Operatinq.factors béI;;;;;i;;~Be
)causinq calender ‘vibration agp‘ v;rﬁuall@ an—exfﬁtentf
References (1,7,8410, 1) contain 50mé.experiméﬁ€al data on

! ‘ . . . '0
the. hature of calizder stack vibration with (7) and_ (&)

C R e VoL B s

most significant frequency 'of - the vibration -and noise

il

1 Y
, . ) N,
, heing the most detailed investigations. o, ‘ : <
t ’ .\l L - ' — " '
, ' - L7 . Top roll . ~ ‘ ~ K
.“ ‘_ ° ¥ ~41b . /\ .
. , 5 o
. 5 ‘ ,
I .
N . U‘
3
B
. 6. .o
N .n..
~ ’ .
: - ; " Bottom roll
. Col ‘
Fig. 4 Displacements of Top and Bottom Rolls -
‘ Several investigators demonstrated that the fundamental and

v , ‘ . ,
. spectra around - a barring calender stack is the same as the
T frequency at which the bars 1n§the‘pbper are produced. The -
’ : . ‘ A ' ~ '
C~ , o S N
A S e . | '
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1.5 Mechanism of Calender Vibration (cont’d)
. . .

'most extensive experimental investigation-of the mechanism

of

., 0f the top roll and the bottom rol}l of a 264" widé,'six—roul

calendef stack. were recorded during barring._The diameters

' of tH“‘TEG?Ttop“Toiis v the queen .and _the king rolls. were
g

24". and 40" respectively. The following observations

The

189,

wereé made. Both rolls oscillated at the same f:gquency.

vfhration amplitude in the vertical ‘plane in the case of the
ftop roll was ébout four times qreafer than in the horizont\h
plane and consequently all other reported measurements were

made {n the ‘vertical plane. The vertical movement of the top

greater than t

calender stack vibration is reﬁorted in (8). The motioné,

PR

roll was the greatest in the stack and | ahout fcg‘lm’es.

movement ol s

1
the two ends ot the fop' roll moved in  phase but the

the center of a barred sheet was found to be. about three

tlmes as great as along either edge. In the 'qasé of the
'hottom roll there- |
ends. It appears therefore that the - boﬁtom roll vibrates

.  7’ma1n1y in' a flexural mode whereas the top rolr'mOVes ln

. translation as well as 1n the Figure 4

_and compares- the motions’of“thé'two rdlls'which

flexurql mode+
« . f{llustrates’

"mova 180° ddgrees aut of phase with qach otharu‘Thera is

J

dispbacement at the middle of the roll was agaln about five
times as\: great as the movement of the'ends' This is in‘
agreément with (11) where the paper caliper Vartation along

mention 1n the above papar £11) of the 1ntermedia?;;:?&s'

no -
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¥ .5 Mechanism of CelenderlBarring (cont’d) | ~
other than a comparison of the movements of the’ ends of, the

two tOp rolls. The end of the second roll from the ‘top, moves

about twice as much as tha5 of the top rgil and somewhat out

- ®

Do . of phase. It should be mentioned here that the vibration

“_Mfsﬂ\signals obtaihed from the 30urnals ahd the bearing housings o

. ’ weré not representative ‘of the vibration of the*ﬁ;gffs.

Reference (7) after a SQmewhetiless.detailed expe?imentaf
N 4 - " investightfon reported that all ‘rolls oscillated at the same
| ‘ frequenZy'anq that the movemernt of the'top roll was the\nost
| significant. The fact that the top roll Ygogs through .tge
{ S . greatest displacement correlates well with the findings'of

(7} and (10)Y where it is'reported‘thet paper samples taken

‘ed_that practically all of 'the barring "

o .+ . damage was*alreadx present after -the first nip and the

successive nips- tended to smoothen it out.

. The frequencies at which various newsprint calenders vibrate
and cause, barring fall within a remarkably narrow band. In
the case of one mill (7) all nine machines barred in the

% ‘ L frequéncy repge of “70-85 bars per second. In a continent

wide survey thirty seven machines were reported —to bar—

[ the range of 64-84 bars per second and’ 78% of them barred: ;
i . | within the much narrower range of 76-84 bars per second. As

| ' most calender. stecks ere quite similar in cpnstruction the:
r“; - fundamental or first two natural frequencies of the

vibratory ‘system formed by the folls enda the paper between

P - —

—— s ¢ ot g
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1.5 Mechanism of Calender Barring (cont’d) = =&

o, ' ' ' R a ’ . -
them 'would bé expected to be duite\slmilar from one machine

b

B . ‘ . .
* to another. For this reason it is generally assumed that

barying 15 the result 6f the calender stack vibrating aK o

L3

of its natural frequencies near the fundamental one. It 15 a

v

_reasonable assumption even though there 1s no report in. the

»

+ the assumption. .

-

‘ - . | 34

f%teratare of a resonance test of a calender stack to verify

s 1)
" - o .
The frequency at which any one cdlender stack bars has been

-~

found by several investigators”(1,7,8 and 11) to vary with

" the Speed of‘ the paper'rdnnind through the calender. They

observed that when the machine speed was increased the
~g

vibration frequency increased wfth it, in a linear fashion

% .

but only over a relatlvely smallvrange. Further increase :un

. the machine speed resulted 1n a sudden drop_ in the vibration
(or barring) frequency.,The most detafied investigation of ,:
this phenomenon is reported in (11). 'The’ speed range_hdf'

: !
about 1820-2180 fpm was covpred in the experiments.-At 1820

fpm the vibration frequency of 76 CpS was observed. Nith

increesing machine speed this frequency increased linearly

’

-~

] with machine spee

with calender speed up to about 2060~ rpm—*when*—tt——suddenise—-————

dropped -to 73 cps: and rrom tﬁﬁre 1t increased again linearly
At the same time it was observed that

the Spacing between™a Jacent calender bars in  the paper

Dv

remained relatively )constant. The recording of the

dimensions of the spaci

s between bars.on two machines over;
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15 Mechanism of Calender Barring '(cont’d) ’

35,

. . S .~
4 '_ : . N4

a per1od of seggfal months revealed onfy three or four
different sizes. of bar spacing for ;ach méchine. From this .
and from similar observdtians made by other. investigators if
.appears that a calender stack will bar only at certain

dl#grete~4bar spaﬁings‘ -and — in a. small band of fre quencies

probably centered around some resonant frequency ‘of the ,
calende;_ ro;ls;paper system. There {s, some uncertainty |
regarding the re;ationship]betwgen ghe -size of” the - spacing
petween bars a%d the linear dimension of the wrap around the
calender roll. "It ,has not been established with certainty-
whether the number of. spacings .between two nips is ‘an

integer or not. It does appear however, that if the machine

speed 1s varied thi;shugber will chagge discontinuously at

, calender stack vfbratidn' has been pbsiu%a%ed by“ several

-amplitudes. The

increments or decrements of one (11). 7= PR

- | -

Based on theseé observations the, féllowind méchanism for

fnvestigators (7.8.!!3.'The calender stack once;excited near

one ‘of  its natgfal frequencies will .vibrate at_signifiéant

sulting -large ford@s, generated‘ by the : -~

;:motibn‘of4the top roll will create cyclic calipér variations |
P, . . .
in tQP paper=as it passes through the first nip. Zhe cyclic
%El;per non—-uni formities  (bars) in~ passing-' through

successfve nips will further excite the calendar steck and'

halp to sustain the vibration of the uppermost roll 4f they

arrivse atu those nips (eSpecially the second and thir&’/lp

A

e IR ' - ¢

]
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1.5 Mechanism of Calender Barring (contfd).

from the top) with a suitable phase relationship to the

. top roll. ‘Thus the calender stack acts as a

, ' motion of ZIE
. mechanical o iilator with the paper providing the feedback

and the drive supplying -the energy to maintain the.

oseil'lations.'When the calender speed” 1s increased the

. _vibration { frequency increases.. to keep the requi,red number of

. bar Spacilgs (and phase relationship) be tm& ﬁfps
4 ot
: constant. When the. vibration rrequency }:si}aased t’e the
) point where one fewer spaces per wpap. would result in &

vibration frequency clo§er to the natural frequency of the

system ‘then a discontinuous change in the number of spaces

per urap and in the vibrat‘ion frequency., will occurs A

L , - slmilar process would keep the system tuned 11‘ the calender

‘ )

/ k J

'y

12

PRPEEIN

R ~_speed m—ttr—deefea—sev—wnhaniim can be further

s {1lustrated with the following equations. ’

If F is: ﬁhe frequency of vibration, L 15_ the 'énacing .bat.we’en'

successive ‘bars’* and'S is the surface speed of the calender
B rolls then . - |
- . ‘- S-(F)(L) o
A_: * \ . g“

f v Nt ha L
.

’
. .
. . s
L4 . . 4 . . v
P .

e . "If(n+c) 1sthenummcfngs—bet—ween——two—nips+.lm
‘ nis an 1nteger verlable and ¢ is a phase related constant

‘which is elther zero or some positive fraction t,hep

-
- l I
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' “1.5. Mechanism of/Calender Barring ‘(¢ont’d)

Iy

. Ll

' z/ whe;b W 1is the wrap agound a roll (some fraction of the
. ' circumfnrence, ysually one half). From these -two eqUationf/a

and F can be expressed as follows ” ‘ : ’
l .ﬂ : ) . T /' '

W=(n + c)(S/F)

\
e -
A .
Al ’ «
r, . < »
O U JEE— _ - _ - e A e
. .

3} ] Fa(n + ¢)(S/W) 'Y

. ¢
" & The last equation with ‘¢ and N constant, F and S as

‘ . variébles and n as a parameter has been plotted below.
3 : : -

Sg fpm

' S | ,. .
BN - ) Fig. 5 Barring Frequency vs Calender Spaed :

: The oscillation of the. vibration frequency about thé naturel

o - frequency of ‘the.system and the discrete‘gumps in the’ é{ue
4 Q

-’
.of n are illustrated 1n the d%;qram.
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1,5 Mechanism orACelender'Berrlnq (cont’d)

Summary Ty

[ , s 1,

- .Experimental, observations of  the vlhration of barr1n+ ‘

calender 1stacks indicate that all rolls-move at the same
fregquency and mainly in the vertical'plé%e. The frequency of

the vibration is the same as that -at which bars are. produced
a«

in the paper. Both flexural and translational motions heye"1

been: observed. The motion of the top roll seems to be the

—

most.siqnificant. The displacements at the center of the top
e .

-'andibottom rolls are’ much greater than at their ends
. ~1ndiqal1ng that" for those rolls flexural dieplecemehts are :

. - more significant than translational onesd Since the

~

fréquency of vibration” 'is relatively uniform amongst '

xender—s%eeks—e4~5%m4lar—construction_ii~is__as§gm_g that

it represents one of the natural’ freduencies of the calender

stack with paper ‘running through the nips. The observation

, ;. QI diecontinuous changes '1n bar spacing and vibration

frequencies when the calender speed is varhed suggests that

I
a feedback mechanism in the form of bars travelling through
,successlve nips is presento which keeps the vlb{ation

7 . : ) ,
frequency close to the matural frequency of the system

N >

AR AR TR R YL D Ol o R PR S ST

allowing only 'discrete spacings oF. the bars. It 'is

. . \}
conceivable that'zsly the top two or possibiy . three rolls

-,

play a signif{ t role‘ln the barring process.

As none of the 1nvestigators mentions 1t, it may 'be

» worthwhile to point out heré that non-linear oséilletory

<
.




‘ N

o non-linear' elastic propertids of the paper certainly make
At
. . the calender stack 8 non ~linear oscillatory system and could
T . ‘“
- ( r’account for some of the observgd disconfinucus behaviour.
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ﬂbghaviouf. such as the’
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1.5 Mechanism of Calender Bairing . (contd)

MR . . (\ ! '
systems are known to exhibit discontinuities

in theif

Jump pheﬁomenon fer example. The

1<

=L
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1.6 THEQRETICAL STUDIES OF CALENDER BARRING °

7

There are very'faw theoretical studies of the Aprob&%m of -

¢ Ealender.barring in“the published literature. The first such .

paper was published in 1963 by three investigators (8) who
also performed the most detaiied experimedtal investigation
Ofi the mechanism:of calender stack vibration: Théy analyzed

-

,Ta'simple lumped méss=spr1ng model of 'a six-roll five-nip

G

: calender stack with all six mésses restricted to move in'oﬁe
L plané and iﬁ one direction. Tge spring constants.were
compufed from compressién;pressure curves obtained., 1in
' léboratory experiments on uncalendered ‘newsprint fdr
" compression cycles of about 0,0005 seconds duration believed

to be representative of compression cycles encountered when

calendering at 1800 fpm. In this manner spring constants

were. assigned ét‘the various nips depending on the nip
pressure’ ther;; The bottom roll was assumed to rest on
o _‘ . gnsprings representing the - stiffness’ of - its Journals. The

natural ‘modes ‘ and ‘frequencies} of this oscillatory system

. ' . . . [ .
were computed but only the mode shapes were published while

! . fhe frequencies are opiy mentioned as being in fair -

agreement with gxperimental Sbservationsd‘:ﬁf'shape ‘of the .

. "computgd second mode is in agreement with’the observations

made on\the top and bottom rolls of the full size stack.

© - - --There 15 mentfbn .in the paper of a digital computer analysis
' of the dynamxg behaviour of the calender stack including the
effect of calender speed change on bar spacing. The results

/' of the ahalysis are sa!d to be in satisfactory agreemqnt
L A ) E

. . . .
» ! ' . o
. , ’ ‘ . '
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1.6 Theoretical.Studiesadf Cdleqdhr Barring (cont’d)

with observations. No details of ihis_analysis are given. As

‘an outcome of the study a bgrriﬁg suppression device bas ed

on keeping the nip pressure at the top roll constant was

developed, patented and used successfully.’

B . /
3

The qynamﬁc behaviour of the same calender stack w§5 studied
‘ [

* J *
three . years later by another 1nvestigator (14) USing an.

analog computer. Essentially the same mathematical model was
used. except for thé . addition ‘of damping.- As anpther
1mbrpvement a new improved set of spring coeff}gignts based
on the work published in (21) wés calculated. Either by
error or on purpose the bOttom roll was assumed-to rest on

the ground instead of on Spangs.‘The model was 1ndependent
- 0

‘of stack and roll geometry and without a feedback mechanism.

Sinusoidal, random and sinusoidal on random excitatipns were -

applied tf the top roll of-the modelu,éraqtically'nonk'of
the phenomana observed in (B) were reproduced. On the whole

the, investigaiiqn was rather limited as essentially!a one

various ways with predictable results. No ngszWfqrmatIOn

was gained from it than WOuld have been obtlained from ' &

solution ‘of the undamped system for its natural modes and'

frequencies. The investigator realized that the léfk of a

dimensional, multi-degree of fr esdom system was eXcitéd in

feedback mechanisﬂ rendered the moqe} essentially a -

stationary one’ but as he pointed out. the delay times
, .

. required would have been within. the 1naccuracy—of}¥he analog
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Ty 1.6 Theoretical Studies of Calender Barring (contfd): .

B computer. » ' —

T

The same calender stack was again'studied three‘years later

by another group (16) on a hybrid computer. The simulation

. model was the same as that in (14) except that the bottom
roll was placed'on.springs again as in (8). Tbe spring - .

. ‘ constante used were computed by the method described in
. (14). The damping constants were obtained experimentallyk431

‘ 'an’ 1nd1#ect method /’Using a pendulum the coefficient of

réstitutlon of the paper>pest1ng»on a Puitable backing was
determined ‘and § then. the coefficient of damping was .

calculated from a relationship of the two p;operties; The

,,methematicalr model incorporated a feedbeckfmechanism in the : ‘

form of forcing functions acting ~at the various nips. A
R | 'forcinb function for any one nis wae a train of impulses

"i simulating the effect of bars 'created‘ at the first nip
{___ | | arrivinq soﬁe time later at the particular nip. To do this &
~ the force disturbance expected at. lower nips ’because of A :

bar put in the,paper at the uppermost nip was-.stored in the

digital part of the hybrid . computer - and delayed fer the
lehgth‘gr time required for 1t‘to travel to a particular nip"

. ) 2
__‘before sending it back to the analog computer to c?eate an.

41mpulse at the right time. In this way’ machine speeds«\and
[ ' roll qeometry were represented‘ by delay time length. The -
‘ model was excited at the top roll by step. and random

'excitation. The response of the system was in good agreenent o

*-~,
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1.6 Tneorotical Studies of Calgnder Barring (cont’d)

‘with the observations, of other investigators on several

boints. The amplitudes and phasé pelotionships of the

vgfious rolls in the stack during qimulated barring were in

good agreement with tho observed and computed results 3In
(8). Hov'ue'ver the frequencies of alender vibration at 2020
fpmrare reported 4s 58.cycles/minute and 333 cycles/minute.
This is very different frof the 96 cps frequency reported in
(8) and there 1is- no mention of.any scaling factor to be
_applied. This may be an omission in the report; The' iffect

of calender speed on barring frequency was demonstrated even

though 1in a somewhat limited way. At speeds above 2000 fpm

the frequency of vibration was 58 cycles/minute. At speeds

below 2000 fpm the frequency was 62 cycles/minute. Near ‘the

transition point strong beats were evident which is. also -in~

agreement with observation (11). The idea that the motion of

the two ‘massive lower rolis§ can be used to oppose the
vibration of the upper ones Jﬁ% teqted succesfully with the
. model and  the usé of a roll movable'in the horizontal
direction to vary‘the travel timo (essentially varying the
diameter of the queen roll) between the last two nips was

proposed as a means to eliminate calender vibration. .

A3

A fourth investigator (f§f"EEETQEodWWEA‘single deqrae ”of
fraedom system with base excitation to study the mechanism
of the corrugationvof calender rolls. His theory predicts

the ‘qrontn rate of corrugotions and the' rate of their
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f.6 Thepretical Studies of Calender Barring '(cont’d)’
. ' I ‘
mﬁgratinn in a direction opposite to the rotation of the

roll. Computations based on . the theory are claimed to be in

good agreement with. observations made on the top roll of a
i . ./" '

calender.

?dmmary , X V N

Three theoretical analyses of the phenomenon of calender

stack vibration have been published. The same six-roll
calender stack was lanalyzed -using very similaf, but
proqressively more refined mathematical models. The . models -
were simplified lumped mass, one dimensional, six;degree'of
freedom systems with the'refinementslof damping and feedback

~ C , /
effect added by the successive investigators. The flexural

vibrations ‘o e rolls observed by some of the

" investiqators - ot considered. The analyses succeeded to

i

various degrees "to reproduce several of the observed

7phehom§na; In the éése. of some Of the phenomena only.

° .
qualitative agreement between real and simulated behaviour -

was obtained.
‘8< '.\ .

It is interesting to note that even tbough‘exheflmental

i

_‘avidence indicates that at least the top and bottom rolis

M

e )
I
>

’h undergo _very significant flexural vibratfaﬁg"__ﬁﬂ‘“fhe

L
/
1nvest1qators .model ed the calender stack with lumped Tiffgg///' {

assuminq translational motion of the rolls only'///////

14
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1.7 connscgve MEASURES AGAINST CALENDER BARRING-

‘ " There is uhiversal agreement in the literature that barring
is caused by ,the vibration of the: Calender stack. TAQ'
elastic system formed by the calender stack and the paper
running through it ‘15 a complex vibratory system with
elaﬁtic and‘ damping properties, externa} and 1ntefnal
sources of excitation all dependéﬁt on and affected by a
lgrga ‘number éf operating factors. The beha;iour of such a

. system 1is a1 fficult to é}edict or even understand especially |
since the factors affecting the behaviour changé
con;inuously aﬁd often without the operating personnel being
- ¢ ‘'aware of the changes. As a result barring isoobserved to
‘come and gd without any’ apparent .cause for it and some

\ meashres uséa succegg?ﬁlly to eliminate barring on one

machine }1}1 worsen the problem'on another surrounding tée

whole problem of barring with an air of mysticism.

Thers- ~are many corrective measures ‘mentioned in the

. literature some .of them simple &nd often applied or

‘ ? ////” prﬁitfced ' successfully others 'mére involved and less
: ////”/T frequéntly tried or oniy-postulated-as possiblé‘remediesz As.
///‘ . tﬁe problem.j§ essqntially a vibration pfoblém‘a;l meagufegl
- to remedy it have to do wit? rqgucing,orfeliminatiﬁg the
excitation or damping the response. These _meqsures' can be
- classiFied into four major groups having to do with
{ P ’ e .
' ld.:uechanicé} mainteﬂanca of'tﬁg calender s€ack
| [' — b. Operation'or tbé calender'stackv ‘ |
- A ‘ KR




,last of the four groups. -
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1.7 Corrective Measures Against Calender Berrlng (cont’d)

- * ¢ Controlling external ,excitation sources’

7

'd. Design of calender stack

"The most involved and leest proven remedies belong in the

. i
i

- z . N N
a) Mechanical Condition \ . 7
f 4
L] , H . ‘ <(

/

The importance of the mechandcal condition of the calénoer
stack 1is well recognized throughout the industry. Roll
balancing, roll alignment, roll corrugation and bearing
conditlon‘ are the ‘most widely ‘believed sources of
excltatlona Theseaare'also the most‘l easily remedied ‘and
therefore the first corrective measures taken when a barring

problem ,15 encountered. Roll corrugation is particclerly

closely associated with barrlng and rall grinding is a. very:

|frequently applied remedial action. ' Some investlgators

regard it as the sole cause of .calender- wibration (13).

However, others reoort serlous vibrations wlthout' any

corrugation in the calender rolls (7). In a survey (10).

14

- coverinq most of the North American newsprint lndustry most

mllls claimed that roll grlnding helped barring but one mlll

reported that barring was most severe lmmediately after

regrinding ' the rolls -and then decreased until .roll

corrugation developed; References (2, IO.I3) contain

lnformation about roll, grinding and the fectors that may '

affect the condltion of the ground rolr
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1.7 Corrective Measures Against Calender Barring (contfd) .

) Calender Operation - | e,

1 T ) ’ ' ' o /

" The. mode of starting up. a calender stack 1is’ emphasized by

two investigators (IO) as a means of controlling barring. In
particular they strongly recommend the gradual heating up of
. ' ’ the {kteam rolls and the careful starting of the calendering -
process in’ order to avoid upaetting ‘the calender stack
through a thermagl shock or physical jamming of the rolls
“dur.ing calender start-up. The use of steam rolls',is a
concroversial 'point as'many millg haye found that shutting -
off one or two steam rolls'in’the stack reduced the barring
intensity signiricantly.|The mere presence of steam rolls in
E%%’ . ‘ } x stack is believed to be conducive to barring because steam
roils are less well balanced 1in the first_ place and
condensate inside them further increases their imbalance.

Non-uniform moisture profile im the cross machine direction

1s mentipned by one investigator ([fl) as a possible cause of

\ a

barring and ‘he recommend§ tnat cross machine proriies of-
sheet ‘ proﬁerties' ke checked. when barring occurs. The
addition or removal of a roll is sometimes. tried as a means
ot eliminating barring. This should be expected to affect .

the naturalf‘rrggpencies of the calender stack and the

' resulting effect on barring intensity is only.predic%abie i1f

' o ‘the < nature .of the excitation end .the vibratory

chatacteristics of tha chander stack are raasonabiy. well -
/ -

| known, This Is illustratad by ~the case of two macmnas.,




. investigation and' -elimination of floor ' vioretio
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1.7 .Corrective Measures Against Calender Barring- (cont/d)

-

reporfed in (11) where adding of a roll ‘tg ‘the stacks

oroduced opposite effects ‘on the barring intensities. One
investigator (15) claimed that 1n many cases thicker calipen
along the two ‘edges of the sheet was causing barring' and
suggested that trimming of the sheet before the calender may
help -in ,some cases - to elimihate barring. ‘The mechanism
postulated for the edge effect is the accumulation and the‘
sudden passing of excess bulk through a nip. According to
the paper - edge trimming has begn -successfuly used . to
eliminate barring in several cases. } '

[N

c¢) External Excitation

a‘
-

‘Sources of excitation external to the components of the

.

calender stack are also important. Floor vibration caused by
some- vibrating machinery 1n the vicinity of the calender
stack - has been. known to . induce barring (6L - The

fj s

/ )

recommended whenever arring occurs. However, perhads\the
most important and meSt common external seurce of excitation
is the peper'being-calendered..Thls excitation 1is in the

form of mach;ne' direction basis weight, sheet caliper or

the paper to be one of !he ma jor sources of excitetlon

'(6.7.!0—!2). One clalms that the barring frequency dan be

often found in ‘the stock deposited’ on the wire and

emphgsizes the importance of checking vetqgnd'components’for

moisture/;ontent“varfation———Several*—lnvestlgatefs—~b5¥¥eve—*-~——_
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. k(f Co{rective Measu{es Agginstha};ndar Barring (cont’d)

’ v

by

. vibrdtion when barring is encountered - (6). He mentions

Sevéral examples of wet-end .component vibration such as

¢ . ‘ -
» B

severe maohine direct1on headbox wwibration whose removal did

. . . . . ‘ﬁ
‘not reduce the barring intensity but also reports of cases

where relatively slight vibration of a table roll was found

[}

to'belthe cause of calender barring. It is widely believed
that "machines that are equipped with .a breaker stack are
free of bérring 3pd tgeir use ’ié highly) recommended. The' -
effectiyehess* of .the breaker stack {n preventing barring

seams to .corfirm the idea’ ihati random or cyclic sheet
caliper or bggis weight vériamién is t;e major source of "
external excitation- of ‘calender vibrations. The 'hreakef :
sta?k precalender§ end smoothens the/BBber for the calender
stack thereby reducing the paper borne vibration excitation.

.d) ‘Calender Design ‘ : L

-

There ‘are szVeral recommendations in "the‘ literature
)

concefning certain calender stack confiduration§ proven or

believed ;o be - potantiaﬂly usefull in eventing or
- - .

eliminating. calender barring. The most cd%mon and least

expensive of these is the off-setting df the calender rolis

“;QIE*I;€~\EE?*EHE““Eﬁﬁtﬁar*“ﬁsuai%y—e¥ery~otbﬂrﬁiatglmggléﬁgmw‘HAN”

- roll 1s off-set ‘horizontally ebout one 1nch creating a d
: 1

staggered roll arrangemant. This is a well tripd and usually

successrul gpans of rsduclng barrlnba fo-settlng méy be -

'afrective becsuse ft affects the regenerative feedback

ERC I
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whcalender stacks.with fewef nips (5,9,10). The North American.

. (8)s This gevice has been patented and i$ claimed to have

50

g

1.7 Corrective Measureas Against'Calender Barring .(cont’d) ST

1
_mechanism by altering the.wrab around some of "the rolls. If .
‘that is the case its effectiveness may .be limited to a
certain - calender speed' range' (11). Anothér hypothesis isn
that it acts as a damper by allowing some of the vibrational
energy to be absorbed as the tangential component of the
impact forces acts on the off- set royls to change their

> o

‘rotatlonal kinetic energy (17). Another effective means of

LIS

eliminating calender barring is the use of two or three
. -

survey mentioned earlier (5,10) seemed to confirm this

machines with such non;conventional stacks were amongst the
Tew{tbat had no‘barring problem. There are three calender
f%etures recommended in the literature which are baseo on
theoretical considerations with little or no field testing T
to . prove their effectiveness ,n controlling calénder

vibration;bOne is & device designed to make the nip pressure

in the first nip independeni of thée movement of the top roll

bean successfully tested in Operationu .The top roll was
replaced by a light tube roll which is pressed doﬁniwith air .

cushions to provide a nip pressurelequivalent to the dead

weight of a normal roll. Anather 1nvestigator ) suggested
that a top roll with a s@ff cover would g:itib”te e the — —
,deformation in the first nip between the sheet and the soft

‘cdver thereby reducing the severeness of the berring. Based

on a computer simuletions of ‘the dynamic, behaviour of a’

L J
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1.7 Corrective Measures Against Calelider Barring - {cont’d)

fsix—roil five-ni&//‘;alender stack another group (16)

\ [

suggested that the motion of - the téo heav botfom rolls

might be used to counteract the vibration of the upper rolls

if ra control device adjusted the path of the sheet between

il

o

e

the two last nips in such a way as to obtain 'the correct

[ SN

phase relationship . between the motions |of the upper and

_gotto rolls. This would in fact amount to havi%g a queen

. '
roll’ with a readily variable diameteyr. \T$e computer

-

simulation indicated that dramatic reduction of the . barring

iIntensity is possible by such adjustment.
B t, \

’

Summary . S : \

.The most frequently tried remedies are the rebalancing,
realigning and regrinding of rolls. These measures are often

But not always effective in reducing banring intensity. Many

Operating factors from steam temperatures to cross machine

moisture profile are believed to have an effect on barring

but the manipulation "of tnese factors asi a means of

~

controlling or eliminating barring intensity . does not

produce easily predictable results. The off-setting of, rolis'

and the reduction of the number of nips in a stack are

highiy recommended remedies to barring. Several

~~tnvestiqatorsw-—-havempreposee~~~meens__of wconi%miiinc ._the

& - 51

vihretion of tbe top roll in order to eliminate barring. One

'such scheme has been successfully tested in a paper mill.

PR
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1.8 LONCLUSIONS AND RECOMMENDATTONS

There.'is general agreement in the literature’ that calender"
barring of paper'is caused by calender stack vibration, A
great deai of convincing experimental evidence to support
1this tbeor& is presented. -‘Most of the vibration energy
involved in the barring process is expended in the vibratory‘
mqtion of . the top roll as almost £11 of the barring damage
,to ;9p paper occurs as the sheet passes througn the first.
niph For' a mechanically well maintained calender stack the
main source of excitation is beligved to be the macbine,
direction. caliper and" basiswweightfeariation; Both cyclic
end randem non-uniformities are capable of causing Calender
stack vibrations. The exlstence of some regenerative
feadback mechanlsm that ‘helps to sustain yibration of the
calender stack has been experimentally demonstrated. This
'feedback effect also appears to neintain the frequency of -
'tne calender stack vibration within a relétively narrowﬁ
band. The vibration is believed to be, centered at one of the
natural frequencies of the calende/’stack. However, this has
vnot been experimentally demonstrated; The' published o

. theoretical analyses of the barring problem~used a somewhat

simpiified modeld ignorinq the flexural vibratipns of the

rol 5-Wh%éh-ha¥9~~b08GAWGXPGFfmﬁﬁ%&%%Y—ObSGrVﬂd—tO*bG”VOTY“"””“
signifigant///:\> publications "claim some success in -

simulating calender behaviour. Owing to the/'lack of
sufficlent detatl a criticdl evaluation of the success - is

" difficult.

e . .
Co e
-
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"*" 1.8 Conclusions and Recdqmendationsf tcont’d) . . .
3 ' 1:5 . ' ) ° ’ ) a v : j

|
I'n order to be able, to deal with the calenddr vibration

;1u- oroblem' effectively ‘a good ﬁnderstanding oT calende}
{ C. cbehaviour and some form oﬁ mathematical modeling of the
$ “ tvy observed phenomena are 1mportant. The following program to
* nrhieve this 15( recpmmended; If, as it appears Lo he the

{
case. the vibration that causes bar!ing occurs near -wne of

A3

the natural frequencies of the calender‘steck then it is™

important to be able “to compute these frequencies and to

knoy how to  affect them through design'modifications. For

. this purpose a'naturelnmode_end frequency analysis of the
Ondampe; caiendero stack-paper system Vvibrating., in +the
Yerticai planelshouid be performed. In this anelysis both a.
lumped mass system and one where the fleeral vibrations Jf
at least the top roll are taken into consideration should be .
ainvestioateo‘ano the{results tompared. The validity of the.

"analysis should* then be ch;éked by resonance tests on full’
scale calender stacks. If. this is done on calender stacks &
where barring occurs then the hypothesis that barring takes
Bplace at a resonant fﬁequency of the calender Stack can -be
tested. It would bgy\deslrable to anedyze both the closed
frame and cantilever type calender stacks’. However, the

availebility of the calender. for field testing should be the

decjdinq factor. .Once the undahped elastic system

| \\ crepresenting the jalenderigteck with peper runninge through
| _;f o} P re is modeled successfully as a static system then a digital
| ”' ,*Pf.‘ . or, hybrLd computer simulation of the oynemic behaviour of
i# ' . - o ,-; o . , oo . .
;oo SRR -
] ) " f » &
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1.8 Conclusions and Recommendations (cont’d)

o .
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\ ' ,

the model can he attempﬁed. In this simulatioﬁ some form of
damping should be introduced apd'roll géometr& as welQ\as

\ . thé‘ edback effect of‘thé bars travelling th}oqgh the stack

B

\; ‘ } shO¥d be incorporated. ;s ‘there is nlich evide}\ce that the’
vibratory motion of the top,rdlf of the calender stack is

o , ~ o
. _ the ef{gfts. should be ' directed towards finding brac?ical
ways of controlling the vibration of that roll. Some of the
_ideas préposed:.in the litefature should be more closely

examined and investigated;

ettt

I ST &‘;-i.ua

largely responsible for barring damage to'the sheet most of |
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2.1 INTRODUCTION , R : ‘

[ . . \ ,
|{ 1

Thé calendering process and 'the nature of the calender

PR c .

barring problem as seen by numerous investiqétorﬁ has been

discussed 1in detail 1in the literature 'survey. There have

been many investigations of experimental or observational
. p : ‘ . '
nature into . the problem and it appears that most

[}

investigators reqard Bariinq as.a_resuli of the vibration of
the calender roils;”HOﬁ;ver; oniy“a“few*attempt5~—have"~beph
made- at  the mathematical treatment of® the underlying
vibration problem. In all cases the pﬁysipal model anLlysed
was a one dimensional vibrating. system consistinq of a
series of point masses representing the rolls and a series
of sérinﬁs .between the point masses rapresentlnd therpaper
passinq hetween adjacent rolls. Expefimental observatlons of

roll displacement and barrlnq 1ntensity along the qidth ‘of

calenders indiqateA that - [tha rolls undergo flexqral hbtion

‘ dyriqg~91brgt10n.-The axpilahle experimental evidence |is

described in deﬂ&i; in the Iiterature survey. In view of the

possibility of flexural vibrations of the calender rolls a
one dimonsidnal model appears to be inadaquate and a ﬁodol

‘capable of flgxura(‘ ibrations becomes. necessary for a good

;gypro&imation{gf the -Vibrational ﬁhayécterisfics of the’

, ) s .
calender stack. Several tnvestigators observed flexural

vibrations of the rolls 1n both the horizontal and vortidal

planes. They all agreed houover. that the flexural vibration -

‘ tqkinq ‘place in the vertical Q;anc was considorably more

|
<

A

- e
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2.1 Introduction lcont’d.) ,

significant than the one in the horizontal _plane. It is
likely that flexural !}brations of 'some magnitude may occur
in any axial plane of a calender roll. A model that posesses

the necéssary degrees of freedom to describe such a complex

motion would be»rathQTOUNW1eldy anq very di fficult to tregt'

mathematically. The fact that flexural motions in the

'

vertical plane havé heen observed to be the most significant,

* siggests that a two dimensional g 8l of the calénder stack

which permits flexural vibrations in the vertical plane  ‘may

"be  a sufficiently'good‘approiim&fidn of the calender stack

. as a vibrating system, In fhis report such a ‘two dimenslonal'

model is hresentédland'analysed. The mass of seach roll. is

lumped 'into a number of poiﬁt masses connacted to one
J . ‘ N !

another hy massless elastic rods . of wuniform elastic and

, ]

crqss',secfional prbperties.r The }umped masses Of ‘ad Jacent
rolls are coﬁnected‘ by 1ideal 'sprinqs representinq‘ the
'a'elésfibity of the papqr_'beiﬁq calendered. The resulting
. matheméthal model is solved for thewnqrmal modes and the

" associated natural® frequencies of the vibrating system.

-
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2.2 MATHEMATICAL MODEL OF CALENDER STACK =~ o,
K . : ]

+ N .
S | ‘

~Experimental observations 'or many investigators indicate

_tr'maf the rolls of a barring callender‘st_ack undergo flexurai'
vibrations | in at least the vertical and horizo;ltal planes.
The motion taking placé in the vertical plane i{s ‘considered

'the most signi ti'cant hot"r:\ in magnitude and in its

¢

“contribution to barring. Neglecting the flexural vibrations ,’

—

outside the vertical plane the calender stack as a vibrating

system .may be repr.essifi;ad by.c a two dimensional bhysical

N
model shown below.

‘Roll Face FL
° - ‘ Total Length - TL - o
Fig. 6 Physical Model of Calender Stack . e (.
) 9 ) . . » ’ v ) B
ol T .
N \ S, L
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2.2 Mathematical Modeal o{ Calender'Stack (cont’d)

Assumptions : e y
K f

- Vibratory motion outsidé'the vertical plane containing the

s

‘axis Gf the calender roll is negligible.

<

equal maqnitude. There is ho mass point at C.G¢ of a roll.

The point masses are located at C.G. of“?bit*sectfens;—?o%nt

* masses at the ends of ugper_rolls represent the combined

. Journal and héarinq masses. The rotation of the lumped

masses -1s neqlected.
P , ! *

hetween point massés. i -

’ [

The upper rolls are .unconstraine&Q\EE'/their ends. The

lowermost ‘roll {s simply supported. The potential'enerqy

. stored in the rolls due to flaxurs. can be satisfactorily

épprbximafed by treating them as free-free and simply

supported rolls respectively. ' e

Ideal springs represené the .paper being calendered. Codpling

o between the point masses of adjacent rolls is through the-

ideal sprinqs; 'The. springs can resist both tension and

‘cdmprassidn; The stiffness of the sprlnqs'ls constant along

the space betweon two edjacent rolls.
* t
|The systam is conservatlve.

‘ '

» S . \ ‘. . 59

?otal mass of each" roll is lumped into N{point masses of'

ThsreJ are massless roll. sections of wuniform stiffness’

_/2///
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2.2 Mathematical Model of Calender Stack (cont’d) ¥

1

‘In’ this model. the hybrid system of the calender stack which .
contains both digqrete and - cgntihuous componebts s
‘represented’ by a system of discrete masses coupled to one -
.another. The mas; of each roi} has been lumped into N bofntl
"+ masses , which ’are ,Joinea by massiess rods with properties“'
:cor:esponding'to/the flexd%ai,siiffnéﬁg of the rolls The

cbrrasponding point masses of adjacent rolls are cbupled'by

springs which model the elastic resilience of the paper -

bpihq ‘calendered. The two:'end masses of the'upbe?,rolls

v

. represent the jJournal and bearing housing masses connectad’

to the ad jacent roll maé; by a massless rod whose sti ess
correspohdslio the@éfrec£iva stiffness ©of the Journal. 'fhe
> qnds_ of ﬁhe upper rolls are assumed to be unconstrained
whilé the lowermost roll is assumed to be simply® suppérted.

This model represents a‘compléi system with a larqge number

"of degrees of freedom which is quite representative of the
calender stack yet whose mathematical ;%emtmentﬁcan he made
relatively sﬁraightforyard with the help of . some simplifyinq

- assumptions. The fbllqwinq is an outline of the proposed.
procedure to set up the mafhematical model from the physicai

one and’ to obtain tﬁé'desired solutions from it.

‘Assuming that the .system 1is coﬁseryati&g and that the
.Springs between the rolls are’ldgal linear, springs and;usipg
AR potential and kinefic anergy expfesslons-in fha Lagrange'§

equations the equations of motion for the system can be set

i . §T——

L3
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:;/1“'“—“—“*f~—fﬂi¥Kiief-{he_inverss;dyﬁamii_matr1x jjiiiggliwjgg;_gfgﬁﬁeter

vibratina model the charactéristi:;j?uatioh of the system
m

" method will Qé described here briefly. - L

‘
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2.2 Mathematical Model of Calender Stack (cont'd)& '

» , - +

up ‘in terms of mass and stiffness matrices. Assuming

oscillatnryn motioqs‘ for the components of the \fﬁpely N

can be ohtainead in the following r.

£

det { plIl = (51) =0

where [I] 1is the unit matrix and [S] 1§i§pe dynamic matrix

)3 is related to the circular frequency associated with the Tt

+

free vihrations ofqthe system. The characteristic »équation

is then pélved to determine its noroéts M, sMg s 0o ¢}pand the
n sets of rélafﬁvg vihration amplitudes which will _satiETy
the characteristic equation for tﬁe vafious roots. The\r06t9~
and the sets of relative vibration amplitudes are also known
as .thi Ieiqenvaiues and eigenvectors ,of‘ thé'éag?ri (S).
Toqethgf they describe. the nﬁtural or:;pormal modes 9{
vibration of the Qndamped'calénder étaék and thus provide

the most essential information ahout the vibratory behaviour

-
‘e

qf the SVStem;

o
o

Alghquh it'is outside the 1ntenqed scoﬁe of this report fo

go' heyond the frée'vibnatton anaiysis of the calen&er stack
systeﬁ';t should be bolntéd ogi here that a SquBt é*tenslon -
of the'mathematical mode 1 qu ;hé résuits .of the analysls - .

will allow the fqrced‘v;hration analysis .of the system. .The | '\’if’

o b
B
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22 MathematlcalrModel of Calender Stack (cont“d) .

g

Define a set of new vartanles called th

é normal or principal

' co-ordinates which are related to the originat general ised

. -~
co-ordipates q. The desired relationship is ‘degtribed by.the

* aquation e ' ' !

(q) = [Ally)  — S ' 1

k%

where [A] 1is the modal matrix conglsﬁinq, of the n

L

-

" eigenvectors obtained from the static analysis. Substituting.

(y) for (g in the equation of motion

U IMI®) + (K1) = (Q)
\ J

we obtain l _ o .
COMITAIGY) + IKIGATGY) = (@ .

where (Q) are the generalised forces acting on the system.
. } _ :

" 'Premultiplying by [Airé‘sét of n de-coupled differential

. ‘are diagonal bectause pf the

equations of motion {n terms of the normal co-ordinates y
are obtained by virtue of the fatt that  ° '
1y .
ISMSITY! . 6
and\ .t ‘ . ‘ ) * - l' T (-]

LAY LKILA) I o S

1]

-

?

normal modes, _namely /

l,’

l'/ A ’ ) R . | s '}‘ .‘ . "

4 v <
’

4

~ e
<

orthogonal ity properties of the



—

i r—— e

. : ) | 63 '
, 2+2 Mathemfatical Model of Calender Stack (cont’d) ’
. | _ .
T ) 5 v
L (R TN =20
' . . 4

and ) L . ‘ vl

Coe T MK =0 e e
. : b '

o These *'de-coupled differgntlal equations can then be solved

‘readiyy and independently. The resulaé obtained’/in terms 'oﬂ//~

T T 777 707 the normal T co-ordinates y can be transformed into “the
- A' . -
' desiréd generalized co-ordinates by the relatfonship
.:" ‘ . “ p " , , J
’ _‘ .
. . Ly) = [A) (q) . e
' ) ' * -‘
- L - I ’ . <?(:
. !
. ,":'
’ . : ’ A e
: " "
v ) ' ‘ .' t :
C . ~
! Py o
¢ i ’
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2.3 ENERGY EX‘PRl’:‘SjI()NS FOR THE CA ‘ND?ER SYSTEM

Thé potential en exqy stofed ih.the vibrating calender is

‘created hy the flpxinq of thP rolis and by - the ~compre=;qion

of the ‘paper hntw-een two ad)acent rolls. It-is poqsible to

compute the two enerqy terms separately and then to combing

the two sca;ar quantities, Both enerqgy terms are associatad

with displacements of the _point masses. However, the

flexurdl “strain enerqgy depends only - on -the flexural = .

_,displacément_i_of the 'roll, while the potential enerny in the

compressed paper is related to the ahsolute dl'é‘placegments of

the point masses. For this reason a distinction ng,us/t he made

- hetween displécements caused by ' flexure ' .and absolute ¢

'displacement of a point mass as the l‘Latter may contain riatd

body motion. The flexural and ahsolute displacement vectors

will bhe denoted by (d) and (D). respe;:tively. ot

.m"..d’g‘ )
Flexural Strain Enerqgy in Roulls

The total flexural potential eneray VFnf the system is madea

’up of the enerqy qtored in the free-free upper rolls and

th}pﬁ_‘stnred in the ~slmply supported lowermost roll. The

potential enerqgy of each free-free roll can be expressed as

.0 v -

VE = 0.5(d LkE (d)ps A Cm

where (d) 1is the displ acement vectgr and -Ilf!_l,, is. 'the (NxN)

8

stii"fries_s matrix" of "the nth f eé-free roll. The column

matrix (d)n contains the displ acepsfts of) the point masses

F]
&

'
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'2.3 Enerqgy Expressions for the Calendép System (cont’d) \‘

-

¢

relative to the rigid body motion of ihé roll when it
undergoes vibratory motion. In the case of the simply
supporteh lowermost roll no rigid body motion 1is- possible

and therefore (d) %epreéents the ahsolute displacements of

[ . et "\
the point masses of that roll . ,
' "“4} l
A .
) o td)y =0 )= I S
. ‘\le *
The €3tal fiexurai poteniial © energy ln\‘yhe system can |
therefore be'expressed as . ;“A /‘ e
: .
VF = 0.5(d)’ [KF(d) ‘ L | @ .
/—/ : ' ' ﬁ ' " i /.A | . %ét\ ¢ - ‘e
Where tKF1' is a (NRxN=-2)(NRxN-2) partitioned flexural )
b - : ’ , . ~ °
stiffness matrix for the system which.is made up of diagonal
“terms representing the flexural stiffness; matrices QE' the
‘individual calender rolls ' - v : : '
- : , é - N N -
(kf], SN o '
, . . ] ‘ . -
[KF) = . . . - . .
| NS S R L
| . and (d) 1is the flexural displacement vector such, that
;:' ' v . ' .
¥ (d), .
. - "
;'f ' / (d) .a" . F 4 '
/I MRVET
3 NR ’
:Zf ® ' Dt ( ’
é | . I// ‘ f - e
M o' / »
|/ | RO
3 L v g(v ’ 4 ° - S




+2.3 Enerqy Exbressions for the Calender System " (cont’d)

Potential Energy in the Compressed Paper - \\\g;
’ ! \

L 4 ]
P

The potential energy in ‘the springs which represent the:

paper between the calender ‘rolls bis_ proportional to .the
- ’ ) £/ , *
rabsolute 'd;splé%ements of the point masses ‘and' can be

ARN

expressed as ' : , s

\

(D)

(Dhe|

— wed
[
+

As in the césp*of the flé*urnl displacements

»

. N ™
L D, Dewa-inmrei |
( D)' = . ! ( D)““.8 ‘s
Dy | Dewrremn-2
] 3 J - —

. X . s

The , matrix [kSl is the combined stiffness matrfx of the
'Spri’ﬁ‘q}@ containinq (NRXN-2)('NRxN-2) elemsnts some of’ which
‘are -zeyo. It can 'be formed by expressing ‘the potential
anergy stpred in the. éprings in terms of the absolute-
displacehents of the poiht masses and the sprlnq constants’

betueen qpem and then using~§he relathcship

1 ¥

(aVS/aL‘u)-[KSI(D) o T e

' . -‘( 2
&; + L . N
. , B

JUPRPS Loy
W
&
Y
%
&
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e 7 ‘ 2.3 Enerqf Ef&ressidns for the Calender System (cont/d)
\ \ " ' ' . ‘ }: , - t. » .
s - The pro);e’dure .is lll.ustrated in Appen‘ix A. \
\n : ¢ * ._ : . * . '
A9 " ', : s : S
. W ' ., ~ 8 ,\“ ! .
’ £ ’ \ . A T - 5 . : [X
Toéal Potential Eneray of the, System : Loy
- , In-the preceeding two sections, it was' .shown that the\ )
) S : )

'flexufal potential enerqgy s rélated to the flexﬂ}él
. disblaceméntsland the potzpkdal energy 'in ihe comoressed

{ : paper depends on ‘the absoflute dlsplacementé. In order toasum

- the . two potentlal energy terms V+ and VS the,flexural and *

L) R ahsolute dlspkacemehts of the free free rolls have to be

e . .related. Usrnq Ya procedure descrrhed in  Appendix C the
. N K
absolute dlsplacements -of the polnt masses of .the' fres-free' '

golls can he related to the fléxural dlsblacements thxuuqh

\ éhe expressiqn k o . , ‘ C

(D)=, el (), | L A O

n -gui—m_/\x

B D

Matrix [c] ls an (NxN) constraint matrlx f&r the nth rnll
"+ which is obtalned through the’ ‘use, of ‘the orthadonality

°relatlonshlps of ‘the two rlqld body modes of a free-free
E rolg " the fﬂbxural natural modes. Since thesflexural and ¥
\ . ':‘absolute dlSplacements ‘of a slmply gupported 'roll are the ii\

¢ s i

oo~ same, torﬁ the slmply supported Hottom roll (c] 4s a unit

-

matrix. The neture of . the “ton traint matrix [cln for

N free frea roll is “sugh ‘thlf lts determlnant 1?'zero and’

————. . x e  ul

3

Ve
theréfore its inverse does not ‘exist. The potential en rgy

term ' orrespondlnq to the sprlnqs can nngbe expressed in

1s - ' ' .',‘ ’ ‘ J . . “.\*" ¥
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‘ 2.3 Enerqgy Expressions ror the CalenQer System (cont’dd
s g : 2 -
J 4
terms of the flexural displacements by substituting equation
(%) In equation (3) ) ) } ’ Q
) ¢ r— -7 M ——-. —-w l o
v te), Q) ' (e, (d), /
T er VS = 0.5 : b ks R -
[ ¢ leldu i doa (8)ya
¥ NS = 0.5(1C1(d)) [KSIICI(d) , (6) -
,{ : ’ . N , Y
VS = 0.5(d>' (C]’,[Ks'ucud) ; (N .
+ | “ ‘
‘; Where [C) 1is an (NRxN- 2)(NRxN—2) partmoned matrix
Y . N
’ (e, ' I
SRl (o) N T RV = . E .

. . ' . .
. i

o N R IT NR T - N
- ES

,D . o‘ 1- ‘ } ’ ‘ -LT
' [C]“R . : N

From an-sxtension orfﬁquétion4f50;1t—fe%%ows—fhae<;~
hd ' ‘ ’ C "' ' ‘
(D) = (C)(d) N , o 4 IS
€ . 'l ‘
[}

In the general case where tho end” masses of the upper rolls

'are dlrferent from tho point masses ;epresenting the roll
(c) Is not symnetrlc. AS 1n the case of. (cly the combined
constraint matrlx (cl 18 singular. By adding eiquations (2)

"~ and (1) the total potentlal anargy or the 3ystem can1%;f}be

r

expressed as follows

- ¢.
V= R ¢S = 0.5()" (IKF1 + [CTIKSICINA) + - (),
{ . R
. , ~ " -
v ~ :
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‘where [M) is a (NRxN-2)(NRxN-2) diagonal matrix such that
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2.3 Energy Expressions for the Calender System (cont’d) -
o o : . RN

Kinetic énergy of the‘System

TQP kinetic enerqy of the system depends on veIocities alone
and can be wrltten for the nth roll in matrix form as

’
/

~

° T . . ‘
Tp= 0.5(D), [m], (D), S ’ (o) .
. » b l e
The ‘matrix (ml), is an (NxN) 1nertla matrix. Since (D), are a4

generalized co-ordinates (ml,is dlagonal. The total kinetic -

«£

energy of the system is

4

B v ' L4 ‘0 ' N
T=T+ svees £ Tug= 0.5(D) [MI(D) (1

=
(m],

" - '.. 'P'I' '. \ ‘ . o

. [,
Differentiating sequation (8) and substltutlng in equation

'(Il) an expresslon is obtained for the total kinetic energyj

of the vibratitg ,caland:; system in terms of the flexural

displacemeht vectors, the inertia matrix and the .constraint
matrix , ‘ . .- .
Y AN . ‘ , ’

o7’ T ‘e, .
T = 0.5 (C1TIMIECI(d) a2 ..
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2.4 EQUATIONS OF MOTION

HaVIng established the : potential energy and the kinetic

energy of the vlhratinq system, one can procead to obtain
5

the equations of - motion ;usinq Lagrange’s equations,

Ladrange's equations can be written in matrix form as

)

. . ! . ' ' ©
d/dtlaT/aq;) - [3T/aq 1 + (3V/aq ) = (Q) S U3

Where q are generalized co-ordinates and Q) is a column '

‘matrix rbpresenting nonrconServative generalized fdrces; For

a conservative system in whlch the kinetic enerqy depends on

Valocities alone Lagrange’s, equations reduce to -

*

d/dt[b"r/ac'ul + [0VAq;) = o : ’ (14)

‘The enerqy terms T and v are given by equations (12) and (9)
o respectlvely. Arter difterentiatlng these matrix expressions

/
‘and substitutinq into equatioh (14) the equatlons of ‘motion

leads to the o}qénvalue probiem -

11ntroJuc1nb the flexibility maﬁgfx [alyof the nth rall in

in matrix form are obtalned.

[CIIMILCI(d) + (IKF) + [CITIKSIICI)(d) = O sy .

'D

Assuming a sinusoidal solution of the type

. di= Bicos(wt) = ’ ‘ _ (16)

whLCITIMIICI(d) = (LKF) + (CITIKSIICI)(d) “an .

-

T T—— f?aum&ﬂ‘ T
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2.4 Equations of Motion (cont’d)

., -~

the flexural potential energy expression gives

. ° —‘ . “
VE, = 0.5(d) (Kf1, (d)y= 0.5(d)y ([aly )} (d)y - )

and -therefore [KF} can pe written as . ‘
RGERUMIEEROE
where [A) 1is a (RNxN=-2)(RNxN-2) partitioned flexibility

matrix such that. /

. [ 4
e ' \ 7 'P'
»"/‘-
.[alu ci-
Substituting for- [KF) ‘1n'equat10n (17), gives ‘ -,
2.7 : § - T o '
wE(CITIMIICI(d) = ((AT + [C) [KSIIC])(d) . (19
and since - .
LKET'= (M) . [ e SRR E
bremul;inlylnq by [KFf:'leéds to the eigenvalue problem
i wEtarrcI (MrcIcd) = (11 + (AJLICITIKSITC) (d) ~ (20)
;'  where'[Il is the identity - matrix, Premultiﬁlyinq equation
i . (20) by [C) gives | |
4 N : .
; w2 [CITAIICIT IMILCICd) = ([C)+ [CILAILCY [KSI(CI)(d)
ty (2‘)
o] Making use of ‘the relationship ¥




o ) o
( , '. 2 ‘.

.o . ' | .
‘ , 2.4 Equations of Motion (cont’d) - . . o ‘ i

C D) = (Cled) | a ()
¢ -

-

‘ leafs to the expression’ ,.

7

~

W2 (CITATLCIT (MDY = (I1) e (CIAICITIKSI (DY - (22) o

~ The final éigenvalue problen to be solved is
(psTI' (PINI(DY = L(D) - . .t 23

N . ‘ . (" ‘ ‘ - )
Where (PIN) is a'diaqonal‘pa{titioned matrix whase diaqonal \'

terms are - ;
. (fcltalle) (ml), S L ¢
I' = ' - :\,\ ! !
L = \1w' T , , , (24)
and , ’ . '
IPST1 = ([11 + (Cl(AILCI'IKSD) - (29 .
. 4 ] , | .
. In “general [PINl,. [PST] ;EH/’[PSTT{ are not symmetric
matrices. - v r -
i )
\ 1y
| : « D
[ ‘ :
‘] [ ‘ i l
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2.5 COMPUTATIONAL PROCEDURES

.\
u

Théa generation of the.various matrix expressions leading up

tothe eigenvalue problem represented by equatidn ~(23) and .
the solution of the eigenvalue problem itself have heen

programmed in the Fortran v laﬁquage for diaital computer

solution. The progrém is described in .some detail in

Appendix D. Only a brief sumﬁary.éf the procedures will whe

‘qiven here. .

"

-

e numhér of rolls 1in the calendsr stack, the number of

‘1umped\masses 'ép' be used to ‘represent each roll, the
overhanqg mass values, roll djmensions, roll material

properties and spring constants representing papef sti ffness

constitute the input.for the proaram. The first seqmynt of

)

the prodram computés [(KS) the'sprinq stiffness matrix. The
-~ N

procedure used both in establishing paper stiffness and, -in

- BV

qgenerating the stiffness matyix~[ S) are describeéed in detail

4

in Kppendix: A.

, . 5. .
The second 'segment generates ‘the matrices (m, (k] and [c]

roll by, roll and generates the partitioned matrices  [PIN)
and [(CACT) as it qoes‘along,bx forming the diagonal membhers
(cl[al(c]‘[m] and tC)[A][Cl'rGSpecEIQely. The .(NxN) matrix

(m) {s qenerated by computing the mass of fhe nth roll and

lumping that into (N-2) point maSSQS(reach of which is

cons}dafed‘ concontrated. at the cent ' of gravity of the

3

*

sagw?nt it reprpsents,énd addlnq-the d;;rhanq mass for .eéch




o™

.end. The flexibility matrix (a) is generated by a routine

.74
2.5 Computational Procedures (cont’d)

Y

using the moment-area method. The methodﬁysed is described

in  Appendix C. The nature of the congtraint ﬁatr}x'[cl and

\ ",
"the method of generating it are also discusseds in Appendix

C. - o ®
’ *

J

L

‘The third segment of the program computes the. system

stiffness matrix hy forming
* {

'

(PST) = ((1) + [CACTI(KS))}

s , N
then after inverting [PST) computes the matrix
- t

(PSTI (PINI

which {s the matrix whose eigen solution is sought. This

matrix is normally a (NxNR-2) (NxNR=2) general matrix.

The fourth segment calls the subroutine EIG which is one of
\ .

‘the éubroutlnq; in.a méﬁhematicél_ software package called |

EISPKCK. This softyare package is the creation of Argonne
National Laboratory at the University of Chicago and ' is
available at the time of writing this report from ppex
software library of the CDC Computer at ‘the' Sir George
Williams Campus ‘of Concordia University,,This is the only
software package in the Mohtrgal areé. known to the wr;tar

which is capahle of solving the eigenvalue problem for a

\]

" generai matrix. Havinq(::{ained the (NxNR=2) aiggnvalueé and

eigenvactors which form-the (NxNR-2) columns ’\Qf the modal . -

)

Y ‘;»n#b»l‘ish Y S TRt g

i




i
o

' B 751 -
.w \ ' . ) N ° t . '
Fi : ' 2.5 Computational Procedures (cont’d) . ‘

matrix the .program converts numerically the eigenvalues into

b ' L7
natural ﬁrequencies iﬁd normalizes each modal vector to 1ts

v

larqest element. The various. output features .of the progr am

. - are described in Appendix D. i

S A, cdinaiies

i

7
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3.1 CALENDER STACK. DATA .- — e L

" The analysle has heen applied to an open frame, seven-roll,

six-nip calender stack which has been {n: peration for a

*

number of years and had encountered barrinc prohlems from

[y

time to time. The harrinq frequency of the calender stack

A\

however, is not - ’known with any degree of reliahility.,The

following lnput data were used to represent the calender

etack.,
TL = 303 0 inches  (bhearing center distance,(bottem roll)-t—-
FL = 168.0 (face width of rolls) K

Roll Diameters S

A

18.0 inches (uppermost roll)

Comblned hearing and Journel wetqhts. one end only

BMASS (1) = 82,0 1bs. : Y
' (2) = 824,0: - : ,
A3) = 824.0
(4) = 824.0 L .
(5) = 824.0 | S Y S
(6) = 8B24.0 : '

Papet St{rrness-velues

x(1) = 2146 1bs/sqin (millions)
x(2) = 33.5 - : , ‘
x(3) = 45.8 S ' )

DR (1) =
. (2)'= 18.0 . : .
(3) = 16,0 © (with a 2.5" diameter hore)
(4) = 18.0 ’ . .
(5) = 18.0 s
(6) = 18.0 . . ‘ ‘
(7) = 30.0 : ° :
Effective Journal Diameters . . ~
DJ (1) = 9.0 inches
U (2y = 9.0 @
. (3) = 9.0 .
(4) = 9.0 - . *
(5) = 9.0
~ (6) = 9.0 / Y . K
‘7) '?4)‘.0 ‘ ’ \

[ R
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3.1 Calender Stack Data (cont’d) Y
wt4) = 69.1 1bs/satn  tmiilions) '
x(5) = 61,0 o g .
o x(6) = 99.8 { B
The followina giata“ w,é‘re 'lxé'ed in.,computina the ahove valuess -
’ . 1
Sheet width = 162 inches )
, MNip lpresqures , .
© ' Nip | 81.0 lhs.per linear inch of sheet width :
2 162.0 - , .
- ce e e 3 2217.8 -
4 308.8 e e
5 ‘;89.8 ’
¢ 6 470.8 6 ~ '
. ) "Roll Material PrOpexjties_
DS = 0.268 lbs/cuin o density
. YM = 20,000,000 1lbs/sgin modfilus of elasticity ’
; ) ' ) N/ ) El .
| . Number of lumped masses per rqll gy
- AN "
Upper rolls o} ’
. Bottom rnlls 4 . '
' !
s A )
. . {
. ! - .
" -
- % ) . N .
¥ Q . ) ) ) (' .
' ) - ) \'f\
/ Py
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‘ COMPUTER OUTPUT ~ .. ]
e
I \\ EIGENVALUE, 1 58,63 EIGENVALUE 2 - 34,437
| . FREQ. 1 72,00 FREQ. - 2 94,05 -
i Y ' ~ ﬁ i
] VEGTOR 1 ) NECTOR - 2 n
o ? < N : i '
S 1,000000 1.000000 . .
,‘// .131923 . \ 0925625 Y
e B h s 419601 *e
.  ~eh19601 g I =2 38824
\\' 0131923 @ ' 092562
AL 1.000000 - 1.000000
«903923 v . 386275
. e114962 " 0030456
4 375000 =¢136969 -
X «e375001 : - =¢136949
' d18982 W} . 034486
¢903923 T e356278
$678270 -e162592 )
A "« 078633 : ~e811163 . |
° -. 325586 " <877628 . :
' - 325586 e +OTT820 o .
«078633 11143 . :
) ' s678270 Cl e -,182892 . . . . ]
, * «6UTAE3 -566623 . _
) 2073108 ‘ ;———-)\ e 048784 _ - ) j
e 207862 Y Ceaersy o T
CR - 267862 A ST 1 < 1 I o |
~873108 -..l§2Q~ ,. R
0607463 . T T) T3 E :
80206 s =e729793 -
- - +0853880 ’ . e '0'“’190 \
% “e 192047 “: // +257136 S
SENTTIS . /;., 0287136 |
«05388¢> S -, 047190
480284 . ® . ,729793 |
+ 425690 R x -48065931 ™
, - «021108. . Lo g -.007689 .
¢1 IR ' ) ‘ee 143867 5 ' N 02'52532
- T 103567 S - , ' 262532 \\\ , ‘
2. ' W« . «0218 < ' . ~-.nnrq§9 , ~,.
s . o « 425690 ' -,8089 .
% e v --lb!&bl . Ty L 122097 - %-~
b L N Yig -  o2S62TY g
1. g ' . 631 - 284274 :
i L - . -.o~9tsq N ks - .1325&1 L
¥ > ~ el . ; . ‘
h N or ~ m : ///_?/‘ -~
Y | o - ” e 'i :3&
" \ Lo ' - ' 4.;.,.:,“ N " " - '
N o
; EE‘ Sy {ﬂ in -,\wﬂ,?@w”ﬁ x;* s hx‘ 'ﬁ\s’ T‘;} ém}ss !». M;‘ ,




;;‘ - Q- \_l ' . ' ) . -~ . ) .
; ~ . . ‘ .
» ;' . ? ' £, \ @ L4 k \.\ “ ' > . S '
. 3:"' - ’ .= . eb
'l ;‘ q ‘\ L} LN, . K] . 'a
- COMPUTER OUTPUT® ((CONTINVED) =~ -~ - o .

¥ I
. - .
. ; 2 o B ~ . .
) . ) o »
. ' [N i - ; J . -7
N . .
B » ’ 3 » ) Rt
) ', v om . . .
“ ‘ . : ' . N s ‘
. . . .
1 . . .
. .

“e
7

EXGENVALUE '3 20478 EIGENVALUE & 14430
; FREQ. |’ 3 121,00 - FREQe b 168,78
! . i o - ‘ :
¢ 'VECTOR 3 k\ . VECTOR & °
LN 5 ‘ ) . ) e ' ‘-"..
. ~ G (“ \\\ A . ‘ :
- ; o o .
o ' . i=g1.000000 [ | . ¥ : «456140
I Lo . =e037294 N ©e006591 -
| I I Ty 13 14 ne * S -s1 2063} —
o { 2320970, -~ =el20631
, . ei =e037291 : ’ .o 006591 .
) L i =1,000800 e © +b561468
: . : +695832 . =$.000000
< ; + 017955 o A 013586
Lo . SF <=e218073 | L «270893
. | K -2218073 L. « 274093
‘ ' ; «017955 BERRR ‘ +043585
z +69%632 . . =1,000000 .- ...
; «918819 : o «10%069 . '
R " o 002899 - i o i “«. 004554
‘ . 8§ 1 =e337030 | L .e@33700 o -
. =e33703% | -e 933701
‘e "+ 002099 : =e 004558 -
‘ o L. e9188ad . , «185069 '
883395 o PN
: .0 e0%ZS90 ¢ L. - T <o 807003
~o177189 ‘- . 'Le2151859 4.
eei??189 ° E - =e2151%9 ° -
«917998. , s - 807413
. o553395 - - . 773084
-e122327 o ¢ « 396423 .
'« 01MA9L e e « 906969 L
|, «020708 T edd21ma2 ‘
Jg20700° . . . AR F T T S
Y Z U LS | 5 " 006969
. egt28327 .. . e e398423
T ee?T6M26 - - : -.35:190 .
- + 039248 e, 0039980 ' -

«100116 e uei0ss” . 7

186318 - .  +061038 PR

T L e30Eas € ; «839980 e
) 7"Q!‘ L o . -.3%51150 -
ST L TS ' : 4 0. 5099282

P613%9 Lo 2103638
| 2261389 - . : o 163432

e 103943 o Y B 899282 ¢
« 8 ) . , - . ; . PR .
N . ' . .
' C 0‘\ Iy . * * oo, .
. N * ~ —~ r.‘»“fﬂ‘?_ﬁ B W e s e
o T KR ’ . g .‘\» * &
Lo = S e Y O ~
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- VEGTOR - §..

L
. .
s‘p'l\‘ ]
M 2

1.080000

. '5359509 @
-0 364977
{91y
0 349489 .
=1.,000000
“0966530
=+ 330140 -
4329017 .
e 329047
Co - a338160, .
"0966350
e, 733882
T =e 328103
=+ 340410 "
.+ 3401140
"+ 327103

T =e 733882

«705177

1‘12“’13.3 .

=~ 239096
«239096

.+ 267438

<o 708177

C 4553801

2186135

"~ «106138

194832

- =e553801

X V41144

e 152265%

= tINGNT .
130947
. 452268

v we 2BBTT

. "01!76’7

. =e 081289
. «881239 '

. o427

c = 196632 . -

-

1

P

cohnurta ourpur xcouttﬁueor

N~

.\‘nav:" b \
' . *.
CEIGENVALUE: ST . 13,48
FREQ. -5 . 150416

*

e

‘“ o
EIGENVALUE &

FREQ. )
“ kS
VECTOR

o

1.000000
a -+353130
v =4331088
«3310%8%

S " ¢ 393130
" =4.000000
T «398TM

o T, ., ®e125818
. o=l L1 1Y

R RS § 8084
0129518
-e355701

= +164886,
«0T7h20L

2066996
=,0606998

? - we Q76208
' 0164568
«+33953%
o18%679

_ «178594%
Sel78%96
S ‘01Q9679
v 539838
n BoBhB8M21

) T 4230683
L 209606

‘ . =e289600
«s230663 .
4.5“‘521

, 002491
x232551

\ T er98727

‘ee198727

T ee 232864

Y 141}

i -e138272
c =e2196h7

‘a

11.01
166,19 °

ﬁfll‘

‘
13 /

a

iy

. o2194MT
388272 -

4
)
LA

N .
S .
.




, EIGENVA

-

' Y. ot
s !

. ‘COMPUTE

< "FrReEQ,

-~ 1

v

R OUTPUT

-

Lve 7 -
T.

VECTOR

-+ 121903
« 010544
’OZQSZE

~ + Q24524
« 010564

- e 121903

"o 519887

L e (9030

= 130432
“e 130432
w 019030

e 539547

=-1.080000 °

0114108

L 'e209988

"+ 269988,
0114108
=1,000000

« 204207

«803333
-, 061216
-s 061216

«P03333

0201207
873014
-, 0273%1

. =+166A91
-e 1664691

- 827351
© . «OT3884

-+ 03807

"« 025084

-+ 001032
=e 004032
«02500¢

“e 003607 . .
+ 079082 ,

‘0122929
122929
“,7’5‘!

(CONTINUED)

.
\

‘9.9(9 '. t
1763403 :

Al L

EIGENVALUE &8
FREQ. ’ ‘

/

A

8
VECTOR
4

~+3590p8
-313260
«313240

.
«359068

-1.000000

1.008000

v

‘823
192.13

’
)

v

'o'?"%ﬁ'

200032
262636

| *e262636.

<.280032
778893

L =e8T0014

« 374829 .

+310960.

'031‘,50
=s374829
. «820016
6118908
o 147738
«129%0¢
«s 129504
o1 47738
2511098

« 2334684 -

~o 095794
- =ef6881

068816
085794

-+233161

. oO000N8

= 282887
“s193070
© +493070

2526087
=s080008

=y314063

';.Oi‘h."

0190878
A"~. ‘




. , ] _ . 83
/ COMPUTER OUTPUT  (CONTINUED) . :
N . 4 1
p . o= ' : C
-, . 'EIGENVALUE 9 7.514 EIGENVALUE 10 6.20
' . FREQ, 9 201426 FREQ, 10 221.38
L VECTOR . 9 - | : VECTOR ‘10
» . . : o ' .
“. N 1'; 8(' . \ ) ° . ﬂ \
. '.‘,0'02'3”6 . . h . «h38800 ' '-*
. \ ; . «00%179 : LA e,180627
0004743 o , ENTITITE
2001713 P ' «120848 :
: X «005179 . : 1680827 - ¢
' , -g023956 . - . e ~o4 38800 -
128795 - o', =14000000 -
’ o . =+003338 TN X ' 36335 : T
. | . *+032563 . . «293783 .o
: = 032%63 ‘L . , ~e293783 - “
- . =e003338 © =e36955h s
7 1126798 .1.000000 -, . . .,
} . e535337" ' . .e1468992 .
- _ 076208 =+ 068198
., : , : ‘-.11070~ -» 954081
| I W "1 e118704 o , 054081
= - .078208 . , - . 068198 S
- <e 533337 Ce T =e16992 5
.Y f.000000 . - © 814338 L
.= 083398, . ¢ »e297261
[ —.z0n281 . © =.240800 :
: ~e 204201 . v ¢ " o200508 N
= 083398 . . e297261 o
' 1.Jo00000 . T “-.oasssv L ,
g , -v 94g307 - . - 03961837 ./ . v
* « 079%23. T el '
At . +187218 . L 2120686
2 « 107215 S o 120658
O . 078823 . _ s162089 -
» 2913307 - G0 " =e 394163
| =e183422 2L el3aP387 - -
* Y T T31Y D Ll pa2i008 . :
+ 068605 S ‘;;orosur L.
o Y LYI 11 ‘ ' «g78307  ° '
, 3 ™ ] IYTY: Coesd2e00L.
o =oi83022 » RS 1% 2 7Y 2
- L = 096205 Y 7Y 1Y 5
- . =a 149998 ) »162835
BRERTS c. =e449995. - 3 =.18263% -
Ly N B 1 1 1 e o ‘ -.zeotlz "
- 4 : e R .
N R R . ’. . o T
Co ) ey . « o ol . . h' 7 " \ B .
;; ‘ . s a w0y "%*‘\'j: ) U e «c:f 2, ,:“.‘:\‘ ){‘8 ? A . v .

o , L D N » .
%‘uﬁ:@xmmﬁ“mx —
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‘COMPUTER OUTPUT  (CONTINUED) .
’ ,."3 . r
) . : : e
EIGENVALUE 11 5,38 EICENVALUE 12 . 8,28
9 FREQ. 11 238,32 ° FREQ. 12 260461
VECTOR 11 . VECTOR 12
. . ’ o (
- * R ’ , ."‘ T I.
- o ' . =e U14011 «1.000000
: / ' . 009930 no «736830
-« 005899 . : = 9182
S =4 005899 ., 0 - 049182 .
. « 009930 : " «738830 ¢
e 024011 : «4,000000
. -+ 809323 .. ~y9283i2°
- «009367 . 8T2872
-, 006685 ¢ . *eh08517 ’
. = 00688 ; -«403517
.« 009367 872872
-4 009323 v *e928312
, -J080201 F T ee8510617
«0137846 T \ 37239
3 + 000853 —~ T es 308482 .
+ 000853 SN ~s 308082
‘ ‘013784 . . 372394
. - 060201 , " «,8510617
B +136584 - AR N 42 T
: -y 009}’3 , : N o§.3332 {
- 030137 . L AN L =a237118
. - - 030137 : T T =e237118
G e : -.809458 4 . «0e3332. -
L. "« 13858h ", A 124213
T =eATO8A? L =e336148
¢ ‘e 054820 T T J2e0088 -
. N1 ' v “0163558
. «880 746 p Lo =ett3e88 . -
, ST 1 7Y 119 _ J200288 v
, Y178, v =o336486 .0
' . B 1.000000 Lo . =e 28139 ¥
W L eedUSTME, ¢ ‘ .t~;rt$f
' -, 181932 ; C es 8009t o
Lo =ed81932) v oy e 000911 g
.- R L LI . S0 JANATRS:
o - 1000000 " TR YT 2 | 1 N
Lo : . e 108791 —~ ‘ B T 1YY A
. o S W E318368 , . o weQRO3NE -
A; 231936 . L eoUREBAE
o - ‘o 100781 | S N/ SRULTRIIRY T D 2
. \ . . ‘ .
} DAITINE I 5 Ry : ' y
vc~4'l:s - v"?r“"é' J»IH&« Ak e .“n A;‘Di'!« 1/“:5»:'- oy ' ¥ O '
S N \ s.' \;’tﬁ s
5 K [ Sy, (5 P R
! IR -iﬁ‘v\w , W TaAls e weer vk




L

3

U 759899

ST T eesest
~e505834 |

S390N61 . .

<

'EIGENVALUE 13
FREQ. 13

VECTOR

=1.000000
+ 900101

- 542022
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"/4,1 EVALUATION OF THE MATHEMATICAL MODEL AND-CONCLUSIONS »
In ordép to evaluate tpé validity of tﬁe ﬁathemaﬁ;cal mode}
-an&’the computations pqrrormed in the compute} program 'thg :
'.anqrysis éﬁouid' ideally be tested éqainst a'caippdar stack
whose - natural frequencies end natural modos of vibration are
known with a reasonehle deqree of accuracy. Unfortunately"

such ’inrorhatiad is not rdndily availahle. A 'less rlgorous"

and less quentitatlve assessmqnt ot the analysts m ay ba Tade

ot .. by applytnq it to an actual calendpr stack and’ Judginq how
.. - . reallstic the computed‘natural frequencies and modes are and
whether the effect of varying certafn sfStém parameters i3
. e {n agreement wih expectations ‘ based ‘ép basic physical
C principlns which qpvern the behaviour of ‘vibrating systems.~
Owinq to the lack of reliable field data the latter approach
has been taken to evaluate Yhe analysis presented in Chapter
s 2.;The numerical results of the analysis of an , operational

calender stack'\wereipresonfed in Chapter 3. Based on those

Epsults the followling obserVations can be made. -

v

? \ q , ) I .

The first ‘two natural . frequencies computed trom the B
correspond&gg eiqenValues of the solutfon were 72. 0 and 94.0
cps respactively. In a continent wide survey described in
phaptpr l”all'newsp}int machines with a barrlng problem were
reported to bar at the rate of 64-84 hars per seponq; “Tpe.
. f{rst‘nafural fraquency computpd in the qpalysiﬁ'rails right
in the center of thisjrangq'whglh the second one s Just

outside it. Thiy is a very sncduraging fact as' although -the

) € .




k vfbratinq in that modg:.

| - .. e
4.1 Evaluation of the Mathematical Model (cont’d)

. | o y ) S CT
barring frequency ’ef they calender -stack involved 1is not
known, on ) the basis gf'the E‘ahove' statistics ft 1s Jquite
unlikely fb' be very far, if at allAeutside the 64-84 cps
ranqe. .The flrst two or three natufel rrequencies, thererore
appe ar tn be quite realistic.’ The nawgral frequencies ot the
highar mndes ere more difficnlt to Judge. One can -only say
that relativeuto the first two or three natural, frequenqieé

they, too appear to be realietic. It might 'be noted here

© that both heceuee of the hiqh rrequencles and the nature of

the mode sheﬁes'lnvolved the natural modes higher than'ahout

the fifth or sixth mode are not 1llkely to ‘have - practical

importance "and are probably not’ reliable ror a model withe

only six lumped masses par roll.

uThé,eiqenvectors‘plotped in Chapter 3 1indicate 'thet.}the
first four mode shapes are various combinations of the first
_bending mode of the rolls which make up pne calender stack.

This 13 in qualitative agreement |lwith the fyeld reports"

| discussed in Chapter | according to Which the uppermosﬁ anid

. bottom rolls were observed to 'vihbrate in their first hendinq

mode during the herring phenomenon. Also, as it was pointed
wout in that report the herring pattern produced by severel‘
eotherr hagrinq Fa;enders .1nd1cated that 'the rolls were
It is therefore Very.likely that
most or perhaps all calendﬁrs har in that manner. The fact

that ~ the first four natural modes computed by the analysis

v
. \
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4.1 Evaluation of the Mathematical Model tc‘ont'm,

invalve the first bending mode of the rolls makes the

. probability of the occurrence of that mode large ‘and further

enhances the,credibllity of the results; _*L

iy N .f

3
hY
-

Th dianram bel ow illustrates the effect or vary&qg some ot.

the qeometric pa(pmeters and . the p aper stirrness.
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Tha effect: on fﬁe behavloﬁr of ﬁthq celender stack is 1in
qu&l;tatdve agrebment with\expectations based on rundamantal

v
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4,1 Evaluation of the Mathjovnatlcal Model (conegd)
conéiaerations and hppear to bhe roalistic quantitativoly(
Increasing the width of the calender stqck lowers the
natural fre%uencies' - and | enlarqinq the roll diasmeters
increases them. The sti;?eniqq-of:thq‘ springs  representing
the paper between adjacent rolls ‘increasas the natural
frequencies; o . " .
I es. ‘
r / Q
- : 0 s { - _ -
\ . ) A ' 1

'ALL - ROLLS

- en e, *—_

_LOCATION ‘OF. HEAVIER WL N STACK

-

.,'/
s

T
e

Fiqura 23

1

-+
3

-

]
.

L

1..

;

1

L

Thq ertect on the- first three natural frequencies :is

small

but it increases with the ordor of the;médes. The 3Jrcct of




“stack on the whole seem to he realistic &nd reliable they do -
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ﬂthé roll in.the stank. as'iilustratéd in the diagram above,

" can exert on -the stack. While the results produced by the '

. _ 19
4.1 Evaliatton of the Mathematical Hodel (cont’d). ., co b

r

changing the diameter of a roll on the first natural

frequency . of. the calender stack depends on the location of

o

The deqree of the. infiuenca dacreases as the roll”is placed
deeper and deeper in the sgapk. " This ﬁs tht would Be ‘
equctgal intuitively since the, deeper the roll is in the

stack tha more consirained it is and the iess intluence it

solution of the proposed mathematical model Of the caiander

. axhibit one anomaly which, althouqh it is not considered -

b

It appears that the mathematigal solution will produce two

" rot. intended to assess formally the reason for this boftion -
. of the rasu%ts, from the nature ' of the énomaly it weuld -,

appear thaé the approximation 1ntroduced 1n eValuatinq tha

signifiCant is of inﬂbrest and as such deserves attention. .

It will bhe discussed next,, .~ N

-

zaro trdqdency modes pér each upper.roll whose ends’ are not

constrained. The oorrespondinq mode ‘shépes are those

represantinq rigid body motion. In each case ﬁhe ba ttom rﬁgi

whose ends are constrained remains,stationary. While it s

flexural potential enerqy in the upper - rolls by regarding

them ‘as free-free rolls is the reason for the phenomen

the procoss leading to the constraint matrix which ral tes .-

tho absolute displacements of the elements of a rroe-free
l,. - Q
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4.1 Evaluation of the Mathematical Model (cont<d)

“roll ;o'thei; displacarfent relative to the riaid body motion

~

two riqgid body modes ‘are assumed' and imposed. The elqanyalue"

problem resulting from«the'mathematical model carries inZIL\

the information ahout the possibility of the riaid hody

motion and 'the algorithm ~ used to solve the éigenvalue °

< .

> problem’ searcheS' for -and forces those zeré ﬂrequenc¢

'Solutiean That the sblutions are fictitlous can be seen

from tne mode shape diagfams by 1nspectlon. Two of the zero
frequency modeslhave,heen plotted in Figure 21 in Chaptgr 3.
In lhnsn-.and in all the other zéro frequency mode§ all of
the uppef rolls. underoo riql& body motion slmultaneoqsly
T Twhile the— hottom~roll—remains stationary. From a qualitative:
considerntion of the spring forces involved in the physlcal

model of the calender stack it will 'he apparpnt that the

“bhottom roll cannpt remain motionless while one of the upper

rolls moves ird Anylmanner and that all the upper rolls
cannot undérqo rlqld'body motion simultaneously. . In fact two

adjacent rolls cagnot have«riqld body motlon simultaneously.

A 1t was pqintnd out qarlier the ahoVa anomaly is a result

of gxpressinq the flexurgl potential anerny in the upper
rolls as that of flexed \}reg-tree r6lls. This approach
qgreatly éimplifled the .computation of the flexibility

influence coefficients: Tor.\tne' system but introduced an

approximation and rééult?d in the rictitlous " modes
;

discusszg. In view of the nature of the coupling be&ween
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* 4.1 Evéll:atidn of the Mathematical Model (contd) .
‘. Q .l : " -
R non-linonr springs between them) a-more involved approach . is'_

. nqt consl&ered Justified or 1ikely to he less approxipate.

«

. » A
c L In summary the modal analysis or the calender ‘stack when

o ' . applleg to an operational prototype producad results which

a .. . _are In qood ag{aemont with availabla obserVational ‘data of
- ,/ ,
o cqﬁender .stack behaviour in qaneralu The effect of the

various neoretric and other stack paramdters as computed by

-

o ‘ thp modal analysis proqram appe;? to be correct when Judqed
> 3 : ' on ihe basis-ot bashc physical principles “which qovern the
behaviour of vibrating systems. A mora rigorous quantitative

o assessment of the _analysis will be POSS Qiﬂ when 1t is -

- e

applised to a calender stack of accpfately known““w~~-

{‘charadégristics; -
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cm?m-:u PAPER STIFFNESS MATRIX.

. ) ‘ . .

& R . ¢ i

+Thg diagram below illustrates the physical model of a two

dimens ional,  six-roll, fivednlp calendar stack, As an \
example :the mass - of each roll has been 1umped into four

“point masses. Ideal sprlngs are assumed to represent the

s ‘e resilience of the p paper passing thréﬁaﬁﬁlhe nips. e
¢ . .
)' ‘ . . | 4 V /,p /
l . , . . " \ ‘ ’ . ’ -k!
i { 2 3 4 5 @
¥ ’ G - ) Y wpm— '0; - 0 v O
r ‘ | | ’i } K. E '
& O~ : ' ' ) Q2
, -, - ‘ z\ /} :EKZ ) j
3 c .o p 0’6 -
v}'-‘) E. ) EK’ } \\
4 'G ) W/ v v N 024 .
h g " ’ Y lbi | }IK4" N } '
. 5 O , o —O320
. ' // ’ .
, z. ? }ks L ‘- '
e oy OO~ e o
- e .
‘ Figure 24 . ‘ ‘
. Each ‘lumped mass of a ,roll.“ except the end ones which" "
, rn . e o .
',‘ (. represent the Journal and bearing housing masses and are not
. i . 4 , N . S
. normally iq.co tact with the psper. is coupled through ideal
. ", ‘ sprinqs to its counterparts or the adJacent rolls. The -

~Sential enerqy 'ot the ahove system due to the deflection‘
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paper Stiffness Matrix (cont/d): . v '
l of the ideal sprinqs alone can be expressed as follows

VS = 0. 5(1(5((9,— D) + (Dg= Do) + (D3- D) + (Dg- D1 +
v : + KS[(D,- D ¥ + (Dg= Dy)* + (D= D) + (Dy= Dy 1+
: . +|<sub-1a,,)+(o, D.,)+(D )"+ (D D)’ )+

‘ + RS[(Dy- Dpe" + (Dy= Q) + (Ve Dy’ # (Dpy= Dot ) +
o * KSLOE Dy P+ (D O+ (D Dyl + (Das-. D,.) )

~

It »cén he shown that in matrix torm
o # '
VS = 0.5(D) [KS1(D)

and .1\ * i ) . ")

- ! ' . 7
- : (3 VSA D= 1KS1(D)
. . ; .

performing the differentiation -leads to

 KiDg
KnDt
KiDio . .
'KUDH ’ i

Ke )Dg= KyDia

K3 D Ky Dy

- KsDg* KsDat .~ e
-~ KgDpi* KsDgz « o

= KsDu+ KsDss . L
- KsDgs* KgDaa ' : :

F

irom which [KS] may e constructed as follows.

3

. /
, s , . .
® ‘ .
- i ' bt .
. . . . ‘
o

- 3 e
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Paper Stiffness Matrix (cont’d)

The .diagonal terms K,,Ky,Kyand Kgcorrespond to (K, + Kg)y (Kg+ Ky)y

(Kg+ K,) and (K + Kg) respectively. The paper stiffness matrix’ [KS]

is generated in. the fi*st ‘segment of the ' computer

nips in the calender stack,,

program
(doscribed in appandix D) from the 1nput da;a. namely the nuﬁber of

rolls NR. the number of 1umped point masses per’foll NN and the

paper stirfness constants K,.K,,.....Kﬁcorrespondinq to the‘/(ﬁR-l)

L

S
o
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* DETERMINATION OF PAPER STEFFNESS
‘ - /‘I " ’ 14

N ‘ ' h bl. ’ ‘3“‘
g Several investiqatnfs of the cal%nder harring problem on

1 1

newsprint machines: represented the paper being caiendered as
. an ideal, linear spring and attempted to determihe the»best
value for its stiffness [Ref.-,(8),(14),(23) and (24} 1

e A '

e — e e e b

Chapter 11. In particular ‘Wahlstrom, Crouse and Davidson — =~

obtatned- numerieal values for the Spring constant as a
function of nip loading. Their results have’ éeen plotted in -
Figure 25. The nip load and the paper stiffness are
expressed on the’ qraph as quantities per unit length of the
t nip and sheet width respectively. In ‘order to' obtain the .
; tdtal spring constant attributeble to Eﬁe entire sheet the
8 value'read from the ordinate has to be_ multiplied by the

PR

width of the paper sheet, Crouse assigned a single value to

o the constantoassuming it independent of nip load. wehlstrom
used experimental means of deteemininq the yelues of the
spring constant over a wide range' of nip ';oedsa' Davidson

t'f .. used an empirical method, based on work done by yardbn\et.
aie (21) to obtain values for the bprinq _constant. The

»
method invoived the essumption that a good approximation of

I

%

o 1,
W

B T AR S

- 3

WA
;

the spring constant or the paper as 1t passes through the'

nip can be obtained by tekinq 25% of the paper celiper erter

‘e nip as the magnitude of the elastic deformetion which the

T peper underwent es it passed through that nip. The ratio of

1 the nip ioad .te this elastic detormetioﬁ is. then taken as

c the erfective spring constant at that nip. The: results ot

/ . - -
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Determination’ of Papar-Stiffness .(cont’d) . .
- . , ‘ :
Y Wehlstrom and Davidson'aqree reasgr)ably well in the -higher
nip load range but differ)dongidefably at lighter nip loads.
© 100~ PR ,  | ‘
A L | :
: 8.0
/)
' 7.0
* 6.0
& : As'o-
?Q
. % 40A
. ’s '3‘9-
N .
: ' 't"s .
koS ,
g '
=3 g.. _‘
. ' 7 . 5 ~
. f 1.0~ . : L | )
. 09 - SON'S METHOD (lf) o,
08~ : | . - ,. }
, T 034 ", £ WAHLSTROM'S METHOD (8)
] 08 .. " . === CROUSE'S VALUE (I14)
; | ' . . , ) . . d A
; . oA T | ST I |
| 00 200 . -300 400 800"
, \ C L. NIP LGAD (Ib/in sheet width) o
. o ‘ J Cos "Figure 25 R
4 i ' ' ' . S N~ ’
s
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Determination of Paper Stiffness (cont’d) ‘ -
This is quite unfortunate “since the loade d&t  the two
» -uppermost nips~ where most of the" herving deformation take$

differ

place fall in the range where the two .
)Q

investigators

the most. ) a

e"_lnhthe co@gg5ations_presented here the numetical values used

to repreqent the paper stiffness were ohtelned by. teking the

average of the. results of Wahlstrom and Davidson‘ There was

no justificatiog for this choice other than that there was

" no reasonlto consider.the'findinqs of orie 1nveetigat6g2more

reliable gthan those of the other and it was outside the

the

-

- {ndependently. For each nip' the value of

A==

constant Is- obtained by computlng the tota . we 0

9
‘rolls resting on the nip and determining from Figure 25 the‘

.sprinq constant correSpondinq tothat nip load, The ohtained
Value. represents thé total

spring effect of the paper
{

passing through the nip and is expressed in lbhs/in per foot

L] or

sheet width.. This flgure is then multiplied by the face
™~

width in feet -and the resulting total

spring constant

€

computer prcgran. In the proqrem this value is converted

into lbs/in. ‘and ‘is divided by" the number ‘of.paint massas
thet represent e%th roll in order ' to lump the paper
" stiffness. T . - ‘ -
stiffness. 2 N
L] \
; . | ' ‘ -
-\ £

[

\if\ -

paper, spring -
() ; ,

o

&

JENU S——

~scope .of :thie work to determine'newsprint paper stiffnessj .

B
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CONSTRAINT MATRIX FOR-THE UPPER ROLLS )

! . . ¢

The upper folls. are qssuméd to he capatile of rigid body

"., : mcftioqg‘ such as translation\inc'ilrot:..atioﬁ as well asv’elastlc /e
de’f‘orﬁatior‘\.‘ Eriin'ce. the kinetic energy of 'sucp-a system'
depends nn t'he ahso-lute motion whereas ifs hoténtial energy
is a functiomof elastic deformations alone, 1tlis &cessarw _

to {elat“e the absolute motion of the roll to the moti"n of

) its patticles relat’iva to- the riqid body motigns. Using an  —

. ]
approqch described in Rer. (27) ‘the two motions can be . \

related for a lumped’ system, such as the one below ‘as .

*

 follows.

.o IR /" Fqure 26 - <
: 1 displacements are suﬂ?iciently small so that.

Py s
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'.Q q‘\ . . __-\/ ‘ “‘
. Cens'traint MatriX,.Upper Rolls (cont’d) ‘ ‘o oL
5 . . ) -~ . " ‘
9/ . rotétion; The absalute displacement of( a —point can be
written as . - A R o
\ - _ . ' . ‘ ) '
" Wp= W+ BoXi# Wo = & o :
-1 ) . a\ 'B‘.., s
where w, and. 8,are riq'id body motions and W is the elastic

f*dirspifacgmen'tf‘of»Apoin_tﬁi'hwhan ;‘eqargi,n;; the bearrl‘-__plarﬁped at

the center of mass. Wirepresents the absolute displacemé\rﬁl .

‘ of ‘point 1. In matrix’form |
' =g (D) + 800+ W) , (. ‘
- . ' | S |
1f the two rigid body modes are |
- ; . \ :
(W), = w, (1) | |
= ) ;
and & - . - L
—— ;‘ _’ VP
(Wip=8 (0 .
N . ' ‘ T ’ N H
o .- then from the orthagonal ity reliationship of~natural modes
’ ’ ! ! ' . } . \“’\‘\l -

Ny (m) (H)g= O

B ’1 v
}" - . and
. . @
. : fW);;lm.l = 0
i h o ' . . ‘\"
, Substituting (1) into equations (2) and (3) gives’ .
‘ - . b g T T ) . © . . - ’
S (DT EMICD+ 8, (DT IMICx) + (17 Imlw) ~ O . o
B " . ' R e . }
, o ‘ ' S . . (4)
e T T S . o
. W (x) [m1C1) + @, (x) [ml(x) + (x) (ml(w) =0 a : a
8 ’ o N \ ) (/ » L .. .
S ~
X ) L ‘ L .
. . . 4,.
k: ' ',..\) :s s 3\ . 1
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N R . Constraint Matrix, Upper Rolls (cont’d) .- Lo
1\: A . ¢ k] T .
| } IR ' ~ AN :/
. R .+~ . where . . - o T
‘ L ¢!t '. s ' | . : ‘ ' o , .
N S , 7 o . -
\ '(l)\?vﬁ(l) ="sumtm) = M S \,
\- ! . . .‘ . ‘e
‘ S TImI0 = 0T i) = 0 : 4 ey
e , N . ‘ : ' : Vel A
' ()T ImL(x) =*sum(m x() ="1 = ®
S o B AT
then.from equations . (4) and
W= = G . d
‘Pr_‘d /’/ &. ‘ ! (6) ~
. 2 IS M €2 1) h Lo
) P : ~
- Equation ¢1) fan @hen.be rewritten as,_‘ ' R
B /// . ! . -~ ! . ) . ’ * ’
“( O NE = 12O DT I W) = 1T (00T ImI W) + (W)
or : . A .
| (W) = (L11= AZHCD DT Em) = 121 (0 GoTimd W (D)
- ; | . |
b e ' o\ (8) .
~ .. . . ) : * ‘ o i
*‘ Where (c]-1s the constraint , matrix. relating. the absolute
_ motion to the motion relative to the rigid hody métion
' N i W N . - ¥ : —
oo 1= (L1 =J1ZM0NY 00D Im] = LT Cx) (1) (9
| ) SRR a | C
4 - ' 3 -, ,
\~ [} <
LI ' ‘ E /
< - \ ) '




.

‘ﬁ"

, _ 134
FLEXIBILITY INFLUENCE C()EFF&‘/IENTS FOR UPPER ROLLS ,

For the computatioq& of t e fl#&ural QOtentiai enerqy the

upper roilséware assumed - be unconstrained. ' This

'essentially amounfs to assdhinq that the mode shape of the
vibratinq roll will not be siqnificantly different from that

of a free free roll. The flnxihillty 1nf1uence coefficients

—— din

are-anot defined for- such a roll, Tbe det‘mination of the
: stiffness influence coefficients on th -other hand i1s a
cumberSOme process, For small dlsélacaments where the
l.)positiog of the center of mass of Fhe.fdll does nog Ichanqe
relative to’ the roll the elastic,displacements of'the roll
particles and thexefore the ?lexlhility of ' the' inélueﬁcev
coefficiengs can be derived by conqiderinq the free-free:

nbelow.

")

LA 5 e,
N A s -

ro——
s

B S

' . P‘sJ % " c’ _éJ ,7

” v '
- , >

3 . T
Esm) . s ‘ ' 2E(sTR)

- -, Flgure 27 :
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Flexibility Coefficients, Upper Rolls (cont’d) -

-

Tﬁh parameters not.ldentified in tbe d@aqram but'USedhin the

following discussion can be ‘defined as follows.

. Lo

. - | N = number of lumped roll masses , ~, \

* & N
' SGL = FL/N : .

‘7 . .

' -————.- STR.= moment of {nertia of roll cross seﬁtions

STJ = effective moment of lnertia of Journal eectionq
E = modulus’ of elasticity of roll material’
< [ESIF) = flexihility matrix for roll .

e
£

"Applying gnity load at the lumped mass at = 1 and “using
the moment-area method the flexibility influence coefficient

A

ae

+° - SIF(1,1) {5 obtained as follows. =y
| B //) STF(T, 17 = CI7ECtSI/STIHSIAI25I43)—+
| ' ‘ . ~ . ’
f : ‘ + (1/STRYI(TL/Z - SI(FL/ (ZFL}é + SJ) +
' . : , “+ (5J)(FL/2) (FL/4 + SD)) _
\'- . y , » -

: . = (I/E)((SJ /BSTJ) + (FL/STR)[(FL/24)(TL + SJ) +
1 ' o +SJ/8)(TL+2SJ)])' .
) o . ' © ¢
f - P . ' o ,
E Using the eguation of ‘the elastic curve for a cantilever
F ar ne3m*the~%%ex%b%%#%y—iniluancawcuafficienig can be obtained
4 L for the left half of the roll as. follows' . '
& : For j = | and .lt1<(N/2). loadfat J, daflection at 1
d . : -
| sn=<1 1) = u/E)m/(zssrn’)uxi - 3TL/2)* (xd) + T /41)

= (1/5>(t1/,;24srR>n4x,1’ HTLY (x1) + TI' 1)

) ¢
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Flexibility Coefficients, Upper Réilb (cont’d) .
. s : P B \
where T , .
x1.= SJ + SGL/Z + (1 - 2)(SGL)Y.

= 5J + (SGLY(21 - 3)/2 _ . -
) .

. R ’
For j»2 and 2¢i¢(N/2), load at ], deflection at i
N . ~ Q ‘ .

1)

SIF(1,)) = (IVE)(L17¢6STRI I [x# = 3(x))* (xi) + 20 ?
. } R “‘:‘ 0y ,

whetYe

x{ = (1.% J)(SGL)

| R}

| | x) = (1/2)FL - (s6Ly(2J.= 31 - . . =
\?»j ) - . ) 4 ¢ o : "" - . .
In this manner the diaqonal,qnduéne half of thg off-diaqonal
. o elements of the flexibility@matrix for the left half of the
- roll are computed. TH.'Iemaining off-diagonal eléments are
) I . obtained "from the M%xwell regiprocity relationship. The
. /: flexibility matrix of the riqht hand half of the roll can be
' | . obtained from,symmetry since S f o
| L g o T R
. 0 SIFS}.!) 2 SIF(6,6) - . . E{// .
SIF(1,2) ='SIF(6,5) “etc. .. : '
o . - } \ ‘\ ii
' . The resulting flexihility ‘matrix for "the roll with eiqpt
i o lumped masses takes the form shown below‘° oo
'~A' ,A.b'qc'd ‘0"_7'_-9 \\n‘\ . . - . .
: B E=F‘§"|, I' s e
: ) CFHIt . B .
-~ & DGIJo—0 . ' *o,
3 «0—0Jigd, " - . . ‘
g s | ' 1hite 3 i "
é ) g feb, R , '
b . - - 0——0dcba ' . , -

‘
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- Flexibility Coefficients, Upper Rolls -(cont’d} -
The elements 1‘n the upper case notation are the -only ones o
3 computed from first principles. ' , ' o
v . . R v ! . ) P M *
. - ! l . '
3 N . ' . R *
. ’ . ' "1@1‘ < i ’ i
v ¥ . 3 o . ‘ ‘
- S ‘ ‘ : ' 3
T V‘ . )
g ‘. o ' ’ . ) . . s
s . ! , “a’ ) * , .
S L ' L SN
P Al L -+ ‘ v v i i
° - . . . - . Y
, ) c L . ‘ ' :‘~
» Af !
5 ® . ) ‘ N ! )
. - f ) . 4_ . . '., & _.h
. > i ) ¥ . g ,.sz_
' , s , s ' - N .
.' Al - . AN . f «f i ' ’ 6‘ ‘:
‘ ) ' * TS ' ’ ' . B
- F‘ ) ’ ‘ '- ) \\\ * -
" P . ! . -r' “. - N t', ‘ - N ; N ¥ s
¢ 1 , "' \ ‘ « ’ - ‘ - ."l " .
. ! - “ ‘ o . R X {, e N Lo .
- . . , ) i e . B
* . ' ' . ) M o . ) . o ‘\ ' . * !
1 \ &» . 1 . ": , ) . N
o * . » ’ > o . :»" e ‘ S i '_
y * * : ' “~

e s M Y DB T




v 1
R . ¢ /

138

, FLEXIBILITY INFLUENCE COEFFICIENTS. FOR BOTTOM ROLL, T IR
f The Qoftom roll "is assumed to be simply. supported. The
ahsolute and elastic ®isplacements of such a roll are
identical and the f{g}ibliity’ coefficients .are computed
‘ ' readily using the moment-area metwod. The diagram bhelow
I ' ' : ' :
" 1llustrates the médel and 1dent1ries/some of the variahles
[ ¢ : ' a . ‘ :
. : used in the computations.
" : o~ 1
X{ ’
‘ , ArM g .
\ e — —— _ARM & g
' ‘ 2
. . 4
: —Figure 28 e
* ' . !? ' : k ! ?
| . From the diagram he. deflection at point 1,due to the load
: at point J is given b§ , ( | L |
% o . R \’J : | ' .o
: y = (e/TL)(TAB) - TIB -~ . . -
, S . : ( ‘
:f . . | . . - . o " , P '
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Flexibility Coefficients, Bottom Roll (cont“d)
where : % C k<&§‘ -
s . i .t f"‘ ’ ' o ‘ N
Q‘e = TL - xi ' © 6\ R ., ..

Assuming a unit load at J the reaction. forces at the

LY

‘suppofts can be’ computed. To obtain TAB, area-moments areu

e
‘taken abadt Rl. TAB is thendgiven by

’ ' >

TAB = (areal)(armi) + ven'es os * (aread)(armd) .
. ' . } ,
I

The following are the 1ntermpd19te‘compdtations.

L R L= xMTL -
R2 = XxJ/TL - e
L arosi = (Lg(g)["(SJ)(RI)Q/(STJ)]'[SJ/ZJ‘
- C(I/ZE)ICRII(S]) /(25T
arml = 25J/3 . '
area2 f’(I/E)[(RI)(xJ + SJ)(x] ~ SJ)1/(2STR)

drm2 = [(SJ + 2x]){x] = SIHI/[3(x] + 51 + 5 |
‘area3 = (1/E)L(RI)(xJ) -+ (R2) (S ITL = 'xJ - SJ]/(ZSTR)
;:arﬁ3’- [2(R2)(SJ) * (R (xPITL = x§ =
. - SIAGLRNIXD (R(SIYI) + xJ
areas = (1/E)[(R2)(SDH* 1/(25T)) o
'T"”‘““”““‘i?*z-~rtrﬂ LYY e

> ™ " M
. ' .

‘To obtain TIB area-moments are tqkan ahout 1 as_ shown. in ° K L

co Figure 29.'

Ny




\ B N v <.. ’ o ' |
, Lo , . 140
5 : ;o > .
Flexibility Coefficients, Bottom Roll (cont“d) ' :
Ir K . - 8 . . ™
” o a
i xI — - t 1
— o P © &—t
h J I ”?%' o
- \R3
€ - i .

ARM § ——=

Figure 29 - S
" TIB is then given by the equation ,
) , B | . , .
TIB = (area5)(arm5) + (a§ea6)(arm6)n .

-

'JThe follguing interme&ahte steps are 1nvolvéd ' , L i
’ ] . . .

’

area5 = area4

arm5 = (TL - x1 - 25J/3]

'arqaé (l/E)[R2(TL.+ SJ = x1)JITL - xi - SJ1/(2STR)

armé = (TL + 25J = xI1)(TL = xi = SIIZL3(TL + SJ = x1)}

The desirdd tlexibikjty influence coefficient for poini i is-
SIF(1;)) = (TL = x1)(TAB)/TL - TIB,.

- .

1

As in. the case of the upper rolls the presence of symmetry

-

\d .'_ . . . .
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Flexibility Coefficients, Bottom Roll (contsd) -

S

is used to reduce the number of computations: "Half of’ the
] ‘ S !

diagonal elements and part of the off-diagonal elements of

the flexibility matrix are computed, The rest of the

, - ‘elameﬁts ‘are _obtained 'from symmefty'Bnd from the Maxwell

~reciprocity redationshipu Using a simply supported'ro;l.with )
six lumped masses as an example the following flexibility
matrix 1s obtained. N '
Abcdef '
BGhi Je
CHK1l1id {
DI Lk hec o
"EJ{hghb '
Fedcha ' - '
. The upper case characters‘represent’the elements computed
‘from first principles. 0 :' / |

)

4%

-y

P

Y

H P Lo P . ‘ . i ' b
Ys o X , e . Ve ”.
‘o . . 4 . . . .
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. COMPUTER PROGRAM T o ")

Genheral Description

1 .

- - , N

The program has been written in the Fortran IV 1anguagé&

" With 'the storage requirement for 23 arrays and with the

associated sybroutines the program requires 26K words of .-

, y | o
femory for loading. It requires a §oftware package called by

the acronym EISPACK which can solve_tne eigenvalue problem

. for six classes of matricas.hln pérticular it solves' the .

class of real general matrices which is the requirement in
1

this application. There is no 'size limitation to the matrix

-that EISPACK can solve- However, the present dimenston
q

statements in the program limit the size of calender system'

matrices . to 50x50. The dimension statements also limit the
inertia. stiftness and constraint matrices to a maximum size
of 12x12. These limitations are - only for the purpose of
memory economy and oan be . altered readily 1if the need

.arises. The total computing %ime of ‘a’'seven-roll calendef

stack with, six lumped masses pér roll leading to the eigen
solution of a 40x40 matrix 1s 36 seconds ori the CDC - 6000 .

computor. There are two computing ootions built Into the

program, Dependinq the valus of an index (LCH) uAich~ is

uue~—ofL—the~—4np t—“dasa«to the _program i't will compute the

| eigen salution ‘of! either the entire calender stack system or
that of the Nth roll from the top- “treating the upper rolls
‘as freé-free and . the lowermost one as simply supported.,

There are three output Options availabla depending on. how

'
3

- -, . ]
% ' . N H vt : -
r N ° . . , .
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Computer Program (cont<d) N L o . ' ’\4-~\
4 . o ’ _» . S '
L .7 ' many intermediate results are to be printed.. = =, .
: | e
P . . ! . . .
? , Input-Output Features ) , ‘ ’ !
? v .
The input data .required for calender stack sizes of up to '

. ?
) {%ﬁqht rolls are contained on.seven data cards. The first

card contalns five inteqger data, namely NN, NR, LCH, 1P, and
%P7 These define thé number of Iunped masses per roll, the

e '
number of rolls in the stack the computation option, the
- . output option and the number ,of . the first paqekg? the eigen . |

sqLution output respectively. The use of the latter two are
\
defiqed in comment statements in the "source listing of the

\" ,pfbgram; The first four data are read from 12 ' flelds. Thd

last one is contained in an I4 field.

The next three data cards contain the journal, ouUtside and
o ’

inside diameters (inches) of the rolls 1n4the’calendar stack N

respectively. If a roll is not borpd. as most rolls are not,

v 0

n its inside diameter is entered as zero. Un each card the \

data are contdined in F10.3 fields and read in the sequence

of the corresponding - rolls beginning with the \yppermost

‘rolly’ Data_,for up to eight rolls can be entered on each

:.‘ ‘_"'""—NM"N:V_:WM“{_“‘”»‘——;-«—«Q-m‘hw__ e ,‘

' \, From' the firth'datg card the combined wgight (lbs) of one o
. Journal and one bearlnb'houslnb for each roll 15 read. The o
‘»data are .again contained i F10.3 fields and start with the

¢ . . . )

uppermost roll. =
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I3

The sixth data card contains the estimated total spring
L 4 " ‘ ’ . ) .
censtants (in millions of lbs/in) each of which represents
: , N

the elastic beha iéur< 6f the paper passing through a nip.
. The values on the dAta card are entered. in F10.3 fields in

the Beqﬁénce of the nips to which they correspond starting

¥

. wlth the uppermost nip. ,
.\\ - \ -

The last data card contains:four real variables which are
the total width of the stack measured hetween hearing
centers (inches)”'the face idth of the calender rolls
(inches), tha -density of the réll material (Ibs/cufn) and
) fl%ally the value of Young's modulus, for the roll materlal
R "(millions of lhs/sqlq). These data are entered in fields of '

Fé6.1, F6u 1, F6.3 and FSar'respectiQely; - .

" The amount of output from the proqram is 'governed by the

value ‘assigned to the index IP. There are three output

ptions for the prtnting Qf various amounts of 1nte;meduaté

results. The final results representing the eisz solution
d

6f the calendér stack are prlnted in ascending o

er of the
’, . ' _,natuf;i -hodéga e eigenvalue, the natural fre quency (cbs)
, and the normal d. eigenvector repreSenting the modal Shape

of the calender stack are panted out for each mode‘
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t A.T. EDWARDS E.B. EDDY CO. VIBHATION PROBLEM - -
T ‘ ' Private Communication, 1950 | - « 1

Experimental investigation of cakender
stack vibration at the E.B. Eddy Plant, -
a manufacturer of° high grade paper.
Vibration levels and  frequencies were
measured on and around, a 146" wide

’ ' calender stack. The effect Jf calender
.. , . speed on vibration frequencies was also
investigated.
. (D) G.R. EWAN - BARRING ON CALENDER ROLLS . ,
: Coe L . Prlvate Lommunication, 1953 ] k
N ‘ A brief summary of observations and
. ' opinions regarding the bdrring,
© regrinding . and checking of calender

¢ rolls is presented. Usefull hints for
%roll grinding and checkinq:proceiy es

' o are given. ., “// .=
" (3) G. ENING TAIT ~METALLURGICAL FACTOHb AFFECTINGT .
. S CALENDER ROLL PERFORMANCE . . - 2
) - Pulp & Paper Mag. Canada, May 19)9 : 2 ‘
= - ) The nature and -the nethod of
- . manufacture of chilled iron rolls is-
L , " described. Some data relating to the
b ‘ L . properties of chilled 1iron rolls and
. . o ] _the work hardening of calender-rolls in
' N service are presented. N
N - (4), B.1. ?OWE ' AN ANALYSIS QF IHE THEORY AND OPERATLON
. . J.E. LAMBERT '.VOF HIGH SPEED CALENDER STALKS
' ' ., C.P.P.A. Tech. Sect. Proeﬂ 305-6, 1961
. - , A comprehensive analysis of the
‘ : T R ~ calendering process and its effects on
’ paper quality, including a brief review
of the 'phenomenon, of barring. The . .
‘feffects of many operating factors are '~
- discussed.
4 . E .- ) T - m—— .- e
b ! ' ¢ (5) NEWSPRINT BREAKER STACKS AS RELATED TO BKRRING
; C , .. COMMITTEE . - Summary of questionnaire issued by
o I , C.P.P.A, ' Newsprint Committee = CoPoPoAl, 1962 .
\ | S | \ . Thirty newsprint machines in Canada !
8 SRR > were surveyed to investigate the nature ,
‘;‘P ) - . h. . ". ‘ ' " .
»;: ".\ ’ ’ N . " ' )
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»and gg;:;s of th@"calender . barring

probleém.

CYCLIC MACHINE DIHECTION BASIS WEIGHT

VARIATION & . ~ .

Pulp & Paper Mag.| Canada, April 1962

: ] : | :

stigation of wet-end
weight variation and

ed. The effect of the

end components such as

Experimerital inv
causes of basli
barring is repor
vibration of wet-
headbox, lead
Fourdrinier wir

oq basis weight
uniformity wa il

nvestigated. On
experimental and- production  paper
machines wet-en disturbances such as
‘pressure waves lin the ‘headbox were
introduced artifﬁcially.

CALENDER BARRING
Pulp & Paper Mag.

IN NEWSPRINT
Canada, 1963, T194

| 2

" Extensive investigation \%f the
phenomenon of barring of calender rolls
and newsprint on the: nine Powell River
machines of the MacMillan, Bloedel &and
Powell River Company. Spectrum analyses
.of basis weight and caliper profiles
and calender vibrations were carried

out. Records of roll history were kept

over a long period. Many details of the
barring phenomenon are presented. .-

NAH!STBOM ~CALENDER BARRING, ITS MECHANISM AND

'LARSSON
ASKLOF

POSS IBLE ELIMIMATION,
Pulp &'Raper Mag. Can. 1963, T205-12

Experimental invest\gation of calender
stack vibration on a| 264 inch wide 2000
fpm. newsprint machine. Vibration
amplitudes ‘and frequencies were

measured at several points along three

of the six calender rqolls 1in the

machine speed_range of 1800-2100  fpm,

oll, table rolls and- |

In. a theoretical anhlysis the calender
stack was modeled .as/ a one dimensional
-spring-mass system to obtain the

frequencies and amplitudes . ‘of the -

normal modes of vibration. A device
successfully applied to eliminate
-barring is described. - ‘

J
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(9) T. MATOMAKI BAR MAHKIHb CAUSED BY' CALENDER SIAGKS
- . ' OF NEWSPRINT PAPER *"MACHINES /
. , . In Finnish, Paperi Pun 4b. Nos 7
’ Jan.. |963 )
A short review . and qualitative
explanation of the  barring problenm
based on observation’of the problem on
various newsprint machines. Division of
the stack ,into smaller units  is

suggested as a possible means of

avoiding barring.

‘ (10) 'B.1. HOWE  CALENDER STACK BARRHKSE%TNEWSPQ]NF
"~ . J.Cy COSGROVE MACHINES ‘
;;7 Pulp & Paper '‘Mag. Can. 1963, T?b9-/4

aspects of newsprint and calender roll

barring. Barring terminology and a

; ' \ barring intensity scale are defined,
- The operating conditions in twenty

seven sprint mills were surveyed,

.Based(” on-eXpérimental data a mechanisnm

for th paper and calender roll

bgrrinq ostulated. Methods to avoiu

to eliminate- barring are proposed.

(11) W.H. CUFFEY ’NEWbPRINF CALENDER VIBRATION AS IT
. ' { AFFECTS MACHINE-DIHECTION CALIPEx

P . . y UN{FORMITY '
: , © N Pulp & Paper +Mag. Can. 1963, T31y:

An experimental investlgation of the
barring phenomenon was carried out on .
newsprint machine in the machine specu
range of [900-2200 fpm. Bar wavelength,
sheet caliper, . stack ‘vibrgtidn and
noise measurements were made. Empirical
correlation between machine ‘speed and
' -barring wavelgngth and frequency: was
. . - _established. Remedial actions and their
» -affect are described. A qualitative
nypothesis for the mechanism’ of barring
1s proposed. .
["

(12) NW. MULLER-RID ;+ A CONTRIBUTION To EXPLAIN THE .
M. SCHADLER / APPEARANCE OF BARRING ON HIGH- SPEED
A. STARK . PAPER- MACHINES : N

i
He FAISS  {. In Ggrman, Papier 17, No. 5, May 1963 .
oo { ' ‘ ' o

Experfment%} ' ‘data are _aqqusid to

S A very comprehensive -examination ot all .
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“(14) R.W. DAVIDSON
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"(15) W.C. NOTBOHM
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: ‘-PeperuTechnoiogy 6 No. ““Fétﬁ‘ﬂfhﬁrj

The barring of calender rolls  was -
.measured - with a precision: curvature
dage. = Empiri¢al correlation between

- roll "~ bars ‘and paper bars was’
established. The calender stack was
modeled qas a one dimensional
mass-spring vibrating * system. The .
analysis produces- the frequencies and
amp&}tudes of the. normal modes of

~ vibration. The vibrating motion of

' A mathemati%gi

. computer program and thg results of the

. ‘t)perating

determine the cause of paper barring. A
qualitative ° explanation the’
“underlying mechanism is given tﬁ cing
the. problem to incoming sheet thickness
variations caused by- sheet forming
conditions. The mechanism ,of shest
thickness variation produced by Headbox
<l1ip vibration @ is quantitatively
analysed. ’

CcO RUGATTON OF CALENDEH ROLLS- AND THE
lNG,Qt“NENSPRINT

a8 -
single mass and spring system with base. -
excitation is analysed to show how roll
‘barring pccurs, increases and migrates
aroqu,the circumference of the roll.

A STUDY OF CALENDER BARRING THROUbH |
ANALOG SIMULATION

Thesis, University of Maine. l966

model of a five-nip
stack was constructed and
studied , 6n - an _.analog computer. The
model consisted of masses sp¥ings and
dampers. ‘Both sinusoidal”™ and random
excitations of the model were employed.
The mathematical model, the analog

"calender.

simylation are desgribed in detail. The
celendar stack studied was the same as’
that in (8),

EDGE EFFECT SEEMS TO BE TRIGGERING '
MECHANISM IN CALENDER' BARRING
Pulp & Paper, November I967

4

prasenteﬁ to

. avidence is
support the hypothesis that the  thick
edges. ' of the  incoming sheet .cause
. 4 ) ) l »*
‘ T e 3 '\ .
. - ; Lot \ .
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E - . I perfodic roll bouncing and thus paper
: . ‘ - and roll ., barrihg. Remedies are
; g proposed. , .
\ 16) Ku1. MUMMIE  ° CALENDER VIBRATION = A SIKULATION STUDY
S y - _ T.L. TUTTLE AND A CURE = -

\ Do ' ] Tappi, ol. 52, No. 7, Juiy 1969

.‘ N - .
’ o\ } ‘\t , A one dimensional' .model of masses,
. \‘ T ) + springs § and dampers was studied on a
- , SR hybrid computer. The simulation allowed
‘ ‘ for the feedback ‘effect of the bars
"travelling down the calender stack: The
—calender- modeled-—was—the same_as that
~studied in-—(8). A tunable c#&lender
stack uatng an adjustable nip-out roll
is .recommended to eliminate barring.

Y,

(17) J. SAKURAI STUDY OF MACHINE CALENDER FOR
' . BETTER PERFORMANCE ' ,
. Uapdh Pulp & Paper, No. 3, Oct. 1970

A review of various aspects of calender
operation’ including the problem of
_ calender vibrations 'is presented,
Several remedies are discussed.
LOff-setting of rolls 1s discussed in
most dgﬁails. )

(18) B.F. VALEEV VIBRATIONS OF CALENDER ROLLS AND MEANS
. ’ , ~ FOR THEIR PREVENTION
In Russian, Bumazhwﬁrom. No. 8, 19=21
Aug. 1971 .

R revlew of the various .existing
‘ “theories about calender vibration is
- - presented. Concludes that none explain
. all ° aspects. of the problem
. satisfactorily. Offers possible
v -solution through damping the motion of

", the upper roll,

(19) E.J. JUSTUS TODAY“S NEW CALENDES STACKS.
‘ - . Tappi, June 1972 '

The relationship between paper quality

L .and calender _ * ‘characteristics /-1is

s - discussed. The nature of calender - .
-+ vibration is briefly discussed.
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Extensive measursments of the physical
properties-of newkprint from four paper

machines were de to establishnthe
change in'these pyroperties from nip to
nip in the  calender stack. In

“particular the compressibility of the

»

paper at various stages of calendering
Wa6 determined.
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compression of single ' -sheets are .
‘described. Empirical relationships
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