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' - / ABSTRACT >
. CHAOS IN DETERMINISTIC SYSTEMS
* N ’ I'4 .

ZALMEN STEIN

S~ . .

. The existence of chaos in deterministic systems is

introduced by means of physical examples.. In this thesis . "

we pfesent sufficient theoretical conditions which guarantee

*

- -

the existence .of c?aofic.functions.in one- dimension, and in

~ -

n-dimensions. We dlqo show tha%qgﬁsotic functions are dense

s ' , ,

and open in the space of continuous functiéns{ The theorems

»

are .4d1lustrated by detailed examples.  ’ ' N
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CHAPTER 1

INPRODUCTION

1.1 Motivation . I ' *

- . |
o

In 1963, 1964 a meteorclogist %y the namé of Q.M.
Lorenz showed in [1] And [2] that since one cahnnot have accu-
rate and completé initial weather dbsgrvati@hs'all over the
world at a precise.giveh time, it is impossible to maké "long
N
range" weatier\forecasts."ue started by finding numerical
solutions to a ;ystém of 3‘orqinary gifferential equations

designed to represent a ,convective procéss, and showed that

~all solutions, specifically the periodic solutions, were un-

" stable. He also showed that in certain areas, if the initial

conditions were just glightly diffe;ent, the long term solu~
tion would be totally different. - ' \
In spite of the fact that historically people usually

used differential equations to model dynamical systéms, there
- N <&

-are situations where discrete-time dodels are more useful.

- FPor ekampleJ in population drowth problems and predator-prey

1

N\,
N

. . .
problems, changes occur in discrete jumps, where each new

y"population” is dependent 6n the old one, i.e., xn+1 = f(xn);,

3 AN N ! N
an iterative process. ) - S :

1.2 ‘Chaos in Convective Fluid Flow

i
"In 1916 Rayleigh studied\;he{flow occurring in a layer .

' . |

A\ 3

of fluid of uniform depth H . when ithe temperature difﬁgrence'

between the upper and lower surfaces is a constant AT. In

-

the case where all motion is parallel to the X -2 plane,

4 v
and no variations in the direction Pf the y-axis ogcur, -
!

¢

pr—




’ 2.
N .

Saltzman in 1962 (see [1]) simplifiea the governiné‘eguations
to ‘ ) . ,

\v
r-—- = b ' 8
4y a(x_z> MAAE

t

__JEL_~ At._m
ats' 3(x,z) + H +kv 8 !

where P’ is a stream function for 2 dimensional motdion,
‘9 is the depértﬁfe‘of~the,tegperature from ﬁhat,
- , ‘0
occurring in the state of no convéction,
g is the acteleration due to gravity,

0 1is the coefficient of thermal e;pansion,

v is the kinematic viscosity, -

k is the thermal conductivity.

If the upper and lower boundaries are taken to be freaf

and therefore Y and Vzw vanish there, Rayléigh found. that

fields of motion of the form .

N TR &
¢051n(7;x)51n(§z)

<
[

o = 8.c0s (M2 x)sin(X
! € eucos(H x)51§(Hz)

where a is a parameter, would develop if the quantity

.

3 ' 4
R o 88 AT , exceeded R =,1;(1 + a2)). The minimum value
. AN

a ivk c
b ) . a . . . \
4 N
of ,-R , 311—, occurs when a = %%.

e’ 4

5 *

‘ By .expanding ¥ and 6 in a double Fourier series

and making substitutions,

o e —————— S,

" ot




N

e

. \r,

k(1L + a?)

and L ) .

, »
TR, 6

= 1a inlTzl - in |28
AT Y/fcos[H x} Sin[ﬂz] an;[H z](,

(o}

1

where X, Y, and 2 . are functions of time alone, and making -

suitable approximations’, Lorenz obtained

e
H

- oX' + o¥

'4'
il

. (1.1) -XZ + rX - Y

Xy - b2

N,
T

+

where '+ represents the derivative withirespect to
L)

2 2
_ m2(l .+ a?)kt Y Ra _ 4
T H? (oand o=, Fs g ~b_l+a2

1\ ‘ //

Choosing specific values forzghe above constants,
/ - .
1

o= 10, r = 28 and b = Lorenz found numerical .

8
. 3
solutions on the copputer for the above convection equations
\

-11.1), The resultiAg trajectory traces a path which oscillates

. around either of two equillbrium points, alternating ‘seemingly

.\ "

at random betweee the twb. ‘Because of the very complicated

nature of this trajectory, Lorenz attempted to reduce the

s

Pl dimension of the pioblem by identifying. some single feature
by which to characteriﬁe its behaviour. He let M = ﬁaxz(t)

" on the n-th circuit pf the trajectory around either of the.two!
equilibrium points/ He lists the results for the first 6000

/
. iterations, and also gives the numerical values for ghe n-th

s
.
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iteration w#eqe 2 has a relative maximum. Plotting M,

. o 4.

!

{ -

[ h . .

égainst 'Mnlri he obtained a functiiral relationship of the

form shown in Figure 1.1. ’ A
. ’ . .
Mp+1 4
4150 r . s
400 | Y
l' P
isof ; ,
300 po°
\ 300 350 400 450 M, -
o X {
Figure 1.1 ’

J

With the limits of round-off error on 2, there ‘is

i

a precise two to one relation between M, and Mg, . The
initial maximum Ml = 483 is shbwn as if i% hqd followed a

maximum of M, = 385 since maxima near 385 are preceded by
12 - .

close approaches to the origin, and then by exdeptionally

large maxima. The sequence ,{Mk}? - seems to exhibit
k=0 :

aperiodic (chaotic) behaviour.

"1.3 Analysis of the Convection Equations

! ) In order to study the ramifications and implications

te
t

‘
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B of Figure 1.1, Lorenz considered the following idealized 2 -1 ; %
> . N \ >, * . { ‘&‘
: . 3 . < oy
. correspondenc% bétween succesgive terms of the .sequence . h'
: : . g
. .- . H 344
‘mo,ml,mz,;.g.‘ of numbers between 0 and 1, . defined as . B
v vl . . 1
: 2
* follows: ,*. . . = %
. v N, i Y
. ¥
. 1 : 4["&
m = 2m if 0 <m_ < < . ‘ T 1Y
n+1 n N 2 ~ PR &
B - . * }. “«
A . '4 [ &3
. . . i- . i b
m is undefined if m. = = . :
n+1i n- .2 ) : }
A ] ; ?
¥ ’ B
‘ . ' ' 2 - 2 g L 1 ’ X
‘ m = 2. = 2m i =~ <m < . — . L .
n+1 ] 2 n '
F Y . -
*
The graph of mn+1 vs m is shown in Figure 1.2. ,
mn+1 T, . \ ) . ’
. - & ’
. 1.0/ j
- } ’
" -
<« N s J
A Y o ! -
. » 5# ? ‘[ / t{'
] , .
n » . )
. [
b s N 3
oy ¥ -
\ . ‘ ' My )
! N . . ~ s -
. N \ . . , . * . N >
b . Figure 1.2 o R *
4 4 , - b [ ' . , .
" \ . > ) . ' . .
Ityfollows from repeated application of the definition’
s . - T -. L N
- . * ’ * ) ° P N
. * . .
- .. ' - -
’.‘ R ! . . 5 ; . N o
' ‘ ‘ L d »
W« R - ‘: _'.__.._'_.___‘.4__.,, - N -’——-’-——'T;""—‘ s e . - - 3
< . '

( C - M ' . ‘. ' ” .
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- n , .
that m_=e T2 .n , where ~ & is an' even integer.
n n v O : n .
.. To.,study~the above we will consider three .possible 3
sequences. o
Case l: Let m, = 3% where u is an odd positive integer
. 2 i
and P any positive integer sufficient&fplarge so that .
-%§< 1. This will lead to a sequence of proper fractions
2 .
") <
. -1 -
whose denominators are 2P,2P ,2P 2,.....,2. Therefor{
0 .
= L . . . ) . .
mP_1 =3 the only proper fraction with denominator 2,
. .
and the sequence terminates. These sequences form a countable

set and correspond to the trajectories which end in a state

L4 .

of no ¢convection. ,

Case 2: Let m, = P where u and v are relatively

v 2 . .

A
[}

prime positive integers, and P is as in Case 1. If  k 1is
“x
— , ' where 'u and v
v ) k

s

N
any positive integer, then mp+1>+k =

are relatively prime amdf u is even. Since for any v

k Al

u, .
the number of proper fractions :}~ is finite, repetitions must

2

occur, and the sequence is periodic. Again, these sequences

- '

form & countable set, and correspond to’periodic trajectotries.

a

From the above graph, thé-oniy point common with the

line y = x s [%,%] i it is the only point of period one
N . 1 1) L
in the domain 0,5‘ U Enk . ’

similarlf by solving the various combinations of

»

PP

[

i

r
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x = £2(x) and 'x = £3(x) we obtain a single sequence of

period 2 and two sequences of period 3,

2,4,2,4,...
i.e. {5 5 5 5 } and
- & .
2,4,6,2,4,6,..., [2,4,8,2,4,8,... -
777777 2 999 909
Y
Case 3: ©Let m be irrational. Since mo= e + 2" *m,
where e is an even integer, therefore L #=mn for

rd N /

all integers k and no repetitions can pccur. These
sequences are aperiodic and form an uncountable set. .

1.4 1Instability of the Trajectories

Conslder twd sequences of the above type {m }:
T n
“ : . ]
- . . /
O
and {m’ } +'where m, =m+e . Now m =-¢e_ + 2" .p
n°o 0 0 n  n. 0

7
and therefore for this n if € is sufficiently small

n -y . S, . . :
m; =.en T2 (m, + €) by the piecewise continuity of the
transformation. Therefore m; = m t ?n €. We see that

- o

’ s

"all sequences are'unstablg with respect to snmall modifications

.of the initial conditions. 1In particular, periodic sequences

are unstable, and no- other seqﬁgnce‘can agﬁroach them asymp-

’ -

totically.

L . ¥

when the above results concerning. 1nstab111ty are .

&

"applied to the atmosphere, which seems to be non-perzodlc ‘they
===

‘show th‘% long range Weather predictxon is 1mEossxble unless

present condltlons are known exactlx which is obv1ouSly not

R

~the case. ‘ ’ ,

Y

+, Yt

~
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{ﬁncreages, stable fixed points bifurcate into stable two

1.5 Applications to Population Growth

There are other areas in nature where the phenomenon

of chaos has been observed, partiéularly in the field of

population dynamics. A model which governs the population

of a species, where changes can occur only at discrete time
' : {

’ .
intervals, and successive generations do not overlap, may be
: ;

represented by awfirst;order n-dimensional difference equation
¥
xk+1 = F(Xk) k f 0,1,2,... Even when =n = 1, very compli-

cated dynamics can occur. ¢

Two commonly‘used models for population growth are

( Y Nl r{l—.%é} ) .
= l1 +rfl - — and N = N e both of
Vet T Mk k+1  k ‘

which have been extensively discussed in the mathematical

literature (see [3] to ([13]). May [3] has shown that as r -

AN

point cycles. The two-c¢ycle eventually becomes unstabie and

\

bifurcates into a stable 4-cycle. This process continues

\

" until for some critical value of r 1is reached, and then

‘cycles of all periods appear and trajectories which are

v
'

aperiodic. B

1.6 Other Applications - ' %

In [9] May lists many other areas in which the above
ke ‘

phenomena occur. For example, in predator-prey p;oblqmsi

PRTNEP

genetics; transmission of infectious diseases; economicg; and
social sciences, In [14] Li and Yorke describe an engineering
! ' [y

= f(xn)  has

-

problem for~which,£he difference equation X

Been used to design the distribution'of the points of impadt

n+1

°




il ooy

R A
a‘ .- * N 9'
on a spinning bit used for oil drilling in order to avoid
uneven wear on its surface.
As May states that ‘even though most of the above process
are described in completely deterministic models, they may
+ still exhibit random behaviour.
*
3
* ’
"
v * x. \
A
. - ’ |
¢ n
' ) * ' . '
! 4
) B .
- ' L
e ~ . .
& e R
Y
. .
S , :
L -4 et
5 . N . A
. : N ; ,
] -
. ) o . ‘ . ,
““"“—“

o i i - 3&@?’
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' CHAPTER 2

PERIOD THREE IMPLIES CHAOS

2.1 1Introduction

In the introduction to their paper [14], Li and Yorke

n

g;ve several examples whexre processes which change in time

2

ﬁén be described mafhemaéically by means ‘of difference qua-~

tions. For example, the insect population which has di crete

2

generations, the size of the (A + 1)th generation will be

a function of the nth generation:

! - < .
g . v n = 4
(2.1) xn+q F(Xn)

©

An important example of the above is

X
(2.2) Xop, = TX 11 - 52

However, even for the above highly simplified model,

the dynamics are very complicated. Dividing both sides of

- . ) x . X :
(2.2) by k, and redefining x = 7?,» equation (2.2)

4simplif1estto

(2.3) . . Xn+1 f rxn(l - *n)

I ' . .
For r = 3.9 and X = .500, we obtain the following:

O ) s ) o _ )
L 3
! Al
Ve . \
" i . ; -(.._'
3




t.,é::‘?....

AN

..
Xy i Xy i Xy
.500 8 .142 15 .880
.975 9 .478 16 .412
.095 ~10 .973 17 945
335 11 .104 18 .203 .

. .865 12 ~.363 '19 ‘.632'-

.443 13 .902 20 .907
.962 14 .344 21

.328

' The above ‘results are shown graphically in Figure (2.1). '

e e e Ay e




several definitions and lemmas, and to give a more precise" l !

The above 21 values do not seem to repeat. Also, in

spite of the fact that X, = .975 and X,, = .973 are so,
. . g :
close togéther,‘the behaviour is not periodic with perioed 8
as X, , = .203 - - . ‘ ' {

Ah orbit ‘such as the one above, where the sequence

X,F(X);szX),F3(X)ﬂ...,‘-is not periodic, and does not apéroach

‘any periodic orbit as n > o« in {Fn(x)} , 1s célled-aperiodic,

. N . . .
and leads one to suspect -chaotic behavjour.

Li and Yorke [14] found -a coﬂditiqg which: ass [

N

the existence of chaotic behaviour. Their main theorem states

that if a population -of size X ' grows for two successive

generations and then falls to a size X or less, chaoticd
behaviour wilkl result.

: ™~ . o
2.2 Definitions and‘Lemmas

B

To prove the above mentloned theorem, we shall need

’

definition of the term."chaos".

Definition” 2.1 Let J be any closed interval of the real -

line. Let F :J + J .be any function. For x € J, let

+] ,
F°(x). denote x and Fn l(x) denote F(Fn(X)). nf= 0,1,2...

Definition 2.2 We say p is a periodic point with pe‘rifoﬂ§ o [

n if pE€J, p=F'(p) , and p #:Fk( ) for 1 <k <n.’

!

Definition 2.3 We say p is pexiodgc; or is a perlodlc poi t

if p has period n - for SOhe n >l1.

Definition 2.4° We ‘'say q 1is eventually perlodlc if fOf/some

/ B \'
, . m ', . /
integer m, P = F (q) is periodlc.
- ! ' . .
Lemma 2.0. Let .6:I + R, where I is an interval, be a
. s n ‘ s N ‘ N / \ )
s o - /o :
. . /
- /
-/
. /
1. R A
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<
/

/ 13.

)

-

Then for any /ompact interval I, C G(I)’ there is a compact

I .

interval C I such that G(Q)

Proof Le [G(p) ,G(q)] -

1= la,b]l. Let I,

/
/
’ - R 4

N
v G (x)
>@ 1""—_11—'—“" s
et At + + . :
ap s q b c ‘G (p) G(q) 4

+

- : G(I) ‘

, ‘'Figure 2.2

K .

, .
, .

/

~ ~ . ' ..
Assume p < q. /Let r be the largest point of I for which

a

‘G(r) = G(y) .//Let ‘s be the least point of I for which

i ' . / N R .
s >r and G(s) = G(q) .  Therefore 1I; = [G(r),G(s)] .

-

Figure (2.;3 represents a possible grapﬁ of the above condi-
y ) N
/ . . . .

tions. ;et Q= [r,s]\.' We will now show that G(Q) = I, .

Since /é is continuous, p will assume all values between,
/

"G(p),/ and G(q) . Therefore G(Q) D I, . Now assume. G(Q)

/

& }1 » i.e., there exists an x € {:}s] such that G(x) & I;.

. N
Néw G(x) < G(p): or ‘G{x) > G(q) . We will as$sume that

\5//G(x) < G(p) . - The othér case is similar.

Since G is continuous and G(x) < G(pf and q(s)r

= G(q) > G(p) , there exiét\ f € (x,8) such tﬂqt G(y)

N
.

R R

P N‘-\n“"h"%‘ﬂ‘,-“ym’;éﬁ‘
P

o

Ml &




n‘n=0

14.
4
G(p) . But y > r, which contradicts the fact that r was
A f .
largest. Therefore G(Q) = I,. Similar reason%:j applies
if p > q. / Q.E.D.
. . " : ©
Lemma 2.1 Let F :J + J be continuous. Let (I } be

a sequence of compact intervals with In CJ and 1I C

n+1

F(In) for all n > 0. Then there exists a sequence of
. l -]
compacf intervals {Qﬁ}n= o Such that Q 4, © QQ €I, and
. N
L

Fn(Qn) = Ino for all n, i.e., for every x €' N 9

Fx) € T for all n > 0, l

Proof. The proof is by induction on n. Recall that

. . . !

Fo(x) = x . Let Q = Io . Then. F°(Q°) = Io by definition.
N " - ! N

Now assume Qn-l has been defined so that

. \ - N
(2.4) FPlio ) =1

applying F to'both_siﬁes of (2.4) gives

\ ’ . ¢ |
(2.5 LICIR R - I

. ' ) ' ' N . . n
Now, by‘hypoth951s, In C F(3n~1) ; SO In CF (Qn-l)‘ by

equation (2.5). Applying Lemma 2.0 to the above with ¢ = Fn

and I*= Q;ii ;, we obtain the existence of a compact interval.
- \

i n . L
= C . . Thi letes th
Q=19 “Q._, such that F-(Q ) f I s complete e

induction, - . . . ' K Q.E.D.




1s5.

Lemma 2.2 Let G:J + R be contiﬁuous. Let I CcJ be a

compact interval. Assume I‘c G(Iﬁ . - Then there exists a
, ) ) i

p €1 -such that G(p) = ﬁ. E

I

Proof “Let I = [BosByl Since ﬂ C GkI) choose 'ah,al

€ I such that - ' o

i

G(a,) = B, and Gla,) = B,

Define H(x) = G(x) - x .

Now a, > B, and o; < B, for i = 0,1 as in Figure 2.3

i 2 =
, N
¥
. ,
o
a '1 % _/ \‘ [L 4
Bo B1
g I ——
<« G(I) >
' | ,
[
Figgre 2.3 .
; |
Therefore ' . .

H(ag) = Glap) - ag = By = 0y £ O

‘and”’

H(al) = G(GI). - = Bl - ay > 0

-
- .

Now sincé G, is continuous on ‘In, H is continuous

on I . Therefore there exists p &€ I such that H(p) =

v




Lt

le.

i

G(p) - ﬁ = 0. Hence G(p) =p. ' . Q.E.D.

2.3 Sufficient Conditions for Chaos
- :

Theorem /2.1 Let J. be a closed interval. Let F :J - J be
7 .

°5 cdntiﬁuous function. Assume there is a point a € J for
which the points b= F(a) , ¢ = F%(a) , apnd 4 = Fi(a)

I
satisfy . N

4 < ac<x< b< ¢ or 4> a> b > c.

Then T1l: for every integer k > 1 there exists a point

Py €J 'having’period k; ‘ \

and T2: there is an uncountable set § C J, containing no
periodic points which satsifies the following:
(A) For every p,q €5, p#F4q

Ve
P

\

(2.6) lim sup|F” (p)-= FP(q)| > O
“’6 n-= o / i -
/ “ : ‘
aqd )
/
2.7 . lin inf[Fe(p) - F™q)| = ©
n > oo :

~

(B) For evefy P € § and periodic point t € J

PR | \

\ ‘
(2.8) lim sup|F" (p) - Fn(tfl > 0
n—+c. . -

)

. \ - s
Any continuous function F :J - J satisfying (a) and (B)

-

is called chaotic.

Proof We will assume that d < a< b < c:- The proof for
—_— A a .
d >a>b>'c is similar. ‘ »

-,

\
Proof of T1 Let K = f[a,b] , L

. [(b,e] + and let k be any

ot

IRV



b

positive integer;

\ L

If k > 1, let {In} ‘be the sequence of intervals

(2.9) In-= L for n= 0,1,....,k - 2
and . .
(2.10) In = K for n =%k - 1

Also define In for n > k to be periodic, inductively by

-

(2.11) I =1 for n.= 0,1,2,...

P Gh, '
¢ (2.12) I =% for all n > 0
n
- '3
P"\
< X > € L >
) l -1 [
T ¥ M
d a b c .
i c v
Figure/2.4

Since F(a) = b, F(b) =,c, and F 4is continuous,it
> " *

follows by the Mean Value Theorenm that F(fa,bl) O [b,c] .

[ A
N

~

"i.e., we have.

(2.13) f F(k) D L

5

-

oty



ke

/

Lt

and

that is

(2.14)

Also, since F(b) = ¢ - and Fl(c) = d, we have

’

Now we have two possible sequences {In}

H

F([b,c]) 2 [d,c] D [b,c)

.o

F'([b,C])'3 [d,C] 2 [arb],l

FP(L) DL and PF(L) DK

[+ o]
n=0"' ,

depending whether %k > 1 or k =:1 : Either

(2.15) {1} = {Z/L,eet i) LK, Lo L KL, el )
or

(2.16) {In} = {L,L,L,L,....} »

. . -

where k > 1 or k = 1, respectively. Héwever, in dither
case, as. shown by (2.13) and (2.14) F(Inﬁ ) In+d for all n'.

Therefore ‘all fhe-hypoﬁhesis of Lemma 2.1 are satisfied.

-

(2.17)

and

(2.18)

Therefore by (2.17) and (2.18) and definitionm of the {In},

we have

Let

[}

Q be the sets in the proof of Lemma 2.1 such that

‘Qn+1 - Qn C Io =L - n >0

- n ) N - . .
F = I .f . i
(Qn)‘ n Of.all n

v’

S0t

A

[ e Y

ey




Y
]

‘ .
L ]
N ’ -
- ) " ' .
©(2.19) Qp € Q¢ = I,=1L -
e x
and
(2,20 th(ﬁ") =1 .=1I,=1
' ' k k° o .

+
3

Therefore by Lemma 2.2; G = Fk

N

S

- v

i.e., .

k 3
(2.21) SEU(RL) = Py

- NN

o
' now shaw that 'pk has period k. 5
’ ~ For kx = 1, the point p, 'has period one.
‘ - . ‘Forh k >1) we will now show that pk cannot haye
| ’ N v
period less than k. -
’ Assume p has period i, whérg 1 < i < k'f so
' ~ ) Tk ; . 4 —_
7
. R ‘i 3
(2.22) T Fo(p) =P ;
"Now from (2.9) and (2.109 we have :
. : . bN
e, I =L for G<n<k - 2 ’
< : ' n ‘ . =
i A . ' - - \ 1
and
' . : = K for n3% k - 1. . .
R . . n ;
For eﬁsier~¢is alization w; write out”thﬁ»follgwing char;{
. . - 0 =' N
A —— Io F {Qo) ‘L .
9 . ) ]
D | =
- I, F(g,) w{} .
R ’ 2 ,
\) . e . ! ”.Iz.a‘ F* (QZ) = L -

- wp . iy . -

4

Thgrefore, pk' has period of .at most k for F. We will

19.

has a fifed point P, € 0

P




20.

I, = Fk'z(gk_z) L
‘ Ty ° Fk-l(Qk-l) =K )
1, = F () =L ’
‘ Tetr = Fk+1(Qk+1) =L ‘ v

Now by Lemma 2.1, Qk ) Qk and pk € Qk ; therefore

A
E .
Py Qk—1 and
k-1
(2233) _ F (pk) € K.
: However, since p; has period ‘i, we have Fl(pk) =p, =
e
’ Fk(pk) , and therefore Fl-l(pg) = Fk—l(pk) and so
™ ’ - ’ P ’
. 3 |
\ (2.24) \ , F (p,) €K
) v
Now since i < k, -Lemma 2.1 implies that Qi_1 o) Qi
D-Q, . Further since p, € Q gﬁwe have
k . ‘ k . k . ;
- @ ’ ’ T o
b (2.25) ¥, "By € Qi-l
T . Also since i <k, we have i'- 1 <k -1, so-
i -1<Xk-,2 and Ii-1= aFl-l(Qi_l).= L as 'seen in the

-

above cﬁ;rt,‘ Therefore, by (2.25)

.

TN - ‘ .
(2.26) - . opd 1(pk) €L A \




21.
Now since K N L= {b}, (2.24) and (2.26) show that

F (p,) = b. But since Fl-l(pk) = Fk-l(pk) as stated

above, therefo;e Fo (pk) = b . Applying F to both sides

~

F(b) = c. But F (p,) = pk by (2.21).

. k
gives P (Pk)
Therefore P = ©.

By Lemma 2.1 Qo o) Q1 2 ... 209

.7 -
, ) Qi D Qk hére

i=-1
fore, since Pk € Qk . it follows that for all 0 < 3 < k

x

(2.27) pk = ¢ € Qj

Also since 1 < k, we have i + 1 < k, and there are 2
possibilities: (a) i +1 # k -1 or (b)) i + 1 =%k - 1.
Case (a): If i+ 1#k=-1, i+1<k-2 or i+ 1=k,

4 C o 1
and in either situation, as seen from the chart

13
N\ .
+
and (2.27), we get Fl l(c) € L. But since

| -
. . Fi+1

pk‘= ¢ has beriod i, (¢)'= F(c) € L,

i

which contradicts F(c) = d’i a. and 4 € L.

k - 2 and i and

«

Case (b): If i+ 1=k -1, then i
.k differ by 2 . But since Py has period " i,

s

and Fk(pk) = pk‘, i must divide - k. Therefore

i must equal 1 or 2, énd pk = ¢  has period,i

or 2. o
& . '
t i LB, = € i + = -
But since pk c Qk-i and i 1 uk ’ 1, S S
. . i+1 ’-‘1 3 .

we have F (c) = F (pk) € K as seen from the
\ 1
. ..

Jrr——




' b
s 22,
i+l ~ ' ¢ . .
chart, and F {c) = F(e) = 4 < a. Therefore, in thlS‘
{' . . , . »
case we are forced to conclude that d'= a. But then ¢ )
- has period 3 and not 1 or ~2, and again we have a contra-
diction.
of 4 -
( Therefore i £k, but 1= k. Hence, for every k >1,
we have a point pk having period k , which proves Tl. ’
Proof of T2: Recall K = [a,b], L = [b,c] . Let f/{ be
3 . P \. - ) .
the set of seduences M = {Mn}:~'l of intervals satisfying
the following conditions:
- . *u
(1) .Either M \F K or M €L, and F(M ) 2. M . Since
n n n nt+i

F(K) DL, F(L) DL and F(L) DK there exists M

such that "F(M ) O M for all n > 1.

. n n+1 -
(2) - If. Mn = K, then n is the square of an integer.’ Note o

that the converse of condition {(2) is false, since n

3 i ,
may be the square of an integer but Mn # XK. Also note
that if n is a perfect square, themn n + 1 and n + 2

cannot be perfect sguares. Therefore if, Mn = K, then

. c . ’ .0 .
Mn+1'M~n+2 . L. . y

Let M € AN, and define P(M,n) to be the number .

- . : , R 4 . . . ,
of i's for which Mi = K for 1< i<n, i.e., -
I [N —— — i

P(M,n) can assume the .value of zero or all integer val-
ues up to and possibly including /n . Note that

. " 2 i . T
0o < P(M,nz) < n and therefore 0 < géﬁéﬂ—l‘<'1 . 7 .
- o > . > hl

For'each «r € {%,IJ ., (the reason for this choice

- a
»

,
Py S— . f . N e ——— . e
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B

1 »

of open interval will be apparent near the e&nd of the proof)

‘select . M¥ = {uﬁ}

9

w0’ . .
a=] EO© be a sequence in A such that
=

. ' =
l . B " r 2 , ,
. )lim‘ ﬂ!—d—n——l‘ - r. » !
n > © o Ja ' ¢
- \ » y
‘ y
A possible vay of constructing such a sequence is as

[N

follows: Consider thé set of integers {tn}:, dgfinéa by

Tt t +1

B g ¢ D
n ‘- n

. N
and. then 1lim - ry

. . n = ™
..

,
r. :
2

. i . : ! . .
- Define Mi by induction: Let Mi C L. Assume°.M§
1] . - »

(a2 number)

hds been defined for 1 < 1< n?, such .that -tn

¥
e

of the M;"are ‘K-2and the remaining n? - tﬂ are contained:

“in L. Define ’

o K~ 1f ¢
M 2 = : : RN
(nt1)

. c .
= . r : ~ L £, Fn+l =t

1

or
,’.
fey

’

’ 4

v

ahd Mf‘C L for n? + 1< 3 < (n f 1)2%, For exgmple,»if

¥

'r = %, we have Tty =0y t5 o= l;.t3‘= 2,qt4’? 3,.(t%ése will "

always be the first, four values when r € C%, 1) ), tS = &4,

. “
o

tg =4, ty; =5, tg =6, tg =7, t o =8, tllﬁé‘s;‘etcl .Néte

. . _"' C \+ rc
that tn*l - tn or tn+l = b ,1' Therefore Ml L,

. [
4 ' .

r r r T r r A
= . = - c . -
M4 = K, M9 = K, ¥16 = K, M = K, M36 L, M49 = K?”etc.

A
—

PO SR

ERPCE SRR TGRSR e

lmed,



w

_mever have Fk(xr) = b, for then FF 2(xr) = F2(b) = d £ a.

‘reason: s8ince a€ K and a € L, ,we have M

o . . . ' . .
‘'since the squares of integers do not occur every third integer,

for whieha‘Fi(x) E-K: ' ‘ o ' ;

Uéing the above construction, it is clear that

\ ' ) ' 2 _2
. 1lim ESMTLB_).:_I-

n = wx .
"'Letj“(_o = {u* ; ¥e (%,l)} cM. Then./"to is an

ri 2

. r
uncountable set since 'M = M for r, = r and (%,l)

3y -
]
is an uncountable set of numbers.

Now for each MF 6/10, by Lemma 2,2, there eXists a '~

1

r | n T
e N
point X, nQn such that F (xr) ? Mn for all n. We can

a

k+, t.

But F (xr) must be an element of K or L, impiying that

3

i
¥

.d = a and that a has perliod 3. Hence, X, dventually has

period 3. This contradicts condition (2) for the following o)

r
ktatsm = K

Yo

e Al -

m = 0,1,2,...,‘ and the sequence M? - {...}K,ﬂ,L,K,L,L,K,..,}

(whére here L means an iﬁte:val in L), which is impossible

\
\
’

so F (xrl £ b for any k. .Thus xﬁ~£ x% for 1 # 5:,, for

4

© r i .
- - 1
otherwise this would imply that M, = M° which is not the case.

) ’ -

Let S = {xr

v € C%,l)}; § 1is uncountable. For

3
se

.

x €S, define .P(x,n) to be the nuymber of, i's in {1,2,...,n} ~

. 4 -~ ’ : ]

[




. 25,
P(xr,nz) K . ) '
It {s clear that lim - = r, since F (xr) # b for any k.
' n > o« v ¢ o,

We have now shown ‘that P(xr,n) ~P(Mr,n)  for all n.

Define:
. o

. . P(x ,nz)

~ = im ————— = ~ .
(2.28) p(xr) ‘xjifm ” r ?A

\ \ ' \ 4 .
Let p,q-€ S with p # g, and assume that p(p) > s

)]

1p(q). As can be' seen from the way the u* are defined,

p(p,n) - p{g,n) > ® as n =+ o, and there must be infinitely

many n's" such that F'(p) € K and F'(q) € L or vice
N !

plq) do not match,

versa, since the sequences ‘MP(P) and M

at an infinite number of places.

-

Since F2? is continuous and FZ(b) = d‘é a, there '
vgx'ists § »0, § <'b ; d , such th‘at F2(x) < 2—3—‘1 for’
all x € [b - 8;b] €K (see Figure 2.5;.,

. ( ° L

A
=
v
|
£
4

N
o

o]
o
+
[o
v

Figure 2.5

Now if p € s and F'(p) € K, .then condition (2)

- + * N N ' . . = I3
implies then F*''(p) € L and F""%(p)'€ L. Thus F'(p) &
\ . . * t

’ PR BN el

S AP

i s e bt A« vde a8
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// »
- [b - §,b] (otherwise Qfﬁz(p) < b ; d and Fn+2(p) € K) ,
.’ /l

< n e

and so F (p) <b - §.

- ’// , |
Also tf g€ S and PF"(q) € L, we have F"(q) >b,
’ ' \‘
- / !
so IFn(pK - Fn(q)l > 6. Since there arewan infinite number
- -

of . n's. for which Fn(p) € K and Fn(q) € L, we have

linlsup!Fn(p) - Fn(q)[ > & > 0., proving-(236).

N o

The above shows that no matter how clase p and q
~
are, there will be an infinite number of values of n fpr
~ . . ‘
which' Fn(p) and Fn(q) will be at least § apart.

'

We‘also note that 8 <cannot contain any periodic

] .
~. Points. Sinée, 'if . x € S has period k , or eventually has

period‘ k, there must exist a positive integer m such that

A

I - + :
FP(x) € X, P %(x) € K, F

4

’ ' .
nH:Zk(x) € K, . which is impossible

since m ,m +<k }m<+' X .cannot all be squares of integers.
We will now prove part (B) of the theorem (the tech-
nique is similar to the proof of (2.6)), and afterwards

complete the proof'of part (A). by proving (2.7).

Proof of (B): Let t € J be a point having period k , and
thus t € 5 as shown pefore. Now we have two possibilities:
(a) t €L or (b) tE€ L. - :

case (a):” Let t € L, and consider ka(p) , m=1,2,3,...

%
v

“ where ‘p € S. An infinite number of .ka(p) are in 1,

since, if there would only be a finite numbef, then from a'
certain péint~and onward all of ka(p)"wbgld be in K

~

R ERRET SRR SO TN SO RETONO S S
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l‘r/ ' . - ' .
-y~ (since p € 8) , which is impossible since the squares of
integers do not occur every k integers. Also ka(;) & L, ?
m=1,2,3,... since t has periocod k and  t ¢ L. ' f\
Let § = min(]t - b|,|t - c|) (see. Figure 2.6).
4 N
. .
% X — L > ]
e §—>
+ t + . .
. a t b - c

Case (b): -If t '€ L, consider the orbit

-kﬂ t anywhere except in L

W T ol Myt s > b 2

Figure 2.6

Since for an infinite number of m we have

|#"%(p) - F™¥(£)] > §, it follows that limsup|F"(p) - F"(t)]
] b el

26> 0." -

‘.
AW

. Lo : ~1 . '
F(t),Fz(tl,....,Fk (t) .+ If any of these iterates is not in

L, that is, for some r, 0 <. r< k, F (t) € L, then we

-

have a- point Fr(t) ¢ L having geriod k, so we have case
(a) aﬂduthe proof is done.

Let all the iterates of t be in ‘L . None of them

]

is b, Bince F2(b) = d @ L. Let

i




[

§ = min(t - b,F{t) = b,...;Fk-l(t)‘- b) , and p € 5. Since

p(py = r > 0, there are an infinite number of n for which

Fn(p) € K, and so we have (2.8)

limsup [F*(p) - F*(t)] > 6§ > 0.
n-+o

N

. . N
This completes the proof of (B).

Proof of (2.7): Since F is continuous, ?(b) = c, and
v | : ~

F(c) = d < a, there exists a subset-of L = [b,c] , the

interval L! = [b!,c!] , such that F([bl!,cl]) [b,&],A

F(b') = ¢, and Fl(c!) = b. Similarly, we may choose inter-

vals [bn,cn], n=20,1,2,... satisfying the following three
conditions (sée Figure (2.27)): . ' . N

»

i (2.29) [b,c] = [b°,c%1 2, (bt ,cl] > [p2,e?1D>...0 ", D ...

n+1

o L +y
(2.30) ', (b",c™) 2 F BT ")
" and
. \¥ . . ; ! o
{2.31) SR ™, me™Hy= p" . ) N ,
- ‘i Ay
: ® n n . . :
Let A = N [p,e]. wLet b =4infA and C = supa.
: ' n=vo : . )
' - - /

* @ ' * *
Then, by (2.31) we have F(b ) = ¢ and F(c ) = b .

—K— &~ — - L

“ L 1 i - .k
b L

4
+

} . ' ' —
d a b=p® - pt phtt p* ot A

7

[s]
Q

[}
Q

Figufe 2.7

L X

. - . s . z
, . - o = e bt e A - PSS
AR EI RN oo . .

S




Yy

We will now be more specific in our choice of sequences

In addition to our previous two requirements on M € /ﬁ{,

M.
we will also assume that if Mk = K for both k = n? and
k = (n +1)%, then -
’ © anp-(24- * .
M_k=[bn(3”,b] for k =n? +(29 -1), 3 =1,...,n,
and
* -2 .
Moo= [c%e® %] for k =n% +2j, j =1,2,...,n.
For all remaining k's that are not squares of integers,
- . .
assume Mk =1L. .

o

The fqliowing list of 'sets will aid us in visualizing

a typical sequeﬁde.

=
1]
e

-1 % . '
[bzn ﬂb ] i

*  an-2 .
'€ ]

=
]

[ ¢

=
i

- * '
[bzn‘3’b] . . . o

‘

- = S M W WS = W Y S T W U W S WD W W G TR S GW WD R S R A5 S iy e e
- —— — o - N A Y A Ty oy -

= [bl,p] N\

*
[c"lco]

M
(n+l),2 (SN

. .

(or a subset of L 1if M T a K)

Mo
An¥1) % (n+2)2

ot R e o A ot e e e

/

=1L
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Note that conditions (1) and (2) on M are still met

for the above sequences since Mi = K or Mi cCL, and

conditions (2.29), (2.30), (2.31) guarantee that F(M ) D

\

Mn+1' Also we have not changed Mk where "k is the square

of an integer.

\The methed of selecting M°  to satisfy lim
n-

P(MT ,n?)

= r was only dependent on Mk where k was the square of

an integer, and thus also remains unaffected by our new

requirements.

From the fact that p(x) may be thought of as the
2

limit of the fractions of n's for which F? (x) € XK, - (as

explained previously, this limit ranges from 0 to 1) it
. Ty .

‘ * '
follows that for any r , r € r%,l there exists infinitely

\

« .
r 2
k k

’many n such that ME = M = K for both k = n and

(n + 1)2.

To see the"above clearly, consider a set U containiﬁg
100 elements, ;nd two subsets of U, A and B, each con-
taining ézsg 555 (i.4., more than 75) of the elements of ®©.
Then A N B will contain more éhan 50% (i.e., 5N or more)
elements of "U. Similarly if A and B each had more than

50 elements then A N ﬁ will have at least’ 1 element. How-

ever, if- A and B have 50 elements (or less) it is possible

that ANB= ¢. ‘ C -

Applying this logic to our case, since 'r > > and

\
]

A

-t *
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I3

, , . .
and r* > %, for each of \the sequences {M;Q} and {M;z} over

.

752 (in the limit) of the elements are K. This meang'that for
Y
*
over 507 of all-perfect squares nz, ME} = Mzz = K. Since (by

construction) for some sufficiently large N, any block of N

f N - A
~consecutive squares contains more than 2 matches, there must be

. v .
at least one pair of successive matches in the block. So there

’ . *
must be an infinite number of n's for which- M;.: Mz = K for

both k = n? and k = (n + 1)2.

. n *
Now since b -+ b as n + o, then for every ¢ > O

there existas a pqsitive integer N such, that [bn - h*l <'g
for all n > N .~

Let 4xr € s and X+ € 5. Thus, for any n > N and

r o “ : \
Mk = M; = K, for both k= n? and k= (n + 1)2 , we have
v ! ‘ 241 *
\ n r 2n-1
F (x_J € Mooy S b /b ]
and
! 2 *
n‘+1 r 2n=-1 _*
F (x ) E M = [b bl .
. c* n2+1 : '
2 : 2 ' .
. n‘+ +
Thus |F Tk ) - PP ) < e .
. r r*

Since tﬁere‘are infinitely many n's with this property,

a—

. o st -
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M .
liminf|F%(x ) - Fi(x )] =0
n-+® T r
Thus for every p ,q € 8§, lim inf]Fq(p) - Fn(q)f = 0 .
n—»eo
syhich proves (2.7) and completes the proof of (A).
This completes the proof of Theorem 2.1. Q.E.D,

) . b}
*2.4 Period Nve Does Not Imply Period Three

We have now shown that for a continuous function’
v o M
F:R * R the existence of a point of period three implies

the existence of points of all periods. However, existence

of a point of periocd k , where k 1s any positive integer:

! a
A

does not always imply existence of points .of all periods, as
shown by the following counterexample given by Li and Yorke [14].

Example: Let F : [1,5] + [1,5] be defined such that F(l) =

3, F(2) S, F(3) 4, F(4) = 2, F(5) 1, and on each

4

interval [n,n + 1] , 1.< n < 4, f is linear. The graph of

F is drawn.in Figure 2.8.

e
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"Hence, each of the points' 1,2,3,4, and 5 has period

5. y ' ,

Now Fé(11,2]) = F%([3,5]) = F([1,4]) = {2,5] , and
4

' has no fixed points in [1,2], since the only

therefore F

point common to [1,2] and [2,5] is 2, and 2° has

period 5. Similarly, ¥3([2,3]) = (3,5] , and F3({4,5])
L .

= [1,4] , so neither of these two ipteg%als contain a fixed'

2

\point of F?3.

However, F3([3,4]) = F2([2,4]) = F([2,5]) = [1,5] D
[3,4] ; so by Lemma 2.2, F?3 " has .a fixed point in L3,4]‘

We shall now show that the fixed ‘point of 'F?® is unique,
<

I

and‘is also the fixed point of F .

Let p € [3,4] be a fixed point of F3. Since

F([3,4]) = [2,4] / we must have F(p) € [2,4] . Now, if

F(p) € [2,3] , then F2(p) €4,5] and F’(p) € [1,2] (all

of which is easily seen'by looking at Figure 2.8), which is

r

"impossibie since p € [3,4] 1is a fixed point of "F?.

. Hence F(p) €[3,4) ; and F2(p) € [2.4] - If F2(p)

€ [2,3] then Es(p) € [4,5] , which is also impossible ‘since

4 is not a‘fixed point aof, F? ., Sso FX(p) € [3,4] , and

[

therefore p,E(p) and F2(p) ‘are all in [3,4] .

1

on [3,41 , F is linear going from (3,4) to (4,2).

_ Thus on. [3,4] , F_is defined by F(X)N= 10 -~ 2X. Then

F(X) = 10 - 2(10 --2X) = 4X - 10, and F'(f) =

.
+

10, - 2(4X - 10) = 30.- 8X, .and the unique fixed point of . F?

; . s . : ° 0
is given by the 'solution 6f X = 30 - 8X which is %r.
. , . s .. . " . N .
AY . 3
2
. -

~
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But-~%§ is also the fixed point of F , since F[%?] ='%§,
and therefore .%g’ has period 1. ©So we have points of

period 5, but none having period - 3.

4

2.5 Period 'k Implies Period One N

As can be seen from the example of the previous

section, the fexistence of Q*point,of pericd 5 or of peiiod ,

)

one does not imply the existence of a point of period 3.
Héwever, the existence of a point of period k, for all k,

doeé'imply the existence of‘a‘point of period one, as was

[

.shown very simpdy by Straffin [15]. .

Theorem 2.2 Let £ be a continuous.ﬂﬁnction f:R+ R
B e

having a point of period k > 1, ‘then f has a point of
. i '

-

period one iR 4

5 the result o
is trivial. Assume k > 1, and consider the orbit
1
a,£(a),£%(a),£3(a),....,f
Y ‘ .
If f(a) < a, the proof is similar (£f(a) ## a since k > 1).

Proof Let point a have period k. If kx =1

k“l(a),fk(a) = a. Let: f(a) > a.

Then there must be»é poiﬁt ‘b = fi(ai of this orbit such
thfi £(b) < b, ot%erw}se the Squence would constantly
iﬁc&éase and could not.return to a. |

Let .F(X) = £(X) - X . Then F(a) > O/ and £(b) < 0,

so by the Intermediate Value theorem there exists a point ¢
,

bet&een a and b such that f£f(c) = c. - Q.E.D
'2.6 Related Conclusions .
oy “ a hd N N
We will now go back to, eguation (2.3) F(X) = rX(Y - X) g

and state some results about it. We choose this eguation

H
N
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: . n

because it is simple, and for certain values of x 1is 3
chéotic'fungtion. For example, when r = 3.9 'we have for
‘%= .142, £(X) = .475,£%(X) = .973 and £°%(X) = .104 and

thus £%(X) <X < £(X) < £3(x) . o

1) The fixed points of (2.3) are obtained by solviig

x.= rx(l’- X "which gives {0,r ; l}. Note E—i—l > 0

"only if 'r > 1, T, . t,

‘

2) If r € [0,4] then F: [0,1] ~ [0,1] .

3) " For r € [0,1] , X = 0 is the only point of period 'l;ﬁ
In fact for all X € [0,1] . F'(X) -0 as n » w.

4) For r € (1,3] there .are two points of periocd 1,
RY
' r - 1 . -1 A1
namely 0 and =1 -1, ana for all x¢f(0,1),

IH

r

Fn(x) -1 - r-1 as n = o«

5) Definition: For ﬁny function F a'point y € J wit):m
period k :is.gaid to be‘asymptoticallytst;ble if for |
some intérva} I = (y - &,y + 8  we have \IEk(X) - y] <
|x - y|. for all X e I and X#*y.

D’ + K .
A necessary condition that gives this behaviour is

that |§§{$(x)| < 1. This can easily be seen.from Figure 2.9.

In Figure 2.9 (a) and (b) point p {(which occurs

PRI P T

where the line y = X intersects the graph) has period 1.

4

If we take iterates of F at the point X "near” p in

0

Figure 2.%a, where l(gz] > 1, we obtain the:seduence

dXip

xu,xl,xz,m... which is moving further and further‘away from ¥

b

[
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’ , F (X)
F(X) 5 .
- / . /
r ar e A //
’ /
/
A /s
X
/, Y
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R
/ JL ~
/ A
vid .
Wy \ .,
X, p Xy 2

Figure 2.9

L -
<1, Xg,X,,X5,...

- o ' : dar)
P . ?owever, in Figure 2.9b where l{dX}p

has p as its ;imit.
Note To obt;in the points. X,/X,,X;,.... graphically, all

one needs to do is start from X, on the x-axis. Draw the

[l
1)

ofdinage line at that‘pd;nt to get F(X,) = x; .© From the
3 ' . .
point (xo,kl) ‘on the graph move hor;%qntally until the line
y =X is intersected. ‘The PPScissa of that pbint i§ then B
x;. ' R;peat ggf process t; get x; on the x-axié, and then
\

t o N

SN S . S
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\
4 Algebraically, the reason for the stability condition
» K . . a ' '
is that |F (X) - y| = |x- Y[ld—ka(Y)|- Thus, when

. ™~
|é§-Fk(y)] < 1 "we obtain 'Fk(x) -yl < |¥X - y[z.

In the example used in Section 1.3, where the slope

is <2 - wherever the derivative exists, we see;,» as noted

v

‘there, that every periodic:point'will be unstable. o .

6) For equa?ion (2.3), F'(X) = r - 2rX. .Thus in comment
3 above, where X =0, F'(0) = r, so when r € [0,1),
X = 0 1is a stable point of period \l.

In comment 4, where r € (1,3) , X = 0 is no longer a

-

stable point of period 1. However, now we have two points

of period 1, the second of which, X = i - !} , is a

=1

stable point since |F'(1 - f-})1 = |xr - 2rk£ -xr )| =

|2 - r|] <1 for r € (1,3) .
7) For ¢ € [0,3] we only have. points of period 1, listed
above and no points ‘of period k, k> 1.

8) For r > 3, this stable cycle of period 1, also- be-

T A i .
comes unstable, however,”it "bifurcates" into two points
" ' N ! N
1

.p and g near 1 - 37! - % which have period 2,

and of course F(p) = q and F(q) = p J For r €

\

’

(3,1 + V6 = 3.449) and X € (0,1) , FAR(x) ‘ convergés

X o 2n+1
to elthe; p or q, while F (X) converges to the .

other, except for those X. for which there is an =n

-1

for which Fn(x)° equals the point 1 - r of period 1.

In this region there are no other periodic points.

2 . "




. 9)

T~ )
10)
: .
\
11)
12)

. When =t .d4is "slightly" greater than 1 + V6, the

previoug two points of period 2 ©become unstable and

"they bifurcate into 4 Roints of period 4, and. F*R(x)

v

hpproaches one of these four points for ail X € (0,1)

except for those X for which there is an n such that

Fn(X) equals one of thengﬁin£s of period 1 or 2 .

In this in;erval E;ere'are no other points of any period,
i.e.,, we only have points of per;odz 1;~2, .or 4 listed
above. .

Tﬁe above process continues over smaller and smaller

intg;vals‘aqd we obtain points of period 20 . The

limiting value of r for which we only have points of

2m

i

period as m - ® seems to be near r & 3.5700.
When r = 5.6766 _the first point having a period of an
odd numﬁer éppear?, and the functfon will be' chaotic
(Se; Theorem 3.25. ‘When r = 3.8284 the Elrst point of
period 3 appears,'and thus by Li and Yorke [14] all
ingegei periods appear. When ' r = 4 the chaotic regioﬁ
ends since all points then for”‘f > 4 tend to .

The §Sovg "pifurcation" process 'is discussed extensively
. ‘ N [ N . .

in articles by May [3,9,13].

3
. ’ . < . ~
" .
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‘'as to when Egriod‘ k implies period . For exayple; we
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CHAPTER 3

PROPERTIES OF CHAOTIC FUNCTIONS

- . |

3.1 Sharkovsky's Theorem

~ In 1964, the Ukranian ma?%ematiciah Sharkovsky [23]
' ' ’ .

proved the following remarkable theorem, which has only

recently,_after'the work of Li and Yorke i14]h\become.more
' . |

widely .known. 1In it, he has completely answered the guestion

\,

have shown'thqt the existence of ‘points of period-five does

not imply exi§tencé of points of period three, but the con-

verse i$ true. ) ) ~

.it has a point of period n,.

pefinition 3.1: Let - be an order relation defined on the ' Y
\ . . *

set/of.Aatural numbers in the following way: Let n, ,hz

be any positive integers. Then n, * n,, if the difference

equation x = f(x ) has a point of period n whenever
: n+y n 2 -

Theorem 3.1: Let I be a compact ‘interval and £ :I -+ I be

a continuous ﬁunctibn.‘,Tben éhe'following érdering of the

" natural numbers holds: S

s

(3.1) 355729 > ..... »2¢3>2:5>2+7>2+9 : -
f '.‘\ . '.- " ‘ . . ‘i‘

D e+ 22032205 222072 9> i, -
\ 4 °.
: . . - :‘ -l . h
st e3 2 as 220 a7 Lo 20 20T . {.

-

¢ ’ + L Lsesrse éa > 225 2 & 1.

3

(3.1) is called a Sharkovsky erdering. | ‘ o :
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A proof in Engliéh of Theorem 3.1 can be found in [16] .

Using 1) the definitiOn oflLi and.Yorke, that a
, ' il

s continuous function F is chaotic if there exists an un--
countable set S which does not contain any periodic points -~

nor any asymptotically periodic points such that for ever}

-

X ,YE€ S, x 7y we have

! \ . !

. (3.2) 0 = l:Lm:Lnle (x) - FP(y) | < 1msup IFT(x) - F (y) ]|,

n-» o n -~ o’

and 2) Theorem 2.1 of [14], and 3) Theorem 3.1, the following

theorem of Butler and Pianigiani [17] may be proven.

Theorem 3.2: Let F:J = J be a contipuoug function. If F

has a point of period m's 2" , where m is an odd integer, N

, 4 /
v m >3, and n a non-negative integer, then F 1is chaotic.

Proof: Since F .has a point of perlod m-an , then by

Sharkovsky s orderlng (3. l), it will also have a peint of

me2R S
period 3m -2n . Thus F" 2 haa a point of period three

. ‘. n ‘ . .
and therefore by Theorem 2.1 F* 2 is chaotic, and by (3.2)

F is chaotic}. ' Q.E.D.
It is interesting to note, as is done by Straffin.
- .

[15] , that for the difference equation 2.3, F(x) = rx(1l -.x),

-

. as’' r 1increases, 901nts of longer and longer perlods appear,
‘' . as we have discugsed in Sectlon 2.6 in comments 7 through 11.

We start with points of perlod one, then periocds 2,4,8,....,

- 2n,.... When r = 3.5 there are no new periodegof length
} ! . s }
2" . - Then points of other periods appeari all of which are
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o

even.’ The first point of\odd.period begins‘wﬁen r = 3.68,

fle

and period three first appears when r 3.83. _THus the

order of points of different periods first appearing seems

to run exactly backwards through Sharkovsky's ordering as 1 -

\, -
goes from 3.00 to 3.83,

A partial proof of'Theorem 3.1 is given by Siraffin
[15] in a very interesting and elegant way through the use

L3

of "digraphs".
3.2 fgénseness of Chaotic Difference Egpations‘

b I
N

Klpeden [18] has shown that the set of all chaotic

functions is a dense subset of the space of continuous
: .

mappidgs of a‘épmpact interval of the.real line into itself

with the sup'porm, /
. . \ .

Definition 3.2: Let ‘X = [a,b] be a compact interval and

~let C(X) denote the space of all continuoug functions

f:X - X with the sup norm £l = max ]f(x)] .
' x€X , e

Associated with each £ € C(X) there is a difference

\ - . -
equation H ,

AN .
(3.3) x = f£{x ) n
S n

nt1 / 0'1'2"'f
S

k:

A
’

-We will show that the subset of'all\chﬁotic functions

v

is a dense subset of C(X) by constructing for each fé&C(X)
\ q e -
and any ¢ > 0, a chaotic fuﬁ:;}bn in c(X) whicKH*is within

. € of f° with respect to 'the sup norm on C(X) . Before we

4

start with the main'prcof)we give the following examplewof a

'
’

i ) \
chagtic function which will be used in our proof.

Iy




(3.7 £ - £(x)] < & for all x€ [x',x

¢
\ o

Example 3.1: .Leﬁ' n>1, and let F € C([0,2n]) be defined
— ' . .
as follows: ot
F(x) = 2x for 0 < x < n .
(3.4)  \ ° | N
F}x) = =2x + 4np for n < x < 2p.° ‘ :

’ .

This function has a cycle of order three for every value

i

~| b

of 'n, i.e.,. 71, gr] and ——n, and is thus a chaotic

’

function by Theorem 2.1 (see Figure 3.1).

. Theorem 3.3: Let X be the.compact interval [a,b] , then

d

b

the chaotic functions are dense in 'C(X).
Proof: We wish to show that given any £ € C(X) and any

€ > 0 there exists a chaotic function g € C(X) such that

(3.5) . . %f - gl < g .

lSinbe\ £f:X » X, then by Lemma 2.2 thepg exists  at
least oﬁe.ﬁixed point =x* of f. Assume for the moment

that x* #= b .
1 - ) . -
Since f is continuous everywhere, it is continuous

at x*. Therefore there ﬁxists 6 >0, 8 possibly depen-

-~

dent on k’ cand ¢ , such that

, -e- )
('3¢6) ;‘ 6 < 2

and o

N
*

+ 8] . ;

Let n = % and define, F* e o([x",x* + 2n]) as L 3
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\‘ M .
F¥(x) = 2x - x", <X £ X + n
.f. \ §338) .
_— : F¥(x) = -2x + 3x* + 47, +n<x< x4+ o2
\ (
' See Figure 3.2. BanN
" a
x*+2n
-,
2n p ’ \
(x)
' x"+n’
nt

*
<*}

4 ! 1 o

0 n 27 x*+n §*+2n
A N
- . . Figure 3.1 Figure 3.2.
. N N
We See that the graph of F*(x) is the same graph as

* that of- F(x) of Example 3.1, but with the origin translated

).

" to  (=x*,-x

-

o , ) Let vy : [x* + 2n,x* + 3n] =+ X be defined by.

¥

Vs

.

[ Y
|

Now we will define two additional functions.

A

@

oy




*

(3.9) Yix) = x* + (x - x* 72n) n

Q

£(x*¥ + 3pn) - x*

44 .

N I
’ »

the graph of which is the line segment joining the points

(x* + 2n,x*) and (x* + 3p,£(x* + 37)) in the plane.

Define a function g :X -+ X 'as follows:

f(x),w x €X - (1 vJ)
(3.10) \ g(x) = {F*(x) , x €1 \

y{x) , Xx €J

\

Let I = [x*,x% +2n] and J = [x* + 2n,x* + 3] .

The graph of a possible g is shown in Figure 3.3.

—— e et e e e e i — —
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) . .
Note that g 1is a continuous function on X, and that
- ‘ 0 'x € X ~ (I UJ)
(3.11)  |£(x) =~ g(x) | = {|[f(x) -F*(x)|, x€1

lflx) - y(x) ], x € J

Therefore/

N \ !
(3.12) 1f - gl = max{ sup {f(x) - F*(x)[, sup ]f(x) - y(x) |}
' xXEI XxXEJ

-

Now by the triangle inequality, we have

(3.13) sup |[£(x) - F*(x)| < sup |£(x) - x*| + sup |x* - F*(x)l
XxX€T x€EI x€1Il

v

apd

(3.14) sup |[f(x) - y(x)]| < sup |[f(x) - x* +lsup|x*.1\y(x)|
XEJ ’ Xx€J XEJ

is a fixed point of £} so by

Now f(x*) = x* since x*
(3.7) we have

(3.15) [£(x) - x*|

\

F*

3.3) we haQe

(3.16) sup |x* - F*Kx)] = [x* - F*(x* + n| = 2p %
x€ I f

and

“N Ty T
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\ h LY

(3.17) sup ]x* - y(x)| = ]x* - £(x" + 3n) | < ?

x€J - . N

o

t
by (3.15). Combining (3.12) through ¢3.17) we .obtain

- e ,ee €]
.(3.18) i £ gl < maxl2 + i + 2] € -

S

%*

‘Now F*, and therefore g has a cycle of period

three, namely x* + %r], x* + 311 and x* + %%;1, " and so

4

by Theorem 2.1, g is a chaotic function.

.

The only case now.left to consider is where the only

' \
fixed pointﬁof f is the larger endpoint b of the‘intervgl

X. Here a chaotic function g satisfying I1f - gl < g can
- >
be constructed in the same way as above except that the F*

"perturbation" is now the reflection in (x*,x*)- of that

above, as shown in Figure 3.4. : ‘Q.E;D.(




?

¥ In his concluding remarks, Kloeden (18] states'that
in spite of the fact that the above proof indicates that the

non-chaotic differerlte equations are structurdlly unstable

with respect to the chaotic ones, however, with the suffi-

1 - -

/
ciently small bound € on the perturbation, "it is unlikely
that the behaviour of the perturbed différgnce equation would
differ. much frq“.that of the original one outside of the

interval . {x*,x*+. 3n] in which the perturbétions were made.

Indeed, the chaotic behaviour of the perturbed difference =~

2

equation will most liKely be restricted entirely to the

" interval ‘[x*/x"+ 2p] which the perturbation F* 1is defined,

Iterative sequences entering the interval from outside it,

will be traﬁpea ingide it and thén;beqin to behave chaoticdlii
ly." ;he reason being t;at g([x*,x* + 2n]) = [x*,x* +2n] .
Since the interval is- small, and givén the limited accuracy of~
phfsi?al megsurements, this would probably be mistaken for

convergence to the point xf . He also notes that the pertur-

bation, F* is arbitrary, and is not what one would:considgr

as *a niturally occurring perturbation..

.

3.3 sStability of the chadtic Funct®ons

I

]

Kloeden [18] has ‘thérefore shown that "near" any

0

function £ € C(X) there are chaotic functions g € C(X)

having poinﬁs.ﬁf period three. Butler and Piahigiani (1731,

howéver, show by means of an example.and theorem which we

T

will now discuss, that a small perturhationkto a function
- . . o 4 A
which does have‘a,péint of period. three may not result in a

function which also has poﬁnts'of}period three. Tpis does not

@ PR
-
-
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¢
a

. ’ g : ‘ .
indicate, however, that the new function is nbt chaotic,

since they'show_that every continuous function, sufficjiently

@ -
»

close to a gi&en function ﬁaving points;of period three, will
have point; of period five, and, as proven in Theorem 3.2,
willlbe chaotic'. Tﬁqg the property of being cﬁédtic ié -
stable. We will also be able to conclude that the chaotic
functions are not only dense in .%&#4 , but also contain an
open dense set. ,

We will also show, that, the specf%l class of chaotic
‘functibns, for which we have strict ineguality £3(a) < a <

7 -

£(a) < f£23(a)~ forms an open set.

Example 3.2: Period three can be destroyed by arbitrary

small perturbations.

3
L]

Proof: Let F : [0,1]. > ['0,1] -be defined by

1 by

x “"i"'; ’ 0 < x < = -
(3:19) F(x) = . 2
2 - 2xr 'Ji-'ix il

P 4
=

. . .
Thus the orbit ,0 Py 1 Qas period'threq.@@’owwconsider for -

, the’ function F ' defined by °

N+

.any fixed g, 0 < ¢ <

9

]
A
»
+ .
- N
™
iA
»
IA
N

N
LY
N
®
n|
fA
L
[

_i'

’
]

We have - IF - FEI < g, and it is easy to seé that: Fé does -

a




not have any point of period three.

Theorem 3.4: Let T be a real-valued continuous f£unction on

)
i

I, and suppose T has a point of period three. ‘?hen there

»
v A

exists € > 0 such that if' F is continuous and [IF - T{
< € then F has at least one point having period five.

x, be an orbit of period three for T,

Proof: Let x P X, 0 Xy

1

and assume that x, < X, < x,. (if x

-~

1 € Xy <X, proof is

similar) . .

’

Now we have two possibilities: (a) T has no fixed

.

points in [x,,x,] , & (b) T has fixed points Zf/ [x,,%x,] .

| Grgphs illustrating the two‘possibilities'arg given in

) Figure (3.5) (a) and (b). -
. R T
. .
-
i
& . ‘ ;
- x, ¢
>
. . .
x, 1
R
»
“f x 1 h-
i
‘
N ) .
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In either case, there always exists a point Y €
[ x1.%,] ‘such that T(y,) = x, and - T has no fixed points

in [y,.,%,) (i.e., the graph of T(x} , Y S x £ x,, does

not intersect the line y = x) .

’

Now for the continuous function T2, we have

(3.21) T2([y,,x,1) O T([x,,%,]) D [x ,x,]
' >
since T2([y,,%,]) D [¥,;,%x,] . then by Lemma 2.2

there exists .Y, € [Y,,x,] such that T2(y,) = x, . It/is
clear that y, #y, and y, # X, , since fz(yz) = X, ,

» S

and Tz(xz) = X

T (y,) = x , and x. < x, < x

3 1. 1 2 3 -

Now we have the following:

T3 y,,%,]) D T([X,,%,]) D [xé,xa]

Ty, .%,]) D.T([%,,%,]7 D [x,.%,]

Ty, x,]) D T X ,X,]) D [, .%,]
. ) .
"Hence. T® +maps the interval [yz,xs] onto a strictly

larger interval ([u,v] where u <'y2‘< X, é\v . By simple'

a !
arguments, similar to the following'Lemma 3.1,
o - \ :
" there exists ¢ > O such that if IT -~ Fl < e\\then FS
. \ ,
maps ° [Yz'le ,onto a larger interval than itsélﬁi Thus by

continuity

v

Lemma 2.2 ‘Fso has at least one fixed point x, . - Now since

the interval [yz,le is disjoint fromuthe féxed p\int set
of T (recall how point y; was obtained), we canqsiso«have
that F has no fixed points in [yz;kz] by'taking, i :
necessarﬁ, a smaller va}ﬁe»&f; £ . Therefore, F has at

©

least one point of period five. Q.E.D.

ot
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3.4 Functions Satisfying £3(a) < a < f(a) < £%(a)
Form an Open Set .
Let <C(I) denote the spacevdf continuous functions on the \\

interval I and let it have the sup norm topology.

- Lemma 3.1 Let F: C(L) *+ C(I), be defined by F(g) = gosg.

Then F 1is continuous.

'

Proof We want to show that F-I(Be(k)) .is open where

k. € C(I). Let h € F*l(ae(k)). Then hoh € B_(k). By the

compactness of " L )
|hoh(x) - k(x)| £ 0 < €

N

iet' n = e—S .. There exists & £ n 'quch that
’ 2

ix—?| <é implies ih(x) - h(y)l <n,

by the uniform continuity of h. Consider now Bﬁ(h):

N € Bs(h) implies

- |hoh - hoh| < |hoh - hobh| # |hoh - hoh]

<n+d8d<2n=¢ -ga, o
i N .
Therefore,

|hok - k| < |[Woh - hoh| + |hoh - k|

i.e., h € F—I(Be(k)) implies that there exists § > 0 such

)

that B (h) C F“(ne(k)). ' ,
’ ) ) I i "3 QOE'QDO
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Lemma 3.2 Let’ U_(f) = {g€ c¢(n)| [f () - gt < e,
i =1,2,.~.n}. Then Ue(f) is open in the sup norm topology.

‘Prdof F_I(Be(fi)) is open.  Hence ‘ ¥

U_CE) = B_(£) N FTI(B_(£2)) N ... N FTTI (7))

is open. ! : .o )

Theorem 3.5 Let a € I. Then.

!

V= {f€c(l)] £%°a)<a< f(ay < £2(a)} -

is open in C(I).l

v ’

Proof If |V =.$, there is nothing to prove. Assume V¢

and lett f € V. We shall show that Ue(f) C‘V for a suitable

' f(a)-a
€. Lét €, = min {< 2

b

;}tizrfﬁal’ a—fZ(a)}‘ Choose‘

’
-

€ > 0' such that € < €15 and consider Ve(f) (with n = 3).

' .
~ *
) .

Let g € Ve(f).

f(ai - a ‘ . '

(3.27) ‘ f(a) > 26 + a. ‘ o

.

Also since by (3.24) |[f(a) = g(a)] < e, we have

[N

(3;28) . . =€ < f(a) - g(a) < €.

. : . ' 5
-

. Therefore g(a) > £(a) - € from (3.28)
>2e '+ a~-¢€ from (3T27)

- . 2 a4+ g > a

i s 2

i 7| Ttk




Substituting in (3.29), we obtain gz(a) > 2e + f£(a) --€

53.

, N .
2. From (3.25) wgﬁsﬁve -€ < £%(a) - g?(a) < ¢

(3.29) . g¥(a) > £3(a) - €

v 7/

‘ \ , 7

£2(a) -~ £(a) 2

But 3 > €, > € and &) f£°(a) > 2e + f(a) .
[ .

f(a) + . But from (3.26) f(a) + € > g(a) , and so

P

g*(a) > gl(a) .

‘3. From (3.26) we have -g < fa(a) - g¥(a) < €, and so

. : i - o
(3.30) gita) < £¥(a) + €. y
a - £3(a) €§\“§Z 3 ;
But =——35——— > g, > € and sof’(a) < a - 2¢. Substitu-~

tingQ;h (3.30), we obtain g¥(a) <a -2e +E=a.-€ < ar.

Combining the results of 1, 2,-and 3 we have

N ‘ ) : g
s g¥(a) < a < g(a) < g?(a).

Thus, g € V. . Q.E.D.

£

Theorems 3.3 and 3.5 show that the chaotic functions contain

a dense open set of C(I). ’ o

Note that even though the functions satisfying (3:23) form an

open set, the fune{iénsKsatisfying £2(a) = a < f(a) < fz(%)

"do not form an open set as seen by“Exahple 3.2, that period

AN

three ‘can be destroyed by small pergurﬁhtions. L .

*
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CHAPTER 4%

CHAOS IN N-DIMENSIONS
N

4.1 1Introduction »

Iﬁ,this chapter, we shall discyss some results pertain-

~

ing to the existence of chaos 'in N-dimensions.

" pefinition 4.1l: Let I be a compact subset of # &Y , N >1,

—

and let £ :I - I be a continuous function. Then

(4.1) - x o= £(X) ., n=0,1,2,..., X €1

-

'

} ‘ a4
defines a first order difference equation in N dimensions.
- Li and iorkp's period 3 condition for chaos in one

dimgnsion‘does not, in general, hold for N > 1 as can be

seen from the following example given by Kloeden [191].

.

Example 4.1: Let I be any closed disk in R?, with

center at the origin. Let "£:I - I be defined by

v

o s

g

o ) 1 1 ).

(4-2)/’ f(X) = f((xllxz)) =[""2"'x1 - "'2-3-‘2:‘2—3"1 "E‘xz}
\ I )

This mapping is continuous. Using the complex variable

' : ‘ ~ . ‘
z = x1‘+ ix2 + £ can be written as f(z) = wz where

. 1, ./3 - . .

w = -§-+ i-;— is a complex cube root of unity. Thus every

poinﬁ (x,,;z) € I - {(0,0)} has period.fhree,_and\ (0,0)
has period one.  So we see that in éeperql pefiod three does

not imply chaos for N > 1.

N A, b YT
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However, it is clear that chaos does exist in N-

dimensions by donsidering the function FTxl,xz,...,xN)

(f(xl),Q,O,...,O) where f(x) is any one-dimensional func-
tion exhibiting chaos, but this is a trivial case. What we
would like to know is, given an N-dimensional ceontinuous: \

function, N > 1, what are the conditions which will ensure

| '

the existence of a chaqtic set,

fl

\
In the one-~dimensional cage, the two most commonly
Y

‘thé one we used in the dis-

.

used models to exhibit chaos are
! &

cussion of Li and Yorke's ‘paper' [14].

N\

f2.3) ‘ Xnp, = ¥x (1 = %) 0<rc<4

and .

" ’ . . r(l‘Xn) !
(4.3) X4 = *p® > 0.,

. . ‘ A
'Wepwill‘now give an example, discussed by Guckenheimer,

Al

0§;ér-andl1péktchi [20] , which deals with the per capitgf
birthrates for two.age classes. This t%o;dimensibnal model
exhibits."all" the‘dynamics of the aboveiépe—dimensiona;
models ipéluding ?table‘equiliﬁrium, biéu:&ation of stable
cyclqs,‘and_chaoé. Thig exampIe will be similar to (4.3)

since the gqguadratic gcase is more difficult to deal with in

~.

two-dimensions. .

N

‘

- , ~a(x1+x3)
Example 4.2: ‘Let £(x,,x,) = (r(x;, + x,)Je ,xl) .

We choose a = .1 since this gives population levels fof x,

and x,. between 0 and 100, Let I = (0,100) ‘and then
< ‘

b

- et e
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:
£i12e 12 .
<When r = 7.5 and starting with X ; (1,1) or any
other convenient starting poiﬁt in I2, after about 59
iterates the population settles to a stable point x* =

x*

1]

(13.54025,13.54025) , i.e., £(x")

As r 1is increased to 10.05, the staple equilibrium
bifurcates to a gycle of period three, i.e.,

(5.68049,30.30046f, (38.30046,5.68049),ﬁ(5.68049,5.68049).

This differs from (4.3) since there the first bifarcation

goes to period 'two. o
At r = 14, a cycle of period six appears, and at \
r = 16 a cycle of period twelve appears. As r increases \

past 16 , further bifurcations occur. At r = 17, we

"sebm" to have chaos,’yith the chaotic behaviour increasing
. . :
as r 1increases. ' \
\ . .
Since the second element of each ordered pair is just

the first element of the pre-image, we show the behaviour

graphically by plotfing the first element of the oxrdered
pair vs.  the number of the iterate, i.e., X, ,ve-n. in
I

Figure 4.1. ' \ ‘ .
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3

4.2 Definition of Chaos in N-Dimensions

Definition 4.2: The difference equation (4.1) 'is said to be

chaotic if there exists
AN ‘ .
{1) A positive integer n such that (4.1) has 'a point of

‘period p for each p > n. R

(2} A scrambled set of (4.1), i.e.y an uncountable set S
)

containing no periodic points of (4.1l) such that

(a) £(8) Cs8

(b) For every X,,Y, € s, X, #Y,,
1im supl£5(x ) - Sy )0 0. |
k> . "

(c) For every X, € S and any periodic poiﬂt g of (4.1)
/

limsuplfk(XO) - ﬁk(Q)ﬂ > 0

¢ k + o

(3) An uncountable subset ' S, of 8, such that for every

“ vok,oo L Lk
Xo,Y¥Yy € 5y liminflf (Xg) - £7(¥,)1 = 0

ks w

o

P .

4.3 Classes of N-Dimensional Difference Equations Exhibitin

-«

L - .
the Sharkovsky Ordering and Chaos -

I. The following theorem is due to Kloeden ([19] which we
. \ . .
state without proving. It establishes sufficient conditions

' for the existence of cycles of all orders.

N

Theorem 4.1: Let I be a compact subset of °R of the

N : . o

.form I = Il Ii.' where I is a compact interval for

i

i=1

i=1,....,N. Let f:I +1I, £ = (fl,fz,ﬁi.,fN) . be a
, | ‘ - "
continuous .mapping of the form N

N




N \

o/

,x) i=l,2,...,N

(4.4) fi(xl,x PUERRYL

2,...,xN) = fi(xl,x

i.e., the i—th,componént‘ fi of £ depends only on ‘the

first i indegendent variables xl,xz,...,xi'. Then for

the above class of functions the Sharkovsky ordering (3:1} -

B

holds.

Example 4.3: The hybothéses of Theorem 4.1 are satisfied by

the "twisted horseshoe" difference éqggtion'of {207,

£ = (£,,£,) defined on I = [0,1]% by

1
2x1,, 0 < X, £ -2- -
5 ' £,0x,4%,) "1 -
(4.5) \ 2(1 -~ %), 7<% <1
f?::(x!,x ) = —5- + T + 7 (lexz) IE I )

Eguations (4.5) md& be written in more compact form:

\

. e Xy’ 'xz“‘l N 1
[le,-i-+1—6+ -4—], Of_xlf_"a-, (x;:/x,) €1

(4-6) f(xllxz) = x1 xz

1
[2‘1 Tmlbgyt gt z} '
! - (x,,x,) €I

. \ o
Note: The hypotheses of Theorem 4.1 are mht’by all one-

9

dimensional difference eguations of a continudus function
from a compact.interval into itself and therefore we have

the Sharkovsky ordering in.one dimension.

v

+

II. The following theorem is due to Diamond {21} which we

@

also state without proving.

¢

|
i
()
i
i
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7

i
.

' N
Definition 4.3: Let A be a subset of R . Let

£f:A -+ RN . A subset P of A 1s said to be k-periodic if

- : o j
\ ) =2 ana f£l(p) NnEl(P)=¢ for 1 <i<i <k.

~

oL N

Thebr 4.2: Let A be a set in RN afd f:A > R be

contihuo;;jf\if there is a non-empty compact set X in A

satisfying i?
(4.7) : X U f(X) C £%(xX) - CaA
‘ ~
and -
(4.8) X n £(X) = ¢ .

-

then T1: for every k =1,2,.... there is in A a k-

A

pgriodic set.

.

T2: there is an uncountable set S in A which con--

\:‘\\ tains no periodic set, and for which

(i) f(s) C s *
(i) for all p,q € S ,‘P #=q,

limsﬁplfk(p - fk(q)l >0
k + o .

* L}

(1ii). for all 'p € 8 and periodic set P ¢ A* and q € P

lim supl £5(p) - £5()f > 0. -

k+o

Note: 1. There is a remarkable resemblance of Theorém 4.2
. ‘ |
to Theorem 2.1. L osn

)

7~
2. The existence of k-periodic sets is 4 weaker
L .

’ - result than the existence of points of period k.
3. conditions (4.7) and (4.8) are compatible with

o
the conditions of Theorem 2.1 for one dimension if

e e W T L P ey
.
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there exists a point ¢ for. which £3(c) < ¢ <
ﬂ "£(e) < £2(c), for the following reason: |
By Lemma 2.0 there is an interval J C [c,f(c)]

such that £(J) = [£(c),f2(c)] . Now we have two possi-
bilities: (a) f(c) € J or (b) £(c) € J. “

° 1f f(c) €3, let X = 3. Therefore X n £(X) = ¢
“and then f£(X) = [f(c),f%(c)]  and £2(x) > [£¥(c),£2(c)]
o X Q £(x) .

" If f(ec) € T = [a,f(c)] ;here f(a) = £(c) , then let
X = [a,f(c}) - g] where € > 0 «is sufficiently small. Then
£(X) = [f(;),cl] , Where «¢; 1is close to but less than

£2(c) and X N £(X) = ¢ .

also £2(X) D [f(cl),fz(c;] > X U f(X) since £(c,)
is close to - £¥(c) ;nd since f3(¢) < c,& so by choosing ¢
small enough we can have F3(c1) < a. ) (

Thus, for one-dimension, if £3(ci < c < £(c) < £2(c) _
then the hypotheses of Theorem 4.2 also hoid..
ITI. The pre&ious two cases we haya diScussgd aré in reality
unsatif;ctory, sincq case I only shows that for those types '
of .functions, the Sharkovsky ordering holdsi but does not in

s

general show which difference equations are}chaotic. Also in

1

case iI, in spite of the fact that there is an'ovéxlap e~

o
tween the conditions of Diamond and those of Li'and Yorke in

’

the one dimensional case, Diamond's Theorem 4.2 applies only

to sets and notito specifistpoints. .

The following which is due to Marctto [22] gives
sufficient cenditions for chaos in' N-dimensions. BHe shows

\

s . M 4

4
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that if there exists a cycle which begins sufficiently close

£

to an unstable fixed point o#* the function and is "repelled"

. from this poi¥ht as the number of iterates increases, but then

. ) . : ;. © )
_po;nt Xq € V will give a trajectory {Xk}k;o of,(4il). Y

"snaps-back” to the fixed point, that ﬁhis is sufficient to
L

L
N—

imply chaos in (4.1). Before we get to his main theorem, we

need the following definitions and lemmas.

N N o
Definition 4.4: Let F be an N-dimensional differentiable
1 [ .
fupcfion. Let DF(X) denote the Jacohian matrix of F "
. N '
evaluated at the point X. € R . Let Br(x) denote the

)
closed ball in RN of radius r and center at Qoint X.

Let B;(X) denote its interior. Let {(Xi be the usual
Euclidean norm of X in R .

Remark 4.1l: If VvV C BN is a subset‘of the domain of’ F

»
o

which satisfies F(V) C°'V then it is clear that choosing a

,\A

1

* A .

We will now @xtend this trajectory uniquely for kj negh@ive.
- ’ I'd

-

Remark 4.2: Even if F is not_1-1 i# itiiﬂomain, but if

o
there exists a set U C RN 'for wh%ch

(4.9) F is. 1-1 in U and U C F(U) ,

: then for each X € U we have X € F(U) and therefore we

have a unigue point Y € U for 'which F(Y¥Y) = X.

. ! " ,
Definition 4.5: For U ‘rand F satisfying (4.9), the, ‘/

Ve
inverse of F %in U, dewoted by F! o= F;l‘ is the functfon

!

assigning to each ¥'€ U the unique Y € U for which,

¢

e
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A ’
F(Y) = X .
Remark 4.3: If we choose x5 € U theén we can obtain {Xk}
for all negative integers x by °
]
-1
(4.10) X, =F (%) k=0,-1,-2,...
N L .
Definitjon 4.6: Let F Dbe differentiable in Br(Z) . Then
N . e .
the point 2 € R is an expanding fixed point of F in
'Ber) , if F(3) = 2z, and all the eigenvalues of DF(X) g
exceed one in norm for all X € B (2) .. If 32 is not a ﬁg
fixed point of F,» then 2 will only be called an expanding 3
,point of F . %
) Remark 4.4: ~If Z is an expanding fixed point in Br(z),
>, ' ) ' ' ‘
then there exists A > 1 for which
k8
(4.11) IF(X) - F(Y)] > AlX - ¥l for all X # Y
i ) - X,Y € Br(Z)' .
° / N ‘ :
This implies that F is one~to-one in Br(Z). Also by . ;
iétting Y= 2 as a specia} case of (4.11), we obtain that
‘ Tr(x) - F(2)) = IF(X) - 21 £ Ix ~ 2l for all X € B_(2) .
. Since F 1is a homeoqprphis in B;(Z) , it must be that -
[ ‘ N h .

F(Br(Z))'D Br(z). Thérefore. F satisfies (4-.9) with
~ ° 1 ’ : ’ . A »
U = Br(g)  and F exists in gr(Z) . However (4.1l1)

implies that {‘ - . ' ‘ -
(4.12) C1E R -zt « 2R -zl | ‘
a, - ' C ,
) ‘w ‘ ' r
- 1 ;‘w‘
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SO '

~»

(4.13) FX(X) +2 as k - o for all X € B_(Z)..

We thefefore see that F-l‘ contracfs Br(z), and F expands

Br(Z).

+

Remark 4.5: Let 2 be an expanding fixed point of F in

B_(2) . If F is not 1-1 in R', then it is possible that

>
~

there exists a point X, € Br(Z) , Xy #2, for which

FM(XO) = 2 for some positive integer M . Since F is' 1=l
on Br(z), and F(2) = 2, M must be greater than 1.

s . ’ . ’ &
Definition 4.7:" B_(2) is called an expanding neighbourhood

)

; of Z if every point of B;(Z) is an éxpanding point of F.

¢

»

Note that if 2 1is an.expanding point, such'an r always
exists. ' v
- .

Definition 4.8: Let Z be an expanding fixed point of F

B

on Br(Z) for some r > 0. Then, 2 is said to be a snap-

-
J

back repeller of F “~4if there exists ‘a point. X, € B_(2) ,

—

It

%2, and the determinant of e

Y

X, ¥ 2, such that FM(XO)

-

DFM(XO) # 0 for somé'positive integer M. The purpose of

J oMy ¥ . - M

having ‘|DF (Xy) | # 0 is to ensure that the. inverse of F
. g N 5

@

exists in somenneigpbourhood of Z,.

i
¢

Brouwer Fixed Point Theorem: Let S DBe any clpsedvhall'iq ¢

¢ o

N

'R . Let K be a continuous mapping of S into itself.

Then X has at least one fixed point, i.e., there exists
. P

) ' it . L. , ’., e ‘
) »”. - o t

e oy bt fiia e
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X € 8 such that K({X) = X.

o

Proof: , See [24]. Note this theorem is similar to Lemma 2.2.
Lemma 4.1: Let Z be a snap-back repgllef of F. Then '

for some s > 0 there exists Yo € B:(Z) and an integer 'L,

such ‘that Fk(y.,,) ¢ B (Z) for 1<k <L, FL'(YO) =z,

‘ "
’ +

]DFL(Y°)| 70, agnd Z is expanding on Bs(z).

i

Pﬁbof: Since: 2 1is avsnap-back repeller, for some r > 0,

[y

there exists X, € Br(z) + X, ¥ 2, such that FM(XO) = 2z,

¢
" o At

L

and [DF(Xy) | # 0. Let X, = Fk(io) » k >1. Now since

0 #* IDFM(XO)I = |DFM’k(xk) . lnrk(xo)"i , we have

¢ Y

© L e ]
(4.14) ~ IDFk(xo)l =0 1l<k<M :
and . . ‘ g _ ‘ .
(4.15) ' |Dr"7k(x')| #0 1<k <M
. k = . 2

)

= Z, we can assume without

‘\ Now since X, ¥# Z2 and xM
. ) e

i
o
'

loss of genéralfty that M is minimal,-'i.e.,

§
(4.16) © X

-

For this minimal M, we still have |[DF'(X})| # 0 by (4.14).

ﬁow (1) 2

F(xM-l) by the definition of M,
o ' , y o
(2) %z = F(Z) since 2 is a fixed point of F

X

(3) 2 %X by (4.16)

M-1
' Lt . lﬁ 1
. 14) F is 1-1 on' B_(2) by Remark 4.4.

«

.

.

- Figy



Therefore

Als

such that

(4.17)

and:

. (4.18)

i.e., XT

before 2

'

(4.19)

‘\

Now
two possig
(a) If X
(b) . Let

‘hood of 12

€, > 0 su

A 4

o, since X, G'Br(z) there mugF be an integer T

66.
X & B_(2) .

g€ B_(2) ., l.<k<M-=-rT.

Xtk

is the 1§st iterate of X, 1ying in Br(z)

\‘ .
is hit. 'Note.that (4.15) implies Ehét

M-T
rDF 7(X )| # 0. ‘ f

let Y, = X, € Br(z) and L= M ~ T. There are

S 4 . _ _
11}t1es. (a) "X, € B (2) or (b) IXTI r.

o € B;(Z)-, let s = r and the lemma is proved.

leI = r. Récall Br(z) is an expanding heighbour—

:,then by the continuity of DF, fhere exists

7

ch that- 2 is expanding on ﬁ&(z) for all w. in

r<w<r+ € . Choose ¢, small enough so that X, . &

'Bm(Z) .for

*gsince, by

let g, =

. Let

"r<w<r
q

1<k <L ﬁﬂd } < w<r+ g, . This can be aone,
\ ) :
(4.18), X, € BI(Z? + 1 <k <M=-T; therefore
inf WXLyl = 7] .

1<k<M-T

a

€ = min(g, ,g,) . .Thus, for any w ‘satisfying

’ k 4
0 = -
€ B (2) , F (Y,) > &

+ ¢, we have Y, =‘xT

\ . ! . i
< «

2
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)

B,(2) for 1 <k < L. Letting s = , the lemma is proved.

Q.E.D.

N - .
Lemma 4.2: Let H:R < RN be continuous. Let {Ck}:-o

be a sequence of compa®t sets with Ck C RN. If H(Ck) o)

(o} for all k > 0,

k+1 there exists a non-empty compact

set C C C, sSuch that

1

(4.20) . Hk(x)’E Ck for all X € C and k > 0

 § .
(Note: For N = 1, Lemma 4.2 reduces to Lemma 2,1l.)

i

Proof:  (Diamond [21]3 Let G be the restriction of H to

. Define 'Q1'= G;chl) . Clearly Q, is compact and

- i

i

contained in C . Canstructcinductivply a sequence of

compact sets, 1= 1,2,... by

- =1 ~',1
Qi#1 = Gy Gy -----6y (ci+1)

Then Qi+1 (o Qi

5

intersection 6 of all the Qi is non-empty and ‘possesses

iy

the desirdd property because of its manner of construction.

Q.E.Dz

N

‘Theorem 4.3: Let F :R. + R' be differentiable. If F

possesses a snap-back repeller, then the difference equation
(4.1) is chaotic. -

[ . ' ! "4 . -
Proof: Let 2 be the snap-back repeller o F and; let

1

and, by the Cantor intersection theorem, the

R




G(Z) = xO and

X €B_(2), Xy £ %, F (X)) =2, and [DF (x| # 0,
sy
where 2 is expanding in Br(Z) . We will now show that the

L" -

3 conditjons of Definition 4.2 characterizing chaos hold.

(1) We can.assume

(4.21a) X, € B%(2)
r
) B
and - » ) . A
(4.21b) CFfxg) #B_(B) 1<k <M.

!
n . , . A

Otherwise replaqe X ,r and M by Y s and L re;pect-‘

0 0’

-

ively, given by Lemma 4.1, to:obtain\(4.21): and the following
i N . AN

analysis can be .done with the new variables.

Since FM(xb) = Z and ]DF”(xo)|‘#=6 B Remark 4.4

implies that for some g satisfying '0 < g < r, there exists

a continuous 1-1 funétioq"G , defined on B_(Z) with

Y

(4.22) el = FM(x) for all X €'G(Be(2)) ,

-

i.e., G is the inverse of lPM . Let Q be the compact

3

set.defined by 0 = G(B_(2)) .

Now X, € Q since 2 € Bé(z) .and ‘G(Z) = X, .

Also since X, G'B:§Z) by (4.21a), and G is continuous

" and 1-1 near 2, we .can choose € sufficiently small so

[

that @ C Br(Z). \

Note that

b S 4 oS At sy =

g e
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»

M ;
(4.23) > F(Q) = B_(2) .
’ Now, by (4.21b), . }
m N
(4.24) F(Q) ¢crR =B (Z), 1<m«<M
. ) . L
o , *Figure 4.2 gives a clearer picture of what is happening.
o o ' ' RN "
> Fm(Q) H
§
;
i
{
§
) vl
[} ‘ 'e
e o |
)
!
figuze 4.2
»” - i "- LI 3
* Also, since Z 'is expanding on Br(z) , Remark 4.4
o | , ~ 4
implies- that F exists on Br(z) 1 thus it follows from
. 0 C ar(z) that ~ o s S . -
. f\ !
t ; -
,_.l i y 1 .
‘éi . ' 1 o . * T
.&i ; o ! g
o W — : : ————
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(4.25) FU(Q) C B (Z) for all m > 0.

In addition, by Remark 4.4, for any X € Q ,
F_k(x) >z as k + ®; therefore there exists an/ integer
3 = 3(X) 20 such that F '(X) € BY(2) , by choosing J

’

large enough. This, by continuity, we have a § = §(X) 5> 0
‘ -J
such that F (BG

(X)) € 32(2) . Hence, the set D = {aé(x>=
for every X € Q} is an,opén cover of the ccmpact'set Af

+

and it theréfore contains a finite subcover Dy, of Q, where

\

D,. = {Ba(xi) 1 X, €Q, io=\l,2.,,,.L}

Let T = max [J(xi)] . Therefore,
1<i<L.

F T (X) € B (2) for all X € Q. ‘ .

Since € >r, Z is also expanding in B (Z) , and we

have

\

(4.26) . FA(Q) € B_(2). for all -k >1T.
Now, for every k > T, consider the function F-k°

t

defined for all X € B.(2) . Since G is continuous and- 1-1

s

)G’

on B_(2) aqd"Fik is continuous and 1-1 on Q = G(BE(Z)) “

*F-kn & 1is continuous and 1-1 on 38(2) . Thus, from (4.26)

)

-k L
Pl G(B(2) € B (2),

4




‘ 2

. . k .
and by the Brouwer Fixed Point Theorem F e G must' have a

fixed point Y, € B _(2) , i.e.,

ko G(Y,) = ¥ for all . k 2 T/

N

Note, therefore; that

k kK -k .
(4,27) FU(Y,) = (Fr e F e @) (Y,) = G(Y)

. Therefore, FM+k(Yk) = (FMp‘rk)(yk) , ‘ e

a ka3

© ~

: - = (#"e 6) (v,) by (4.27) o
= (7' @) (¥,) by (4.22)
o = Yk ‘ . \
\ \ - o
. \ Mtk -
Thus, Y is a fixed point of F . We will now .show that

k

» §

Yk cannot have period less than M + k.

~

By (4.27) we have Fk(Yk) = G(Yk), and since’ ¥, e

Bs(z),/ and C(BE(Z)) = @ by construction, ' lvg>'

I

it follows that ‘ .
(4.28) P(r,) € g forall k2 T.
b : \

% 3 s
‘ Applying F K to both sides of. (4.28) yields

-

a ° -k ‘
Y €F (Q)

- -




Now by (4.25), £ ¥(o) ¢ B_(z) for all Xk » 0.

Therefore,

. s

F(Y,) =Y €Bg(2Z) cB_(2)
1¢y ). ~k+1 &

FI(Y, ) €F (@) c B_(2)\

F2(r.) e F X% ¢ B_(2)

k
F (Yk) € Q0 C Br(Z)u

i.e., F'(Y,) €B:(2) for .0 <n <k.

Also, by (4.28), we have ‘Fk(Yk) € Q for all k > T.

Therefore, from (4.24) we obfain

k41
. F (Yk) -4 Br(Z)

\ k42
F (Yk) & Br(Z)

ktM-1
. F (Yk) & Br(ZI

N

f.e., FU(¥) € B (Z) for k'+1<n<H+k.

But since Y, is. a fixed point of _ R e have

v

k+M L
F (Yk{ = Xk .
— .

cannot have period s, where k + 1 <.

Therefore, ¢ ¥
- k B

s
< :
s M+ k ,‘gince F (Y, ) & B _(2) and qug‘Br(Z) . Also,

ok ik Mt A P Wt i ow

e gt TR
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Y. cannot have perfiod q, where 0 <'q < k, since then

qrl _ pMtk-1 s q-1
F (Yk) = F (Yk). But F (Yk)te Br(Z) whereas\

.

M+k- ‘ .
F l(Yk)¢ Br(z), again. a contradiction. So Yk cannot !

have period less than M + k, Therefore Y, has period M t+ k.,

k

3

, .
Letting N = M+ T, p= M+ k for all k > T \_ SN
establishes part (1) of the definition of chaos (Definition

r4.2)' ﬁ.‘

(2) Let the integers M, T, and ¥ be as in (1) and let

U -and V Dbe two,coméact sets defined by

Uu=©g"'(Q and V = B_(2)

i

Proof: U = ri (g c &Y - B_(Z) by (4.24) Therefore,

e

.

U C RN - BE(Z) since ¢ > r. But Vv = BE(Z), and so -

uonNnv=g¢. o

Claim 2: V C PV (W)

Proof: Since U = FU'(Q), F(U) = FY(Q) . But, by (4.23),
FM(Q) = B_(2) , and so P}U) =‘B (z) Now F (u) = . )
€ ' y , € ‘ T ~

- -1 o , ’
¥ lr(u)) = P¥ ' (e_(2)) . But 2z is'expanding im B_(2) ,

'

80O Fn-l(EEKZ)) S BE(Z) . Therefore, FN(U) 3'55(2) = vV,

Claim 3: U C F (V) and v C ﬁ(‘m,

Proof: FN(V) = FN(BS(Z)) D B¢ (2) since 2 is exijnding on
' v . ’ A
\

/ ¢ N




M e

B.(2) .

e

14

Therefore,

Also let k =

CB.(2) ,

Now,

Theorem 4.3,

Therefore,

@ Now

Therefore,

(4.29)
and
{4.30

9

The

*

N

t
2.1,

[
Let

where E
n

!

N-T-1

F

as- defined at the end of part (1)

N =

u.c P

let

H(X) =

by usin§ Claims 1,2 and 3,

inf{lx -~ ¥l

.V € H()

remaznder of the proof of (2) is essentially

A be the set of sequences

is either

)

T

and so applying .FN

N
(Q) cris,

M + T,

14

FN

U

+ 1

F (V) O V.

in (4.26).

(z2)) =

and so

-l - -
" N-T-1 ) .

proving Claim 3.

\

»
for all
v

(x)
-~ /

.

:Xev,Y € v}

°

v ldenticakjto the corresponding part of the proof of Theorem

and we outline it as follows:

E =

or V, and if En

-

Therefore,

X €B
r

and U,V C H(V)

)=‘ U

74 .’

F T ()

_ to both sides,

vy .

of the proof of

H be the function defined by . -

(2) .

we have ‘ "

.‘ t
'«: ! ve ?

>. 0 . : -

d 4

{E}

n= 1' : o

then ~
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- %

Let R(E,n) be the number of Ei's which equal

U for 1ii£“°

For each g € (0,1) , let EW = {E‘r‘l’}:_ , be a sequence

w2, -
in A satisfying limR—(-E—-—‘n—)—- = 0.
n—+o n a

Let B be defined by B = {EY:y4 € (0,1} C A; then

Y

B 1is uncountable. Also from (4.30), H(E:) ) Eg and -so

+, 7

by Lemma 4.2, for each e € B , 'there is a point xu) € UV YV

with Hn(x)GEw for all n > 1. -Let § ={Hn(x):n>,0
PR n - H n -

and ,Ew € B} , then ”H(SH) C SH ' ‘SH containg no periodic

points of H, and there exists an infi:)it; number of n's

such that ‘H"(x) € U and Hn(Y3 € Vv for any X, Y € SH ,
-
with X #= Y. i

From the last statement and. (4.29), it follows that

I for every X , Y E ‘SH , X #FY, 1lim splen’(x) - Hn(Y)‘l = Lj
y n-> o
. &

> 0. ‘
)

]

Therefore, letting § = {Fn“(x) : X € SH and n _>_ 0}
ar;d recalling that H(X) = ‘F.N(x) , We see that F(S) C s,

5 contains no periodic points of F, and for every X,Y,

L3

lim suplF (X) - P (¥)l > L, >0
p-boo. ) y '

§ . \}
'




e _.It can easily‘be checked that the sequences still

'\/ "rgstrict the E““n in the following way: (If EY = U, then

. \
1 4 I

Wg have thus shown (2a) and (2b) of Definition 4.2. '

) Part (2¢) can be proven similarly.\\ .

(3):» "First we note that since- 2 is &xpanding on Be(z),

. if we defide . / .

(A n

) D = H—n(BE(Z)) for.all n Jj>_ 0, .
» e «

. 1

LR

B @ . YY) g ' *

. then given> 6 > 0 there exists an integer J = J(§) “such '

that” Ix - zl < § for all' x € D, and n > J. Now-the
" / ) Lo

. R ¥
proof of (3)'agé;n parallels the'borresponding part in [}

-
r

Thedrem‘z.l._‘For“tﬂe sake of completeness, we present it

here. , . :

. » . i
‘ ;\::?‘ v s -
) '+ + For any sequence EY = {E:}:‘“l € A, we further - v

- .

.

1 -
. ‘ . - 7

n
.\‘ - [ .
wt.n = m?2 for. some integer m. ..Also, if E: ="U - for b¥th

i 4

, ‘n=m? and n'= (m + 1)2, .then E¥ =D - for 'n = m?2 + k'
o . n 2m~K ,

)
- - .

4 where k =°1,2,....,2m .- 86; the remaining: n's we shall T :

;assume

A t

gW.=2 v .
. n o -

.

-
-} . i

‘

P .:\ . I . i ) v ’
sat;sfyj H(%g) > Eﬁ;l » 'and thds by Lemma‘4.2 there exists.

. -

4 “ ‘.J/‘/r" ’ ’ - . * I
' a point X, satisfying H(X ) & EY for all.n'3 0.

o ~

o -

. J . i -,‘:' 3~ ‘ .t s
o ./ Now, defi?i?g‘ s°'= {Xm tw € {I,lj},. thep.‘so {s
- N e ' . . :

. . * R - o ‘ o

unqpqp%able,j Sy C %H C S, and for any s, t Ev[%,l] ‘thereé
' ' ' H ) ' { . N

. -

‘exists;;nfinitply\niny m's such that - . b .
‘. . 4 ' . 1 ‘ ’




n s n . t o
[= = =
H‘(xsﬁ\, E =D, and H(X) €E =D 7,
"4
where "n = m2 + 1.
v L ’
But as noted abové, in the beginning of part (3) of
. . . ¢ .
. this proof, given § > 0, X - zZ2i < 3 for all X € D,
“\ ) and m sufficiently large. Thus, for all § > O therle )
1 , . ) \ B
LR exists an integer m such that .
« i o -
i3 n n ’ N . ’
IH (X )/~ B (xt)l <.§ where n=m?2+ 1.
. * ' .‘
Since 6% is arbitrary, we have >
. , |
' »*
T .o L"= lim influ™(x ) - ﬁn(xt)'l‘ = 0. ,
no @ st
#®
Therefore, foOT ;ny X,Y €s,
ﬂ 1 ) . liminflF™(X) - F(Y)I <L, = 0. S
» & - A \n_’m ° . ¢
. ‘v .
wi I ! 3 ) - ' y .
which shows (3) of Definition 4.2, and completes the proof
of the Theorem. , ) Q.E.D.
s '/ N .
Note: This class of functions whiap Marotto shows to be
chaotic are continuously differéhtiable, rather than just
’ f . 1
continuous as has been the case till now.
3 - .- RN
IV Generalization by P.E. Kloeden ‘
- b . A Y
' . { 'In this section we present a genéralizatién of,the fore-
‘ ,_Ngoing result by Marotto. The theorem, due to Kloeden [25]
¢ N ‘,, - . . v R
, "gives sufficient conditions for 'a continuous function to have
. . . .’ 7 H .
Rl chaotic behdviour. /Not only is. this generalization applicable
. . . . \

A

.
2

!

-

S s e i o i B e e o e ————r
. -

pre AR S b iR & e T

- e Il
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0 ' ,
to difference equations with snap-back repellers, but also ‘: .
to those with saddle-points. o /

Before we state and prove Kloeden's theofem; we need

Ll

the following definitions: ;

[

Defimition 4.9: F is said to be expanding on a set A C &Y

REEE

NS

if there exists A > 1 such that IF(X) - F(¥)! S alx - Yl

A .
for all X ,Y € a. Note that the above condition implies

that F is 1-1 on A . a

"pDefinition 4.10: An f-ball is a closed ball of finite radius

o
in Rl; An f%-ball'with r;dius r and center at 2Z will be
denqted by B%(Z) . An open f2-ball will be denoted by.

'

4

> i .
0,2
Brr (2) . <

Theorem 4.4: Let F :RY > ’Y be 4 continubus mapping’. Let

*

there exist non-empty compact sets A~ and B, and integers

!
2

Ils< 2 <N, and nng n, > 1 such that:- ; '

2 ~

(1) A is homeomorphic to an £-ball. . - .

(2) A CPF(@) .

(3) F is expanding on A. N . Do
(4)"3Qj,n . . 1
* . ' . ) ’
(5) FU(B) MA=¢. g - .
ni+n3z i - o “ . .
(6) ;ACE - _ (B). ) ‘ oo l
\n'l+n2.' ! < ' a

(n

is 1-1 on B.'

. . ‘ ' » 4 . ' b ]
Then the difference equation (4.1) .is chaotic.’

o




1> q' . 79.
14 X €
Proof: (1) Since F is continuous and by (6) we have
nytnz -, ’ < '
ACTF (B) , therefore there exists a non-empty compact
set C C B such that
e R ny+n, .
(4.31) . A=TF (c)
, . )
7’
. : ny+n, - _gtng
Since by (7}, F » is 1-1 on B, §o0 .F, has a
% ) ‘ ? 0 . .
continudous inverse function g :A -+ C such that "
o nytn, -
(4.32) ’ g(F (X)) = X for all X € C.
el ’ 'k
PN . ,
. . - ni ' '
.Since, by (5) we have F "~ (B) N.A = ¢ v ) ,

€

.
- t

- ' ¢ . nl ° N
(4.33) (:- : - F2{(C) N A= ¢..
From (3) sihceﬁxF is expandfng on A, we_have F‘ is
,,‘ - . ' _l -
l1-1 on A, so F has a continuous :inverse ?A : F(A) - A .

’ .
+ 1 i

Now since CC B, and B C A by (4], and A C F(A) by (2),

we have C.C F(A) a%d thersfore _
y . .
(4.34) - F;k(c) c'a for all 'k > 0. .
- N . "1\ )

. :
o . M e
L -

Figure 4.3 ghows a Vinn Diagram of the sets.

\

For each k > 0, the mapping . F;ko g:A> A is a .

4 4

continuous md}ping from a homeomorpg of an g-ball into itself,‘

'

80 by the h;ouwer leed}?oint Theoyem there exists a point

ot »
M )

¥, € & such that . - A S~

A

v

s gL meix'-:,;,;,-,\.‘.w -

!

. -



¢ l (4‘.3\6)

N
1)
¢ ’\
~ B B ‘ .
. Figurg, 4.3 ‘
, T -
(4.35) P (g(r,)) = ¥
: ‘ a x'! k"
, o . .
Appllying FA “to both sides of (4.35) 4 we obtain
| - ‘o r !
. . (e ,

1

: ik
y 9(xk) = F_(Y,) .

T Now sinte g:A =+ C,

( »

- ‘ ’ B

(4.37) . g(yk)»é c

N - : . . \ ’ } ' -

. . . - - ' R '\- } )
" so : .
‘. - . M ¢
‘ \ . - i/ .
* R \ —_— ,

80.
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Pl

_ Applying Fj to_both sides of (4.39) gives

) = F

| b
7
n

— 1 ? -
j = F (g(Yk))‘

n;+k n1+k[ -k

n, ‘
€ F {C) by (4.37) d

. n;
Now since we have F (C) N A = ¢ by (4.35),

A
- £

We shall now show that if k > ny 4 n,, themn Y

A

has period n, + n,

+ k. .

) s
r \ * '
Let Y.

, have period pv Assume

i< p<k. Now (4.35) and (4.37) imply that

13

. "' : . - . -x
(4.40) N B Yk € Fn (Cc) .

s ~

Fa (lek))] by (4.35)

first that

P

n;+k
(4.38) F (v.) & A
c Also, ' ’
. . n;+n,+k n;+n,. k
F (Yk).— g (F (Yk))
n i+n2
= F (g(Yk)) by (4.36)
7 - Yk ,
n,+n, _ N : .
since F and - g are inverse fuiictions. So wg have
o n,+n,+k -

k

81.
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.

‘

Fl(x,) € F)7®(c) c A" where 1 <3 <k, since Fl(C) C A

for all m > 0 by (4.34). Therefore the whole cycle ¥, ,

[

N . ‘ \ -
. -1 .
F(Yk),......,Fp fYk)'Fp(Yk) = Yk belongs to A , which
contraﬁhcts (4.38), that P (Yk) € A.
' ‘ . .

1

°

P also cannot be between k and ‘nl + n, + k, sincé

- ) n1+n2+k .
* by ,(4.39),. F ' (Yk) = Yk and so p would have to

divide n, + n, + k exactly, which is impossible when .

k > n, 4+ n, .- |
Hence (4.1) has a periodic' point of perind p for each

o

5

p.>2 N= 2(n, + n,) ., establishing part (1) of the Definition

4.2 of chabs.

(2) 13t : o .
- nl Q
(4.41) D=F (QC) -
¢ i and " ! . . /
(a.42) h=Fh.
" Then, A N'D.= ¢ ,} by (4.33):
vA ! - ‘
- -2
‘ ' } 2ny+2n, : an,+n, 'n, .
Also - h(Dp) = FN(D") = F (D) = F (F.. (D)) *
) ‘ v
en.+n, n. +n C R
. =r 2 3 ' P(C)) by (4.41)
'S . * - A ‘ ' n
. 2n,+n,’ : 1
= F {A) by 4.31
- o
- . ‘ D A .by (2).of hypothesis.
. . ) < L ! . .
. : \ \ ' y ) /~ ;
. . . /.
e ‘ . ) 4
‘ o . . ~.‘ -~ il
\. . ‘, . , , . . D
. . “ l' s g . o
I ———— 1 s R T

R
S rarin, A
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RAR

‘P\

1 \ N .
. -n, -n, -n, -n,
F [

. | ‘
) - f

) y 83.

# 4 ' ) .
« s

Also h(A) = FN(A) D & by (2) of hypothesis. »
Now since A C F(A) ; \ §

(4.43) ‘ A.Cc FP(A) for all j > 0 N

and

‘ ;
(4.44) - ) Fnj(A) CA for all 3 >0 . %
. i = i
, . 1

»
s b S,

so - : ,

7

F - (A)

c by (4.31 | ’ .
FA ()} Y ¢ ) ‘ .

e Aot

X k [-nl-an‘
4 i = FA (C) N

S iebtun e g At

B D \
F, ! 2(c) C. A by (4.44)

1 .-

ot o n

0 2" , .
’ iy
-\

oo ' an, 4en,
n(A) = FN(a) = B 1002

'

]

- . i . ;2n +2n, <N. =2n I
. 1
D AP S F ] L-(F 1 Z(C)] .
. . tuA
- ) v B, ’ v .
: F "(C) = D by (4.41)

¢~ . . -

To summari;e:

‘

(4.45) . afp=g - - \

,’f ra i ) , I :

- ) . ! , \' ‘
(4.46). L ‘ - h{D) D A
‘ \ N . R . ) ’ . . @
(4.47) . ..., ‘ h(a) >a ., . .

~ - : . T ' N l.l[ : ' " .-_ . g

) (\F. ‘ : ) " . .




(4.48) ' h(A) DD
Therefore,(

(4.49) inf{lx - Yl :X €A ,Y €D} > 0.
. !

set S follows almost
. \

3, which we now again outline.

: \The existence of a scramble

*

exactly as in ThiPre s

J o . é
{E },-, Where

e

t
[]
o
-
o
. o
t
1
/]
o
ot
(o]
n
i}
o
2
=1
o
=]
Q
.0
7]
1
]

E  is.either A or D, and E = E =A 1if E =D . -
n - : ) n+1 n2 ° n

Let R(E,n) be the number of sets Ei "equal to D
\

v

for 1<1i<n, and for each u € (0,1) let EY = {8)"

to be a sequence in ~/7"satisfying

w '
limM: w . :’7
. i h-)oo n !
. I v
LN
Q

‘Let F, = {BM':w € (0,1} C./ﬁf. Then F, is udcount-

L] Nt

able. Also from (4.46), (4.47) and (4.48) we have h(E::) S5
\ , ,

N

d ! a
E:+1 and so by Lémma 4.2 for each Y € Fy there is a point
. . .

! ' ‘: . » \ )
X, € .AUD such that h"(xw) € E: for all n > 1.

\ .

\

" Let Sh = {h“(xw) tn > 0 and okt E,Fh} . Then
. | , ) [ \
é? h(s,) c S, » S, contains no periodic points of h, and there
Lo (¢ : . .

e h ' . v

exists an infinite number of n's such that hn(X) € A and

. X #;Y . Hence, from (4.49)

’ by

h"(¥) € D for any X,YeEs,
for any X ,Y €S , X#*Y ' B

o e v gl i rmrh




S L, = limsupln™(x) - W™ ()1 > O

noow

=

follows that F(S) € S, S5 contains no pgriod}c points

-

of F, and for any X ,Y €S, X #£Y

|

lim supl?™(x) - F (V)L > L > 0.

- N > o

This shows that S has properties ./(2'51‘) and (2b) of.

Definition 4.2, and sim:‘;}la’rly (2c) may be shown.

(3): Let a be the fixed point of

’

Brouwer Fixed Point Theorem.

Since F is expanding on A ,; there ,exi‘.st’s A > 1

\

such that ' ;

1

/

(4.50)  1F(X)jg- F(O)I < MIX - ¥YI for all

Therefore, for all k > 1,
=k
A

(4.51) "~ Ir
‘o,

v

A. ) -

1Y
»

~
s
i

LS

any e > 0, there exists an integer 3,

-~ »

- N B . N B

F

=1

A

-

(4.52) . 1P %% - al <2 ®Ix -

sO F;k(x) + a 'as k + » fér all, X €

Thus letting § =, F,n‘(x) : X €8 and n s 0 :L!
. LS = po A 20}

4

85’

tA » A given by the

. . T
In particular, for any' X E% CA and Y

al

c.,

1)

-

X,Ye xn

(x) - F;k\(Y)'I <A Fix -y

= a

!

*

j(X,€) /etrar>£hat .

Y

Therefore,. for

Rt en g p — e
r

B bt RS |yt 2 PO e
o

j
|



\

" - .
(4.53) . . F,7(X) € AnNBg(a) .. -

, N\
L4

By continuity, there exists a § = 6(5(, €) > 0 such that

.
o,

‘ -1 .
: N
(4.54) ‘ P, (A N'B

(X)) € A N BY(a)

©

* Now the collection of sets {B;'n(X) : X € ¢} consti-

tutes an open cover of the compact set © , SO thegxe exists

a finite subcollection ] Q..
4 ’ . ”
. - o . .
) - )
(4.55) Co = {BG;n(Xi) (X, €C, 1= 1,2%% ., 1) :

o

which also covers C 9 Let T = T(g) = max{j(xi,e) r o=
> 7
1,2,...,L} . “Then F;T(x) € Bg(a) NA for all X € C, so

by (4.52)
' ~k n
(4.56) FA (Cc) C B_g(a) N a for all k > T(g) .
Let H, = h;k»(m for all k > 0, where h  is the

1 ’
. . ] N o LY

. ) N | ‘ . R .
continuous inverse of h.= F on A. Then, for any' € > 0,

+

. there exists a J = J(¢) ‘auc'h"‘that; Ix - al < §2~ for all

f.x€H_ -and all k> J. '

s ¥

The rest of the proof again _follows Theorem 4.3,

.
% . N -

" whi¢h we now outline,

. , v A , ;
. The sequences  E’ = {E‘;’}:= l,e‘// will be further.
. M \" '
L8 . ‘ ,
r s !




N\

Q/r ’ 87.

—_

restricted.as follows: If E: =D then n =m? for some

nteger m. If E: =D for both n =m? and n = (m + 1)?2

a

then E: = ﬁzm-j for n=m?2+3,35 =1,2,...,2m. Finally
> . “3
éfor the remaining n's, ES = A,
\
It can easily be checked that the sequences still

|
i

satisfy h(E:) 3 E§+1' 8o by Lemma 4.2 there exXists a point

.

X such that hn(x ) € EY for all n > 0° Let S, =
W, w n

4

{3 ;o ' . ' - .
{xm: w € (Z,l]}. Then .S, 1is uncountabld, S, C §, C 5,

- . v

and for any’ s ,t € {3
. .

e ] there exists infinitely many m's

/s

-~

‘n ) s ' n t
such that h (xél-f‘E = H and 'h ' (X.) € E = . H °
(S : n 2m=} ot n
. .

Tam=1q

-

where n = m24+ 1. But, as shown above, given any €& > 0,

~

Ix - al < % for all X € Hgm-x . if m- is sufficiently PFarge.
- -] -

¥ , IS 0
Hence, for any ¢ > 0, there exists an integer m such that

’ ' . . ]

‘ ’ M - ' ¥
ln“(xs) - h“(x’t)l < ¢ where n = m? +'1.
As, € > 0 is afbitrary,iit follows th}t Ty
. . : . .] ) "
L, = liminfln™(x) - n"(x )1 = o. .
n+w s t. . ‘ A

+
1

’@hus for any "X, Y €S,

S )
. v

A}

G gt ST

|
]
H




.

_difficult, given a continuous (and differentiable) fug&tionn

i
o
L]

lim infIF7(X) - F' (V)1 ¢ L,
n -+ o ' ‘

Q.E.D.

¢

4.4 sSimilarities between Thebvrems 2.1, 4.3, and 4.4..

The theorems of L%’and Yorke [147, harotto [22], and

4
Kloeden [25]-all have sthe following condition in common: " \

a point (or set) a , which under 1teratlons of £ gets
~

mapped further awey'from a, and then gets back to or.Feer

a..This can be seen from the following summary.
. Y

Theorem 2.1: The iterates of point a satisfy £(a) > a, ¢

£2(a) > f(a) , and f£3(a) = a (or £3(a) < a) .

R U NN

Theorem 4.3: The existence of €He snap—fack repeller z°,

and the point X, € B_(Z) for which £ (X,) , 1<m <M, :
1 v

is further from 2 than X, , andd then fM(Xc) =z .

[N

. o
Theorem-4.4: Existence of the set C CA, F 1'(c) Z A

‘(i.e., "further" from A ) , and then gets baék to A in view

\
. . . < .
n,+n, - A S
of F o (€).=nAa. ) ) v
\ / ' .
5 We note that each theorem we have presented is 4 co
generalization of'the'previous one. However, 1t is still y

3

to ‘determine whether or not the functzon will be chaotic.

Also, for Qhe N- dimensional case, N> 1, the above ‘thebrems
do not indf%ate what the dimensibn of the chaotic set is.

it is gpssxble that its dimension is -less than the dimension
AV

< ¥

of the set under consideration asseen from the' following
example by H. P:oppe. ’ ix : / 1

¥ . P ' . : . ‘ v

- ) (> - ‘
\,
N
. '
P ‘\ - . . -



- - - _

f
. N~ ¢ '
N ) "\"/
: CER
. Example 4.4: Let f>R? 4+ R? be’dg’fi\ned by f(z) = 22 ' .7
where 2z = X + iy.
N : aI
_ 2m ' '
Let X' = {z 15~ fargz < 11} Nn{z: |z| > el . Therefore
) ‘ “ , . - )
= anm 2 '
‘ £(x) = {z:-—:;—f_arg‘zf_Zw}ﬂ{z:]z[_>_€}‘, and " . Ve
2 -~ 2‘” . y ' !
£2(X) = {4z : %~ < argz < 2n; N {z:|z| > €¢*} . Thus the g
3- 7 - - ~
two conditions of Theorem 4.2 are met, i.e., ~
I3 » R -
. 3
X N £(X) = ¢
and et ) L ) a &
* X U £(X) C £2(X) C R?. ‘ >
. | ;
: . However, ths chaotic behaviour is restricted to the , 5
0, L4 N
@ + g
* curve . {z: |z| = 1}, since, in the interior of this cipkle, .
the iterates tend to the origin,‘ while outside this circle L
they tend to infinity. [ ° , .
Again, using. Example 4.4, we will show that ' £ has a . s
. L4 . [ S ’
. . ¢ , . fo
snap-back repéller, and therefore will be chadtic by Theorem R
+4.3. : E .' . S 3 K

'Consider the complex number z = 1: this is a fixed

o -~ ; o : - - ‘ .
. point of f. Adso f£(z) ='z? may be written as: ’ ’ .
" * ) ~ ‘ ‘1 § . / ° ’
£%x,y) = (x2v4 y2,2xy) . N
x o~ i . , . ' ’ | ) \(
'I;hereforgf, ' ’ * . ' SR ) . :
' - . R \‘ ¢ .
o ° 2x -2y
. ! .Df(x l}() = ) ! 2 ’ -
. T YN
' ., " .




\ ‘ . - .
\ . u

L ‘ .o .. 90.

: - . A ’ . N , . [

‘) \\‘
and its eigenvalues, . A, are ohiained from . "
Vo "
2x =~ A -2y
\ . T,
' Y 2y ' 2x ~ A

4 - , .
. 'Thus A = 2x-% 2yi, which, in‘gbsolute v;&ue, is equal to

~A1. also |DE(x,y)| = 4x? ¥ 4y? ="4. on |z| = 1.

L4
.

_‘/‘r‘" ~
’ .
3

2 on |z| =1, and so z = 1 is an expanding fixed point’

-

v

. [2“11 g
Let X, = e 2"% yith n sufficiently laTge so that

.[ ‘\ n. '
X is in an expanding neighkourhood of 1., Thus £?2 (X,)

Therefore. Xy is a snap-back repeller. However as
) -

Jentioned above, the chaotig set }s restricted to [z| = 1.

4.5 . Some Examples. . ~.

We will now give some examples -applying Theorems 2.1,

4.3, and 4.4. ' ' - ‘

) jz.} the-differgnée equation is chaotic.

. »

Exampl§.4.5: This will be a one-dimensional example. -

N ’ > ) W ' .
Let i o . '
+ . v .

) . 2x , Oﬁx_f_%

£{x) =,
2 - 2x, =<x<1'
2= 7 - »

a

(a) since (% %, ) forms a éycle of period three (orxr
L ¢ - )

-

%:%;1,0 are thréé'iteratea with "0 = f%{}} < éﬁp \by Theorem’

4
'

™~

{(b) £ 'is'continﬁous on [0,1] , and is also differentiable\J

25

J

ket Bekry B

Lo wdom

[P,




~/ -

S

»

' [%,1] and thus: o ’ -~

91.

P
-
I

everywhere‘exceét at x = so as long as we stay away from
1

El
vy ~ :
x.= 5, We can apply Theorem 4.3, which is a local theorem.

“

\m’ ,
f has two fixed points, . 0 and % , both of which
. ) , <

-~

are snap-back repellers since
. S |

ax| = 2 everxwhere, except

i

. . - ‘\
at x = %', and so. all points are expanding, and the eigen-.

11 N

‘value is 2. Also, there are two points '%'Ii € [(0,1] for
which ‘fa{%]‘= 0 and f3{%%] = %. There is a problem

"with the point O since the first iterate of % is %,

where the function is not differentiable; however, with ﬁhe

win

point all conditions are satisfied and thus the difﬁergnce

equation is chaotic by Theorem 4.3.

-

(c) WX will now show f is chaotic using Theorem 4.4. ' j

¥ 9 7 ENARE
et A = [IE'E] , B = [%73' , n= L =1, ané n, = é
“n, = 1. These sets and integers satisfy all 7 conditions of

’ , 17 11 '
Theorem 4.4, since ,f(A{,= [I‘E r £(B) = [Z'E ' fz(B).=

&

(1) -.A |is homeoﬁorphiq to a one-ball.

~

(2) &< ga) | S . | :

.« M

(3) £. is expapd;ng oﬁ” A, since for every X,y € A ©oe

|£0x) - £(y)] = | (2 =~ 2x) = (2 = 2y)| .= 2% = Y| ‘

‘




. J

it}

gg'«&-» -

)

| ~
(4). B \§ A

“(5). £(B) NnA
2
(6) A C¢£ (a)\

"(7) Finally

= ¢

.

7 . .
Therefore £ is chaotic by Theorem 4:4.

Example 4.6: (Kloeden. [25]). Let £ = (£,,£,) be a continu-

ous mapping defined on the unit square ' 1? ¢ R? ‘(see‘Example

4.3) by

’

which is a twisted horseshoe on- I?.

5acobian for

'

%
1 e b
92. .
— . . |
N 3
} s
N~ ' i H
£2 is i-1 on B, since for{fevery x € B N~
2 o | ™~ '
£o°(x) = 272 -~ 2x) = 4 - 4x ;
s
i
2x , 0 < x < L ;
. - =2 !
1 ¥
2 - 2x, 3 < x <1
N
x Y. 1
= 4 =
2 '10+ 4 / _
“ . '/’/ §
/!
’ g {2 35 .
f has-a fixed point (x,y) = 354 - Now, the )
T , !
+2 0 ’
N ’ ,‘
~1 ~
5 10
] \ A
-2 Q /
. ] , a
1
= 10
2
1
] \N . *
e ' —

fl(xiy)

£50(x,y)

./.

f is ))'
v

(]




. ‘and because A-= 1 <41,

Its eigenvalues )\ are determined
! N
-2 -2 0
. =.O
.1 1
2 10 - A

I'4 \x-=
and ?O ’ 10 *

L

Theorem 4.4 does apply.
.

. Let LL be the line 90
N

the line 90x. ~ 378y = -125 .,

x 378y =

~2,2% . Therefore, (X,y) . is a saddle point,
f » ’ b

.

from

4

Theorem 4.3 cannot be used, but

A

305, and L, be

«

Y
These are two lines passing

through' (%,y) whose equations have integral\éoeﬁfiéients.

)

¥ Let
A= 4(x,y) : (x,y) é L, 2 < 2} '
1Y) o ‘:Y 17 3§ = by
and
¢ = t. 3' I_.7. |
B {(xif) : (x,y) € L, , 7 < %< 8}
~N .
Thus, to find £(A) , we have C
£.(x,y).,= 2 - 2x since x > 2, 1
A N : ~ 167 2
and
) e g - x, 305 - 90X . .1
(X)) = 5 ¥ gT3e) YT

.

and we note that '[2 - 2x,§ +

\

305 - .90x +

3780

equation for L, . Therefore;'

N

-%J satisfies the

kS

s
o kg e P L

- /L e e s e

T Vet ot - it Bl o yf*m,“hx;'ﬁ)_/ﬁﬂdcﬁs by, “ﬁ";é,

S it e

. i e ”




Ty -
vl - n
) ‘94, §
or h a
o ros 1 7 1
p E(A) =i{(x,y} : (x,y) € Ly 2% i"g}x N K
f{ . 1
Similarly, . . S i 4;
T . : . i
N 3 ‘ 1 1 ) ~
£(B) = {(er) H (er) E Lll -4" ,<_ 3“{’5} ?
. o ' . Do , K
‘ \ + » . '
- o find ~ £%(B) , we note that x < %' in £(B) and that 3
— A . 3
X 305 - 90x 1 ' 4 L ' 3
Xy 2222 0% 4 2 i . . :
{2:,2 3780 4) \satisfies the equation for L, . ;
L ‘ ~ 3
Therefore, 1
AN v ) ) ) E
2o , ' 1
/ ©o ES(B)-T Y(x,¥) ¢ (x,¥) € Ly '3 Lx <1 : )
l ‘ ' ’ L ‘ ) ‘j{;
and ’ ’g
R EJFg .= - , & \. o : } - i
. v £°(B) {(x,y) : (x,¥) L,,0 <x <'11. !
. T L s
Thus £3%(B) DL, Nn1?. Let £=1, ny, =1, and n, = 2. :
. N
. . . . : /
Theé above sety and integers satisfy all 7 conditions- of
Theorem 4.4: } ;
AN 1 !
AN N
. (1) A is homeomorphic to a one-ball . \
-d . . .
(2) A CF(A), shown above : , L.
(3) £ is expanding on A since for any (x,y) € A . we have
4 .
. AN
. £ilx,y) =2 = 2x" (
! N\

| =1.305 378y Ly 4135,
falxy) = 3755 673 18 W

"N

\

So, for any two points (%" ,y') + (x",y") €A, we have

. . AN
2cxt 3 - £x"y 0= |2 - 2x 2 - 2y) (2225722 27|

\




H

LTt s
" " (4 B C A

s

(5)'“ff(3) Nas=g

as definedl

LY

Te2x' -2x",2y' = 2y") 1

2h(x",y")y - (x",y")} |

=

{(6) &a-C fa(Bx as shown, -

v

+
|

381xv+ Y

. (7) Fiﬁallyh £* is 1-1 on B, since for all

£2(x,y) = 2 - 2[2(2 - 2x)]

249

f:(xrij?

. 200 1000

’ which gives the non—singulak Jacobian matrix

~ 300

-2

381

95."

’
i
;

LR

as shown. - o : /

i

/
) (X‘,y) € B
R , Y

7

» o~

=.8-.

8x

(straightforward substitution)
- : o4

AN . \

’0] ‘ J

200

4
[
y
‘

o ot At A e o L

 TEEw % -

LI G

P

. 1
1000} .

~l

Thus- the difference equation is cqaotic by Theorem

b .
4.4, ’ ;

N
N

4.6 Further Similarities between Theorems 4.3 and 2.1

. For the .one-dimensional case, the existence of a snap-
AN i ' : . \ :
. back repeller does not imply the existence of points of

msmohe.

4.3 (and Theorem 4.4) only ensures
\ . /

- the ex{stence of 'points of dﬁlvperiods greater than some

'périod three, since Theorem

~positive integer ‘N .“ﬁence the function will be" chaotie, } ) ' .
by Theorem 3.2, since there will exist a point whose period ’ E

is an oed numbexr. "

0,1,

The existence of a point of period 3+ 2“, n
- 2,.+., —also does not imply the existence Qf a snap-back

repeller, as can be seen from the following example.

e e s S



E

" thus if we let a = .8711 we have

t

Examplel 4.7 , Let 'f be the continuous function from

{0.1] oot [0, 1] dqﬁined by:

Now
g £2(.8711) = .9236
T£2(.9236) = .9925,

£2(.9925) = .8489,

a

C£8(a) < a.< £2(a) < f4(a) ,

: “
and therefore f? has a point of period 3

and £ has a point of period 6 = 2! .3,

- f
B s

neither of which afe'snap-back repellery, siqée no pdinp'ofﬂ !

a . ' ¢
\

(0,1] gets mapped into 0. hlso, th 6nly other point
and so all the pre-
€

, and ther fqre,;héy wfll not be

whiéh gets mapped to

umages are less than’

XYV Y

: . ' N
in any ball centered at 9.y
{ ¢

. s « /
- Marotto [26] however has shown that we can define a
snap~back-repeller with wedker conditipns than Definition 3;8,‘

and the conclusion of Th brem 4.3 would st;il heold, as follows.

3




Y

L 3

* Definition 4.11: Z .is said to be a snaé-ﬁack‘repeiler of f

. . -n o ' / o7,

»

-~

"

if there exists a sequence of compact sets {Bk}§- o

\ ¢ }
(each homeomorphic to the unit ball in “RN) which satisfy: .

El
.

(a) By > % as k'» - .. ’ . .
) f. . B €

(b)  F(B;) = B, .

(c)' F is 1-1 in Bk (which may be dropped for the case .
when R = R as shown in" [26]).

, -

(d) Bk n'BM = ¢ for 1< k<M., g
/- o .

. .m0 .
(E), Z € BM ) .

Under the above condiiZaﬁs, Theorem 4.3 will hold with the

assumptionéof)cdﬁtinﬁi y of F alone,.and the following

be showﬁ. " - .
: o S~

Ay

Let F:R =+ R be.a continuous: function. Then

Theorem mal

Theoremv4.5:

/

HJ“ posgesses a snap-back repeller (in .the sense of conditions

'

(d) , (b), (d) and .(e) of Definition.4.1l) if and only .if
X ‘ B - ' " . Lt

Fm has a point of period 3, for some .positive integers m and n.

Proof: See [26]), . ‘

Note that inyExample 4.7, £° has a point of period

t

‘3 , and. 0 is a snap-back repeller according to Definition- .

4.11. - .

‘

4.7 - Observations

v

Presently,; the méthods used to determine whether a

one-dimensional function behaves chaotically is (1) ¢

e

PIET - SETWE S N

S

IR

o gmaiad L, -

BB o epie”
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!
* |
m is odd, which is general}y difficul? to do,
\ .
: | ‘ . .
(2) to find a point a for which fs?(a) < a < fm(a) <)f2m(a)z

- i
» .

s \ { .- )
which 1s usually tedious and messy., for n-dimensional

functions; chaos 1s determined byl(l)/finding a snap-back

fgpeller for“fn; or (2) find.sets thch satisfy the condi-~
. K ‘

tions of Theorem 4.4. Both ﬁethods are difficult to ‘apply.

it can easily be shown that any continuous function

0 is

]

£ from [0,1] onto. (0,1] for which' £(0) = £(1)
E

a chaopic function since there willféxist a ﬁoint b € (0,1)"

such that £(b) = 1, and a point’ a € (0,b) such that
, , Q

f(a) = b, and therefofe we. have
0= £3(a) < a < f(a) < £2(a) = 1.

We would liKe.to have similar conditions applying to
other classes of functions, to tell us without testing,
whether they are chaotic. For examplke, it is conjecfured'

that all piecewise continuous functiofns for which

£=4

N .
inf|£'(X)| > 1 will be chaotic. E
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