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INTRODUCTION
. ¥

It has always been one of the major goals of "

-

‘physicists" to discover the elementary particles, the
. ' * '

.indivisible building blocks out of which all matter is

.

formed: So far experiments have revealed the existence of
twelve such particles, which are listed in Appendix C.
They are divided i‘rllto two g_rOL;ps, the gquarks, which are
~characterized as 'having va p-roperty known as collour charge,

and the leptons, which lack this property and are “described

as colourless, or white.

y Just .as in the case of electromagnetism, where only
particles with electromagnetic charge feel the\effects of
electric and magnetic. fields, so there exist colour electric

and magnetic tields which are felt only by particlés, or
. . =
agglomerations of particles with colour charges. )

. € . 4
Since, as was stated previously, the leptons have no

-~

colour charge, they do not interact with the colour fields.

-

They will not be ‘discussed further. .
While quarks undoubtedly exist, no one has yet been
’able to find one in isolation. \Accordlng to present theory,

quarks may exist in bound, threev particle states called

baryons, or bound quark-antiquark states called mesons.*
!

3

* There are lndlcatlons from experiments that states w:Lth A\
~ 8ix quarks also exist.

H
H
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It is thought that the colour'fo'rce between the ;:{uarks is
s\O strong in these bound statés‘t;_bat the ionization
potential is effectively infinite. Just as the bound state
of a proton and an electron is e'lectremagnetic charge
ne.utrel, ‘so the colour charge cf a baryoh of a meson ie
neutral. | |

This thesis is devoted to calculatlng the energies
of the‘baryonlc states containing 1, 2 or 3 "charmed guarks.
It is a continuation of work done by C.Ss. Kalman, who ’
solved the prob'lem for the case of baryons contalnlng
strange quarks (see reference 17).

Since the charmed quark is so heavy (approximately

1500 MeV), one can assume that the three quarks in a

>

"charmed baryon move with non-relativistic velocities.

The full apparatus of field theory is therefore not
needed. . {, -
The quarks are described by wa've functions which are

common eigenstates of orbital angular momentum and spin,

and move in a two body potential to be described in the

LY

next chapter. . -

=
]

%
.



CHAPTER 1

o

=
"

' 1.1 Qpantum Chromodynamics.

" The theory which describes the two body forces
'betw;en the three pairs of'gua:r:-ks in a baryon is callea |
Quantum Chromodynamics (QCD). 1In this model, which is
very similar in structure to Quantum Electrodynamics (QED),
the forces, are mediatéd by the exchange of eighﬁ vector
bosons called gluons. The>interaction Hamiltonian fér'-QCD ;
can be wr;i,tten.l ’ ‘ N

H = ngquu (summation.over 2 = 1 to 8

implied) d C S (1-1)

wh,eré J!'u =

<

[}
————
W
[ g

1]
T
€ €
w N e
h___—/-

T Ag'u are the"eight gluon vector potentials
}\g, are the eight Gelimann SU(3) matrices‘
O ‘ ‘li-;:ted in Appendix A.

R, B, G denote the three coléur fermion

fields which describe quarks.

- %
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where J;b,‘ ‘_i’av \vb . \,
A12 = “Al - 1A2) AZl = ;(Al ;qu) N g
Ajs = (A, - iAg) Ay = 3(A, 4+ 1Al
\'!
¢ B,y = d(Ag - iAg) Ay, = R (AL 4+ iAg)
"R = Ay 4 Rg) Ay, = 3(-Ayt Ay
N . /3 /31 X
A3 = Ay \
/3 -
The 4-vector subscript is implied .
Note that
Ap t Ayt Ay =0 ‘ (1-3

- /, e
)

Sy 3 RSN iyl TS # T e RSN g s
v

<

so that there are still éight independent gluon fields.

Consider a particular term in the expansion:

. = T ~My = By ¥
Ry3'05y FR10,Y2Y Yy = Apg BY'R

A

[}

In field theory this term éorreSQOnds to a scattering

vertex, represented by the Feynman diagram \il'lusAt'rated'

b

in Figure 1.

s ot i B o4 Fa0ERRL A

(1-4)

7~



s 5.
. 3
Figure 1. Emi ssion of gluon by R guark
The 1nteractlon of an ARE gluon with a R quark
causes it to change into a B quark.
There az_{e eight c0nserved charges in QCD2
2 :3— 20 k 2 ov,n ‘ >
Q* - |dx [0%0 4 £P™ FROA ] (1-5)

where £rmn are the SU(3) structure constants (see

for example Gibson and Pollard, p.-265).

Fluv - au A!.\) - 3\) Alu;‘_ gfzmn muAnv

3
3% is the ®ontribution to the charge density of the

coloured quarks. The second term arises from the fact
that the gluons themselves have i:o;Lour c'harge.’ This
situation can be contrasted to the case of QED where the

photon has no elect’romagnetic charge. As a result, the
/]

gluons can couplé to themselves and form glueballs,

E.Y

which are bound states of gluons in the absence of quarks.

w
L] .

'1L.2 Running-Coupling Constant

. Consider the QED electrostatic potential between

two static electrons of éharge e and separated by distance -

r, where r <<!, and m is the mass of the electron. By
m
- {

s,

[N Sy Tiv Ve
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°

keeping terms only up to ag?, where o, = Ei' in a
T 4 ” oA

v

perturbation expansion3:

where o the coupling constant is given by

?

2

o = ag (1L - ag 1n L9) L ‘ (1-7) |
0 3T g2 B : ) .
where Q 0 (1) ,.L >>m "' ’ . :

r Lo )

3

The numerical ¢value of L, the ultraviolet cutoff,

cannot be specified. It is a free parameter of the

¢

theory. The first term on the right hand side of -

eq%gfion 1-7 is the con;ribution due to the exchange
¢

¢

of a sirglg virtual photon as illustrated in Figure 2a.

-

v ’ . * N i
In the absence of the second term, each source sees the. !

bare charge e @f the other. The second term is due to

1

the presence in.the vaguum state of a negative energy

v

sea of electrbns, as first poid&edcout‘by Dirac., The-

Minﬁeraction of a hegative energy electron with the - ’ . 4

- i

electromagnetic field causes a virtual transition to a
positive energy state. ' The unoccupied negati&e energy .
state that results from such a - process behaves like a

positively chargedparticle andis called a positron. In

p . .
the presence of the static source charges these virtual ‘

electron - positron pairs are polarized as illustrated in 4
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JFigure 2a. Figure 2b
One photon exchange ° Vacuum polarization

The bare source charge is partially screened by the ' §
/- electron - positron pairs, leaving a residue, the

physicél, observable charég, which is what is measured

o ' at long ranges.

e

As the source charges move closer together, they

»
-

s
b
o
¢

penetrate the positron-electron cloud and see more of
) the bare charge of the other. When Q ° L,a = ap and each

electron interacts with the bare charge of the other.
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For the case of QCD there is an extra term makinga

contribution to a_, the coupling constant.

'

"The presence

of this term is due to the fact, mentioned previously, ' .

that since gluons have ‘colour charge, éhey couple to

' N
themselves, and give rise to a term represented by the §
g . . 4 “ -
diagram in Figure 4c . > ]
) A ' j\
, N
B\ : , a
N\ A A
\ ~' g \\
Figure 4a Fiqure 4b , \
N One gluon exchange Vacuum polarization . |
* : \
\\‘\\ , :
)
' )
;
‘é
. ;
‘ i
Figure Ac :
Virtual gluon-gluon scattering %
\ ‘ 2
~
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: ag = ag (1-2fao 1’ 4 11 oy InL?) - -
s 3an 2 an 92 (1-8)

where £ = number of Flavours

; ; /

i

This additional term more than cancels: the term
due to qq polarization illustrated by Figure 4b. As a
result, there is a net antiscreening effect, i.e., the

coupling becomes stronger with increasing separation, and

tends to zero as the separation decreases. Therefore

in the limit as r + o the quarks behave as free particles.
. This result, first derived by Gross and Wilczék5 is known
! AN
as asymptotic freedom, and is consis;ent with the

querimentally observed phenomenon ,0f scaling.
~N
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1.3 Quark Confinement

Theoretical work done gy Rebbi® and others using
QCD on a 1a£tice indicate that with separations in the
same range as those associated with the dimensions of
the baryon, the potential increases linearlyf This
result is consistent with the experimental non-observation
of free quarks, since at infinite separation, the potential
between two quarks becomes infinite in a linear potentiai.
The 1aptice method treats space-time as a discontin-
uous set of points arranged or a cubic lattice with

spacing a és’illustrated in Figure 5. Quarks can exist

" only on the lattice points. ’

Space \

Figure 5. Space time represented by points on a lattice

The colour electrostatic field energf can be

différent lattice sites.
’ . Y

-
~
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Figure 6. 'String connecting quarks 1 and 2. The links,
~ are ~represented by the solid lines.
- ‘ ) N 4
.- ‘¥  According to Susskind,7 a string is defined as a set
o " ;.
of connecting links with quarks. at the end points. Gauss'

law d4s applied to this situation requires a string between

& - £

. the two quarks as illustrated in Figure 6. The energy
- . for each link is given by .
e=2g ' (1-8)
3 a

Therefore the minimum electrostdeic energy of two

‘ - quarks separated by a distance r has contributions from

.r links
- a X )
. . 2 2 .
L E = I 2g° =z2g r - 7(1-9)
links _ 3 a 3 a2 :
of string .
\\\\ . In the limit of continuous spacetime a, g tend to

zero. If g has a fipite limiting value, the electro-
B a N . *

‘gstatic potential is linear.

o s s AR



-

Ju(si) is the current of .the ith quark

- j ' 13.

a

Such devices as treating QCD on a lattice are
very artificial and much more wofk must be done in order
Fo get firm results applicable to the. physical case.
Unfortunately no one has been able to use QCD to sqlve
the quark.systém the way QED has beeﬁ used to calcuiate
the hydrogen spectrum. Therefore it‘is necessary to |

proceed phenomenologically.
. :

~—

1.4 The Breit Interaction’

'So far we have restricted our analysis to static

electric charges. However, quarks are in motion. 1In

3

. addition, they have static magnetic dipole momentum

due to spin. Using the . one gluon exchange approximation

S > > . u+< > _'
V(piqu) = a <A, Aj>J (pi)Ju(pj);2 (1-10)
- q

V is the two body potential in momentum space

represented by Figure'7.‘

. ) A
Pi Py Py .
ﬁ

. - ) ' ’ ~
Figure-7. Two guarks undergoing ong gluon exchange
process, while third quark is ,spectator..

-

4
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-

?i is the momentum of the ith quark

'<Ai-}j>: the colour charge factor equals -2 for baryons.

a, the momentum transfer, is the momentum conjugate to
-
r

, the separation between the quarks. In other words:

a

> > > T SR S -if:i-; 3+ (i-ll)
V(gfpj,r) = _1 ‘V(pi«pj,q) e * ~dq _ :
' - (21)

If the quarks are taken as non-relativistic. N

V(Eiﬁj}) can be expanded,‘using equation 1-10, to first

order in v. The result is the well known Breit interaction.®

c ¥
V(Ei,ﬁj,i) = —gffg 4+ spin independent terms
3 r . i‘
: e
*Vsézﬁ\exgit : Y Vhyferfine . (1-12)
a > > > >
where Vspin*orbit = &S Lfrx(fifﬁi)'(f£+ii) \
> r m, m, m, m,
iy i3
-1 % 1 Tx (B, + B.)-(3, - 3.) (1-13)
z 3 i S Rt | ,
m, m. m, m. '
1 J 1 J
- Vhyperfine =t 2%s (81 §i.§, éB(r) \& - . \
YP 3 mm. 3 J
1]
+1 (38, = §j-r 5/§i-§j)) | . (1-14)

r { N

where T = ;i - ;j Pomygy §i the mass and spin of the ith

quarkl

1.5 The Hamiltoniad

Equation 1-10 accurately describes the interaction

between quarks: only when ag is small. This region of

o

£ wbne
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az&mptotic freedom occurs for r'<1(GeV)-l. Typical quark '
eparations in baryons are about 5(Gev) L. Therefore,

the quarks are mostly to be found well outside the

asymptotic region, in what is called the confinément

region, where the iinggr potential is expected to dominate.

This situation is taken into account by introducing

o

into\the Hamiltonian a phenomenological harmonic oscillator
v \\\‘
confinement potential, between quark pairs. The reason

§
1
3
K
:
g
_\
i
g
!
3

for using a harmonic oscillator potential. instead of

the theoretically expected linear potential has to do

I

with calculational- convenience and is explained in the

next chapter. {

l
. Isgur and Karl 9 have shown that although the
confining poténtial is spin independent, it will still

contribute terms to the spin-orbit interaction due to

et RIS 08 e B At St

the effect of Thomas precession. Their calculations

have shoWn that these Thomas precession terms cancel

R

almost exactly the spin-orbit terms due to one gluon
exchange. This is similar to the atomic case, where the
Thomas precession cancels one half the coulombic spin-
orbit interaction. 1In the Isgur-Karl modél, the spin-
orbit interaction is neglected entirely.

In order to compensate for the discrepancy between
the harmonic oscillator. and the true physical confiniﬂg
potential at lafge distances, a two body potential U (r)

is introduced. .

It is expected that for small separation (where &krzmo),

4-
¥
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- , i le.

Uu(r) iswépproximately Coulombic.
The complete Hamiltonian fdr a baryonic three
\ Co .
quark system in the Isgur-Karl model is 10
\ H = i mg v Hy o * U Vﬁyﬁerfine (1-15)
\-b K ‘ , ) - ”
V' ‘Where H_. = £ B2 + ke :
where H,, = z By L = rij ‘
2m J !
< .
U= I U(rlj) ’
i>3j .
) 17, - .| the -moment d mas
‘ rij = r, rj ; P, /M, are e momentum and mass

of the ith quark, I is a summation over the three quarks,

, 1 / : -
of the.-baryon. - ‘n/
, . , ‘
. . .
- U +V hyperfine is considered a perturbation on
the harmonic oscillator'term»HH o * “

~ 1

>
-
T .
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CHAPTER 2
»“‘h: 3

2.1 The Harmonic Oscillator

¢ ' F

The Hamiltonian H, described in the last chapter,

can be used to calculate the masses of barYons containing
1, 2 and 3 charmed quarks by perturbation theory. Matrix
elements of H are taken between eigenfunctions of the

\
_unperturbed Hamiltonian H These matrix elements form

- HO'
T g

the mass matrices, whose eigenvalues make up the expected

‘
¢ -

physical mass spectrum.

The unperturbed Hamiltonian is written

2 2

-
H = I p, + z LXkr. - (2-1)
. HO iam, i>j 2 13
where: with only one c gquark mo=my =@, my o= m
with two ¢ quarks *. m =m, =m, My = mu
with three c¢ quarks m FMm, =M =M

where m. is the mass of the u quark and m, is the mass

of the ¢ quark.
Th
In order to separate out the coordinates of the

center of mass, a new set of spatial coordinates is

chosen in place of ;I’EZ’EB' These are S,K,ﬁ defined by:

ﬁ = ml(fl + ;2) + m3f3
2m1.+ m3 .
r + + ’ _ .
p = %T (rl r2) - (? 2b)

(2-2a)

esiis o e o o = i

v * =

i
]
;
;
i
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- > " ) . _
X -l ‘(rl + r, - zra) . (? 2c),

" The physicallsignificahce of thé new coordinates can
be inf;rred from Figure 2-1. Y2p is the separation between
q, and a, for the two body system which they form.
ig X is the coordinate of d, yith respect to the centre

of mass of the qyr 9, system.

.

|
Fi&pre 2-1. Spatial coordinates of the three quark sysfem.

In the rest frame of the baryon; P = O.

Eguation 2.1 is rewritten

*Hg =+ 3ke? 4 p2 o+ 3 k7 (2-3) -
2m pag 2&A 2 C
where m = m; m, = 3m,m, ' Ep = ;vp etc.
p  ——— i
2m11-m3

Therefore the unperturbed Hamiltonian H decouples

. HO
into two independent oscillators, a p oscillator with
frequency v = (g& ) } and a ) oscillator with frequency
m . )
Wy = 3k ) 5. This decoupling is not possible with a
m
A

, linear potential and is the reason a harmonic oscillator is used.

-~

s i v i oA

e n A i sty & P s 3 s

i
A
d
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. - e ‘
When the oscillators are quantized, the i
*“ eigenstapes are bharacterizé& by n, and nj ., the number
of quanta in éach oscillator. pa T v
The eigenvalues are
Enpn} = w(np + %)‘ +mx(nk + %) . ) (2-4)

-

}%e eigenfunctions of low lying eigenstatés are

listed in Figure 8.

12

Figure 8. Oscillator eigenfunctions for low-lying statesll
=y < 2
U n n{ Parity wave function
ground state 0 0 . +1 v .y
im0 . N 00
P wave R S 0 S qu = uppfw
b=l 0 1 -1 vy, o, MY
S~ N - : 2" 2 .
. radially 2 "o 1 00 - (g_’) a0 o -3 v
excited 3 P 2a§
L =0 2 .
| . ‘0 2 11 voo = (2 do, (223 )v
3 ai
1 1 +1 ¥0d = (_1_)% a, 2p-X¥
3

T

: = i _ 3 3 :
yhere p4= px+1py etc., a,= (3§m), a = (3kmx) , %2 is the

t) orbital angular momentum quantum'number.

, 2 2 2 2 e
3/2 3/2 - . -
Y =.a / a / e é({"p P +°')‘ A) (2-5)
o A ’ : s
2
“3/
» .
There are four flavour wave functions rele t to
this work, they are
— ( \ ) -
% L *
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"
c .
l ! ¢, = ¥ (ud - du)c - (2-5a)
4 Ac ,/g ’ ," * 9 e .
- . ‘ »
¢; =1 (ud + du)c’ ' ' (2-5b)
Y C /5 ’,\ .
~ S —
-~ 6 = ccu (2-5¢)
« e v - .
¢, = cec . _ (2-54) .
LI c . v )
satisfying' :
. ~N ‘
> = &, E 2=-6
| o> = 8y, - e
- : 3 .
. Quarks are spin 5 partlcles, let § § §
denote the spins of the three: quarks of a baryon.
. 8= 8 4B, (2-7a)
g e g"\' +
AR Y AR | ENETON
‘ ) » N
It is~ possible to form eigenstate of s°, e and Sz\{
and, these are 1isted in Figure 2-2. _
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Figure 2.2 Spin wave fullctionis for three particles
Sl2 ] m \,Spln wave functions
1. 3 3 X3 = tht
) -z > 2
. 1 x; = L (+4++4 Aeb 4 +44)
2 = 'E) ’
P 2
-1 x_s_l = 1 (+3+ 4 44+ 4 t44)
2 5 'E)
. {
# ]
’ s
-3 X_y = Y¥¥
3 3 F
1 1 XA& = 1 (t¥t + +44 = 2 144)
2 2 : 76 .
4 [
‘ F
-1 XA-i = 1 (t4d 4 = 2 4it)
2‘ V/g\ 14
0 1 1 = L (= e
.o 2 2 V2
. -
-1 Xy = 1 (44 = +4)+ ,
! 2 V2 -
\ , .
(o]

s
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where for example ' '~J

+4+4 = ISl=£ mSl-§>lSZ;i msz=§>IS3=§ mS3= -—i)

Product wave functions are formed by combinin'g space,\
spin ,and flavour wave fgnctions. These product wavé
functions mulst lsatisfy the Pauli exclusion principle in
qguark indices 1 and 2. If f is the orbital angular
momentum of the space wave function then J =T 4 §, -
fhe total angular momentum or spin of t‘:h.;-:- baryon.

As was ‘st’ated previously, the Hamilton;?Lan matrix
is formed by taking matrix elements of the Hamiltonian
between all these product states. Since the Ha;niltohian
does not mix states of differing J, parity or flavour
“vave function type, the Ham!ltonian matrix 1s reducable
into smaller mass matrices deno}:ed by EJP, where
F = A,L,E,Q.

Figure 2-3 lists the product states which mix

together in each sector. .
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Figure 2-3‘/Product states.
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Note that a flavour wave

> function factor is implied for each term in
the product state column. -

Physical States
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2.2 Matrix Elements .

For the case of the ground state baryons, ¥S is

mixed with a linear combination of radially-excited
states \Ppp,‘i’)fk. These linear combination states and

o

their energies were taken from a'paper by Copley,

Isgur and Karl, and are shown in Figure 2-4,12 §
1 % ,
Figure 2-4. Radially excited states
States ’ . Energy Composition HN
b
Ad \‘ ‘
Akt 2695 .86¥" P & _51vP?,° x
z bt 2805 -V UL O VL ,
) ‘ po_S i N
r 3t 2875 c92¢M S 4 (39 X |
|

So that for example -the mass matrix for the Aci-l-

sector is

<,{,sxle”sXp> . \ . ,36<stp{Hl‘#Axxp S,
+ 51<ySP|H|vPPyP >
A

?
. 86<¥ %P [H|Y x> -

: 2695
+ .51 [H|¥PP P>
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If a typical product state is written Wixj then
- %
by using equation 1-15.

!

oyxglalysxg = Bt <q’ilevhyp‘erfine“ixj>
. ' \ - (2-8)
where Ei .depends only on the spatial wave function
and is given by .
' By o= amy bmy b o<vy [+ UlY> (2-9)

The non-diagonal terms involve ‘only the hyperfine
interaction, 4i.e., N ‘ "

A}

<\y:i.leﬂl > = <\yix'j_lVhyperfine|\kaJL) (2719)

§

In the 1imit of no hyperfine interaction.there are three
‘non-degenerate masses in the c=1 -sector, E(sj, E(p), E(A).

Similarly for the c=2 and 3 sectors.

Using the results of Kalman and Hall,l3 Kalman, Hall

and Misra. 14
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E(s)

E(p)

E(X)

where

<U> =

. <U> =

<U>

>
1]

where

At e M e e

- o
.
"

oy b

2

Q

o~
ot
u

Zml ;l- m, 2

2ml + m, + g_w + _g_uu)\ + <U>p

2m; + my + 3w + 5wy + <U>

2z 3 A

3

la(l) + 2a(r)

+ 3 (o4 @) + <>

3 <3

e
2b(l) + 1lfo \ ra(r) + 1rb (r)
9_ Za‘; ‘ ' 9

, 2 '
la(l) + lra(r) + lea)rb(r)
3 . 6 e

A ‘ ,
4

1 ¢+ 3Ja V2 .

B I

3‘ * " ‘

o . - 2 2
3a3¢2 au(v20)e P
-3 -

172'

5 .
e\ .22
3052 a%u(v2p)e P

3
1'2
; .
. - .l‘ - - 2 2
. 3a7t2 d3pU(/Zp)e tap
-3- .
2
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2
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(2411a),
N iI

;/
(2-11b)

f

{(Z—Ilc)

o

0 it
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By expanding a(t), b(t), c(t) about t = 1 in

~a Taylor expansion up to order (t-’-l)2

ﬁl -
a(t) = A+ Bt + ct? (2-12a)
b(t) = (3A + Bt - ct2) /2 - © (2-12b)
clt) =(15A 4 3Bt - ct?)/4 (2-12¢)
The hyperfine matrix eygnents used in this work S

were derived by Isgur and Karl and some of them are

listed in the Appendix B. ’ .

The matrix elements are written in terms of seven

free' parameters mu, mc, w, 8§, A, B, C.
17

-

Kalman calgulated the mass matrices for the no?x—

charmed sector. By fitting the eigenvalues of these mass
matrices to the experimentally determined mass spectrum
he was able to fix the numerical values of six of seven

free parameters. He found that !

m, = 387, w = 274, § = 265, A = =198, B = -737, C = 184.

.

The vglue ‘,of m, was fixed during the course of this work
by fitting the lowest eigenvalu_e of the Ac§+ mass matrix to
the experimentally determined mass 2285 MeV. As a result
m, was fixed at 1930 MeV. Once the values of the free
parameters were found, the numerical values of the matrix
could be calculated. The' eigenvaluesl of these matrices are

the predicted mass spectrum for charmed ’baryons.
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CONCLUSION

The predicted charmed baryon spectrum is presented
in Figure 3-1. The ordering of the states as well as the

relative size of the splittings follows the pattern of the
& ' 0
non-charmed baryons. g

The quark mass term determines the gross features of

the spect rum due to the very large charmed quark mass
(1930 MeV). In fact there is no overlap in energy - VoAl
between the ¢=1 states (Ac and Zc) the c=2 states (Ec) ’,
and the c-é& states (QC). Evidence #f harmonic oscillator
contribution"to the baryon mass can be inferred from the
L‘energy gab between the ground state and the P-wave baryons,
which have a single unit of excitation in the p or )
oscillator. The residual splitting is due to the .differing
relative spin orientdtions of -the various states. .
L Since the; mass of the AC§+' was fittec% to 2285 MeV

in order tb evaluate the mass c3f the charmed quark, the)

prediction of the ZCH mass is the only one that can be

compared to experiment. The percentage of error is l.7%.

‘ Future experiments should map out the rest of the spectrunm,

thus providing a more rigorous test of the predictions.
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Ejigure 3-1. Charmed Baryon Spectrum
J\
Mass (MeV)
State ) ., ‘Calculation n Experiment
A3t 12285, *+ 2285
Ikt | 2427 2460
Cop 34 ' . 2499
c 2 L3 5\
H 1 ,
- | Ag: 3" . - 2684
j5 - ” T 2861
L 2937 o ~
3 _. 4 B .
AE— 'i‘ “ ‘ 2685 . -
. . .
Lot 2896
. | < 1
' - _ ‘ 2994
'\' 5 _ . ) ,
g o Ag 3 | » 2938 Q
; zc§- .' 2827 8
R . 2862
/ : . 3 ' ’ - ’ \
2940
t
I
.I

e
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fighre 3-1: (contihuéd)
- 0
State - Calculation Experiment
" l \\\\ '
3 ,
Ec 3 | 2841
N ! 2889 N
,7 ..
2937 .
5 "
Zq 7 2868
Eci+' ' : 3582 IR
_ 3 , ., C -
=, 3 4 | 3620 . .
¢ .
z_i- ‘ 4173 ,
k 4331
4312
-3 |
E_ 3 4173 .
4323 . R
- 4346
_ 5. . -
-c 2 - ‘ . 4029 o
.3 ' B
c 3 + 5317
b . . 5419
3 . : .
Qc 5 IR ‘ . 5’419
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Appendix B

Hyperfine Matrix Elements
(taken from reference 9 and 12)
. | i
Acg P . N ( )
* <‘l’§xp'|Vhypl‘*'sx°> = -%$6 | _
<\vsxplvhyp|\l'““x°> = 0
s.p Po_P : ’
<¥ " {v |¥FPx> = V68
hyp . 4 a
T bt ) - ‘
. s_ A s A -~
<y Vv b4 > -1{4x-1) &
1 Vngpl® ‘ .%-( 3 ) - ?
s.p AX A o
<y x|V | > 76x6 : .
hyp 4 ‘ “ve
<y xklvh |w°°xX> = —V6_(1=-x)5. -
YP 12 )
3 ; -
. 'z.c 7 + ) - .
v Sivyr ¢S 9 [yle="
<55 v 995 - L 1*2::)6
hy 2 \77 )T
\\ ¥
° - th . J «
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- o Appendix ‘B_(continued)
' . ‘ ‘ \ ‘ »
. - - . A»A S
a ) <W X lV \l’ X = "/_6_ x ¢
) ’ hyp g - o
N ~ . . / ‘-
. . S pp s . :
- . <¥ , | y 2> _ _/_6_ 24x ) 8
\ ) v hyp - 8 3 N
> . ) . s
.‘ - ° \ a
. . Acé - ‘ , o
Y . ; i <?Ax°, h l\vpxs> = -/_z_xg‘é .
N Yp 8 \
' 7 p s P \ 2
. <¥Py® v S|Py = = 1(2+1 xg)6 + lxy
, HyR 133 Y
. e . e & )
) o <y | I'ilpx > = =/2(4-1Ixq) s
4 hyp 4 ‘8373
" Y '9 XN
" . <\y XU Vo ¥ > = .~16
o hyp . 2 ,
I . x A |~r° " = ~lxy’£s
. . - . C ‘2
f i ' . )
i 1 vV, " 1P = 1xyfs .
t . ; x l hypl x . _]4; y ”’
o °3 - o ) -
a 2:cz ] o )
. " . '
t Q - A« 9 IV I‘l’AX' > = 1(2+1xf)é +1xhsé
P Lo hyp!® % 433 5
' ' o \ \
(%3 g

£s
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Appendix B (continued)
' §
ot ©
? A A PP ‘
< x| ¥ x"> = | 1lxyfs
(%2 . hyp 2 \
<,{,Dx3|Vhy"p|w0xp> = 0 N
A |wX > e 1(1-x£)8
‘ . -6
>
. A A .
Ao v | ¥ x = =/S xhé ,
<¥'x ' "hyp 70 .
- <vf’x"|v Iv* A, = /5 xh*s” )
o 30 |
] where x = = (Zx*l
) '\ 3,
! X =
Il - . ‘
f =
) .9 = g’ = 2ya
s \ DN
" h = h = 2a
a = (ay?+h ™t Tt S
[ N ‘
. . § = /'2ﬂ‘m - :
¥
, \ |

The rest pf the matrix elements can be found in Appendxx B

W mam e x

of reference 9. ) : T

2y td




- I ————————_y "

Y | 36.

Appendix C

The Elementary Particles

Existence

.Electric .
Charge* Colour Charge Mass Confirmed ;
' . (MeV) ) '
Quarks -
[]
up .t % red, blue or green n350 ‘yes |
down - % red, blue or greén 350 yes :
[strahgé . - % red, blue or green 650 yes E
‘ &
charm . +'% red, blue or gfeen ~1500 xyes
bottom - % red, blue or green ~5000 yes i
2 ,{ w‘
top + 3 red, blue or green - . no :
i
‘ ; |
Leptons :
S . {
\ ¢ ¢ -
electron -1 white .511 yes
muon -1 ' white ‘ 106 yes
> ‘ o : A
tau, . -1 white 1784 ves
electon !
neutrino Ow ' white _ .0 yes
muon
neutrino 0 _ white B .0 _ yes
tau | . . ,
neutrino 0 white Jex no
L4
* units of electronic charge ' ‘ ‘ : : ‘

** assumed massless

e




