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ABSTRACT

Checkpointing and Rollback Recovery in a

Non-IFFIFO Distributed I'nvironment
Alain Jules Sarraf

The saving of program states into checkpoints for subsequent rollback and recovery
has applications in fault tolerance and distributed debugging. In distributed systems
checkpoint ereation and rollback are non-trivial due to the inherent characteristics
of distributed systems such as the lack of global time and inter-dependencies among
processes. Algorithms for checkpointing and rollback must ensure that checkpoints
are created in such a way as to allow recovery to a consistent state of the distributed
system. The conceptual model which has been assumed by many distributed check-
pointing and rollback algorithms is based on point to point FIFO channels between
communicating processes. This thesis is concerned primarily with one algorithm for
checkpoint and rollback recovery referred to as RLV. In RLV, the dependency on
FIF'O-ness is used primarily for the detection of pre-rollback messages. i.e. messages
which originated from the previous execution of a process and are no longer valid.
In operating systems such as Mach which adopt a port-based communication model,
the presence of multiple ports and multiple threads of control makes it impossible
to guarantee FIFO ordering of messages between processes, or tasks, and therefore
existing algorithms cannot fit well onto such a model. Based on the RLV algorithm, a
modified algorithin called MRLYV is developed which supports the rollback and recov-
ery of tasks executing in Mach-like environments. It makes provisions for detecting
pre-rollback messages without depending on FIFO channels. An architectural model,
called “Body and Soul”, which preserves resources across successive “incarnations”
of a task, is designed to facilitate the implementation of MRLV in the Mach envi-
ronment. The MRLV algorithm has been implemented in the context of a general
purpose X-window based distributed debugger called XCDB and the implementation

details are presented.
I
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Chapter 1

Introduction

Dear Sir or Madam, will you read my book?
It took me years lo write, will you take a look?
- John Lennon and Paul McCartney

In recent years the demand for increased processing power has led computer sci-
entists into new directions of computing. One such direction, is the area of dis-
tributed computing. Distributed systems achieve increases in throughput by means
of distributing the load of a computation among several processes which run on in-
dependent processors. Although an increase in processing power is gained by doing
0, the inherent characteristics of such a system introduce new problems which are
not present in a traditional single-process computation. These problems render dis-
tributed systems more difficult to understand, than traditional systems and therefore,
methods of solving them are needed in order to miake effective use of a distributed

system’s power.

Distributed computation vs. Sequential computation

Whereas “traditional™ computation involves a single process executing a single task,
a distributed computation involves a set of processes working together to accomplish
a possibly large task. Lach process involved is able to execute concurrently with
the other processes, occasionally synchronizing its execution with that of the others.
This synchronization takes the form of passing messages between processes via some

communication network. Messages are sent between processes along communication



Send Receive Receive
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Figure 1.1: A space-time diagram representing a distributed computation

links called channels. An example of the use of message passing is to enforce mutual
exclusion. Messages can be used to synchronize the execution of tasks ensuring that
no two processes enter their critical regions at the same time.

The distributed program executions in this thesis are represented by space-time
diagrams. In a space-time diagram, process executions are depicted by a line along
the time axis and messages are depicted by directed arrows between process lines (see
Figure 1.1). The diagram is a two-dimensional representation of process execution in
a distributed system. The X-axis represents time while the discrete Y-axis represents
the processes. The source of a directed message line represents the sending event of
the message from the originating process , and its destination represents the receiving

event at the destination process.

1.1 Introduction to Checkpointing

The ability to restart the execution of a program is very important for program debug-
ging and for applications which depend on the progress of the system in the presence
of failures. Re-execution from the start of a program is generally straightforward
However, sometimes we would like to restart the execution from a pre-defined point
in the program , rather than from the beginning. this pre-defined point is called a

checkpoint.



Definition 1 A checkpoint is the saved state of a single process stored in a form
such that the process can restart its execulion from the point in time when the check-

poinl was created.
Definition 2 Checkpointing is the process of saving process states into checkpoints.

Checkpoints contain any information needed to restart the process in which the
checkpoint was created. When the process is restarted, its current state is discarded

and the state saved in the checkpoint is restored.

Definition 3 The restoring of the state of one or more processes to their state pre-

viously stored in a checkpoint is called Rollback.

Systems which incorporate checkpoints and rollback are called checkpoint and

rollback recovery systems since they recover a previous state of a system.

1.1.1 Checkpointing of independent processes

Checkpointing of processes which do not interact is relatively straightforward. A pro-
cess wishing to checkpoint its state simply blocks while saving its state to a secondary
storage. Since there is no interaction between processes, the blocking only affects the
process which is creating the checkpoint. A process does not need to worry about the
state of other processes at any time.

When an independent process wishes to rollback, it simply discards its current
state and reinstates the state which was previously stored in one of its checkpoints.
The rollback of a process has no effect whatsoever on the state of other processes in

the system since they never communicate with each other.

1.1.2 Checkpointing of interacting processes

Definition 4 An interacting set of processes is defined as those processes which
have communicated with cach other either directly, or indirectly since their last check-

points were ercated.
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Figure 1.2: Inconsistent rollback of interacting processes

When processes interact with each other in a distributed system, checkpointing
becomes more involved . Since any given process is now dependent on its interaction
with other processes, the interaction may affect part of the process state which must
be saved in the checkpoint. Thercfore, when a process wishes to checkpoint its state, it
must be sure that if it decides to rollback to this checkpoint at a later time, it must be
in a consistent state with respect to the other processes in the system. Consistency
upon rollback is ensured by guaranteeing that any dependencies on messages are
reflected in the checkpoint along with the actual state of the process. In other words,
a checkpoint in a distributed system with interacting processes consists of not only
the process state but also the channel state of the interacting sel.

Similarly, the rollback of a single process may be affected by the execution of other
processes in the distributed system. The rollback to a checkpoint will “undo” any
communication which may have occurred since the checkpoint was created. Consider
the execution of two interacting processes shown in Figure 1.2. Suppose that the
process P, creates a checkpoint by saving its state to disk at time {; and afterwards
receives a message « from P;. At time t;, P, performs a rollback to the previously
saved checkpoint and repeats the execution starting from that state. /% will be waiting
for message a which does not arrive if I} has nol rolled back its state to a point in
its execution prior to the sending of a. Therefore, « is a lost message.

An equally serious consequence of interaction on checkpointing is depicted in Fig-
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Figure 1.3: Inconsistent state due to incomplete rollback

ure 1.3. When P rolls back its state to the checkpoint CP, it is in an inconsistent
state since at that time, Py is in a state where it has already received message 8 but
% is in a state where it has not yet sent 3. Upon continuing execution, message /3
will be sent again by P,. Therefore # will be a duplicated message.

The communication between interacting sets of processes produces such message
dependencies which must be dealt with in order for rollback to a correct and valid
system state to be possible. Hence, processes must be rolled back in such a way
as to insure that any two processes are in a consistent state with respect to each

other. i.c. that they agree on which messages have been sent and which ones have
not [CHANSS).

Definition 5 A sct of checkpoints (exactly one checkpoint per process in the inter-
acting set) which forms a global consistent state of a distributed system is called a
Recovery Line. The term global consistent state implies that if a receive event is

included |, then its corresponding send event is also included.

All events that are part of the global state formed by the recovery line are said
to be reflected in the recovery line. Recovery lines are represented by lines joining
checkpoints on the space time diagram. Figure 1.4 depicts the execution of four

processes. In this figure, two distinct recovery lines are depicted which represent valid

5
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Figure 1.4: Representation of recovery lines on a space time diagram.

states to which the processes owning checkpoints on the recovery line may collectively

rollback at a later time.

1.2 Software Fault tolerance and Checkpointing

If an error occurs in a distributed computation, very often we would like to correct the
effects of the error and continue processing as if the error had never occurred. This is
not a trivial task and involves careful checkpointing, rollback and recovery algorithms.
As mentioned earlier, checkpointing is needed in many distributed applications. Two
applications in particular are fault tolerance discussed in this section, and distributed
debugging discussed in the next section.

Software fault tolerance deals with strategies for dealing with design faults in
software which may cause errors in a program’s execution [WOODS5). In those cases,
checkpointing can be used to provide a method of restarting an application from a
point in time prior to the occurrence of a fault thereby rendering the program more
resilient to faults.

An example of a software fault tolerance application which makes use of check-
pointing is in distributed database systems [SOAG85]. Checkpointing can he used to

save databasc states for recovery of data after failures.

6



One approach to achieving software fault tolerance is the recovery block scheme
originally introduced by Horning in [HORN74] and discussed further in [KELL1].
It is based on collections of code components called recovery blocks. For a recovery
block, the programmer specifies a number of possible versions of code to achieve the
same computing action of that recovery block. Before entry into a recovery block, a
recovery point which contains the program’s state information is established. Upon
entry into the recovery block, a primary version is executed and upon completion,
an acceplance lest is performed to determine whether or not the result is correct. If
it is deemed incorrect by the acceptance test, the effects of the version’s execution
are undone and an alternate version specified for that recovery block is executed.
‘This is repeated until the execution is found correct, or all the alternate versions are
exhausted.

Although the recovery block approach is completely transparent to the program-
mer/designer of the system, its underlying mechanism is quite complex. In this case,
a backward error recovery mechanism is used to recover from faults. The basic archi-
tecture of this mechanism is depicted in Figure 1.5. The recovery cache contains the
checkpoints to be used in the rollback mechanism.

Checkpointing , rollback and recovery algorithms used for this approach to fault
tolerance must be well designed to minimize the overhead of recovery from faults.
Overhead must be minimized since applications requiring such fault tolerance tend
to be real-time systems with critical time constraints and they require a guaranteed
rate of progress.

Recovery blocks are intended for single-process environirents. That is , the dif-
ferent versions specified are for the same program. However, the concept can be
extended to a distributed environment. i.e. A recovery block scheme which supports
several interacting processes.

The concept of conversations [GREG85, RAND75] is an extension of the recov-
cry block scheme for this purpose. In this scheme, individual recovery blocks can be
looked upon as a single process whose recovery block is treated as a black box. In ef-

fect, it is a nesting of recovery blocks between several interacting processes. Processes
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enter a conversation at different times, separately establishing checkpoints prior to
entrance. While in a conversation, processes can interact with cach other freely but
not with processes which are not part of the conversation If an error is detected, all
processes which form the conversation can collectively rollback their execution and
restart the conversation each using an alternate module. Conversations can be nested

thereby allowing several levels of recovery within the system.

1.2.1 Fault Tolerant checkpointing scheme requirecments

Checkpointing schemes which are geared towards applications to fanlt tolerance must

mect the following requirements [I'RAZ8Y):

e No single point of failure: The scheme must be distributed in order to avoid

deadlock and other anomalies in the event of failure of a single entity.

e N-fault tolerant: The scheme must be able to support the concurrent. failure

of multiple tasks at any time and still be able to recover computation.



e Minimal restrictions on Application: The checkpointing scheme should

not. dictate the behaviour of the application programs.

e Suitability for a large class of applications: The scheme should be efficient

for both communication and computation intensive applications.

o Low overhead: The checkpointing scheme should minimize the time lost dur-
ing checkpointing, disk space for storing checkpoints, memory usage, processing

during recovery, computation time lost due to rollback etc.

1.3 Distributed Debugging

Another application of checkpointing and rollback recovery is in the area of distributed
debugging. It should be noted that the context of the work presented in this thesis is
in the arca of distributed debugging rather than fault tolerance and therefore more
cmiphasis is placed on debugging,

Traditional debuggers which have been developed for the sequential world of
uniprocessors have proven inadequate for the domain of distributed computing. In
sequential debuggers, programs are monitored for the occurrence of events which are
of interest to the user. This monitoring enables the user to better understand the
behaviour of the program being debugged. Sequential programs are relatively easy to
debug due to the fact that information is centralized. In distributed debuggers, such
information must be gathered by the system before it can be presented.

A distributed debugger is a tool which aids programmers in detecting errors in
their distributed programs. One distributed debugging model is the breakpoint-based
debugger. As in sequential debuggers, processes are halted when a user-defined break-
point is reached. A programmer makes use of a distributed debugger’s breakpoint
facility by specifying predicates composed of events which may or may not occur in
the system. For example, a predicate can consist of message send or receive events.
When the debugger detects the occurrence of events which render the predicate true,

it halts the system in a consistent state and informs the user of its detection. At



this point, the programmer can view states of the different processes. This type
of monitoring of events and halting in the distributed system is very important for
distributed debugging.

Before discussing the importance of checkpointing and rollback within the context
of distributed debuggers, the inherent characteristics of a distributed environment

which make debugging diflicult are discussed.

1.3.1 Characteristics of a Distributed environment

Debugging a distributed program is complicated by the following characteristies of

the environment [JLSU87, MCDO89, MOGES1, CHWOS8Y]

1 Multiple threads of control
2 Non-determinism

3 Communication Delay

4 Probe effect

5 Lack of precise global time

6 Difficulty of meaningful User Interface

Multiple threads of control

Unlike a traditional program, a distributed program will have many foci, or threads
of control in the form of multiple asynchronous processes. This adds a new dimension

of complexity which is not present in traditional programs. Specifically:

e Because of the many threads of control, a program’s execution is much more
difficult to follow. Furthermore, even if it can be followed, the execution is very

difficult to understand.
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o Distributed programs are prone to new types of bugs which are not present
in a traditional computation. These bugs are usually caused by race condi-
tions and synchronization errors, neither of which can ever arise in a sequential

computation.

Non-detcrminism

The synchronization between processes involved in a distributed computation relies on
message passing. Message passing may introduce non-determinism in the execution
of distributed programs. The results of a computation depend on both the system
inputs, and the relative speed of the processes imposed by the ordering of messages
during a computation. Because this ordering may not be unique, the behaviour
observed in a system may or may not be reproducible. The (non)anomalous behavior
of a program exhibited in one execution of the system may or may not be exhibited
in a subsequent execution due to changes in the ordering of messages. This nor-
determinism adds to the complexity of understanding the behavior of a distributed
program, and collecting information about it. The debugging strategies which have
been proposed to solve the non-determinism problemn, have generally taken one of two

basic approaches

o Live Detection: In the case of live detection (eg. [SPEZ88]), events are de-
tected “on the fly”. That is, during a single execution of the system. Live
detection solutions have eliminated the non- determinism problem by looking
at only one particular execution of the system. Therefore, there is no need to
worry about the different ordering of events which may occur upon suhsequent
re-executions of the program being debugged. However, one anomaly of this
method is that the erroneous event may or may not occur in that particular

execution. Therefore. this method is only suitable for recurring bugs.

¢ Record and Replay Record and replay methods deal with recording of system
behavior and replay of the execution by means of event histories. These event

histories contain all necessary information needed to deterministically replay =n
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execution [MCDOS89, LECRS7]. In order for these types of monitoring strategies
to be effective , they must force a determinism in the computation so that
upon repeated executions of the program, the same behavior will be displayed.
LeBlanc’s instant replay approach [LECRS8T7] uses a central monitor to reroute

messages according to previously recorded event histories.

Communication Delay

The problem of communication delay is closely related to the non-determinism prob-
lem. There is an inherent delay in any distributed system between the time that a
message is sent, and the time at which it is received. Communication delay increases
the complexity of ascertaining the state of a process at any given time. Since the
state of a process cannot be known instantly at any given time, valuable state infor-
mation may be lost. This can happen if the process state has changed between the
time at which the state information was requested, and the time at which the mes-
sage requesting this information is received at the process. Therefore, any debugging
strategy must take into account this delay when gathering state infc ra tion about

the processes in the system for predicate detection.

Probe Effect

Any attempt to monitor the behavior of a distributed system will actually alter the
behavior of the system. This is referred to as the probe effect [MCDO8Y]. Debugging
strategies must minimize the interference that they introduce in the normal behavior
of the system. Some means of avoiding interference during debugging is needed.

There are three ways to avoid the probe effect in distributed debugging.

¢ Debugging as an ongoing process: One way to avoid the probe effect is to
view debugging as an ongoing process. In this scheme, the monitoring process
is made an integral part of the system which cannot be “switched off”. This
approach has been investigated by Chang and Wong [CHWO8Y] and indepen-
dently by Haban [HAWES8]. The basic approach is to integrate monitoring

12



hardware into the system which is constantly activated. This way, the monitor-
ing process is part of the normal execution rather than an interfering process
executing alongside the “normal” execution of the system. The problem with
this approach is obviously the overhead imposed by the extra hardware . The
systemn would be built specifically with monitoring in mind thereby slowing

down processes for which we have no interest in monitoring,.

Separate communication networks: The interference is caused by the mes-
sages introduced into the communication network by the debugging system.
Haban [HAWI88] has avoided this situation by implementing a separate com-
munication network for debugging messages alone. This method will almost
completely eliminate the probe effect, however it is a very expensive solution,

and its feasibility for large systems is questionable.

Static Analysis: Static Analysis entails defining program states which gener-
ally indicate the occurrence of an error, and statically ensuring that the program
cannot enter them. Unlike proof of correctness, there is no specification of pro-
gram behavior used . The problem with this approach is that it can only be
used to detect synchronization and data usage errors [MCDO89]. Furthermore,
it is diflicult to use for small distributed systems and almost impossible to use

for very large ones. It also requires the user of the debugger to anticipate errors.

Lack of Precise Global Time

Events occurring in a traditional sequential program will always be totally ordered

by physical time. Unfortunately ,this is not the case in a distributed system and in

order to be able to debug programs in such a system , some method of artificially

ordering events in different processes is needed.

The events can either be totally ordered or partially ordered. A total ordering is

much ecasier to understand, and can be useful in solving synchronization problems in

a distributed system [LAMPT78]. However, it implies an ordering between any two

events in the system even if they are totally unrelated. Partial orders, on the other
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hand, retain the notion of concurrency inherent to distributed systems. They are
more useful for monitoring since they reflect the true behavior of distributed systems

more accurately than total orders [MCDO89).

Meaningful User Interfaces

Traditional debuggers display their information in a sequential order. This is mean
ingful in the context of a sequential computation where all events are totally ordered.
However, in a distributed system with no notion of global time, such sequential dis-
plays are meaningless since events may only be partially ordered. Also, debugging
information is difficult to represent in large scale! distributed systems because of the
large amount of information which must be processed by the user. Therefore, the
user interface must have an ability to abstract this information by ecither “classifying
it”, or “collapsing details”. The interface should be built on a sound basis which will
allow scaleability of the system. Methods for classification of events and collapsing
details in an interactive distributed debugger is still an open problem. Three main

techniques of representing debugging information which have been presented in the

literature are: [MCDO89].

e Textual representations: Textual representations of program behaviour usu-
ally display program control information and rely on coloring, highlighting, and
nesting to emphasize interesting events. this type of information does not give
an overall view of the system’s communication patterns and therefore, errors
which are caused by erronecous patterns, are difficult to detect. This is a serious
deficiency of the approach since ,as mentioned previously, distributed programs
are prone to synchronization and race condition bugs which involve several pro-

Cesses.,

e Space-Time diagrams: Space-Time diagrams are useful for displaying these

interactions meaningfully however, the large numbers of processes and messages

linvolving hundreds of processes
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tend to clutter the display making it very difficult for users to debug their

programs. This method is inappropriate for scaleability.

e Animation: Space-Time diagrams provide a good means of viewing the pro-
gram bchaviour over a period of time but they do not give the user a way of
observing the passage of time i.e. observing behaviour as it happens. Anima-
tion can bhe used to present the changes occurring in the system as they occur.
Animation-based distributed debuggers help the user to find errors by allow-
ing them to notice changes from one frame of the animation to another. The
program behaviour is animated by placing objects on a two-dimensional dis-
play which represent entities of the system. For example, boxes may represent

processes and arrows may represent communication channels.

1.3.2 Checkpointing in Distributed Debuggers

Debugging a distributed program is far from being a trivial task. As in traditional
programs, it involves repeated examination of states during execution of the program
[MCDO89]. However, unlike traditional programs, the instantaneous examination of
stch states is not possible due to the communication delay involved.

Checkpointing is used in distributed debuggers to save process states during the
execution of a program for examination upon subsequent replay. This allows a eyelical
approach to debugging where checkpoints are chosen by the user as a starting point for
re-execution. By doing so, the program need not be restarted from the beginning of
its execution, and the search space for locating the bug can be successively narrowed.

A debugger which provides a checkpoint and rollback recovery mechanism can aid

the user in debugging programs in the following ways:

e Detecting race conditions: Race conditions are very common in distributed
programs and are caused by non-determinism. Allowing the user the ability
to rollback and re-execute a program from the same point in the code several
times can aid the user in detecting discrepancies in the message patterns in

the subsequent executions. This can aid in detecting race conditions in the
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Figure 1.6: Detection of error by message pattern discrepancy.

program. For example, the ability to rollback execution can be used to detect
a discrepancy in an expected message pattern such as that of a token ring
program. In Figure 1.6 the expected token ring pattern is not repeated upon
rollback. Process P, sends a message to process I’y which should have been sent

to P,. This indicates a possible error in P,.

e Narrowing of program area: Upon rolling back to a specilic checkpoint, the
user can specify new predicates to be detected by the debugger. By allowing
the user to do so, the debugger can enable the user to narrow the arca of code

to be inspected for locating vhe bug.

1.3.3 Checkpointing Scheme Requirements for Distributed
Debugging

Checkpointing schemes for distributed debugging do not have as strict requirements

as those for fault tolerance. They must meet the following requirements:

e Efficient Rollback: In order to support a cyclical debugging approach, the
debugger must be able to rollback often and efficiently.

e Efficient Checkpointing: In order to allow as many recovery points as pos-

sible, the checkpointing algorithm should be efficient.
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e Minimal restrictions on Application: The checkpointing scheme should
not dictate the hehaviour of the application programs being debugged in any

way.
e Suitability for a large class of applications: (same as in section 1.2.1)

e Low overhead: (same as in section 1.2.1)

Unlike fault tolerance schemes, single points of failure are not as important in
distributed debuggers. Failure of the debugging system itself is not important since
we are not concerned with progress of the system but rather with observing the
behaviour of the application program. Also, since the user of the debugger is only
concerned with the rollback of the system to a particular global state, there is no real

need to support multiple concurrent rollbacks.

1.4 Classification of checkpointing schemes

Distributed checkpoint and rollback recovery algorithms can be classified into two

categories according to the method used to create checkpoints with respect to recovery
lines [PASS88, KOTOS7):

e Unplanned: processes create their checkpoints without regard as to when the
other processes are creating theirs. At the time of rollback, it is the responsi-
bility of the rollback and recovery algorithm to determine recovery lines (i.e. to

sclect checkpoints such that they form a consistent recovery line.

e Pre-planned: processes creating checkpoints do so in a coordinated manner
thereby forming objective and consistent recovery lines. The responsibility of
which checkpoints are part of which recovery lines lies with the checkpointing

algorithm rather than the rollback and recovery algorithm.

1.4.1 Message Logging (Unplanned)

In message logging schemes, messages which have been sent or received by a process

are saved with the process state when a checkpoint is created. The checkpoint also
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contains the ordering of message send and receive events. Saving the order of message
events ensures that upon rollback, the repeated computation will be identical to that
performed prior to the rollback. When a process rolls back, the saved messages are
replayed to it until the message log is depleted. When the log is depleted, the rolled

back process is in a consistent state with respect to the other non-failed processes.

1.4.2 Coordinated Checkpointing (Pre-planned)
Coordinated checkpointing can be further divided into the following sub-categories:

e Global Coordinated Checkpointing: Global checkpointing involves saving
the entire state of the system in a global snapshot [TAMI84, FRAZ89]. During
recovery, all nodes are rolled back to their state as it was at the time of the
snapshot. These techniques incur a very high overhead for coordinating the

checkpoint creation and saving the state of all nodes.

e Process-level Coordinated Checkpointing: Process-level checkpointing in-
volves checkpointing of only a subset of interacting processes within the entire

system. i.e. the interacting set.

We will deal only with process-level coordinated checkpointing here since global
checkpointing techniques are generally only useful for batch applications such as large
numerical computations [FRAZ89)].

The idea behind coordinated checkpointing schemes is to ensure that any two pro-
cess states ,or checkpoints, which have been saved to disk as part of the computation
being checkpointed, are consistent with each other. Because of this, algorithms that
use a coordinated checkpointing scheme are guaranteed to find recovery lines which

will allow the computation to be rolled back to a valid consistent state.

1.4.3 Comparison of Schemes (Unplanned vs Pre-planned)

Pre-planned checkpointing schemes are always guaranteed to find recovery lines which
are valid since the checkpoints are created in such a way that they are always part of

some valid consistent state. In some unplanned checkpointing schemes on the other
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hand it cannot be guaranteed that checkpoints form part of any recovery line since
these recovery lines must be extrapolated at the time of rollback. Consequently, un-
planned strategies which cannot guarantee consistent recovery lines, cannot guarantee
that a rollback will not necessitate a re-execution of the entire system (this problem
is discussed in more detail in section 1.5.5). This is an important consideration in the
context of real-time systems which require a strict rate of progress.

The pre-planned strategies incur a higher overhead during the checkpointing phase
since it is during the checkpointing phase that recovery lines are determined. On the
other hand, unplanned strategies incur very little overhead during checkpointing but
have a high overhead during the rollback phase. Pre-planned strategies are therefore
better for applications which anticipate a large number of rollbacks such as debugging
and unplanned strategies are better for applications which are not expected to require
many rollbacks. Since more than one process may be involved in the creation of
checkpoints in the pre-planned schemes, the pre-planned schemes tend to disrupt the
system more than in the unplanned strategies where only a single task is involved in
creating its own checkpoint.

Since message logs must be kept on disk, the unplanned strategies are not well
suited for communication intensive applications. Overhead incurred by the system is
directly proportional to the amount of communication involved. Pre-planned strate-
gies, on the other hand, are not required to keep message logs and therefore are well
suited for both computation intensive and communication intensive applications.

The biggest advantage that pre-planned strategies have over the unplanned ones
is that they can be used for recovery of non-deterministic applications since they are
not based on the replaying of logged messages.. The premise behind message logging,
is that a process can be recovered by replaying messages to it after a rollback has
occurred exactly as they appeared during the normal execution. However, in non-
deterministic applications, the message ordering may not be guaranteed, so messages

may not arrive in the same order as they did during the initial execution.
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1.5 Problems related to Checkpointing

The inherent characteristics of distributed systems make any operation which requires
global state information very difficult. Checkpointing, and rollback recovery are no
exception to this rule. This section outlines some problems which make recovering

the state of a system very difficult.

1.5.1 Lack of global time

As mentioned earlier ,distributed systems suffer from the problem of having no global
time scale. Events occurring in a traditional sequential program will always be totally
ordered by physical time. Unfortunately ,this is not the case in a distributed system.
Therefore , some method of artificially ordering events in different processes is needed
in order to discuss the creation of meaningful checkpoints. The relative ordering of
events in the system must provide a meaningful notion of order of occurrenceand
concurrency.

In this thesis, and in the checkpoint and rollback recovery algorithms , the notion

of happens before is as described in [LAMPT3] and outlined briefly here.

Lamport’s happens before relation

The happens before relation orders events with respect to other observable events
occurring in the system. By doing so, a partial order is imposed on all of the events

as follows:

o If A.a and A.b are both events in Process A, and A.a occurs before A.b then

A.a happens before Ab (A.a — Ab)

o If A.cis an event in process A and B.bis an event in process I3, and A.a is the

send event of a message from A, and B.bis the corresponding message receive

event in B then A.a happens before B.b (A.a — B.b)

e Consider three events a,b,and ¢: If « = band b — ¢ then a — ¢
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e Two distinct events a and b are considered concurrent If a 44 b and b 4 a.

(a ]l )

1.5.2 Communication delay

If the state of a single-process program is checkpointed, it can be done so instan-
tancously. There is no need to coordinate its checkpoint creation with any other
processes since there is no outside interaction. However, in multiple-process applica-
tions the fact that there is no global time scale, implies that it is impossible for system
wide states to be saved instantaneously. Therefore, in order to save states which are
consistent across several processes, some communication protocol must be employed.
However, in distributed systems, there is an inherent delay between the time that a
message is sent and the time at which it is received at some remote process. Since
Checkpoints cannot be created according to a global clock, and messages incu: a

delay, it is difficult to save and restore states of several processes instantaneously.

1.5.3 How often should checkpoints be created?

How often checkpoints should be created really depends on the application. Two
things to consider when deciding on the checkpoint frequency are the need to min-
imize the amount of computation to be rolled back, and the overhead of the actual
checkpointing operation. If checkpoints are taken often, the system performance will
degrade but recovery time will be decreased. On the other hand, if checkpoints are
taken less often, system performan.e will increase but a penalty will be incurred at
the time of rollback and recovery. The designers of checkpoint and rollback recov-
cry algorithms must weigh the advantages and disadvantages of checkpoint frequency
on the basis of the likelihood of rollback occurrence. This can be considered as an

optimization problem as done in [CHKRSS].

1.5.4 Pre-rollback messages

‘The communication delay inherent in distributed systems introduces another obstacle

to rollback and recovery. When a process has rolled back its state. some messages
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Figure 1.7: Faulty acceptance of a pre-rollback message

which it has sent prior to its rollback may still be in transit (i.c. the messages may
not have been received at their destination yet). These messages would no longer he

valid since they were sent before the sender had changed its state.

Definition 6 Messages which are sent by a process prior to a rollback but are received

after that rollback is complete are called pre-rollback messages.

It is important for checkpoint and rollback recovery algorithms to make sure that
these pre-rollback messages are somehow flushed out of the system so that they are
not mistaken for valid message re-sends upon rollback. Consider the system execution
in Figure 1.7. After the recovery line is created, messages are sent hetween processes
Py and P,. After the rollback, P, resends message o as o' and 1% resends message f1
as 3'. However 4 which was sent from P, was in transit while the rollback was taking
place and arrives at P, after the rollback. P, mistakenly accepts message v , thinking
that it is actually recciving f. Since it was not detected that + is a pre-rollback

message, the whole system execution is now in error.

1.5.5 The Domino Effect

In distributed systems, processes are constantly communicating with cach other
through messages. Because of this, an error which occurs in one process may con-

taminate the state of another process through the sending of incorreet information in
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a message. Upon detection of an error, a process’ state is rolled back to a previously
saved checkpoint whose state is known to be correct. However, this is not sufficient
to correct the global system state. In order to do so, all processes which may have
communicated with the erroneous process must also be rolled back to a point in their
execution before (according to [LAMP78] see section 1.5.1) any direct or indirect
communication with that process occurred. For example, consider the two processes
depicted in Figure 1.8, An error occurs in P; but before it is detected, P, sends a
message to I thereby contaminating it. Once Py detects the error, it attempts to
rollback to checkpoint C'Py. However, this is not enough to undo the effects of the
crror. In order to correct the state of the system, P, must also be rolled back to a
state before any communication with the contaminated process occurred. Thus, P,
must also be rolled back to the state which has been saved in checkpoint CP,.

One of the biggest problems in checkpointing and rollback recovery is the well
known domino cffect{VENK87]. The domino effect refers to the avalanche roll back
of processes to their initial state due to rollback of one process. It is caused by the
type ol contamination described above. Consider the three processes in Figure 1.9.
Py deteets an error which causes it to rollback to its most recently saved checkpoint
(' Fs. llowever |, between the time that the error occurred and the time when it was
detected, a message \ was sent from P, to P;. When P, recovers it will expect the

receipt of message \. One way to achieve this is to have P, resend the message.
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Therefore P, must be rolled back to checkpoint €' Py. By the same reasoning,

e message € from Ps to P must be resent, forcing % to rollback to ("F%
e message 3 from P, to P must be resent, forcing P, to rollback to (' P
e message a from P; to P, must be resent, forcing Py to rollback to €'/

This can conceivably continue until the whole computation must he restarted in
order to recover from the fault. This is completely unacceptable in a system with
real-time constraints [KOTO87] and negates the advantage of performing backward

error recovery in the first place.

What causes the domino effect?

Before discussing the cause of the domino effect, some definitions are needed. These
definitions are introduced in [CHANSS] and repeated here briefly. The local stale of
a process P is defined by P’s initial state and all events which have occurred in P
since that state. The channel statc is the set of all messages which have been sent.
but not yet received at a particular point in “instantancouns” time (i.c. real physical
time as opposed to the relative time discussed in [LAMPT8] see seetion 1.5.1). The
global state of a distributed system includes the local state of all processes and the

state of all channels in the system.
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Figure 1.10: Inconsistent and consistent recovery lines

The random generation of checkpoints forming potentially inconsistent global
stales [CHHANSS] creates a trap for the domino effect. An inconsistent global state or
cul is one which contains unaccounted for information. Specifically, it may contain
the knowledge of the receipt of a message without that of the corresponding mes-
sage send. For example, in Figure 1.10 global states are demarcated by the recovery
lincs 1unning through the checkpoints in processes P, P2, and P;. These recovery
lines represent the set of checkpoints which are involved in the rollback and recovery
of a correct system state after an error has been detected. It can be seen that the
global state demarcated by recovery line A is inconsistent since it contains the re-
ceipt of message a by P, without the corresponding send by P;. Conversely, recovery
line B is consistent since it does not include any message receive event without the
corresponding send event.

The unplanned strategies tend to lead to a domino effect since it cannot be guar-

anteed that checkpoints will form consistent recovery lines.
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Correct Rollback of global system state

In order to avoid the domino effect , checkpoint creation must be coordinated such
that the checkpoints form consistent recovery lines. A planned checkpoint and roll-
back recovery strategy could guarantee a domino-free rollback. [VENKS37, PASSSS,
VENKS88] outline event dependency sets which are used in the determination of
domino-free recovery lines (note that for the purposes of this , an cvent refers to
a message send or receive. or a checkpoint creation). Those definitions are restated

below:

¢ Error dependent set (EDS): The set EDS(F) contains the carliest event (if
any) in every process which may be affected by error E occurring in the system
either directly or through some direct or indirect communication. Any recovery

algorithm would obviously have to choose checkpoints which precede events in

EDS(FE) upon rollback.

¢ Backward dependent set (BDS): Suppose there are two processes P, and P,
which contain checkpoints ('F,, and ' P respectively (Let the notation (',
stand for the ath checkpoint created by process I). Suppose that checkpoints
CP,, and C'P; have been chosen for rollback. The set. BDS(C'P,,("17) is
defined as the set ot all send events in P, which precede the creation of (11,

and are received in P, after the creation of C P,,. For example, the send events

of messages € and )\ from P, form the set BDS(CP,,,C' P),) in Figure 1.11.

o Retransmission dependent set (RDS): Suppose that P, 7,0 1%, are
defined as in the BDS set above. The RDS(CP,,,C' ;) is the set of receive
events in P, occurring before the creation of CP) whose messages were sent
after the creation of C P, in P,. The RDS in Figure 1.11 includes the receive

events of messages a and f#in P,.

Any recovery algorithm would obviously have to choose checkpoints upon rollback
which precede events in EDS(F). Rollback is said to be minimal if there are no

intervening local events between the events in EDS(F) and the checkpoints which
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Figure 1.11: Backward and retransmission dependent event sets

constitute the recovery line chosen for rollback. Pre-planned checkpointing schemes
are more likely to produce a minimal rollback than unplanned ones because of the
consistent way in which recovery lines are formed. Also, it can be easily seen that in
order to provide correct recovery, all events in BDS and RDS would have to be re-
executed upon rollback to either resend messages or re-consume repeated messages.
Otherwise, the re-execution would not be the same as before the error occurred.
[PASS88, VENKSS| define consistent recovery lines in terms of the event depen-
dency sets outlined above. Informally, for a recovery line to be consistent, all check-
point events constituting it should be concurrent (according to [LAMP78]) with no

interdependencies. More specifically,

o all checkpoints in the recovery line should “happen before” events in EDS.
e no two checkpoints in the recovery line should be in the same process.
o BDS(C'P.,,CPy)= 0 for all checkpoints C P;,,C Py,

o RDS(CP.,.C'Py)= 0 for all checkpoints CP;,,C Py,

Therefore, the focus of many domino-free checkpoint and rollback recovery algo-

rithms is on removing backward and retransmission event dependencies.
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1.6 Naive algorithms

Checkpointing and rollback-recovery seem like trivial operations at first glance, how-
ever they are quite complex. This section outlines what seem to be obvious algorithms

for performing these operations and points out their deficiencies.

1.6.1 Naive Checkpointing

Checkpointing itself is nothing but the saving of process states. Therefore, an un-
planned strategy which simply saves process states at random times seems to be
a simple solution to perform checkpointing. However, although unplanned strate-
gies(sce section 1.5.5) for checkpoint creation are simple, they also suffer from the
most anomalies. For example, consider the following algorithm: Every process P,
creates a checkpoint immediately after it sends a message to any process P,. Suppose
there is no event occurrence between the sending of messages and the checkpoint
creation. This will certainly ensure that the most recent set ¢f checkpoints will form
a consistent recovery line. However, the storage overhead of saving that many check-
points would make this solution undesirable.

The naive algorithm can be altered in several ways to reduce the cost mentioned
above. However, as will be shown below, while these modifications solve the problem

of storage overhead, they introduce new problems of their own.

e To reduce the cost of storing checkpoints after every message send, all processes
create a checkpoint after every n message sends. Although this will reduce the
number of checkpoints, it may lead to the domino effect described in section 1.5.5

since the checkpoints may not form consistent recovery lines.

o Every process creates a checkpoint at fixed intervals in “instantancous” physi-
cal time. This solution would work for distributed systems with synchronized

clocks. Otherwise, it would require the use of vector or logical clocks.
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1.6.2 Naive Rollback and Recovery

When a process discovers a fault, it initiates its recovery by rolling back and restoring
the system state which was saved in its last checkpoint. This may necessitate the
rollback of other processes in the system also.

An obhvious solution to the restoration of the other process states is to have the
initiating process send all other processes a message requesting them to rollback to
their most recent checkpoint. However, this may force processes to roll back unnec-
essarily if they have not been contaminated by the faulty actions of the initiator.
Furthermore, in a distributed system it cannot be guaranteed that all processes will
recover the state in their checkpoints at the same time. If no synchronization proto-
col is used for the rollback-recovery, processes may repeatedly rollback and recover
indefinitely. Consider the two processes in Figure 1.12. P, discovers an error and rolls
back to checkpoint C P, after having sent message 8 to P,. Meanwhile, P, has sent
message o which is still in transit when the error in Py occurs. After P, recovers, it
receives « but it is in a state where it has not yet sent 8. This places the system in
an inconsistent state since P, has received 8 but P, has not yet sent it. When P, is
finally informed that it should roll back, its recovery undoes the sending of a. The
system is again in an inconsistent state since P, has received a but P, has not sent
it. This forces Py to roll back again in order to bring the system into a consistent
state. The progress requirement of the system is thus violated. This phenomenon is

called livelock[ KOTOS8T).

Definition 7 The cyclic rollback of a set of inter-related processes which violates the

progress requirement of a "distributed system execution” is called livelock.

Livelock is a type of oscillation which can continue indefinitely. The naive algo-
rithm presented above demonstrates the need for careful design of the checkpointing

and rollback recovery algorithm to ensure that livelock does not occur.
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Figure 1.12: Infinite rollbacks due to lack of synchronization

30



Chapter 2
Related Work

Good artists copy. Great artists steal.
- Pablo Picasso

There has been considerable effort in the research community for the development
of Checkpoint and Rollback Recovery algorithms. Most of the algorithms have been
designed specifically for fault tolerance applications. However, we would like to use
checkpointing and rollback recovery in the context of distributed debugging. This
chapter presents a cross-section of the major algorithms for checkpoint and rollback
recovery systems which have appeared in the literature over the years and analyzes
them with respect to their suitability for various applications. Their deficiencies and

strong points are also discussed.

2.1 Global Snapshot Algorithm

The algorithm for detecting stable global states of distributed systems presented in
[CHANSS] can also be used for checkpointing. It is based on the creation of “global

”1

snapshots™! of the distributed system state. Snapshots can be looked upon as valid
recovery lines to which a process can rollback to.

A r'obal snapshot is obtained using marker messages. Marker messages inform
processes that a snapshot of the system state is being taken. When a process wishes

to initiate a snapshot, it saves its local state in a checkpoint, and transmits a marker

"The details of the algorithm are left out of the discussion. Instead a basic overview is given here,



message on all of its outgoing channels to inform the other processes to take appro-
priate actions. Upon receipt of a marker message, a process will check to see if it
is the first marker that it has received. If it is, the process will save its local state,
transmit a marker message on all of its outgoing channels, and save all incoming mes-
sages. If it is not the first marker message, it will stop the recording of messages on
the incoming channel (i.e. the channel that the message was transmitted over). The
process therefore stops recording message information when it has received a marker
message on all of its incoming channels. When all processes have stopped recording
message information, the snapshot is complete, and includes all of the process local

states along with any message information that was saved.

2.1.1 Analysis of Glohal Snapshots

The authors of [CHANBS5] present a simple method for creating consistent recovery
lines. Unfortunately, only the checkpointing algorithm is presented and the recovery
of the system is assumed to be trivial. Therefore, no rollback recovery algorithm is
given. A recovery algorithm based on global snapshots which uses logical clocks is
presented by Morgan in [MORGS5].

The global snapshots algorithm is a global coordinated scheme and therefore re-
quires all processes to be involved in the creation of recovery lines. Therefore it does
not take advantage of causal dependencies to minimize the number of checkpoints
which must be saved. It is also computationally expensive due to the large number

of marker messages needed to form recovery lines [SPEZ89].

2.2 Koo and Toueg algorithm

Koo and Toueg present two algorithms in [KOTO87], one for checkpointing, and one
for rollback and recovery, for use in fault tolerant applications. The algorithms are
designed to create consistent recovery lines and recover the system to a correct, and
consistent state. The algorithms follow the pre-planned recovery line strategy. They

define two types of checkpoints for the purposes of their algorithm.
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e Permanent checkpoints (PC) are checkpoints which, once created, are never
destroyed. This type of checkpoint guarantees that all computation leading up
to the creation of the checkpoint will not have to be repeated should an error

occur.

e Tentative checkpoints (TC) are checkpoints which can either be destroyed,

or converted to permanent checkpoints at a later time.

2.2.1 Koo and Toueg checkpointing algorithm

The checkpointing algorithm is based on a two-phase commit protocol. There are n

processes involved in the computation.

¢ Phase 1:

A process P, initiates the creation of a recovery line by creating a tentative
checkpoint T'C; and sending a message « to all other processes { P, },7 =1,2,..,n
requesting them to do the same. P; is blocked until it receives a reply from all
other {P,}. If some process P, can create a tentative checkpoint TC,, it does
so. P, then sends a message back to P, informing it of whether or not TC, was

created.

o Phase 2:

If P, receives replies informing it that all other processes have created a tenta-
tive checkpoint, it decides that all tentative checkpoints should be made perma-
nent. Otherwise, it decides that all tentative checkpoints should be discarded.
P, broadcasts its decision to all processes informing them of what to do. Mean-
while, all processes waiting for the decision refrain from sending application

messages until they receive a reply from P,

A process P, creates T'C, upon receiving a only if TC, has recorded the receive
event of any message @ sent from P, , and the send event of 3 has not been recorded in

the last permanent checkpoint PC, created by P,. For example, in Figure 2.1 , upon
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Figure 2.2: Non-creation of tentative checkpoint

receiving message a, P, creates a tentative checkpoint 7'C) since I’ has recorded the
receipt of message 3 in T'C, and the sending of /3 has not been recorded in P)’s last
permanent checkpoint (i.e. PC,). Conversely, in Figure 2.2, T'C'j is nol created since
the sending of § is reflected in PC,. Because of the consistent manner in which the
checkpoints are created, retransmission dependencies cannot exist.

This also ensures the creation of only a minimal number of checkpoints. A per-
manent checkpoint is created only if its non-creation would cause the recovery line to
form an inconsistent global state. (i.e. the receipt of the message is reflected in one
of the checkpoints of the recovery line, but its sending is not).

The question arises as to how processes can know which events have heen saved

in the initiating process’ tentative checkpoint. This information is exchanged by
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appending labels to all messages, which indicate the last message sent or received by
that process 2.

What if failures occur during checkpoint creation? The authors have made the
assumption that process failures will always be reported so that deadlock cannot
occur. If a process fails before it can respond to the initiating process, the initiating
process considers the failed one as not having created a tentative checkpoint and
continues normally. Processes that are waiting for a decision from the initiator will
remain blocked until the initiator restarts.

When the failed process restarts, if its last checkpoint is a permanent one, there
is no problem and the rollback and recovery algorithm can be immediately invoked.
However, If the last checkpoint is tentative, then the process must decide whether

the last checkpoint should be discarded , or made permanent before invoking the

rollback-recovery algorithm. Two situations are possible:

e The failed process is the initiator. If this is the case, it can simply discard
the checkpoint and inform all other processes to do the same. (Note all other

processes will have still been blocked waiting for a response from the initiator)

e The failed process is not the initiator. In this case, the process contacts ei-
ther the initiator, or another process to determine the outcome of the initiator’s

decision and follows it accordingly.

2.2.2 Koo and Toueg Rollback-Recovery

This algorithm is also based on a two-phase commit protocol. There ar: n processes

involved in the computation.

o Phase 1: The rollback initiator, process P, ,sends a message o to all processes
{P},J = 1,2...,n requesting them to restart from their last checkpoint. It
then blocks nntil it receives a response from all processes P,. Each process P,
responds by sending a message indicating its willingness to restart and then

blocks awaiting further instruction from P,.

“details have been left out for simplicity but can be found in [KOTO87)
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¢ Phase 2: If all processes are willing to restart, then P sends another message

informing them to go ahead and do so.

A process rolls back only if another process’ rollback undoes the sending of a message

to it.

2.2.3 Analysis of Koo and Toueg Algorithms

The checkpointing algorithm guarantees that a minimal number of checkpoints will
be created, and that a minimal number of processes will be forced to roll back should
an error occur. This ensures that minimal storage requirements will be needed to
store the checkpoints. Both the checkpointing and rollback recovery algorithms are
tolerant to failures during their execution thereby allowing multiple rollback and
checkpointing to take place in the system at any given time.

One of the deficiencies of these algorithms is that all processes in the system are
involved in the protocols for taking checkpoints and rolling back. The algorithms do
not take advantage of causal relationships between processes to reduce this overhead.
Furthermore, the algorithms are intrusive i.e. they introduce messages into the system
which are solely for the purpose of checkpointing and rollback. Therefore, there is an
increase in communication overhead in the system.

The algorithms guarantee that the system will be in a consistent state upon recov-
ery but they fail to eliminate backward dependencies. Therefore, even if the state is
consistent, it may not be correct with respect to the encapsulating application. Fail-
ure to eliminate backward dependencies leads to a loss of messages upon recovery.
The Koo and Toueg rollback algorithm states in {KOTO87): “...the rollback of a
process q forces another process p to rollback only if ¢’s rollback undoes the sending

of a message to p.”>.

The algorithm ignores the situation where the rollback of a
process q undoes the receiving of a message. In Figure 2.3 | the sending of message
forces P, to rollback with P,. However, no provision is made for re-sending o .

)

Therefore, a is lost upon recovery.

3The emphasis is the author's.



Figure 2.3: Loss of message upon rollback

Another problem with this approach is that the two-phase commit protocol forces
processes 10 block while the algorithms are in action. This is undesirable since it
temporarily stifles the progress of the computation. However, the authors acknowl-
edge that this protocol could be replaced by a more expensive, but non-blocking

three-phase commit protocol.

2.3 RLV Algorithms

The non-intrusive algorithms presented in [VENK87] eliminate backward and retrans-
mission event dependencies. They are considered non-intrusive because they do not
introduce any extra messages in the system. The algorithms presented also follow the
pre-planned strategy of creating checkpoints which form consistent recovery lines.
The authors present several approaches to removing backward and retransmission

dependencies in order to eliminate the domino effect.

2.3.1 Elimination of backward event dependencies

In order to climinate backward dependencies, messages sent during execution of the
distributed computation need to be saved for re-sending upon rollback and recovery.

There are two approaches suggested for selecting the messages to be saved:

e Bach process saves all messages that it has received during execution in a sepa-

rate storage arca. When the system is rolled back , messages are selected from
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the storage area to mimic the original sending.

¢ Only messages which are included in a BDS set are saved for re-execution. An

algorithm is needed in this case to determine which send events are actually

part of the BDS.

The RLV algorithm uses the second approach. It selectively identifies the mini-
mal set of messages whose send events are part of the BDS thereby eliminating all

backward dependencies.

2.3.2 Elimination of Retransmission event dependencies

During re-execution, the messages whose receive events are part of the RDS must be
consumed otherwise their re-sending will change the original execution. T'wo methods

are proposed:

o All processes ignore repeated messages. This way when RDS messages are

received at a process they will simply be ignored.

o The checkpoint creation is coordinated such that a minimal rollback can always

be assumed.

The RLV algorithm plans the establishment of its recovery lines such that retrans-

mission dependencies are eliminated by ensuring a minimal rollback.

2.3.3 RLV Checkpointing

As in [KOTO87] , the authors of [VENKS8T7] also distinguish between twe. differ
ent types of checkpoints, although the basis of their classification is different. In
[KOTOS87] classification is based on the permanent or temporary status of check-
points whereas in RLV all checkpoints are considered to be permanent and thein

classification is based on ownership. The two types of checkpoints are:

e Self-induced checkpoints (SIC): These are checkpoints which are ereated in
response to a request by the application program exeenting on the distributed

system.
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¢ Response checkpoints (RC): These are checkpoints which are created as a
result of the creation of SIC’s in other processes. RC creation is completely

transparent to the application program.

The basic idea is that one process in the application program creates a SIC which
in turn causes the creation of RC’s in other processes as a result of the process
to process interactions. This model is adopted to confine the creation of checkpoints
forming recovery lines among those processes which actually interact with each other.
i.c. those which are causally dependent on each other.

A unique identification label pair called SICid, is associated with each SIC created
in the system. The pair (2, n) is the SICid for the nth SIC created by process P, (i.e.
7 is the unique process id of the process which created the SIC). An analogous label
exists for the RC’s called RCid. However in an RCid, the pair (i,n) corresponds
to the process id and checkpoint ordinal number of the SIC whose creation led to
the creation of the RC. The RCid is used to identify an RC as being part of the
iecovery line which was initiated by the SIC and the RC is said to be owned by the
process whose SICid it inherited. Therefore, all checkpoint id’s (SICid or RCid) can
be viewed as a pair (/,n) where P, is the owner and n is an ordinal number.

livery process P, maintains a vector CC P, of m counters. one for each process
in the system. ('C'P[j] represents the number of SIC’s that process P, has created
to date as perceived by P,. Whenever P, sends a message to any other process, it
appends its CCP, vector to it so that the receiving process can update its own CC P
vector. For clarity, the appended CCP is termed RC' P. When a message is received
by P, it inspects the counters in the appended RC P and if RCP[k}] > CCP,[k] for
any k then C'C P K] is replaced by the value of RC'P[k]. T} : receiving process then
creates an RC' which is given an RCid of (k,RCP[k]) i.e. the RC inherits the SICid
of the SIC which led to its creation. However, if RC P[k] < C CP[k] then the receive
event of this message is stored in all RC' checkpoints in P, owned by Py and having
a checkpoint ordinal number greater than RC P[k]. i.e. The message is saved in the

checkpoint so that it can be re-received by the rolled back process P, after recovery.

39



RC -
1 10
7
I
/
—-— -
rd - 4 Neaal e~ ~
4 = ~
/ RCP=(0.1,0) o
=i, P, L\
CCPs010 RCP=(0.1.0) cep10
P SIC RC ——>
2 Q.1 (LD
) T
\ I
\ /
\\ RCP=(0,1,0) - ‘
-~ -~ - - - , ” -
> ’ RCP=(1,1.0)
CCP=010 CCP=110
P RC RC >
3 (2.1) (.0
T T
l 1]
Reecovery line (2,1) Recovery lme (1,1)

Figure 2.4: Storing of messages in RLV to preserve BDS

The CC P vector idea is used to keep the global knowledge of checkpoint creation
consistent across all processes.

The storing of messages into checkpoints described above has the effect of eliminat-
ing backward event dependencies by allowing messages to be replayed upon rollback
to any of these checkpoints. For example, in Figure 2.4 the receipt of message o
by P, creates a backward dependency since it crosses the recovery line (1,1). Since
RCP[1] of a is equal to 0 and , at the point in P} where a is received, CC P[] = 1,
the receive event of « is stored in SIC(1,1). Therefore, if a rollback occurs in P
to SIC(1,1) the knowledge that @ should be re-received is not lost.i.c. P would
not have to resend a for P, to recover its state correctly since P has a copy of the

message buffered.

2.3.4 RLV Rollback-Recovery

A process detecting a fault will initiate the rollback by restoring its own state to

the state saved in its most recent STC(i, 1) preceding the fault, and discarding all
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checkpoints which follow it. It then sends out a rollback control message containing
the identification label of the restored SIC (i.e. (,n)) on all of its outgoing channels.
When a process receives a rollback control message, it checks to see if it has any
RC’s with RCid = (z,m), where m is greater than or equal to n. If it does, then this
process is involved in the rollback and it must discard its current state and restore
its state to that which was saved in RC(z,m). To preserve backward dependencies,
the process also inserts any messages that were saved in RC(Z,m) into its receive
queune so that they will be re-received upon recovery. After doing so, it eliminates all
checkpoints after ;and including, RC(i, m) since these checkpoints may be recreated
after the rollback.

Once a process has rolled back and restarted, all of its channels except for the one
on which it was informed of the rollback (if any) are placed in a cautious state. In this
state, the process examines the RCP’s of all incoming messages to determine whether
they are post or pre-rollback messages. A me: <age is pre-rollback if its RC P[k] entry
is greater than or equal to m where £ is the owner of the checkpoint which the process
rolled back to and m is the checkpoint ordinal number of that checkpoint. If a message
is a pre-rollback message, then it is discarded, otherwise it is processed normally like
a regular application message. The channel exits the cautious state when it receives
another rollback message since this indicates that all pre-rollback messages on that

channel must have been flushed out of the system.

2.3.5 Analysis of RLV Algorithms

Since the RLV algorithins are non-intrusive, they do not have a high communication
overhead. They are inexpensive because the control information is simply piggy-
backed onto the system application messages during the checkpointing phase. they
do however introduce special control messages during the rollback phase.

The formation of recovery lines using the SIC/RC scheme has the advantage that
not all processes are required to create checkpoints in order for the system to be
restored to a consistent state after a failure. Furthermore, because the RC checkpoints

are created as a result of the receipt of system application messages, the recovery lines
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are always consistent and therefore retransmission dependencies cannot exist. The
algorithms also succeed in removing backward dependencies and reducing checkpoint
storage overhead by saving only those messages which cause backwaid dependencies
in the checkpoints.

In some applications, checkpoints may not be permanently useful and their ex-
istence may cause a substantial storage overhead. The RLV algorithms make no
provision for discarding checkpoints which are no longer needed.

Lastly, by introducing the notion of a cautious state, these algorithins solve the
problem of synchronization of rollback-recovery ensuring that any recovery will place
the system in a consistent state. Therefore, livelock cannot occur.

The algorithm places no restriction on the applications behaviour and is trans-
parent to the application. It can also handle multiple concurrent rollbacks .Since the
algorithm uses a pre-planned scheme for creating recovery lines, it is suitable for both

communication and computation intensive applications (see section 1.4.2).

2.4 BCS Algorithms

[BRCI84] presents algorithms for the checkpointing and rollback of distributed appli-

cations which are also based on the pre-planned strategy of creating recovery lines.

2.4.1 BCS Checkpointing

The authors of [BRCI84] use a notion similar to that of SIC’s and RC’s as deseribed
in section 2.3.3 in their checkpointing and Rollback-recovery algorithins. However,
their significance in forming recovery lines is quite different.

Each process in the system maintains a counter called the A counter which keeps
track of the number of checkpoints within that process. Unlike the CCP counter in
[VENK87], this counter counts all checkpoints whether they are SIC-types or RC-
types®. Each SIC-type or RC-type is assigned a ¢/I) which is the value of the cor-

4Note that for clarity the terms SIC and RC have been replaced with the terms SIC-type and
RC-type. In the context of the current discussion, the reader should attach the same meaning to
these terms as to SIC and RC.
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responding process’ K counter at the time of its creation. Every checkpoint CP in
process P, contains a list of process ID’s called the PEset. This list represents the
set of processes to be rolled back, as perceived by P, in the event that P, should be
rolled back to checkpoint C' P after an error.

A process’ current K counter value is appended to all of its outgoing messages. For
clarity, the appended K counter is termed R. When a process P, receives a message
from another process P, it inspects the counter R appended to it. If R > K, then P,
creates as many RC-type checkpoints as needed to update its K counter to the same
value as P’s. It also stores P,’s process ID in each of the checkpoints created.

H I > R, then the message is stored in all checkpoints whose ¢I D = n, where
n > R. This is done to remove backward dependencies by ensuring that upon rollback
to any of these checkpoints, the message will not be lost. Note that if ' > R, the
message crosses a recovery line and therefore it must be a backward dependency.

A recovery line consists of all checkpoints (SIC-type or RC-type) in the system
with the same qID. Note that this is different from the method used in [VENK87)

wherein checkpoints within a recovery line have the same SICid.

2.4.2 BCS Rollback-Recovery

The rollback and recovery operation in the BCS algorithm proceeds in two phases.
When a process P, encounters a fault, it rolls back its operation to its most recent
checkpoint. It then sends a rollback offer message to the first process in the PEset
of the checkpoint. This offer contains a list of processes called the LPIset (which is
actually just the PEset) and the recovery line number. After the offer has been sent,
the process “sleeps”. When P, receives a rollback offer, it inspects its checkpoint C P
corresponding to the recovery line number contained in the offer. It then appends the
Plset contained in ("P to the LPIset received in the offer. This new LPlIset is then
sent by P, in another rollback offer message to the first process in the new LPIset
which has not been contacted yet. When the last process P, in the chain receives the
offer, it changes the offer to a rollback accept message. This message is then sent to

P,’s predecessor in the LPIset. All processes receiving the accept message will do the
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same and then enter a second sleep state.

When the rollback initiator P; receives the accept message, the second phase of
the algorithm begins. P, will resend the rollback offer message in the same manner
as before. This time, the receiving process will wait until all processes in transit have

arrived, and then restore the state of its checkpoint and channel buflers.

2.4.3 Analysis of BCS Algorithms

These algorithms create consistent recovery lines. Furthermore, the recovery is cor-
rect since both retransmission and backward dependencies are accounted for in the
creation of checkpoints. As in [VENKS87], the recovery lines are created such that a
minimal number of processes will be forced to roll back should an error occur. This
is due to the fact that the checkpointing algorithim creates recovery lines on the basis
of causal relationships between processes.

The algorithms are non-intrusive and therefore have minimal communication over-
head.

There are however a few loose ends in this algorithm [PASS88]. When the second
rollback offer is sent, the processes are supposed to wait for all messages in transit to
have been purged. This is needed to allow multiple rollbacks to occur concurrently.
However, the authors make no mention of how long a process should actually wait
before proceeding with the restoring of the state saved in the checkpoint. If they do
not wait long enough, then pre-rollback messages may be mistaken for post-rollback
messages. If they wait too long, then post-rollback messages may be mistakenly
discarded.

As in the RLV algorithms, no provision is made for discarding checkpoints which

are no longer useful.

2.5 Optimistic Recovery (OR)

This section introduces the optimistic recovery algorithm [STRO85, GOGOY0] which

is one of the most important algorithms for checkpointing and rollback recovery hased
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on an unplanned strategy.

The idea behind the OR algorithm is to allow processes to checkpoint their state
asynchronous of process execution. The checkpoints do not form consistent recovery
lines since they are created independently of each other. However, messages are
saved in such a way that if some process P, rolls back its state to a previously saved
checkpoint C' P, it can continue its execution from that point without forcing the
re-sending of any messages that may have been received by P; between the creation
of C'P and the rollback. This is done by logging messages so that upon rollback,
P, can consume messages on which it is dependent from its log rather than from a

communication channel.

2.5.1 OR Algorithm

One of the goals of this algorithm is to restore system states in a consistent way such
that for a communication channel between any two processes P; and P, ,no messages
are lost (i.e. sent by P, but not received by P,) and no messages are received by P, but
not sent by P, A message which falls into the latter category is called an orphan. In
pre-planned strategics, orphans do not occur since the recovery lines are specifically
created such that they are consistent. The OR philosophy, on the other hand, is to
save time by allowing orphans to occur and take care of them during rollback. This
is justified by the assumption that orphans will probably occur infrequently.

During the application’s normal operation, processes execute normally, creating
checkpoints as they please without regards for any other processes. Therefore, there
isn't really any checkpointing algorithm since processes do not have to adhere to any
protocol during checkpoint creation.

Each process participating in the computation is required to keep track of its
dependency on the state of other processes in a dependency map. Dependency maps
define the set of unlogged messages on which the current state of the process depends.
A process appends its own dependency map on all of its outgoing messages so that
it can be inspected by the receiver. This is done so that the global knowledge of

which processes are dependent on which messages is known to any processes in the

-
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interacting set. Processes use their dependency maps to detect whether or not they
have performed any computations which causally depend on events which have been
lost by another process. i.e. orphans.

The protocol for maintaining the dependencies in the system uses half-sessions.
In these half-sessions, a sender process consecutively numbers all outgoing messages
and saves a copy of all messages which it knows have not yet been logged by the
receiving process. It also attaches its dependency map to all outgoing mussages.
Upon receiving the message, the receiver updates its own dependency map according
to the one sent in the message. Eventually, the receiver will log the message to disk
and send a log message to all other processes. This log message is the mechanism
which is used in OR to update the global knowledge of dependencies. When a process
receives a log message, it removes the particular dependency indicated in the message
from its dependency map (if it exists).

Upon rollback, a message is considered lost if it was already sent at the time of
the checkpoint creation and it has a sequence number greater than the last logged
message. The sending process assumes that message to be lost because at the time
of the checkpoint creation, the sending process had not yet reccived a log message
confirming that it had been logged on the receiving end.

At the time of rollback, all processes are informed about which messages are
currently considered lost. If a process is in a state where it has alrcady received a
“lost” message, then that message is an orphan and the process is rolled back to an
earlier state. Rollback stops when all processes are rolled back to a state in which they
do not depend on any lost messages. That is, their state is not causally dependent,
on a lost message. In this algorithm the receiving process is always responsible for

detecting duplicate and lost messages.

2.5.2 Analysis of Optimistic Recovery

The authors of [STROS85] claim that the domino effect is completely eliminated.
Unfortunately, this is not the case since the presence of orphans can cause subsequent

rollbacks of the system state. However, the domino effect is somewhat minimized
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since only messages which haven’t been recorded by a receiving process may cause
subsequent rollbacks in the sending process at the time of message sending.

The basic philosophy of OR is to minimize the time needed to create checkpoints
so that disruption to the system performance during the normal operation of an
application can be minimized. This tradeoff in speed occurs in the rollback and
recovery phases since a high overhead is incurred to rollback the state of a process(es)
at rollback time. The authors justify this tradeoff by assuming that in most operation
environments, faults and errors, which require the rollback of some part of the system,
occur infrequently. This algorithm is therefore unsuitable for a distributed debugging

environment where frequent rollbacks are expected and desired.

2.6 Discussion of Algorithms

In this chapter, we have presented an overview of four important algorithms from
the literature for checkpoint and rollback recovery. Discussion of more algorithms
for checkpointing and rollback recovery in distributed fault tolerant and real time
systems can be found in [SAMK90].

It should be noted that an exhaustive computer search has been performed to
locate more recent work on checkpoint and rollback recovery algorithms. Although
the papers were ordered several months ago, they are unfortunately not available
at the time of writing. Only the basic ideas are presented here for future reference.
[CRJA9]] presents a set of protocols for checkpointing large distributed computations
based on a time-stainp scheme. [CHKE91] present algorithms which do not require
the communication subsystem to deliver messages in a FIFO order. In [WOWO90]
the authors present algorithms which are deadlock-free and are based on atomic
checkpointing of sender and receiver processes. [JOZW91] presents an algorithm
suitable for both deterministic and non-deterministic computations.

All of the algorithms presented in this chapter have assumed that errors can
always be detected by the recovery system. Therefore, an error which occurs in one

process can never contaminate further checkpoints since a rollback to a previous safe
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checkpoint would have occurred before the error could have propagated. However,
if reliable error detection is not always guaranteed, then rollback to a particular
checkpoint may not guarantee correct performance and may require further rolibacks
until a real safe state has been reached. In the context of distributed debugging, this
is not a unrealistic assumption since the purpose is only to be able to rollback the
execution to a previous state regardless of whether or not that state is contaminated
by a previous error. Discovering this contamination is part of the debugging process.
However , in the context of fault tolerance applications, contamination of checkpoints
due to previously undetected errors can have serious implications. Lin and Shin have
researched the idea of recovery of applications in environments which do not support
reliable error detection. In [LISH89] they present a modified version of the optimistic
recovery algorithm which works efficiently in environments where error detection is
not guaranteed.

Discarding of unwanted checkpoints is not addressed by any of the algorithms
presented. This is an open problem which involves the identification of checkpoints
which are no longer useful. Such checkpoints must be discarded in such a way that
the remaining checkpoints would still form consistent recovery lines.

Although the algorithms in this chapter have been described in the context of
distributed computing, it should be ncted that much work has been done in the area
of checkpointing and rollback recovery of distributed databases. These checkpointing
schemes are based on transactions. Important work in this arca can be found in
[SOAGS5, CHLI80, SOAG89, KUMAY0).

As mentioned in section 1.5.3, one of the main problems in checkpoint and rollback
recovery algorithms in the context of fault tolerant systems is the problem of optimal
checkpoint placement. This problem is dealt with in [CHIKR88], [KRKA84], and more
recently in [FUKAY1].

The algorithm with most significance to this thesis presented in this chapter is
the RLV method . The RLV algorithms are very well suited for distributed debuggers
because of their application transparency and correct maintenance of valid recovery

lires. In the next chapter, it will be shown how the RLV algorithms can be modified
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to support the checkpointing and rollback recovery of a larger class of applications.
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Chapter 3
MRLV Checkpointing Algorithm

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not "Eurcka!” (I found it!) but "That'’s funny ... "
- Isaac Asimov

Checkpointing of a multi-threaded task has not been addressed by the algorithms
in the previous chapter. Although it might scem that supporting such an environ-
ment would involve a trivial extension to already existing algorithins, this is not the
case. The presence of multiple threads within a task adds new problems which are
not present in a single-threaded task. Allowing multiple threads to exist within a
task implies that algorithms which base their system model on environments which
support FIFO channels between tasks such as [VENK87, KIYO86, BRCI84, SOAGS5,
STRO85, KOTOS87] cannot be easily implemented in a multi-threaded environment.

The ability to checkpoint and rollback such a task is very important for environ-
ments which support multi-threading such as the Mach operating system. We have
chosen Mach as the implementation model for the checkpoint and rollback recovery
algorithms and therefore, a new algorithm which supports multiple threads within a
task has been developed with Mach as the target model. The algorithm is an exten-
sion of the RLV algorithms presented in the previous chapter and it is called MLV
(or modified RLV).

This chapter presents the basic concepts of the Mach operating system maodel
which are relevant to the goal of checkpointing a multi-threaded task. ‘The difficul

ties in checkpointing such a task using a typical rollback and recovery algorithin (in
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Figure 3.1: Transparency of underlying network provided by Mach micro-kernel

particular RLV) are discussed. Finally, the new MRLV algorithm is described in

detail.

3.1 Relevant Mach Concepts

The Mach operating system, developed at Carnegie Mellon University, is designed
with distributed computation in mind. In order to make the distributed computing
environment more readily available, it is designed as a micro-kernel on top of which
other operating systems such as Unix can be built. The goal of Mach is to provide an
integrated environment consisting of networks of processors (multi or uni) on top of
which distributed applications can be built easily. The networks and characteristics of
the machines are made transparent to the programmer by the Mach kernel through the
provision of efficient memory management and interprocess communication facilities
(see Figure 3.1). The main concepts pertaining to the Mach model which are relevant

to checkpointing issues are discussed in this section.

3.1.1 Multiple threads within a task

The unit of computation in Unix-like operating systems is the process. A process is
defined as an instance of a program in execution [BACHS6]. Each process executes
only a single instance of one program at a time. On the other hand, the principle

unit of computation in Mach is the task and is defined below.
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T

Figure 3.2: Threads of control in a distributed computation

Definition 8 A task is an erecution environment within which compulations (0 or

more) can take place.

For the current discussion, let us assume that all tasks execute on different host
machines. In Figure 3.2, T}, T3, and T3 denote three tasks running on different host
machines. However, they are all working toward the same global computational goal.
In this sense, each of the tasks is a thread of the global computation being performed
on all machines collectively.

The concept of threads can be taken a step further by allowing each of the tasks
themselves to contain several threads of control. i.c. within each task on cach of the

machines, there are several computations being performed concurrently.

Definition 9 A thread is a basic unit of execution which erccutes within a single
task. A thread shares all resources, such as memory, with othcr threads crecuting
within the same task. However, each thread has its own processor slale, s own

execution stack and a "small” amount of static slorage which are unique to itself.

The multi-threaded task model is very useful particularly for server applications
where each thread can be put in charge of a particular aspect of a complex server
(TEVRAS87]. Furthermore, multiple threads in a task allow the possibility for ex-
ploiting the parallel processing power of the underlying machine architecture if the

application is implemented on a tightly coupled shared memory multi-processor. ‘The

02



multiple threads per task model adds a second level of parallelism to the distributed
computation. The task level is the tnter-machine parallelism provided by commu-
nicating tasks, and the thread level is the intra-machine parailelism allowed in a
multi-threaded computational model.

The Mach operating system is designed to allow both the inter and intra machine
parallelisms described above. Each Mach task can have several threads of control,
cach of which executes within the same task sharing all of its resources (eg. virtual
memory space). A thread can be casily created or destroyed by the application pro-
grammer with the assistance of Mach packages designed specifically for these purposes
[MACHK8Y).

A task and its threads can collectively communicate with other tasks and their
threads. Figure 3.3 depicts communication between three Mach tasks each of which
has multiple threads of control. 73,75, and T3 each execute on their own host machines
communicating via message passing. Within each of these tasks are N threads of
control which , within their own task , execute independently. Ti, T3, and 73 represent
the inter-machine parallelism and within each task, threads 1..V represent the intra-
machine parallelism.

It should be noted also for completeness that threads within a single Mach task
execute concurrently and may need to communicate with each other for synciironiza-
tion purposes. Mach allows threads to communicate with each other either through
message passing or via shared memory [MACHS89].

The concept of a Mach task is quite different from Unix’s concept of a process.
The Mach task can be viewed as a generalization of the Unix process to support finer
grain parallelism . A Mach task with a single thread of control can be considered
equivalent to a Unix process with respect to their computational behaviour. It should
be noted however, that the presence of multiple threads within a task is not the only
characteristic that distinguishes Mach tasks from Unix processes. Another relevant

distinction is discussed in the next section.
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Figure 3.3: Distributed computation involving tasks with multiple threads of control

3.1.Z2 Mach ports

Tasks executing in a distributed computation send messages to cach other. Messages
may be exchanged for synchronization purposes or, because they include information
needed by remote tasks to continue their computation. Nevertheless, there must be
some specific semantics defined for the sending and receiving of messages. For sending
and receiving messages, Mach adopts the Port semantic model. A port is defined as

follows:

Definition 10 A port is a logical queue of messages which acts as a communication

medium between threads.

A message « is said to be quened on port pif o has bheen sent from some task 7,
to the port p and can now be received by some task T, on p (7 may he same as ).
The message is considered to be received once it has been dequened from the port it

was sent to by a receiving task.
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All ports have port rights associated with them [MACHK90]. The two relevant

types of port rights are:

e Port Receive Rights: A task which creates a port is considered to have
receive rights for that port!. Receive rights for a port are necessary to dequeue
a message from that port. Furthermore, only one task is allowed to own the

receive rights to a port at any time.

e Port Send Rights: A task 7, is said to have send rights to port p if T, is
allowed by the system to enqueue messages on port p. In other words, a task
can send messages to a port only if it has send rights to that port. Unlike receive
rights, many tasks may own send rights to a given port. These send rights can
be acquired by tasks in different ways which will not be discussed here. It should
be noted however that a task which creates a port is automatically given send

rights to that port by the operating system.

Basically, messages are sent to ports rather than to tasks. The task owning the
particular port to which a message is being sent is of no concern to the sender. The
sender of a message need not know who the receiving task is but is only concerned
with the port where messages that it has sent will be enqueued. As a consequence of
this model the receiving task does not know who the sender of a particular message
is unless it has specifically been made available by the programmer at the application

program level.

Multiple ports per task

Mach allows the creation of multiple ports per task. The number of ports required is
determined by the application program. This further reinforces the abstraction that
messages are sent {o ports rather than tasks since messages destined for several ports

may actually be sent to the same task.

"These rights may be passed on to another task but this is not relevant to the current discussion,
and it will be assutned from now on that port receive rights remain in the task which created them
unless specified.
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The semantics of multiple ports with respect to the multiple threads are as follows:
Any thread within a task 7; can send messages to any port for which the task 7, has
send rights. Similarly, any thread executing within 7, can receive messages from any

port for which T, has receive rights.

3.2 RLV Conceptual model

The algorithm which has been chosen as the base algorithm for MRLV is RLV. In
the RLV model, tasks (or processes) are implicitly single-thrcaded. That is, within
any given task there is no more than one computation being performed at any given

time. The model is as follows:

Tasks are interconnected by logical point to point channels.

The interconnecting channels are reliable i.e. messages are not lost by the
g A

communication network.

There is only one channel connecting any two given tasks.

Messages are received in a FIFO manner.

The RLV communication model is depicted in Figure 3.4.

3.3 Mach model vs. RLV conceptual model

All of the algorithms discussed in the previous chapter have made the assumption
(explicitly or implicitly) that the tasks which are being checkpointed contain only a
single thread of control. None of them have addressed the problem of checkpointing
a task which may have several threads of control executing within a single task’s
address space. This section discusses the problems with adapting a checkpointing
algorithm to an environment which supports the features that the Mach operating
system does. In particular, it discusses the problems in matching the RLV conceptual

model onto a Mach-like computational model.



Figure 3.4: RLV communication model.

‘The main problem to overcomein adapting RLV to a Mach-like model is that Mach
does not deal with communication on channels. Rather, it deals with communication
between pre-defined ports which can receive messages from several different sources
on remote hosts. Essentially, the Mach model is a generalization of the RLV channel
concept to allow the definition of several channels between two tasks rather than
a single channel between every pair of communicating tasks as in RLV. The Mach
communication model is depicted in Figure 3.5. There are three communicating tasks
cach of which have several ports and several threads. Messages sent from one task to
another need not be sent to the same port within the receiving task. Compare this
with the RLV model depicted in Figure 3.4 which forces messages to be sent to the

same “port”.

3.3.1 Non-FIFO message ordering in Mach

A message sent by Mach thread ¢ (within a task T}) to port p will arrive at port p
i.e. enqueue at p) in another task 7, in the order sent. Mach relies on the “trans-
port protocol” of the communication sub-system to ensure this happens and TCP/IP

carries out Mach’s wish. However, since many threads within 7% may send messages

-
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Figure 3.5: Mach communication model.

to many different ports residing in 7}, there is no guarantee that messages sent to
T, will be ordered. This is since T}, may have multiple threads executing in parallel
which in turn receive messages from several ports.

Suppose that task T has two threads ¢ and u executing in parallel and that one
of them has created two ports p; and ps. Let the application that Ty represents be
written such that ¢ only receives messages quecued on port p; and u only receives
messages queued on port p;. Now suppose that some thread in a remote task 7T,
sends two messages ¢y and a; to task Ti. i.c. ¢ is sent to p; and oy to py in that
order. If ¢ receives cv; on port p; before u has received o, on port py then the message
ordering is preserved. i.c. The messages sent by task T} are received by task Ty in the
order that they were sent (sec Figure 3.6). The problem however, is that this may
not be the case. Because of the different scheduling possibilities of 1 and u, it is quite
possible that u receives «; on p; before t receives ay on py. This scenario is depicted in
Figure 3.7. This type of non-determinism makes it impossible to directly implement,

RLV-type algorithms which rely on FIFO ordering of messages on the Mach platformn.
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In RLV , message ordering is used primarily to deteet the presence of pre-rollback
messages in the rollback phase of the algorithm. Therefore, the main goal in adapting
an RLV-type algorithm to a multi-threaded environment such as Mach is to modify the
algorithm to remove this dependency on IFIFO ordering of miessages for pre-rollback
message detection. This thesis proposes a scheme for detecting pre-rollback messages

without relying on the IO property of channels.

3.4 Why RLV?

The MRLV algorithm is designed to operate in the context of a distributed debugger
for applications running in the Mach environment. RLV has been chosen as a base
platform upon which to design the new algorithm which solves the multiple thread
/ multiple port problem discussed in section 3.3, The other algorithms discussed in
chapter 2 are unsuitable for the distributed debugger apolication for the following

reasons: The Koo and Toueg algorithm is unsuitable sinee:
e All tasks must be involved in checkpoint creation.
o All tasks must block during checkpointing and roltback.
e Backward dependencies are not eliminated in recovery line ereation.

o Algorithm forces blocking of all tasks during both checkpointing and rollback

recovery.
e Dependency on FIFO channels.

The BCS Algorithm is not suitable since it is incomplete i terms of the rollhack
protocol and it is also dependent on FIFO channels. The optimistic recovery algorithim

is unsuitable for the following reasons.

e Since it is an unplanned strategy, it cannot support the debugging of non

deterministic applications.
o It does not completely eliminate the domino effeet .
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¢ Dependency on FIFO channels.

¢ Since the algorithm is designed to minimize checkpointing overhead in favor of
rollback overhead, it is not suitable for a debugging environment which needs

an efficient rollback mechanism.

The theoretical advantages of RLV over other algorithms have already been dis-
cussed in section 2.3.5 and are briefly reiterated here in the current context. These

advantages arce the basis for choosing RLV as a solid base algorithm.

e It is a process-level scheme therefore not all tasks are required to take check-

points when one task wishes to do so.

¢ Simple coordinated checkpointing scheme. Since it is a pre-planned checkpoint-
ing algorithm, it can support the rollback recovery of non-deterministic appli-

calions.
e No livelock possible.
e Since recovery lines are built consistently, no domino effect can occur.

o By piggy-backing rollback information onto application messages, an opportu-

nity is provided for design tradeoffs.

Another advantage of using RLV for the proposed modifications is that since the
original RLV algorithm makes use of the FIFO channel assumption only in the rollback
phase, only that phase of the algorithm needs to be modified and thus receives minimal

changes. The checkpointing algorithm is virtually identical to the one described in
[VENKST].

3.5 MRLV System Model and Assumptions

The MRLV algorithm presented in this chapter assumes the following computational

model:
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e Tasks may be interconnected by one or more logical channels via ports.
e The underlying communication network is reliable i.e. messages are not lost.
e Messages need not be received by tasks in a FIFOQ manner.

e Machines on which tasks execute are reliable. This is since the algorithm is to

be used in the context of distributed debugging rather than fault tolerance.

3.6 MRLV detection of Pre-Rollback Messages

The modification of the RLV algorithm for detecting pre-rollback messages is two-
fold. It first involves a different means of determining the pre-rollback status of a
message. Secondly,it invnlves modification of the protocol by which tasks establish

valid (i.e. consistent) recovery lines.

3.6.1 Pre-rollback status determination

In the “vanilla” version of RLV, pre-rollback messages can only arrive at a task
between rollback messages. The channel is said to be in a cautious stale from the
time it sends out a rollback message until the time it receives a rollback message
from some task on the same channel. This principle is the basis for detection of
pre-rollback messages. It is assumed that since messages arrive in FIFO order on a
channel, the arrival of the second rollback message indicates that any messages in
transit before the rollback would have been flushed out of the channel and therefore,
no more pre-rollback messages could exist. In the context of a model such as the Mach
model which cannot guarantee FIFO channels in the presence of multiple threads, this
method of detecting pre-rollback messages is inappropriate. In this section, a new
method of detecting pre-rollback messages based on task incarnalions is proposed.

The concept of a task incarnation is basic to the new rollback algorithm.

Definition 11 A {ask is said to enter ¢ new incarnation every time it rolls back its

state to any previously created checkpoint (SIC' or RC).
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Definition 12 A task is said to be in incarnation 0 if it has either not started its
ezcculion, or it has not performed any rollbacks to any previously created checkpoints

(SIC or RC) since the start of its execution.

Definition 13 A task is said lo be executing in incarnation « if it has performed
« rollbacks to any previously created checkpoint (SIC or RC) since the start of its

creculion.

A task’s incarnation is independent of the incarnation of other tasks. Therefore
different tasks may be in different incarnations at any given time. It should be
noted that the meaning of incarnations presented here is similar to that presented
in [STRO85] where a similar approach to detecting pre-rollback messages is used.
However, in [STROS85] incarnation numbers are used along with message numbers
and logs to detect pre-rollback messages whereas MRLV uses only the incarnation
numbers.

The proposed modification to the algorithm makes use of a data structure called
an incarnation table which allows a task to determine the current incarnation of
a remote task instcad of relying on the order of messages along a channel. This
solution climinates the need for a cautious channel state, and allows tasks/threads
to communicate through as many channels as they need rather than on a one to one
basis. 'urthermore, unlike standard RLV, ordering of messages sent from one task to
another need not be preserved in order for the algorithm to work. This is important

for the implementation of the algorithm on a Mach based system.

3.6.2 Incarnation tables

The main purpose of incarnation tables is to allow a task to determine whether or
not a message which has been received is an obsolete pre-rollback message.

Each task 7T, maintains an incarnation table inc_tab, which is an array{l..N] of
integers, where N is the maximum number of tasks allowed by the system. inc.tab,[j]

represents the current incarnation of task 7T, as known to T, 2. Whenever a task

“T'his global knowledge is made available to all tasks in the rollback phase of the algorithm
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Figure 3.8: Use of incarnation numbers to determine pre-rollback status of messages
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T, sends a message to any task, it appends the pair (J, current_inc,) to the message,
where j is the unique task id and current.inc, is the incarnation which 7', was in when
the message was sent. When task T; receives a message from task 7, it compares the
appended current_inc, value with inc_tab,[j]. If current_inc, is less than inc.tab,|j],
then the message is a pre-rollback message and it is discarded. It is discarded because
the mismatch in incarnation numbers indicates that the message is from a previous
tncarnation of task T).

Consider the execution depicted in Figurc 3.8%. Whenever a message is sent, , the
sender includes a tuple containing its own unique task_id and its current incarnation
number. Message a is sent by T3 during its 0 incarnation. However, the message is
only received a*er T has rolled back. Since T3 would have the knowledge that Ty is
now in incarnation 1 and the incarnation number appended to the message is 0, T,

knows that message « is pre-rollback.

explained in the next section.
3Rollback establishment messages are omitted from the figure for simplicity.
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Algorithm Message_Send(remote_task,msg){
include sender.id in msg
include C'C P, vector in msg
include this task's current.inc, in mag
send msg to remote._task

Figure 3.9: MRLV message send algorithm

3.6.3 MRLV message Send and Receive Algorithms

The original algorithms with respect to sending and receiving messages in the RLV
scheme must be modified to accommodate the incarnations scheme previously dis-

cussed.

Modification of Message Send

The algorithm used by a task T, for sending messages in Figure 3.9 is used during
normal execution of the program and during checkpointing. It is identical to the RLV

algorithm in every respect except for the addition of the incarnations scheme.

Modification of Message Receive

The algorithm for receiving a message during normal execution is identical to that of
the RLV algorithm except that provision is made to take into account the incarnations
scheme. The algorithm performed by task T; upon receiving a message is shown in

Figure 3.10.

3.7 MRLV Rollback protocol

The information contained in the incarnation tables of all tasks must be globally
distributed so that it becomes a global knowledge. This is done during rollback since
it is the only time that the incarnation information will change. Furthermore, during
this time all tasks need to communicate with each other for determining whether or

not they are part of the recovery line being rolled back.
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Algorithm Message_Receive(msg) {
if (msg.current.inc < nc_tab,[msg.sender.id})
discard message /™ pre roliback message */
else{
/™ accept message */
For all tasks T,{
if (msg.RCP{j] > CC P\[J]){
create checkpoint < j,msg.RCP[y] >
}

else if (msg.RCP(;] < CCPA[){
store msg in all checkpoints < owner,number >
where owner = j and
number > msg.RCP[]

}
} /= end for 7/

Figure 3.10: MRLV message receive algorithm

In RLV, when a task (rollback initiator) wishes to initiate a rollback, it broadcasts
a rollback message on all of its outgoing channels and then performs a rollback to a
previously saved state. It then continues its execution normally . Upon receiving a
rollback message, if a task finds that it is part of the recovery line being rolled back,
it also performs a rollback to a previous state and broadcasts the rollback message
on all of its outgoing channels. Even if it is not part of the recovery line, it performs
this broadcast. A task will accept messages blindly along a channel only after it
has received another rollback message on that channel (The multiple receptions of
rollback messages occur because each task broadcasts the rollback message on all of its
outgoing channels). Otherwise, the received message may be a pre-rollback message
and if so, it is discarded. This is depicted in Figure 3.11. Message o is discarded
since T, has not yet received a rollback message from T3. Upon receiving the rollback

message from T3, T3 accepts the current (i.e. for the current incarnation) message o.

3.7.1 Distribution of incarnation information

The above scenario is the method used by the vanilla version of RLV. In MRLV, the

correct detection of pre-rollback messages is dependent on the distribution of incar-
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Figure 3.11: Rollback protocol in standard RLV

nation information to all tasks. In order to distribute the incarnation information,
the algorithm is modified as follows: When a task T; wishes to initiate a rollback, it
first increments current inc,. It then sends a rollback message, which includes the
id of the SIC checkpoint to which it is rolling back , to all tasks (it is assumed that
T, has knowledge of all other tasks*). In addition to the SIC rollback information, it
also includes the tuple (¢, current.inc,) .This is to inform all other tasks of the new
incarnation that T, wishes to enter. The rollback initiator then performs a rollback to
the state saved in its SIC, but it does not continue its execution , nor does it accept
the receipt of any application messages. Instead, it waits until all tasks have replied
to the rollback message. This reply is a rollback message including the sender’s new
incarnation number.

When a task 7}, reccives a rollback message from task T,, it updates inc_tab,[i]
according to the current.ine, received in the rollback message. It then performs a

rollback of its state (if it has previously created any checkpoint which forms part of

*This information is not specifically made available by Mach but it can be provided as will be
shown in the arclitectural model of section 4.2.2
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the recovery line), and broadcast a message which includes the tuple (j, current_inc,).
It then waits for a reply from all other tasks except T,°. When T} receives a reply
from some task T, it sets inc_tab,[k] = current_incy.

Only after 7, has updated all of its inc_tab, entrics, is it allowed to proceed
with its execution. This guarantees that no messages are sent until all tasks have
had a chance to update their incarnation tables, allowing a task to accurately verify
whether or not a received message is a pre-rollback message or not based on up to
date incarnation information. The execution in Figure 3.12 demonstrates the use of
incarnation numbers and the new rollback protocol to discard pre-rollback messages.
Message a is discarded when it is first received by T, since T, knows (because of
the incarnation information received in the rollback messages) that Ty should be in
incarnation 1, but the tuple associated with a indicates that it is a message left over
from incarnation 0. The restriction that no application messages are accepted® while
a task is awaiting rollback messages, ensures that message a cannot be received until

after T has received all of its pending rollback replies.

Update of incarnation information in saved messages

The incarnation scheme also requires a minor modification of the algorithm with
respect to messages saved in checkpoints after a rollback has occurred.

Since the MRLV checkpcinting algorithm is the same as that of RLV, messages
may have to be stored in checkpoints. When messages arrive, they include the sender’s
incarnation number, so this incarnation number is automatically stored along with the
message. This may cause problems upon rollback since when the saved messages in the
checkpoint are restored after a rollback, they would contain the incarnation number
of the sending task at the time of the saving of the message. This incarnation number
may no longer be up to date at the time of the rollback and upon re-consumption

by the user task, they may be mistaken for pre-rellback messages and discarded

SThis is to ensure that a deadlock cannot occur.

SWe cannot prevent messages from being received at a given port, however the term aceepled
here refers to the actual dequeuning of the message by the application task through the execunion of
a Mach message receive system call.
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Figure 3.12: Rollback protocol in modified RLV

(since their incarnation numbers may be inconsistent with the current incarnation
number value of the task which originally sent the message). Therefore, upon rollback

incarnation numbers of all messages must be reset to the current value before being

queued for re-consumption by the user task.

3.7.2 MRLV Rollback protocol algorithms

There are two basic algorithms” needed for the realization of the MRLV protocol
discussed in the previous section. Unlike the algorithms in sections 3.6.3, these algo-

rithms are completely different from the original RLV scheme.

MRLYV Rollback Initiation algorithm

The algorithm shown in Figure 3.13 is used whenever a task T, wishes to initiate a
rollback to a previously created SIC checkpoint CP. This causes the incarnation of

the task to be incremented and the possible participation in the rollback of other

"A more detailed description of the algorithms can be found in Appendix A
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Algorithm Initiate_Rollback(C P){

disable application message acceptance

increment current_nc,

rollback state to CP

discard all messages saved in any checkpoint
after the creation of CP

reset value of CC P, vector to that saved in CP

purge all checkpoints created after C P was created

/* broadcast rollback msg */

for all tasks T, {
include current_ine, in rollback_msg
include unique_taskd in rollback_msy
send rollback _msg to task I,

}

/¥ update incarnation info */
for all tasks T, {
wait for reply r from T,
inc_tab,[j] = r.currentanc

}

update incarnation information in messages saved in (')
restore messages saved in C P
enable application message acceptance

Figure 3.13: MRLV rollback initiation algorithm

tasks in the system. The name of the message which is broadcast upon rollback is

rollback_msg.

MRLYV Rollback Participation algorithm

The algorithm shown in Figure 3.14 is used by any task 7, upon receipt of a rollback

message n from another task.

3.8 Analysis of MRLV with respect to RLV

3.8.1 Message complexity

Since only the rollback phase of MRLV is different from RLV, it’s checkpointing phase
is non-intrusive in the sense that it requires no extra messages to establish recovery
lines. The information needed to establich recovery lines is still piggy-hacked onto

normal application messages.

70



Algotithim Participate_Rollback{

disable application message acceptance

update incarnation of task that sent rollback
participation msg in inc_tab,

if n indicates that task should rollback {
increment current_inc,
rollback state to C'P indicated by n (n.C'P)
discard all messages saved in any checkpoint

after the creation of n.CP

1eset value of CCP, vector to that saved in n.CP
purge all checkpoints created after n.C'P was created

)

for all tasks T, { /* Lroadcast 10llback msg */
include currentine, in n
include unique fuskad in n
send message n to task T,

}

/" update incarnation info */

for all tasks T, (T, # original sender of 10llback message n){
wait for reply » fiom T,
inctub|j] = ricurrent inc

if 1ollback occured in this task{
update incarnation infornnation in messages saved in CP
1estore messages saved in CP

}

cnable application message acceptance

Figure 3.14: MRLV rollback participation algorithm



MRLYV incurs no ertra message overhead over the RL\ algorithm. The “vanilla™
RLV algorithm requires a broadcast send by all tasks during the rollback phase of
the algorithm. This implies that there are O(n?) extra messages introduced into the
system solely for the purposes of the rollback. MRLV also requires this broadcast for
the same reasons but adds no other messages besides these. Therefore, there is no
loss or gain in the number of messages during the rollback phase and the message
complexity is still O(n?).

Although the number of messages needed by MRLV in the rollback phase is the
same as in RLV, the size of normal application messages is larger than in RLV. In RLV
a task need only include the CC P vector in all of its outgoing application messages.
In MRLV, a task must append the CCP vector as well as its current incarnation
number and unique identifier. In RLV the message size is dependent on the size
of the C'CP vector which is in turn dependent on the numbeér of tasks involved in
the distributed computation. Let &, denote the size of cach CC'P vector entry and
n denote the number of tasks involved in the computation. The extra information
appended to each application message is kyn. Therefore, we say that the RLV message
size overhead is O(2). The MRLV messages are larger by a constant factor. Let &,
denote the size of the current incarnation number and the unique identifier combined.
The MRLV message size is also dependent on the size of the ('C' P vector so the size
of the extra information attached to a message in MRLV is k) 4 kon. We can say that,
ki + kan = n for n > 0. Therefore the application message size overhead in MRLV
is also O(n).

Rollback messages are larger in MRLV since they must include the unigue id of the
sending task and its incarnation number whereas in RLV no information is required
in the message. However, they are larger by a constant factor and therefore will not.

increase with the number of tasks.

3.8.2 Task Blocking

In RLV, when a task decides to initiate a rollback, it can simply change its state,

broadcast the required messages, and continue with its execution without regards to
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the state of the other tasks. In other words, there is no need to block any tasks during
rollback. Tasks which are not directly involved in the rollback (i.e. those that do not
have checkpoints which form a part of the recovery line), are not required to block in
any way.

It can be seen in the rollback participation algorithm of MRLV (see section 3.7.2)
that regardless of whether a task must actually rollback its state or not, it must wait
for a reply from all other tasks® before it is allowed to continue its execution. Un-
fortunately, this means that all tasks must block their execution during any rollback
regardless of whether or not the task has checkpoints which form part of the recovery
line being rolled back. However, in the context of a distributed debugger we are not
concerned with the progress of ithe computation but rather its correct rollback and

recovery. Therefore this limitation is not important.

3.8.3 Advantages of MRLV

The message complexity of MRLV is not greater than that of RLV. Furthermore,
MRLV can be used in environments such as Mach which support multiple threads
within tasks and multiple communication channels (ports) between tasks whereas
RLV cannot. In fact, the vanilla version of RLV cannot be used in any environment
which supports multipie channels between tasks unless all messages on all channels
between two tasks are collectively ordered. This is a very difficult thing to guarantee.
RLV also cannot be used in any environment which does not guarantee FIFO ordering
of messages on channels regardless of whether there are multiple threads involved.
Task blocking is clearly not desirable for a real time system, however in the context
of distributed debugging or fault tolerant applications which are more concerned with
safety than progress, the gains outweigh the losses. One of the main gains of MRLV
is that it allows the algorithm to be implemented in a multi-thre aded environment
such as Mach which otherwise would be impossible. The elimination of a need for the
concept of FIIFO chaunels allows the recovery of more flexible and realistic applications

than are allowed by vanilla RLV. In short, the vanilla RLV algorithm cannot be

fexcept for the one which originally sent it the first rollback message
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mapped easily to accommodate the Mach model and a new strategy such as the
incarnations of MRLV is needed to ensure correct checkpointing and rollback in such
an environment.

The Mach model is not an isolated experimental model. Mach is readily available
on machines produced by such manufacturers as DEC,IBM,SUN, Intel,NeX'T', Hewlett
Packard, and others. It has also been adopted as the base operating system for OS1%s
(open software foundation) operating system development [S1L1392]. Therefore, the
adaptation of checkpointing algorithms to environments similar to that of Mach is
useful and important. Also, it is not the only operating system which supports the

multiple port/thread model. For example, the CHORUS [ROAB90] operating system

supports the same model.
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Chapter 4

System Architecture for MRLV
(Body and Soul Model)

Whereas the body perishes, the soul is eternal.
- Hindu Philosophy

This chapter discusses the basic architectural model, called Body and Soul , de-
signed to facilitate the implementation of the MRLV algorithm in a distributed com-
puting environment based on Mach. Although the MRLV algorithm has been designed
to support multiple threads within a user task, the body and soul model is described
in this chapter assuming a single uscr-defined thread of control per task. This is to
simplify the explanation of the architectural design and can casily modified to support

multiple threads .

4.1 Motivation for Body and Soul Model

In the body and soul model, a distinction is made between system tasks and user

tasks.

Definition 14 A user task is any task whose erxistence is a direct result of the

crecution of a uscr-written distributed application program.

Definition 15 A system task, is any task which is not a user task.

"1t should be noted that the CDB debugger also assumes a single user-defined thread per task.



System tasks include any tasks which are introduced by the checkpoint and roll-
back recovery system or an encompassing system software. For example, in the con-
text of a distributed debugger , all tasks which forin part of the application program
being debugged (i.e. that have been specified by the programmer ) are considered user
tasks. All tasks which are present for the functioning of the debugger (including all
checkpoint and rollback recovery tasks, and the debugger task itsell) are cons aered
system tasks.

Several problems arise in the implementation of the MRLV algorithm in a Mach
environment. The motivation for adopting the body and soul model is to provide the
implementation with functionality that is otherwise not provided by the operating
system, and to facilitate operations which must be performed by the algorithm. In

order for MRLV to ve implemented, the design must provide:

e 'Transparency of resource deallocation.

Manipulation of a user task’s incoming and outgoing messages.

Access to sender task information.

Control over execution of user tasks.

‘Transparent Maintenance of incarnations information.

4.1.1 Transparency of resource deallocation

The MRLV algorithm is meant to be executed in an environment where connmuni
cation is based on the concept of ports rather than channels. In Mach | ports are
“perishable resources” which are kept within the kernel and are destroyed when the

task which owns them terminates.

Definition 16 A uscr task’s resources which are deallocated by the underlying oper-

aling systemn upon termination of the task are said to be perishable.

In general, when a task terminates, the operating svstem kernel deallocates all of

its resources (eg. ports), if the task has not explicitly done so. Deallocation canses the
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view of perishable resources with respect to all other tasks to change. Therefore the
[ollowing problem arises in the re-allocation of ports following the rollback of a task
which has been terminated. Prior to a rollback, a task may have terminated causing
its ports to be destroyed. Upon rollback, this task would have to restart its execution
from the state saved in its checkpoint. However, since the task had terminated, all
of the ports which it had previously used for communication with remote tasks no
longer exist. New ports can easily be created by the user task upon rollback however if
normal communication between all tasks is to be maintained transparently, knowledge
(i.e. port rights) of these new ports would also have to be distributed among all other
tasks in the system. A problem could arise that a remote user task 7, sends a message
to a port p owned by user task T after a rollback. If T, was in a terminated state
prior to the rollback, port p would have been destroyed. T, would be required to
allocate a new port p' which it would use as a replacement for p. Send rights to p’
would have to be sent to T, (and any other task which owned send rights to p prior
to the rollback) before any messages could be sent. Otherwise, an error would occur
when T, sends a message to p as this port no longer exists and, the port p being sent
to is unknown to the system.

Distributing new port rights after a rollback is very complicated since it entails
the management of all port right information (eg. who owns send and receive rights
to which port). By controlling a task’s resources, and ensuring that its ports are never
deallocated regardless of whether the task is alive or terminated, remote tasks can still
send messages to a user task’s port even after the user task has terminated without
incurring an error. Therefore, after a rollback, re-allocation of ports is unnecessary.

In order to keep resources such as ports from being deallocated, there is a need

for controlling this deallocation. This is accomplished by the body and soul model.

4.1.2 Sender Task Information

Both the RLV and MRLV models assume that all user tasks can communicate with
all other user tasks. Furthermore, they assume that the receiver of a message al-

ways knows who the sender of that message is. Specifically, this knowledge is used
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for broadcasting of rollback messages and identification of pre-rollback application
messages. These assumptions do not fit well into many distributed operating system
models 2. In distributed operating systems which support a port-based communi-
cation model such as Mach, tasks are not automatically assigned any system-wide
“unique id”. Thus , there is no way to determine who the sender of a message is.
Also, send rights to ports must be acquired and there is no way to perform a general
broadcast of messages to “all ports”. The body and soul model solves these prob-
lems by providing a means of identifying tasks in the system and allowing message

broadcasts.

4.1.3 Manipulation of Messages

The MRLV algorithm requires the manipulation of messages. It must:

e Append and inspect vectors: MRLV uses CCP vectors and incarnation
tuples to determine the creation of recovery lines. These structures must be

appended to all outgoing messages, and inspected on all incoming messages.

e Append and inspect incarnations information: MRLV must append in-
carnation numbers to all of a task’s outgoing messages and must. inspect all

incoming messages’ incarnation numbers to determine their pre-rollback status.

e Append and inspect sender task information: The sending task identifier

must be appended on all of a task’s outgoing messages.

e Save received messages: MRLV requires some messages to be stored in
checkpoints for re-use upon rollback. All saving of messages must he transparent

to the user task.

The body and soul model allows the above operations to be performed transpar-
ently without affecting the user task’s execution in any way. It allows the manipula-

tion of the in-coming and out-going messages of any task.

“In particular, they do not fit into the Mach operating system model which s the chosen unple
mentation platform
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4.1.4 Task Execution Control

The body and soul model allows complete manipulation of a user task’s resources and
execution. The execution of user tasks must be controlled in such a way they can
be suspended, resumed, or terminated whenever necessary for checkpoint creation or

rollback.

4.1.5 Maintenance of Incarnations Information

Incarnation information of user tasks must be maintained transparently. The body
and soul model provides a mechanism by which incarna’‘on information can be up-

dated easily without disrupting the user task’s execution.

4.2 The Body and Soul Model

The body and soul model is named as such because of the way in which entities within
it can be viewed. A user task can be viewed as the Body of a computation. When
a rollback occurs, the body enters a new incarnation and is unaware of its previous
activity, or previous life. When the body dies, its perishable resources are kept alive
by a Soul system task to allow them to be inherited by subsequent incarnations of
the body. The soul can never die. Therefore, no matter what state the body is in,
certain necessary details can be retained continually across several incarnations. The
soul's presence is always transparent to the body yet it can control every aspect of
the body’s exccution such as when it will die, when it will be reincarnated, when
it will be suspended and when it will be resumed. This basic conceptual model is

implemented through the use of the following entities:

e Controller task (Soul)
¢ Central Name Server (CNS)

o User task dacmons



4.2.1 Controller Task (Soul)

The “control” of a user task’s resources and execution can be achieved by adding
another level of indirection in the communication between user tasks. This indirection
is the fundamental philosophy behind the body and soul model. In a distributed
computation, user tasks executing on remote processors communicate by message
passing via a communication network. This is depicted in Figure {£.1. Referring
to Figure 4.2 we see that a controller task is attached to every user task at the
initialization time. The controller redirects all messages entering and leaving the user
task transparently. As far as user tasks are concerned, they are sending and receiving
messages to and from other user tasks. In fact, user tasks send and receive messages
to and from their respective controller task and the actual remote communication is
performed between controller tasks only. The controller acts as the user task’s “soul”.
The redirection allows the controller to manipulate incoming and outgoing messages

as outlined in section 4.1.3:

e Append and inspect vectors: The controller task allows information to
be updated, inspected, and appended to all messages transparently since all

manipulations are performed outside of the user task.

e Append and inspect sender task information: Fach controller knows the
unique id of all other controllers. Whenever a message is =ent out,, the controller
appends its own unique id to the message. Furthermore, hecause it is aware
of all other controller id’s, a controller can infer who the sender of a particular

message is. This knowledge is otherwise unavailable under Mach.

e Maintaining incarnation information: The controller appends incarn-.tion
information to all messages and inspects it upon receipt of messages from remot.e

tasks before forwarding the message to its real destination.

e Saving received messages: The presence of the controller makes the storing
of messages simple. When a message is ieceived, il it is deemed by the MRLV

algorithm that it should be saved, the controller stores a copy of the message in
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Figure 4.1: Message passing between user tasks

a checkpoint message buffer before redirecting the message to the user task. All

saving of messages is transparent since it takes place outside of the user tasl

The controller task always remains active even if the user task which it is control
ling has terminated or rolled back its execution to a previous state. This allows the
“outside” view of the user task to remain consistent, and avoids the need for distri
bution of new port rights upon rollback. The user task is “fooled” into thinking that
it owns these resources so that its execution can proceed normally. The controller
allocates perishable resources such as ports in its own address space. The controller
task can be looked upon as the Soul of the computation since it never dies, and it
contains the important resources which should not be lost upon a task’s death. The
controller also affects the user task’s execution without the user task being aware of
any higher level interference.

Because the user task does not contain any perishable resonrees, it is a dispensable
entity which can be terminated at any time without affecting the overall computation.

Thus, the user task is viewed as the Body of the computation.
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Figure 4.2: Controllers attached to user tasks

4.2.2 Central Name Server (CNS)

To allow global knowledge of sender task information such as controller port send
rights and unique user task identifiers , a central name server called the CNS is used.
Controllers collaborate with the CNS at the start of the user application program to
gain knowledge about all other controllers.

The purpose of the C'NS is to generate system-wide unique task id’s and distribute
them among all controllers in the system along with send rights to all controller ports.
This relationship is depicted in Figure 4.3. Each controller is responsible for providing
send rights of its own port to the CNS. The CNS is responsible for distributing
this knowledge and assigning unique system-wide identifiers for each controller. The
distribution of send right information and the assignment of unique task id’s by the
C'NS allows controllers to identify the source of messages and to broadcast messages

during rollback.
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Figure 4.3: Distribution of send rights by ('NS
4.2.3 User Task Daemons

The body and soul model uses the concept of user task dacmons to aid the controller
(Soul) in controlling the execution of the user task (Body). With the nse of these
daemons, the controller can dictate when the user task should be suspended, resumed
or terminated. It can also rely on the dacmons for saving and restoring the state
information of the user task for checkpointing and rollback recovery. These dacmons
are actually Mach threads which are spawned in cach user task at the initialization

time of the application. They are:

¢ Checkpoint Daemon: This dacmon is responsible for performing checkpoint

ing duties on behalf of the controller task. There is one checkpoint dacmon for

every user task.

¢ Rollback Daemon: This dacmon is responsible for performing rollback and

recovery duties on behalf of the controller. There is one rollback dacmon for

every user task.

Definition 17 A user thread is any thread cxeculing within the user task evealed

by the application program 3.

3For simplicity, a single user thread per user task has heen assumned.
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From Other Souls To Other Souls
Figure 4.4: Checkpoint and rollback daemons

The checkpoint and rolll:ack daemon threads execute concurrently with the user
thrcad and are transparent to the application program. Both daemons remain sus-
pended, or dormant, in the user task, and do not affect the user thread’s execution
until they are invoked by the controller (Soul). The controller invokes these daemons
by sending them control messages which instruct them to perform predetermined
functions on behalf of the controller.

When a daemon is invoked by the soul, it suspends all other threads and takes
over the body’s execution. The dacmon possesses the user task until it has achieved
its goals. In the case of the checkpoint daemon, the possession is temporary and
control is always retu:.ned to the user thread eventually. During possession by the

checkpoint dacmon, the user task’s virtual memory state and the register state of all
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its threads are saved onto secondary storage in a checkpoint. Once this is done, the
checkpoint daemon informs the soul that it has completed its possession by sending,
a control message, and lets the user thread regain control of the body. The dacmon
then becomes dormant awaiting further messages from the soul.

Unlike the checkpoint daemon, possession by the rollback daemon is “fatal™ in the
sense that it leads to a termination of the current execution of the user task and causes
a new incarnation of the body (user task). Once invoked, the rollback daemon kills
the user thread(s) and loads a previously saved checkpoint from secondary storage.
This new checkpoint includes all threads of the task as they were when they were
saved in a previous execution , or previous life, of the body. This includes the virtual
memory and register state of the dacmon thread’s from the old life. Onee the rollback
daemon has loaded all necessary information into the task, it lets the new user thread
take control and informs the soul (by way of a message ) that it should now control the
new user thread. When the rollback thread completes its duties, all old dacmon’s are
said to have been erorcised since they are forced to leave the body in order to allow
new rollback and checkpoint daemons within the reincarnated body. The following
sections describe the above entities which make up the body and soul model in a

greater detail.

4.3 CNS Architecture

The main role of the CNS is to keep track of and/or distribute information which is
needed by all controller tasks in the system. Send rights and unique user task id’s

must be made available somechow to all controllers by the CNS. We have two options.

e Centralized scheme: The CNS is involved throughout the execution of the

application program and keeps track of the send rights of all tasks.

e Distributed scheme: The CNS is involved only at the initialization phase of

the application program being executed and distributes all send rights amongst,

the tasks.



The distributed scheme is the one that has been adopted. The reason for this
design decision are outlined in the following sections.

‘The design of the CNS simply involves saving information for later distribution
to all controtlers. Both the CNS and all controllers follow a simple protocal to allow
the distribution of send rights to take place. Upor checking itself in to the CNS, a
contioller blocks waiting for a response from the CNS. The response is given when
all the controllers have checked themselves in. It includes all information needed by
the controllers to communicate with each other. The CNS is then no longer neceded

since controllers can now cominunicate directly with each other.

4.3.1 Role of CNS

Upon initialization of a user application program, the CNS task is created and it is
notified %, of how many controllers it should expect to be part of the application. It
then remains idle awaiting messages from the controllers. These messages can be one

of two types:

o Controller Check-in message: Each controller must check itself in to the
('NS by way of a msg_rpc. i.e. a message send which is immediately followed
by a blocking message receive. This forces the controller to block awaiting a
response from the CNS. Once the CNS has received a check-in message from
all controllers, it broadcasts a reply to all controllers. Included in the reply are
send rights to all controllers' ports involved in the application along with their

umque task id.

o Die! message: This is a notification message to the CNS which informs it that
the application is terminated or that the CNS is no longer needed and that it

should now exit.

When a controller is created. it is automatically given send rights which will

allow it to establish communication with the CNS once the application starts. The

* Ihis information is provided by the the application that encompasses the checkpoint and rollback
recovery subsystem (eg the XCDB debugger)
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Algorithm CNS{
While TRUE{

Receive message ("N Smsg from any controller /* block */

it CNSmsg.message dypc is CONTROLLER_CHECKIN{
save send rights of controllet
assign controller a unique id
if all controllers have now been checked
for all contiollers

send reply to €, which includes its unigue id and
send rights to all controllets

}
}
}
else if CNSmsg.mcssage type is DIE {

exit loop
}

} /* end while */
“ end Algorithm CNS *
g

Figure 4.5: Central Name Server (CNS) algorithm

algorithm performed by the CNS upon its startup is given in a pseudo code format

in Figure 1.5.

4.3.2 Justification for Distributed scheme

This section discusses the reasons for choosing a distributed scheme over a centralized

one in the design of the CNS.

Advantages of Distribution

The main advantages of distributing send rights are as follows:

e Simple rollback: The centralized CNS scheme complicates the rollback mech-
anism because of the fact that all information is kept in the CNS and therefore
in order for a task to get information about another task. it must first ask the
CNS. Furthermore, since a task must always know who the sender of a partic-

ular message is, a high overhead would be incurred during normal execution of

the application by controllers requesting such information from the CNS. The
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distributed scheme simplifies this and reduces all overhead since all necessary
information is distributed among all controllers at the start of the application
and from that point onwards, information need not be requested from an out-
side entity such as the CNS. This way, overhead is not incurred during the
actual execution of the application as in the centralized scheme. This is the

main reason why the distributed approach was adopted.

¢ No single point of Failure: In a fault-tolerant application context, the dis-
tributed scheme is more robust since the Central Name Server (which is the
only single point of failure) is needed only during startup of all tasks. There-
fore, during the actual execution of the application, failure of the CNS has no

effect on the progress of the application.

Disadvantages of Distribution

The main disadvantages of the distribution of send rights approach are outlined here:

o Non-Transparency: The biggest disadvantage with this approach is the fact
that in order for send rights to be distributed among all controllers, the number
of controllers must be known to the CNS. This requires the application pro-
grammer to specify the number of tasks beforehand. Furthermore, because of
this, dynamic creation of tasks is difficult but not unobtainable. It involves a
complex protocol to re-distribute send rights of the new task’s ports to all other
controllers transparently. If a centralized scheme had been used, this level of
transparency could have been maintained since there would be no need to keep
track of how many tasks are currently executing within the application. Tasks
could check themselves in to the CNS and carry on with their execution without
caring about send rights of other tasks’ ports in the system. If a task needed
send rights | it could access them indirectly through the CNS. Therefore, it
would be casier for tasks to be spawned dynamically since it would not involve

any redistribution of send rights.
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¢ Simultaneous startup of all tasks:

The need for synchronizing the start of a task is highly dependent on the design
of the CNS. If the CNS is used throughout the execution as in the centralized
scheme, then the task execution need not be synchronized. Once a task has been
checked in, it can continue with its execution oblivious of the other task's status.
If the CNS is used only at the beginning of the excecution of the application
program as in the adopted distributed scheme, then all tasks must be started at
the same time. This is necessary since they must all be given information about
each other prior to the start of the application in order to allow communication

during the rollback of a task.

4.4 Checkpoint Daemon Architecture

The checkpoint daemon’s sole responsibility is the creation of checkpoints. At the
startup of an application program, a checkpoint daemon is spawned in every user
task and it establishes communication with the controller of its respective user task.
From then on, the checkpoint daemon does nothing other than wait for niessages from
the controller. Only when a message from the controller arrives, does the checkpoint
daemon “possess” the user task.

The controller dictates when a checkpoint should be created. The controller is
oblivious to the mechanics of how the checkpoint is actually created and it leaves
this responsibility to the daemon. In this sense, there is a master/slave relationship
between the controller and the checkpoint dacmon in the user task.

If the controller decides that a checkpoint is required, it asks the checkpoint dae
mon to create it and store it on secondary storage. This request is in the fori of a
message containing the infoermation which the dacmon needs to know abont the check-
point to be created. In particular, the checkpoint dacmon needs to know the ordinal
number of the cherkpoint to be created, and who the owner task is (i.e. that task’s
unique id). Once it has created and stored the checkpoint, the daemon becomes dor-

mant until the controller decides that another checkpoint is required. The controlle
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Figure -1.6: Relationship between controller ask and checkpoint daemon

is responsible for keeping track of all necessary information about the checkpoint (eg.
its identifier, its owner etc).

The relationship between the controller task and the checkpoint daemon is de-
picted in Figure 1.6, The controller sends a checkpoint creation request message to
the checkpoint daemon asking it to save the current state of the user task with the id
< t,n >. 1.e. the current state will be saved in a checkpoint owned by task T, with or-
dinal number n. The controller then waits for a reply. When the daemon receives the
message, it suspends all threads executing within the task (user thread and rollback
dacmon) and copies the current state of the user task to secondary storage making
sure (o label the checkpoint as requested by the controller (i.e. checkpoint < i,n >).
Once the checkpoint creation is complete, the daemon informs the controller of the
creation, returns control to the user thread, and becomes dormant again. The user
thread is of course oblivious to the fact that it has been suspended during checkpoint

creation and carries on as if it had never been interrupted.
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4.4.1 Checkpoint creation issues

When the checkpoint daemon creates a checkpoint, it must be sure that the other
entities within the task (i.e. the user thread and the rollback dacmon) are not per
forming any functions which may bring them into an undefined state upon voltback. In
particular, this could happen if either of the other entities are performing operations
which are handled by the operating system at the time of the checkpoint creation.

The rollback daemon , like the checkpoint dacmon, waits for messapes from the
controller while it is dormant. This message receive operation is one such operation
that is taken care of by the underlying operating system. If a checkpoint is created by
the checkpoint daemon while the rollback daemon is waiting for a message, then the
outcome of the rollback daemon’s message receive operation may be undefined when
the task’s state is rolled back to this checkpoint at a later time. This is because the
actual control of the rollback daemon may be in the operating system kernel at the
time of the checkpoint creation. That is, the kernel may be executing instructions on
behall of the rollback daemon and so it is executing outside of the user task space
(see Figure 4.7). Therefore , the state of the user task at the time of checkpoint
creation would not include the correct state of the rollback dacmon. The solution to
this problem is to send a special class of messages called eheckpomt warning messages
which inform the rollback daemon of an impending checkpoint creation. When a
checkpoint warning message is received by the rollback dacmon, it exits its message
receive instruction (which will ensure that it is not executing kernel level instructions)
and performs a null operation which will not affect the state of the task upon rollhack
(see Figure 4.8). When the checkpoint creation is finished, the rollback dacmon
restarts its message receive as if nothing had happened.

For the user thread, there are two cases to be considered:

e SIC checkpoint creation: The user task knows when a SIC is being cre
ated and therefore can casily be forced to perform “husy waits” or some other

operation which would not affect the rollback to this checkpoint.
¢ RC checkpoint creation: As in the case of the rollback dacmon, the only

91



User Task

S
| Rolitect "
\ Daemon L

Seane?

O.S. Kernel

Figure 1.7:

OS kernel executing instructions on behalf of the rollback daemon

User Task

D & 4
- '
—_—
.

Figure

8: Warning message causes Rollback daemon to exit message receiv



Algorithm Checkpoint_Daemon/{
Istablish communication with controller task
While TRUE({
Wait for message CONT Rmsg from controller
Send Warning message to Rollback Dacmon
Wait for Warning to be received/processed by Rollback Dacmon
suspend Rollback Daemon
suspend user thread
save virtual memory of user task in
checkpoint < CONT Rmsg.owncr,CCONT Rmsq.number ~
save register state of user task in
checkpoint < CONT Rmsg.owner,CONT Emsqnumber ~
resume Rollback Dacmon
resume user thread
reply to controller with checkpoint completion message

} /™ end while ™/
}/™ end Algorithin Checkpoint _Dacmon ™/

Figure 1.9: Checkpoint Dacmon algorithm

important operation that could be in progress during response chechpoint ere
ation is a message receive. This is so, because the only time that o response
checkpoint is created is in response to a message receive operation. That is the
only time, according to the MRLV algorithin that C'C'P vectors are checked to
sce whether or not a checkpoint should be ereated. In this case, the solution is
to simply create the checkpoint while the user thread’s message receive is heing,

performed, and to kill and restart the operation transparently upon rollback.

The checkpoint daemon algorithm is given in Figure 4.9, Note that CONT' IRimsy
is the checkpoint creation message sent by the controller when it wishes to inform
the checkpoint daemon that a checkpoint should be created. Also, the user thiead
and rollback daemon are suspended hefore the state is saved to ensure that the state
of the user task being saved in the checkpoint is not a “moving target” i.e. that the

state is not changing while the checkpoint is being created.
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4.5 Rollback Daemon architecture

The rollback dacmon is the third entity which executes within the user task’s space
(the other two being the checkpoint dacmon and the user thread itself). Its respon-
sibilities are to restore the state of a task from a saved checkpoint and to change
the user task’s incarnation number upon rollback. Like the checkpoint daemon, it
does not keep track of any checkpoint information, but rather acts as a slave to the
controller which is responsible for the accounting of this information.

The rollback daemon’s presence does not affect the normal progress of the user
thread | as it simply lies dormant within the user task awaiting messages from either
the controller jor from the checkpoint daemon (warning messages).

When the controller decides that a rollback should occur in the user task which
it is controlling, it sends a rollback initiation message to the rollback daemon. This
message includes the STC'id (i.e. owner and ordinal number) of the checkpoint which
it wishes the task to rollback to. The daemon upon receiving this message kills all
threads running in the task. deallocates all virtual memory space , clears all registers,
and then loads the state of the task from the checkpoint which was requested by the
controller. The new state includes the memory state of all threads and their register
contents. Once the new state is ready to be started, the daemon sends a rollback
complction message to the controller and then terminates itself. Its termination is
necessary since the state of the task which was loaded from the checkpoint also in-
cludes the state of the old rollback daemon as it was when the checkpoint was created.
The rollback daemon algorithm is given in Figure 4.10. Note that CONT Rmsg is
a control message sent either from the controller or the chechpoint daemon to the
rollback daemon. This message instructs the rollback daemon to perform different
actions depending on the source of the message.

The “new rollback daemon™ is unaware of the rollback that has taken place, be-
cause the checkpoint to which the rollback has occurred was created while the “old
rollback dacmon”™ was performing a busy wait. Therefore, upon restart, the new roll-

back dacmon is in a state where it has just completed its busy wait, and will restart
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Algorithm Rollback_Daemon {
Establish communication with controller task
While TRUE{
Wait for message CONT Rmsg from controller
or Checkpoint Daemon
if (CONT Rmsg is warning from Checkpoint dactmon){
busy wait until checkpoint creation complete

else if (CONT Rmsg 15 rollback from controller){
suspend Checkpoint Daemon
suspend user thread
deallocate all of user task’s virtual memory
clear all registers
restore virtual memory of user task from
checkpoint < CONT Rmsg.owner,(CONT Rmsg.number >
restore register states of user task’s threads from
checkpoint < CONT Rmsg.owner,CONT Kmsg.number >
increment user task incarnation
restart Checkpoint Daemon
restart User thread
reply to controller with rollback completion message
restart Rollback Daemon
Die.

} /7 end while ¥/
}/" end Algorithm Rollback_Daemon ¥/

Figure 4.10: Rollback Dacmon algorithm

the main loop without even knowing that it had been rolled back.

4.6 Controller (Soul) architecture

The controller is the main entity in the Body and Soul model. It controls every aspect

of the execution of the user task . In particular, it is responsible for the following;:

e It decides when a checkpoint should be created, and when a rollback should

take place by following the MRLV algorithm.

e It is responsible for keeping track of any information which is pertinent to all

checkpoints which have been created for the user task which it controls.
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e [t decides when a task should be suspended, resumed, or terminated for check-

point. and rollback purposes.

e [t controls all incoming and outgoing messages of the user task which it controls.

Unlike the checkpoint and rollback daemons that execute as threads within the
application program’s user tasks, the controller task is a system task which executes
independent of the user task. It controls the user task by monitoring its messages
and communicating with the checkpoint and rollback daemons. The controller is
structured as a server which performs actions depending on the receipt of different
classes of messages. These message classes are based on the source of the message.

The classes are:

e User application message class: These messages are simply application
messages which are redirected through the controller from the user tasks. This

sort of redirection is one of the main responsibilities of the controller.

e Checkpoint daemon control message class (CDM): Once checkpoints
have been created, the checkpoint daemon responds with a checkpoint daemon
control message which the controller interprets as an acknowledgment that a

checkpoint has been created.

* Rollbacl: daemon control message class (RDM): These messages are sim-
ilar to the checkpoint daemon control messages. They are sent by the rollback

to the controller to acknowledge that a requested rollback has been completed.

e User control message class (UCM): User control messages are messages
which have been sent to the controller by the user task transparently. They are
sent in response to important events which must take place within the user task

such as system calls.

e Controller control message class (CCM): These are messages which have

been sent from remote controllers.
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All messages , with the exception of user application messages, are sent to the
controller by the various entities through the use of a controller notification port.
The controller notification port is a port owned by the controller on which it receives
the various control messages which dictate its behaviour. This is the port whose send
rights are made available to other controllers through the use of the central name
server (CNS).

The controller is the engine which actually executes the MRLV algorithms. The

rollback and checkpoint daemons only aid in the mechanics of checkpoint creation

and rollback.

4.6.1 Establishment of communication by controller

Upon startup of a distributed user application program, all user tasks are suspended
until the controller has had time to set up. When the controller is started, it estab-
lishes communication between the checkpoint daemon and the rollback daemon which
have been spawned transparently in the user task. It then checks itself into the CNS
and waits for a reply. The reply contains the unique system-wide id for the user task
which is being controlled, and send rights to all controller notification ports.

Once all needed communication links have been set up, the controller allows the
user task to be resumed. Communication between the user task and the controller
then occurs transparently through the sending of UCM’s. Special communication
between controllers will occur through the sending of CCM’s. The different types of

UCM'’s and CCM’s and their function are now described in more detail.

4.6.2 User control messages (UCM’s)

UCM’s are messages which request the controller to perform important functions on
behalf of the user task. The user task sends these messages transparently. For the
most part, these UCM’s are sent from the user task as a result of a modified system

call. The different types of UCM’s are:

e Port Allocation UCM: sent as a result of a port allocation system call.
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e Port Lookup UCM: sent as a result of a send rights lookup system call.

e Message Send UCM: sent as a result of the user task performing a message

send system call.

e Message Receive UCM: sent as a result of the user task performing a message

receive system call.

e SIC Creation UCM: sent as a result of the user task initiating the creation
of a MRLV SIC checkpoint.

Port allocation UCM

Under normal execution, when a user task wishes to allocate a port p, it performs
a Mach port allocation system call. The user is then allocated a new port by the
operating system on which it can receive messages which have been sent from remote
user tasks. The user knows the port by the name p (see Figure 4.11).

The controller keeps the user task’s view of the port allocation system call con-
sistent with that described above. However, in reality ports are allocated in such a
way as to allow redirection of messages which were originally directed to the user task

from some remote task.



Message from remote
user task

Figure 4.12: Redirection of messages by controller via port stealing

When the user task performs a port allocation system call, it actually allocates a
port through a normal system call, and then sends a port allocation UCM message
to the controller. This message contains the identifier p of the port which it has
allocated. Upon receiving the message, the controller “steals™ port p from the user
task for itself. This is done by allocating a new port p’ in the user task, which the user
task knows under the name p, and extracting the reccive rights of the real p into the
controller task. From this point on when the user task performs a message receive on
what it knows as port p, it is actually performed on port p’. This way, the controller
can perform a message receive on p and forward the message after it has finished
processing it to port p’ where it is received by the user task (see Figure 4.12). The
algorithm performed by the controller whenever it receives a port allocation UCM is

given in Figure 4.13.

Port Lookup UCM

User tasks send messages to each other by sending messages to ports to which the
remote tasks have receive rights. In order to do so, the sending task must own send
rights to that port. In the Mach model, one way of acquiring send rights is through

the use of a server called the netmsgserver [SAJASC].
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Algorithm Controller Port_Allocation{

create new port p’ to be inserted into user task

steal port UC M.allocated_port from user task

insert port p’ into user task with name UC M.allocated_port
} /7 end Algorithm Controller_Port_Allocation */

Figure 4.13: Controller port allocation algorithm

Like port allocation, obtaining send rights for a port through the netmsgserver
is done using a system call. The user task specifies the name of the port for which it
wishes Lo acquire send rights and the system call returns send rights to that port.

In order for the controller to intercept and forward messages sent from the user
task to remote tasks, the controller must own send rights to all forts which the user
task may want to send messages to. Since send rights to those remote ports are
acquired by the user task with a port lookup system call, the controller must “steal”
the send rights when they perform this system call.

When the user task performs a port lookup system call, it first calls the port lookup
system call and then transparently sends a port lookup UCM to the controller. This
UCM contains the name of the port p whose send rights have been looked up by
the user task through the netmsgserver. Upon receiving the UCM, the controller
allocates a new port p' in itself. It then “steals” the send rights to port p from the
user task and inserts send rights to port p’ owned by the controller in the user task.
'The controller makes sure that the user task knows port p’ by the name p. When the
user task sends messages to what it knows as port p, the messages are actually sent to
port p' which is owned by the controller. The controller can then process the message
as it pleases and forward the message to the real port p. The algorithm performed by
the controller when its user task wishes to perform a port send rights lookup is given

in Figure 4.14
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Algorithm Controller_Port_Lookup|{
allocate new port p’ in controller
cxtract send rights to port UC M.port_looked_up from user task
inscrt send rights to port p’ with the name
UC M.port_lookcd_up into the user task
} /* end Controller._Port _Lookup */

Figure 1.14: Controller port send right lookup algorithm

Message Send UCM

In order to perform necessary functions needed by the MRLV algorithm, all messages
that are sent from the user task are intercepted by the controller. These message
interceptions follow the algorithm described in section 3.6.3.

When a user task wishes to perform a message send system call, it actually per-
forms two message sends. The first message send is the normal application message
which it sends to what it perceives as the remote port. Since the port send rights
are stolen upon lookup, the user task actually sends the message transparently to a
corresponding port in the controller instead of the remote port it intends the message
for. The second message is a message send UCM. This UCM informs the controller
that the user task has sent an application message and that it is now waiting on the
port whose send rights had been “stolen” by the controller during the port lookup.
The message is received on this port and then manipulated as dictated by the MRLV
algorithm. Once the controller has finished processing the message, it forwards it to
the “real” remote port. This interception of message sends is depicted in Figure 4.15.
The user task is “fooled” into thinking that it is sending message a; to the remote
port p. In fact, it sends a; to port p’ which is in the controller. The user task then
sends a UCM which , among other things, includes the name of the port that e
was intended for. “When the controller receives the UCM, it knows that a message
is waiting on port p’ since a logical mapping between p and p' has previously heen
established at the time of the port lookup. The controller receives ay, angments it as

needed by MRLV and sends the new message o to the real remote port p to which
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Figure 4.15: Interception of message sends by controller.

Algorithm Controller_Message_Send{
find controller port p’ corresponding to U/C' M.remote_port
/* message interception */
receive application message a from user task on port p’
petform any nceded MRLV functions related to message send
find remote task port p corresponding to UC M.remote_port
forwaid message a to port p

}/* end Algorithm Controller_Message.Send */

Figure 4.16: Controller message send algorithm

the controller owns send rights. The algorithm performed by the controller upon

receipt of a message send UCM is given in Figure 4.16.

Message Receive UCM

Messages between user tasks must be intercepted not only by the sending user task’s
controller, but also at the receiving end by the receiving user task’s controller. The
method by which received messages are intercepted is similar to that used at the
sending end. When a user task wishes to perform a message receive on one of its
ports p , it actually sends a message receive UCM to its controller and then performs
a message receive on the port which it believes to be p. In fact, since send rights to
p have been stolen at the time of its allocation and replaced with another port p/,

the user task actually performs a message receive on port p'. The UCM which the
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Algorithm Controller_Message_Receive{
find controller port p corresponding to U(" M.receive port
/* message interception */
receive application message a from remote task on port p
perform any needed MRLV functions
find user task port p' corresponding to /(' M.receive port
forward message a to user task port p'

} /* end Algorithm Controller Message_Receive */

Figure 4.17: Controller message receive algorithm

user task sends to the controller contains, among other things, the name of the port
which it wishes to receive a message on, namely p. Upon receiving the UCM, the
controller performs a message receive on the real port p, manipulates the received
message as dictated by the MRLV reccive algorithm given in section 3.6.3. and then
forwards the application message to the user task by sending it to port p' on which
the user task has been suspended awaiting a message. The algorithm performed by
the controller upon receiving a message reccive UCM from the user task is given 4.17
Note that UC M.reccive_port represents the name of the port which the user task
wishes to receive a message on. It should also be noted that if, upon receipt of an
application message, the controller sees that an RC checkpoint creation is pending by
its user task, it will communicate with the checkpoint dacmon in a fashion similar to

that described in the next section on SIC creation.

SIC creation UCM

As in the RLV algorithm, SIC checkpoints in MRLV arc initiated by the user task.
When a user task wishes to create a SIC, it initiates the creation by sending a SI1C
creation UCM?® to its controller. While waiting for the checkpoint to be ereated, the
user thread of the user task goes into a busy wait until further notice. This message

is simply a flag that indicates to the controller that the user task wishes to save its

SSIC creation notification messages are classificd under UCM’s for simplicity. However, these
messages could also be treated as CCM’s since they could casily be sent from the system’s encapsu-
lating application rather than the user task itself.

103



Algorithm Controller_Create _SIC{
send checkpoint creation message < user_tuskad, CC Pluser task ad) >
to checkpoint daemon
block waiting for a tesponse C DM
update any necessary information as dictated by MRLV
allow user task to resume normal vperation
}/* end Algorithm Controller Create SIC ~/

Figure 4.18: Controller SIC creation algorithm

state iminediately.

Upon receipt of a SIC creation UCM, the controller communicates with the check-
point daecmon requesting that a checkpoint be created as described in section 4.4.
The controller then waits for an acknowledgement CDM message from the check-
point dacmon indicating that the checkpoint has been completed. Before resuming
normal operation, the controller updates all necessary information which it is respon-
sible for keeping track of such as updating the CCP vector entry for the user task
and keeping track of the checkpoint etc. When everything is updated, the controller
allows the user task to exit its busy wait and resume normal operation. The algorithm
performed by the controller task upon receipt of a SIC creation UCM is is given in

Figure 4.18.

4.6.3 Controller Control Messages (CCM’s)

Controller control messages (CCM’s) are always sent from one controller to another
controller and always pertain to some aspect of the rollback of the system state. The

two types of C'C'M messages are:
e Rollback initiation CCM'’s

¢ Rollback participation CCM’s

Rollback initiation CCM

In the MRLV rollback algorithm, a user task initiates a rollback of the system state

by rolling back to one of its self-induced checkpoints (SIC’s). In the body and soul
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Algorithm Controller_Rollback Initiation {

disable application message acceptance

increment current_inc,

send message to rollback daemon informing it that it should
rollback to checkpoint < user.task_id, ("C'M.ordinal number ~

wait for rollback completion RDAM from rollback dacmon

for all controller tasks (', {
include current_ne, in rollback message n
send rollback message n to task (',

}

for all controller tasks (', {
wait for a reply r from C,
inctab,{j] = r.current_inc

}
reset information (C'C'P update,incarnation in messages etc.)
enable application message acceptance

} /* end Algorithm Controller.Rollback Initiation */

Figure 4.19: Controller rollback initiation algorithm

model, the rollback is initiated by the sending of a Rollback initiation CCM to the
controller. In the current implementation, this CCM is sent by the encapsulating
application (i.e. the debugger). However, in some other implementation, it could
be sent from the user task itself. The CCM includes the ordinal number of the SIC!
checkpoint created by the user task which should be rolled back to.

Upon receipt of a rollback initiation CCM, the controller performs the rollback
initiation algorithm described in section 3.7.2 i.e. application messages are disabled,
rollback participation messages are broadcast, etc. However, it relies on the rollback
daemon for the actual mechanics of the rollback. this is done by sending a message
to the rollback daemon informing it that a rollback should occur to the requested
checkpoint. It then waits for a reply in the form of a rollback completion RDM from
the rollback daemon indicating that the new state is ready to execute. The algorithim
performed by the controller of a task 7, upon receipt of a rollback initiation message

is given in Figure 4.19 6,

®Note that the complete algorithm is given since the algorithm in section 3.7 2 must be spht up
in order to present it properly.
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Algorithm Controller _Rollback_Participation{

disable application message acceptance

update incarnation in inc.tab, for sender of n

il n indicates that task should rollback {
increment current ane,
send message to rollback daemon informing it that it should

rollback to checkpoint < n.owner, n.numéber >

wait for rollback completion KDM from rollback daemon

}

/" broadcast rollback msg */

for all controllers ', {
include currentiine, in message n
send message n to controller €,

}

/" update incarnation info */

for all controllers ', (U, # original sender of rollback message n){
wait for reply r from C,
tnetabfj] = r.current ince

if rollback occurred in this task{
reset necessary information (eg. restoring messages, CC P etc.)
}

enable application message acceptance
} /7 end Algorithm Controller_Rollback Participation */

Figure -1.20: Controller rollback participation algorithm

Rollback Participation CCM

The second type of CCM which the controller can receive is a rollback participation
CCM. This CCM is the same as that described in the rollback protocol of MRLV (see
section 3.12). Upon receipt of such a CCM, a controller performs the MRLV rollback
participation algorithm as described in section 3.12. If, according to the algorithm,
the controller must rollback the state of its user task, it sends a rollback initiation
message to the rotlback daemon. It then waits for the rollback dacmon to complete
the rollback and send a rollback completion RDM. Thus the algorithm performed by
the controller of a task T, upon receipt of a rollback participation message n is given

in Figure 1.20,
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4.7 Problems with Body and Soul

The Body and Soul model for the architecture of an MRLV-based checkpoint and
rollback recovery system described in this chapter introduces new problems which
are not present when the MRLV algorithm is viewed at the conceptual level. This
section describes these problems and solutions for them in the context of the boay

and soul model.

4.7.1 Second Level Pre-rollback Messages

Both the RLV and MRLV algorithinz take specific measures to deteet the presence of
pre-rollback messages sent between user tasks. Unfortunately, the indirection imposed
by the presence of the controller task with respect to messages , adds another level
of pre-rollback messages which would otherwise not be present. These messages are
termed second level pre-rollback messages”.

If tasks are “uncontrolled”, then pre-rollback messages can only oceur hetween
user tasks, and both the vanilla RLV and the MRLV algorithms will detect this
scenario by using the cautious stalc and incarnations schemes respectively. However,
because of the presence of the controller, pre-rollback messages must now also be
considered between the user task and its controller as well. i.c. a message received by
the controller from its user task may be from a previous incarnation and has reached
the controller’s port in the time between the user task’s death and its reincarnation
into a previous state. This scenario is depicted in Figure 4.21. Message p reaches the
soul after the old body has died.

Similarly, messages sent from the controller to the user task may be second level
pre-rollback messages also. The controller task is always forwarding messages from
remote controllers to the user task. The situation may arise where the controller task
has forwarded a message to the user task which only arrives affer the user task has

been rolled back and has entered a new incarnation. Therefore, the controller must,

"Note that there cannot be any more levels of pre-rollback messages since there is only one level
of indirection.
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Figure 4.21: Second level pre-rollback messages between Body and Soul

have some method of determining whether or not messages it receives from the user
task which it is controlling are pre-rollback and vice versa.

The idea of incarnations can be easily extended to solve the second level pre-
rollback message problem. In this solution, both user tasks and controllers keep track
of which incarnation they are in. In the user task, the incarnation value is called
body_incarn and in the controller task it is called soul_incarn. After any rollback , the
incarnation numbers are incremented in both the body and soul.

Whencever a message is sent from controller to user task (eg. port allocation UCM
message). the body transparently appends body_incarn to it. Upon receipt of the mes-
sage, the controller checks to see that body.incarn is equal to its current soul_incarn.
Il these two values are not equal. then the message is a second level pre-rollback mes-
sage and is discarded. Similarly, controllers always append their soul_incarn value to
all application messages which are sent to its user task. When the user task receives
an application message which has been forwarded by its controller, it transparently
cheeks to see that its body_incarn value matches that of the soul_incarn value in the

forwarded message. Again, if these values do not match, then the application message

1s discarded.



4.7.2 Deadlock Between Controllers

According to MRLV, during a rollback, user tasks are forced to block until their con-
trollers have received incarnation information from all other controllers. The actual
waiting for incarnation messages may cause a deadlock to occur.,

In general, when any (controller or user) task performs a message receive opera-
tion, it blocks until a message has been queued on the port on which it is attempting
to receive a message. Because of the fact that the controller notification port is sep-
arate from the user ports (i.e. the ports used by the controller to receive messages
from other user tasks through their controllers), and Mach message receives will block
a task on a port until a message arrives, the following situation may occur. Referring
to Figure 4.22, at time ¢; task T3 initiates a rollback and sends rollback messages
a; and a3 to tasks T and T3 respectively. However, at time t, task Ty is waiting
for a message on one of its user ports (shown in bottom part of figure). Because it
is blocked waiting for a message on a user port, it will not receive message oy even
though it has been queued on its controller notification port. Therefore, it will not be
informed of the rollback until it is unblocked by the receipt of a message on its user
port. Meanwhile 77 and T, are both awaiting a user incarnation update (rollback)
message from T3. However, this message will never arrive since ' is blocked on its
user port and is not aware of the rollback which has taken place while it was waiting
for a user application message. Therefore, the whole system is deadlocked.

This problem would not arise in the vanilla RLV algorithm since upon a rollback,
the controllers would not have to wait for a response from all other controllers hefore
continuing.

The solution to this problem is quite simple. When a user task requests that a
message receive be performed by the controller, instead of blocking on the user port
awaiting a message from a remote task, the controller will loop inspecting hoth its
controller notification port and the user port. A bhlocking message receive will only
occur when there is actually a message queued on the port. This way the controller

will never be blocked waiting for a message. Both ports are inspected and the first
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Figure 4.22: Deadlock caused by incarnation update waiting

message to arrive on either of the ports is processed. If a message arrives on the user
port first, then it is processed normally. If a message arrives on the controller port
first, then it must be a rollback message (since the user task is blocked waiting for
a response from the controller, it cannot send any more control messages therefore
the control message must have come from a remote task). This way deadlock cannot

occur because rollback messages will always be processed regardless of the state of

the receiving controller.

4.8 Discussion of Body and Soul model

4.8.1 Reusability of Body and Soul entities

The design can be used to simplify :

o implementation of new checkpoint and rollback recovery algorithms
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e use of system as a black box to be inserted into different applications (debuggers

etc.).

The following is a brief list of what ecach entity in the Body and Soul architecture can

be used for:

e Controller (Soul): reusable as a general purpose task monitoring device.

e Central Name Server: reusable as a general information distributor in any

distributed application.

o Checkpoint Daemon: can be reused by new checkpoint and rollback and
recovery algorithms as a black box to save the virtual memory and register

state of any task to disk.

¢ Rollback Daemon: Given any task, this module can be used as a black box to
load the state of a previously saved task into he space of a currently executing
task. Note both the checkpoint daemon and the rollback dacmon are extremely
useful for the implementation of other checkpoint and rollback recovery algo-

rithms.

4.8.2 Advantages of the model

Although the body and soul architectural model is designed in the context of Mach, it
is generic in the sense that it can be applied to the implementation of MRLV on any
distributed platform which is based on a port communication model. Furthermore,
the design is not restricted to the MRLV algorithm, but can be adapted to fit. other
checkpoint and rollback recovery algorithms.

The body and soul architecture has been designed specifically for the implemen-
tation of the checkpoint and rollback recovery subsystem of the CDB distributed de-
bugging system which will be discussed in more detail in the next chapter. However,
the model’s entities can be collectively looked upon as an independent checkpoint and
rollback recovery subsystem.

The advantages of using the Body and Soul architecture:
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Total control over user tasks

e Preservation of resources upon termination of tasks

Hiding of Mach resource allocation/deallocation

Re-usability for different checkpointing algorithms.
o Less time involved during rollback due to simplicity re-allocation of resources

By adopting the Body and Soul model to the MRLV checkpoint , rollback and
recovery algorithm, it is possible to control tasks executing in the Mach environment
more casily. One drawback of this model is the fact that the redirection of messages
created by the presence of the controller task necessarily increases message traffic
almost two-fold. Unfortunately, this is the price that must be paid in order to imple-
ment the algorithm in the given environment. However, if the controller task always
executes on the same host machine as the user task that it is controlling, then mes-
sage traffic across the network is not increased. Rather, only traffic within the host
is increased. The presence of the soul task introduces the possibility of a second level
of pre-rollback messages. However, this was shown to be an easily solvable problem
which does not entail much overhead in terms of verification of messages. Using the
simple incarnation scheme , second level pre-rollback messages can be easily detected
and climinated. Finally, the Body and Soul model is constructed in such a way as to
hide the details of Mach resource allocation/deallocation. The consequence of this
is that new checkpointing and rollback algorithms can be built on top of the model

relatively casily.



Chapter 5

Implementation of MRLV

As soon as we started programming, we found to our surprise that it wasn'l
as easy lo get programs right as we had thought. Debugging had to be
discovered. I can remember the eract instant when I realized that a large
part of my life from then on was going to be spent in finding mistakes in
my own programs.

- Maurice Wilkes discovers debugging, 1949

The MRLV algorithm has been implemented in the context of a distributed de-
bugger called CDB(Concordia Distributed deBugger)[LRAK90] which is part of au
ongoing project at Concordia University. CDB is a tool which can be used to de-
bug distributed programs written in the C or C++ programming langunages un-
der the Mach operating system. Related work on this project <o be found in
[CYEP92, VKRA92, HSEG93, BDANS9, VENKSS, PASSSS, I1HAMSS]

MRLYV is the algorithm which is used in CDB to support checkpoint and rollback
recovery of distributed programs during debugging. It is implemented as a separate
set of modules using the body and soul architectural model discussed in chapter 4.
This chapter introduces the CDB tool and discusses its checkpoint and roliback facility

along with some implementation details.

5.1 CDB Distributed Debugger

The current implementation of CDB , called XCDB, runs under the X-Window sys-
tem and the Athena Widget set [NYOR90]. XCDB allows the debugging of programs
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Figure 5.1: User debugs distributed program from a central site

written specifically for a network of SUN 3/50 workstations running the Mach oper-
ating system.

The main XCDB program, which can be executed on any of the five machines, acts
as a central debugging site for monitoring programs running on remote processors.
The user monitors program execution from the central site where he/she is able to
interactively debug the program with the help of XCDB’s debugging facilities. (see

Figure 5.1).

5.1.1 Compiling an XCDB program

In order for a program to be able to run under XCDB, the user must modify his/her
code before compilation so that information necessary for checkpointing and rollback

may be made available to the debugger. These changes are:

o The user is required to include a constant called DEBUG.MSG in all of a program’s

message structures.
¢ The cdb.h header file must be included in all programs.
o The first instruction to be executed in the code must be the INIT.CDB macro.
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The user must also include the ddebug library when compiling the program. These
changes allow the user’s program to interact with XCDB’s checkpoint and rollback re-

covery subsystem transparently. More detail about preparing programs for execution

under XCDB can be found in [CYEPY2].

5.1.2 XCDB Facilities

At this time, XCDB provides two basic facilities:

e Breakpoint Detection and Halting

e Checkpoint Creation and Rollback

The breakpointing facility allows users to monitor the behaviour of a distributed
program. A user specifies distributed breakpoints to be detected by XCDB on their
program using a predicate definition language called PDL [CYEP92]. PDI, predicates
are defined as trees whose leaf nodes are primitive cocnts and whose non-leaf nodes
are operators. A primitive event consists of any event which can be detected by a
local debugger attached to each task eg. assignment to variables, task termination,
ctc. This local debugger is currently GNU’s GDB debugger [STALSY)'.

There are currently two PDL predicate operators. They are Lamport’s “happens
before” () and “concurrent” (&&) relations as defined in section 1.5.1. Using these
operators and primitive events, the user can build predicate definitions which span
several tasks in the distributed program. In Figure 5.2 a PDL predicate definition
is depicted with its corresponding execution. The primitive events ¢y, ¢y, and ¢y
represented by the leaf nodes occur in several tasks which are not exccuting on the
same host machine.

Upon execution of the program, if events have occurred such that the pre-defined
PDL predicate is satisfied , the system is halted in a consistent state. At that point,

state information of the various tasks can be extracted. The extracted state infor-

It should be noted that one of the main reasons that GDB was chosen was because of the fact
that it can support multiple threads as described in [CABL8Y).
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Figure 5.2: PDL predicate definition and corresponding execution.

mation can be any information which could be returned by the GDB debugger eg.
values of variables,registers, program counter etc.

The XCDB checkpointing facility allows a user to rollback the execution of any
task to a pre-defined point in its execution without being concerned about the need to
rollback other tasks due to causal dependencies. The user is responsible for defining
where in the source code checkpoints should be created. Upon completion of the
distributed program, or detection of a predicate, the user may selectively rollback the
execution to any of the defined checkpoints using the XCDB interface and restart the

execution from that point.

5.2 XCDB Checkpoint and Rollback Facility

XCDB’s checkpoint and rollback facility is based on user defined checkpoints and

interactive rollback through XCDB’s user interface.
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5.2.1 Checkpoint Creation Flags

The user indicates places in the code to which he/she may wish to rollback at a later
time using checkpoint creation flags. Checkpoint creation flags can be placed any-
where in the application program code. The user need not worry about the creation
of recovery lines since these will be created by XCDB according to causal dependen-
cies (i.e. sending and receiving of messages) according to the MRLV checkpointing
algorithm. Therefore, the user is only concerned with the rollback of one particular
task at any given time. Iowever, the rollback of that task may necessitate further
rollbacks of other tasks. The C code fragment in Figure 5.3 shows how a programmer
would use checkpoint creation flags in the distributed program code. In this frag-
ment , checkpoint() is the checkpoint creation flag, task_is() is a function which
returns the name of the current task, setup_send () sends a dummy message using a
Mach msg_send() system call to its parameter port, and receive data() receives a
message on the calling task’s port using a Mach nsg_receive() system call. There
are two tasks A and B which simply send messages to cach other?. ‘The user places
the checkpoint () flags in the code at points in the code which hefshe believes to be
“before” the bug. The flags in this code fragment results in the transparent creation
of the recovery lines depicted in Figure 5.4. In effect, the checkpoints created by the
placing of checkpoint creation flags are MRLV SIC checkpoints and the unspecified
checkpoints created by XCDB transparently are MRLV RC' checkpoints. Note that
the message received by task B right after the creation of its SIC will be saved in the

checkpoint so that the recovery line < B,1 > is consistent.

5.2.2 Interactive rollback using XCDB user interface

After the user has defined all checkpoints by placing checkpoint creation flags in
his/her code, the distributed program is compiled according to the procedure detailed
in section 5.1.1.

When XCDB is started on one of the host machines, the main XCDB window in

“the actual contents of the message is unimportant.
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1f (task_18("A")){
printf(“this 18 task A\n");
sprantf(other_port_name,"B");

/* lookup of send rights for task B’s port here */
netname_look_up(name_server_port,"#*" other_port_name,&other_port);

checkpoint(); /* creates SIC <A,1>
setup_send(other_port);

receive_data();

setup_send(other_port);

receave_data();

setup_send(other_port);

1f (task_18("B")){
printf("this is task B\n")
sprantf(other_port_name,"A");

/* lookup of send rights for task a’s port */
netname_look_up(name_server_port,"*",other_port_name,&other_port);

receive_data();

setup_send(other_port);

checkpoint(); /* creates SIC <B,1> %/
receaive_data(); /* This message will be saved */
setup_send(other_port);

receive_data();

}

Figure 5.3: Distributed program fragment depicting checkpoint creation flags
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Figure 5.1: Transparent creation of recovery lines by XCDB.
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Figure 5.5: Main window of the XCDB debugger.

Figure 5.5 is displayed. The user can load a PDL breakpoint definition by clicking on
the Load Breakpoint button with the mouse pointer on the main XCDB window.
The PDL definition describes the names of the tasks, the machines on which they
are supposed to execute, and the predicate which is to be detected. For the purposes
of this discussion however, details about breakpoint detection are left out and it is
assumed that no breakpoint predicate is specified by the user.

After the initial setup, the program can be executed by clicking on the Run but-
ton. When the program has halted , either due to program termination or detection
of a predicate satisfaction, an ST-diagram depicting the execution can be displayed
by clicking on the St-Diagram button. Figure 5.6 shows the St-diagram window after
the execution of a program under XCDB. The squares along the task execention lines
represent events which have occurred during the execution snch as port allocation or
task termination. Of particular interest to this discussion are the checkpoint events
labeled as CP. These events represent the user-defined checkpoints which were spee-
ified in the program code prior to compilation. Since the user is not concerned with
the actual recovery lines which are transparently built by the underlying mechanism,
the checkpoints are represented as single entities on the user interface’s St-diagram.

Clicking the Rollback button in the St-diagram window allows the user to select a
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checkpoint (CP event) to rollback to. When this button is clicked, the checkpoints are
highlighted in red to indicate that they are active. The user can then click on any of
the highlighted CP events and XCDB will automatically rollback all necessary tasks to
bring the task which owned the CP event back to the state it was in when the CF event
occurred. All tasks which were rolled back are then restarted. Figure 5.7 shows the
St-diagram window after the user has selected the first checkpoint in task 465510332
to rollback to. It can be seen by comparing Figure 5.7 with Figure 5.6 that the
re-execution is identical to the initial execution starting from the selected CP event.
Rollback to the selected checkpoint required a rollback of all tasks since they had all
communicated with cach other either directly or indirectly since that checkpoint had
been created. ‘The user can view both executions by using the scrollbar at the top
of the St-diagram window and program executions are delimited by an incarnation
delimiter. In Figure 5.7 the incarnation delimiter is labeled Incarnation 1. This
ind*-ates that all events after the incarnation delimiter are from the first re-execuation
of the program after the first rollback has taken place.

Rollbacks can be initiated by clicking on CP events from any of the executions
depicted in the St-diagram window. For example, clicking on the CP event in task
910392826 [rom the St-diagramm window in Figure 5.7 results in the re-execution
depicted in Figure 5.8. Note that the delimiter now reads Incarnation 2. Also,
note that only 2 tasks were rolled back this time because only these two tasks had
communicated since the creation of the checkpoint which was selected for rollback.
Also noteworthy is the RCV event which immediately follows the CP event. There
was no need to rollback the sending task since this message had been buffered by the
system according to the MRLV algorithm in order to keep the recovery line consistent.
Henee, only the RCV event is depicted on the St-diagram.

The user driven rollback mechanism is useful since it allows the user to control

exccution of remote tasks from a central site through the St-diagram abstraction.
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5.3 Architectural aspects of XCDB with respect
to MRLV

The checkpoint and rollback recovery facility module of XCDB uses the MRLV algo-
rithin and the body and soul model. It has been fully implemented to support the

checkpoint and rollback facilities previously discussed.

5.3.1 Implementation Assumptions

The implementation of the MRLV algorithm supports multiple threads and ports
in the XCDB tool. However, previous work on XCDB [CYEP92, VKRA92] has
restricted the implementation model to a single-thread per task model. Therefore,
although MRLV can support multiple threads and ports, the XCDB tool does not
allow the user to exploit them.

The program being debugged must run to completion before a rollback can be
initiated by the user from within XCDB. This restriction has been made for the sim-
plification of the integration of rollback recovery modules with the previous XCDB

implementation. However, it should be noted that the checkpoint and rollback recov-

122



ery modules by themselves do support rollback before completion of the program.

The system has made the assumption that once a Mach port is allocated, it is
not deallocated by the programmer. The deallocation may occur due to the death
of the owner task. However, the programmer is not allowed to explicitly call a port
deallocation system call or to check out a port from the central netmsgserver. This
can be changed easily by replacing port_deallocate() and netname_check_out()
system calls to macros which simply don’t do the operations but return as if they
did. However , we have not done it in the current implementation.

In order to detect the termination of a task which is part of the distributed pro-
gram, the programmer is required to explicitly exit a task using an exit() system
call. Otherwise, XCDB will still work, but will not be able to display to the user that
a particular task has terminated.

The checkpoint and rollback recovery subsystem of XCDB does not support the
random creation of ports. Tasks must create their ports and establish communication
links with other remote processes before starting their computation. Furthermore,
tasks are permitted to communicate with each other through only one user-defined
port. There is no real need for multiple ports if a restriction has been placed on
the number of threads allowed per task since only one port can be read at any time
anyways.

For simplicity, it is assumed that only one task involved in the computation exe-

cutes on each of the machines. This is to simplify the global naming convention used

by XCDB.

5.3.2 XCDB system architecture

The complete XCDB system architecture including the modules needed for check-
pointing and rollback recovery is depicted in Figure 5.9. Both breakpointing and
rollback control lies within the XCDB debugger. The XCDB program itself is a
multi-threaded Mach task. Within the breakpoint control, threads are spawned to
monitor events occurring in remote tasks. The threads communicate with a local

debugger (GDB) attached to each user task and a vector clock module is used to
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determine the order of events for predicate detection. Along with the local debugger,
a controller task (as in the body and soul model) is attached to each task. Also, the
checkpoint and rollback daemons are spawned within the user task and they commu-
nicate with the controller. The rollback control of XCDB and all remote controllers
get send rights to all other controllers through the CNS which is as described in
the body and soul model. The source code of a user task is augmented for both
the breakpointing and checkpointing facilities. Specifically, the code is augmented to
allow transparent communication between the user task and the vector clock, local
debugger, and controller modules.

When messages are sent or received by a user task, they go through two levels
of processing by the augmented code. They are first processed by the breakpointing
modules which append necessary information needed for breakpointing such as vector
clock values, and then the checkpoint and rollback recovery augmented code appends

further needed information such as incarnation numbers.

5.4 Implementation Issues

This section describes and discusses selected important aspects of the implementation

of MRLV within XCDB. It discusses:

e How task states arc saved and restored?
e How the user task’s source code is augmented?
e low checkpoint creation flags cause the creation of checkpoint?

o llow rollback is initiated through the user interface?

5.4.1 Saving and restoring of task states

Mach’s port abstraction provides a simple way of manipulating a task’s resources.
All of a task’s resources can be accessed through its environment port. Suppose a
task T, owns send rights to a task T)'s environment port . A can access all port

rights (i.c. extract or insert) owned by 7,. Furthermore, all of T,’s virtual memory
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space and registers can be read or written by T;. It is through this environment port
that a controller task steals port rights from the user task which it is controlling and
this is done by a straightforward use of Mach system calls which allow port right
insertion and extraction. The controller simply follows the method for stealing ports
as described in sections 4.6.2 and 4.6.2.

Although the environment port abstraction allows easy access to a task’s virtual
memory and registers, saving and restoring a task’s virtual memory is not simple. The

algorithms which have been used for saving and restoring task states are variations

of those presented in [GOGO090].

Saving the state of a task

The ORM system described in [GOGO90] also uses the idea of a checkpointing dae-
mon which is responsible for saving the state of a task. When their system wishes a
checkpoint of a task to be created, the checkpointing daemon within that task per-
forms a Unix fork() system call to create a child task (see Figure 5.10). This child
task’s virtual memory space is an exact copy of the virtual memory of the parent
task which created it and therefore can be used to save the parent task’s state. Upon
creation, the child immediately suspends itself and while it is suspended, the check-
pointing daemon within the parent task copies its virtual memory space and register
values to disk in a checkpoint using Mach system calls. The parent task then resumes
the child which immediately exits.

In the MRLV implementation for XCDB, a similar approach is taken to that
in ORM. The checkpoint daemon forks a child task when instructed to create a
checkpoint by its controller. However, instead of having the parent task (i.e. the
user task) save a copy of the child’s virtual memory, it is the child task which copies
the parent task’s state to disk. After forking the child, the parent task (user task)
checks its environment port into the netmsgserver so that the child task can look it
up, and immediately suspends itself. While the parent is suspended, the child first
looks up its parent’s environment port and then copies the parent’s virtual memory

and register states to disk in a checkpoint using Mach system calls (eg. vm_region(),
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Figure 5.10: Saving the state of a task using fork() in ORM

vm_read(), etc.). This is depicted in Figure 5.11

Restoring previously saved states

The ORM algorithm used for restoring states is similar to the one it uses for saving
states. When the ORM system wishes to rollback a task, that task’s rollback dacmon®
performs a unix fork() system call to create a child task. The child is used as a
template into which the state which was stored in the checkpoint is to he copied,
Before copying the state on disk into the child template, the rollback dacmon in the
parent deallocates all of the child’s virtual memory. Once the parent has finished
copying the state which was previously saved in the checkpoint from the disk into
the child task, it terminates its task (i.e. the parent) so that the child task can take
over the execution. The execution restarts fromn the point saved in the checkpoint.,
Note that since the child task would have had a copy of all register states and virtnal

memory. this state would include the state of all entities within that, task (i.c. the

3The daemon in ORM is not actually called a rollback dacrnon but this term has been used here
to make the comparison between XCDB and ORM more clear.
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rollback daemon and the checkpoint daemon).

The XCDB restoration of states again uses the opposite approach to that of ORM.
When the rollback daemon of a task is instructed by its controller to rollback the state
of its task. it again performs a unix fork() call. However, unlike in ORM it is the
parent task which acts as the template for restoring the state saved in the checkpoint.
After forking a child, the rollback daemon suspends its user task. The child acquires
rights to the parent’s environment port and through this port it deallocates all of the
parent’s virtual memory, and clears all of its registers. The child then copies the state
saved on disk in the checkpoint using Mach system calls (eg. vm_write() etc.). Once
it has finished doing so, the child resumes the parent task and terminates itself. The
parent then continues its execution from the point saved in the checkpoint without

being aware of the rollback which has taken place.



Advantages of XCDB approach

The algorithms presented here for the implementation of MRLV with respect to saving

and restoring states of tasks within XCDB are more efficient than those presented in

[GOGO90] for the following reasons:

¢ Restart of daemons is simple after a rollback since they are in the same state

that they were when the checkpoint was created.
o Communication need not be re-established between user task and its controller.

¢ No necd to checkpoint port rights.

o No need to re-create ports after a rollback. Since the parent task is used as
the template for state restoration upon rollback rather than the child task, the
ports always remain intact. When the child is used as the template, its port
space must be manipulated so that it owns the same ports as the parents did at
the time of the checkpoint creation. The new algorithm makes this unnecessary

and therefore less time is spent on rollback.

5.4.2 Augmented code

The user code is augmented to allow the trausparent interaction with the XCHB
system tasks. This is achieved by modifying the program code as described in sece-
tion 5.1.1. The Mach kernel has not been modified, rather the system calls have
been replaced by C macros which perform the XCDB functions along with the real
system call. This is used to perform necded functions such as serding UCM’s to the

controller when system calls are called by the user task.

5.4.3 User-defined checkpoint mechanism

User-defined checkpoint flags are implemented as a function call which interacts with
the controller of the user task. When a checkpoint flag is hit during execution of

a program, the user task prepares itself for checkpoint creation by entering into a
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busy wait. A message is sent to the task’s controller informing it of the desire to
create a SIC checkpoint (i.e. a SIC Creation UCM message; i see section 4.6.2). The
controller in turn sends a message to the checkpoint daemon which actually creates
the checkpoint. Once the checkpoint is created , the user task exits its busy wait and

continues its execution as if nothing had happened.

5.4.4 Initiating rollback through the user interface

The rollback control within XCDB holds send rights to all controllers and is aware of
their unique id’s. When a rollback to a particular checkpoint is initiated by the user
through the interface, the rollback control sends a message to the controller which is
the owning task of the recovery line to which the checkpoint belongs. The controller
in turn initiates a rollback according to the MRLV algorithm using the algorithm of

section 1.6.3.
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Chapter 6

Summary and Future Work

"Is that all?” asked Alicc.
"That is all.” said Humpty Dumpty. "Goodbye.”
- Leuwis Carrol, "Through the Looking Glass™

6.1 Summary

Checkpoint and rollback recovery algorithms which rely on FIFO communication
between tasks are not well suited for operating environments such as Mach which allow
multiple threads, and support a port-based communication model. This unsuitability
arises because FIFO ordering of messages between tasks cannot be guaranteed due
to the presence of multiple ports and threads within tasks. The RLV checkpoint and
rollback recovery algorithm relics on FIFO ordering of messages in its rollback phase
to detect pre-rollback messages. A modified version of RLV | called MRLV has been
designed as a part of this thesis. In MRLV, the advantages of RLV are preserved but,
there is no dependency on FIFO channels for pre-rollback message detection thereby
allowing the establishment of multiple channels between any pair of communicating
tasks. The modification is in the rollback phase of the RLV algorithin and is hased
on the concept of task incarnations. Every time a task rolls back its execution,
it is said to be in a new incarnation. By making incarnation information a glohal
knowledge, the MRLV algorithm succeeds in determining which messages are from
which incarnation of which task, and can therefore detect pre-rollback messages. The

MRLV algorithm was shown to have no extra message overhead when compared to



the RLV algorithm. Furthermore, the detection of pre-rollback messages is simple
and efficient.

In implementing the MRLV algorithm in a Mach environment, two basic problems
arisc. MRLV assumes that all tasks have knowledge of cach other so that broadcasting
of rollback messages can be possible. This is not so in a port-based communication
model such as Mach. Also, when a task terminates , its perishable resources are
deallocated by the underlying operating system and therefore, upon rollback these
resources would no longer exist. In order to implement the MRLV algorithm , an
architectural model called “Body and Soul” was designed which solves these prob-
lems by the usc of re-direction of resources. The design is in keeping with the notion
of incarnations and “Body and Soul” is a metaphor for the idea of controlling the
execution of a task. The model uses the idea of a controller, or “Soul” task which
is responsible for maintaining perishable resources across successive incarnations of
the user task (Body) which it controls. The soul task carries out operations required
by the MRLV algorithm in collaboration with daemons which are dormant within
the user task. The maintenance of resources by the soul task reduces the overhead
involved in rollback since resources such as ports do not need to be re-allocated upon
rollback. Also, the model allows the operations of MRLV to be performed transpar-
ently without affecting the user task’s execution in any way. However, the model
introduces a second level of pre-rollback messages, and the possibility of deadlock
hetween soul tasks. These problems were shown to be easily solvable by extending
the use of the incarnations concept.

The MRLV algorithm has been implemented using the body and soul model in the
context of a general purpose distributed debugger called XCDB which is an ongoing
project at Concordia University. MRLV provides XCDB with its checkpoint and
rollback facility which can be used to “narrow” the area of code being debugged, or
to interactively detect unwanted non-determinism. XCDB provides the user with a
simple view of checkpointing and rollback through its user interface. The user can
place checkpoint creation flags anywhere in his/her application code and using an

abstracted view of the computation, interactively select positions in the computation
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for rollback.

The implementation architecture is composed of reusable entities which can be
used to implement any other checkpoint and rollback recovery algorithm in an envi-
ronment which supports a port-based communication model (refer to section 1.8.1).
Furthermore, the entities can collectively be looked upon as a complete rollback re

covery module which can be used within different encapsulating applications.

6.2 Future Work

The following is a list of possible extensions to the current work, and future work

which can be done to improve the present system.

¢ The current implementation only supports one task per machine. This is due
to the naming convention used by the checkpoint and rollback recovery algo
rithms for system ports. i.e. ports in the controller and checkpoint and rollback
daemons. The reason for this is that currently, the names are distinguished by
appending the name of the machine on which the task is running onto the names
of the ports. This could be changed by appending the name of the machine,

and a unique identifier. This change would allow multiple tasks to run on cach

of the machines available.

e The current implementation only supports a single user-defined port.  Onee
multiple threads are supported by XCDB, this could be easily changed by maod-
ifying the controller to keep track of more than one user-defined port. Allowing

multiple ports would allow the user to create more flexible applications.

e Users are not allowed to specifically deallocate ports. By changing the Mach
netname check.out() and port.deallocate() system calls to macros which
simply return without performing the operations, the user would he allowed
to make these calls. By allowing the user to make these calls, the underlying

system would become more transparent.
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e Currently, the breakpoint modules have not been set up so that breakpoints
can he re-specified after a rollback. This is needed to allow an interactive user

to narrow the area of code being debugged.

e An alternate implementation could replace XCDB’s checkpoint creation flags
with automatic checkpoint creation by the system based on the breakpoint
events which have been specified. i.e. XCDB would create checkpoints whenever
an “interesting” event occurred. Automatic checkpoint creation would allow
the system to use heuristics in aiding the user to pinpoint an error. However,
this would require more efficient methods of storing checkpoints due to the

potentially large number of checkpoints which may be created.

e Currently, useless checkpoints are always destroyed. However, the destruction
of checkpoints is not always reflected in the user interface. As of now, if a
checkpoint which no longer exists is selected for rollback, the system does not
perform any rollback. This could be changed such that non-existing checkpoints

are completely removed from the user interface representation.

e XCUDB is currently a “Live Detection” debugger. Therefore, it can only effec-
tively debug deterministic programs. A future implementation could include a
“Record and Replay” module which would ensure that non-deterministic pro-
grams are always re-executed the same way. The module could run under the
checkpoint and rollback recovery module. A deterministic replay module has

been built in [VIKRA92] for such purposes, however it is not complete.
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Appendix A

MRLYV rollback algorithms:
Detailed Discussion

This appendix describes the algorithms given in section 3.7.2 in more detail and gives
justification for the steps in the algorithms. It is intended to clarify the algorithms

given in that section.

A.1 Rollback protocol assumptions
The rollback initiation algorithms for MRLV assume the following:

e Only one rollback occurs in the system at any one time and that rollback is

uninterrupted.

e A task which initiates a rollback, rolls back its state to a SIC checkpoint, other

tasks which participate in the rollback roll back their state to R(!s.
e The SIC to which the initiating task is rolled hack is sclected by:

1. A user in the context of debugging, or hy

2. Some selection algorithm in the context of fanlt tolerance.

e The algorithin operates in a reliable network.



Algorithm Initiate_Rollback(C P){

1 disable application message acceptance

2  increment current.nc,

3 rollback state to CP

4 discard all messages saved in any checkpoint

after the creation of CP

5  reset value of CCPF, vector to that saved in CP

6 purge all checkpoints created after CP was created
/* broadcast rollback msg */

7 for all tasks T, {

7.1 include current_inc; in rollback_msg

7.2 include unique taskd in rollback.msg

3 send rollbackmsg to task T,

}

/' update incarnation info */
8 for all tasks T, {
8.1 wait for reply r from T,
8.2 tnctab,[j] = r.currentanc

9  update incarnation information in messages saved in C P
10 restore messages saved in CP
Il enable application message acceptance

Figure A.1: MRLV rollback initiation algorithm

A.2 Rollback initiation algorithm

The 71gorithmn for rollback initiation described in section 3.7.2 is shown in Figure A.1
with step numbers added.

The algorithm describes the steps taken by a task ¢ wishing to initiate a rollback
by selecting its SIC checkpoint C'P for rollback. Step 1 of the algorithm ensures
that by disabling the application message acceptance, no application messages will
be lost while the rollback is taking place. This would be undesirable to the application
program because of the lost message, and also because the message couid be one that
would necessitate the creation of a response checkpoint in the initiator. Therefore if
the message was lost, an inconsistent recovery line could exist. Step 2 increments the
initiating task’s current incarnation number since the initiator is certain to rollback
and this information must be reflected. In step 3, the actual rollback of the task state

to the state saved in the SIC checkpoint CP is performed. In step 4, all messages
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which were saved in any checkpoint after the creation of (P, are purged. This is
to ensure that messages are not duplicated in the checkpoints . The messages will
be resent by the sending tasks which arc participants in the rollback due to causal
dependency. The CCP vector is reset to the value it had when the checkpoint was
created in step 5 so that upon rollback, the algorithm can still make use of the
vector to determine checkpoint creation. In step 6 all checkpoints created after the
checkpoint C'P are discarded. Since the state is restored to the state at (P, and
the execution will continue from that state onwards, any event which occurred after
the creation of C'P will be repeated including the creation of all checkpoints which
follow C P. Therefore to avoid duplicate checkpoints all checkpoints following €' £ are
discarded. Step 7 broadcasts a rollback message to all tasks in the system. Steps 7.1
and 7.2 include incarnation number and the unique identifier of the initiating task
into the rollback message which is to be broadcast. Upon receipt of this message a
task will follow the algorithm described in the next section for rollback participation.

In step 8, the initiating task, waits for replies from all other tasks. The reply
includes the current incarnation of the sending task. This information is updated
in the incarnation table immediately (step 8.2). Since application messages are still
disabled, and the initiator will wait for replies from all tasks, the global knowledge of
task incarnation numbers will be known to the task when the application messages
are enabled. Therefore, there is no possibility of receiving a pre-rollback message
before all incarnation information has been made globally available.

Steps 9 and 10 deal with the elimination of backward dependencies. These are
messages which have been buffered during the initial execution into the checkpoint CP
because of a backward dependency. The messages contain the incarnation number at,
the time that they were saved. By updating the incarnation number in these buffered
messages, the initiating task will not mistake them for pre-rollback messages, upon
re-execution. Once the incarnation is updated, the messages are restored into their
proper queues for re-consumption. Finally, step 11 enables the application message
acceptance. This ensures that the steps between 1 and 11 are uninterrupted by the

effects of application messages.
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Algotithm Participate_Rollback{

]
2

disable application message acceptance
update incatnation of task that sent rollback
participation msg in inc.tab,
if n indicates that task should rollback {
increment current_inc,
rollback state to C P indicated by n (n.CP)
discard all messages saved in any checkpoint
after the creation of n.CP
ieset value of CCP, vector to that saved in n.C'P
puige all checkpoints created after n.C P was created

}
for all tasks T { /* broadcast rollback msg */
include currentine, in n
include unique tusk_id in n
send message n to task 7,
)
/* update incarnation info */
for all tasks T, (T, # original sender of rollback message n){
wait for reply » fiom T,
inedab,j] = reurrentine

if tollbach vecured in this task{
update incaination information in messages saved in CP
1testore messages saved in CP

}

enable application message acceptance

Figure A.2: MRLV rollback participation algorithm

A.3 Rollback Participation algorithm

The algorithm for rollback participation described in section 3.7.2 is shown in Fig-
ure A2 with step numbers added to it.

This algorithm is performed by all tasks upon receipt of a rollback message from
cither a participating task, or a rollback initiator task which has performed the al-
gorithm described in the previous section (the rollback message would correspond to
the message send in step 7.3 of the rollback initiation algorithm or the message send
in step 1.3 of this rollback participation algorithm). All tasks except for the initiator

of rollback participate in the rollback whether their state is actually rolled back or
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Step 1 of the algorithm disables application messages for the same reason as the
rollback initiation algorithm. Step 2 is identical to that of the rollback initiation
algorithm.

In step 3, the message n corresponds to the rollback message which has been
received by some remote process causing this algorithm to be invoked. The message
n includes the SIC id of the recovery line being rolled back. 1t is this id which is used
in step 3 to determine whether or not the receiving task of n (i.¢. the one performing
the rollback participation algorithm) has any checkpoints which form part of the
recovery line being rolled back. Only if the task is to roll back, steps 3.1 through 3.5
are performed. These steps are identical to steps 2 through 6 in the rollback initiation
algorithm.

Whether the task actually rolls back its state or not, it must still communicate
with other tasks to distribute the global incarnation information. Therefore, steps 1.1
through 4.3 which are identical to steps 7.1 to 7.3 in the rollback initiation algorithm
must be performed.

In step 5, the participator waits for a reply from all tasks except the task from
which it received the rollback message n. Steps 5.1 and 5.2 are identical to steps 8.1
and 8.2 in the rollback initiation algorithm.

If a rollback has actually incurred due to the satisfaction of the condition in step
3, then steps 6.1 and 6.2 are performed. They are identical to steps 9 and 10 in the

rollback initiation algorithm.





