INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs inciluded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6™ x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

C.

UMI

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

VISIBLE SYNCHRONIZATION BASED CACHE
COHERENCE

KRISHNA KUMAR

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1997
© KRISHNA KUMAR, 1997

i+l

Nationa! Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your fle Votre référence

OQur file Notre référence

L’auteur a accordé une licence non
exclusive permettant i la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la proprnété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimeés
ou autrement reproduits sans son
autorisation.

0-612-44885-1

Canada

Abstract

Visible synchronization based cache coherence

Krishna Kumar

In large scale machines, thousands of processor cycles, in other words, missed op-
portunities to issue floating point instructions, may be lost while waiting for-a high
latency synchronization or memory operation to complete, or a stall in an instruction
pipeline to be dealt with. Latency is avoided by bringing data to a nearby locale for
future reference(e.g., caching) while latency is tolerated by overlapping data move-
ment with something useful. The issue of cache coherence arises whenever there are
multiple copies of a shared datum in different caches of a shared-memory multiproces-
sor system. It is in order to maintain consistency between these multiple copies that
cache coherence protocols are employed. The efficiency of latency avoidance methods
is largely dependent upon the minimization of coherence traffic in the coherence pro-
tocol used to maintain cache coherency. Cache coherence protocols in general can be
divided into two classes: hardware implemented ones and compiler implemented ones.
Hardware implemented ones lead to large coherence traffic, and large state storage
space. Conventional compiler implemented ones involve indiscriminate wasteful inval-
idation. There is also redundancy between synchronization operations and coherence
operations. We seek to eliminate both weaknesses, by letting visible synchroniza-
tion directly coordinate changes in the writability of shared data. We propose to
add scalable compiler managed caches to a TERA-like multithreaded multiprocessor
architecture, with user/compiler knowledge(i.e. alias analysis, dependence analysis
and user directives) used to eliminate essentially all coherence traffic. To preserve
scalability, we aim to use latency tolerance methods like switch-on-every-cycle multi-
threading, and augment this with simple, low-latency cache coherence protocols such

as our visible synchronization based one.

iii

To my father,

who shall remain an inspiration to me forever.

iv

Acknowledgments

A fair number of people, both directly and indirectly have helped me during the course
of this thesis. Since, at times I have a bit of a discursive mind, without my thesis
supervisor Dr. Probst’s constant efforts, I would not have had that much needed
focus essential to research. My thinking has become a lot more streamlined, if you
will, after discussions with him. Aside from his invaluable guidance, I would like to
thank my mother who has had to put up with numerous long distance calls, mostly
filled with complaints about the inclement Montreal weather and more infrequently
about the long drawn-out process of thesis writing. Both she and my father, before
he passed away, had instilled in me an appreciation for the subtleties of scientific
research. I would also like to thank my aunt, uncle and cousins without whom I
would probably still be wallowing in homesickness. Also, more importantly perhaps,
I don’t think I could have done without my aunt’s none-too inconsiderable cooking
skills. Thanks are due also to all of my friends, both here in Montreal, and elsewhere,
whose dare I say, support, have helped me in more ways than one. Last, but by
no means, least, the Chapters bookstore downtown has helped me from getting too

bogged down, during some of those seemingly interminable winter days.

Contents

List.of Figures

List of Tables

1

Introduction

1.1 Latency, scalability and cache coherence
1.2 Basisofourprotocol
1.3 Why weinventedour protocol 0.

Existing cache coherence protocols

2.1 The DASH cache coherence protocol
2.1.1 Organizationo
2.1.2 Memory consistencymodel
2.1.3 Shortcomings

22 TheMIT Alewife i
2.2.1 Coherent shared memory
2.2.2 Integrated messagepassing.
2.2.3 Fine-grain computation.
2.2.4 Latency tolerance
2.2.5 Implementation and working of the above techniques

2.2.5.1 Coherent shared memory

2252 Message passing e e vt et

2.2.5.3 Fine-grained synchronization

2254 Latencytolerance.

2.2.6 Shortcomings of Alewife’s software-extended scheme

2.3 The Cheong-Veidenbaum fast selective invalidation protocol

G o -

L |

2.3.1 Possible improvements

3 Multithreading

3.1 Latencyand howtodealwithit
3.2 Multithreading techniques
3.3 Existing multiple-context approaches
3.3.1 Fine-grained multiple-context processors
3.3.2 Blocked multiple-context processors
3.3.3 Theinterleavedproposal

3.3.3.1 Implementation details of interleaved scheme

4 A software managed cache coherence protocol

4.1 Underlyingprinciples
4.2 What areour problems?
4.3 Assumptions.t Lt i e e e e e e e e e e e e
4.4 Visible synchronization based protocol
44.1 Statedefinitions. Lol e oo .
4.4.2 High-level “economic” administrator
443 Statetramsitions Lo s

4.4.4 Ilustrations of coordinated state transitions
4.4.5 Performanceadvantages
4.4.5.1 A producer-consumerexample.

4.4.5.2 Writer, N Readersproblem

4.5 Comparison with existing protocols
451 DASH e e e e e e
4.5.2 The one-time identifierscheme.

4.5.3 The Cheong-Veidenbaum protocol

5 The protect consistency model

5.1 Existing consistencymodels 0000
5.1.1 Sequential consistencyo
5.1.2 Weak consistency . . . - . « ¢ vt v o ittt et e e e e e
5.1.3 Releasecomsistency
5.2 Protectcomsistencyt e e e e e
5.2.1 The PRC programming notation

vii

5.2.2 Programmingaspectso oot . 60

5.2.3 Compilingaspects 65

5.2.4 Architectural support for PRC. 66

5.3 Relation to consistencymodel00 .. 69

6 Conclusion 71
6.1 Our notion of a good cache coherence protocol 71
Bibliography 74

List of Figures

© 00 NG W N -

BN DN DN DN DN DD ke b ped e et ped ek
m.&mwwv—-ocooo«r'o:m»wng

A distributed shared memory multiprocessor system with caches . . . 2
General architectureof DASH 8
DASH -statediagram e e e 9
An Alewifenode 13
The Cheong-Veidenbaum protocol - a trivial example 21
Blockedschemet ittt 31
Interleavedscheme 32
Baseprotocoll a e 38
Cachestatediagram 39
Cache state transitions 42
Shared(not me) to private(me)o 43
Shared(me) to private(me)o 43
Private(me) toshared(me) o 0. 44
Shared(me) to private(not me)o 45
Private(not me) to private(me) 45
Private(me) to private(not me) 46
A producer-consumer problemo 0o 49
Writer, N Readers problem 50
PRC - a parallel blocks example 61
PRC - anotherexample.o 62
PRC - an implementation with single-assignment variables 63
Final PRC code for the fragmentin Fig16 64
PRC - another single-assignment variable example 65
Tagged dependency lookahead 67
Software-managed binding register prefetching 69

ix

List of Tables

Chapter 1

Introduction

“When you can’t solve a problem, manage it.” - The Reverend Robert Schuller.

In today’s computation intensive parallel processing world, shared memory - mem-
ories which are physically distributed but that share a single virtual address space
- is arguably, the wisest architectural course to adopt[Bur]. Among the advantages
of shared memory[M.D93] are processor accessibility to a uniform address space and
referential transparency. Uniform shared memory space allows for construction of dis-
tributed data structures, which facilitate fine-grained sharing, and free programmers
and compilers from having to put up with per-node resource limits. Referential trans-
parency guarantees addresses and access primitives to be identical for both local and
remote objects, thus freeing the programmer from worries about which node which
datum lies on. The main issue that comes into focus when considering such shared
memory systems [Fig. 1] is whether the available multiprocessor systems are scalable.
Or to paraphrase this, whether they have the capability to (i) tolerate unpredictable
fine-grained latency from any source and (ii) provide scalable long-range communica-
tion bandwidth in the interconnection network. Latency and bandwidth are the chief

performance metrics that affect the scalability of a multiprocessor system.

(=)

DM DM DM DM

Figure 1: A distributed shared memory multiprocessor system with caches

1.1 Latency, scalability and cache coherence

In large scale machines, thousands of processor cycles, in other words, missed oppor-
tunities to issue floating point instructions, maybe lost while waiting for a high latency
synchronization or memory operation to complete, or a stall in an instruction pipeline
to be dealt with. If parallel languages do not keep pace with scalability requirements,
i.e. do not produce enough locality to reduce bandwidth requirements as problem and
machine sizes scale, we may choose to to provide scalable bisection bandwidth[D. 92a]
in our machines by investing in high performance networks. Memory latency, our chief
concern in the design of the cache coherence protocol, which is the focus of this thesis,
on the other hand yields to a combination of the more traditional latency avoidance
and the relatively non-traditional latency tolerance methods.

Latency is avoided by bringing data to a nearby locale for future reference while
latency is tolerated by overlapping data movement with something useful. There are
several ways to avoid memory latency. These include the caching of shared data, which
allows the processor to keep a copy of frequently referenced data close by, thereby ex-
ploiting temporal and spatial locality in the data stream. The application can also be

restructured to take advantage of locality (e.g., allocating data on the memory mod-
ule closest to the processor most likely to use it). While all these methods improve
the amount of computation a processor performs before requiring a long-latency re-
mote memory access, often applications still end up spending a large portion of their
time waiting on memory references. To deal with this remaining latency, several la-
tency tolerating schemes have been proposed, including relaxed memory consistency
models, prefetching, multiple context processors, instruction-level parallelism (which
allows for more flexibility in re-ordering of instruction execution order), and vector
pipelining.

The issue of cache coherence arises whenever there is the presence of multiple
copies of a shared datum normally to which concurrent writes are allowed in the
different caches of a shared memory system. Caches lose their integrity if the values
of these different copies of the same datum are not consistent with each other. It is
in order to maintain consistency between these multiple copies that cache coherency
protocols are employed. The efficiency of latency avoidance methods is thus largely
dependent upon the absence(as far as possible) of coherence traffic in the coherence
protocol used to maintain cache coherency. Cache coherence protocols in general can
be classified into two, hardware-implemented ones and compiler-implemented ones.

In the already existing hardware-based protocols, like the Stanford DASH and the
MIT Alewife, distributed directories keep track of the states of cached copies of shared
data, i.e., whether the copies are clean or dirty, and information as to which caches
bave copies of a memory location. But, the existence of distributed directories means
high coherence traffic(although such distributed ones are a major improvement on
the earlier centralized ones), simply because every time a shared variable is accessed,
for its state to be known, the directories would have to be looked up and updated as
required(not to mention the storage space taken up by the directory structure). This
high coherence traffic precludes good scalability.

Then, there are the software-based protocols. The older ones in this class were too
conservative, resulting in invalidation of the entire cache for instance, or they were
slow in execution since they involved sequential invalidation of shared data struc-
tures. The newer ones like the fast selective invalidation one used at the University of
Nlinois[H. 88] pay very close attention to possible wasteful invalidations of non-stale
cached copies of data, being very particular on high cache hit ratios.

But, our philosophy is different in the sense that we consider latency tolerance as

3

a fundamental problem to be solved before directing our attention to latency avoid-
ance as opposed to the afore-mentioned schemes where latency avoidance was the
focus. Therefore, we think of latency avoidance as something that eases the strain,
so to speak, on latency tolerance methods like multithreading and context switch-
ing. Hence, we are not obsessed with high hit ratios and are more concerned with
(i) minimizing cache coherence traffic, and (ii) lessening bandwidth attenuation(in
hardware-based protocols cache lines are long to include state information, leading to
a decrease in available bandwidth).

1.2 Basis of our protocol

[

At the root of our protocol is the idea to let visible synchronization directly coordi-
nate changes in the writeability of shared data[Pro94]. We propcse to add scalable
software managed caches to a TERA-like multithreaded multiprocessor architecture,
with user/compiler knowledge(i.e. alias analysis, dependence analysis and user direc-
tives) used to eliminate essentially all coherence traffic. Thus, put in a nutshell, our
idea is to use latency tolerance methods like deep pipelining and switch-on-every-cycle
interleaved multithreading as our chief means to achieve scalable latency tolerance
and augment this by latency avoidance with user/compiler controlled data caches
for programs with explicit visible synchronization. Coherence actions thus become
part of generated code unlike the hardware-based protocols which need hardware as-
sistance in the form of directories and runtime bookkeeping to maintain coherence.
Short cache lines result since we insist on uniword cache blocks. All of this results in
graceful degradation of performance with increase in the number of processors. Vis-
ible synchronization makes coherence traffic almost entirely local, the invalidations
restricted to being local operations. The global operations are memory loads and
memory writebacks.

To put it more lucidly, whenever an input synchronization(a P) primitive is ex-
ecuted the instructions(cached loads and stores) to copy the variables protected by
that synchronization block from memory can then be executed. And, whenever an
output synchronization primitive(a V) is detected, an uncopy(invalidate) instruction
which has been inserted by the compiler will be executed(there are special case vari-
ations to this, which we shall describe in chapter 4). The inspiration behind this

idea is the fact that the synchronization variable check is imperative, and hence if
the invalidation is done along with it, it doesn’t become a separate activity, thus
eliminating the redundance of having a separate invalidate protocol. Indiscriminate
invalidation is avoided by having uncopy instructions, which invalidate only those
cached variables which are are actually guarded within the particular synchroniza-
tion epoch. Protect consistency, which is the memory consistency model we base our
protocol on[Pro93b}, uses programming primitives to delimit synchronization scope,
and this and other user directives tell the compiler which variables are protected in
which synchronization block, as we shall see in chapter 5.

The rest of this thesis is organized as follows. In chapter 2, some of the exist-
ing cache coherence protocols will be dealt with, namely, the DASH protocol and
the Alewife ones as representatives of the hardware-based genre and the Cheong-
Veidenbaum fast selective invalidation one as a typical example of the software-based
class. Then, in chapter 3, we shall describe multithreading and its significance in
multiprocessing.

We shail go into the details of our visible synchronization based protocol in chapter
4 and bring out its strengths. We shall describe the base protocol, discuss the various
cache state transitions — states are indicative of permission to copy a variable from
memory to a thread’s cache — that a variable in memory undergoes with respect to a
singfe thread, and finally illustrate coordinated transitions with more than one thread.
Comparisons of our protocol with other already existing coherence protocols shall also
be made. Chapter 5 shall be devoted to the protect consistency memory model and
the basic architectural support it requires. Chapter 6 shall serve as conclusion to our

discussion.

1.3 Why we invented our protocol

Hardware-implemented protocols have the following drawbacks: There is attenuation
of bandwidth due to high coherence traffic and long cache lines. Aside from being
extremely complex the protocols are brittlez: when data access patterns trash the
cache, machine performance is destroyed. They depend on unit stride for performance.
Directory state storage involves too much overhead and multiword cache lines reduce

bandwidth when “working sets” are small.

The contribution of this thesis is to demonstrate a compiler-implemented cache-
coherence protocol that overcomes these shortcomings in the context of a multi-

threaded processor architecture.

Chapter 2

Existing cache coherence protocols

“The civilization of one epoch becomes the manure of the nezt.”

Cyril Connolly.

2.1 The DASH cache coherence protocol

Being one of the first in the "assembly” of shared memory multiprocessing based
cache coherence protocols, the DASH(Distributed Architecture for Shared Memory)
protocol had a lot to offer in terms of improvement in latency avoidance and hence
in scalability. The concept of a single virtual address space helped make significant
gains over message passing multiprocessors in areas like data partitioning, dynamic
load balancing and programmability. The distributed directory scheme to keep track
of the states of cached copies of variables in memory also alleviated the inherent
problem of serialization present in earlier centralized directory protocols, and made
multiprocessing more scalable when compared to these centralized directory schemes.
Also, the need for broadcasting every memory request to all of the caches as in
snooping bus schemes ceased, as directories would now contain pointers as to which
cache would have copies of which memory location and whether it would be a valid
copy or not. Instead, it used point-to-point messages sent between processors and

memories to keep caches consistent.

2.1.1 Organization

The concept of directory based cache coherence was first proposed in the late *70s[L. 78].
However, lack of scalability due to a centralized directory soon proved to be the bane
of these early protocols. The DASH architecture circumvents this limitation by par-
titioning and distributing the directory and main memory, and by using a cache
coherence protocol that could suitably exploit distributed directories. As shown in
Fig. 2, the DASH high level architecture[D. 90b] [D. 92b] is made up of a number of
processing nodes grouped together in clusters with memory and directories distributed
among these clusters. Distributing memory is essential to exploit data locality, both
spacial and temporal, thus lessening the latency which would be experienced in case
of remote accesses. Cache coherence within a cluster is maintained via a snooping bus
that connects the individual processors to the cluster memory. The DASH memory
hierarchy is a four-level one, the levels being, the processor level, the local cluster
level, the home cluster level and the remote cluster level. A memory location can be

in either of the following three states[Fig 3]:

1

Processor Processor n
Directory L

Cache Cache rmm’ e
L r
I—Rme c

som e o

n

n

e

[

Processor Processor t
Directory i

Cache Cache Memory o
| n
Remote N

] el

t

w

o

r

Kk

Figure 2: General architecture of DASH

Uncached — not cached by any cluster.
Shared — in an unmodified state in one or more clusters(i.e. in a read only state).

Dirty — modified(i.e. written into) in a single cache of some cluster.

Shared

™ >

Figure 3: DASH - state diagram

The directory keeps the information for each memory block, specifying its state
and the clusters that are caching it. Essentially, what happens is when there is a
request which cannot be serviced by a processor’s cache it is sent to the second level
in the hierarchy, the local cluster. This level includes the other processors’ caches
within the requesting processor’s cluster. If the data is locally cached, the request
can be serviced from within the cluster. Else, the request is passed on to the home
cluster level. The home level is made up of the cluster that contains the directory
and physical memory for a given memory address. If the directory indicates that
the copy in the cluster’s memory is ’clean’, then the request is dealt with directly,
without having to go to other clusters. But, if the directory indicates the state of
the copy to be ’dirty’, then the request is passed on to the remote cluster which the
directory indicates as having the up-to-date copy. Thus, the sequence of events that
could happen on a processor read request is:

Processor level — If the requested location is present in the processor’s cache, the
cache supplies the data. Else, the request is relayed to the local cluster level.

Local cluster level — If the data is present in one of the caches within the local
cluster, the data is supplied by that cache and no state change need be effected in
the directory. If not found at this level, the request is passed on to the home cluster

9

level corresponding to that address.
Home cluster level — The directory state of the requested memory location is checked
while simultaneously fetching the block from main memory. If the block is clean,
the requesting processor’s cache is supplied with the data and the directory state is
updated to show sharing by the requesting cache. If the block is found to be dirty,
the request is passed on to the remote cluster indicated by the directory.
Remote cluster level — The ’dirty’ cluster responds with a shared copy of the data,
which is sent directly to the requester, without being routed via the home cluster.
In addition, a write-back message is sent to update main memory and change the
directory state to indicate that the requesting cluster and the remote one have shared
copies of the data.

Now, to the series of events that could occur on a write to a cache.
Processor level — If the location is 'dirty’ in the writing processor’s cache, the write
can complete without delay. If not, a read-exclusive request is issued to obtain ex-
clusive ownership of the line and retrieve the required data.
Local cluster level — If any of the caches within the local cluster has the up-to-date
copy of the requested location, a cache-to-cache transfer of data is effected, without
going to the home cluster level or the cluster directory. If the data is not present in
the local cluster of caches, then a read-exclusive request is sent to the home cluster.
Home cluster level — If the directory indicates the location to be either in the un-
cached or shared state, the read-exclusive request can be immediately serviced, while
invalidating the copies the other caches would have. If on the other hand, the direc-
tory indicates that the block is 'dirty’, then the read-exclusive request is forwarded
to the dirty’ cluster. (The directory would have a pointer to tell the requester which
cluster to go to).
Remote cluster level — If the directory had indicated that the memory block was
shared, then an invalidation request is sent to the remote cluster to eliminate the
shared copy. An ’acknowledge’ message is then sent back to the requesting cluster.
If the directory had shown the memory block to be ’dirty’, then the 'dirty’ remote
cluster receives a read-exclusive request and a direct reply with the data is sent back
to the requesting cluster. A dirty transfer message is also sent to the home clus-
ter, so that the directory now indicates that the requesting cluster holds the block
exclusively.

The other operation of note occurs when a ’dirty’ cache line has to be replaced.

10

If ’home’ was in the same cluster, then a simple write-back is effected while, if the
home cluster of the block was remote, a message is sent to the remote 'home’ and
the directory is updated to indicate that ownership has changed hands to the remote

cluster now.

2.1.2 Memory consistency model

The latency incurred by the system is directly related to the memory model it chooses
to support. DASH implements the release consistency paradigm, the goal being to
provide substantial flexibility in the ordering of memory requests, while still providing
the user with a reasonably simple programming model.

At one extreme of the memory model spectrum is the very rigorous interpretation
of the sequential consistency scheme which constrains every memory request to be
completed before the next one is issued, thus causing high latencies on memory ac-
cesses. Albeit simple in concept, this puts too many restrictions on program order. It
is useful only when any operation could be a synchronizing operation. For instance,
supposing a data structure needs to be updated several times within a critical sec-
tion, a sequentially consistent model forces invalidation of all other copies of the data
structure on every write which is unnecessary once the synchronization points are
identified since memory needs to be consistent only at those points. This in essence is
the release consistency model which thus puts fewer restrictions on memory accesses,
requiring as it does that the system need be consistent only at synchronization points.

The release consistency model furnishes the user with a reasonable programming
model, since the programmer is now assured that all processes would have a consistent
view of the updated data structure, once the critical sections are exited. Also, it
permits reads to bypass writes and the invalidations of various write operations to
overlap. Reads are stalling operations while writes are enqueued, allowing them to
be non-blocking.

Although the use of release consistency does help in overcoming, i.e. hiding la-
tency, the processor does still stall on reads, which can lead to considerable delays
when programs exhibit poor cache behaviour(i.e. locality). Thus, to supplement
release consistency, DASH provides a variety of prefetching and pipelining opera-
tions. Further, it furnishes the user with the 'update’ primitive which aids in writing

synchronization variable values to all processors requiring them. Then, there is the

11

’deliver’ primitive which helps in passing on values of updated variables to proces-
sors caching them. Queue-based locks in which processor requests for the ’lock’ are
queued are also implemented. Once the lock is 'free’ it is granted to one of the waiting
clusters at random. A time-out mechanism is also provided in case the requesting

process has migrated or has been swapped out.

2.1.3 Shortcomings

Having brought out the prinicipal features of the DASH design, we shall now very
briefly touch on its shortcomings (more details of which will be described when we
discuss the intricacies of our protocol), which we have attempted to rectify in the
design of our visible synchronization based protocol. Despite having reduced serial-
ization and coherence traffic vis-a-vis the earlier centralized directory based schemes,
there still is the presence of a fair amount of latency due to non-local cache coherence
traffic. Directories beget a considerable amount of communication, since, in order
to maintain consistency between caches, there is a need for a significant amount of
run-time bookkeeping. The other source of latency is the release consistency mem-
ory model which although having eliminated many of the redundant memory access
constraints that were imposed by the sequential and weak consistency models, still
causes some unnecessary data— >synchronization precedence arcs. This shall be dealt
with in detail in chapter 5, when we discuss protect consistency[Pro93b]. Also, since
synchronization and the invalidating itself are two separate mechanisms, there is an
amount of redundance because essentially they deal with the same cache block, and
could be collapsed into practically the same procedure as we have done in our proto-
col. Indeed, hardware implemented invalidation harmlessly but redundantly redoes
the work of synchronization.

2.2 The MIT Alewife

The Alewife architecture supports upto 512 processing nodes over a scalable cost-
effective mesh network. The MIT Alewife machine, a prototype implementation of
this architecture, is similar to DASH in the sense that it too uses distributed directo-
ries and interconnects the nodes via a mesh network. But, there are three differences

of note between the two architectures[D. 92b}:

12

* Alewife does not support the notion of clusters — each node consists of a single
Processor.

* Alewife uses software to handle directory pointer overflow i.e. only memory
locations which are shared by less than six processors are pointed to by directory
hardware. For more widely-shared locations, the protocol issues a trap into software
and the software does the write invalidations as required.

* Alewife applies block multithreading as its primary means to tolerate latency,
whereas DASH banks principally on prefetching in its efforts to decrease latency. It
should be noted however that Alewife does augment multithreading with prefetching.

Network

Router _ | Distrib.
Shared

me Memory
Cache

|| Distrib.
Directory
Private
Memory

Figure 4: An Alewife node

The MIT Alewife employs four techniques[A. 95] as means to the end of scalability
and programmability: software-extended coherent shared memory provides a global
linear address space; integrated message passing affords compiler and operating system
designers with efficient communication and synchronization; support for fine-grain
computation allows many processors to cooperate on small problem sizes; and latency
tolerance mechanisms — including block multithreading and prefetching — nullify to a
large extent, delays due to communication.

Analysis[A. 95] shows integrated message passing with shared memory to be a

cost-effective solution to the cache coherence problem and it provides the user with

13

a rich set of programming primitives. Block multithreading and prefetching improve
performance by upto 35 percent. Also, language constructs that provide programmers
with a method to express fine-grain synchronization can enhance performance by over

a factor of two.

2.2.1 Coherent shared memory

On each of Alewife’s distributed nodes which constitute the abstraction of shared
memory, a Communication and Memory Management Unit(CMMU) [Fig. 4] responds
to memory requests from a Sparcle processor and determines in consultation with the
distributed directory whether requests need access local or remote memory. When
required, the CMMU synthesizes messages that transfer data from remote nodes.
Data locality is implemented by the caching of both private and shared data on each
node. A scalable software extended cache coherency scheme called LimitLESS which
uses hardware to support data consistency of "common-case” memory accesses and

traps into software for more widely shared memory locations, is employed.

2.2.2 Integrated message passing

While the programmer at a higher level of hierarchy enjoys the luxury of a shared
memory programming paradigm, for performance reasons, much of the underlying
software is implemented using message passing. Features in Sparcle and the CMMU
blend to provide a streamlined interface for transmitting and receiving messages: both
system and user code are empowered with the capability to describe and atomically
launch message packets into the interconnection network; a fast interrupt mechanism
that facilitates message reception and a Direct Memory Access(DMA) mechanism
that allows data flow between network and memory whilst maintaining coherence
between the data in messages and the data in local caches are other salient features.

2.2.3 Fine-grain computation

For a given data set the granularity of computation(the interval between events that
require inter-processor communication) decreases as the number of processors in a

multiprocessor system increases. Therefore, a system incapable of performing small

14

tasks with a degree of efficacy, must resort to increasing synchronization and commu-
nication granularity artificially, which in turn, would lead to loss of locality. Hence,
it is significant that Alewife’s repertoire of fine-grain computation includes fast, user-
level messages and support for full/empty bit synchronization, thereby preserving
locality. Constructs that provide for implicit synchronization of threads upon ev-
ery memory access are included in Alewife’s programming languages, parallel C and
Mul-T.

2.2.4 Latency tolerance

Block multithreading and prefetching contribute significantly to the Alewife scheme
of reducing latency, when it is unavoidable otherwise. Multithreading which allows a
processor to switch between computational threads on a latency incurring operation
such as a cache miss or a failed synchronization attempt(thus getting useful compu-
tation done while waiting for the memory-to-cache data transfer or the waiting for a
synchronization signal), requires a fast context switch mechanism which in turn is pro-
vided by the Sparcle processor’s fast interrupt techniques. The other requirement of a
multithreading environment is a solution to the “window of vulnerability” opened up
by interleaved threads of execution[J. 92], thus leading to the possible invalidation or
remaval of the requested memory location before it is actually used by the processor.
The CMMU'’s transaction buffer allows for outstanding cache requests to be buffered
and thus provides the “antidote” to this ill, which can also come about as a result
of fast message handling and the software-extended LimitLESS coherence scheme.
Alewife implements lock-up free caches[D. 81] with input stacks to pipeline requests,
to satisfy prefetching requirements. The transaction buffer doubles as storage unit
for prefetched blocks.

2.2.5 Implementation and working of the above techniques

2.2.5.1 Coherent shared memory

Every 16 byte long memory line of the physically distributed shared address space is
assigned a home node for data storage and a coherence directory. The CMMU of this
home node directs all coherence operations of this memory location, be it hardware

or software controlled. Every node accounts for the data and coherence directories of

15

4M bytes of shared memory.

Cache lines in Alewife are 16 bytes in length and coherence is maintained through
a software-extended scheme called LimitLESS, which supports upto 5 readers per
memory line in hardware, but for more widely-shared locations, traps into software.
The Alewife message passing interface is made use of in handling remote requests
which have been trapped into software. The queueing that comes along with the
message passing interface aids in servicing pending coherence requests.

The Alewife directory format is as follows: Each entry is 64 bits long, with five
9-bit pointers which serve as the hardware pointers to the five different nodes(there
being 512 nodes in all) which have copies of the particular location. There are 2 bits
of state, a further 2 bits of meta-state and four full/empty bits(one for each 16 bit
word in the line). The other bits serve the following purposes. There’s a local bit
which allows for an optimization that guarantees the local node the acquiring of a
pointer. The pointers in use field indicates the number of pointers that are being
actually used at that point in time.

The essence of the LimitLESS coherence(Limited Directory that is Locally Ex-
tended through Software Support) scheme is the assumption that only very few data
structures are widely shared[D. 91]. That is, the working sets of shared data struc-
tures are assumed to be small, the assumption being backed up by observation. By
working sets we mean the group of processors that share a particular memory block
at a given point in execution time. And to handle hardware pointer overflow if the
working set is greater than 5 the software facility is made use of. Once the number
of processor caches that share a data structure goes beyond 5, a trap into software is
issued and the software emulates the full directory. Also, the hardware pointers are
flushed into memory resetting the pointers, the memory flush providing a means to
keep track of the pointers so that cache reads can still be carried out via hardware
until a software trap occurs again(i.e. for the next five read requests). But writes
from then on are handled exclusively by software.

Now, to the chain of events that could occur on a read/write. First, assuming
all writes and reads are being handled in hardware, i.e. the “normal” bit being
set(“normal” being one of the directory meta-states), if a read request occurs the
following courses of action could be taken:

If the state bits in the directory indicate the read-only state and the pointers
in it indicate which cache has a copy of the requested datum, the data is given to

16

the requesting cache whilst updating the pointer list to include the requesting cache.
The trivial cases are when the requesting cache does already have a copy and when
no cache holds copies. In the latter case, the pointer list is updated to hold just
the information that the requesting cache now contains the datum. If the directory
state in memory indicates the read-write condition and a cache requests a copy of the
datum under consideration, the memory goes into the read-transaction state, holding
the read request while the cache which held the copy in read-write mode, updates
memory and then, the requesting cache is supplied with the data and the memory
goes into the read-only state.

Now, if a write request was sent by a processor to a cache, the following happens:
If the directory indicates that all caches that held copies of the datum in question,
the data is written into the cache which was the originator of the request and sends
invalidation messages to the rest; the trivial case being when the requester cache
already has a copy in read-write state, causing the write request to be serviced directly. -
In both of the above cases, the memory goes into the read-write state once the write
request is granted. If the memory is already in the read-write mode, with a few other
caches exclusively holding a copy of the datum, the write request is held up and the
memory goes into the write-transaction state, while invalidating the previously cached
copy. Following this, an update is sent to the requesting cache via memory, where
the fresh value has just been deposited and the memory makes the transition to the

read-write state again(except now, the exclusive ownership belongs to the requesting

cache).

2.2.5.2 Message passing

Messages in Alewife are sent using a two phase process: (i) describe and (ii) launch.
A message is described by writing directly by writing directly to an output descriptor
array which essentially is 16 memory-mapped network registers in the CMMU. Once
a message is described, it is launched using the ipilaunch instruction; the instruction
being atomic and using up a single machine cycle. A message is comprised of a
header — which contains the packet header, a dataword — that contains the dataword,
an address — which points to the start of the data block and “length” — which gives
the number of double words in the block.

Message reception entails either polling or interrupts. As soon as the message

17

header is received, an interrupt is posted at the receiving end. Since one of the four
hardware contexts in a Sparcle processor is reserved for message processing, there
is no need to save registers or the need for restoring them. Message passing incurs

more network traffic than shared memory but makes more effective use of available

bandwidth.

2.2.5.3 Fine-grained synchronization

Alewife provides the programmer with fine-grain synchronization primitives, which
allow for more instruction-level parallelism to be presented to the hardware for further
hardware-level parallelism optimization. There is an appropriate mixture of software
and hardware support for fine-grain synchronization. Hardware support consists of
a full/empty bit for each 32 bit word and to access these bits, coloured load and
store instructions are provided that perform full/empty test-and-set operations. Two
Sparcle instructions bempty(branch on empty) and bfull(branch on full) can be used
to examine the bit.

The system provides several language extensions for fine-grain synchronization
in the form of J-structures and L-structures. J-structures support full/empty bit
synchronization, for producer-consumer style synchronization on vector elements. A
J-structure read waits for a vector element to be full before it is read whereas a J-
structure write updates the element and sets it to full. An L-structure provides for
mutual exclusion style synchronization on vector elements by means of a full/empty
bit associated with each element; a locking read, an unblocking write and a non-

locking read being the operations the programmer is furnished with.

2.2.5.4 Latency tolerance

Latency tolerance in Alewife is achieved chiefly by the following means: block multi-
threading and non-binding software prefetching.

The following features in Alewife help implement and facilitate block multithread-
ing: (i) The CMMU takes advantage of as much parallelism as possible when serving
a remote cache miss, by generating a context-switch trap in parallel with message
generation. (ii) Lockup free caches which enable outstanding cache requests to be
serviced are implemented. (iii) A livelock avoidance technique is provided, to elimi-

nate the possibilty of livelocks arising when cache-coherent shared memory is coupled

18

with context-switching and LimitLESS.

Software prefetch is implemented as two different coloured load instructions, one
for read prefetch and the other for write prefetch; the value returned from the prefetch
instruction is ignored. Prefetched data is stored in the transaction buffer, which also
serves as a mechanism to counter the “window of vulnerability” problem[J. 92] due

to split-phase transactions.

2.2.6 Shortcomings of Alewife’s software-extended scheme

Although the Alewife scheme has succeeded in reducing network traffic by employing
a limited directory scheme supplemented by an extension of the directory in soft-
ware, there is still the presence of a directory which does beget considerable traffic.
Plus, there is the redundancy of having a separate cache coherence protocol as an
activity distinct from doing a synchronization variable lookup, which can really be
implemented together as we do in our visible synchronization based protocol — this
saves a lot on coherence traffic. Also, instruction-level parallelism can be improved
upon further by providing for a more relaxed consistency model than the release
consistency model employed in most existing schemes. These are the areas where
we focus our attention on, in our cache coherence protocol, as shall be seen later in
Chapters 4 and 5. Additionally, block multithreading we feel is not the answer to
latency tolerance because of too much context switch cost as compared to interleaved
multithreading, as we shall see in the next chapter. These are the areas on which we
focus our attention in our cache coherence protocol, as shall be seen later in chapters

4 and 5.

2.3 The Cheong-Veidenbaum fast selective inval-

idation protocol

The Cheong-Veidenbaum[H. 88] fast selective invalidation scheme is representative
of a new generation of software-based protocols which answer to an extent, an oft-
made criticism of software based schemes — that of indiscriminate invalidation — and
can, in addition selectively invalidate cache items without extensive run-time book-

keeping(which for instance, hardware-based protocols entail). The solution depends

19

on a combination of compile-time reference tagging and reference-time invalidation,
i.e. a cache line is invalidated only when referenced, although potential staleness is
indicated by the tags at compile-time.

Hardware-based protocols require extensive bookkeeping whereas most earlier
software-based ones were too conservative on the invalidation front. Either this, or as
is in the case of the one-time identifier(OTI) approach proposed by [A.J85], sequential
invalidation is effected and this runs up a heavy time penalty. To elaborate briefly on
Smith’s scheme, the principal idea behind it is to have an OTI associated with each
translation lookaside buffer(TLB) entry and each cache line. A new OTI is generated
for each new TLB entry and when this entry is loaded afresh into the cache, the OTI
values of the cache line and the corresponding TLB entries become the same. The
processor issues an invalidate TLB entry instruction for each page in a write-shared
region and therefore the next time the cache entry is accessed, the run-time system
finds a disparity between the OTI value of the TLB entry (the OTI value being in-
validated) and that of the cache line. Hence, a cache miss is effected and the newly
written value is reloaded from memory. Among the drawbacks of this scheme are (i)
the fact that disparity in OTI values may be caused by page replacement other than
just by invalidation and (ii) slow sequential invalidation of write-shared pages.

Various schemes such as the ones in [A.V86], [K.K87], [R-L87b] [R.L87a] all use
indiscriminate invalidation methods which are at but slight variance with each other.
Perusals of all the aforementioned protocols lead us to the conclusion that at the
crux of the issue lie the following points: (i) when to invalidate and (ii) what to
invalidate. The Cheong-Veidenbaum selective invalidation scheme hit upon the rather
ingenious policy of compile-time analysis of where invalidate-cache statements should
be inserted and which cache lines should be marked as cache reads/memory reads
combined with reference-time invalidation, thus doing away with overinvalidation
and the cumbersomely slow sequential invalidation, in one shot.

We shall further elucidate on the Cheong-Veidenbaum strategy with the aid of
the following example and later delineate the general scheme. Every shared-memory
reference is marked as either memory-read or cache-read. A read reference will be
marked as a memory-read by the compiler if the cached copy may have become stale;
that is, it marks potential staleness. Read accesses will be marked cache-read if
cached copies are guaranteed to be up-to-date.

In the example in Fig. 5, the doall loop indicates a write-shared region, but

20

doserial i=1,n

= ...YQ® /* Cache read */

enddo
doall j=1,n
/*an invalidate-cache would be inserted here */

= ...YQ /* Cache read */
XG = ..
enddo

/*an invalidate-cache would be inserted here */
doserial k=1,n

= .. .X®
= . . .Y® /* Cache-read */
= . X&) /* Memory-read */

enddo

Figure 5: The Cheong-Veidenbaum protocol - a trivial example

21

since Y is only read, it is marked cache-read while X is marked memory-read in the
subsequent serial loop because it has been written into by more than one processor
in the doall loop.

Two invalidate cache statements are inserted at the beginning and end of the doall
loop, the purpose of which we shall explain when we take up the general case. Also,
the second reference to X(k) in the second doserial loop is tagged as a memory read.
This is implemented by means of a change bit which is set to true by the invalidate
cache instruction. Once a datum has been fetched into the cache, this bit is reset to
false, a reference is treated as a hit, else a miss is recorded. Thus, a second (wasteful)
memory read of X(k) is avoided because the change bit indicates the fact that it has
just been loaded into the cache. The invalidate cache instruction in this case, being
solely an indicator of potertial staleness(and acting as a guide to the compiler) rather
than of unequivocal non-validity.

Now to the general criteria for reference marking of potentially stale data. Ref-
erence markings are based on the location of invalidate-cache instructions. Since
compile-time analysis is used, the ordering of read-write accesses is determined by
flow analysis.

The reference marking scheme is applied to one subroutine at a time and it is
assumed that a subroutine starts off with a clean cache(the clear- cache instruction
being executed to this end). Variables which are only read within a subroutine are
considered read-only and references to them are tagged cache-read. For read-write
variables, all references that precede the first write to that variable are marked cache-
read. The remaining class of references - that of reads following the first write access
to a variable - are marked according to the following rules[H. 88]:

Case 1

A read reference is issued by the same processor that performed all the previous
writes. This reference can be tagged as cache-read, because the processor can only
read either unmodified data or data modified by itself, thus getting the up-to-date
copy in both cases. A read reference is identified by the compiler as belonging to this
case if the read reference and all writes preceding it(in run-time order) lie within a
pair of consecutive invalidate- cache instructions.

Case 2

The read reference is to a variable which has either been modified by the current

rocessor or for which no copy exists as yet in the processor’s cache. Such references
P,

22

are also tagged cache-read. The characterizing features of this category are: (1)
All preceding writes to the variable are enclosed within a pair of consecutive cache-
invalidate statements, (2) there are no read references before the first of the cache-
invalidate statements, so that the cache does not hold stale values from before and (3)
the read reference under scrutiny appears after the second cache-invalidate statement.
It is to be noted that between pairs of cache-invalidate statements, the reads of one
processor do not depend upon the writes of another, the particular processor being
guaranteed exclusive access to the variable. Hence, the read reference can be marked
as cache-read.

Case 3

A read reference is made to a variable for which a stale copy might exist in the
current processor’s cache. A read reference belongs to this class if (1) the preceding
writes are separated by at least one cache-invalidate instruction or (2) all preceding
writes are within a pair of consecutive invalidate-cache instructions but one or more
reads precede the first of the pair.

There exists a possible situation in which a line size of greater than one is in
use; the problem arising when two processors access the same cache line but different
words in it, thus resulting in the possible fetching of stale data, termed “false sharing”.
Both software and hardware solutions exist. One software solution is to enforce
another restriction to the marking of accesses as cache reads in Case 2. Specifically,
in addition to the restriction applied in Case 2, the following condition is added: The
read reference can be tagged cache-read if there are no read references to the same
variable that is enclosed within the two cache invalidation statements. Else, it is
marked memory-read.

In the case of subroutine calls from within the current subroutine, if these subrou-
tines can be expanded, they are, before the insertion of the invalidate-cache instruc-
tions. If they are not expandable, either all variables to which references are made
within this “new” subroutine are conservatively marked memory-reads and a cache
invalidation instruction inserted after the call, or a clear cache instruction is included
right after the call and the reference marking algorithm is applied to the following

code as described in the cases mentioned before.

23

2.3.1 Possible improvements

The Cheong-Veidenbaum scheme does thus counter the mair criticism of software-
based schemes, viz., their “conservatism” when it comes to invalidation. But, there
is still room for improvement in areas such as instruction-level concurrency. This
is where less restraining models like the protect consistency one we shall describe
later play a most significant role. Another area which we look to improve upon is
simplicity and elegance of implementation which admittedly although a trifle on the
subjective side of things, is still a very important issue. We hope to achieve the
same performance if not better it, with an implementation more directly linked to
the consistency model chosen than the Cheong-Veidenbaum one. And, since the PRC
consistency paradigm is a more relaxed one, we seem to be at a significant advantage,
as we shall see in chapters 4 and 5.

In the next chapter we discuss the need for multithreading techniques, and in-
terleaved cycle-by-cycle multithreading in detail, since we strongly believe that the
accent in multiprocessor systems should be laid on latency tolerance which is to be
then augmented by cache coherence protocols which entail minimum coherence traffic
and relaxed memory consistency models such as protect consistency. We chose in-
terleaved cycle-by-cycle multithreading because that view is more widely accepted as
true[J. a]. We repeat the idea that multiprocessors are necessarily built using com-
modity microprocessors used in uniprocessors, although some people use this false
idea to justify the proposition that, if a form of multithreading needs to be incorpo-
rated into multiprocessors, it needs to work well on uniprocessors too. Indeed, we do

not care a whit for single-thread performance, only single-program performance.

24

Chapter 3

Multithreading

One thread to another. “An idle thread is the devil’s workshop. So, hark comrades!

Let us run, rush to its aid!”

3.1 Latency and how to deal with it

Subject as they are to heavy computational loads, scalability becomes the chief per-
formance criterion by which to judge the efficiency of modern multiprocessor systems.
The key to any multiprocessing system’s effectiveness is thus whether latency destroys
processor utilization, which in turn is the main factor in deciding system scalability.
The three principal sources of latency are the following: Memory access latency - that
caused by delay in accessing remote memory, synchronization latency - that which
occurs on failed synchronization attempts, instruction latency - which results mainly
due to pipeline stalls caused by data and functional dependencies among instructions.
Of the above, memory latency is the most prominent.

Memory latency is incurred largely as the result of two related factors. Firstly,
because multiprocessing is essentially cooperating processes executing on separate
processors, cache misses occur due to data communication between the two processors.
This very often overshadows initial uniprocessor cache misses and those that occur
because of uniprocessor address collision. Then, there are the remote memory accesses
that probably are the single most significant cause of latency.

Synchronization and instruction latency are relatively less dominant than memory
latency, but still are significant in magnitudes. Synchronization latency includes time

25

spent by a process waiting for another process, for instance, when a barrier construct
is employed to synchronize all processes or when waiting to acquire and release locks.
Instruction latency arises when there are "bubbles” in a pipeline due to either data
or functional dependences between instructions in a pipeline.

A lot of the above latency can be nullified by coherent caching and block prefetch-
ing in the case of memory latency, hardware and software primitives for fast synchro-
nization and fast functional units and pipeline bypassing with aggressive compiler
scheduling(supported by relaxed memory consistency models)for alleviating instruc-
tion latency. However, despite all of these techniques, there still remains a fair amount
of latency to be dealt with. This is where multithtéa.djng can play a most significant
role.

Multithreaded or multiple-context processors tolerate latency by overlapping the
long-latency operations of one computational thread with the execution of other
thread(s) by switching contexts, both hardware and software, to the other thread(s),
thus getting useful computational work done when otherwise it would have waited
idly.

3.2 Multithreading techniques

As mentioned before, multithreaded processors share a single processor between sev-
eral computational threads, switching to or opting for a different context either when
encountering latency on operations involving one thread or automatically on every
cycle. Context refers to the registers and memory hardware and the instructions
involved in the execution of a portion of a thread. Certain prerequisites[J. b] have
to be satisfied for this context switching to be efficient in its implementation, of
which the following are of primary importance. (a)The context switching cost, or
put more quantitatively, the number of cycles taken in context switching should be
much lesser than the number of cycles the latency causing operation would consume.
(b)And, there should be a fair amount of exploitable parallelism in the program to be
run, although by stressing on good single program performance[J. a], the accent on
this condition is lessened. By decreasing the number of contexts involved in latency
tolerance, the range of workloads to which multithreading can be applied can be
broadened. Some people believe this is of particular significance because they believe

26

that most multiprocessors consist of commodity microprocessors and thus the small
amounts of inherent parallelism present in many typical workstation applications for
which most commodity uniprocessors are built have to be taken into consideration.
The first condition is important because multiprocessor latency runs the whole gamut
from the very low in the case of pipeline dependencies or primary cache misses, to
the much higher on remote memory acccesses and interprocess synchronization.
Most existing multithreading schemes have been designed with the large-scale
multiprocessor(with larger memory latency and more inherent parallelism) in mind,
and thus are not tailored to the needs of commodity microprocessors which typically
run jobs involving smaller latencies and lesser amounts of paralellism. But since com-
modity microprocessors like the ones used in workstations are those that make up
multiprocessors these days, [J. a] it is believed that only if multiple contexts address
the requirements of such processors, would they be incorporated into multiprocessor
systems. Thus because of their emphasis on multiprocessors, already existing multi-
context architectures require either too many contexts to fill the instruction pipeline
and handle memory latencies, these in turn needing large inherent parallelism in
programs, and suffering from poor single thread performance(and when there are
significantly large serial portions in an application)or are unable to handle smaller
latencies as a result of too big a context switch cost. Fine-grained multiple-context
processors belong to the former class while blocked multiple-context processors are

representatives of the latter one.

3.3 Existing multiple-context approaches

In this section, we shall first be describing the two aforementioned multiple-context
(multithreading) solutions to the latency tolerance problem and later, we shall turn
to the interleaved approach which is in a sense an amalgam of these two techniques
and delineate the advantages of employing this method.

3.3.1 Fine-grained multiple-context processors

Multiple-context processor architectures made their entry into the multiprocessing
world in the 1960’s; among the earliest ones was the CDC 6600, the idea behind it

27

being the time-sharing of CPU’s and memory interconnects between a number of pe-
ripheral processors. The focus of these early architectures was on fine-grained multiple
contexts, possibly because of the simplicity of context switch, the seminal representa-
tive of these being the Denelcor HEP made in the late 1970’s. The HEP consisted of
a small number of processors connected to each other by a packet-switched network.
It used fine-grained multithreading to circumvent the problems of both pipeline stalls
and memory latency. Pipeline stalls were dealt with by ensuring that an instruction
would be issued only once every eight cycles (this being the pipeline depth), thus
precluding pipeline dependency. This in turn frees hardware and compiler resources
from being devoted to resolving pipeline data dependencies(except in the case of the
divide unit, which could not sustain an issue rate of one divide per cycle). Also, HEP
tolerated memory latency to a small extent by removing an instruction stream from
the issue queue while memory was being accessed, a sort of primitive context switch.
But, the absence of data caching in the HEP meant that a large number of contexts
were still required to hide both pipeline and memory latencies, indeed it had up to
128 active contexts at a time.

Architecture-wise, the Horizon was a successor to the HEP. The major advance-
ment of the Horizon which was also a fine-grained multiple-context processor was the
inclusion of a 3 bit lookahead field. This lookahead field encoded inter-instruction
dependencies, providing limited compiler-resolved pipeline interlocks, thus affording
the capability for multiple instructions from the same context to use the pipeline
simultaneously. But again, no architectural support for caches was provided which
meant that memory access times were around 50-80 cycles, which in turn meant that
a lookahead of only eight instructions would be not nearly large enough to fill the
pipeline, albeit decreasing the number of required active contexts. Thus, the single
thread performance was not quite good enough as yet.

The Tera design is to a large extent based on that of the Horizon. Support for
thread management and synchronization is enhanced and this is a definite improve-
ment over the Horizon. But, although, it requires only memory operations to be
controlled by the lookahead field, on the flip side, it reverts to the HEP policy of
respecting register dependencies by allowing only a single instruction per context;
however, memory instructions can be issued once the lookahead condition is satisfied
by all previous instructions. With an expected pipeline size of 11 to 13 stages, these

many contexts are required at the very minimum, inspite of the lookahead provision.

28

~

Some other recent architectures have been developed based on the fine grained
scheme including MASA, DART and the Stellar SPMP. However, due to their inability
to handle limited parallelism(the limitations of fine-grained schemes for workstation
loads are quite severe) - placing two onerous burdens on applications: first, a large
number of threads are required to fully utilize the processor and hide memory latency
and second, the single thread performance is extremely poor as one context can at
best ‘issue one new instruction every pipeline depth-cycles - a gradual progression
of ideas led to the proposing of blocked multiple-context or blocked multithreaded

PIroOcCessors.

3.3.2 Blocked multiple-context processors

Blocked multiple-context processors do not change contexts every cycle, waiting for
long-latency operations to switch contexts or threads. Hardware is provided for a
small number of threads, but at a particular point in time, only one thread will be
executing. Several of the earlier blocked multiple- context architectures were made
with specific high-latency operations in mind: The Xerox Alto personal computer
provided microcode-level register sets for sharing the CPU between the instruction
set interpreter and the I/O devices, the latter capable of incurring high latency. Thus,
if the I/O process seemed like entailing high latency, a context switch between the
process requiring the instruction set interpreter and the one requiring I/O is carried
out. Another example of blocked context switch being implemented to the end of
satisfying a particular operating system or user requirement was the Message-driven
processor, which provided two hardware contexts, one for normal processor execution
and the other for handling high-priority messages.

The first published exploration of shared memory multiprocessors that used multiple-
contexts was performed by Weber and Gupta, the point at which they did the con-
text switch was on every primary cache miss. They found significant performance
enhancement even with relatively fast memory chips whose access times were 20-30
processor cycles; this with only a few number of contexts - two or four per proces-
sor. The Alewife multiprocessor based on the APRIL processor also uses the blocked
multiple-context scheme - switching contexts on remote memory requests and failed
synchronization attempts - supporting 4 contexts and switching via a fast processor

trap in 11 cycles.

29

Blocked multiple-context processors thus get rid of the over-dependence on a large
number of threads/contexts that the fine-grained multiple-context processor had.
But, in ironing out this fault, another creeps in. Due to the fact that the processor
waits for a long latency operation to switch contexts, the context-switching overhead
is large and puts an upper bound on processor utilization, thus restricting the range of
latencies that can be tolerated - shorter latencies like those caused by pipeline depen-
dencies cannot be overcome now. Assuming that memory latency will be completely
tolerated, the maximum processor utilization is given by Ra/(Ra+Rs+C) where Ra is
the number of active cycles(time spent doing useful work), Rs the time spent waiting
due to pipeline stalls and C the context switch time. Taking a typical example, a
20 cycle average active interval (Ra=20), a total pipeline stall time of 10 cycles for
this Ra and a context switch time of 10 cycles would mean an effective processor
utilization of 50 percent which is too small for most applications.

Pipeline register replication was seen as a solution to this large context switch cost.
Using pipeline register replication, context switch cost was theoretically reduceable
to one cycle(bypassing the pushing of register information into stacks on each context
switch) - the one cycle being the time required to broadcast the switch information so
that it could be made use of by the translation lookaside buffer, pipeline forwarding
logic etc. But, the practical implementation side of things were very different as
replication needed latches to hold the state information about the contexts and then
these needed to be multiplexed when control shifted between various pipeline stages,
and all these added to the total pipeline area leading to delays - the context switch
cost hence not being significantly lessened. Thus, more subtle methods were seen to
be required to decrease this context switch cost; to be more specific, a review of the

existing fine-grained scheme was in order.

3.3.3 The interleaved proposal

The interleaved proposal attempts to correct the two shortcomings of the fine-grained
context-switch scheme rather than do away with it altogether by proposing modifi-
cations to the blocked context-switch one, whose philosophy of approach is entirely
different. These shortcomings, it is felt[J. a] are not inherent ones which come along
with every fine-grained scheme but are offshoots of two basic ideas which were in-
corporated into the early fine-grained schemes: the absence of data caching and the

30

restriction of instruction issue to one every pipeline-depth cycle, both of which can
be done away with because of improvements in caching and pipelining respectively.

With caching every data access is no longer a long latency operation and there is
no more the need for a large number of contexts to tolerate memory latencies, thereby
alleviating the over-dependence on a large number of contexts(one major drawback
of fine-grained multithreading) to an extent. Thus, better support for single contexts
is achieved. Also, more than one instruction is issued per context every pipeline-
depth cycle, decreasing the instruction latency to much less that what it was with
the conventional very conservative fine-grained scheme.

The working of the interleaved scheme can be best described with an example.
Assuming that each processor has four active contexts as shown in Fig. 6, again as
shown in the figure, every processor keeps switching between these four contexts every
cycle in a round robin fashion. Each time a long latency operation is encountered, the
particular context which caused the operation is taken out of the ready context set(i.e.
it is made temporarily unavailable), and the round robin switching is continued with
the existing available contexts. Once the long latency operation is complete(i.e. if it
was a memory request, the data was obtained), the context is added to the end of

the round robin pool. Taking the example of the following contexts:

5 I e | clecfc] plofp|p

WB WB WB
D2 D2 D2
D1 D1 D1
EX EX EXi
RF RF RF
2 2 R

11 n n

Figure 6: Blocked scheme

Context A - issues two instructions, the second of which causes a cache miss.

Context B - issues one instruction, followed by a two cycle pipeline dependency

31

D2 [B] D2 |c D2 [D
D1 |C | D1 D1
Exi EX EX
RF RF RF
1z B 2 2
n LG n n

Figure 7: Interleaved scheme

stall, followed by two more instructions, the last of which causes a cache miss.

Context C - issues four instructions, the fourth resulting in a cache miss.

Context D - issues six instructions, the last one causing a cache miss.

Outlining what would have happened if we were to adopt the blocked context
switch case will make clearer what benefits the interleaved scheme holds. As shown
in Fig. 6 the blocked scheme works as follows. Context A starts execution and issues
two instructions and once at the WriteBack stage, the second instruction causes a
cache miss, as a result of which the entire pipeline has to be flushed before the
context switch is made - the context switch cost thus being extremely high, since the
switch decision is reached so late in the pipeline(the WriteBack is the last stage in
the pipeline). Same is the case with context B. It executes once the switch from A
is made and issues one instruction, then has to wait two cycles because of a pipeline
dependency. After the pipeline stall, it issues a further two instructions and the last
of these causes a cache miss in the WriteBack stage. Again, a wasteful flush of the
entire pipeline has to be effected. Plus, when the earlier pipeline stall occurred, you
couldn’t turn to a context switch as a means to tolerate the instruction latency due
to the stall, because the stall takes up only two cycles whereas the context switch
cost would be larger. Compare this to the interleaved scheme which works like the
following.

The interleaved scheme starts off with four interleaved contexts. As can be seen in

32

>
w
0
|+
-
(9]
i~
(9]
1~}
o
O

-

Fig. 7, interleaving causes sufficient spacing between the interdependent instructions
in context B so that the pipeline stall caused by this dependence is completely toler-
ated. The context switch cost is also much smaller than is the case with the blocked
context switch method, since instructions of only the particular context that causes
the cache miss during writeback need be "squashed”. In one pipeline-deep phase,
as shown in Fig. 7, there are only two cycles which have stages from context A,
and only these need be squashed when the cache miss on the writeback occurs, thus
resulting in the loss of a maximum of only two cycles as compared to the seven cycle
loss for the same cache miss in the blocked context switch case. Similar comparisons
can be made for contexts B and C. Both these contexts lose 3 cycles each, still much
lesser than the 7 cycle loss suffered by the blocked scheme. Each time a cache miss
occurs, the "culprit” context is made unavailable(very much like the blocked scheme
in that sense) until finally it is only context D that is left and is interleaved with
itself. A significantly lower context switch cost and better pipeline stall tolerance
thus make interleaved context switching much the better choice as compared to the

blocked scheme.

3.3.3.1 Implementation details of interleaved scheme

Much like the blocked scheme or any multithreading strategy in general, the inter-
leaved scheme too requires each context to have its copy of the program counter,
register file and any miscellaneous process-specific state from the processor status
word. Only the motivating factor for such a requirement differs: In the interleaved
scheme, state replication is a requisite to allow multiple contexts to be simultaneously
active in the context window rather than to lower context switch costs as is the case
with the blocked scheme.

The instruction issue unit needs to be more sophisticated than in the blocked
scheme because of the requirement of having to issue instructions from multiple active
contexts. Also, sharing a pipeline among multiple contexts means having to keep track
of which context issues which instruction stream because in the event of long latency
operations, only the instructions of the particular context which is the “perpetrator”
of the long latency operation need be squashed.

The other implementation requirements are mechanisms to make contexts un-

available in cases of (i) long latency operations (ii) synchronization latency and (iii)

33

instruction latency.

One transaction buffer is provided per context to keep track of the outstanding
request of the corresponding context. In the event of a cache miss, the address of the
memory operation which caused the miss is entered in the buffer, all instructions in
the pipeline from this context are squashed and further instructions from the same
context are prevented from issuing. When the cache miss is serviced, the transaction
buffer is marked invalid and the context restarts by re-issuing its memory request.

For the purpose of synchronization latency tolerance, a backoff instruction is sup-
plied to make the context in question unavailable for a period of time specified by
the backoff value. Instruction latency problems are much lesser in the interleaved
scheme as compared to the blocked scheme due to the temporal spreading apart of
instructions from the same context. In addition, the backoff instruction can again
be put to good use - the instruction either being manually inserted by the program-
mer/compiler next to dependent instructions that need stalling or by a hardware
scoreboard that keeps track of instruction dependences.

Having thus described the form of multithreading we will use in order to tolerate
latency, we shall now go onto the intricacies of our cache coherence protocol used to
maintain cache consistency between the distributed caches used in a multiprocessor
system; the caches being employed to ease the burden on the latency tolerance tech-
niques used, the interleaved context-switching scheme in our case. We propose the
simple minded visible synchronization based protocol which while being not so partic-
ular on being perfect with respect to invalidations, saves a lot on network traffic and
given an intelligent parallel compiler, is easy to implement. The saving on invalida-
tion traffic also means lesser latency, and naturally more scalability. Scalability being
the overriding concern in multiprocessor systems nowadays, we strongly believe that
the amalgam of interleaved multithreading and visible synchronization based cache
coherency would be just the optimal blend of low latency multiprocessing that is so

much in demand in the multiprocessing systems of today.

34

Chapter 4

A software managed cache

coherence protocol

“How often have I said to you that when you have eliminated the impossible, whatever
remdins, however improbable, must be the truth.”

Sir Arthur Conan Doyle.

“The beauty of truth lies in its elegance and simplicity.”

Anonymous.

4.1 TUnderlying principles

Hardware-implemented cache coherence protocols insist that runtime information be
kept about which cached copies of variables need to be invalidated(caches are largely
invisible to the compiler) — a centralized directory controller records which processors
have copies of a location, and always invalidates an outstanding writeable copy when
another request arrives. We, however, rely solely on user directives and machine
instructions inserted by the compiler to coordinate changes in the writeability of
shared data; the pertinent point being that our software-managed protocol does not
allow copies of concurrently writeable data. We follow the dictum: If some other
parallel activity might write it, do not copy it. In a properly synchronized (data-
race-free) program with visible synchronization, one never needs explicitly to keep
track of who has copies of which data. This is done only at compile time, and usually

35

only implicitly. Coherence actions are thus, a part of generated code rather than a
result of a hardware implemented protocol.

As mentioned brifely in the introduction to this thesis, the idea to let visible
synchronization direct changes in writeability of shared data stems from the follow-
ing fact which is a general feature of most already existing protocols. Non-adaptive
hardware-based protocols caused each shared variable write-access to be preceded
by a write-invalidate protocol. Some adaptive hardware protocols did lessen this
superfluity[Pro94] by identifying producer/consumer relations with more clarity with
respect to 'write’ regions. But, the redundancy of having a distinct write-invalidate
protocol that resulted in coherence traffic on top of the already present synchroniza-
tion traffic still remained. The significant point being the fact that synchronization
in traditional cache coherence protocols is not used to direct changes in writeability;
instead of which, it merely guarantees that invalidations entail no harm acting only
as guards of critical regions rather than actual perpetrators of invalidating action. In
our protocol, such redundancy is done away with by letting synchronization trigger
local invalidation, eliminating non-local coherence traffic and the need for a separate
coherence protocol in the process.

Thus, to sum up, the objectives of our protocol are:(i) to ensure that there are
never any copies of concurrently writeable data, and (ii)to make sure all coherence
actions are local. As means to this end, we do the following: User directives and
compiler analysis let visible synchronization tell the runtime system when to load
copies of memory locations into caches and when to invalidate these copies. This
makes sure that condition(i) is met. Since all invalidation actions are local, (ii) is

satisfied as well. In the following section, we describe our protocol in greater detail.

4.2 What are our problems?

Two significant problems in large-scale multiprocessors are: (i) Memory bandwidth
— there is too little of it and, (ii) Memory latency — there is too much of it. As
solutions to these problems, the following views have been aired: True believers in
caches are obsessed with locality and true believers in multithreading normally stay
away from both caches and locality. We on the other hand opt for a “middle” way. In
our approach, caches are not the principal solution to either problem. We believe that

36

memory bandwidth problems are solved by high bandwidth networks and concurrent
memory systems, and that memory latency problems are solved by switch-on-every-
cycle multithreading. The philosophy we adopt is that caches ease the strain on
latency tolerance mechanisms. Therefore, they are allowed to fail in terms of more
misses or unlucky invalidations some of the time. One result is that our protcol is
simple.

The conventional wisdom is that cache-ccherence protocols must be implemented
in hardware. If we allow shared writeable data, this may well bye true. If however,
we decide to disallow shared writeable data, this conventional assumption becomes
optional. That is to say, if there are no shared and writeable data, we are not required
to implement in hardware, and we may choose instead to experiment with a compiler-

implemented cache coherence protocol.

4.3 Assumptions

As the first step in the formulation of our protocol we assume that the programmer
and compiler have produced a data-race-free program in which synchronization has
resolved all dependence conflicts. The correctress of the protocol depends on this.
Compiler researchers have long investigated the possibility of automatic detection of
data race anomalies, but this area is not yet fully mature. Further, we assume that
the compiler detects state transitions by looking at visible synchronization and the
code itself. In particular, all coherence actions are compiler-implemented and appear

in the generated object code, i.e. there are no run-time decisions.

4.4 Visible synchronization based protocol

The central theme of our protocol is to copy after input synchronization points and
to uncopy before output synchronization points[Fig. 8] (essentially, to avoid having
concurrently writeable copies of the same datum) with variations based on the type
of state transition the variable in question undergoes. The compiler "knows” of the
state transitions by a combination of compiler techniques like dependence analysis
and alias analysis and user directives. The base protocol thus, is as follows:

(i) After reaching an input synchronization point, the processor may make copies

37

P(s) //obtain permission to copy a
copy a into cache

self-invalidate a in cache
V(t) // signal that the copy of a in cache
has been invalidated

Figure 8: Base protocol

in the cache of all shared variables that are protected by the synchronization opera-
tion. These copies will be loaded as cached loads and stores occur.

(ii) Before reaching an output synchronization point, the processor discards all
copies in the cache of shared variables that are protected by the synchronization
operation, and — if there has been a store to x — possibly writes back the last store
to x in the block.

Before discussing the modifications to the base protocol, we shall clearly define
the cache states that a datum goes through, from a single thread’s point of view.
Once we do that, we will be in a better position to describe these modifications based

on the type of cache state transition that happens.

4.4.1 State definitions

A datum will be in one of the following two cache superstates :(i)cacheable, and (ii)
uncacheable. Cacheable means a memory reference to a datum automatically results
in a copy from memory to cache. Uncacheable means even if memory references are
made, the datum cannot be copied into the cache. The former can be divided into
the following substates: (i) private - exclusive read/write, one thread has permission
to make a copy, and may modify it. The datum is invisible to all other threads. (ii)
shareable - read-only, several threads have permission to make a copy, but not to
modify it. Other threads may, of course, request permission to make copies.

If a cache has a copy of a datum, it is thus either (i) shared - the copy of the

38

CommneD

Uncacheable

IReﬁncsto '

Uncacheable

Figure 9: Cache state diagram

39

datum can only be read or (ii)private- the cache has an exclusive read/write copy.

The one additional machine instruction — aside from cached and uncached loads
and stores — we need as part of the instruction set architecture in order to guide the
cache correctly through these states and hence to implement cache coherence is an
uncopy, to invalidate all copies made during the last synchronization epoch. Thus,
an uncopy basically undoes what the corresponding copy did in that synchronization
epoch.

There is no need for an explicit copy instruction for the same set of variables since
any operating system running a cache when performing cached loads/stores would
copy data from memory, in case of misses; the above uncopy would ensure that these
data when later referenced would cause misses and hence data to be reloaded from

memory. So, whenever we say copy, we mean load from memory.

4.4.2 High-level “economic” administrator

To reiterate, the fundamental idea of our protocol is to forbid the presence of shared
and writeable data. We have a high-level protocol based on the idea that: Data
cycles between two states: (i) Copyable — a thread has permission to copy a datum
somewhere. (ii) Uncopyable — a thread has no persmission to copy that datum.

Based on cost/benefit analysis - which indicates whether caching is economical -
this high-level protocol into two: (i) A register-coherence protocol and (ii) A cache-
coehrence protocol. More precisely, when a datum is copyable and the cost/benefit
analysis about reuse passes a certain threshold, we use the cache-coherence protocol,
in which a datum cycles between two states: (i) Cacheable — a thread has permission
to do cached loads and stores and, (ii) Uncacheable — we use uncached loads and
stores.

If the cost/benefit analysis indicates that the level of reuse has not reached a
certain threshold, the register-coherence protocol is applied. A datum now cycles
between two states: (i) Copyable — a thread has permission to make copies in registers

and (ii) Uncopyable — no permission to make copies in registers.

40

4.4.3 State transitions

1) Uncacheable to private: Once past input synchronization, the thread has permis-
sion to copy from memory to its cache. And since the variable was uncacheable with
respect to the thread’s cache before the input synchronization, a copy from memory
to cache is executed after input synchronization.

2) Private to uncacheable: When a variable goes from being private to a thread
to being uncacheable with respect to it, an uncopy instruction is inserted by the
compiler to self-invalidate the thread’s copy, and a writeback is executed to write
back the up-to-date value to memory.

3) Shareable to private: No action need be carried out, since what was shared
and read-only becomes private to the thread, which means if the thread had a copy
before input synchronization, it’s up-to-date.

4) Private to shareable: What was private — in exclusive read/write mode — to
the thread, becomes shareable and read-only after output synchronization. Thus,
memory needs to be made up-to-date by executing a writeback.

5) Shareable to uncacheable: What was shareable, that is, if the thread had a
copy in its cache, it’d have been up-to-date, becomes uncacheable. Therefore, the
copy in the cache has to be invalidated for which an uncopy instruction is inserted.

6) Uncacheable to shareable: Before the transition, the variable could not be
copied into the thread’s cache, hence, when it becomes shareable, the thread can
request for a copy of the value in memory. Hence, a copy is executed.

It is to be noted that synchronization variables are uncacheable always. They
may only be brought as high as nearby memory modules as they are shared and
writeable always. Variables of type future, synch and volatile can be declared in
parallel programs[D. 90a). None of these variables are ever cacheable. In other words,
synchronized data accesses may be cacheable at certain times, but asynchronous data
accesses are never cacheable.

Until now, we were discussing state transitions with just one thread under con-
sideration. It is more useful however to consider the “real-world” case of transitions
with several threads. We give sample fragments of code with two threads each, when
the transition in one thread has to be coordinated with that in another; coordinated
transitions with two threads and copies of a single variable serve to give a clear idea

of state transition in a multiprocessor system with a large number of threads and is

41

Uncacheable Shareable

Copy from Uncopy., Uncopy Copy from
memory Writeback memory
Private Uncacheable
Shareable
No action Writeback
Private

Figure 10: Cache state transitions

representative of the bigger picture.

4.4.4 Illustrations of coordinated state transitions

In the examples below, shared(me) means thread 1 and 2 have copies of the datum
in the shared state, that is, copies in read-only state. The “me” in all cases refers to
thread 1. nP may be thought of as a sequence of n fetch-and-decrement operations
on an atomic integer variable. Shared(not me) means thread 1’s cache does not have
a copy, and thread 2’s cache has a copy in the shared state, that is, in read-only state.
Private(me) denotes thread 1’s cache having a copy in the private state, that is, it has
an exclusive read/write copy. Private(not me) means thread 1’s cache does not have
a copy, and thread 2’s cache has a copy in the private state - an exclusive read/write
copy.

Shared(not me) to private(me)

Before the transition, a set of threads other than thread 1 has copies of A in
read-only mode, and after it, thread 1 has an exclusive read/write copy of A. The
user adds an nP as shown in the figure below so that thread 1 waits for all n threads

42

Thread W Thread R j (one of n)

. Read(A)

nPGs) Uncopy(A)

. V(s)

Write(A)

Figure 11: Shared(not me) to private(me)

Thread H Thread Rj (one of n)

Read(A) Read(A)

- Uncopy(A)

nP(s) V(s)

Write(A)

Figure 12: Shared(me) to private(me)

read-sharing variable A to uncopy.nP may be thought of as a sequence of n fetch-
and-decrement operations on an atomic integer variable. And after thread 1 goes
through the P, the write reference to A causes a miss and load of A from memory to
get the up-to-date value. Thread 2 is representative of a set of threads which have A
in read-only state.

Shared(me) to private(me)

Shared(me) means a set of threads including thread 1 has A in read-only mode,
and after the transition, thread 1 will have an exclusive read/write copy of A. In this
case, since thread 1 already has an up-to-date copy of A, all that has to be done now,
is to wait for the other threads that have cached copies to execute uncopies, which is
what the nP and the V together effect.

Private(me) to shared(me)

Thread 1 has an exclusive read/write copy of A, and after the transition, a set of

43

Thread W Thread R j (one of n)

P(s)

Write(A)
Writeback(A) .
nV(s) > P(s)
Read(A)

Read(A)

Figure 13: Private(me) to shared(me)

threads including thread 1 will have copies of A in read-only mode. Here, the compiler
inserts a write-back. An nV ensures that each of the P’s allows the respective thread
to go through. And, the other threads seeing a P, execute a fresh load of the variable
they require from memory.

Shared(not me) to private(not me)

This is a trivial case, no statements are inserted.

Shared(me) to private(not me)

A set of threads inclusive of thread 1 has copies of A in read-only mode, and
the transition results in a thread other than thread 1 having an exclusive read/write
copy of A(in this case, thread 2). Transition 1 is reversed, in the sense that thread
1 takes the place of thread 2 and vice versa. Thread 1 and other threads execute a
V primitive and since the programmer would have already inserted an nP before the
private(not me) epoch which is the private(me) epoch of thread 2, thread 2 would
wait for all n threads to uncopy, before it does a load from memory.

Private(not me) to private(me)

Before the transition, a thread other than thread 1(thread 2 in this case) has an
exclusive read/write copy of A and after it, thread 1 has an exclusive read/write copy.

Therefore, a load from memory is carried out and A is copied in. And supposing
A was in the private(me) state in thread 2, a uncopy with writeback is inserted
before the V that the programmer would have inserted to protect the A in thread 2.
Private(me) to private(not me)

Thread 1 has an exclusive read/write copy of A, and after the transition, thread 2

44

Thread Rj (one of n) Thread W

Read(A) .
Uncopy(A) nP(s)
V(s) " Write(A)
Figure 14: Shared(me) to private(not me)
Thread 1 Thread 2
Write(A)
P(s) = Uncopy and writeback(A)
V(s)
Write(A)

Figure 15: Private(not me) to private(me)

45

Thread 1 Thread 2

P(s)

Write(A)

Uncopy and writeback(A) .

V(s) = P(s)
Write(A)

Figure 16: Private(me) to private(not me)

has an exclusive read/write copy. An uncopy with writeback is inserted and executed.
Thread 2 meanwhile would execute a load of A from memory after the P that marks
the beginning of its read/write region.

4.4.5 Performance advantages

The uncopy instruction is implemented in hardware by tagging each variable that is
copied into the cache from memory during a particular synchronization epoch with a
“colour”, the colour being indicative of which synchronization epoch the variable was
loaded into the cache, so as to identify them at the time of uncopy. Without tags, the
cost of the uncopy goes up linearly with the size of the data to be uncopied. Before
output synchronization, a parallel search is done for tags of the particular colour,
and the cache entries with that particular tag are invalidated. Thus, with “coloured”
uncopies we eliminate the time penalty that sequential invalidation incurs.

Cache coherence protocols lose their meaning if they do not scale, i.e. if they
lose too much processing speed as problem and machine sizes increase. Broadly,
scalability is achieved by two means: (i) by tolerating unpredictable fine-grained
latency from any source and (ii) by providing long-range communication bandwidth
in the interconnection network. Focussing our energies on the first technique, we note
that that latency tolerance is comparitively non-traditional as compared to latency
avoidance which is essentially, caching. A large amount of coherence traffic causes
high latency. Thus, our coherence protocol highlighted by its almost complete lack of
non-local coherence traffic supplemented by interleaved multithreading is indeed very

46

much justified. This along with its inherent elegance and simplicity - it relies solely on
visible synchronization and user/compiler directives - and the not inconsiderable plus
that it supports the protects consistency memory model[Pro93b] - which eliminates
some unnecessary data— > sync precedence arcs that the release consistency memory
paradigm enforces and limits the scope of synchronization by a clearer definition of
which set of variables each synchronization variable protects (visible syﬁchroniza.tion)
- make it all the more attractive.

Compiler analysis techniques like alias analaysis, dependence analysis and inter-
procedural analysis along with PRC programming notation help direct the cache
through the aforementioned state transitions. We shall illustrate PRC programming
notation with help of sample code in the next chapter. It is to be noted here that our
protocol would work even without having PRC as our programming model; any set
of user/compiler directives telling it which variables to uncopy at the end of a syn-
chronization epoch would do and it works with release consistency as well, but with
it being linked to PRC, there is scope for reusability of cached copies and more paral-
lelism to be exploited by the hardware since PRC is a less restrictive memory model.
Thus, the selective invalidation brought about by the simple but effective technique
of visible synchronization answers the main criticism levelled against software-based
invalidation(cache coherence), that of being too conservative in its choice of invalida-
tion, rather efficiently. Each time you cross a synchronization point, you are effectively
making a state transition and from user directives(and PRC programming notation)
and compiler analysis the variables undergoing the transitions are clearly marked(the
role that PRC plays shall be dealt with in the next chapter on the protect consis-
tency model and its primitives) and this is in essence what precludes indiscriminate
invalidation. What Cheong and Veidenbaum do by means of compile-time memory
reference tagging and the change bit, we achieve by the elegant use of visible syn-
chronization. Moreover, our technique is closely linked to a more relaxed memory
consistency model.

It should be noted that in transitions involving loads and uncopies , if we use
the release consistency memory model, there will be additional load and uncopy over-
head. In the case of uncopies, all variables accessed (read/written) within a particular
synchronization block would be invalidated - since synchronization variables are not
linked to the copies of memory locations that they protect in RC, they’re assumed

47

to pl.:otect every variable accessed in the epoch - whereas if protect consistency prim-
itives were to be implemented, only the requisite variables which are guarded by
the particular synchronization primitive would be invalidated. Similarly, in the case
of copies(loads), in RC, all cached copies that are accessed within a synchroniza-
tion interval would have to be copied from memory, because of the previous uncopy,
whereas PRC which connects the copies to the synchronization variables in a more
direct way(as we shall see in the next chapter), would permit more reuse of cached
copies. More details on release consistency and protect consistency can be found in
chapter 5.

There is no room for “false sharing” - the line size becoming larger than one
leading to loading of words into the cache which dependence analysis can not detect -
since we insist on uniword cache blocks. The Cheong-Veidenbaum protocol does find
a solution to this problem of false-sharing, but has to resort to additional software
or hardware and version numbers in a later version of the protocol we described in
chapter 2. The main justification in insisting on uniword blocks, other than the fact
they eliminate false-sharing is that “working-sets” are generally small and multiword
cache lines cause attenuation in bandwidth. Memory references in a multiprocessor
system tend to be spread out among the processors which reduces the available spatial
locality compared to a uniprocessor system. Thus, although it might be in fact be
possible to lessen the miss ratio by using multiword blocks, simulation studies[D.J93]
hint that single word blocks minimize network(miss service traffic in the main, in our
case) traffic.

We recommend the use of physical caches over virtual ones, because although
there is the additional overhead of virtual-to-physical address translation before the
cache entry is located, there is the absence of the need to flush the cache on every
context switch. But, our protocol does not need to have additional support in case
of context switches; the writeback on miss being part of the basic cache protocol in
any multiprocessor system with caches.

As in any new proposition, there always is the question why a protocol, especially
one that is laced with very little complexity as ours wasn’t thought of before(We
regard reasoning of this genre a significant step in developing new trains of thought).
It was in the main, we feel, due to the concept that synchronization and invalidation
in a coherence protocol were discrete procedures, but the elimination of this redun-

dance leads us to a very time-efficient(because there is no indiscriminate invalidation

48

proc deposit (m: object) proc remove(var m: object)

begin begin
P(slot) ' P(message)
P(sender) P(receiver)
front := front + 1 mod n rear :=rear +1 modn
BUF[front] :=m m := BUF[rear]
V(sender) V(receiver)
V(message) V(slot)
end end

Figure 17: A producer-consumer problem

and we use switch-on-every-cycle multithreading), simple-minded scheme. Since most
parallel programs are composed of cooperating threads with far more synchronization
constraint than a set of independent non-cooperating ones, we expect compiler anal-
ysis and user directives to successfully guide the caches through the afore-mentioned
transition states.

To show the performance advantages of our protocol, we consider the following

two examples.

4.4.5.1 A producer-consumer example

Ina .ha.rdware-implemented protocol, synchronization and invalidation are two sepa-
rate activities. This is redundant given that visible synchronization can be used to
directly coordinate the writeability of shared data. The cached copies of the shared
variables front, rear and BUF would be repeatedly invalidated. Superfluous coherence
traffic would result. In contrast, our cost/benefit analyzer would see the non-reuse.
Therefore, these variables are economically uncacheable. The register-coherence pro-

tocol would be applied as the variables cycle between “copyable” and “uncopyable”.

4.4.5.2 Writer, N Readers problem

Our protocol applies in the following way: The writer writes back the up-to-date

49

Thread W Thread R Thread R 9

repeat
for(...i++)
Write(a[i]);
Writeback(a[i]); .
barrier(...); barrier(...); barrier(...);
for(...i++) for(...i++) for(...14++)
Read(a[i]); Read(afi]); Read(a[i]);
Uncopy; Uncopy;
barrier(...); barrier(...); barrier(...);
until(...);

Figure 18: Writer, N Readers problem

values to memory, and then signals the reader threads so that all threads go into the
read epoch together. Before the writer returns to the write epoch, it waits for the
reader threads to invalidate their copies of the array. As in the previous example,
there is no non-local coherence traffic. Using hardware-implemented protocols would

have caused heavy coherence traffic whose volume was linear in the size of the array.

4.5 Comparison with existing protocols

As stated before, already existing cache coherence protocols can be broadly classified
into two: Hardware-based ones and the relatively recent software based ones. In the
comparisons with our protocol below, we shall highlight the performance advantages

that our protocol exhibits with respect to these existing ones.

50

4.5.1 DASH

Hardware-based protocols like the DASH suffer from too much space being wasted
for directory information and have the additional liability that too much of communi-
cation bandwidth is wasted on retrieval of directory information from the distributed
directory, albeit incurring a lesser overhead compared to a centralized one. Directory
lookups are required at the time of writes and invalidations need to be carried out
according to state information obtained from the directory. Lookups are required at
the time of reads as well, and state updates need to be performed. All this results
in high coherence traffic. The reasons for this are (i) non-local invalidation and (ii)
the allowing of concurrently writeable copies - the directory controller records which
processors have copies of a location, and always invalidates an outstanding writeable
copy when another request arrives.

In our protocol, there is no need to keep track of copies of a shared location since
concurrently writeable copies of a location are not allowed. Local invalidations are
performed according to the type of state transition the variable undergoes and copies
are not made if some other parallel activity might write it - input synchronization acts
as a request to permit making copies and output synchronization acts as invalidator,
eliminating in the process, the redundancy of having a separate invalidate protocol
aside from having a synchronization one. Thus, there is almost total lack of coherence
traffic, in our protocol compared to DASH, in which there is both synchronization
and coherence traffic.

DASH relies on the release consistency memory model. Our protocol can function
with the release consistency model as its memory access map. But, more parallelism
can be exploited if it is keyed to the protect consistency model as will be evident in

the next chapter.

4.5.2 The one-time identifier scheme

Existing conventional software-based protocols have a proclivity toward conservatism
in their approach to invalidation of cached copies of data. More copies than required
are discarded because if this “safety-first” approach. The OTI (one-time identifier)
approach[A.J85] which was among the first few efforts in this direction tried out the
idea of having an identifier for every cache and TLB (translation lookaside buffer)

51

entry as a pointer to the usability of the cached copy of a datum. For every new
TLB entry, a new OTI value is generated and when the copy of the shared datum is
loaded into a cache, the OTI value of the cache line is equated to the OTI value of
the corresponding TLB entry. The cache-hit defining condition requires both these
OTI values to be the same.

Upon encountering a write-back shared region, a TLB invalidate instruction is
issued to every page in the region. This ensures that subsequent accesses to that
page will cause a new OTI value to be loaded along with a new TLB entry. The
difference in OTI values with the corresponding cache results in a cache miss.

The obvious disadvantages are: (i) the possibility of wasteful invalidation when
fresh TLB entries are made as a result of data replacement rather than data invalida-
tion for which it was originally intended. (ii) sequential invalidation of page entries
in a write-shared region and (iii) memory overhead due to the additional space taken
up by the OTI entry for every cache line.

As must be clear from the state transition illustrations when we discussed our
protocol, there is no indiscriminate invalidation in ours. Only copies of variables that
are protected by a particular synchronization epoch are invalidated. And, that too,
only wherever necessary. There is no sequential invalidation the avoidance of which
is the aim of the uncopy instruction, which does a parallel search for the tag that
identifies the particular synchronization interval and invalidates all copies having this

tag. "Cache lines are short as there is no need for state storage in them, therefore,

there is no extra memory overhead.

4.5.3 The Cheong-Veidenbaum protocol

Problems of wasteful invalidations occur in the case of indiscriminate invalidation
protocols[A.V86] [R.L87b] [K.K87]. Thus, in essence the key issues associated with
software based invalidation are: (1) when to invalidate and (2) what to invalidate. The
Cheong-Veidenbaum fast selective invalidation protocol discussed earlier answers both
questions to a reasonable extent and resembles our visible synchronization protocol in
that both involve selective invalidation of cached copies of variables, thus countering
a strong criticism levelled against software-based cache coherence schemes - that
the invalidation process was based on extreme “conservatism” and hence resulted

in unnecessary invalidations of valid cached copies of data.

52

The main difference between the Cheong-Veidenbaum protocol and ours is that
ours is based completely on compile-time analysis, and doesn’t need a “change” bit
to indicate that a copy has been loaded into the cache in the current synchronization
interval since our protocol follows the principle: If a valid copy is present in the cache,
it can be used - we do not have concurrently writeable copies of variables in a cache.
Also, the C-V protocol is more complex than ours, with very close attention paid to
maintaining a high hit ratio. Plus, the fact that our protocol can be implemented
with a more relaxed consistency model such as the PRC one(as we shall see in the
next chapter), increases scope for instruction-level parallelism.

False-sharing is eliminated in later versions of the C-V protocol, by relying on
extra software/hardware. But, we insist on uniword cache blocks, justification of
which we gave in the previous section, thus allowing no room for false-sharing.

Having discussed our protocol and its strengths at length, we turn our attention
now in chapter 5, to the protects consistency model and its primitives which enable
visible synchronization to be implemented effectively and the architectural base that

it requires.

53

Chapter 5

The protect consistency model

As mentioned before, directory-based protocols generate unnecessary coherence traf-
fic. Existing compiler-controlled ones on the other hand tend to overinvalidate. Our
visible synchronization based scheme however, using the protect consistency(PRC)
model as its memory access map, implemented by insertion of user/compiler direc-
tives - which perform local invalidation and/ or writeback as is the case - answers
most criticisms levelled against software-based protocols. The PRC model/ program-
ming notation provides increased flexibility in specifying instruction- level parallelism
that can be passed directly to the hardware [Pro93b], [Pro93a), thus increasing con-
currency within a thread without incurring appreciable synchronization cost; how it
does this and what primitives it uses will be the focus of this chapter. Apart from be-
ing a supplement to switch- on-every cycle multithreading in itself, PRC more directly
supports our cache coherency protocol by promoting the reuse of cached variables in
certain situations, as we shall see shortly, which for instance would not be possible
with a more restrictive memory model like the release consistency one, thus countering
the over-invalidation criticism to an extent.

Before coming to what actually PRC is and the primitives that help implement it,
we will take a look back at the more constraining (parallelism-wise) memory models
that are already in existence and trace the gradual progression of the idea of lesser
restrictions on program execution order, to its culmination in the PRC model.

54

5.1 Existing consistency models

Censier and Feautrier[L. 78] define a system with coherent caches to be one which
guarantees that “the value returned on a Load instruction is always the value given
by the latest Store instruction with the same address”. The catch involved is that
the term “latest” is very vague when the loads and stores are on different proces-
sors running asynchronously with respect to each other. Due to transmission and
buffering delays both within the processors themselves and inside the interconnec-
tion network, there is non-atomicity as far as memory updates go. That is, not all
copies are updated at the same time. Hence, each processor “views” a different time-
ordering of events, the events in this case being loads and stores. To make the point
clearer, on a uniprocessor, one is certain that the latest load will return the value
of the latest store, because of the presence of hardware mechanisms called interlocks
that check data and control dependencies between instructions. But, due to the
aforementioned “observational gap” in multiprocessors, inconsistency among proces-
sor “views” is brought about. It is herein, that a consistency model becomes relevant.
The consistency model of a multiprocessor system defines the programmer’s view of
the time-ordering of events that occur on different processors; the events including
memory accesses and synchronization operations. This model is in effect what the
system ”promises” the programmer as far as the execution order goes. Thus, the
more the assurances the system makes about event ordering, the less the program-
mer would need to worry about specifying synchronization operations and in turn,
there is much less scope to exploit possible avenues of concurrency. Since the driving
force is to obtain more concurrency, a model in which the system ensures as little as
possible regarding ordering, demanding thus a more explicit synchronization skeleton
from the programmer, which leaves more room for time overlap of operations will
prove optimal (since he/she would now program in such a way as to ensure correct
results in spite of the overlap). The more specific the synchronization skeleton that
the programmer outlines, the less the system has to assume when re-ordering the
loads and stores, thus allowing for greater freedom in re-ordering, which translates
directly to more instruction level concurrency. It is thus this driving force that has
motijvated the gradual formulation of less restraining consistency models, as we shall

see presently.

55

5.1.1 Sequential consistency

Lamport[L. 79] proposed the multiprocessor correctness condition, sequential consis-
tency(SC) as follows: the result of any execution is the same as if the operations of all
the instruction streams had been executed in some sequential order, and the opera-
tions of each instruction stream appear in this sequence in program order - that is, in
the same order as the instruction stream would have been executed on a uniproces-
sor(with interlocks, obviously). The program behaves as if the memory accesses of all
the threads are interleaved and executed sequentially, respecting program order. The
programmer is thus able to pretend that operations including memory accesses are
atomic, that is, memory updates are “felt” by all processors at the same instant and
use Owicki-Gries style assertional reasoning applying the methods of pre-conditions
and post-conditions. For instance, we write: [aJ to mean if assertion I is true before
a, then assertion J is true after a. Since atomicity is enforced at the granularity of
single word accesses of memory, there is no commitment to a high-level programming
model. Hence, there is no exploitable concurrency(since you can not have simultane-
ous memory accesses) and hence no future in sequential consistency, although its role
in the development of more relaxed protocols can not be overstressed.

The significant point here is that since synchronization operations are left un-
marked, the system presupposes every memory access to be a synchronization one
which leaves no room at all for architectural optimization. In interests of clarity,
we define the refinement USC of SC by prefixing the words “even if arbitrary pro-
gram operations might be synchronization operations” to the statement of SC. Thus,
the key is to precisely identify synchronization operations, for the more explicit the
synchronization skeleton, the less the system has to assume about synchronization
operations, opening up more avenues of exploitable parallelism(in other words, more

time overlap of program operations).

5.1.2 Weak consistency

In WC[M. 86][V.R86], the programmer identifies synchronization operations. The
implementation conditions are the following:
(i) No processor may issue an ordinary shared-variable access until all synchro-

nization operations that precede the access in program order have completed.

56

(i) No processor may issue a synchronizing operation until all ordinary shared-
variable accesses that precede the operation in program order have completed.

(iii) Synchronizing operations must be kept sequentially consistent.

In this paradigm, synchronizing operations serve as barriers or fences when a
synchronizing operation completes, all previous operations have completed, and no
further operation has been issued. Synchronizing operations define points at which
consistency among processor views is guaranteed. Its one great plus is that processors
are allowed the flexibility of reordering operations between these synchronization
points, thus obtaining more parallelism whilst respecting uniprocessor control and

data dependences.

5.1.3 Release consistency

Release consistency(RC) further weakens WC’s hold on parallelism by splitting syn-
chronizing operations into two, acquire and release, asking the programmer to dis-
tinguish between the two. What acquire and release are, will be evident from the
following implementation conditions for RC.

(i) No processor may issue an ordinary shared variable access until all acquire
operations that precede the access in program order have completed.

(ii) No processor may issue a release operation until all ordinary shared variable
accesses that precede the operation in program order have completed.

(iii) Special accesses(i.e. synch operations and nsynchs) must be kept processor
consistent.

RC partial order is weaker than WC partial order. This is so because of the
deletion of several redundant data— > synch and synch— > data precedence arcs
as explained below[K. 90]. Firstly, ordinary Load and Store accesses(respecting data
and control dependences, obviously) need not be delayed for the release operation to
complete since the release operation does not purport to have any say in the ordering
of operations/accesses following it; it just allows other processors/threads the use of
the write-shared region. This is not the case with WC, as all accesses following the
“barrier” sync operation have to wait for this synchronizing operation to complete.
Similarly, the acquire operation does not have to wait for previous ordinary Load or
Store accesses to complete because it just denotes the acquiring of rights to the write-

shared region which it and release operation guard. Whereas, the barrier operation

57

in WC has to wait for all preceding accesses to complete before issuing. Thirdly,
non-synch accesses like the competing(simultaneous accesses to the same memory
location) accesses to read data in chaotic relaxation algorithms do not have to wait
for previous accesses nor delay future accesses. Finally, in RC, synchronzing accesses
need only be processor consistent and not sequentially consistent as is the case with
WC. Thus, we see that RC strictly allows more flexibility and hence more concurrency

of operation, thus making WC a proper augment of RC.

5.2 Protect consistency

However, it is also the case that there is still the room for improvement, still the
presence of unnecessary data— > synch accesses due to the unlimited scope of syn-
chronization variables in RC[Pro93b]; specifically there is the absence of knowledge
regarding the mapping of variables or memory accesses to synchronization variables.
It is therefore presupposed in RC that a synchronization variable protects any access
lying within the particular P-V pair - it is thus program order that dictates scope -
whereas in reality, it is not necessary that all operations/accesses inside the P-V pair
wait till the P operation completes. There is room for further parallelism and it is this
additional scope for concurrency that PRC looks to exploit by letting programming
notation specify the scope of synchronization variables. This is implemented by the
use of serial and parallel blocks and single assignment variables - variables which are
undefined before assignment, but which after assignment become defined and cannot
be redefined. How exactly this is done, we shall see shortly. What it does is to delay
an ordinary access only for a designated subset of P type operations that precede it
in program order, thus in effect telling the system architecture which synchronization
variable each memory access is bound to, offering architectural optimization as much
leeway as possible.

Programmer specification of thread partial order is feasible only for critical pro-
gram fragments[L. 93]. However, the programmer can demarcate the synchronization
skeleton in a thread by defining the protects relation between synchronization and
ordinary operations. This task is facilitated by an invariant-based view of necessary
precedence(true dependence). We define operation b in thread t to be dependent on
operation a in thread s if operation a forces invariant I to be true in s’s view and

58

operation b’s correctness necessitates invariant I to be true in t’s view. Using the
protects notation, we write: (i) P— > b only if P awaits I and {I}b, and (ii) a— >V
only if V notifies I and a{I}. The solid arrows are elements of the protects relation
indicating in effect the scope of synchronzation variables and the invariants inside
curly brackets are guards and post-conditions respectively. And since the scope is
now clearly defined, we can use synchronization to directly co-ordinate changes in the
writability of shared data by parallel activities, as described in the previous chapter.

In PRC[Pro93b], the programmer identifies: (i) P-type synch operations, which
can block the executing thread (ii) V-type synch operations which can unblock some
other thread and (iii) PV-type synch operations, which can do both. Within each
thread, he or she identifies the requisite temporal precedences among synchronizing
and ordinary operations. Using the PRC programming notation, he or she declares
the necessary (i) synch— > data precedences (ii) data— > synch precedences and (iii)
synch— > synch precedences. It is to be stressed again that these precedences are not
defined by program order, but by programming notation. The compiler is entrusted
with the task of adding the necessary data— > data precedences, completing the
partial order of the thread. We state implementation conditions for PRC. (i) No
processor may issue an arbitrary shared-variable access until all P-type operations
protecting the access - that is, precede the access in protects partial order - have
completed. (ii) No processor may issue a V-type operation until all ordinary shared-
variable accesses protected by the operation - that is, that precede the operation
in protects partial order - have completed. (iii) No processor may issue a PV-type
operation until all ordinary antecedent shared-variable accesses have completed. No
processor may issue an arbitrary descendant shared-variable access until the PV-type
operation has completed. “Antecedent” and “descendant” are defined by protects
partial order.

And, obviously, PRC assumes that uniprocessor control and data dependences are

respected.

5.2.1 The PRC programming notation

Since in PRC, it is the programming notation that defines partial order which in
turn dictates concurrency, its choice is of utmost significance. The notation should
allow us to specify synch— > data precedences to the compiler which checks up on

59

data’and control precedences. Expressly with this motive in mind, we adopt a slight
modification of the CC++ language[K. 93] . More precisely, we add visible synchro-
nization to the language (i.e., P and V), as well as a scheduling directive for parallel
blocks. A sequential C++ program can be converted into a parallel program using
new constructs provided in CC++. Among these are single assignment variables,
parallel blocks, parallel for-loops, spawn and atomic functions. Apart from adding
visible synchronization, we modify CC++ by introducing the thread construct(the
scheduling directive mentioned earlier) and adopting semantics for single assignment
variables that are private to a thread.

Parallel blocks have the semantics of a cobegin...end statement, so the order in
which components appear within a parallel block is immaterial. The single assignment
variables in CC++ can be assigned a value at most once during execution. Before
assignment, they are undefined; after assignment, they become defined. A parallel
activity is suspended if it reads an undefined single assignment variable. It is resumed
as soon as the variable becomes defined. In CC++, these variables are write-once,
read-many synchronization variables with data types.

The thread construct in PRC is a scheduling directive that allows us to express
concurrency within a thread. The defining property of a thread is that it must be
scheduled on precisely one processor. Single assignment variables when used within
the scope of a thread become private to that thread only. A thread may write a private
single assignment variable at most once, but read it many times. Each private sing
variable v is of type void. It is written by the command v! which is attached to a
single instruction, and read by the command v? which appears in a guarded command

for a single instruction.

5.2.2 Programming aspects

RC has default scopes of synchronization primitives set by program order that may
be arbitrarily large. PRC on the other hand, lets programming notation specify these
scopes explicitly using either serial or parallel blocks, augmented by the prudent use
of single assignment variables. The scope of a synchronization primitive is the most
deeply nested serial block in which it appears. In the following example with parallel
blocks, by the scope rules of PRC, P(s) protects a, b and c but none of d, e and f.

PRC uses single assignment variables whose lexical scope is one thread to express

60

b Scope

e Scope

Figure 19: PRC - a parallel blocks example

61

P(s)

x :=1f(a)
P(t)

y :=g)
z :=h(a)y)
V()

Figure 20: PRC - another example

point-to-point necessary precedences between pairs of instructions. These variables
- they are private to a thread(preventing interference from another thread) and are
not genuine synchronization variables, but tagged registers in a single processor -
thus, enable the PRC model to exploit instruction-level parallelism within a thread,
without incurring appreciable synchronization cost.

The following simple thread fragment(Fig. 17) brings out the performance differ-
ences between RC and PRC. In RC, default scope decided by program order makes
P(s) protect subsequent ordinary accesses and P(t). But, suppose the intended or-
der is: P(s) protects a and nothing else; P(t) protects b and nothing else. V(t)
protécts z.

We rewrite this fragment in PRC programming notation[Fig. 18], making the
instruction-level parallelism more explicit. In PRC, the P operations are executed in
parallel. The assignments to x and y wait for their P guards only, unlike in RC where
the scope of the P operations is unlimited, forcing the second P operation to wait for
the first one to finish execution. Also, in PRC, the assignment to z waits for one P
guard and one data dependence. In RC, at most P(t) and the assignment to x would
be overlapped, all the other instructions would be serialized. '

The same fragment of code permits the reuse of cached data in situations where
RC would have forced data to be reloaded. To revisit our protocol briefly, we recall
that the key to it lay in the fact that it would not cause unnecessary invalidations(as
far as possible) and this was because the invalidation(uncopy) instructions inserted by
the user/compiler “knew” exactly which variables to uncopy before synchronization
and hence copy after synchronization. This is implemented with as less redundant

62

thr{
sing v * private *

par{
{
P(s)
x:=f(a) >v!
}
{
P(t)
y :==g(b)
v?-->z:=h(ay) *Ifvisdefined*

}

Figure 21: PRC - an implementation with single-assignment variables

invalidations as possible by PRC primitives as we shall see presently. In the sample
code above, as mentioned before, condition 1 of RC forces a to be reloaded after P(t).
In PRC, the sing precedence from P(s) to the second load of a proves that P(t) does
not protect a, allowing reuse of the cached value of a. And, hence there is no uncopy
of “a” before V(s) and no copy of it after P(t). We could modify RC by checking
for synchronization chains that leave a thread between 2 successive loads of the same
variable. In this fragment, there are none. However, if V(s) immediately follows the
assignment to x, this optimization can not be used. Thus in RC, there is no means
to prove that P(t) does not guard a. In PRC, the sing precedence still allows the
cached value of a to be reused, showing a latency avoidance difference between RC
and PRC.

In the piece of code below[Fig. 20], the use of the single assignment variable m
permits the cached value of z to be reused since P(u) does not protect z and the
compiler and the run-time system know this. The compiler does not insert an uncopy

63

thr{

sing v
par{

* private *

{

P(s) > v! * P(s) then v! *
x :=f(a)

V(s)

}

{

P(t)

y :=g(b)

v?-->z:=h(a,y) *Ifvisdefined *
\4(3)

}

Figure 22: Final PRC code for the fragment in Fig 16

thr{
sing m
par{

P(v)
z:=h(ay) >m!
V()
P(u)
{
j=1(r)
m? --> n :=h(z,r)
}
V(u)

}
}

Figure 23: PRC - another single-assignment variable example

instruction before the V(t) because of the presence of the single assignment variable.
This is the private(me)-to-shared(me) transition indicated in the previous chapter.
Thus, we see that PRC promotes reuse of cached variables in certain situations
which RC would not have permitted. PRC hence plays a very significant support role
to our protocol in terms of latency avoidance with minimum unnecessary invalidation.
The coloured uncopy instructions with/without writeback required by our visible
synchronization based protocol are thus fully implemented by means of the PRC
synchronization primitives(the copy/uncopy instructions are inserted depending on

the presence of the single assignment variables).

5.2.3 Compiling aspects

Lack of clarity in expression of data— > synch and synch— > data precedences are

the bane of consistency models like RC where synchronization scopes are dictated by

65

program order. Program order tends to obfuscate these precedence arcs which are in
fact known to the programmer. This enforces unnecessary constraints on instruction-
level parallelism. PRC seeks to eliminate these redundant constraints on concurrency
by generalizing the notion of program order slightly, allowing both (i) specification
of the scope of synchronization primitives, and (ii) specification of point-to-point
precedences within a thread without giving up the benefits of program order vis-a-
vis dependence analysis(flat program order facilitates compiler analysis of data and
control dependences, obviating this task for the programmer).

Consider the parallel block in Fig. 16. Assume it appears between two serial
blocks. It is intuitively clear how an optimizing compiler would analyze this parallel
program. The four blocks have a simple lattice structure. The compiler does depen-
dence analysis (i) from the initial serial block to each of the components of the parallel
blocks, and (ii) from each of the components of the parallel block to the final serial
block. Sing variables preclude interference from writes by competing subthreads.
Conceptually, this is scarcely more difficult than dependence analysis of flat program
order. Thus, we justify our assumption that compiler analysis in order to implement
PRC and our visible synchronization based protocol is indeed a very viable prospect,

thus easing fears that this would be a stumbling block to our coherence scheme.

5.2.4 Architectural support for PRC

Convention dictates that compilers analyze parallelism at compile-time and reserial-
izes code, for the hardware to re-analyze parallelism(without violating the consistency
model). It would be more direct however, if the parallelism is encoded somehow at
compile-time for the hardware to decode it at run-time. A completely unrestricted
partial order would entail more encoding; this has practical limits. Each instruction ¢
is part of a partially ordered instruction stream, and has a finite number of immediate
predecessor instructions upon which it is dependent. Static or dynamic issue order
pattém is dictated by the completion of the dependent instructions as follows: Each
memory reference upon which an instruction i depends is issued in a non-blocking
manner and is identified by a tag, that returns acknowledgement messages to the
right address upon completion. When all acknowledgements have been received —
the number of predecessors being known, statically or dynamically — a hardware join

operation allows i to continue.

66

A serial encoding of partial order would impose restrictions on thread parallelism
that is visible to the processor. As an alternative, Tera’s compiler prescribes an
instruction stream with a 3-bit lookahead field, which affords a dependency lookahead
window of size 8[R. 90]. Thus, a new instruction waits for the completion of all
instructions that have a lookahead to it. At most, eight instructions from a stream
maybe executing concurrently, since the code window size is 8. A hardware instruction
waits thus for a bounded number of memory references.

Every thread has an eight element lock counter array. One component of this array
(say, lock[tag]) is dynamically bound to each instruction instance, which may need to
wait for several predecessor instructions to complete execution. When a predecessor
issues, the lock counter is incremented and when it completes, is decremented. The
instruction instance bound to this tag might issue only when the lock counter has
reached zero. In the case of superscalar processors, instructions whose lock counter

is zero can be issued concurrently.

— P(s) lIka=1 [tag = 6]

— P(¢t) lkka=3 [tag = 7]
>a lka=5 [tag=0] +—
b lka = 4 [tag = 1] Concurrent
. ka = 3 [tag = 2] Issue
+—d lkka=3 [tag = 3] } Concurrent
e lka=2 [tag = 4] Issue

f lkka=1 [tag=5] Y _____
L. V(s) lka = - [tag = 6]
L~ V() lkka=- [tag=7]

Figure 24: Tagged dependency lookahead

The above is the sample compiled code for the PRC program in the first PRC

example in Fig. 16, assuming no data dependences and static issue order. Brackets

67

enclose information available only at run-time. We show the dynamic execution. Ev-
ery instruction has a tag in 0..7 by the time it issues, following tag[next] = tag[current]
+ 1(mod 8). When it issues, P(s) increments the lock[tag] counter of “a”, viz. lock[0],
and P(t) increments that of “d”, lock[3]. The whole instruction stream waits for P(s)
to complete, in other words for lock[0] to go down to zero. Once this happens, a,b and
c are issued concurrently, assuming a superscalar processor. Each increments lock[6]
by one, as they issue. Thus, V(s) waits for all three to finish, and assuming static issue
order, it has to wait for f to issue. Similarly d has to wait for c to issue and P(t) to
complete, once this takes place, all three of d, e and f issue concurrently. Admittedly
some parallelism has been lost in this encoding, since P(t) might complete first.

When the processor is not superscalar, issue order is dictated largely by compiler
scheduling. For processors that block on read accesses, write latency can still be
effectively tolerated as long as write buffer and read caches permit reads to be serviced
while writes are still pending. [K. 90]. Tolerating read latency however, for processors
that don’t block on reads, is considerably more difficult, since computations that
follow reads, generally require the read value to proceed. Hence, unless there is very
sophisticated compiler scheduling, read latency is tougher to get around.

We now sketch the architectural base for software-binding register prefetch, which
is an effective latency tolerance tool. Every processor register has a reserved bit and
a full/empty bit. A load instruction specifies the remote address and response tag.
The tag belongs to register name space, and identifies a destination register(say, r)
which is both reserved and set to empty when the load issues. Switch-on- every-cycle
multithreading minimizes the need for slack instructions to be placed between this
load and the first use of this value, as well as the length of time the destination register
r is out of service(This is one of the main advantages in employing switch-on-every-
cycle multithreading, instructions from the same context are spread apart in time).
When a subsequent register operation refers to r, the thread will trap if r is empty.

Using the code fragment below, we illustrate software-managed binding register
prefetching. The register fields of the fetch are (i) an address register with the remote
address and (ii) a destination register that is allocated until the reference completes.
The fetch instruction is non-blocking. The compiler must find unrelated computation
to tolerate the expected latency of the load. This task is made easy by a high degree
of intra-thread parallelism, so that non-blocking operations that can incur latency

can cover for their latency by switching contexts.

68

fetch r_a, r \\ r_ now reserved

instruction \\ slack instructions
instruction
instruction
reg_op r_, ... \\ traps if r_ empty

Figure 25: Software-managed binding register prefetching

Writes may also be viewed as split-phase transactions, that is, the issue and
the completion of the instruction occur in two phases. A store instruction spec-
ifies remote address, value to write, and response tag. The tag belongs to join
name space. which maybe quite small. Suppose multiple writes to a locked ob-
ject are outstanding. As each write completes, an initialized join counter decrements.
When the counter reaches zero, a release operation for the object issues.[G. 93]. A
closely related approach is based on explicit language-level split-phase remote memory
operations[T. 92].

5.3 Relation to consistency model

The release consistency model states that:

(i) No processor may issue an ordinary shared variable access until all acquire
operations that precede the access in program order have completed.

(ii) No processor may issue a release operation until all ordinary shared variable
accesses that precede the operation in program order have completed.

(iii) Special accesses like synchronizing operations need to be processor consistent.

In our(base) protocol:

(i) No processor may issue cached loads and stores until all P’s that precede them
in “program order” have completed.

(ii) No processor may issue a V until all uncopies, including writebacks, that
precede the V operation in “program order” have completed.

As presented therefore, our base protocol and sector invalidation, have been made

69

fully consistent with release consistency. It seems clear that the base protocol would
need to be extended somewhat to take full advantage of protects consistency, but we

have not carried our research this far.

70

Chapter 6

Conclusion

“Fvery scientific truth goes through three stages. First, people say it conflicts with
the Bible. Next they say it had been discovered before. Lastly, they say they always
believed it.”- Louis Agassiz.

“It is the customary fate of new truth to begin as heresies and to end as supersti-
tions.” - T.H. Huxley.

6.1 Our notion of a good cache coherence proto-

col

If caches are the front line of defence against both memory latency and memory band-
width, then protocols will be complex. They will also be brittle and inefficient. They
won’t scale. If on the other hand, caches are merely handmaidens to multithread-
ing, then compiler-implemented protocols can be simple. They can also be robust,
efficient and scalable.

The aim of an efficient cache coherence protocol should be to handle conflicting
data accesses, which cause inconsistencies in shared data, which are however lesser
in frequency than non-conflicting data accesses, without causing delays to the latter
which are generally more in number. Therefore, conservatism in invalidating cached
copies should be curtailed, but on the other hand, we needn’t be obsessed with high
hit ratios. We look to switch- on-every-cycle multithreading to decrease latency and

add a low-latency coherence protocol to augment it. We thus would rather have a

71

simple low-latency protocol rather than a complex protocol which might result in
slightly higher hit ratios but would be much more difficult to implement.

We propose compiler-implemented cache coherent protocols, where user/compiler
knowledge(i.e. alias analysis, dependence analysis and user directives) is used to
eliminate most coherence traffic[Pro94]. We follow the convention that visible syn-
chronization directly coordinates changes in writeability of shared data, guiding the
cached copy through the three states, viz., (i) private, (ii) shared and (iii) un-
cacheable. We replace program-independent automatic cache-coherency by program
specific user/compiler control over (i) when to copy from memory to cache after vis-
ible synchronization input points and (ii) when to uncopy from caches before visible
synchronization output points. PRC directives which use serial and parallel blocks
and private-to-thread single assignment variables aid in this respect.

Directory based hardware cache coherency protocols spend too much time on
run-time bookkeeping of variable to cache mappings, and entail high coherence traffic.
There is also the significant point that in such protocols, synchronization action is sep-
arate from invalidation. That is, once the synchronization primitive is executed, the
directory is looked up and the necessary non-local invalidations are made. Synchro-
nization primitives function merely as guards, they ensure that invalidations(updates)
do no harm. They are not perpetrators of invalidation action themselves. We seek
to eliminate this redundancy by allowing visible synchronization to direct changes
in writeability. The protects relation allows us to specify selective uncopying be-
fore output synchronization. Other optimizations keep invalidation to a minimum,
while keeping the protocol’s simplicity intact. The payoff is that a transition from n
shared copies to 1 private copy incurs no global communication whatsoever. Since,
all coherence actions are local, this protocol is fully scalable.

PRC specifies part of thread partial order by using (i) serial and parallel blocks
to indicate scope of synchronization primitives and (ii) private to thread single as-
signment variables to express point-to-point synch— > data precedence arcs. Both
these mean that PRC doesn’t have the unlimited scope problem with its synchroniza-
tion primitives that release consistency has. We thus replace conventional program-
independent cache coherency protocols by a user/compiler controlled program-specific
protocol that is directly linked to a less restraining memory consistency model, whose
primitives help in selective uncopying and copying of cached copies.

Cache coherency protocols lose their meaning if they are not intelligent, scalable,

72

and cost-effective. If traditional automatic cache coherency protocols cannot pro-
vide us with qualitative use of communication bandwidth, they will be replaced by
user/compiler managed coherency techniques that are program-behaviour specific,
whilst maintaining simplicity of implementation. Latency tolerance methods like
switch-on-every-cycle multithreading backed up by such coherency strategies ensure

correctness of execution without compromising on scalability.

73

Bibliography

[A. 95]

[A.J85]

[A.V86]

[Bur]

[D. 81]

[D. 90a]

[D. 90b]

[D. 91]

A. Agarwal et al. The mit alewife machine: Architecture and performance.
In Proc. of the Int’l Symposium on Computer Arhictecture, pages 2-13,
Ligure, Italy, 1995.

A.J. Smith. Cpu cache consistency with software supp.ort and using one
time identifiers. Proc. of the Pacific Computer Communications, pages 153—
161, 1985.

A.V. Veidenbaum. A compiler-assisted cache coherence solution for multi-
processors. In Proc. ICPP, pages 1029-1036, August 1986.

Burton Smith. private communication with D.K. Probst.

D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
Proc. of the 8th Annual Symposium on Computer Architecture, pages 81—
87, June 1981.

D. Callahan and B.J. Smith. A future-based parallel language for a general
purpose highly-parallel computer. In D. Gelernter et al., editor, Languages
and Compilers for Parallel Computing, pages 95-113. MIT Press, 1990.

D. Lenoski et al. The directory based cache coherence protocol for the
dash multiprocessor. In Proc. of the 17th Int’l Symposium on Computer
Architecture, pages 148-159, 1990.

D. Chaiken, J. Kubiatowicz, A. Agarwal. Limitless directories: A scalable
cache coherence scheme. In Proc. of the {th Int’l Conference on Architectural
Support for Programming Languages and Operating Systems, pages 224-234,
1991.

74

[D. 92a]

[D. 92b]

[D.J93]

[G. 93]

[H. 88]

[J. a]

[J- b]

[J. 92]

(K. 90]

(K. 93]

[K.K87]

D. Culler et al. Log p: Towards a realistic model of parallel computation.
Tech: report ucb/csd 92/713, UC Berkeley, 1992.

D. Lenoski et al. The stanford dash multiprocessor. IEEE Computer, pages
63-79, March 1992.

D.J. Lilja. Cache coherence in large-scale shared-memory multiprocessors:
Issues and comparisons. ACM Computing Surveys, 25:3:303-338, September
1993.

G. Papadopoulus, September 1993. private communication with D.K.
Probst.

H. Cheong and A.V. Veidenbaum. A cache coherence with fast selective in-
validation. In Proc. 15th Int’l Symposium on Computer Architecture, pages
299-307, 1988.

J. Laudon. Ph.d. thesis, stanford university.

J. Laudon, A. Gupta and M. Horowitz. Interleaving: A multithreading
technique targeting multiprocessors and workstations. Technical report,
Computer Systems Laboratory, Stanford University.

J. Kubiatowicz, D. Chaiken and A. Agarwal. Closing the window of vulner-
ability in multiphase memory transactions. In Proc. of the 5th Int’l Confer-
ence on Architectural Supp.ort for Programming Languages and Operating
Systems, pages 274—284, October 1992.

K. Gharachorloo et al. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proc. of the 17th Int’l Symposium on
Computer Architecture, pages 15-26, May 1990.

K. Mani Chandy and C. Kesselman. Cc++4: A declarative concurrent
object-oriented programming notation. Report caltech-cs-92-01, Depart-
ment of Computer Science, California Institute of Technology, January
1992(revised March 1993.

K.K. McAuliffe. Ph.d. thesis nyu, May 1987.

75

[L. 78]

[L. 79]

[L. 93]

[M. 86]

[M.D93]

[Pro93a]

[Pro93b]

[Pro94]

[R. 90]

[R.L87a]

L. Censier and P. Feautrier. A new solution to coherence problems in mul-
ticache systems. IEEFE trans. on Computers, C27(12):1112-1118, 1978.

L. Lamport. How to make a multiprocessor computer that correctly ex-
ecutes multiprocess programs. IEEFE trans. on Computers, 28:9:690-691,
September 1979.

L. Lamport. How to make a correct multiprocess program execute correctly
on a multiprocessor. Src research report 95, DEC, February 1993.

M. Dubois et al. Memory access buffering in multiprocessors. In Proc. of
the 13th Int’l Symposium on Computer Architecture, pages 434-442, June

1986.

M.D. Hill et al. Cooperative shared memory: Software and hardware for
scalable multiprocessors. ACM Transactions on Computer Systems, pages
33-54, November 1993.

Probst, D.K. Efficient implementation of thread partial order for a scalable
shared-memory multiprocessor, May 1993. Third Workshop on Scalable
Shared-Memory Multiprocessors, M. Dubois and S. Thakkar, orgs.

Probst, D.K. Programming, compiling and executing partially-ordered in-
struction streams. In Twenty-Seventh Hawait International Conference on
System Sciences, T. Mudge and B. Shriver, eds. Vol. I (Architecture), IEEE
Computer Society Press, 1994, pages 584 — 593, Maui, HI, January 1993.

Probst, D.K. User/compiler-managed register caches to eliminate coher-
ence traffic in scalable shared-memory multiprocessors, April 1994. Fourth
Workshop on Scalable Shared-Memory Multiprocessors, M. Dubois and S.
Thakkar, orgs.

R. Alverson et al. The tera computer system. In Proc. of the 17th Int’l
Conference on Supercomputing, pages 1-6, June 1990.

R.L. Lee. The effectiveness of caches and data prefetch buffers in large-
scale shared memory multiprocessors, ph.d. thesis, tech. rep. 670, August
1987. Center of Supercomputing Research and Development, U. of Illinois
at Urbana-Champaign.

76

[R.L87b] R.L. Lee, P.C. Yew and D.H. Lawrie. Multiprocessor cache design consid-

[T. 92]

[V.R86]

erations. In Proc. of the 1{th Int’l Symposium on Computer Architecture,
pages 253-262, June 1987.

T. von Eicken et al. Active messages: A mechanism for integrated com-
munication and computation. In Proc. 19th Int’l Symposium on Computer
Architecture, pages 256266, May 1992.

V.R. Pratt. Modelling concurrency with partial orders. Intl Journal of
Parallel Programming, 15:1:33-71, February 1986.

(4

