&% Nationai Library

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possib.e.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395 rue Wellington
Ottawa (Ontaro)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Ncus avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a coniéré le grade.

La qualit¢t dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a I'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Communicating Software Design Patterns with InfoMaps

Athanassios A. Michailidis

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Science at
Concordia University

Montréal, Quebéc, Canada

March 1995

© Athanassios A. Michailidis 1995

H * I Nationa! Library Bibliothéque nationale
du Canada

of Canada

Your Mg VOite tohot e

e e NUIG réteven ¢

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE

Acquisitions and Orrection des acquisitions €l
Bibliographic Services Branch des services bibliographiques
395 welkngton Street 395, rue Wellington
Ottawa, Ontanc Ottawa (Ontano)
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN

[RREVOCABLE NON-EXCLUSIVE

LICENCE ALLOWING THE NATIONAL

LIBRARY OF CANADA TO

REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTILAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER

PERMISSION.

ISBN 0-612-01364-2

Canadi

REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR Q'JI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Abstract
Communicating Software Design Patterns with InfoMaps

Athanassios A. Michailidis

roblems encountered during the design and analysis of software vary. The solutions applied to
these problems can be used several times without performing the same task twice. Design
Patterns describe problems which occur over and over again during the software design process.
Several parts constitute a Design Pattern. These parts can be represented uniformly if the

appropriate notation is available to us.

In this thesis we study the notation of the InfoMap representation methodology and its
applications. Steps are presented for the construction of InfoMap models. The proposed
framework is derived by the application of heuristics on the context-free grammar production
rules designed specifically for the InfoMap notation. These rules provide automation for the
conversion of the production rules to a framework structure. The design framework structure is
compatible with rules for designing classes and frameworks found in the literature. The
framework used to accomplish this task is also presented using its own notation, and modeled
using the Rational Inc. CASE tool. The notation and the framework that accompanies the
methodology are used as a common vocabulary for the presentation and communication of
Design Patterns. Furthermore the characteristics of Design Patterns are compared to

InfoMap/InfoSchema characteristics.

For the purpose of this study we present the InfoRun system, which simulates the execution of
Control Flow Graphs presented in the InfoMap notation. Control Flow Graphs can be imported
in the InfoRun system and manipulated during run-time. This allows us to experiment with
Control Flow Graphs and model the source code of the Design Patterns in an executable fashion

using the InfoMap notation.

iii

Acknowledgments

This could have been an easier task, had 1 listened to the advice of my
supervisor, Dr. W.M. Jaworski, on two occasions: the first in January of 1993 and
the second in November of 1994. In both cases (totally unrelated events) 1
realized what it means to be working with him on and cff campus, and seeking
his academic and personal advice. Special thanks to him and to my family for
their support. Finally, I would like to express my appreciation to Maria Skitzis,
my LIFE 101 Instructor.

iv

Epigram

“The only thing I know is that I know nothing.”
Socrates

Table of Contents

LiSt Of FIBUTES wcoverinineirnnnnininncenninsssssnsnisnsssssssenessssnsnssssssssssasssssssssssssstissassssasssns ix
TrAdeMArKS ...ccccveriiinmninninesonisimmsismiieesiisosiissssesmrsssssasissssasions xiii
CHAPTER 1: INTRODUCTION....ccoeetsruireniisinsesesssssnsionsrsiessssssnsssssasassssnssisssssassensssns 1
1.1 CONEEXL wveivrrerieciiicireeie ettt st s st b e s bbb s b bbb en b s s s e s aenenias 1
1.2 ODJECHVE. coovcecteiciet it s 2
1.3 OrganizZation.......ccevesiiiimiierisises st et e s 2
CHAPTER 2: METHODOLOGY ..ccvcviinnnsiniinsnsmnisnsinsssssssssssssssmsssssstosssssissssssassssssises 4
2.1 Introduction, MOBIVAIONcceeeiiiiirieiesie et 4
2.2 Methodology Definitions......c.cin e 6
2.2.1 Methodology AHIIDULEScccovviiicr e, 7
2.2.2 Valid Role Definitionsccoveeeveriniiniiiiiiniiiniencsnee e s 11
2.2.3 Levels 0f ADSHactioNcovieeeerieieinnns vt s ssssiasss e ssnones 13
2.3 Producing Representationscoceoeines wovrecieniincii e, 15
2.3.1 Context-Free Grammar for the Methodologyc.cocvvininnieniinnns 15
2.3.2 Context-Free Grammar for the General Level of Abstraction................. 17
2.3.3 Context-Free Grammar for the Detailed Level of Abstraction................ 21
2.4 Summary, DelivVerables ... 26
CHAPTER 3: THE DESIGN FRAMEWORK........cccuntmannenrnnnnsssisnsaesissississsasssssine 29
3.1 Introduction, MoOtiVationcveeeie s 29
3.2 Framework Structure, Domain and Classification..........ccccovvmnininiineeenniinn, 30)
3.3 The Design Framework......ciiimiieii s 33
3.3.1 ASSUMPHIONS c.vcvverreriiiniessniss e e 34
3.3.2 Creation Of ClasseS.......ccvuiereevirinssesessessmssessesissssssessssisrinssessssassissssssssssasssss 3O

vi

3.3.3 Framework Operations........uieeeieeieneniiinnins s 41

3.4 Class and Framework Rules Applied cooovviviennciiiiiinins 46
3.5 Rational Inc. CASE Tool Specificationscccoevnniinecnneeeciiniiiniiciin 48
3.6 Summary, Deliverables ... e, 51
CHAPTER 4: DESIGN PATTERN MODELINGcccceieniisnsnsensscsscsisssssssesssnssens 52
4.1 Introduction, MotiVationccceeeievinirier i et 52
4.2 Design Patterns: Definitions, Classification, Origin ..., 53
4.3 The Parts of a Design Pattern. ... e 57
4.4 Modeling of Design Patterns.......ocvveimcniiiieeices s 61
4.5 ODBSEIVALIONS ..ot cvreereraecttiie ettt st et s 68

4.5.1 InfoMap - Design Patterns Common Properties..........cccoevviviviinieininn. 69

452 Arriving at Design Patterns...........oueerininiii s 72
4.6 Summary, Deliverables ...t 73
CHAPTER 5: InfoMap IN INfOMap wceeeecieinenncnnnnnscsnsnessssssmsessssssssssssses 75
5.1 Introduction, Motivation ... e 75
5.2 InfoMap Presented in its OWn Terms......ccvvevrinninineincine 75
5.3 InfoMap by-Productsottt 81
5.4 Summary, Deliverables ..ot 82
CHAPTER 6: TRACING OF CONTROL FLOW GRAPHS.....ccccoecrsisissisancsassarense 83
6.1 Introduction, MoOtIVAIONc.eveeiiie ettt escsnsssessste s ssses st esas s sssesaees 83
6.2 Representing Control Flow Graphs ..., 83

6.2.1 General Level of AbStraction.........cveiiniiinniinsesse s 84

6.2.2 Detailed Level of ADStraction ... 85
6.3 The IRfORUN SYSLEM ..ottt e ssasens 90

6.3.1 The INfORUN INtErface.........cuveuveriiiiiiciiieinennesrn e 91

6.3.2 The InfoRun Inference MechanisSmccvrenrenncniesnnnienicisins 95

vii

6.3.3 The Data File.....c.coocevvivcniniiiiiiciiiiiiii e y7

6.4 Design Pattern Source Code Modeling ..o, 97
6.5 Graph Tracing with the InfoRun System ... 99
6.6 Summary, Deliverables.........cooriiiiiic e 100
CHAPTER 7: CONCLUSION ..cciininnsnsnnnninnsnsssssinsssssssssssssssssssssesssssossassnns 102
7.1 REETOSPECL.....viviiiiiictiiinicinte sttt bbb bbb, 102
7.2 Future ReSarch..........cocciiviiiiiiiiiiicniiniec s 103
REfEICIICES 1uversserisnunansessisssesisssnssusnisssssmsnsssssassssssensisnsresssnsesssssssstansssasssssssnsssssstsssseses 105
APPENDIX A. Rational Rose/C++ CASE Tool Results.......cccccovncnsensiincniinncns 110
APPENDIX B. InfoMap Models of Appendix Aenicennnnscsninisscscssnnn, 134
APPENDIX C. Rational Rose/C++ CASE Tool “Exported” Results................. 147

viii

2.1.

2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.
2.15.

2.16.

List of Figures

Relationship Between SetName, SetRole,

SetMember, and SetMemberRole: A Diagrammatic

Description of @ Partition. ... 7
Diagrammatic Description of SetName.........ooviiiiiiis 8
Diagrammatic Description of SetRole.........cooviimiiiiniiiiisens 8
Diagrammatic Description of SetMember ..., 9
Diagrammatic Description of SetMemberRole............cccocoeeviiiiiinnnnns 10
Summary of the InfoMap SetRoles........ccveeeciiiiiiiiiiies 13
Summary of the InfoMap Relationship Levels........c.cccoociiicniiiinninn, 14

Modeling Process for Producing InfoMap

REPreSeNtationscvvveeieiinmneritsrsisssesisss st 15
First Level of Context-Free Grammar Production Rules for the

General Level of AbStraction........c.cocvveveenncnniniiinieenneses s 18
Second Level of Context-Free Grammar Production Rules for the

General Level of AbStraction.........c.ceiviiriniinniniinencsee 18
Third Level of Context-Free Grammar Production Rules for the

General Level of AbStraction..........ccoeevviiniiiniciiiniiinressnsesssseseenens 18
Process for Applying the Production Rules at the General Level

Of ADSETACHON cvvvivirreeveer ettt b s sa s b s e s sa b s e baba s ens 19
Algorithm for Producing the Tabular Representation at the

General Level of AbStraction.........cccceeemvninnsiiniiniiniioiennes e 20
Example Application of the Algorithm in Figure 2.13ccooviniiinniinnn. 21
First Level of Context-Free Grammar Production Rules for the

Detailed Level of AbSractionccccevvvniiineniiiniisnnesneeesneasnenene 22
Second Level of Context-Free Grammar Production Rules for the

Detailed Level Of ADSEFACHON co.euvverveeevereiieesieieeeeserreesssssessssssessssssesseessssssonss 22

ix

2.17.

2.18.

2.19.

2.20.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

Third Level of Context-Free Grammar Production Rules for the
Detailed Level of AbStractionc..cvvevevinieniii e 23
Process for Applying the Production Rules at the Detailed Level
Of ADSETACHON c.vevreveree ettt ettt bt st 24

Algorithm for producing the Tabular Representation at the

Detailed Level of AbStractionco.oviveviiiiiiiin 25
Example Application of the Algorithm in Figure 2,19, 28
InfoMap Tabular Structure Arrays. ..., 34

InfoMap General Level Framework Partition

Corresponding to Production Rules 1, 2, 3 and 4 of figure 2.936
InfoMap General Level Framework Partition

Corresponding to Production Rule 5 of figure 2.10, and Rules 8 ¥ 12

Of fIGUTE 2.11 oot
InfoMap General Level Framework Partition

Corresponding to Production Rule 6 of figure 2.10, and Rules 13 to 18

Of fIGUEE 2. 11 ooeviiieiiietri et 3
InfoMap General Level Framework Partition

Corresponding to Production Rule 7 of figure 2.10, and Rules 20 and 21

Of fIGUIE 2.11 oecicicr s OO
InfoMap Detailed Level Framework Partition

Corresponding to Production Rules 22 to 24 of figure 2.15, and Rule 25

Of FIGUIE 2,16 ..ot s OO
InfoMap Detailed Level Framework Partition

Corresponding to Production Rules 26 and 29 to 33 of figure 2.17............. 39
InfoMap Detailed Level Framework Partition

Corresponding to Production Rules 27 and 34 to 39 of figure 2.17........... 40
InfoMap Detailed Level Framework Partition

Corresponding to Production Rules 28, 40, and 41 of figure 2.17 4()

- -«

3.10.

3.11.

3.12.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.
5.1.

5.2.

54.
6.1.
6.2.

6.3.
6.4.

Class View Diagram for the General Level of Abstraction

produced by the Rational Inc. CASE TOOIccccooviiiiiiniiiisiesnis
Class View Diagram for the Detailed Level of Abstraction

produced by the Rational Inc. CASE TOO! ..o
Sample of the Specifications Produced by the Rational Inc. CASE

Design Pattern Classification Scheme.......c.ccccvniinniiiiiine.
General Abstraction Model of the Interpreter Design Pattern.....................
Detailed Abstraction Model corresponding to figure 4.2. Part [1]
Detailed Abstraction Model corresponding to figure 4.2. Part 2]
Detailed Abstraction Model corresponding to figure 4.2. Part [3]
InfoMap CompoSibility....ccouveveiieieirineeiseinsnie s
INfOMAP OPENNESS.....oviriieriererinsisiinisiseieissistisss e
InfoMap ENcapsulation.......c.ueeiiieinescinnnnciccicss s
InfoMap Framework Presented in the

InfoMap MethodolOgYveeeiiiiniiniiec e
Operations of the Framework at the General Level of Abstraction
Presented in the InfoMap Methodologycccoveeeeniinnniniiiiiin
Operations of the Framework at the Detailed Level of Abstraction
Presented in the InfoMap Methodologyccoevvviiiincininiinin
Parts of the InfoMap TechNOIOZYccevrvevrmmmisinensinenisiciescsseesissssniinens
Diagrammatic Representation of a Typical Control Flow Graph................
InfoMap Representation of a Control Flow Graph

at the General Level of Abstraction........coeieiniininnciiinnine,
Graphical Representation of State - Transition Casesc.cuursicininnnn,
InfoMap Representation of State - Transition Cases

at the Detailed Level of Abstraction.........cucieeiniininnnciciciiicicn,

Graphical Representation of Control Flow Cases........cc.covcvisiininiiiniinnn.

Xi

6.6.

6.7.
6.8.

6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.

6.16.

B.1.

B.2.

B.3.
B.4.
B.5.
B.6.
B.7.
B.8.
B.9.
B.10.
B.11.
B.12.

InfoMap Representation of Control Flow Cases at

the Detailed Level of AbStraction.........covciiiiciiineiee e 88
Graphical Representation of a Transition with Actions..........coccncan 88
InfoMap Representation of a Transition with

Actions at the Detailed Level of Abstraction.........cceceiiiinennn 89

InfoMap Representation of the Binary Search

Paradigm at the Detailed Level of Abstractionc.cccoocvevieincnnnn, 90
INfORUN INEEITACE «..vvvvreereeeeciiitinct et 92
InfoRun Configuration Dialog BoXcceveriinininieniciceciiiine, 93
INFORUN IN ACHON ..ottt 94
InfoRun Arrays for the Processing of Rows and Columns........ovvninnn, 96
Interpreter Design Pattern Source Code for Class BooleanExp.................. 98

InfoMap Model Corresponding to figure 6.14

Imported in the INfORUN SyStemooviviiieininncceni i, 98
Modification of SetMembers and SetMemberRoles of the

InfoMap Representation of Control Flow Graphs.......cccoocceeviininnins, 100
InfoMap General Level of Abstraction Modeling of the

Rational Inc. Generated Output Specifications (pages 110 to 120)............. 135
InfoMap General Level of Abstraction Modeling of the

Rational Inc. Generated Output Specifications (pages 121 to 132)............. 136
Class Documentation Partition Corresponding to Figure B.T 137
Has-A Relationship Partition Corresponding to Figure B.1cooeeee .. 138
Hierarchy Relationship Partition Corresponding to Figure B.1................. 139
Operation Documentation Partition Corresponding to Figure B.1........... 140
Argument Type Partition Corresponding to Figure B.1....ccccocoviiiiierccennns 141
Class Documentation Partition Corresponding to Figure B.2.................... 142
Has-A Relationship Partition Corresponding to Figure B.2cccoeveeeinnn 143
Hierarchy Relationship Partition Corresponding to Figure B.2................. 144
Operation Documentation Partition Corresponding to Figure B.2 145
Argument Type Partition Corresponding to Figure B.2........ccoooiececennee. 146

Xil

Trademarks

Rational Rose C++ is a registered trademark of Rational Incorporated.

Microsoft Excel is a registered trademark of Microsoft Corporation.

Xiii

CHAPTER 1: INTRODUCTION
1.1 Context

There exist a wide variety of design techniques and programming tools. These
techniques and tools provide assistance to software developers and researchers,
who live and breathe in a world that contains several notions that need to be
related and classified in a meaningful manner. These notions include entitics,
processes, locations, people, times and purposes [3]. Therefore, producing
quality software depends not only on tools and techniques for design and
programming, but also on the several pieces of information that need to be
arranged and viewed in a clear, non-ambiguous style. Most programming
techniques and design methodologies provide ways for interrclating picces of
information for efficient and effective viewing and communication purposes.

The viewing of the several pieces of information that influence design and
programming decisions can be performed in several ways. A common language
that can describe each system viewing style is needed. A natural language such
as English is capable of describing everything [7, 8, 14]. Yet, although English
may be a good communication tool for discussion of design decisions in the carly
stages of design, it is not as precise as a more specialized notation that captures
all the views of a system. Symbolic logic is precise and general enough to
describe anything that can be implemented as a software entity [4]. But the usual
predicate calculus notation for logic tends to become unreadable, even for simple
examples. Conceptual graphs are a readable graphic notation for logic that is
designed for translations to and from natural languages [5, 6]. Because of the
generality and readability of conceptual graphs, they have become popular
among developers of methodologies and systems. Nevertheless, in several cases
they fail to capture the exact interrelationship of the components of a system,
since they introduce unnecessary complexity due to misleading notations [9].

The primary goal of software engineering is high-quality software. Specifically,
this means software that is appropriately compatible, correct, correctable,
efficient, extensible, maintainable, modifiable, portable, reliable, reusable, robust,
safe, secure, testable, understandable, user-friendly, validatable and verifiable

1

[2]. Therefore, in order to introduce all these qualities in software design and
implementation, the display of the components that constitute a system should
be crystal-clear. The InfoMap methodology, and its applications described in this
thesis, have been proposed as a notation and representation approach for
viewing overall structures of systems. Its abstraction levels provide the
advantage of focusing on one aspect of a system while ignoring others, and its
notation provides an implementable framework. Therefore we have chosen to
describe and then use this methodology in order to analytically communicate

ideas.
1.2 Objective

This work has multiple objectives. The main objective is to establish a
representation methodology for the effective and efficient communication of
design patterns [1]. In order to accomplish this objective, the methodology of
producing InfoMap models is presented. The secondary objectives of this work
are: first, to present the context-free grammar of the InfoMap methodology, and
its transformation to a design framework; second, to present this framework in
its own terms; and third, to present a mechanism for executing control flow
graphs represented in the InfoMap methodology. The experience gained
through this exercise of organizing a methodology, presenting it in terms of a
framework, using it and designing tools for it tested the completeness of this
methodology.

1.3 Organization

This thesis is organized into seven chapters and three appendices. In chapter 2
the basics of the methodology for the derivation of the InfoMap models are
presented. The proposed methodology for deriving models is presented as a
sequence of steps. These steps start with the definition of a context-free grammar
for the methodology, continue with the description of a process for the
application of the production rules of the context-free grammar, and finally
apply algorithms for the conversion of terminal tokens to InfoMap models. In
chapter 3 the design framework as well as framework related issues are
presented. The proposed design framework is derived by applying certain

2

heuristic rules to the context-free grammar that transforms the production rules
into classes and their inheritance relationships. In chapter 4 the framework along
with the basics of the methodology are used to provide a model for design
patterns. This provides a demonstration of the framework and its capabilities.
Chapter 5 offers a brief description of the basics and the framework of the
methodology presented in its own terms. In chapter 6 the InfoRun system is
presented. Itis a tool for the execution of control flow graphs, presented in terms
of the InfoMap methodology. The conclusion of the thesis follows chapter 6. In
the conclusion we summarize the findings and suggest further research in the
areas of design pattern representation, the InfoMap methodology, and the
improvement of the InfoRun tool. In the first appendix of this thesis we present
the specifications of the design framework, discussed in chapter 3, produced by
the Rational Inc. CASE tool [15]. In the second appendix we present the same
specifications modeled using the InfoMap methodology. In the third appendix,
we present the same specifications given in the first appendix using the “export”
function provided by the Rational Inc. CASE tool. This function exports the
specifications for further manipulation by other systems.

CHAPTER 22 METHODOLOGY
2.1 Introduction, Motivation

Models are abstractions that provide problem analysts with the capability of
having a diagrammatic, textual, and/or mathematical view of a given problem.
Models in general are used to represent specific domains of knowledge. In the
software community several kinds of models are used to represent the software
knowledge specific domain. This domain includes documentation (Software
Requirements Documents and Software Specifications Documents [11]) and
design (Data Flow Diagrams and Control Flow Diagrams [12, 13]). Entities
contained in this domain need to be modeled in a clear, non-ambiguous way.
This clarity should guarantee the visibility of +very aspect within these entities.
One approach is to partition a specific knowledge domain into sets of items,
define the relationships between and within these sets of items, and determine

levels of representation abstraction.

The InfoMap approach transforms a given 2-dimensional screen into an n-
dimensional space by grouping the rows and columns of a spreadsheet. The idea
that this representation is possible was initiated in the late 1960’s at CROPI [54].
CROPI was an institute responsible for the organization and coordination of the
Polish heavy industry in the late 1960’s. This organization and coordination of
the Polish industry (mining and manufacturing) was targeted towards 900,000
employees in total. The advancement of the InfoMap methodology is mainly
attributed to Dr. W.M. Jaworski at Concordia University, who was a founder
member of CORPI, and an advisor of the minister of the Polish heavy industry in
the late 1960's[53]. There have been several thesis completed under his
supervision. These theses focused on software production related problems and
concerns. The most important follow in chronological order.

In 1983, L. Ficocelli [49] studied the minimization of the inherited difficulties
while transforming problems to programs. This study showed how it is possible
to use the InfoMap methodology (previously known as ABL: Alternative Based
Language) in order to exploit several problems. The same year, M. Kronick [48]
studied the InfoMap methodology from the point of view of a computer-based

4

automatic dialing system. His research emphasized more the structured design
techniques, the modulization and the step-wise construction of the InfoMap
models. In 1988 another two thesis were presented. The first thesis, by D. Eddy
[52], presented the InfoMap methodology in terms of the software life cycle. In
his thesis database models were used to demonstrate the automatic verification
of models for redundancy and inconsistency related issues. The second thesis, by
K. Finkelstein [51], presented a first attempt into creating an editor for the tabular
structure of the InfoMap models. This was the first attempt to built tools for the
manipulation of the InfoMap tabular structure. Later on, in 1993 another two
thesis were presented. The first thesis, by B. Deslauriers [50], focused on the
inspection of software deliverables. These deliverables were presented, and
inspected according to several industry quality standards with the help of the
InfoMap methodology. The second thesis, by T. Cummings [43], used the
InfoMap methodology on several algorithms. The results of his research showed
how it is possible to structure and present algorithms in a state-transition
environment presented using the InfoMap methodology. Furthermore, his
research showed how it is possible to use this methodology in order to optimize
algorithms with the elimination and /or merging of states and transitions. Later
on, in 1992, S. Kattou [18], used the InfoMap methodology to present the
synthetic and reusable products of the software process. In his work the focus
was mainly on the modeling and the synthesis of the several existing software
models (i.e. : Behavior, Object-Oriented).

In addition to the varicus thesis published at Concordia Universiiy, there have
been several publications in journals and conferences on the subject of the
InfoMap methodology. The following are the most important. In 1987 the
InfoMap methodology is presented as an environment that provides a powerful,
language independent, infrastructure for the transformation of problems into
programs [55]. This work focused on the life cycle software engineering of
expert systems, and showed how it is possible to provide solutions for common
problems found in the area of expert systems. In the same year a system’s
methodology evolution is presented in terms of the InfoMap methodology [56].
This evolution is based on the idea that the InfoMap methodology can be used to
built evolving models, therefore whole systems may be built, analyzed and
evolved around the InfoMap methodology. Another attempt, as in [51], to built

5

s

automation tools for the InfoMap methodology was presented in 1970 [57]. In
this work, a decision table simulator represented using the InfoMap
methodology is given. The tool built for this purpose uses a selection strategy in
order to choose among candidate transitions, one transition that will reach faster
the desire goal or solution to a given problem. The most recent publication, by
Dr. W. M. Jaworski and the author of this thesis, was in 1994 [10]. In this paper
the basics as well as the “query-by-structure” notion was presented. The “query-
by-structure” notion extracts only the essential information from the InfoMap

model of a body of knowledge while ignoring the rest.

In this chapter we present only the basics of the InfoMap knowledge
representation methodology. These basics are: sets, relationships and levels of

abstraction. Based on these, we present the syntactical issues and the production
methodology for InfoMap models. We specify the concepts that relate sets to the
InfoMap models. These concepts are summarized by four attributes: SetName,
SetMember, SetRole, and SetMemberRole. These attributes assist the creation,
description and naming of relationships at two abstraction levels: the general
level or InfoSchema, and the detailed level or InfoMap. Following the discussion
on sets we present the rationale behind specific kinds of set roles. These roles are
attached to sets in order to provide meaning to relationships between and within
sets. The production of models using the InfoMap methodology is based on the
idea that the sets, relationships and levels of abstraction can be represented using
context-free grammars. Processes for the application of the context-free
grammars are presented and applied in order to derive terminal symbols which
are used as input to algorithms that produce the InfoMap models at the general
and detailed level of abstraction.

2.2 Methodology Definitions

Theory and practice in the area of software engineering evolve around
statements made about objects [2]. These objects have special properties. For
example, numbers may be odd or even, letters may be upper or lower case, and
datubase records may contain strings of characters or multimedia objects such as
images and/or sounds. Properties like these may be used as a guide in order to
group objects together and form sets. A set is a collection of objects that share

6

one or more common properties [16]. Set objects may overlap when one or more
objects in a given set are also present in another set. Unique sets do not share
their set members with other sets. The overlap is attributed to properties of
different sets that bring objects together. These properties that place objects
together in the same set also place some of these objects together in a different
set. Using this statement as an inspiration for our approach, we identify the sets
and the sets of sets that may exist in a world describing objects and being
described by objects, in terms of the InfoMap methodology.

22.1 Methodology Attributes

Each SetName contains SetMembers. A SetName is related to other SetNames in
a given Partition by its assigned SetRoles. The contents of all SetNames are
their SetMemberRoles.

Furthermore, SetMemberRoles may also selectively relate SetMembers from

selectively related to each other by assigned

different SetNames. This preliminary description of the relationships between
SetName, SetMember, SetRole and SetMemberRole is presented in figure 2.1.

lParﬁﬁon I
SetName 1 { SetRole SetRoleld SetName 2 [—{SetRole}- . - - -— SelRole : SetNamo n ;
SetMember] SeiMember | ! §0]|§/{Ql’)’1n-Ql il
SetMember LSl -
SetMember 2 SefMemher.: Role » SeiMamher.2
: SetMember. n— SetMember SetMember [~ SetMember. il : SetMemhern
Role kole SetMember
Role
Figure 2.1. Relationship Between SetName, SetRole, SetMember, and

SetMemberRole: A Diagrammatic Descriptien of a Partition
A SetName is an abstract definition of a set. It keeps its contents hidden.
Furthermore, it requires a specific role in order to have a meaning. This role is
described by its relationship to other SetNames within a collection of several
SetNames. The collection of several SetNames is a SetColumn.

r———’ SetColimn

I SetRole 1 l {SetName 1}

[SetRole2 | {SetName 2)

Figure 2.2. Diagrammatic Description of SetName

In figure 2.2 a SetName belongs in the SetColumn collection of several SetNames.
It is related to other SetNames in the SetColumn through the SetRole attached on
its left-hand side. Furthermore, the SetRole provides an indication about the

relationships that exist among the SetMembers of a SetName.

Second Case (SetName)
role identification

l SetRole 1 } {SetName 1} —

| SetRole2 | {SetName 2}

v

First Case (Partition)

Figure 2.3. Diagrammatic Description of SetRole

A SetRole is a relationship identification for a SetName. It describes the specific
handling that was mentioned in the previous definition of the SetName. This
identification card may be used for two kinds of relationship identifications:

[1] The relationship that may exist between two or more SetNNames.
[2] The relationship that may exist between the contents of one SetName.

The first case is called a Partition. Each time a new relationship situation is
encountered between two or more SetNames, a new SetRole is assigned to each
SetName. Therefore the SetRoles that are attached to the several SetNames of a
given Partition provide a meaningful relationship between SetNames. In the
description of a SetRole we limit the number of SetRoles by defining a restricted
collection of valid SetRoles. This is done for semantic purposes. The valid
SetRoles are presented later in our discussion.

The second case is a simple SetRole attached to a SetName. It describes the
existence of a relationship between the SetMembers of that SetName. These two
cases of SetRoles are presented in figure 2.3.

[SetRole1 | . {SetName 1)
SetMemberRole 1 E SetMember 1 '
SetMemberRole 2 ; SetMember 2 :

[SetRole2] [(SetName2) |’
SetMemberRole 1 SetMember 1 .

——p» SetMemberColumn

Figure 2.4. Diagrammatic Description of SetMember

The elements contained in SetNames are called SetMembers. They are located in
the SetMemberColumn. In each SetName, SetMembers are unique. These
SetMembers need not be interrelated in any way with one another. On the other
hand, there may be a relationship between them. In figure 2.4, a SetMember
belongs in a SetName. It is related to other SetMembers in other SetNames or
within its own SetName by a SetMemberRole.

So far we have seen SetNames and SetMembers as collections in the SetColumn,
and SetMemberColumn. What remains to be seen is what assists us in relating
these two levels. It would be helpful to have a convenient way of representing
these relationships. Therefore we use the SetRole to describe the relationships
that exist at the gencral level (collection of SetNames in SetColumn). On the
other hand, at the detailed level (a collection of SetMembers in
SetMemberColumn) we use the SetMemberRole to describe relationships which
are partitioned into the following three cases:

First Case : SetMembers of the same SetName
Second Case: SetMembers of different SetNames
Third Case : Both first and second cases
1st Case 2nd Case 3rd Case
SefRole 1 | l SetRole 2] [SetRole 3] { {SetName 1}
SetMemb
etMember SetMember1
Role1
SetMember SetMember SetMember SetMember2
Role 2 Role 1 Role1
SetMember SetMember3
Role 2
Seuter | | sermole? | | Seifoied | [tsetName2) |
SetMember SetMember SetMember1
Role 1 Role 1

» SetMemberRoleColumn

Figure 2.5. Diagrammatic Description of SetMemberRole

The three cases are shown in figure 2.5. As in the description of the SetRole
(figure 2.3), the SetMemberRole is also an identification attached to a SetMember.
The purpose of this identification card is to establish a meaningful relationship
between SetMembers. In figure 2.5, a SetMemberRole belongs in a
SetMemberRoleColumn which is a collection of SetMemberRoles. There are also
only a few valid SetMemberRoles.

2.2.2 Valid Role Definitions

As we mentioned in the previous section, there exists a limitation in the number
of valid SetRoles and SetMemberRoles. There are two reasons why this
limitation exists:

. We should identify sets of relationships and sets of SetRoles. [t is
obvious that while we use SetRoles attached to SetNames in order to
analyze real world situations, at the same time certain SetRoles may be
further decomposed into more primitive SetRoles.

. Second, we prepare the ground for the introduction of the context-free
Grammar that encapsulates these SetRoles.

The SetRoles are presented in four groups, each contains primitive SetRoles
extracted from common knowledge and experience.

[1] The Partition SetRole is a collection of SetNames which are related to one
another. Each partition is unique and represents the distinction between several
groups of relationships.

[2] The Dominant SetRole is attached to SetNames in order to specify the
uniqueness of the SetName and its SetMembers in a given Partition.
Furthermore, it implies the uniqueness of the relationship that exists between a
SetName and its SetMembers to other non-dominant SetNames and their
SetMembers in the same Partition. The Dominant SetRole is further decomposed
into more primitive SetRoles:

. The Identifier which is used to number and /or name sequences of
unique relationships presented to a SetMember.

. The Identity which is nsed to represent the “one” in a “one-to-many”
items relationship.

11

r—-———-—— B

. The Hierarchy which is used to represent a hierarchical structure of

several SetMembers.

. The Generalization which is used to represent the “parent-child”

relationship between SetMembers.

. The Aggregation which is used to represent “part-of” relationships
between SetMembers.

[3] Following the group of Dominant SetRoles, we identify the group of
Descriptive SetRoles. A Descriptive SetRole describes complex relationships
between and within sets. These SetRoles are essential for describing patterns that
develop during the specification of relationships. The relationships that exists
between sets and can be identified as patterns may be described as: Qualifiers,
Associations, Flows, Guards, Sequences, and Values.

. A Qualifier SetRole exists in a “one - to - one” relationship, between a
dominant and a non-dominant identified SetMember.

. An Association SetRole exists in a “many - to - many” relationship, and it
is the “many” part of a “one - to - many” relationship.

. A Flow SetRole may be assigned to the SetMembers of a SetName if
they describe the input and output data of a system.

. A Guard SetRole is used to specify the validity of statements and /or
expressions which are members of a SetName.

’ A Sequence SetRole is used to order the SetMembers of a SetName.

. A Value SetRole is used when the SetRoles themselves are either string,

integer or Boolean values.

12

[4] Finally there exists a certain group of SetRoles that may be used to describe
systems in terms of states and transitions. These are the Transitive SetRoles.
They are classified into Sequential and Concurrent SetRoles.

“ A Sequential SetRole is assigned to a SetName if the contents of that
SetName describe a sequential state - transition system.

. A Concurrent SetRole is assigned to a SetName if the contents of that
SetName describe a concurrent state - transition system.

These groups of SetRoles are presented in figure 2.2. The list is by no means
complete. Any new addition of SetRoles can be made in the overall grouping of
Partition, Descriptive, Dominant and Transitive SetRoles.

[Roles [Partition | Dominant |Descriptive | Transitive |

| SubRoles Identity Qualifier
Identifier Association
Partition Hierarchy Flow Sequential
Aggregation Guard Concurrent
Gencralization Sequence
Value

Figure 2.6. Summary of the InfoMap SetRoles
2.2.3 Levels of Abstraction

According to the opinions of knowledge engincers [17], knowledge in general is
not organized around syntax, but rather around relationships among sets of
objects. Furthermore, the context of these sets of objects and their relationships,
should be as specific as the actual methodology used to describe them. Part of
each methodology are levels of abstraction [17]. In order to represent any body
of knowledge using sets and relationships, first we need to specify these levels of
abstraction.

13

SetLevel
Between Within
Relationship General InfoSchema General Partition
Level Detailed Detailed Partition InfoMap

Figure 2.7. Summary of the InfoMap Relationship Levels

Figure 2.7 shows the relationship levels among sets of objects. According to this
scheme, we identify two levels of abstractions: general and detailed.
Furthermore we identify two levels of relationships: between and within sets.
Each pair combination of these four levels results in a relationship type:

At the general level there exists a SetMemberRole relationship that
specifies the association of SetMembers within their SetNames. This is
called InfoSchema abstraction.

At the detailed level between SetNames, we attribute a Partition
SetRole in order to separate different views of SetMemberRole
relationships. This is called Detailed Partition.

At the general level within SetNames, we attribute a Partition SetRole
in order to separate different views of SetRole relationships. This is
called General Partition.

At the detailed level there exists a SetMemberRole relationship that
specifies the association of SetMembers within their SetNames. This is
called InfoMap abstraction.

In our approach we analyze the above two levels of abstraction and the two
levels of relationships to produce a generic model. This model may be applied to
produce two views and two abstractions, which are the combinations of four
relationship levels. The resulting two levels that are of interest to us are the
general level or InfoSchema, and the detailed level or InfoMap [18].

14

2.3 Producing Representations

In this section we first present the definition of the context-free grammar. Then,
we derive context-free grammars for the general and detailed levels of
abstraction. Two processes are described that assist in the application of the
context-free grammars. The first selects SetNames and attaches to them SetRoles
at the general level, and the second relates the SetMembers of each SetName by
attaching to them SetMemberRoles. Two algorithms are also presented. The first
converts the results of the applied general level production rules into the tabular
structure of an InfoSchema. The second algorithm performs the same for the
production rules of the detailed level and produces the InfoMap tabular
structure. Examples are also presented which trace the processes and algorithms,
producing actual results. The process of deriving the tabular format from the
initial concept we wish to model is shown in figure 2.8.

concept |—— | list of | | fabular
terminals * tormat
apply CFG
modeling apply
algorithm
process

Figure 2.8. Modeling Process for Producing InfoMap
Representations

2.3.1 Context-Free Grammar for the Methodology

A very powerful tool is presented to us: the idea that any concept can be
presented in simple production rules based on an alphabet and its component
symbols. When these rules are applied appropriately they derive a specific
model. The same idea underlies the use of language generators and context-free
grammars.

A context-free grammar G is a quadruple (V, X, R, S), where:
V is an alphabet
T (the set of terminals) is a subset of V,
15

R (the set of rules) is a finite subset of (V x V*), and
S (the start symbol) is an element of V — X
The members of V —Z are called non-terminals. Forany A€ V— X and u €

—_—
V*, wewrite A G u whenever (A, 1) € R. For any strings u,v € V¥, we write
=5
u O vif and only if there are strings x, y, v’ € V* and A € V - T such that u =

xAy,v=xv'y,and A G v’ Finally, L(G), the language generated by G, is {w
*
=

e*.5 G w); we also say that G generates each string in L(G) [16].

According to the definition of the context-free grammar we define the following:

V (alphabet): PartitionSg, PartitionSd,
Sg, SetRole, SetName, SetRoleDominant,
SetRoleDescriptive, SetRoleTransitive,
SetRoleUserDefined, SetRoleldentifier,
SetRoleldentity, SetRoleHierarchy,
SetRoleGeneralization, SetRoleAggregation,
SetRoleQualifier, SetRoleAssociation,
SetRoleFlow, SetRoleGuard, SetRoleSequence,
SetRoleValue, SetRoleSequential,
SetRoleConcurrent, K, O,H,1,P, M, F,G,S,V,L,C,
UpperCaseLetter, Sd, SetMemberRole, SetMember,
SetMemberRoleDominant, SetMemberRoleDescriptive,
SetMemberRoleTransitive, SetMemberRoleUserDefined,
SetMemberRoleldentifier, SetMemberRoleldentity,
SetMemberRoleHierarchy,
SetMemberRoleGeneralization,
SetMemberRoleAggregation, SetMemberRoleQualifier,
SetMemberRoleAssociation, SetMemberRoleGuard,
SetMemberRoleSequence, SetMemberRoleSequence,
SetMemberRoleValue, SetMemberRoleConcurrent,
SetMemberRoleSequential, id, o, h, 1..n, p, ¢, X, a, k,v, u,
ot F T,fs,dal,e,literal,{,}

16

Z (terminal): The bold-faced characters that appear in the above

alphabet.

V — I (non-terminal): The unbolded characters that appear in the above
alphabet.

Sg (Start Symbol for the general level grammar): PartitionSg

Sd (Start Symbol for the detailed level grammar): PartitionSd

R (the set of rules): is preserited in the following sections.

In the next sections the context-free grammar production rules for both the
general and detailed levels are presented. Alphabet(V) contents in brackets (| })
may be repeated zero or more times. Alphabet(V) contents in square brackets (|
]) may be presented zero or one time. Alphabet(V) contents in no brackets may
be presented only once. Finally Alphabet(V) contents in bold, or in double

7

quotes (“ “), or in both, represent terminal symbols.

2.3.2 Context-Free Grammar for the General Level of Abstraction

At the general level of abstraction we describe the SetNames and their SetRoles.
In that respect, we define the following production rules for the general level of
abstraction. The first category of rules describes the main syntactical patterns,
the sequences of SetRoles and SetNames for each Partition at the general level of
abstraction (figure 2.9).

At this level SetRoles may be further decomposed into other categories. A
SetRoleDominant SetRole may take the form of a unique Identifier or an Identity;
it may represent a Hierarchical structure, a Generalization and/or an
Aggregation structure. A SetRoleDescriptive SetRole may be broken down into a
Qualifier (a one-to-one) relationship, an Association relationship (abstracted
from any specific concept), a Flow relationship (object flow between entitics), a
Guard (conditions), a Sequence (set members represented in a sequence) or Value
(a number, character, Boolean value). Finally a SetRoleTransitive SetRole may be
replaced by its Sequential or Concurrent Control Flow SetRole. The
SetRoleUserDefined SetRole is left for the user and/or the developer of new
concepts to define. These production rules are shown in figure 2.10.

17

1 PartitionSg - {Sg)

2 Sg — {SetRole SetName}

3 SetRole — (SetRoleDominant! SetRoleDescriptivel
SetRoleTransitive | SetRoleUserDefined)

4 SetName = “{“literal”}"

Figure 2.9. First Level of Context-Free Grammar Production Rules for the
General Level of Abstraction

5 SetRoleDominant — SetRoleldentifier I
SetRoleldentity I
SetRoleHierarchy I
SetRoleGeneralization I
SetRoleAggregation

6 SetRoleDescriptive - SetRoleQualifier I
SetRoleAssociation !
SetRoleFlow I
SetRoleGuard I
SetRoleSequence I
SetRoleValue

7 SetRoleTransitive — SetRoleSequential | SetRoleConcurrent

Figure 2.10. Second Level of Context-Free Grammar Production Rules for the
General Level of Abstraction

8 SetRoleldentifier - K
9 SetRoleldentity - o
10 SetRoleHierarchy - H
11 SetRoleGeneralization - I
12 SetRoleAggregation - P
13 SetRoleQualifier - X
14 SetRoleAssociation - M
15 SetRoleFlow - F
16 SetRoleGuard - G
17 SetRoleSequence - S
18 SetRoleValue - A"
19 SetRoleSequential - L
20 SetRoleConcurrent - C
21 SetRoleUserDefined - UpperCaseLetter

Figure 2.11. Third Level of Context-Free Grammar Production Rules for the
General Level of Abstraction

18

We could be using words in order to represent relationships, but its is more
convenient to replace them with upper-case letters. The list of production rules
shown in figure 2.11 is used for this purpose. Also, we may expand this list in
order to define new upper-case letters if new production rules are added in the
previous list. The “UserDefined” production rule serves that purpose.

These production rules assist the modeling and developing of concepts based on
the several categories and sub-categories of SetRoles we have identified so far at
the general level of abstraction. A process for using this context-free grammar is
presented along with an example of its application. This process can be
partitioned into two main sub-processes. The first forms SetNames, and the
second attaches SetRoles to the SetNames. This process is shown in figure 2.12.

[1] Identify the SetNames of the problem: [s1...sn].

[2] Apply 3rd production rule to select SeiRoles [r1...rn] for [s]...sn]. One
of [r1...rn] should be a dominant role.

[3] Apply 5th, 6th, 7th production rules to replace [r1...rn] with [r1"...rn"].

(4] Rewrite the right-hand side of the production rule
“sg — {SetRole SetName} " with the SetNames [s1...sn} and the
SetRoles [r1’...rn"}].

Figure 2.12. Process for Applying the Production Rules at the General Level
of Abstraction

We can apply the process shown in figure 2.12 to form the production rules at the
general level of abstraction. Suppose we are presented with a list of student
names, a list of their identification numbers and a list of their phone numbers.
Identification numbers are assumed to be unique, students may have more than
one phone number, and two students may share the same phone number(s). The
relationship of student names, identification numbers and phone numbers at the
general level of abstraction can be represented using the context-free grammar as
follows:

PartitionSg — Sg -
{SetRole SetName} -
SetRoleDominant {ID#}

SetRoleDescriptive {STUDENT}
SetRoleDescriptive [PHONE#] -
SetRoleldentity {ID#}

19

SetRoleQualifier (STUDENT]
SetRoleAssociation {PHONE##} -
O {ID#} X {STUDENT} M {PHONE#}

The application of the production rules of the context-free grammar at the
general level of abstraction resulted in the following list of terminal symbols: O
{ID#} X {STUDENT} M {PHONE#. The following algorithm takes this list of
terminal symbols as input, and converts it into a tabular representation
(InfoSchema). We assume that each time a token is read the empty space
following the token is automatically eliminated. Therefore the next token to be
read contains no empty spaces. The algorithm is presented in figure 2.13.

convert_general_level(i) [step]
let columns “c1” “¢c2” [1]
let “i” =1 [2]
repeat [3]
read token [4]
templ:=token [5]
read token [6]
temp2:=token [7]
place templ1 in c1, row.”i” [8]
place temp2 in c2, row. “i” [9]
let “i”:="i" +1 [10]
until end of input [11]

Figure 2.13. Algorithm for Producing the Tabular Representation at the
General Level of Abstraction

The algorithm reads two tokens in a sequence from the input stream of tokens.
The first is assumed to be the SetRole, and the second the SetName. It places the
SetRole in the first column and the SetName in the second column. In each
iteration it increments the row number by one so that each pair of SetRole,
SetName appears in a different row. We can trace the above algorithm and
create the tabular representation for the general level of abstraction. This trace is
presented in figure 2.14. The input list is: O {ID#} X {STUDENT} M {PHONE#}.

20

C1 C2
O | {ID#)

C1 C2 C1 C2

O |{ID#}
X |{STUDENT]}

steps [1] - [2] C2

{IDi#}
{STUDENT])
{PHONE]}

2= |00

steps [4] - [10]
Figure 2.14. Example Application of the Algorithm in Figure 2.13

The end result after tracing the algorithm is a tabular representation of a
Partition of SetNames and SetRoles at the general level of abstraction. It
describes the relationship between three SetNames. The relationship between
these SetNames can be read as: each SetMember of the SetName ({ID#)
corresponds to one SetMember of the SetName (STUDENT}, and it is associated
with SetMembers from the SetName {PHONE#}. This interpretation is based on
the description of the valid SetRoles in section 2.2.2.

2.3.3 Context-Free Grammar for the Detailed Level of Abstraction

The detailed level of abstraction may be viewed as an extension of the general
level of abstraction. The difference is that at the detailed level of abstraction the
SetMembers, along with the SetMemberRoles, are revealed. Therefore, in order
to abstract the general level of abstraction from the detailed level of abstraction,

all we need to do is to hide the two attributes that do not contribute to the
21

e

general level of abstraction: SetMemberRole and SetMember. Also, in order to
expand the general level of abstraction and derive the detailed level of
abstraction, we only need to add these two attributes back to the general level of

abstraction.

The production rules that follow are broken down into categories. The first
category describes the main syntactical patterns that relate the four attributes
described in section 2.2.1. These syntactical patterns are a collection of Partitions
at the detailed level of abstraction. This is shown in figure 2.15.

22 PartitionSd — {Sd})
23 Sd - {{SetMenberRole SetMember}}
24 SetMember - {literal)

Figure 2.15. First Level of Context-Free Grammar Production Rules for the
Detailed Level of Abstraction

The production rules in figure 2.15 specify the cardinality of the model. These
syntactical patterns are extended in figure 2.16 in order to further analyze the
SetMemberRole attribute.

25 SetMemberRole - {SetMemberRoleDominant [
SetMemberRoleDescriptive !
SetMemberRoleTransitive |
SetMemberRoleUserDefined)

Figure 2.16. Second Level of Context-Free Grammar Production Rules for the
Detailed Level of Abstraction

The categories in figure 2.16 can be further decomposed. A similarity exists
between this decomposition and the one presented at the general level in section
2.3.2. However in this case, lower-case letters correspond to each
SetMemberRole. Figure 2.17 shows these categories and the lower case letters. 1

22

26 SetMemberDominant

27 SetMemberDescriptive

28 SetMemberTransitive

29 SetMemberRoleldentifier

50 SetMemberRoleldentity

31 SetMemberRoleHierarchy

32 SetMemberRoleGeneralization
33 SetMemberRoleAggregation
34 SetMemberRoleQualifier

l

SetMemberRoleldentifier |
SetMemberRoleldentity |
SetMemberRoleHierarchy |
SetMemberRoleGeneralization |
SetMemberRoleAggregation
SetMemberRoleQualifier |
SetMemberRoleAssociation |
SetMemberRoleFlow I
SetMemberRoleGuard |
SetMemberRoleSequence |
SetMemberRoleValue
SetMemberRoleConcurrent |
SetMemberRoleSequential
id

o

h | [1..n]

plc
wliclvihlm

35 SetMemberRole Association | v

36 SetMemberRoleFlow ulo

37 SetMemberRoleGuard t ! fITIF
38 SetMemberRoleSequence 1.n

39 SetMemberRoleValue Rowldentifier
40 SetMemberRoleSequential Idlallle

LllliiididLidl
R~ x

n o0

41 SetMemberRoleConcurrent

Figure 2.17. Third Level of Context-Free Grammar Production Rules for the
Detailed Level of Abstraction

The context-free grammars for the general and detailed levels of abstraction can
be used in order to model concepts. Next, an application of the detailed level of
abstraction of production rules is presented. A process similar to the one in
figure 2.12 is also presented. It shows the forming of production rules at the
detailed level of abstraction. Furthermore, an algorithm that converts the results
of the application of these production rules into a tabular structure is presented.

23

e S

[1] List the SetMembers [smi1...smn] of the SetNames [s1...sn]}.

[2] Apply production rule 25 to select generic SetMemberRoles [smr1...smrn]
for the SetMembers [sn11...smn] of the SetNames [s1...sn].

[3] Apply production rules 26 to 27 and replace [smr1...smrn] with
[smrl’..smri’] .

[4] Apply production rules 29 to 41 and replace [smir1’..smrn’] with
[smrl”..smrn’].

[5] Rewrite production rule Sd = {{SetMemberRole SetMember}} with
[smr1”..smrn’’] for SetMemberRole and {sm1...smn] for SetMembers.

Figure 2.18. Process for Applying the Production Rules at the Detailed Level
of Abstraction

Assuming the general level of abstraction production rules have been applied, all
that remains to be done is the application of the production rules at the detailed
level of abstraction. In order to form rules at the detailed level of abstraction, we

can apply the process that is shown in figure 2.18.

An initial descriphon of the problem was presented in section 2.3.2. In this
section the SetMembers are added along with their SetMemberRoles. The
SetMembers and their SetRoles are informally described as follows: John has ID#
123 and can be reached at phone# 555-1234, George has ID# 234 and can be
reached at phone# 555-2345 and 555-3456, Kelly h.s ID# 345 and can be reached
at phone# 555-7890, Kathy has ID# 456 and can be reached at phone# 555-7890
and 555-3214. These SeiMcmbers and SetRoles may be represented by applying
the context-free grammar at the detailed level of abstraction as follows:

Sd¢ > {{SMRSM]] —

SMRDominant SM SMRDescriptive SM SMRDescriptive SM
SMRDominant SM SMRDescriptive SM SMRDescriptive SM
SMR Dominant SM SMRDescriptive SM SMRDescriptive SM
SMRDominant SM SMRDescriptive SM SMRDescriptive SM
-

SMRIdentifier SM SMRQualifier SM SMRAssociation SM
SMRIdentifier SM SMRQualifier SM SMRAssociation SM
SMRIdentifier SM SMRQualifier SM SMR Association SM
SMR Identifier SM SMRQualifier SM SMR Association SM

24

N
0 123 x John v 555-1234

0 234 x George v 555-2345 v 555-3456
0 345 x Kelly v 555-7620

0 456 x Kathy v 555-3456 v 555-3214

In the above application of the production rules the prefix SM is a SetMember,
and the prefix SMR is a SetMemberRole.

In order to produce a tabular structure based on the derived list of tokens at the
detailed level of abstraction, the tabular structure that was derived at the general
level of abstraction is used. Since at the general level of abstraction the SetNames
and their SetRoles are already identified and placed in the appropriate positions,
they can be used as a base in order to expand the rows and columns. This
expansion depends on the input stream of tokens that were produced by the
application of the production rules at the gencral level of abstraction. The
algorithm is presented in figure 2.19.

convert_detail_level(j) Step
“a” = current SetName [1]
read sequence of pairs [{SetMemberRole}, {SetMember}] [2]
until end of input
for each pair of [{SetMemberRole}, {SetMemberl]] [3]
clone C1 ;clone: insert new column on the right side of C1 [4]
if the SetMember exists [5]
place SetMemberRole in cloned C1 under “a”, [5.1]
row = row in which SetMember exists
else (6]
insert row under “a”, place SetMemberRole in new row [6.1]
update “a” to the next SetName [6.2]
let cloned C1 = current C1 (7]

Figure 2.19. Algorithm for producing the Tabular Representation at the
Detailed Level of Abstraction

The output of the algorithm at the general level of abstraction is a tabular
structure. Using this tabular structure, the algorithm in figure 2.19 and the input

25

S

stream of terminal symbols produced with the detailed level context-free
grammar, we show the results in figure 2.20.

In the st iteration the first sequence of {SetMemberRole}, {SetMember} is
processed (step: 4, sequence: “0 123 x John v 555-1234"). Since its SetMembers do
not exist under the given SetNames (i.e.: ID#, STUDENT, PHONE#) they are
inserted under their respected SetNames. Also, the SetRoles that are present in
this sequence are also placed under their respected SetRoles (steps 8 - 9).

In the 4th iteration the sequence of “o0 234 x George v 555-2345 v 555-3456" is
processed. The SetMember “555-3456” exists under the SetName {PHONE#}.
Therefore steps 6 - 7 are executed. This clause guarantees the uniqueness of the
SetMembers under each SetName.

24 Summary, Deliverables

The methodology described in this chapter is based on sets and relationships
among sets. Specific roles are attached to sets in order to relate them to other sets
and interrelate their set members. Furthermore, these roles are categorized
according to their role types. These role types may be used to describe
dominant, descriptive and transitive set role types.

We have shown how we can use a context-free grammar to describe the general
and detailed levels of abstraction. Two tabular structure formats were derived
from two context-free grammars. This is accomplished by:

. Following processes for the application of context-free grammars and
the derivation of terminal symbols.

. Applying algorithms to convert the list of terminal symbois into a
tabular structure that preserves the uniqueness of the set members of a

set.

The conclusions based on this prototype attempt to describe the InfoMap
methodology are:

26

It is possible to construct compilers for both the general and detailed
formats by using the context-free grammars that were defined for both
levels of abstraction [30].

It is possible to use compilers to produce the same specifications of a
system in some format other than tabular.

The sets and relationships that underline this approach can be modeled
using a very simple context-free grammar.

Practice shows that the tabular format derived from the context-free
grammar is easily updated and analyzed [18].

Simple operations with limited functionality may be used within the

context of a database program to generate high level language code.

27

C1 C2 C1 C2

0| O {ID#) 0|00 |0 {ID#)
0 123 0 123
X | X {STUDENT} 0 234
X John o 345
MM {PHONE #} X[X[X |[X {STUDENT)}
\ 555-1234 X John
X George
1st iteration X Kelly
(steps1,2,3,4,6,61,6.2,7) MM M| M {PHONE #}
v 555-1234
C1 C2 \ 555-2345
0|0 O {ID#) \4 555-3456
0 123 \4 555-7890
0 234
X X| X {STUDENT} 3rd iteration
X John (steps1,2,3,4,5 5.1,7)
X George
MM M {PHONE #} C1 C2
v 555-1234 0|0 0jO|O {1D#}
\ 555-2345 0 123
v 555-3456 0 234
o) 345
2nd iteration o) 456
(steps1,2,3,4,6,6.1,6.2,7) X[X[X]|X]|X {STUDENT}
X John
X George
X Kelly
X Kathy
M M| MMM {PHONE #}
\ 555-1234
\4 555-2345
\4 \4 555-3456
v 555-7890
\% 555-3214

4th iteration
(steps1,2,3,4,55.1,7)

Figure 2.20. Example Application of the Algorithm in Figure 2.19

28

CHAPTER 3: THE DESIGN FRAMEWORK
3.1 Introduction, Motivation

One of the reasons that the object model is becoming more popular is that design
reuse is becoming more and more important [19]. A study suggests that 60 to 85
percent of the total cost of software is due to maintenance [20]. Frameworks for
design and implementation are suggested as a way to reduce costs. To
emphasize this point, Kent Beck [21] suggests that programmers who can go a
step further and convert their procedural solutions to a particular problem into a
generic library are rare and valuable. The same can be said for software
designers. However, software designers need more than intuition and
experience to perform their jobs. Design frameworks provide the edge that
software designers need to excel in their efforts.

A design framework is a set of prefabricated concept design building blocks that
designers can use, extend, and customize for specific computing and/or general
problem solutions [20]. With design frameworks, designers do not need to start
from scratch each time they design a concept. Frameworks are built from a
collection of objects, just like the SetRoles we described in chapter two. Therefore
the design that is applied onto these SetRoles can easily be reused. Designing
and adapting design frameworks in order to solve particular problem domains is
a task that helps developers to provide solutions for problem domains and better
maintain these solutions. If a framework is created in such a way that the new
pieces will fall into place perfectly, the minimum impact of any change will
reduce costs dramatically [22].

Our objective is to provide a design framework for the InfoMap methodology for
three main reasons.

o First, we have realized that the InfoMap methodology needs such a

reusable framework, in order to ease the development of any new concept
that can assist any design application domain.

29

. Second, we have realized that by providing the design for such a
framework, we will better understand ourselves, and give others a better

understanding of our model.

. Third, as we will show in the next chapter, the design of our framework
will give us the opportunity to use it in order to model design patterns
that exist in software [1].

In the previous chapter we described the basics of the InfoMap approach: sets,
relationships among sets and abstraction levels. We also described how a
context-free grammar may be defined, used to model concepts and convert these
into in a tabular structured representation. In this chapter we discuss specific
modeling issues involved in the representation of the InfoMap model. These
issues are described in the context of a design framework, which may be used as
a design tool for the modeling of design concepts. Formal specifications of this
framework are generated by the Rational Inc. CASE tool [15], designed to
support the methodology introduced by Grady Booch [23].

3.2 Framework Structure, Domain and Classification

The design of a framework differs from the developing process of a standalone
high-level architectural design for any application. ~The success of our
framework solves problems that on the surface are quite different from the
problem that justified its creation. Early on, during the design of tools and
processes for the manipulation of our representation, we realized that the
application development with the InfoMap methodology is not only costly to
build but impossible to maintain (i.e.: InfoFarm [18]). Nevertheless, the problem
lies in solving expertise that must be captured so that it is independent from both
the original entity design and the future, possibly unknown, solutions that it will
provide. In this section we briefly discuss other frameworks, the class of
problems that they address, and our design framework’s classification.

There are many successful framework designs. Most of them deal with
implementation issues. Among the most popular ones is the MacApp
framework for Macintosh applications [24]. An abstract MacApp application

30

consists of one or more windows, or one or more documents. Furthermore, each
of them consists of other sub-classes that provide a complete and concrete
Macintosh application development environment. In addition to the MacApp,
other successful frameworks include the Lisa Toolkit [25], which is used to
develop applications for the Lisa desktop environment. However the most
successful of all, according to several experts’ opinions, is the Smalltalk
Model/View/Controller (MVC), a framework for constructing Smalltalk-80 user
interfaces [26].

All these provide ways of reusing code and designs which are resistant to more
conventional reuse attempts. Application-independent components may be
rather easily reused, depending on whether the application they tackle belongs in
the same domain as the framework that was developed to solve a particular
problem. In other words, the user of the end product, the framework, must
consider whether the application he or she needs to develop is a subset of the
application framework. Therefore, the user must think first about classifying his
or her design into one of the following categories: Framework domains and
framework structures.

The problem domain can be chosen among application functions, domain
functions or support functions [27]:

Application frameworks include expertise applicable to a wide range of
programs. These frameworks are characterized by functionality that can be
applied across application domains, therefore making them more general.
Current commercial graphical user interfaces (GUI) are examples of such
frameworks.

Domain frameworks include expertise in a particular problem domain. These
frameworks are characterized by functionality for a particular problem domain.
Examples of these domain frameworks are control systems for manufacturing or
securities trading.

Support frameworks provide system services such as file access, distributed
computing or device drivers. These frameworks are used in order to implement

31

modifications and /or additions on existing systems, such as new file systems or

device drivers.
Frameworks can also be classified according to their structure [27]:

Automatic frameworks are described as manager-driven, with a single
controlling mechanism that triggers most of their actions. As soon as a call is
made to the controlling function, the appropriate calls are made to other
functions in order to perform a specific task. An application framework such as a
graphical user interface generally uses a manager to receive input events from
the user, and distribute them to the other objects in the framework.

Usage frameworks provide yet another structural classification. How we use
classes of objects, derive new classes of objects, instantiate the objects or combine
classes of objects depends on how the framework is designed for the specific
application domain usage. This usage is further decomposed into data-driven
and architecture-driven usage. Data-driven usage relies primarily on object
composition for customization. The users customize the behavior of the objects
by combining different objects. On the other hand, architecture-driven usage
relies on inheritance for customization. The users of the framework customize its
behavior by deriving new classes from the framework and overriding member

functions.

The InfoMap framework may be used to model the expertise in a particular
problem domain. The problem domain that this framework addresses is the
modeling of design concepts in a specific, non-ambiguous fashion. Therefore, the
domain of this framework can be classified as an application design domain
framework. For example, the design of a process or a hierarchical structure
addresses two different problem domains that are used for different purposes. A
process is used to specify the steps followed in the solution of a problem, while a
hierarchy is used to specify the top-down or vice versa arrangement of a structure
[28]. Therefore, the domain upon which either the process or the hierarchy

depends, is critical on the application that it addresses.

32

The structure of the InfoMap design framework is based on how the framework
is used. Therefore, its structure is classified as a usage structure. How SetRoles
and SetMemberRoles are used depends on how the framcwork is designed for
the specific concept we wish to model. For example, we use different SetRoles to
model the design of a process than to model the design of a hierarchy. This
usage relies primarily on inheritance for customization.

3.3 The Design Framework

The product of the framework design process is a list of class definitions. Each
class is composed of a list of operations that interact with the objects in the class
in order to produce results. According to R. Johnson [20], we are faced with two
major tasks. First we need to specify the list of class definitions. In order to do
this we need to follow some specific rules. Therefore we need to further define
our framework by following this set of rules. Two set of rules are presented, for
classes and for frameworks. The following rules were applied in the design of
the InfoMap framework:

Classes:
¢ Class hierarchies should be deep and narrow.
¢ The top of the class hierarchy should be abstract.
» Subclasses should be specializations.

Frameworks:
* Split large classes.
e Separate methods that do not inter-communicate.

In the following sections we describe the InfoMap design framework by defining
its classes. These classes and their interaction are the result of the application of
certain heuristics on the context-free grammar described in chapter two. The
operations contained in each class are also described. We examine the
application of the above rules for classes and frameworks. Finally we produce
formal specifications for the classes and operations using the Rational Inc. CASE
tool.

33

3.3.1 Assumptions

The tabular representation described in chapter two may be viewed as a
collection of arrays. Each array is reserved for an attribute described in chapter
two. As shown in figure 3.1.a, array [1] is reserved for SetMemberRoles, array
[2] is reserved for SetRoles, array [3] is reserved for SetMemberNames and array
[4] is reserved for the SetNames. In case more than one SetName appears in the
modeling of any partition, these four arrays are repeated as shown in figure
3.1.b. Furthermore, all the arrays shown in figure 3.1 share a common
characteristic: they may be divided into rows and columns. The following
records describe the position of SetName, SetRole, SetMember, SetMemberRole

in the arrays shown in figure 3.1:

a. single area

(1) InfoMatrix (SetMemberRoles)
{(2) Roles (SetRoles)

(3) SetMembers 1 3
(4) SetName

b. multiple areas

Figure 3.1. InfoMap Tabular Structure Arrays

. a triple “[array].row.column” represents a specific array’s coordinates in

terms of its row and column.

. a tuple “[array].row” represents a specific array’s coordinates in terms of

its row.

34

. a tuple “[array].column” represents a specific array’s coordinates in terms
of its column.

3.3.2 Creation of Classes

We may apply certain heuristics to the context-free grammar described in
chapter two, and derive a class hierarchy. The heuristics for each production rule
are the following;:

[1] For the left-hand side non-terminal of each production rule an abstract
class is created. Example: A = B, A is created as an abstract class.

[2] The ns n-terminals that appear on the right-hand side become the
children classes of the abstract class which appears on the left-hand side.
Example: A — B C, B and C become children classes of class A.

[3] The terminals become instances of the non-terminal (class) that appears
on the left-hand side of a production rule. Example: C - tf, tand f arc
instances of class C.

[4] When a non-terminal appears in “{}”, it is aggregated with a multiplicity
of association “many” (zero or more). Example: A = {B}, zero or more
“B”, where “B” can be a class or an instance.

[5]1 When a non-terminal appears in “[]”, it is aggregated with a multiplicity
of association “optional” (zero or one). Example: A = [B], zero or one
“B”, where “B” can be a class or an instance.

[6] When a non-terminal appears in no brackets, it is aggregated with a
multiplicity of association “Exactly one”. Example: A = B, only one

“B”, where “B” can be a class or an instance.

(7] When there exists an “or” (|) between two non-terminals, they are
both in an inheritance relationship with the non-terminal that appears on

35

the left-hand side of the production rule. Example: A = B | C, classes
“B” and “C” inherit from class “A”.

(8] When no “or” (|) exists between two non-terminals, then an
“ordered” relationship exists between the two. Example:
A — B C, instances of class “C” follow instances of class “B” in order “B”
IICII'

Therefore the context-free grammar described in chapter two can be converted
into a class hierarchy. This is shown in figures 3.2 to 3.8. The diagrammatic
notation is based on the Object Model Technique [29].

PartitionSg

<&

| SetName

! (SetName)
SetRole literal

Dominant
SetRole
Descriptive
SetRole
Transitive
SetRole
UserDefined

Figure 3.2. InfoMap General Level Framework Partition

Corresponding to Production Rules 1, 2,3 and 4 of figure 2.9

36

Figure 3.2 shows the class inheritance and multiplicity of associations between
the classes derived from production rules 1, 2, 3, and 4 at the general level of
abstraction. Heuristics 1, 2, 3, 4, 6, 7, and 8 where applied to transform the
production rules of the context-free grammar at the general level of abstraction
in the design that appears in figures 3.2 to 3.5. The class hierarchy described in
figure 3.2 is deep and narrow. The top of the class (PartitionSg, SetRole) is an
abstract class. Therefore the top of the hierarchy has no instances but its
descendants do. The subclasses (SetRoleDominant, SetRoleDescriptive,
SetRoleTransitive, SetRoleUserDefined) inherit the SetRole class are
specializations. Their specializations and instances are shown in figures 3.3 - 3.5.
The SetRoleUserDefined class is left to the developer of new SetRoles to define.

SetRole
Dominant
SetRole SetRole SetRole SetRole SetRole
Identifier Identity Hierarchy Generalization Aggregation

(" SetRole) [~ (SetRole) (~ (SetRole Y\ {~ (SetRole) [~ (SetRole
Identifier) Identity) Hierarchy) General.) Aggreg.)

K J__ o J\ _H J v Jx._r J

Figure 3.3. InfoMap General Level Framework Partition
Corresponding to Production Rule 5 of figure 2.10 and Rules 8 to

12 of figure 2.11
SetRole
Descriptive
SetRole SetRole SetRole SetRole SetRole SetRole
Qualifier Association Flow Guard Sequence Value

Qualifier) Assoc.) Flow) Guard) Seq.) Value)

(" (SetRole Y [(SetRole) [(SctRole) (SetRole) { (SetRole Y [(SetRole)
X J A) F J_ 6 J\ s J\ Vv _J

Figure 3.4. InfoMap General Level Framework Partition
Corresponding to Production Rule 6 of figure 2.10 and Rules 13 to
18 of figure 2.11
37

SetRole
Transitive
tRol I I SetRol
(S; ole SetRole SetRole (SetRole
eq.) 5 Conc.)
L Sequencial Concurrent C

Figure 3.5. InfoMap General Level Framework Partition
Corresponding to Production Rule 7 of figure 2.10 and Rules 20

and 21 of figure 2.11

PartitionSd

sd O——}
ordered} | '
SetMember

1
SetMember (Set]li\:le::‘bﬂ)

RoleDominant e
SeMemberRole

Descriptive

SetMember
RoleTransitive
| SetMember

RoleUser
Defined

SetMember
Role

Figure 3.6. InfoMap Detailed Level Framework Partition
Corresponding to Production Rules 22 to 24 of figure 2.15 and

Rule 25 of figure 2.16

A structure similar to the one that appears in figures 3.3 to 3.5 exists at the
detailed level of abstraction. The class hierarchy described in figure 3.6 is
narrow, and the top of the class hierarchy (PartitionSd, SetMemberRole) is

38

abstract. Therefore the top of the hierarchy has no instances but its descendants
do, just like the case at the general level of abstraction. Heuristics 1, 2, 3,4, 5,6,7
and 8 were applied to produce the class hierarchies from the context-free
grammar at the detailed level of abstraction in the design that appears in figures
3.6 to 3.8.

SetMem.Role
Dominant

A

SetMem.Role SetMem.Role SetMem.Role SetMem.Role SetMem.Role (SMRAg.)
Identifier Identity Hierarchy Generalization Aggregation w

 ovnaes)

~ N (SMRAg.)

(" sMRid)) | (SMRiden) —Lt—_J
id o

.

J L _J

(SMRHi.) (SMRHi.)
h [1.n]
(SMRAg.)
h
[{SMRGe.) J((SMRGQ.)] \ _ J/
¢ TN
P (SMRAR)

m

—

.

(SMRAg.)
v

Figure 3.7. InfoMap Detailed Level Framework Partition
Corresponding to Production Rules 26 and 29 to 33 of figure 2.17

The subclasses at the detailed level (SetMemberRoleDominant,
SetMemberRoleDescriptive, SetMemberRoieTransitive,
SetMemberRoleUserDefined) that inherit the SetMemberRole class are also
specializations. Their specializations and instances are shown in figures 3.6 - 3.8.
The SetMemberRoleUserDefined class at the detailed level is also left to the
developer of new SetMemberRoles to define.

The approach followed to transform the context-free grammar into a framework
is described in the literature as a design pattern [1]. In the next chapter we
describe what design patterns are, and how they can be used and modeled using
the InfoMap methodology. The description of a similar approach is presented
next.

39

-

SetMem.Role
Descriptive

A

SetMem.Role SetMem.Role SetMem.Role SetMem.Role SetMem.Role SetMem.Role
Qualifier Association Flow Guard Sequence Value
((SelN:em (SetMem.
Rl(ff.'? RoleSeq.)
Qua; ter) {SetMem. l.n
Role Guard)
(SetMem.
{SetMem. (SetMem. RoleValue)
Role Role (SetMem. (SetMem. 1.n
Assoc.) Ass50¢) RoleGuard) RoleGuard)
k v
(SetMem.
(Se':l(\;::m. (Selil::: | RoleGuard) '
Flow) Flow) F
u
Figure 3.8. InfoMap Detailed Level Framework Partition

Corresponding to Production Rules 27 and 34 to 39 of figure 2.17

(SetMem.
RoleSeq.)
S5

([(SetMem.)

RoleSeq.)
<4

(SetMem.

SetMem.Role
Transitive

A

I

SetMem.Role
Sequencial

RoleSeq.)
— ¢

Figure 3.9.

(SetMem.

RoleSeq.)
a

(SetMem.
RoleSeq.)
1

SetMem.Role
Concurrent

InfoMap Detailed Level Framework Partition

(SetMem.

RoleConc.)
c

Corresponding to Production Rules 28, 40, a1d 41 of figure 2.17

The problem is to define a representation of a grammar, along with an
interpreter that uses the representation. The solution is to simply transform the
left-hand side of each regular expression into a class, and the right-hand side as

instances of that class.

This, however, does not take into consideration the

multiplicity of associations that exists in any design composed of classes and

40

instances of these classes. In addition to that, as the authors of this design
pattern agree, the context-free grammar should be very simple. This problem
has been successfully applied in SPECTalk to interpret descriptions of input file
formats, and in the QOCA constraint-solving toolkit which uses this design
pattern to evaluate constraints [1].

3.3.3 Framework Operations

After describing the heuristics that transform the context-free grammar described
in chapter two, we applied them and produced the framework design shown in
figures 3.2-3.8. These figures describe the classes defined in the framework.
Furthermore, they describe the class inheritance and the multiplicity of
association that exists between classes. In this section we examine which
operations can be included in the classes that constitute the framework. For cach
class identified in figures 3.2 to 3.8, there exists a set of operations. Each
operation is defined in terms of what exists and what does not exist in arrays 1, 2,
3 and 4 described in section 3.3.1. Therefore the main purpose of the four arrays
is to further define the syntactical patterns that may be present in the tabular
structured format of the InfoMap representation model.

The general level operations are described for the SetRoles and the SetNames.
Following the name of each operation a brief description is given.

PartitionSg operation: exists PartitionSg.
(defined as the universal quantifier operation for an existing
partition at the general level)

Sg operation: exists ITEM or SetRole.
(defined as the universal quantifier operation for an existing

ITEM and/or SetRole in a given array [1], [2], [3], [4])

SetRole operation: exists upper-case letter.
(An upper case letter exists for a SetRole.)

41

SetName operation: exists literal in array [4].row.column.

(A literal exists for a SetName in array reserved for SetNames.)

SetRoleDominant

operation: exists generic Dominant upper-case letter in
array [2].

(A generic Dominant upper-case letter exists in array [2]:
Roles.)

SetRoleDescriptive operation: exists generic Descriptive upper case letter in

SetRoleTransitive

array [2}.
(A generic Descriptive upper-case letter exists in array [2]:
Roles.)

operation: exists generic Transitive upper case letter in
array [2].

(A generic Transitive upper-case letter exists in array [2]:
Roles.)

SetRoleldentity operation: exists “O” in array [2].
(SetRole “O” exists in array [2].)
SetRoleldentifier operation: exists “K” in array [2].
(SetRole “K” exists in array [2].)
SetRoleHierarchy operation: exists “H” in array [2].
(SetRole “H” exists in array [2].)
SetRoleAggregation operation: exists “P” in array [2].

SetRoleGeneralization operation: exists

SetRoleQualtifier

(SetRole “P” exists in array [2].)

IIIII

in array [2].
(SetRole “I” exists in array [2].)

operation: exists “X” in array [2].
(SetRole “X"” exists in array [2].)

42

SetRoleAssociation operation: exists “M” in array [2].
(SetRole “M” exists in array [2].)

SetRoleFlow operation: exists “F” in array [2].
(SetRole “F” exists in array [2].)

SetRoleGuard operation: exists “G” in array [2].
(SetRole “G” exists in array [2].)

SetRoleSequence operation: exists “S” in array [2].
(SetRole “S” exists in array [2].)

SetRoleValue operation: exists “V” in array [2].
(SetRole “V” exists in array [2].)

SetRoleSequential operation: exists “L” in array [2].
(SetRole “L” exists in array [2].)

SetRoleConcurrent operation: exists “C” in array [2].
(SetRole “C” exists in array [2].)

Whereas at the general level operations are described for the SetRoles and the
SetNames, at the detailed level operations are described for SetMemberRoles and
SetMemberNames. Following the name of each operation a brief description is
given.

PartitionSd operation: exists PartitionSd.
(defined as the universal quantifier operation for an existing
partition at the detailed level)

Sd operation: exists SetMemberRole / ITEM.

(defined as the universal quantifier operation for an existing
I'TEM and /or SetMemberRole in a given array [1], [2], [3}, [4])

43

SetMemberRole operation: exists lower-case letter.
(A lower-case letter exists for a SetMemberRole.)

SetMemberName operation: exists literal in array [3].row.column.
(A literal exists for a SetMemberName in the array
reserved for SetMemberNames.)

SetMemberRoleDominant operation: exists generic lower-case letter in
array [1]. (A generic Dominant lower-case
letter exists in array [1]: Roles.)

SetMemberRoleDescriptive operation: exists generic lower-case letter in
array [1]. (A generic Descriptive lower case
letter exists in array [1]: Roles.)

SetMemberRoleTransitive operation: exists generic lower-case letter in
array [1]. (A generic Transitive lower-case
letter exists in array [1]: Roles.)

SetMemberRoleldentity operation: exists unique “o” in array[1].column.
(SetMemberRole “0” is dominant in its column)

SetMemberRoleldentifier operation: exists number in array [1].column.
(A numeric value is dominant in its
column.)

SetRoleHierarchy operation: exists unique “h” in array [1].column.
operation: exists number in array [1].column.
(The letter “h” represents the root of a hierarchy in a
column, and the numeric value of its children.)

SetRoleAggregation operation: exists unique “w” in array [1].column.

" "

operation: exists “c” in array [1].column.
10 1

operation: exists “v” in array [1].column.
operation: exists “h” in array [1].column.

44

operation: exists “m” in array {1].column.
(The letter “w"” represents the “whole” of an aggregation
relationship, the letter “c” the

[

‘part-of”, the letter “v” the
visibility, the letter “h” the non-visibility and the letter “m”
anything else.)

‘ ”

SetRoleGeneralization operation: exists unique “p” inarray [1].column.

SetRoleQualifier

SetRoleAssociation

SetRoleFlow

SetRoleGuard

o’ _rn

operation: exists “c” in array [1].column.
(The letter “p” represents the “parent” in a
generalization, and the letter “c” its children.)

operation: exists unique “x” in array [1].column.

(The letter “x” exists in [1].column as a qualifier.)
operation: exists “v” in array [1].column.
(The letter “v” exists in [1].column as an
association)

H "

operation: exists “u” in array [1].column

operation: exists “o” in array [1].column

(The letter “u” represents user input in array
" _rn

[1].column, and the letter “0” represents user output
in array [1].column)

operation: exists “t” in ariay [1].row.column xor

ITEM = <true> in array [3].row.
operation: exists “f” in array [1].row.column xor

ITEM = <false> in array [3].row.
operation: exists “T” in array [1].row.column xor

ITEM = <complementary of t> in array [3].row
operation: exists “F” in array [1].row.column xor

ITEM = <complementary of f> in array [3].row.
(The letters in array [1].row.column are evaluated with
an xor operator against the SetMemberNames in

45

r__________f,,

array[3].row, which are defined as ITEMS. In this case
ITEMS represent expressions.)

SetRoleSequence operation: exists number in array [1].column.
(A numeric value is present in array [1].column.)

SetRoleValue operation: exists number/string in array [1].column
(A number and/or string is present in array [1].column.)
SetRoleSequential operation: exists unique “s” in array [1].column.
operation: exists “d” in array [1].column.

lllll

operation: exists unique “1” in array [1].column.

" "

operation: exists unique “a” in array [1].column.
operation: exists unique “e” in array [1].column.
(The letter “s” represents a source state, the letter “d” a
destination state, the letter “a” an assertion state, and the letter

Ny

e” an exemption state.)

SetRoleConcurrent operation: exists “c” in array [1].column.

(The letter “c” represents concurrent states in array
[1].column.)

34 Class and Framework Rules Applied

According to R. Johnson [20], several rules of thumb can help the development of
frameworks. These rules were applied in the InfoMap framework design. On
the other hand, these rules were also automatically implied by the heuristics of
transforming a context-free grammar into a framework. In this section we
review the rules and their application. The review is broken down into class -
and framework - related rules.

For the framework-related rules, the class hierarchy of the described framework
is deep and narrow. Even though there are not too many classes in the InfoMap
framework, the depth of the hierarchy is as deep as the context-free grammar
left-hand side terminal and non-terminal symbols. Therefore the depth of the

46

hierarchy depends on the structure of the production rules described in chapter
two.

Inheritance for generalization, or design sharing, usually indicates the need for
new subclasses. The inheritance structure of the described framework needs no
new subclasses, as long as no new SetRoles and SetMemberRoles are added in
the context-free grammar. Therefore, the top of the class hierarchy will always
be abstract, since any new production rule will have to deal with terminal
symbols. Therefore, only new concrete classes will be created if the context-free
grammar is expanded to include more SetRoles and SetMemberRoles.

At the specialization level the elements of subclasses can be viewed as elements
of their superclass. The design of the InfoMap class hierarchy indicates that the
subclasses do not refine any of the inherited operations (i.c.: operation “exists”),
but only use them with different parameters.

For the class-related rules, large classes (i.c.: SetRole) were broken down into
smaller classes (i.c.. SetRoleDominant, SetRoleDescriptive cfc.). A class
represents an abstraction. Therefore, a large class with too many operations is
suspicious. The InfoMap framework classes were small in terms of operations
included in each class. This is the result of the transformation of the context-free
grammar described in chapter two into the class hierarchy of the framework. It
is obvious that when re-write rules are designed, the non-terminals and
terminals of the alphabet are broken down to the most clementary detail.
Consequently, large classes are broken down into elementary subclasses. For
example, a SetRole class was broken down into SetRoleDominant,
SetRolDescriptive, SetRoleTransitive and SetRoleUserDefined.

Several operations that do not communicate were separated into different
classes. For example, operations related to SetMemberRoleHierarchy and to
SetMemberRoleGeneralization were separated into different classes. Once again,
this is a direct result of the transformation of the context-free grammar into the
framework, and the separation of operations that do not communicate. It is
obvious that different non-terminals may be re-written in different ways.

47

O

Therefore different operations were included in different classes, separating the

communication of operations.
3.5 Rational Inc. CASE Tool Specifications

The use of CASE (Computer Aided Software Engineering) tools has improved
the quality of software design [15], because new methodologies for software
design are accompanied by CASE tools. Therefore the process of software design
has become less painful and more organized. In this section we use such a
combination of a methodology and a CASE tool in order to produce
specifications for our design framework. The Booch method [23] recommends
the use of four models -- logical, physical, static and dynamic -- to capture the in-
process products of object-oriented analysis and design. Using the Booch
notation, the Rational Inc. CASE tool enables the creation and refinement of these
four models within the overall model representing any problem domain. A
model contains diagrams and specifications which provide the means for a
formal specification of a system.

The InfoMap framework described in this section is specified using the Rational
Inc. CASE tool. Rational’s graphical user interface allows the creation, viewing,
and modification of the components in a model. The InfoMap framework
components needed for the generation of the specifications were the class
diagram, the operations diagram and the state - transition diagram for each
operation. Figures 3.10 and 3.11 show the class diagrams of the InfoMap
methodology at the general and the detailed level of abstraction produced by the
CASE tool. Figure 3.12 shows a sample of the generated specifications produced
by the CASE tool.

The complete specifications for the InfoMap model produced by this CASE tool
are shown in appendix A. In the second appendix we present the same
specifications modeled using the InfoMap methodology.

The use of the Rational Inc. CASE tool substantially reduced the time between
conceptual and actual design of the InfoMap framework. In addition to that, it
facilitated a controlled interactive development. Several components were

48

replaced during the design without any loss of the overall structure of the
framework. Furthermore, the specifications produced by the CASE tool where
uniformly structured. This uniform structure promoted consistency and minimal
typing. On the other hand, the same framework specifications presented using
the InfoMap methodology, revealed the following:

The CASE tool generated specifications fail to inform the readers whether a class
is defined as abstract or concrete. This information was later added in the
InfoMap model of the CASE tool generated output (appendix B. figures B.3 and
B.8).

The information contained in the text, generated by the CASE tool, fails to
identify the relationships that exist between the several notions in the framework
design. For example, there is no formal way of describing the fact that an
argument may be only of one certain type. Using the InfoMap methodology the
relationship “one-to-many” between SetName {TYPE} and {ARGUMENT],
clearly identifies this description (appendix B. figures B.7 and B.12)

Finally, the overall presentation of the CASE tool generated output does not
show a clear-cut view of the complexity of the specifications. On the other hand
the InfoMap model of these specifications shows the magnitude of this
complexity in the “cardinality” column. The “cardinality” notion of the InfoMap
models is described in chapter four, figure 4.5.

49

* PattionS ,
‘ - Y

1
)’\

, SmNm
“ Suficie / T \ SetRoieTr
. ntwum ¢ anmwe § . s«DO‘nO
V
'-r"'f""".":" //
Y B SRIATIN S e S P Seoied 7 SeRoked T 5«%"
. N ,' N N or\cuvm

venny eontier |- eneditwi, ' OGO« emchy o ' uske | ssoclson:
. . . . [:

Figure 3.10. Class View Diagram for the General Level of Abstraction
produced by the Rational Inc. CASE Tool

T
s..J, | \;.,.m.,

e 7 rearston ! L egaon | * chy ot (™ -, . cnm'_ '4 one

Figure 3.11. Class View Diagram for the Detailed Level of Abstraction
produced by the Rational Inc. CASE Tool

Class name: 8d SetMemberName statement ITEM

Documentation: SetMemberRole LowerCaseletter

Sd -> {{SetMemberRole Operations: exists SetMemberRole

SetMember}| State machine:Yes Documentation:

Export Control: Public Concurrency: Sequential operation exists is applied to
Cardinahty: n Persistence: Transient SetMember / Role /expressions
Hierarchy: Operation name: / statements in arrays [1] to [4]
Superclasses: PartitionSd exists Concurrency: Sequential

Public IntertaceHas-A Public member of: 5d

Relationships: Arguments expression ITEM

Figure 3.12. Sample of the Specifications Produced by the Rational Inc. CASE
Tool

50

3.6 Summary, Deliverables

Framework design for the designing of concepts is not a panacea, just as object-
oriented design is not either [1]. In this chapter we first introduced the concept
of frameworks. Other frameworks and classifications were also discussed. The
InfoMap framework was classified, and its design was shown from the point of
view of a class hierarchy and the operations included in the classes of the
hierarchy. The described framework was the result of a direct and straight
forward translation of the context-free grammar described in the previous
chapter. This translation was based on several heuristic rules, according to three

observations:

. The multiplicity of associations that exist in a context-free grammar.

. The transformation of non-terminal symbols into abstract classes.

. The transformation of terminal symbols into instances of concrete classes.

The resulting framework follows certain rules for finding classes and designing
frameworks. These rules (by R. Johnson) were automatically applied by the
conversion process from the context-free grammar to the framework design.
This enables us to conclude that any concept described in the form of a context-
free grammar may be easily converted into a framework consisting of classes. A
related approach was presented specifying a design pattern that, if followed,
may solve the problem of defining the representation of a language and the
construction of its interpreter. The overall InfoMap framework was described
using the Rational Inc. CASE tool. The generated output is shown in appendix
A. The CASE tool generated output was modeled using the InfoMap
methodology. This model is presented in appendix B.

51

-

CHAPTER 4: DESIGN PATTERN MODELING
4.1 Introduction, Motivation

Christopher Alexander, an architect by profession, is credited for his
contributions in the area of design patterns in the architectural community. He
really did not have in mind software engineering when he proposed design
patterns as a method for resolving design conflicts in the architectural world.
Nevertheless, his ideas have been applied more in the software community than
in the architectural community [31]. It is quite possible that his ideas did not

gain any ground in the architectural community because of his relentless pursuit

of standardizing design patterns in an art like architecture, which according to
his colleagues is free of standardizations. His work in “Patterns” [32], “Notes”
[33], and “Timeless” [34] converges to the same idea that the software
community has been looking into from the early days of software re-usability
research [35]: a way of resolving conflicts that exist as a result of existing
relationships in designs. Alexander’s design patterns mainly consist of three

parts:

. A context that describes when a pattern is applicable; this is expressed in
a set of prerequisites or preconditions that must be evaluated as true.

. The problem that the pattern resolves, explained in terms of the
conflicting forces that are present in the context.

. A layout of the physical relationships that provide a solution to the

problem, and the process for eliminating the conflicting forces.

The main theme of this new approach is the resolution of conflicts in designs
which can provide a tranquil survival for any design. According to Alexander,
this may be accomplished by the introduction of rules, processes, and design
patterns [34].

Alexander says, “Each pattern describes a problem which occurs over and over
again in our environment” [32]. The solution to the problem can be used a

52

million times over, without doing the same thing twice. The same idea may be
applied in software design. Design patterns describe problems which occur over
and over again in software design. The solution to a problem in software design
may be applied over and over again without doing the same thing twice.

This chapter is not about architecture. The main objective is to use the InfoMap
methodology and framework, described in the previous chapters, in order to
model design patterns that exist in object-oriented architectures. Before
presenting design patterns using the InfoMap approach, we discuss issues that
relate building and, software design, and definitions related to design patterns.
Observations about design patterns and the InfoMap methodology used to
model them are also presented.

42 Design Patterns: Definitions, Classification, Origin

Building design and software design do not really share any principles.
However, ideas found in building design may also be found in software design
[36]. These are:

. Software entities, just like buildings, engage in greater dynamic
interaction. In software design, messages are sent from onc component
to another, and they must be understood. In building design, blocks
of concrete depend on one another in terms of physical and esthetic
interaction.

. Sometimes describing software is the same as constructing it. In
software design several specification languages assist programmers in
prototyping and producing specifications in an executable form. In
building design it is often the case that the end product is described and
simulated in every detail.

. Much of a software design is hidden from its user. Transparency in
software design does not provide any clues to the user about
mathematical and other formulas used. In building design the blueprints
are not available to the users.

53

. Software in general has scant physical constraints. In software design
laws of nature do not play any role; thercfore we may experiment more
freely. In building design this is definitely not the case.

. Some software requirements are allegedly less explicit than building
requirements. In software design we may have ill/well-defined
problems. In building design we have only well-defined problems [7, 18].

Perhaps it is true that in every other engineering discipline the end product
consists of some tangible material, whereas in software there is no material
substance of the end product. It is our view that the problem lies in the
representation of the design of a product with no actual material substance.
Often it has been said, “if only software engineering could be more like X...",
where X is any design-intensive profession with a longer history than software
[36]. Another favorite aphorism is, “if software engineers were designing
buildings, we’d definitely be homeless right now”. Design patterns have been
proposed in order to deal with these handicaps.

In order to provide harmony in building design, several issues regarding design
and engineering have to be resolved [36]:

. Incapacity to balance individual, group, societal, and ecological needs.

. Lack of purpose, order and human scale.

. Aesthetic and functional failure to adapt to local and physical social
environments.

. Development of material and standardized components that are ill-suited

for use in any specific application.
. Creation of artifacts that people do not like.

Design patterns may be a way of providing harmony in software design as well.
Our contribution to this proposal is the representation of design patterns using

54

the InfoMap/InfoSchema methodology. By doing this we piovide an n-
dimensional environment for the modeling of design patterns, and ways of
uncovering problems with these design patterns.

This relatively new way of designing software is based on the observation that in
order to give a solution, the designer must zero in on the most promising
question. In other words, he or she must focus on the question that will give the
most promising answer. Therefore, that question may provide some hints about
the way of packaging and developing reusable software components at the
design level. In that respect, design patterns may be viewed as a set of forces and
relationships among them. These forces are described as a set of conflicting
constraints acting on any solution to a given problem. The objective is a solution
that will analyze the set of constraints and resolve the design conflicts.

In the area of object-oriented design and/or programming, design patterns may
be applied to solve several problems. These problems and how design patterns
assist in their solution are [1] :

. In order to find appropriate objects, design patterns assist the
identification of abstractions and the objects that can capture these
abstractions.

. Design patterns assist us in deciding what is an object, by representing
the whole system as objects and/or decomposing systems into smaller
objects.

. Object interface specification is also an area where design patterns may be
of any assistance, by identifying elements and kinds of data that can be
sent across an interface.

Ralph Johnson, Eric Gamma and others have recently proposed that Alexander’s
work may in fact provide a new way of thinking about software design issues.
They focus mainly on the Object-Oriented technology. They are the main
contributors designing frameworks and methodologies using Smalltalk and
Eiffel as their implementation languages. However, we should not confuse

55

design patterns with either methodologies or frameworks. Dictionary definitions
for all three of them follow [28]:

Methodology: The science of method, a treatise or dissertation on method,
systematic classification, the study of direction and implications of empirical
research or of the suitability of the techniques employed in it.

Framework: A structure composed of parts framed together, one designed for

enclosing or supporting anything, a frame or skeleton.

Pattern: A regular or logical form order, or arrangement of parts (behavior
pattern), model design from which copies can be made, but also a random

combination of shapes or colors.

Dictionary definitions may very well prove our point. Nevertheless, in adapting
to the software design reality some additional points should be made if common
sense is to be used. First, design patterns dictate which conclusions to make,
based on what decisions, and they furnish a justification for the validity of the
decisions. Second, frameworks re a way of building what you want, and
specifying its layout. Finally, methodologies tell us how to write down our
conclusions. In addition to that, while making the distinction between
frameworks and design patterns we should point out that the latter allow only
the reuse of abstract micro-architectures, without implementation. Thercfore
they occupy the design level of the software engineering spectrum. A language
for design patterns may function much the same way. Of course, design patterns
may help in designing frameworks, since a framework consists of reusable
design patterns [20].

A way of organizing design patterns is essential. It has been suggested that
design patterns should be classified according to their purpose and scope [1, 17].
The purpose of a design pattern is what it does. The purpose of a design pattern
may be to create, structure, or describe behavior. The scope of a design pattern
applies to either objects or classes. Creational design patterns concern the
process of object and/or class creation. Structural design patterns deal with the

56

composition of classes and/or objects. Behavior design patterns characterize the
ways in which classes or objects interact and distribute responsibility.

Figure 4.1 [1, 17] shows the classification scheme and several design patterns that

fall under each category.

Purpose
Creational Structural Behavioral
Scope |class Factory method Adapter Interpreter
Template method
object| Abstract Factory Adapter Chain of
responsibility

Builder Bridge Command

Prototype Composite Iterator

Singleton Decorator Mediator

Facade Memento

Flyweight Observer

Proxy State
Strategy
Visitor

Figure 4.1. Design Pattern Classification Scheme
43 The Parts of a Design Pattern

Design patterns may be viewed as information templates, combinations of
textual and diagrammatic descriptions. Erich Gamma etal. [1, 17] have
suggested the following attributes for each template describing a design pattern.
Each part is presented with an example:

Name, classification: A simple name that can capture the overall concept that the
design pattern is describing. It is an acceptable practice to include also
alternative names, so that the reader may have more room to identify with the
situation. The purpose of the classification is to categorize design patterns so

57

that it will be casier to refer to families of related design patterns, learn them, and

find new ones.
example: INTERPRETER, Class Behavioral

Intent: Several questions should be answered. These include questions as to
what the design pattern does, what design issue it addresses, and the rational
behind it.

example: Given a language, define a representation for its grammar along
with an interpreter that uses the representation to interpret
sentences in the language.

Also Known As: Other well known names for the pattern.
example: No other name for the pattern exists.
Motivation: Since design patterns express a set of forces, their relationships and
a solution to the problem, a brief statement of the purpose of a given design
pattern is necessary. In addition to that, an example is needed to make things
more clear to the reader.
example: The interpreter pattern describes how to define a grammar for simple
languages, represent sentences in a language, and interpret these
sentences. Suppose the following grammar defines the regular
expressions:
expression ::= literal | alteration | sequence ...
The Interpreter pattern uses a class to represent each grammar rule.
Applicability: In a poor design a design pattern may solve the problem.

Therefore identifying the specific situation in which a design pattern is applied is
essential to its usage.

58

example: Use the Interpreter pattern when there is a language to interpret, and you
can represent statements in the language as abstract syntax trees,

Structure: Usually the Object Model Technique diagrammatic representation is
used to represent the design pattern’s classes and instances.

example:
Context
Client .
Intepreter{Context) -<
1
AbstractExpression AbstiactExprossion
Intepreter(Contexf) Intepreter(Context) :

Participants: The classes and objects participating in the design pattern and their
responsibilities, are needed in order to place each design pattern in a specific
context.

example: abstract expression, terminal expression, non-terminal expression,
context, client.

Collaborators: How the participants collaborate to carry out their
responsibilities.

example: The client builds the abstract syntax tree, each non-terminal expression
node defines the interpreter, and the interpreter operation of each node
uses the context to store and access the state of the interpreter.

Consequences: When each design pattern is applied, several trade-offs exist.

These trade-offs are weighed against each design pattern’s objectives.

59

example: Easy to change and extend the grammar, grammar implementation is easy,
complex grammars are hard, adding new ways to interpret expressions is easy.

Implementation: Any language-specific issue and any programming technique
that is of any concern when applying a design pattern.

example: Create abstract syntax tree, define interpreter operation, sharing terminal
symbols with the Flyweight pattern.

Sample Code: Smalltalk and/or C++ code fragments that illustrate the

implementation of the design pattern.

example: (smalltalk)
match: InputState

| final state |

finalState := alternativel match:
InputState.

finalState addAll: (alternative2 match:

InputState).
A finalState

Known Users: Design patterns can be found in several existing systems. Any
design pattern that qualifies for inclusion in a library of design patterns should
exist in at least two different domains.

example: SpecTalk, QQCA.

Related Patterns: Other design patterns may be related to the one currently
described. Differences and similarities should be stated in this section.

example: Composite, Flyweight, Iterator, Visitor.

The whole point of having this template for design patterns is to provide the
reader with a better view of each design pattern. In addition to that, new design
patterns may be identified and presented in this template.

60

44 Modeling of Design Patterns

Design patterns provide a common design vocabulary. Therefore a common
way of representing and communicating design patterns is necessary for
specification purposes. In this section we present the InfoMap modeling of
design patterns as a way of communicating and representing them. We
accomplish that by following the example presented in the previous section: the
Interpreter design pattern. Figure 4.2 shows the InfoSchema (general level)
modeling of the Interpreter design pattern. Each column represents a unique
partition. These partitions are listed in the SetName {PARTITION}. For cach
abstraction at the general level displayed in figure 4.2, an abstraction at the
detailed level is presented in figures 4.3 to 4.5.

In row 5 of figure 4.2, the name and the classification of the design pattern
appears. The Interpreter design pattern is classified as a behavioral design
pattern.

The motivation behind the Interpreter design pattern appears in columns 2 to 13
of figure 4.2. It is sub-partitioned according to the problem that the design
pattern attempts to solve. The first sub-partition (columns 2 to 8) describes the
structure of the problem, and the second (columns 9 to 13) describes the Abstract
Syntax Tree that is part of the Interpreter design pattern. Each of the columns is
described as follows:

Column 2: Inheritance relationship of the classes. The SetName participating
in this partition is {CLASS} and the SetRole attached to it is “1” for “Inheritance”.
The detailed level of abstraction is shown in figure 4.3.a.

Column3: Roles attached to classes. The SetNames participating in this
partition are {CLASS} and {ROLE}. The SetRole attached to {CLASS]} is “1." for
“Sequential state-transition”, and the SetRole attached to {ROLE} is “Q" for
“Identity”. Therefore this partition describes how each role is attached to each
class. The detailed level of abstraction is shown in figure 4.3.b.

61

|

2[3] 8] 9[13[19]20[21]24] 25]27] 28] 29] 30] 31] 35 | 36] 37
2 R | 0 |{MAP_DENSITY}
3 L I | 1 1 | | o! l|setcardinality
4 1A AlA AA A AA A A A A| 20 {PARTITION}]
5|v v% viv v} viviviviviv|v|viv|v Interpreter, B_g_haﬂwgr;a_l_ L
6 \lv vivivv l 1 ’ Motlvatloq S
7 1v v} v i] Sructure S
glyvi ! Inheritance
9 v |Rotes -
10 v Operations S
T v Abstract Syntax Tree_ -
12 Contents -
13 v Connectivity
14 v) - Aﬁbhcab?l?iy T
15 v |structure
16 Inheritance -
17 v Séquénce T
18 v : Partlclpants T
19 v Collaborations
20 v 7 1 Concéﬁqgén—césg -
21 v implementation
22 v Code (C++ / Smailtalk)
23 v Known Users L
24 v Related Patterns
25 G ¢ |e 6 |{CONDITION} T
32 oL Fi |x 4 [{oBJECT} -
38| 1L M X LL|A[A] | |F 1Iygﬂ{Ct.ASS} -
49 s| |s|s| | |7 facriony T T
57 K X |'s| a l{oPERATION}
62| |o| |A|L 6 |{ROLE) -
69 M) 3 [{(VALUE} -
73 e listatR)
75 | | 2 |(TRANSITION} B
77 |A| | 2 |{PACKAGE/SYSTEM}
80 O| 4 |{DESIGN PATTERN}
85|alalAalala|alalalalalala|a|ala] 1 |(REFERENCE] B
8|vivivyvivjviviv|ivivivivlo v | v 1F Gamma et aligg“ o
87]a|alaalalalajalalalalalalala] 1 |icopyrignior
88|vivlviololv|vlviviv|ivie|viv|v - [AA Michailidis 1995

Figure 4.2. General Abstraction Model of the Interpreter Design Pattern

62

O IMAP DENSITY}
0 Set Cardinality
20 {PARTITION}
Interpreler, Behavioral

Mohvation
Srhiture
trhentance
10 {CLASS)
Regular Fapression
Fiteral Eapression
Seqquence Expression
Repetition Expresston
Alteration Expression
1 {REFIRENCL)
E Gampma ot al
1 iCopynght ©f
A A Muhadudyy 1995

a. Motivation Structure: Inheritance

O [MAP DINSITY)
¢ Set Carduradity
A 20 (PARITHION}
Interpreter, Behavioral

v Motsvation
. Sriicture

v Operatwons

M 10 {CLASS}

v Regular Fapression

v hiteral Eapressun

v Sequence Fapression
v Repetition Eyprossion
v Aheration Fxpresson
K 4 [OPERATIONI

1 Interpreter()

A 1 (RIHRINCH}

3 f Cumma et al

A 1 (Copyright ©)

[AA Muhadudis 1995

<. Motivation Structure: Operations

[}

A A AAA
o ovorowp
A A AAA

1 v oo

O {MADP DFNSITY}
o Set Cardinality
20 {PARTITION}
Interpreter, Behavioral

Motsvation
Snuduere
Roles
10 {CLASS)
Regular Fxpression
Sequence Fxpression
Repetition Fxpreswon
Alteration Expression
6 (ROLE)
Fxpressiont
Fapression2
Repetition
Alternative]
Alternative2
T {REFLRFNCE)
I Cammadtal
1 (Copynght &)
A A Mihadufts 1995

b. Motivation Structure Roles

Figure 4.3.

O MAP DINSTY)

o Set Lardinalily

20 (PARIITION)
Interpreter, Beharioral

Maotrvateon
Abstract Syntax T
Contonts

000 O 4 (OBJICT)
) abequen of xpression
0 al seralt apression
0 aKepetiiont apnrssion
o anAlterationk apression
X X X X 10 {CLASS)
x 1 ieral Lxpression
x Sequence Fapression
x Repetiton Expression
x Alteratien apression
A AA A 6 [ROLL}
\ Fapresaont
v Fxpression2
v Alternatinel
v Alternatnvel
v Repeat
MMM M 3 (VALUE)
x raoning,
x dogs
x wats
A AA A 1 [RHIRINCH
I Gammaetal Design
oo Patterns
AAA A 1 [Copyright©}

A A Mubadulis 1995

d. Motivation Abstract Syntax Tree Contents

O (MAP DENSTIY)

o Sel Cardimality

{PARITHION?
Intepreter, Behayiond

Motivation
Abstract Suntas e
Cennnteesty

T LLU 1 I 4 {OBET
d d o abiteralb spassion
d i} aRepetiiont apression
d anAleration] spression

& (ROLY)
Faprosstond
“ Eaprosseond
~ Alcinatnel
~ Alternatinel
“~ Repeat
1 IRVIERINCE)
I Camima et al
1 (€ opynght ©}

UV Altchardudi 199

¢ Motivation Abstract Syntax
T'ree Connectivity

O IMAP DN T T
' St Canbimality
A # [(PARIIHON]
v Interpretir, Hehuvroral
3 Appltatrlsty
G 6 (CONDITION}
\ Simple Gramiaar
' amtted eflscweney aeoeptable
A 1 IRHHIRINCE]
v I Camma ot ol
A 1 {Copynght ©f
o A A Muduilndis 1904
f. Applicability

Detailed Abstraction Model corresponding to figure 4.2. Part [1]

63

0 [MAP_DENSITY}
o Set Cardinality
A 20 {PARTITION}

v Interpreter, Behavioral
v Structure
Inherttance

1
I 10 {CLASS}

p AbstractExpression

¢ TerminalExpression

¢ NonTermmalExpression
X 4 {OPERATION}
X

A

Interpreter()
1 (REFERENCE)
v E Gamma et al Destgn Patterns
A 1 ([Copyright O]
u A A Mickalidis 1995

O (MAP_DENSITY]
It Set Cardinaltty
A A A 20 [PARTITION]

v v v Interpreter, Behavioral
v ovov Structure
[U Sequence
L L L 10 {CLASS)

d AbstractExpression

d TerminalExpression

s NonTerminalExpression
d Context
s s Chent
A A A 1 (REFERENCE}
[E Gamma et al
A A A 1 (Copyright©]
v A A Michatlidis 1995

a. Structure, Inheritance

b. Structure, Sequence

O {MAP_DENSITY}

[Set Cardinality
A 20 (PARTITION}
v Interpreter, Behavioral
v Participants
A 10 (CLASS)
v AbstractExpression
v TerminalExpression
v NonTerminalExpression
v Context
v Chent
A 1 (REFERENCE]}
v E Gamma et al Design Patterns
A 1 [Copyright ®]
0 A A Michahlidis 1995

c. Participants

O (MAP_DENSITY}
(] Set Cardmahty
A 20 (PARTITION}
v Interpreter, Behavioral
v Concequences
G &6 {CONDITION}
t Change Extend Grammar
t Implementing Grammar
t New ways to interpret expressions
f Hard gramrnar maintain
A 1 (REFERENCF)

v £ Gamma et al
A 1 (Copyright ®]
[A A Michadudis 1995

Figure 4.4.

e. Concequences

O (MAP_DENSITY}

(/] Set Cardinalty
A 20 (PARTITION}
v Interpreter, Behavioral
v Collaborations
A
v

P<<DdD

10 {CLASS})
NonTerminalExpression
Clent

7 {ACTION}
Built A.S.T.
Initiclize Interpreter
Define Interpreter

N — <
(7]

=N —

1 (REFERENCE]
E Gamma et al
1 [Copynight ©)
vov AA Michailidis 1995

=
> o=

Define base case for recursion

d. Collaborators

O {MAP_DENSITY}

[} Set Cardinality

A 20 {PARTITION}

v Interpreter, Behavioral

v Implementalion

§ 7 {ACTION}

1 Create Abstract Syntax Tree
2 Define Interpreter Operation
3 Share terminais

A 1 (REFERENCE)

v E Gamma et al

A 1 [Copyright ®}

v A A. Michailidis 1995

f. Implementation

Detailed Abstraction Model corresponding to figure 4.2. Part [2]

64

O (MAP_DENSITY)
a Set Cardinality

A 20 {PARTITION]

v Interpreter, Behavioral O [MAP_DENSITY]

v Code (C++ | Smalltalk) 4 Set Cardinality

G 6 (CONDITION} A # [PARTITION)

F 4 (OBJECT} 14 Interpreter, Behavioral
F 10 (CLASS} v Known Users

S 7 {ACTION} A 2 {PACKAGE/SYSTEM}
L ? (STATE} v SPECTalk

K ? {TRANSITION} v QOCA

A 1 {REFERENCE) A 1 (REFERENCE}

v E Gammua et ol v E Gamma etal

A 1 [Copyright ©} A 1 ([Copyright ©f

v A.A Michathdis 1995 |4 A A Mihaidulis 1995
a. Code (C++/Smalltalk) b. Known Users

Figure 4.5.

O {MAP DENSITY)
0 Set Cardinality

A A A A 20 (PARTITION)
v v v v interpreter, Behaviorai
VvVvVvy Related Pattems
X X X X 4 (OBJECT)
X X X Abstract Syntax Troe
S § S S 4 (OPERATION)
1 Share
1 Ttaverse
1 Maintaln Behavior
O O 004 (DESIGN PATTERN}
o Composite
o Flyweight
o lterator
[o] Visitor
A A A A1 [RFIERFNCE)
voroovow I Gamima et al
A A AATL ([Copynght W]

[I A A Muchadihis 1995

Q

(MAP_DENSITY}
Set Cardinality
{PARTITION}
{CONDITION}
{OBJECT)}

{CLASS}

{ACTION}
{OPERATION}
{ROLE}

{VALUE}

{STATE}
{TRANSITION}
{PACKAGE / SYSTEM}
{DESIGN PATTERN}
{REFERENCE)

£ Gamp el al

1 [Copyright ©]

A A Michailidis 1995

N o
=

- 5 O
=]

—_ kA D WD B~

c. Related atterns

d. Cardinality

65

Detailed Abstraction Model corresponding to figure 4.2. Part [3]

Column 8: Operations contained in each class. The SetNames participating in
this partition are {CLASS] and (OPERATION}. The SetName {CLASS)} is
assigned the SetRole “M” for “ Association” and the SetName {OPERATION]} is
assigned the SetRole “K” for “I1dentifier”. Therefore, each class contains a set of
operations. The detailed level of abstraction is shown in figure 4.3.c.

Column9: Contents of the Abstract Syntax Tree. The SetNames participating
in this partition are {OBJECT}, {CLASS}, {ROLE} and {VALUE}. The 5etName
[OBJECT) is assigned the SetRole “O” for “Identity”, the SetName {CLASS} is
assigned the SetRole “X” for “Qualifier”, the SetName {ROLE} is assigned the
SetRole “A” for “Partition-association” (letter “A” is a SetRoleUserDefined), and
the SetName {VALUE] is assigned the SetRole “M” for “Association”. Therefore
the abstract syntax tree is shown as an object in a given class. The classes are
associated with SetRoles between them, and contain instances which are the
nodes of the abstract syntax tree. The detailed level of abstraction is shown in
figure 4.3.d.

Column 13: Connectivity of the Abstract Syntax Tree. The SetNames
participating in this partition are {OBJECT} and {ROLE}. They both have
SetRoles “L” for “Sequential state-transition”. Therefore the structure of the
abstract syntax tree is described in terms of objects and roles between these

objects. The detailed level of abstraction is shown in figure 4.3.e.

The applicability of the design pattern is shown in column 19 of figure 4.2.
Whether the design pattern is applicable or not is described in the SetName
{CONDITION}. This SetName contains the several conditions that should be
reet in order for the design pattern to be applicable. The SetRole “G” for
“Guard” is attached to the SetName {CONDITION]} in order to demonstrate this

point. The detailed level of abstraction is shown in figure 4.3.f
The structure of the design pattern is shown in columns 20 and 21 of figure 4.2.

This structure is sub-partitioned into an inheritance and a sequence structure as

follows:

66

Column 20 shows the inheritance of the design pattern: The SetNames
participating in this partition are {CLASS} and {OPERATION}. The SetName
{CLASS} is assigned the SetRole “I” for “Inheritance”, and the SetName
(OPERATION]} is assigned the SetRole “X” for “Qualifier”. This indicates that
operations are contained in classes. The detailed level of abstraction is shown in
figure4.4.a.

Column 21 shows the sequence of the classes in the structure of the design
pattern. The SetNan:e [CLASS} is assigned the SetRole “L” for “Sequential-state-
transition” to demonstrate this sequence; the detailed level of abstraction is
shown in figure 4.4.b.

The participant classes of the design pattern are shown in column 24 of figure 4.2.
The SetName {CLASS} is assigned the SetRole “A” for “Partition-Association”.
Therefore this sub-partition states the classes that participate in the design
pattern. The detailed level of abstraction is shown in figure 4.4.c.

The collaborator’s structure of the design pattern is shown in column 25 of figure
4.2. This is presented in terms of the classes that participate in the design pattern
and their actions. The SetNames participating in this partition are {CLASS} and
{ACTION}. The SetName {CLASS} is assigned the SetRole “A” for “Partition-
Association” and the SetName {ACTION]} is assigned the SetRole “S” for
“Sequence”. Therefore the collaboration between classes in the design pattern is
shown in terms of actions that each class is performing. The detailed level of
abstraction is shown in figure 4.4.d.

The consequences of the design pattern in terms of its conditions are shown in
column 27 of figure 42. The SetName {CONDITION} is participating in the
design pattern, and it is assumed the SetRole “G” for “Guard”. Therefore the
application of the design pattern results in a series of conditions that are true or
false after the design pattern has been applied. The detailed level of abstraction is
shown in figure 4.4.e.

Implementation-related issues of the design pattern are shown in column 28 of
figure 4.2, in terms of sequences of actions, with the SetRole “S” for “Sequence”

67

attached to the SetName {ACTION}. Therefore each implementation-related
issue is listed in a sequential fashion in the SetName {ACTION}. The detailed

ievel of abstraction is shown in figure 4.4.f.

Code modeling of the implementation of the design pattern is shown in column
29 of figure 4.2. This column is further explained in chapter 6, where we present
a system that traces control flow graphs. This model is described by the
SetNames {CONDITION] with SetRole “G” for “Guard”, {OBJECT} and {CLASS}
with SetRole “F” for “Flow”, |ACTION} with SetRole “S” for “Sequence”,
[STATE} with SetRole “L” for “Sequential-state-transition”, and {TRANSITION}
with SetRole “K” for “Identifier”. The detailed level of abstraction is shown in

figure 4.5.a.

The known users of this design pattern are shown in column 30 of figure 4.2.
These known users are listed in the SetName {PACKAGE/SYSTEM} with the
SetRole “A” for “Partition-Association”. The detailed level of abstraction is

shown in figure 4.5.b.

Column 31 of figure 4.2 shows the design patterns that are related to the one
currently described. The SetName {OBJECT} is assigned the SetRole “X” for
“Qualifier”, and the SetName {OPERATION]} is assigned the SetRole “S” for
“Sequence”. Therefore these related design patterns are described in terms of
associated objects and sequences of operations that are used from other design
patterns. The detailed level of abstraction is shown in figure 4.5.c.

At this point we introduce another attribute of the InfoMap approach: the
cardinality of each SetName. The number of SetMembers of each SetName
appears in column 35 of figure 4.2, on the left side of each SetName. The detailed

level of abstraction is shown in figure 4.5.d.
4.5 Observations

The point of the exercise presented in section 4.4 of this chapter is to demonstrate
several aspects of the InfoMap representation methodology. Abstractions at the
general level (InfoSchemata) and design patterns share common properties:

68

encapsulation, generality, equilibrium, abstraction, openness, and composibility.
These properties are demonstrated using examples. In addition to these common
properties, we show how we have used the InfoMap methodology to arrive at
design patterns through the modeling of several existing methodologices.

4.51 InfoMap - Design Patterns Common Properties

At the general level of abstraction (InfoSchemata) the InfoMap representation
methodology presents the characteristic o” composibility. Several schemata can
be interrelated in a “whole-part” relationship. Consider the example given in
figure 4.6.a. It relates two partitions. This relationship representation can be
composed into one partition, as shown in figure 4.6.b. In figure 4.6.a, SetName
{Set1l} and SetName {Set2} are related in a one - to - one order. SetName {Set2}
and SetName {Set3} are also related in a one - to - one order. Therefore they can
be composed in such a way so that SetName {Setl} can be related to SetName
{Set2} and SetName {Set3} in a one - to - one - to - one relationship, as shown in
fizure 4.6b. Therefore composibility of partitions at the general level of
abstraction is possible, and enables the synthesis of partitions that share common
SetNames.

A A {PARTITION} A {PARTITION}

\Y Partition 1 \ Pn = P1 compose 2
v Partition 2 o {SET1}
o {SET1} X {SET2}

O X {SET?2} X {SET3}

X {SET3}

h. Composed Partitions
a. Two Partitions

Figure 4.6. InfoMap Composibility

A design pattern can be specialized. It can be extended to small details, and
applied to solve different problems. For example, the Interpreter design pattern
presented in section 4.4 can be applied to different languages, and therefore to

69

different grammars. This characteristic is called openness. The same way that
design patterns can be instantiated based on the details of a specific problem,
abstractions at the general level (InfoSchemata) of the InfoMap can be
instantiated. This is shown in figure 4.7. Part [a] shows a partition at the general
level of abstraction. Part [b] shows an instantiation of that partition, and part [c]
shows a different instantiation of the same partition. These two instantiations
depend on problem-specific details. The first instantiation at the general level of
abstraction (figure 4.7.b) describes a one - to - one relationship between
identification numbers and names, while the second instantiation (figure 4.7.c)
describes a one - to - one relationship between professors and course sections.
Therefore, several problem constraints such as SetName’s instantiation provide

the basis for a design pattern’s openness.

A {PARTITION} AAA {PARTITION} AAA ({PARTITION}
\% Generic VvV Instantiation 1 | [vv v Instantiation 2
O ({SET1} 000 {ID# 000 {PROFESSOR}
X {SET2} 0 123 0 John
0 234 o Kelly
a. Generic Partition 0 345 o Jerry
XXX {NAME]} XXX ({SECTION}
X John X A
X Kelly X B
X Jerry X C
b. Instantiation 1 c¢. Instantiation 2

Figure 4.7. InfoMap Openness

Design patterns and the InfoMap representation methodology share another
common characteristic: the capability of a design pattern, as well as abstractions
at the general level (InfoSchemata), to be abstract. It can be said that this
abstraction is the opposite of the openness characteristic presented in the
previous paragraph. Figures 4.7.b and 4.7.c share the same SetRoles. Therefore
they can be abstracted al the general level and presented in figure 4.7.a. The

70

InfoMap representation methodology provides this generality within the stated
context of a problem.

Design patterns provide a step by step approach in solving a problem. This
approach provides an equilibrium for each step taken in solving a particular
problem. The same applies in the InfoMap representation methodology. The
equilibrium that this approach provides is the solution space where the problem
is stated. The template of information contained in the general level of
abstraction (i.e. : SetRoles and SetNames) provides the establishment of objective
equilibria [34]. In figure 4.7.a there exists a very well defined and established
equilibrium between two sets related in a one - to - one relationship. Therefore
each partition at the general level of abstraction (InfoSchema) establishes an
equilibrium through the SetRoles attached to each SetName.

The design pattcrn approach solves a series of problems. This characteristic of
generativity is alsc present in the InfoMap approach. Several problems have
been represented using this approach by experts or novice users [40, 41].
Applications of specific abstractions at the general level (InfoSchemata) have
been used to model several problems. One of them is presented in figure 4.7.a. It
is a template of information that is used just like a recipe. It is used to design
processes performing different things, therefore using different ingredients. In
the next chapter we describe this template in further detail.

Design patterns provide the characteristic of encapsulation. The representation
of objects and their implementation can be designed in such a way so that they
can be hidden from the outside world. Tools have been developed to perform
encapsulation. Figure 4.8 shows this encapsulation characteristic within the
InfoFarm [42] environment. In part [b] details of the SetName {SET1} are hidden,
and in part [a] details of the same SetName are visible. Within the InfoFarm
environment we are able to switch from a hidden to a visible state of
information, and therefore provide the concept of encapsulation.

71

fie——7——————

H ' = fr——
2 . . @
nEC 1T Z[3al5l6] 7 H
1
Z| A A A {FARITION} K15 1[2]5(6] 7
3 v v v Paxtition
(PROFESSOR) Z A {PARTITON}
g (o) ¢° John 3 7 Partition
6 0 Kelly s : 0 {PROFESSOR}
7 o Jerry)
8
]
b. hidden

a. visible

Figure 4.8. InfoMap Encapsulation
4.5.2 Arriving at Design Patterns

It is often the case that a simple word, such as “pattern”, may be used in different
knowledge domains to capture different notions. The definition of the word
“pattern” was given in section 4.2 of this chapter. However, when this word is
mentioned in a specific knowledge domain it describes different notions. For
example, C. Alexander used this word to describe design patterns that exist in
the architecture of buildings. Leonardo da Vinci used the same word to describe
design patterns that exist in paintings and engineering concepts [58].]J.F. Sowa
used the word “pattern” to describe structures that exist in system’s architecture

[3].

We can cla.n that our arrival at design patterns came through the InfoMap
nwdeling of known systems and methodologies. In [50] the various documents
that are used during the software engineering life cycle are described as design
patterns. Furthermore in [10] a library of design patterns is given. It contains the
models of design patterns used to model hierarchies, aggregations,
generalizations, data flows, process models and relational database models.
Therefore it is clear to us that the idea behind design patterns as it is applied to
system development is not new. Whether it is object-oriented development or
any other methodology, design patterns have been researched and published

72

since the late 1960’s when the idea of repository-type products was first argued
[54].

What is needed is a system that can automate this repository-type product. The
InfoMap methodology provides an environment for the development of such a
repository system. Even though we are far from the automation of such a
system, such a reality may be applied into any body of knowledge that design
patterns exist, and can be modeled using the InfoMap methodology. We do not
claim that there could be a complete automated repository for every design
pattern that exists in this world, but we agree with the following statement given
in [3]:

“An automated repository system for models makes it clear that
architecture is no longer mere intellectual entertainment. It will
become an imperative for any enterprise that needs to be a
serious player in the information age.”

4.6 Summary, Deliverables

Design patterns provide us with a systematic approach to problem solving. This
systematic approach is the result of the observations made by experienced
problem solvers who had to deal with the same design problem in the past.
Therefore the solutions applied over and over again have been standardized.
Christopher Alexander’s ideas of design patterns were applied in building
architecture [37]. In software design the idea of design patterns has been applied
in object-oriented design and programming. Design patterns were applied in
order to standardize several templates for problem solving. In this chapter we
have discussed and delivered the following:

. Design patterns from the point of view of building design.

. Common characteristics of design patterns in building design and
software design.

73

Design pattern definitions, and how they differ from frameworks and

methodologies.
Design pattern classification and parts.

The use of the InfoMap representation methodology to represent the parts
of design patterns.

Application of design pattern characteristics in the InfoMap
representation methodology, and common properties of both.

InfoMap representation of design patterns in an automated repository-
type system.

74

CHAPTER 5: InfoMap IN InfoMap
5.1 Introduction, Motivation

Keeping in mind that research [17] has shown that knowledge is not organized
around syntax, but in larger conceptual structures such as data structures and
algorithms, plans of action should exist for every case that arises and requires the
inclusion of these structures at the design level. Therefore we need to establish a
way of describing these conceptual structures and their inclusion at the design
level. Also, at the design level, we should be able to accomplish reusability by
abstracting up to a point any implementation-related issuc. This endeavor can be

achieved as long as the following is present in any approach:

. A common vocabulary for the efficient and effective communication of
designs and design documents [10].

The above point may vary from one schematic description to another in terms of
effectiveness to accomplish its objective, or in terms of the actual representation
methodology [9]. In addition it may add overhead, due to sometimes complex
CASE tools [38].

In this chapter we use this point to demonstrate and test the InfoMap
representation methodology. The testing is performed on the vocabulary of the
InfoMap representation methodology, by presenting it in the InfoMap format.
The template of information used to achieve this is the framework presented in
chapter three, modeled at the general (infoSchema) and detailed level (InfoMap)
of abstraction. Furthermore we identify the several by-products of the infoMap
representation methodology, categorized according to their function.

52 InfoMap Presented in its Own Terms

Several methodologies exist for the modeling and design of concepts in software
engineering. Some of these methodologies are accompanied by CASE tools {39,
15]. In addition to that, several methodologies attempt to use their own notation
to describe themselves [39]. The common vocabulary of the InfoMap

75

representation methodology can be effectively used to communicate designs and
documents. This can be done by using the methodology itself. In the following
section two aspects demonstrate our point:

. The basics of the methodology in its own terms (from chapter two)
. The syntax of the methodology in its own terms (from chapter three)

The basics of the approach described in this thesis were stated in chapter two.
These basics formulated the tabular structure of the representation methodology.
Figure 51 shows the SetRoles, SetMemberRoles, SetNames and
SetMemberNames of the InfoMap representation methodology in terms of itself.
SetName {PARTITION} in row #2 contains the SetMemberName InfoSyntax (row
#3), which indicates that the concept described is the syntax of the methodology.
Furthermore, the generic roles of the methodology are listed in rows #4, #5, #6.
They describe the dominant, descriptive and transitive roles. SetName {SET
ROLE} in row #7 contains the SetMemberNames for all the SetRoles used by the
InfoMap representation methodology to describe concepts at the general level of
abstraction (InfoSchema). SetName {SET MEMBER ROLE} in row #22 contains
the SctMemberNames for all the SetMemberRoles used by the InfoMap
representation methodology to describe concepts at the detailed level of
abstraction (InfoMap). The two SetNames ({SET ROLE} and {SET MEMBER
ROLE}) are related using an inheritance structure. Therefore, each SetMember of |
the SetName {SET ROLE]} is a parent to several SetMembers of the SetName {SET
MEMBER ROLE]}.

In chapter three we presented a design framework for the InfoMap
representation methodology, by describing the classes of SetRoles and their
instances, which are the SetMemberRoles. These classes are presented in figure
5.1 and are listed in SetName {SET ROLE}. The instances of the classes are listed
in the same figure in SetName {SET MEMBER ROLE}. The relationship of
inheritance explained in the previous paragraph corresponds to the inheritance
relationship between the specified classes of chapter three. Therefore, it can be
shown that the design framework can also be represented using the InfoMap
representation methodology. Furthermore, the operations performed on the

76

SetRoles and SetMemberRoles that were described in chapter four can also be
presented in the InfoMap format. This is shown in figures 5.2 and 5.3.

Figure 5.2 shows the operations at the general level of abstraction (InfoSchema).
SetNames {SET ROLE} and {OPERATION} are related in a one - to - many
relationship. This can be seen by the SetRole “O - Identity” attached to SetName
{SET ROLE]}, and SetRole “M - Association” attached to SetNare {OPERATION].
An example of this one - to - many association between SetRoles and operations
can be seen in column #4 of figure 5.3. A DominantSetRole that exists in array
[2], identified by the upper case letter “K”, is an “Identifier”.

Figure 5.3 shows the operations at the detailed level of abstraction. The
SetMembers represent the operations at the detailed level of abstraction. For
example, a unique DominantSetMemberRole that exists in array [3], identified by
the lower case letter “0”, is an “Identity”.

The InfoSyntax and the operations represented in the tabular format of the
InfoMap representation methodology show that it is possible to use the basics of
the methodology to represent itself. Furthermore it is possible to add new
SetRoles, new SetMemberRoles, and new operations in each of the three basic
categories of SetRoles (Dominant, Descriptive, Transitive), just by inserting new
columns and/or rows in SetNames {SET ROLE} {SET MEMBER ROLE} and
{OPERATIONS}. In this section we have shown how it is possible to use the
InfoMap representation methodology itself to model two aspects of itself: first
the basics covered, in chapter two, and second the framework, covered in chapter
three. Two conclusions are derived from this attempt to usc the InfoMap
representation itself to represent itself. First, the methodology can be applied to
itself. Second, the framework can be expanded using the methodology itself to
describe this expansion. The SetRole “U - User Defined” (figure 5.1, row 8,
column 3) can be used to make this possible.

71

Figure 5.1.

3[a]5]6] 7] 8] 9]10]n1]1z[13[14]15[16[17[8] 19
[2[AJA[A|A[AA[A|A[A[A|A|ATA|A]4]|IPARTITION] ,,_‘,__
Jlojviv|v|viviv|iviviviv|v|v| v InfoSynlax T } ;_
2] lolvlvlo]o U] |Domnant Rotes]
5 | vivijv|v|v|e 1. l_)gggrl_;‘:gt;—laics-—__ _4:_~~,_
__T_ vi|v Transttive Roles]
[T ool ele[ojefajafafeinfa]t]1jral(SETROLE)]
8 1p U - User Defxn—ed B

9 p K- ldunufmr
E p 0- ldenh}y B o
[11] p H - Hierarchy I
12 p - (.enera]wamln» .

[13) P] P-Aggregaton |
14 p X-Quabfier
i _ !

| 15 P _{._|M- Association o
[16] P B O T
17 p | _1G-Guard or Goal o
18 p | |s-Sequence " T
19 p | |V -Value or Instance

z B }; b _A L. -SequcncnalStatn Transition

| 21] Py L_, Concurrent State Transition |
[22(|| a{nfefajue|nj0]r| 1|1} 1]1|28/ISET MEMBER ROLE} B
23] c U Jletter,symbol T
24 N 1 |d- umquexdenﬁf:ur o
E c . _: _h o - column marker

| 26 | ¢ ’ 1 1 b root . _
| 27 | ¢ ol) _1 7_1 n- Raiﬁrfer"_" T
| 28 c Sl poparem
| 29| c c-chld A
30 ¢ w - whole o
E c i cpart T -~ B
| 32 c . v - vmblepan T A:- T
| 33| ¢ 1 : h- hidden part T _l:
| 34 | c) m- _many parts

| 35 ¢) x - quahfier marker T
36 | ¢ V- ro\;~tr'\VaFkLTriAl B - :
| 37 c k- key : attribute _:; 1_
38 T O O O (™ o
39| cf | 11 | _jo- produced, ongu_l _____
40| ¢ U e T
| 41| ol | ffalse

| 42 | ¢ NN ~|T - implied trwe
& el LT T mphed fase T
| 44 | c B "|instance, value, sining
| 45 |) :_c B c_As_ourcfg*v_j" _“-i_____~
| 46 | c _‘_:dchu;tvm.;tmn T _"
7] c [~ioop s
2] IR R T —
9] Tel 7] e exempton T
Ed B Te ¢ - concurrent
[S1]a|a|a|aajalajalalajaja]afa|1|iCOPYRIGHTO] -~
52, vjviv|vjv|viviv|v|vivie vlv [Wﬂlaa)rsm%z‘f 199

InfoMap Framework Presented in the

InfoMap Methodology

78

3{4|5|6]7]8]9[10{11{12{13]14]15 16|7|8| 19
2|alala{Aala]Aala|a]alAlalalaT4[IPARTITION]
djv|v IL_‘(_; viv|vjelv|v|viv|vlo Operations General Level (InfoSchema)
4 _|ev vlv|v ’ . Dorntnant Roles
5 ;) ; B olvlviv|vlo Deseriptive Roles
6 L o :) ~ [Transitive Roles
7 |ojojo|0|0|0|0]|0|0]0|0|0O|O|O|14{SET ROLE)
8lo B o U - User Defined
9 o | i] K- Identiher
10] | |o T 7 _ O- Identity
11 | |e - __' N _7 7 H - Hierarchy
12 1| e _) I - Generalization
13] B o I - Aggregation
4] || o X - Quahfier
15 L w‘ 0 M - Association
16 B e 0 F- Flow
17) |) 0 G - Guard or Goal
18 N 0 $ - Sequence
19]) Vj B) i 0 V - Value or Instance
20 }) I\ L - Sequencial State ‘Transition
2] N) ~ R N 0 C - Concurrent State Transition
22| M|M|M|M|M|M|M|M|M|M|M|M| M| M| 20/(OPERATION}
v |viv|v|iviviviv]v|viv|viV]vV Exists in Area |1}, [2], [3), 14)
24 viviviviv|v|vlvliviv]viviv]v SetRole
25 v|v|v]v|vivliv|viviv|v|v|v]|v UpperCase Letter
26| v viviviv]v UpperCase Generie Dominant Letter v Area [2]
27 7) i a Tlvlv]v]vlviy UpperCase Generic Descriptive Letter in Area |2
28 o v|v UpperCase Generie Transitive Letter in Area [2]
29| v j - Uin Area [2)
30 v o j Kin Area [2]
N v O Area 2]
2| 1 | v] Hin Area[2)
32 e v 1 Area [2]
34 B B v P Area 2]
35 jﬁ o) A \ X1 Area [2]
36 N i) _ v Min Area [2]
37 1 B Ty Fin Area [2]
38| | T - v Gin Area |2}
39 | i i - Tl Sin Area 2]
40 e ;" N v Vin Area |2)
4] B : o B % L.n Area |2}
42 t L 1 v Cin Area [2]
a3lalalalalalalalalalajalalala]2licoryriGHT O]
Mo lv|v]v|vlele|v|viv|v|vlele A A Muarlhs 1995
45| v|vlvlv|v]o]v|vlelo]o|vlvin lWM Jaworsht 1988-1994

Figure 5.2. Operations of the Framework at the General Level of Abstraction
Presented in the InfoMap Methodology

79

afa[s[6]7]8]9T10[11]12[13]14]15]16]17]18] 19

2[ajalalaA ATAIAIA[A{AIA|A{A|A |4 |[PARTITION]

Alviviviviv } vyviviv, v, vlviviv Opern1wn§ Detailed Level (_Inﬁ;Md;—)) o i:m__]
) v ooy Y ? | : Domnant Roles 7 S t_ - “_:__: ﬂ_ “:
5 X viv|v v "ol ’ Descriplive BOI(‘S B e
6 viv Transtlive Roles o ~

7 |o|o|lolojojojo]olojo|0|0|0|0}14/{SET MEMBER ROLE} S
81lo u - User Defined . . o

) 0 1d - Identifier 44 *_ B _MAW; :_]
10 0 0- ldentlnty e
n 0 h, 1.n - Hierarchy i I
12 0 p.c- Generallzan(;nA B B : e
13 0 w,p,v,h,m- Ag,;.,regatmn i . B e
14 o X - Quahfler L
'ﬁ 0 v - Association [
16 o u,0- Flow B - e
17 0 t,f, T, F - Guard of‘Goal)) o L
18 0 1..n - Sequence o B _j___ e
19 0 string, number - Value or Instance . _ o
20 o 5,d,ea, 1- SequerEnEll_STal_e Transmon ______ _ o
21 o c- Cm]c_urrentj_tqte_ T_mgggpn L
22MMMMMMMMMMMMMMZBIOPERATI(SN} _‘ e

(v v iviviviviviv|v|viviviviv Exists in Area ll], [2],13], [4] L
2]viviv|iviviv|iviv|v|vivivivlv gelMenrlberROf;‘m) o o -M#____ __'_ .
25|{viviviviv]viviv|iviviv|v]|Vv]yV LowerCase Letter o o
26|viv|iv|iviv]v LowerCase Cjenenc Dominant Letter in .ﬁr_eg Ll] o .
27 vivivliviv]v LowerCase Ge-ne;'lc wlje;crlptl‘ve Lettersn Area(1}
28 viv LowerCase ngenc Transttive Letlér n Area [i] o
29| v Letter, symbol 1}1 :Area I) o
30 v id in Area[1] e _
3] % Umque om AreaTl]h T :___:_ ~ _w:;_v_

32 v ’ UmquehmAtea mn i
33 v p,cinArea[1] e

34 v w, ¢, v, h,min Area] . _____7 e
35 v xmAArga []J o 7_ A o — #A“_ .
kY3 v vin Are;[ll : o 7" B B i L N
37 v u, 0 1n Area [1] B T
a8 v | [t Area [1]_row column xor ITEM = <true> in Area | [3] row i
39 v fin Area [row.column xor ITEM = <false> in Area [3]).row S
40 v Tin A_réa fli row.column xor ITEM = <complim. t> in Area [3]}Z)w i
4) v) |Fi in Area [li rOW. Ct column xor ITEM = <co?n~pﬁm f>1n Area [3).row

42 v 1..nm Area[l])
43 viv Number lniAr_eVa‘[l]_ o o “A_ -
44 v String in Area[l] - _—7 o T » ;jim—_
45 v {Unique s in area [1]. C()ll-l;nn i ;) o ;j_v: B
46 v d 1 area {1].column - B __j __ﬁ o
47 Y 11n area [1] columr. i T __ﬂ) __— B : ~__1- B
48 v a m area [1].column o - B - ,_-.“‘:)
49 v em area[l]wlumn o i V - _*ﬁ V__j ___
50 v cm area 1}. g:olumn_) B :_ o 7;~j4_#___‘_—_
S511AA[AAAAAJA|AIAJA|A[AIA |2 ICOPYRICHT@’ B B
2lcvielvivivie|viviviviv|e|e!lr A A Michatludis 1995 . e }
S|leiv|iviv|vlelviv|ivivivivr v o) WM Jaworsh 1988-1994 B i B

Figure 5.3. Operations of the Framework at the Detailed Level of Abstraction

Presented in the InfoMap Methodology
80

5.3 InfoMap by-Products

In the previous section of this chapter we described the InfoMap representation
methodology in terms of itself. In this section we identify the several parts of this
representation methodology and their contents. The major parts of this
technology are the InfoSyntax (described in 5.2), the InfoSchemata (abstractions
at the general level, described in chapter two) and the InfoFactory. These are
shown in figure 5.4.

~)
InfoSchema/InfoMap Technology

(InfoSyntax)
(" InfoSchemata Y\ (InfoFactory)

4 InfoMaps h L' InfoFarm)

C InfoCases)/ ’C' InfoRun)
C lnfoProcesses)/ i

_ J/

\. .

Figure 5.4. Parts of the InfoMap Technology

The InfoSyntax contains the specific SetRoles and SetMemberRoles used to
model concepts in the InfoMap representation methodology. These concepls can
be represented at the InfoSchema level (abstractions at the general level) and the
InfoMap level (abstractions at the detailed level). Furthermore, these concepts
can be classified as InfoCases and InfoProcesses. InfoCases are templates of
information presented in the InfoMap representation methodology. The design
pattern “Interpreter” presented in chapter four is an example of an InfoCase. 1t
is a body of knowledge modeled using the InfoMap representation methodology.

On the other hand, InfoProcesses describe processes that can be applied to solve

particular problems. In chapter six we presented the InfoMap for InfoProcesses.

81

]

The InfoSyntax is also used by the InfoFactory. The InfoFactory is a collection of
tools that assist developers of models in the InfoMap representation
methodology. Two tools are currently available. The first, InfoFarny, is used to
built InfoCases by altering the Ms-Excel environment in such a way that
InfoMap-related aspects can be demonstrated [42]. These aspects range from
easy insertion of rows and columns in an InfoCase to libraries of abstractions at
the general (InfoSchema) and/or detailed (InfoMap) level of abstraction. The
second tool (described in chapter six) is used to trace processes developed to
solve a particular problem. This problem is stated in terms of states and
transitions between states. Both tools are developed for teaching [40, 41] and arc
also commercially available.

54 Summary, Deliverables

This chapter started with the statement that knowledge is not organized around

syntax, but in larger conceptual structures such as data structures and
algorithms. The InfoMap representation methodology provides us with an
environment for the representation of knowledge that is captured in data
structures and algorithms. Furthermore the use of the InfoMap representation
methodology can be applied to itself, demonstrated in figures 5.2, 5.3 and 5.4.
This shows that the methodology can be represented in terms defined by itself.
Several parts of the InfoMap representation methodology were presented. These
were categorized into InfoMaps at the general, and InfoSchemata at the detailed,
levels of abstraction. These are used to represent general knowledge (InfoCasces,
InfoProcesses), and may be manipulated by tools contained in the InfoFactory.

82

CHAPTER 6: TRACING OF CONTROL FLOW GRAPHS
6.1 Introduction, Motivation

Spreadsheet software packages can be used to accommodate the InfoMap
methodology. These spreadsheet packages do not provide several functions
essential to the specific needs of the users of this methodology. Tools have been
developed to alter a spreadsheet’s behavior. These tools belong to the
InfoFactory environment described in chapter five. Several InfoCases (recovered
bodies of knowledge), modeled using the InfoMap methodology were developed
for student projects and commercial applications [40, 41, 42]. In addition,
processes described in control flow graphs were modeled using the InfoMap
methodology [43]. The processes and their models are presented in this chapter.
A system for tracing and /or executing such processes is also presented as part of
the InfoFactory environment. Through examples we show how the InfoMap
model of a control flow graph can be used to trace the source code of design

patterns.
6.2 Representing Control Flow Graphs

In chapter two we described the basics of the InfoMap methodology. In chapter
three we described a framework approach to represent the InfoMap
methodology. The tabular template that was produced, and the operations
described in these chapters, can be specialized to deal with specific problems.
One of these problems is the representation of control flow graphs.

A control flow graph is a collection of nodes and arcs that connect nodes. It
describes the flow of execution of a given process. It contains states, transitions,
conditions and actions. A control flow node is a state. A control flow arc is a
transition. Onto these arcs we attach conditions and actions. Several arcs can be
attached to a given node. Therefore a given state can be connected to many other
states through several transitions. More formally this is stated in [44] and shown
in figure 6.1, were circles represent states and arcs represent transitions.

83

“Each transition links states; each transition is implemented by a sequence of actions
guarded by conditions.”

Figure 6.1. Diagrammatic Representation of a Typical Control Flow Graph
6.2.1 General Level of Abstraction

The graph in figure 6.1 can be used to represent processes. On the other hand,
these processes can be represented using the InfoMap representation
methodology. Therefore it is possible to represent program segments or even
complete programs in this format. The standard SetRoles and SetNames (at the
general level or InfoSchema) that are used to represent processes in the InfoMap
representation methodology are shown in figure 6.2.

L {STATE}

0] {TRANSITION)

G {PreCONDITION}
S {ACTION}

G {PostCONDITION]

Figure 6.2. InfoMap Representation of a Control Flow Graph
at the General Level of Abstraction

In figure 6.2 the SetName {STATE]} is allocated the SetRole “Sequential state-
transition” (letter “L”); the SetName {TRANSITION] is allocated the SetRole
“Identity” (letter “O”); the SetName {PreCONDITION] is allocated the SetRole
“Guard” (letter “G”); the SetName {ACTION} is allocated the SetRole
“Sequence” (letter “S”); the SetName {PostCONDITION} is allocated the SetRole
“Guard” (letter “G”). The rational behind the use of these SetRoles in the model
is the following: The dominant SetRole “Identity” represents the connection
between states. These states are given the SetRole “Sequential state - transition”.

84

In order to move from one state to another and perform the actions of SetName
[ACTION} in “Sequence”, the “Guard(s)” of the SetName {PreCONDITION}
should be evaluated as true. After the change of states takes place the
[PostCONDITION} “Guards” will evaluate whether the change of states was a

successful one.
6.2.2 Detailed Level of Abstraction

The five SetNames and their corresponding SetRoles identified in section 6.2.1
(figure 6.2) can be expanded to the detailed level of abstraction (InfoMap). This
can be accomplished by listing the SetMembers of each SetName, and relating
them within and between the SetNames with the use of the SetMemberRoles.
The SetMember’s listing and their corresponding SetMemberRoles are described

in this section.

A state can be identified as either a source or a destination state. A state can be
both a source and a destination state. States are connected by transitions. These
transitions can represent one of the cases described in figure 6.3. These cases are:

. Branch: a simple source to destination transition.

. Branch with fork: a transition that travels from source to either an

exemption or assertion state.
. Loop: a transition that has the same source, and destination state.

o Loop with exit: a transition that has the same source, and destination state
and can reach any other specified state through an exemption.

85

, 1! 1
\ \
| \\ \\ \\
\ I 4 \\ \ \
d a e a
e
Branch loop Loop
Branch with exit
with fork

Figure 6.3. Graphical Representation of State - Transition Cases

The state - transition cases of figure 6.3 can be represented using the InfoMap
methodology. Figure 6.4 shows this representation.

A A A A {PARTITION]}
v Branch

v Branch with fork
v Loop

v Loop with Exit
L L {STATE}
11

source

S o

destination 1

e destination 2

(0N {TRANSITION}
transition 1

(o
O ¢ 2 v

© 0

0 transition 2
o transition 3

0 transition 4

Figure 6.4. InfoMap Representation of State - Transition Cases
at the Detailed Level of Abstraction

In each of the columns of figure 6.4 a state - transition case is represented. A

source state can reach a destination state through a simple transition (“s” to “d");
a source state can reach an exemption or an assertion state through a transition

86

(“a”, “e”); a source state can also be a destination state through a loop transition

Illll

(“1”); a source state can be a destination state (“1”) and reach an exemption state

through a transition.

The SetRole chosen to represent a given condition is the “Guard” (letter “G") at
the general level of abstraction (InfoSchema). According to the framework
described in chapter 3, a SetMemberRole “Guard” can either be true, false or
complementary of true or false. The following cases of control in a control flow
graph are identified (figure 6.5):

. If -Then - Else: simple branch condition.

. While - Do: iteration condition that checks the condition before it
reaches its destination state.

. Repeat - Until: iteration that checks the condition after it has reached its
destination state.

i

If Then Else While Do Repeat Until

Figure 6.5. Graphical Representation of Control Flow Cases

In order to represent these cases in the InfoMap representation methodology,
pre-conditions and post-conditions should be attached to transitions. This is
shown in the columns of figure 6.6.

A A AAA {PARTITION)}
vov If Then Else
v Wiile Do
v Repeat Until
L L LL L {STATE]}
s s 1 s 1 source
d d d e destination
OO0 00O {TRANSITION}
o transition 1
0 transition 2
0 transition 3
0 transition 4
GG GGG {Pre-CONDITION}
t £t f pre-condition 1
GG GGG {Post-CONDITION}
t post-condition |

Figure 6.6. InfoMap Representation of Control Flow Cases at
the Detailed Level of Abstraction

The SetMemberRoles allocated to represent sequences of actions are numbers.
Therefore each SetMember in the SetName {ACTION} is numbered and attached
to a given transition. Figure 6.7 shows a transition from one state to another. On
the source end of the transition (left) there exists a set of pre-conditions, and at
the end source of the transition (right) there exists a set of post-conditions.
Between these two ends there exists a set of actions. These actions can be
executed either sequentially or concurrently.

g \\ Guard < Actions > post-Guard / / |
< | >) () |
e /

-

<

Figure 6.7. Graphical Representation of a Transition with Actions
These sequences of actions attached to each transition can be represented using

the InfoMap representation methodology. Figure 6.8 shows the set of actions
from one state to another.

88

A {PARTITION}

v Transition with actions
L {STATE}

s source

d destination

O {TRANSITION}

o transition 1

G {Pre-CONDITION}
t pre-condition 1

S {ACTION}

1 action 1

3 action 2

2 action 3

4 action 4

G {Post-CONDITION]}
t post-condition 1

Figure 6.8. InfoMap Representation of a Transition with
Actions at the Detailed Level of Abstraction

In this section the complete model of the control flow graph is shown in the
InfoMap representation methodology. Figure 6.9 shows the overall model of a
control flow graph that describes the binary search paradigm [46]. The several
SetNames and SetMemberNames are connected with their corresponding
SetRoles and SetMemberRoles, in order to provide a complete system for the
representation of the binary search paradigm.

89

L L
S
d 1
e
OO0
o
0
G G
t
S §
1
6
2
3
4
1
5 2
G G
t

C[)e-r-—nn

p—

G
t

L

QO aw

wn e~~~ o

AN W=

3 {STATES}
Start
Search
End

4 {(TRANSITIOMS]
Initialization
Continue "low" unless no more
Continue "high" unless no more
Success

2 {CONDITIONS]}
index(Xa,Xmed,1) < Xe
index(Xa,Xmed, 1) > Xe¢

11 {ACTIONS}
set.name("Xlow",1)
set.name("Xe",8)
set.name("Xhigh", 11))
set.name("Xfound" false)
set.name("Xindexx",1)
set.name("Xlow", Xmed+1)
set.name("Xhigh",Xmed-1)
set.name("Xmed",int((Xlow+Xhigh)/2}))
set.name("Xindexx", Xmed)
alert("Found at position: "&Xindexx)
set.name("Xfound" true)

1 {Post-CONDITIONS}
Xlow<=Xhigh

Figure 6.9. InfoMap Representation of the Binary Search
Paradigm at the Detailed Level of Abstraction

6.3 InfoRun System

The control flow graph in figure 6.9 is presented in the InfoMap representation
methodology. This control flow graph can be imported in a spreadshect-based
software package and processed producing actual results. A system for this
purpose has been developed using the Microsoft EXCEL spreadsheet package.
The design of this system is based on the idea that the InfoMap tabular structure
can be seen as an array of items. These items can either be column and/or row
markers (SetRoles and SetMemberRoles), or SetMembers of SetNames. SetRoles
and SetMemberRoles are used for guidance purposes in order to travel through
states, execute sequences of actions, and evaluate pre/ post-conditions.

90

SetMembers can be state and /or transition names, or expressions that evaluate as
true or false and are listed in the {Pre-CONDITION} and /or {Post-CONDITION}
SetNames. In this section we describe the InfoRun System.

The InfoRun System is composed of three parts.

. The Interface: An altered Microsoft EXCEL spreadsheet showing the
control flow graph using the InfoMap representation methodology and
the push buttons that control its execution. This is shown in figure 6.10.

. The Inference Mechanism: A Microsoft EXCEL macrosheet containing

the source code of the system.

. The Data File: A Microsoft EXCEL macrosheet containing tz diata objects

that the control flow graph is using.
6.3.1 The InfoRun Interface

The InfoRun interface is a set of push buttons on the top part of a spreadsheet,
containing a control flow graph represented using the InfoMap representation
methodology. These push buttons are shown in figure 6.10, and their functions
are the following:

. Go: Initializes and starts the system.

. Config: Configures the execution parameters of the system.
. Resume: Resumes a paused execution.

. Halt: Halts a paused execution.

91

File Edit Formula Format Data Options Macro Wind:

P29

= binary =
A|BICIDIE[F|GIH[I] J

- 6o | config. || Resume | att |

4] zl..’;;.:L;L 3 {STATES}

I A SRR

o] ai1Ts T S

Tl e e-d - End

8 | "0:0.0 0 14 {TRANSITION S}

9] .o: Initiglization

10 0 \ Contmue ‘Jow" unless no more

R Contlnue high” unless no more

1z2] . o . Success

73| 6666 ‘2 {CONDITIONS}

14| v ff 0 index(a,Xmed, 1} <Xe

5] . Tt .' index(Xa Xmed, 1) » ke

16| .8 8'8'S ll{AC'l'IONS}

17 1 “set.name("Klow",1)

i8] .6: 3,§.et._n_ame(.Xe ,8)” .

19| 2 set.name(Khigh",10)

20 '3 -set.name("kfound" false)

21| 4 set.name("Rindexx",1)

22] -t 0 setname("Xlow" Xmed+ 1)

23| Lo setname("Xhigh” Xmed-1)

24| :5.2:2 - setname("¥med",int{(Xlow+Xhigh)/2))

25| b ¢ 'set.name("Kindexx" Xmed)

Figure 6.10. InfoRun Interface

92

e e e Ulllﬂly]
[CIDIEJF{GIH|!] J
) Conﬁg.] Resume i Halt
L:L'L- 3 {STATES}
. L ctart
e Confi@re Run Time 4.0 ==
:‘l filert Pause Color
K % O [] States
H [] Transition
“([O [X Conditions
'] O [] Actions
U O [] Post-Conditions
Speed F @ OQ OO QO 5§
[JFreeze screen []Beep when pause
[Cancel] [0K J

—

 set name(“Xindexx” Xmed)

vn‘hv‘f"rnun‘fl At nanibiam, MO Vindaswse)

Figure 6.11. InfoRun Configuration Dialog Box

93

== pInary =

4/5/6[718[9] 10

Config. || Resume | Halt

o:l.'bw

o ©

-

A A ¥ [PARTITION}

vivo 8 Lonlrol Flov InfoFrocess

L L -3 {STATES} .

‘Start

3 o, Search

‘4. End

0 - 4 {TRANSITIONS}
“Initialization
Continue "low" unless no more

o " Continue "mgh” unless no more

0 Success
G 2){CONDITI(;}} 8}
£ index(¥sRmed; 1) <Xe
f ©index(Xa,Xmed,1) > Xe
S 1’ {AC'I'IONS}

set.name("Xlow", 1)

; , . "set name("Xe" ,8}
e e e il et last saraaf"™Vhiak® 10)

Figure 6.12. InfoRun in Action

94

e

The configuration parameters of the system can be controled by a pop-up dialog
box. This dialog box is shown in figure 6.11. It controls the following:

. The speed of the execution.

. Whether an “alert” message should be displayed when a SetMember

of any SetName is processed.

. Whether a SetMember that is processed should be animated in color.
. Whether the system should pause when a SetMember is reached.
. The “beep” sound for the alert message on/off mode.

The “freeze screen” option to switch off all of the above.

A typical layout of the screen during an execution run of a process is shown in
tigure 6.12.

6.3.2 The InfoRun Inference Mechanism

The inference mechanism of the InfoRun system is a Microsoft EXCEL macro
[47], a program that acts on the data displayed on a spreadsheet. The inference
mechanism of the InfoRun system is based on the principles of the control flow
execution described in section 6.2. In order to apply these principles, we view
cach array of the SetMemberRoles and the SetMembers of the SetNames in the
control flow graph as distinct arrays of information. These arrays are indexed
according to rows and columns. Therefore it is possible to access a specific row
and/or column location, and process the information that is contained in this
location. These arrays are shown in figure 6.13.

95

L L L L {STATE}
array array

0O O 0O O {TRANSITION}
array array

G G G G {PreCONDIT!ON}
array array

S 8§ S § {ACTION}
array array

G G G G {PostCONDITION}
array array

Figure 6.13. InfoRun Arrays for the Processing of Rows and Columns

Based on this array structure, the inference mechanism uses a guidance system to
travel through the SetName {STATE} following the SetMemberNames of the
SetName {TRANSITION}, while evaluating conditions and executing actions. In
order to travel from one state to another, the system evaluates the conditions
listed in SetNames {Pre-CONDITION} and {Post-CONDITION]. These two
SetNames list Microsoft EXCEL expressions as their SetMembers. These can
either be evaluated as true or false. SetMemberNames listed in the SetName
{ACTION} are Microsoft EXCEL functions that act on the data objects contained
in the “data-file” (section 6.3.3).

The arrays of the SetMemberRoles in the SetNames {PrecCONDITION] and
{PostCONDITION]} contain true or false entries (letters “t”, “f”). These entries
are evaluated against their corresponding expressions in each row of the
SetNames {PreCONDITION} and {PostCONDITION} with the “xor” operation.
Furthermore, the array containing the SetMemberRoles of the SetName

{ACTION} is used to specify the sequence of execution of the functions that are
listed in the SetName {ACTION}.

The inference mechanism is based on the idea that expressions and actions can be
translated into any executable programming language. Furthermore, the
information provided by the SetRoles can be used to guide the control flow
graph through its states. These SetRoles are contained in arrays corresponding
to each SetName.

96

6.3.3 The Data File

The data file is a Microsoft EXCEL macro-sheet, used to hold the input data of a
control flow graph, like the one that appears in figure 6.10. In addition to that, it
is used to execute the actions listed in the SetName {ACTION}, and to evaluate
the expressions listed in the SetNames {PreCONDITION} and
{PostCONDITION]}. These actions and expressions can not be executed and/or
evaluated directly on the spreadsheet where the control flow graph appears.
Therefore, first they must be copied onto the macro-sheet, and second executed
and/or evaluated [46].

6.4 Design Pattern Source Code Modeling

In chapter four of this thesis we described design patterns, and used the InfoMap
representation methodology to model them. The control flow model described
in section 6.2 of this chapter can be used to model the source code of a given
design pattern. The template of information describing a control flow graph is a
design pattern part, described in section 4.4 of this thesis and shown in figure
4.5.a. In this section we present the C++ program source code that is part of the
“Interpreter” design pattern. This program is used to evaluate Boolean
expressions [1]. The source code of class BooleanExp is shown in figure 6.14, and
its corresponding model in the InfoMap representation methodology is shown in
figure 6.15. This model is imported and traced with the InfoRun system. The
model shows how messages can be sent to the BooleanExp, class and how the
corresponding code can be executed in terms of a control fiow graph. This
control flow graph first requests the message to be executed, and then decides
whether the message is a “copy”, “evaiuate” or “replace” message. After it has
decided, it responds by displaying the source code which responded to the
message. Instead of displaying a message, the system can be upgraded in order
to use the “subscribe” facility with dynamic data link [46, 47]. Therefore it is
possible to pass the SetMembers of the SetName {ACTION} that contain the

source code to the actual source code interpreter.

97

class BooleanExp {

public:

BooleanExp();

virtual ~BooleanExp();

virtual bool Evaluate (Contexté&) = 0;

virtual BooleanExp* Replace (const char*, BooleanExpé&k) = (;
virtual BooleanExp* Copy() const = (;

Figure 6.14. Interpreter Design Pattern Source Code for Class BooleanExp

Q_v:r'<>

G

A
v
A
v
v

A
v
A
v
v

A
v
L

A
v

L

[=%

=]

< < > <>

V {PARTITION}
8 BooleanExp for Interpreter
S {STATES}
start BooleanExp
selected operation
execute code for Evaluate
execute code for Replace
execute code for Copy
4 {TRANSITIONS}
select operation
respond to message Evaluate
respond to message Replace
respond to message Copy
3 {CONDITIONS}
(message = "evaluate”)
(message = "replace")
(message = "copy")
4 {ACTIONS}
set.name('message”, input(‘respond to message (evaluato / roplaco / cop
alert("virtual bool Evaluate(Context&) = 0;")
dlert("virtual BooleanExp* Replace (const char*, Booleantxp&) - ().")
alert("virtual BooleanExp® Copy() const = 0;")
1 {Post-CONDITIONS]}

1 {dataSHEET}
datasheett

A {AUTHOR)
v InfoSCHEMA Copyright © W.M. Jaworski
v InfoMAP Copyright © A.A.Michailldis

Figure 6.15. InfoMap Model Corresponding to figure 6.14

Imported in the InfoRun System

98

6.5 Graph Tracing with the InfoRun System

It is possible to perform more than just tracing of a process with the InfoRun
system. The main advantage of this system is that we can alter the
SetMemberRoles of all the SetNames during execution. This alteration during
execution allows us to manipulate and experiment with the process during run-
time. The changes can be made by selecting to pause the execution. This can be
accomplished if the system is configured to pause at states, transitions,
conditions and actions. The changes and their effects can take place in the
{STATE}, {TRANSITION}, {pre/post-CONDITION} and {ACTION} SetNames.

Changes in the (STATE} and/or {TRANSITION]} SetNames: We can move
and/or delete source and /or destination states. We can also add new states and
connect them to the current model. In effect, what we can accomplish is the
redirection of transitions from one state to another, or the expansion of the
control flow graph. An example is shown in figures 6.16.a and 6.16.b. The
original state - transition layout is displayed in part [a]. In part [b] of the same
figure a new state and a new transition are added.

Changes in the {pre/post-CONDITION} SetNames: We can move and/or delete
true and/or false SetMemberRoles. We can also add new conditions in both the
{pre-CONDITION]} and {post-CONDITION} SetNames. These changes can alter
the model of a control flow graph by adding and/or removing conditions from
transitions. Therefore the model can become more flexible. An example is
shown in figures 6.16.c and 6.16.d. The original conditions’ layout is displayed in

Iltll

part [c]. In part [d] of the same figure the SetMemberRole “t” was moved from

the first condition to the second condition.

Changes in the {ACTION} SetName: We can add new actions by listing and
enumerating them in the SetName {ACTION}. We can also disable actions by
removing their SetMemberRoles, and/or re-sequence actions by re-sequencing
their SetMemberRoles. An example is shown in figures 6.16.e. and 6.16.f. In part
[e] the sequence of actions is: 1, 5, 2, 3, 4. In part [f] the sequence of the same
actions was changed to: 1,2, 5, 3, 4.

99

LLLL 3 {STATES} LLLLL 3 {STATES)
S Start 8 Start
d1l 1 s Search dl 1 s ISearch
ced End New State
0000 4 {TRANSITIONS} ¢ e d End
] Initialization 00000 4 {TRANSITIONS}
0 Continue "low" uniess no more [\ Inthahzation
o Continue "high" unless no more 0 lNew Transition
Q Success 0 Continue "low" unless no more
0 Continue "high" unless NO Mo
a. Original State - Transition Layout 0 Success

b. Modifled State - Transition Layout

GGGG 2 {CONDITIONS} GGGG 2 {CONDITIONS}
index(Xa,Xmed, 1) < Xe index(Xa.Xmed. 1) < Xe
index(Xa,Xmed,1) > Xe m Index(Xa.Xmed. 1) > Xe

c. Original Conditions Layout d. Modifled Conditions Layout

SSSS # {ACTIONS} S S S # {ACTIONS)

S
| set name("Xlow", 1) 1 set name("Xlow". 1)
EI set name("Xe".8) set name("Xe", 8)
set name("Xhigh",10) set name("Xhigh",10)
3 set name("Xfound" false) 3 set name("Xfound" false)
4 set.name("Xindexx",1) 4 sel name("Xindexx", 1)

e. Original Actions Layout f. Modified Actions Layout

Figure 6.16. Modification of SetMembers and SetMemberRoles of the
InfoMap Representation of Control Flow Graphs

6.6 Summary, Deliverables

The InfoMap tabuiar structure allows us to represent concepts using sets, roles
and their relationships. Spreadsheet software packages can be used to
accommodate the InfoMap tabular structure. In this chapter we have shown
what constitutes a control flow graph, and how it can be-modeled using the
InfoMap representation methodology. In addition, with the help of the EXCEL
spreadsheet program we have demonstrated the InfoRun system that executes
control flow graphs. A design pattern source code, as well as the binary search
paradigm, was imported and traced with the InfoRun system. Finally we have
demonstrated the capabilities of the InfoRun system. These capabilities include
the addition, removal, and modification of the several SetMemberRoles and

100

SetMembers of the model. These modifications allow us to change the layout of
the control flow model at run-time, by choosing to pause the InfoRun system

during its execution.

101

CHAPTER 7: CONCLUSION
7.1 Retrospect

It has come to the attention of most readers of new methodologies that several
aspects involving the notation of these methodologies can be confusing and
misleading. Furthermore, in several cases the developers of new methodologies
do not think about the notation they are using for recording their research, but
they mostly think about how to match their methodology against existing
problems in the world. Therefore most of the time they ignore their prime
objective of transferring their knowledge through understandable notations, by
introducing complex structures.

In this work we have presented a notation that is the backbone of the InfoMap
methodology. It is a technique for modeling concepts that can be represented
with sets and relationships among sets. The application of the technique
produces tabular structured environments that can be manipulated if imported
into automated systems. A design framework for this methodology is presented,
along with its description in both its own terms and in terms of a CASE tool. The
framework that accompanies the notation focuses more on the reduction of
complexities. This was demonstrated by the application of the framework on the
representation of the several parts that constitute a design pattern. Furthermore,
several characteristics of the InfoMap methodology involving designs were
compared to the corresponding characteristics of design patterns.

The InfoRun tool was presented. It belongs to a set of tools under development
for the manipulation of InfoMap tabular structured representations. The focus of
this tool is the tracing and execution of control flow graphs represented using the
InfoMap methodology. Furthermore this tool, was applied to specify parts of
source code found in design patterns.

Overall we have reached the conclusion that a repository system for the
communication of design patterns is needed. The InfoMap methodology and its
notation can accommodate such a system. Design patterns and InfoMap models
share several characteristics, therefore a repository system based on the InfoMap

102

methodology and its notation can easily be used to store and manipulate any
useful software design pattern. Weather a design pattern describes object-
oriented compositions of classes and objects or hierarchical structures or
processes, it has already be shown by several users of the InfoMap methodology
and its notation that a repository system based on the InfoMap technology can
provide effective and efficient means for the communication of design patterns.

7.2 Future Research

We do not claim that this methodology is flawless. There are several parts of it
that still need to be analyzed. Some of these parts are:

. A non-deterministic knowledge modeling algorithm is needed in order to
map a problem, probably presented in natural language form, to the
context-free grammar production rules described in chapter 2.

J Further research and automation in the area of transforming context-free
grammar specifications into frameworks composed of abstract and
concrete classes.

. Automation of the InfoMap design framework described in chapter 3, by
the use of the c++ code generator contained in the Rational Inc. CASE
tool.

. The use of the InfoMap representation to establish a verification

technique for design patterns.

Even though the idea of the tabular structure that characterizes the InfoMap
methodology is not new, tools for manipulating its tabular structure are
relatively new. The InfoRun system described in chapter 6 is a prototype for
understanding the control flow processes presented using the InfoMap
methodology. Therefore it is not fully automated. A fully automated version
should include verification and validation options for the control flow graphs
represented using the InfoMap methodology. Furthermore, the tool should not
be limited to the capabilities provided by its software platform (i.e. Microsoft

103

EXCEL). This platform provides many advantages because it is based on the
idea of data manipulation displayed on a spreadsheet. On the other hand, there
is considerable calculation overhead that is not needed. Therefore in order to
increase the speed of the InfoRun system, the internal unnecessary spreadsheet
calculations should be eliminated. Consequently according to the opinion of this
researcher, the InfoRun system should be built as a standalone entity.

104

1]

2]

(3]

[4]

[5]

[6]

[7]
[8]

9]

[10]

[11]

[12]

[13]

References

Gamma, E., Helm, R,, Johnson, R., “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1994.

Firesmith, D., “Object-Oriented Requirement Analysis and Logical
Design”, Wiley, 1993.

Sowa, J.F., Zachman, J.A., “Extending and Formalizing the Framework for
Information Systems Architecture”, IBM Systems Journal, 31(3):590-616,
1992,

Amble, T., “Logic Programming and Knowledge Engineering”, Addison-
Wesley, 1987.

Sowa, J.F., “Conceptual Structures: Information Processing in Mind and
Machines”, Addison-Wesley, 1984.

Sowa,].F., “Towards the Expressive Power of Natural Language,
Principles of Semantic Networks”, Morgan Kaufmann, 1991.

Winston, P., “Artificial Intelligence”, Addison-Wesley, 1984.

Shinghal, R., “Formal Concepts in Artificial Intelligence”, Chapman and
Hall, 1992.

Zahniser, R.A., “Design by Walking Around”, Communications of the
ACM, 36(10), 1993.

Jaworski, W.M., Michailidis, A.A., “Recovery and Enhancements of
System Patterns: InfoSchemata and InfoMaps”, Proceedings of the 3rd
Annual North Test Workshop, Lowell, Massachusetts, 1994.

Berzins, V., Lugi, L., “Software Engineering with Abstractions”, Addison-
Wesley, 1991.

Butler, G., Grogono, P., Shinghal, R., Tjandra, I., “A Process Algebra for
Data Flow Diagrams”, Department of Computer Science, Concordia
University, 1994.

Iglewski M., Madey, J., Parnas, L., Kelly, P., “Documentation Paradigms,

A Progress Report”, Telecommunications Research Institute of Ontario,
CRL Report No. 270, 1993.

105

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

James, A., “Natural Language Understanding”, The Handbook of Artificial
Intelligence, edited by Barr, A., Feigenbaum, A., Stanford, Calif. :
HeirisTech Press, 4:195-238.

“Rational Rose/C++ CASE Tool v2.0.14., On-line Reference Manual”,
Rational Inc., 1994.

Lewis, H., Papadimitriou, C., “Elements of the Theory of Computation”,
Prentice-Hall, 1981.

Gamma, E., Helm, R, Johnson, R., “Design Patterns: Abstraction and
Reuse of Object-Oriented Design”, ECOOP 1993 Conference Proceedings,
Springer-Verlag, Lecture Notes in Computer Science, 707, 1993.

Kattou, S., “Synthetic and Reusable Products of the Software
Development Process Through InfoSchemata”, Masters Thesis,
Department of Computer Science, Concordia University, 1992,

Cheng J., “A Reusability-Based Software Development Environment”,
SIGSOFT Software Engineering Notes, 19(2):57-62, 1994.

Foote, B., Johnson, R., “Designing Reusable Classes”, Journal of Obiject-
Oriented Programming, Department of Computer Science, University of

Ilinois at Urbana-Champaign, June/July 1988.

Beck K., Johnson R., “Patterns Generate Architectures”, ECOOP 94
Conference Proceedings, Springer-Verlag, Lecture Notes in Computer
Science, 821, 1994.

Nelson, C., “A Forum for Fitting the Task”, IEEE Computer, 27(3):104,
1994.

Booch, G., “Object-Oriented Analysis and Design with Applications”,
Benjamin/Cummings, 1994.

Schmucker, K., “Object Oriented Programming for the Macintosh”,
Hayden Book Company, 1986.

“Lisa Toolkit v3.0”, Apple Computer Inc., Cupertino, 1984.

Goldberg A., “Smalltalk-80: The Interactive Programming Environment”,
Addison-Wesley, 1984.

106

[27]

(28]

[29]

[30]

[31]

[36]

[37]

[38]

[39]

[40]

“Building Object-Oriented Frameworks: A Taligent White Paper”,
Taligent Inc. World Wide Web: http:/ /www.taligent.com/resources-
list.html.

Hawkins J., “The Oxford Encyclopedic English Dictionary”, Cleanroom
Press, 1991. ’

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., “Object
Oriented Modeling and Design”, Prentice-Hall, 1991.

Aho, A., Sethi, R., Ulman, J., “Compilers: Principles, Techniques and
Tools”, Addison-Wesley, 1988.

Beck, K., “Patterns and Software Development”, Dr. Dobb's Journal,
19(2):18-22, 1994.

Alexander, C., Ishikawa, S., Silverstein, M., “A Pattern Language”, Oxford
University Press, 1977.

Alexander, C., “Notes on the Synthesis of Forum”, Harvard University
Press, 1964.

Alexander, C., “A Timeless Way of Building”, Oxford University Press,
1979.

Tracs, W., “Software Reuse Myths”, ACM SIGSOFT Software Engineering
Notes, 13(1):17-21, 1988.

Lea, D., “Christopher Alexander: An Introduction for Object-Oriented
Designers”, ACM SIGSOFT Software Engineering Notes, 19(1):39-46, 1994.

Alexander, C., “The Linz Cafe”, Oxford University Press, 1981.

“IEF Technical Description: Methodology and Technology
Overview”, Texas Instruments Inc., 1992.

“SOMATIC CASE Tool On-Line Reference Manual v1.20”, Bezant Ltd.,
1994.

Bourgault, P., “InfoADM3: A System Supporting Knowledge/Information

Workers”, COMP457/657, Office Automation, Department of Computer
Science, Concordia University, 1994.

107

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Benc, T., “InfoSchemata and InfoCases for an Object-Oriented
Methodology”, COMP458/658, Structure of Information Systems,
Department of Computer Science, Concordia University, 1994.

“infoFarm v1.0 User's Manual”, GS General Strategies, Ottawa, 1991,

Cummings, T., “A Knowledge Acquisition Method: Transformation of
Algorithms and Programs with infoMAPs”, Masters Thesis, Department
of Computer Science, Concordia University, 1991.

Jaworski, W.M., Cummings, T., “Program Normalization and
Optimization using InfoMaps as an Inspection and Programming
Processing Tool”, Canadian Conference on Electrical and Computer
Engineering, Québec City, September 1991.

Aho, V., “Data Structures and Algorithms”, Addison-Wesley, 1983.

“Microsoft EXCEL v4.0 User's Manual Reference”, Microsoft Corporation
1993.

“"Microsoft EXCEL v4.0 Function Reference Manual”, Microsoft
Corporation 1993.

Kronic, M., “An ABL Software Environment for a Mini-Computer”,
Masters Thesis, Department of Computer Science, Concordia University,
198.

Ficocelli, L., “Problems to Programs: A Humanistic Approach (An
Introduction to ABL MEthodology)”, Masters Thesis, Department of
Computer Science, Concordia University, 1983.

Deslauriers, B., “Inspection of Software Deliverables: An InfoMap-Based
Methodolcgy”, Masters Thesis, Department of Computer Science,
Concordia University, 1991.

Finkelstein, K., “A Prototype of an ABL Syntax-Driven Editor Supporting
Software Development”, Masters Thesis, Department of Computer
Science, Concordia University, 1983

Eddy, D., “An Environment Conducive to Software Design: JMSS System

for Modeling of Software Processes”, Masters Thesis, Department of
Computer Science, Concordia University, 1988

108

(53]

[54]

[55]

[56]

[57]

[58]

Hinterberger, H., Jaworski, W. M., “Controlled Program Design by use of
the ABL Programming Concept”, Angewandte Informatik, Weisbaben,
West Germany, July 1981, pp. 302-310.

Jaworski, W.M., Zaborowski, B., “Network Models for Design of
Information Systems” (Modele Sieciowe w Prejektowaniu Systemdow
Przetwarzania Informacji w CROPI), Maszyny Matematyczne, 3(3): 26-31,
1967.

Jaworski, W.M., Ficocelli, L., O'Mara, K.S., “The ABL/W4 Methodology
for System Modelling”, System Research, 4(1):23-37, 1987.

Jaworski, W.M., Radhakrishnan, T., “Modelling of System Development
Methodologies”, CompInt 1987 Proceedings, Conference on Computer
Aided Technologies, November 9-12, Montreal 1987.

Jaworski, W.M., “An Interactive System for the Generation of Programs
from Decision Tables”, Computer Aided System Simulation, Analysis and

Design Project (CASSAD ‘70), University of Houston, Houston 1970.

“Leonardo da Vinci : engineer and architect / The Montreal Museum of
Fine Arts”, Montreal Museum of Fine Arts, May 22 1987.

109

APPENDIX A. Rational Rose/C++ CASE Tool Results

110

Class name:

PartitionSg

Docurnentation-
PartitionSg -> {Sg})

Export Control. Public
Cardinality. n
Hierarchy:
Superclasses: none
Public Interface:
Has-A Relationships-
Sg
Opaeralions.
exists

State machine: Yes
Concurrency Sequential
Parsistence Transient

Operation name.

exists

Public member of. PartitionSg
Arguments:
SgPartition Sg
Documentation:
operation exists is defined as the universal quantifier for a partition of set names and set roles

Concurrency. Sequential

Class name:
Sg

Documaentation®
Sg -> {SetRole SetName}

Export Control: Public
Cardinality. n
Hierarchy
Superclasses: PartitionSg
Public interface:
Has-A Relationships:
SetName
SetRole
Operations:
exists

State machine. Yes
Concurrency. Sequential
Persistence: Transient

Operation name:

exists 1

Public member of Sg
Arguments:

expression ITEM

statement ITEM

UpperCaseLetter SetRole
Documentation:

operation exists is applied to SetRole / expressions / statements

Concurrency: ~ Sequential

Class name:

SetRole

Documentation:

SetRole -> {SetRoleDominant | SetRoleDescriptive | SetRoleTransitive | SetRoleUserDefined)

Export Control: Public
Cardinality: 1
Hierarchy:
Superclasses: Sg
Public Interface:
Has-A Relationships:
SetRoleUserDefined
SetRoleDominant
SetRoleTransitive
SetRoleDescriptive
Operations:
exists
State machine: Yes
Concurrency: Sequential
Persistance: Transient
Operation name:
L]
exists
Public member of: SetRole
Arguments:
UpperCaseletter SetRole
Concurrency: Sequential
Class name:
SetName
Documentation:
SetName -> "{"literal"}"
Export Control: Public
Cardinality: n
Higrarchy:
Superclasses: Sg
Public Interface:
Operations:
exists

112

State machine. Yes
Concurrency: Sequential
Persistence. Transient

Operation name:

exists

Public member of: SetName
Arguments:
fiteral SetName
Documentation”
operation exists is defined for a SetName that is aliteral

Concurrency: Sequential

Class name’

SetRoleDominant

Documentation:
SetRoleDominant -> SetRoleldentifier | SetRoleldentity | SetRoleAggregation | SetRoleGeneralization | SetRoleHierarchy

Export Control: Public
Cardinality. 1
Higrarchy:
Superclasses: SetRole
Public Intertace:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SetRoleDominant
Arguments:

GenericDominantUpperCaseletter Dominant
Concurrency: Sequential

Class name:

SetRoleDescriptive

Documentation:
SetRoleDescriptive -> SetRoleQualifier | SetRoleAssociation | SetRoleFlow | SetRoleGuard | SetRoleSequence |
SetRoleValue

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: SetRole
Public Interface:

113

Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SetRoleDescriptive
Arguments:

GenericDescriptiveUpperCaseLeatter Descriptive
Concurrency: Sequential

Class name:

SetRoleTransitive

Documentation:
SetRoleTransitive -> SetRoleSequencial | SetRoleConcurrent

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SetRole
Public Interface:
Operations:
oxists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public membar of. SetRoleTransitive
Arguments:

GenericTransiliveUpperCaseletter Transitive
Concurrency: Sequential

Class name:

SetRoleUserDefined

Documentation:
SetRoleUserDefined -> new set roles invented by the InfoSchema/infoMap technology users

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: SetRole
Public interface:

Operations:

114

axists

State machine Yes
Concurrency Sequential
Parsistence. Transient

Operation name

exists

Public member of SetRoleUserDetned
Arguments

GenaricUserDefinedUpperCaselLetter
Concurrency. Sequential

Class name

SetRoleldentity

Documenlation:
SetRoleldentity -> "O*

Export Control Public
Cardinality 1
Hierarchy.
Superclasses: SetRoleDominant
Public Interface:
Opesrations
exists

State machine: Yes
Concurrency. Sequential

Persistence. Transient
Operation name*
Public member of SetRoleldentity
Arguments
UpperCaseletler ‘0"

Concurrency Sequential

N

Class name.

SetRoleldentifier

Documentation.
SetRoleldentifier -> "K*

Export Control Public
Cardinalily 1
Hierarchy
Superclasses SetRoleDominant
Public Interface.
Operations.
exists

UserDefined

115

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SetRoleldentifier
Arguments:

UpperCaseLetter "K*
Concurrency: Sequential

Class name:

SetRoleGeneralization

Documentation:
SetRoleGeneralization -> "I*

Export Control: Public
Cardinality: 1
Hierarchy:
Superclasses: SetRoleDominant
Public Interface:
Operations.
exists

State machine: Yes
Concurrency: Sequential
Persistence. Transient

Operation name*

exists

Public member of: SetRcleGeneralization
Arguments:

UpperCaseletter "
Concurrency: Sequential

Class name:

SetRoleAggregation

Documentation:
SetRoleAggregation -> "P*

Export Control: Public
Cardinality: 1
Hierarchy.
Superclasses. SetRoleDominant
Public Interface:
Operations:
exists

State machine: Yes

116

Concurrency: Sequential
Persistence Transient

Operation nama.

exists

Public member of SetRoleAggregation
Arguments

UpperCasel elter ‘P
Concurrency: Sequential

Class name’

SetRoleHierarchy

Documentation:
SetRoleHlierarchy -> "H"

Export Control: Public
Cardinallty: 1
Hierarchy:
Superclasses’ SetRoleDominant
Public Interface:
Operalions.
exists

State machine Yes
Concurrency. Sequential

Parsistence: Transient
Operation name.
ists
Public member of: SetRoleHierarchy
Arguments:
UpperCaseletter "H*

Concurrency: Sequential

Class name’

SetRoleQualifier

Documentation
SetRoleQualifier -> *X*

Export Control Public
Cardinality n
Hierarchy:
Superclasses. SetRoleDescriptive
Public Interface:
Operations:
exists

State machine® Yes
Concurrency: Sequential

117

Persistence: Transient

Operation name:
exists
Public member of: SetRoleQualifier
Arguments:
UpperCasel.etter "x*

Concurrency: Sequential

Class name:

SetRoleAssociation

Documentation-
SetRoleAssociation -> "M"

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SetRoleDescriptive
Public Interface:
Operalions:
exists

State machine: Yes
Concurrency: Sequential

Persistence: Transient
Operation name:
ists
Public member of: SetRoleAssociation
Arguments:
UpperCaselLatter M

Concurrency: Sequential

Class name:

SetRoleFlow

Documentation:
SetRoleFlow -> *F"

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SetRoleDescriptive
Public Interface:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

118

Opearation name:

exists

Public member of SetRoieFlow
Arguments.

UpperCaseletter "
Concurrency. Sequential

Class name’

SetRoleSequence

Documantation:
SetRoleSequence -> “S*

Export Control. Public
Cardinalily. n
Hlerarchy:
Superclasses: SetRoleDescriptive
Public interface*
Opaerations:
exists

State machine: Yes
Concurrency: Sequential
Persistence Transient

Operalion name.

exists

Public member of. SetRoleSequence
Arguments.

UpperCasel.etter 's”
Concurrency. Sequential

Class name:

SetRoleGuard

Documentation.
SetRoleGuard -> "G*

Export Control* Public
Cardinalily: n
Hierarchy
Superclassas: SetRoleDescriptive
Public Interface.
Operations:
exists

State machine: Yes
Concurrency. Sequential
Persistence: Translent

Operation name

119

exists

Public member of: SetRoleGuard
Arguments:

UpperCaseletter ‘G"
Concurrency: Sequential

Class name:

SetRoleValue

Documentation:
SetRoleValue -> "V*

Export Control: Public
Cardinalily: n
Hierarchy:
Superclasses: SetRoleDescriptive
Public Interface:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public merSer of: SetRoleValue
Arguments:

UpperCaseLetter '
Concurrency: Sequential

Class name:

SetRoleConcurrent

Documentation:
SetRoleConcurrent -> "C*

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SetRoleTransitive
Public Interface:
Operations:
exists

State machine: Yes

120

Concurrency. Sequential

Persistence’ Transient
Operation name:
ists
Public member of. SetRoleConcurrent
Arguments:
UpperCaseletter ‘c*

Concurrency: Sequential

Class name.

SetRoleSequencial

Documentation:
SetRoleSequencial -> *L"

Export Control. Public
Cardinality n
Hierarchy.
Supearclasses: SetRoleTransitive
Public Interface:
Opaerations:
exists

State machine: Yes
Concurrency: Sequential

Persistence’ Transient
Operalion name’
exists
Public member of: Se{RoleSequencial
Arguments:
UpperCaseletter “L*

Concurrency: Sequential

121

Class name:

PartitionSd

Documentation:
PartitionSg -> {Sd}

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Public Interface:
Has-A Relationships:
Sd

Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operalion name:

exists

Public member of: PartitionSd
Arguments:
SdPartition Sd
Documentation:
operation exists is defined as the universal quantifier for a partition of set members and set member roles

Concurrency: Sequential

Ciass name:

Sd

Documentation:
Sd -> {{SetMemberRole SetMember})

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: PartitionSd
Public Interface:
Has-A Relationships:
SetMemberName
SetMemberRole
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists 122

Public membar of Sd
Arguments

expression ITEM

statement ITEM

LowerCaselstter SetMemberRole
Documentation

operation exists 1s appled to SetMember / Role / exprassions / statements in areas [1] to (4}

Concurrency: Sequential

Class name

SetMemberRole

Documentation:
SMRole -> {SMRDominant | SMRDescriptive | SMRTransitive | SMRUserDefined)

Export Control* Public
Cardinality 1
Higrarchy
Superclasses. Sd
Public Interface
Has-A Helalionships
SMRUserDefined
SMRDominant
SMRTransitive
SMRDescriplive
Opaerations:
exists
State machme Yes
Concurrency Sequential
Persistence Transient
Oparation name
exists
Public member of SetMemberRole
Arguiments:
LowerCaselstter SetMemberRole
Documentation:

exists upper case letter in area [1] column

Concurrency Sequential

Class name*

SetMemberName

Documentation.
SetMemberName -> *{"literal"}"

Export Control Public
Cardinahly. n
Hierarchy:

Superclasses Sd

Public Interface:

Operations:
exists
State machine. Yes
Concurrency” Sequential
Persistence’ Transient
Operation name:
Public member of: SetMemberName
Arguments:
literal SetMemberName

Documentation.

operation exists is defined for a SetMember that s a literal in area [3] row column

Concurrency: Sequential

Class name:

SMRDominant

Documenta..on:
SetMemberRoleDominant -> SetMemberRoleldentifier | SetMemberRoleldentity | SetMemberRoleAggregation |
SetMemberRoleGeneralization | SetMemberRoleHierarchy

Export Control: Public
Cardinality. 1
Hierarchy:
Supercilasses: SetMemberRole
Public Interface:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SMRDominant
Arguments:

GenericDominantLowerCaseLetfter Dominant
Documentation:

exists generic dominant lower case letter in area [1].column

Concurrency: Sequential

Class name:

SMRDescriptive

Documentation:

124

SMRDaescriptive ->SMRQualifier ISMRAssociation |
SMRFiow | SMRGuard | SMRSequence | SMRValue

Export Conlrol
Cardinallty’
Hierarchy:
Superclasses:
Public Interface.
Operalions:

State machine: Yes
Concurrency: Sequential
Persislance’ Transient

Operalion name:

exists

Public member of:
Arguments.

Public
n

SetMemberRole

exists

SMRDescriptive

GenericDescriptivelL.owerCasel etter

Documentation-

oxicts generic descriptive lower case letter in area [1].column

Concurrency. Sequential

Class name:

SMRTransitive

Documantation:

SMRTransitive -> SMRSequencial | SMRConcurrent

Export Control.
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Operations:

State machine: Yes
Concurrency: Sequential
Persistence* Transient

Operation name:

exists

Public member of
Arguments.

Public
n

SetMemberRole

exists

SMRTransitive

GenericTransitiveLowerCaseletter

Documaentation.

exists generic transitive lower case letter in area [1] column

Concurrancy: Sequential

Descriplive

Transitive

125

Class name:

SMRUserDefined

Documentation:
SMRuUserDefined -> new set roles invented by the InfoSchema/intoMap technology users

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SetMemberRole
Public Interface:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:
exists
Public member of: SMRUserDefined
Arguments:
GenericUserDefinedLowsrCaselLetter UserDefined
Documentation:

exists generic user defined letter used for new set member roles in area [1].column

Concurrency: Sequential

Class name:

SMRidentity

Documentation:
SMRidentity -> “o"

Export Control: Public
Cardinality: 1
Hierarchy:
Superclasses: SMRDominant
Public Interface:
Operations:
exists

State maching: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SMRidentity
Arguments:
LowerCaseLetter o"
Documentation:
lower case letter "o* exists as a set member role Identity in area.[1I]é:olumn

Concurrency: Sequential

Class name:

SMRidentifier

Documeantation:
SMRidentifier -> id

Export Control.
Cardinality:
Hierarchy.
Superclasses:
Public Interface:
Operalions.

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operalion name:

exists

Public member of:
Arguments:

number
Documentation*

Pubtic
1

SMRDominant

exists

SMRildentifier

id

id number exists in area[1).column

Concurrency: Sequential

Class name:

SMRGeneralization

Documentation:

SMRGeneralization -> "p" | "¢"

Export Control’
Car.inality’
Hierarchy:
Superclasses:
Public Interface:
Operations:

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operalion name:

exists

Public member of:

Public
1

SMRDominant

oxists

SMRGeneralization
127

Arguments:
LowerCasel etter *c”
LowerCasel eiter p"
Documentation:
exists lower case letter "c” or "p" in area [1].column

Concurrency: Sequential

Class name:

SMRAggregation

Documentation:
SMRAggregation -> *w" { "¢* I “v" | "h" | "m"

Export Control: Public
Cardinality: 1
Higrarchy.
Superclasses: SMRDominant
Public Interface:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SMRAggregation
Arguments:
LowerCasel.etter "¢
LowerCaseletter "w
LowerCasel etter "v"
LowerCasel.etter "h"
LowerCaseletter ‘m"
Documentation:

exists lower case "c" | "w" | "v* ["h" | “m" in area [1].column

Concurrency: Sequential

Class name:

SMRHierarchy

Documentation:
SetRoleHierarchy -> *h" 1 "1..n"

Export Control: Public
Cardinality: 1
Hierarchy:
Superclasses: SMRDominant
Public Interface:
Operations:
oxists

State machine: Yes

128

Concurrancy. Sequential
Persistence Transient

Operallon name

exists

Public member of. SMRHierarchy
Arguments’
LowerCasel etter *h*
Number id
Documentation

axists lower case letter "h" or id number in area [1].column

Concurrency Sequential

Class name:

SMRQualifier

Documentation:
SMRQualifier -> "x*

Export Control.
Cardinality
Hierarchy:
Superclasses:
Public Interface:
Operations.

State machine Yes
Concurrency Sequential
Persistence: Transient

Operation name.

exists

Public member of
Arguments.

Public
n

SMRDescriptive

exists

SMRQualifier

LowerCaseLetter “x"

Documentalion

exists lower case letter "x" in area {1] column

Concurrency Sequentia!

Ciass name:

SMRAssociation

Documentation
SMRAssociation -> "v*

Export Control:
Cardinality:
Hierarchy

Public

129

Superclasses: SMRDescriptive
Public Interface:
Operations*
exists

State machine: Yes
Concurrency. Sequential
Persistence: Transient

Operation name:

exists

Public member of SMRAssociation
Argurments:
LowerCaseletter vt
Documentation-
exists lower case letter in area [1].column

Concurrency: Sequential

Class name:

SMRFlow

Documentation®
SMRFlow -> "u" | "o"

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SMRDescriptive
Public Interface
Operations
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of SMRFlow
Arguments*
LowerCaseLetter "o"
LowerCaseLetter “u*
Documentation.

exists lower case letter “0° or "u* in area [1].column

Concurrency: Sequential

Class name:

SMRSequence

130

Documentation:
SMRSequence -> id

Export Control, Public
Cardinality: n
Hierarchy
Superclasses SMRDescriptive
Public Interface:
Operations’
exists

State machine. Yes
Concurrency: Sequential
Parsistence Transient

Operation name:

exists

Public member of, SMRSequence
Argumenls
number id
Documentation
exists id number in area [1].column

Concurrency Sequential

Class name:

SMRGuard

Documaentation®
SMRGuard -> "t" | *f* | "T" | "F*

Export Control. Public
Cardinality n
Hierarchy-
Superclasses. SMRDescriptive
Public Interface.
Operations
oxists

State machine: Yes
Concurrency: Sequential
Persistence Transient

Operation name

exists

Public member of. SMRGuard
Argumenis:
LowerCasal.atter "t
LowerCaseLletter "
UpperCasel.etler T
UpperCaseLetter "F*
Documentation:

the letters in area [1].row.column are evaluated with xor operator against the SetMemberNames in area[3].row. the

SetMemberNames are ITEM expressions

131

Concurrency: Sequential

Class name:

SMRValue

Documentation.
SMRValue -> id

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: SMRDescriptive
Public Interface:
Operalions:
exists

State machine: Yes
Concurrency: Sequential
Persistence: Transient

Operation name:

exists

Public member of: SMRValue
Arguments:
number id
Documentation:
exists id number in area [1].column

Concurrency: Sequential

Class name:

SMRConcurrent

Documentation:
SMRConcurrent -> "c*

Export Controf: Public
Cardinality: n
Hierarchy:
Superclasses: SMRTransitive
Public Interface:
Operations:
exists

State machine: Yes
Concurrency: Sequential
Persistencs: Transient

Operation name:

exists

Public member of: SMRConcurrent

Arguments:
LowerCaselelter “c"
Documentation’
exists lower case letter c In area [1].column

Concurrency: Sequential

Class name:

SMRSequencial

Documentation.
SMRSequencial -> “s" | "d* | *a" | "e"

Export Conlrol: Public
Cardinality n
Higrarchy-
Superclasses: SMRTransitive
Public Intertace:
Opaeralions.
exisis

State machine: Yes
Concurrency: Sequential
Pessistence: Transient

Operation name.

exists

Public member of: SMRSequencial
Arguments:
LowerCaseLetter "s"
LowerCasel etter 'd"
LowerCaselstter "a"
LowsrCaseletter "a"
Documentation:

exists lower case letter "a” or "e” or "¢" or "d" in area [1} column

Concurrency: Sequential

133

APPENDIX B. InfoSchema/InfoMap Models of Appendix A

134

AlAA A [PARTITION]
v v ’ v|v iv v iG(’neraI Level of Abstraction
. Pl iClass documentation
| Has-A Relationship
Hierarchy
Operation Documentation
i v Argument Type
i % Set Cardinality
P H 21{{CLASS NAME}

21/(DOCUMENTATION: CLASS}

(CARDINALITY: CLASS}

{ATTRIBUTE/CHARACTERISTIC}

{OPERATION} o

{ARGUMENTS} o

{DOCUMENTATION: OPERATION]}

{CONCURRENCY}

O | 21|{TYPE}

2 |{CLASS TYPE}

1 {{REFERENCE) S
IRaHonal Inc. Case Tool Specifications Generator

[Copyright ©) V
|A. A. Michailidis 1995

T2 < %O

Mi

> ~
G D = W

> < » 2
>
>
=

-
>
=
L > T >
Y

Figure B.1. InfoSchema/InfoMap General Level of Abstraction Modeling of the
Rational Inc. Generated Output Specifications (pages 110 to 120).

.) 2 {PARTITION]

v|v v|vlo ! |Detiled Level of Abstraction
v) Class documentation
BE ‘ Hus-A Relationship

Hierarchy

v Operation Documentation

v Argument Type

v Set Cardinality

21/{CLASS NAME}

21 {{DOCUMENTATION: CLASS)

1 {CARDINALITY: CLASS)

3 {ATTRIBUTE/CHARACTERISTIC)
'K| |1 |{OPERATION)

M| 9 {ARGUMENTS]

21 |{DOCUMENTATION: OPERATION]}
{CONCURRENCY}

O|31|{TYPE)

2|{CLASS TYPE)
A|A|A|1|{REFERENCE}

[Rnlimml Inc. Case Tool Specifications Generator
A{A|A|1 |{Copyright ©}

vl|vlo |A. A. Michailidis 1995

>
>
ESREES
—
>
>

<<

-1
:1

222 <%0

EE

'
1
'

S N
SEI SIS

<

(=]

<

Figure B.2. InfoSchema/InfoMap General Level of Abstraction Modeling of the
Rational Inc. Generated Output Specifications (pages 121 to 132).

136

nfaolt|an

MMM MIM

MIMMIMIM

MIM[M[M|NM

MIM MMM

-
-

AA;A,\AAAAAlAA:A
' [[

.

>
Y

[T (2B T

1277

e e e b e

[TE T O

>
>

[o]

=]
]
o]

o

0,0, 0

>

|
t
t
r
1
f
|

”

Za Zr P Z: <
=
E
2 <
E}
E}
E< ZI<|<|<[21:'<’

=z
z
z
=z
2
z
z
Z 2o -
Z e T -
2
Ze - .
=
=
z
k4
z

!

A
»

+

i

i

v

— e

21

f

-

{PARTITION|

]2 ucLAss NAME)
4

(DOCUM[NTATION CLASS)

{CARDINALITY CLASS)

lATTRlBUTEICHARACTERISTIC)

{OPERATION}

3 {ARGUM[NTSI

lRLH RENCH

{Copyright © r

T(rm-ml Letel of Abstra tion
IChass dnrununmum
Set Cardmality

l'mmloan

SB.

SetRole

SetName
SetRoleDominant
QoanIvampuvc
SetRoleTransitive
SetRoteUserDefined

Seanlcldt‘nllly
SetRuoleldentifier

SetRoleGeneralization

Se anIvA;,gn-gahun

" loetRoleHierarchy
HolRthuaﬁﬁFf Tt T T e T
elRulo/\ssucmlmn

SetRale
SelRol
HulRuIch«iu:-n—w)
SetRoleValue R o

SetRoleC nmurmnl
SetRoles ﬂ|u|‘nlml

Partitionsg > {sg)

Sg > {SetRole chN‘\mcl

SetRole > (SetRoleDammant 1 SetRoleDescniptive 1
_ISetRoleTransitv e | SetRoleUserDefined) _

SetName > | iteral |

SetRoleDominant > SetRoleldentifier | SetRoleldentity |
SetRoleAggregation | SetRoleGeneralization | SetRoletfterarchy

SetRoleDescriptive > SetRaleQualifier 1 SetKoleAsscociation |
SetRolel low_| SetRoleGuard | SetRoleSequence 1 SetRoleValue

SetRoleTransitive > SetRoleSequencial | SetRi

SotRoleUserDefined > new <et roles mvented by the
InfoSchema/ Infobap technology users
|SetRoleldentity -> O
ller >R

erahmlmn -- 1

1Set Ruh-/i&ﬁmg,\hn
SetRoleHiera rchy

SetRoleQualifier -> X

SetRoleAssouation > M

- Slenlorlow - F
SetRoleGuard > G°

ISetRoleSequence > &

SetRoleValue -> V

SotRoleConcurrent -> €7

SetRoleSequential -> 1

F.\qu

Hoquvnlml

Transient
Publw

_[l X181n

Sgl‘.ulumn

Cxpression

statement
UpperCasel etter
hteral

(-cnpml)umm;\n'Upper(aseletter

GeneridDest rlpn\.cUpperC.\vaellPr

GereruTransiiveUpperCaseletter

(‘uanr—L-l:ur_Dih_m'dUppu aseLetter B
LASS TYPL)

| Abstract
Cone rete

lRulumuI In < u~« 1qu Spu Ifl(dll(’ns Gmmtur

TA A Michailedis 199577

Figure B.3.

Cless Documentation Partition Corresponding to Figure B.1.

A|A A | A |[PARTITION}
v _vizv fvv i |General Level of Abstraction
vivo j] iHas-A Relationship
. :4_/ | Set Cardinality
P|P PT 1/{CLASS NAME)
Py 1 | PartitionSg
clp | 1 |Sg
c pl ' ‘SetRole
‘ ‘SetName
< SetRoleDominant
c SetRoleDescriptive
[§ SetRoleTransitive
jc SetRoleUserDefined
A|A|A| 1 |(REFERENCE]
z v|v]Ratiunal Inic. Case Tool Specifications Generator
A|A|A |1 |[Copyright© }
v|vio |A. A. Michailidis 1995

Figure B4. Has-A Relationship Partition Corresponding to Figure B.1.

138

| A [{PARTITION}

i i i General Level éf@_bstracti(;;{ o]
1 i |Hierarchy o I
‘ v Set Cardmalzty S N
H!21|{CLASS NAME}

PartitionSg

Sg - o
vih SetRole ' - A o)
SetName

h SetRoleDominant
SetRoleDescrlptwe -
h SetRoleTransitive
betRoleUserDefmed
SetRoleIdenhty
SetRoleldentifier
SetRoleGenerallzatlon
SetRoleAggregatlon
SetRoleHierarchy
SetRoleQualifier
SetRoleAssociation
SetRoleFlow
SetRoleGuard
SetRoleSequencé
SetRoleValue

v SetRoleConcurrent

v SetRoleSequentlal]

AlA 1 {REFERERIACE‘)A . S
v|v [Ratwnal Inc. Case ;1‘001 Spectflcatzons Gener_z;gr"—m—
[Copyright ©/

v | v " |A. A, Michailidis 1995

A
v

R

[SHEN
SEEES B

A'A
vl
v

=
=
- SEESIIRS
=

< T

< < < <
=

< < < < <

< €< < < < <

vIiv |0

-

>

-
[SE= S =N

>

>

v o

Figure B.5. Hierarchy Relationship Partition Corresponding to Figure B.1.

AlA[A A 1{PART1T10N)
vivijo|v, ‘ichch Level of Abstraction
viv|o L IQpcmtion Documentation
R I |Set Cardinality
K|K|K| 1 {OPERATION}
} 213 i Iiixists
X|{X|X| 3 {DOCUMENTATION: OPERATION)

y operation exists is defined as the universal
quantifier for a partition of set names and set roles
operation exists is applied to

X .

- SetRole/expressions/statements
operation exists is defined for a SetName that is a

| T fiteral

M|M|M| 1 {CONCURRENCY}

v X vi_] [Se"ciuen'tial

A|A|A|1 |(REFERENCE)

vlviv)]Rnfionnl Inre. Case Tool Specifications Generator

AlA 1‘1 1 {bopyright@)

v v |A. A. Michailidis 1995

Figure B.6. Operation Documentation Partition Corresponding to Figure B.1.

140

A A {[PARTITION]

AmlA;A,AIA.A’A‘A;AIA'AM:A‘A [A*A‘AIA‘
T T T A N L [T b r'. '.1' I" ’v' n ‘l’
v:‘n.lr:I"lr‘lv'l!“lr‘l':l"l"lv’l"l' rlpge !Y’l"l'l!‘
1 [' ‘ i A ‘. o e 1 { ¢ I
MMM MM ’M'M’M’M'M'M|M MIMI M) MM M| M| M, M
P e R T R R R . g ! | f
Vi [R S S S S T T B |
Y 0 oo b e | ! [
v 4 1+]
[IR B B \ [TR B “’,\{v.\u\,
N l\iv!\}\ix! Y I ' }
oY P ‘ i 1
vl :V&\g i . t ¢ I 1 } i
oy (] I [[
ERRERERE R | 1 R
n;n;n ojojojo):OI ()‘();0 ()Eo 010 0’0 OI
“y i i i I [1 k 1 .
n"l ‘ ‘ * l ; + l I) 1 I
(e l Prob e
R
| : b .]
o o4 Pl | I [
i el EERE
L o
[$]
o
(1]
0 1
o
(3}
ktl
0
? o
U
i o
(3]
Alalatajalalalalajalajalalalalalajajajala
I " i " " " " i I i i I i [y i I [A I I " i
AlAIAIA|ATA[A[A[AIA|A|[A[AIAIA|AIAIA|AALA
I [N EIBRSEY i [N L i 4 [rloioe rrvln Ul nyo

»

Al

2 {mv,n

r(‘rm‘m! Level of Abstrac tion
'Ar_gumml Typr
lsrl Cardinalily
RGUMENTS!}
Sglarbition
il‘lpl’(’\\l(‘ﬂ
(statement
UpperCaseletter
Titeral _
GenenidDominantUpperCasel etter
GenetDescriptiveUpperCasel etter
Generic T ransitis eUpperC asel etter
GenendUserDeflinedUpperCaseletter

%
nM
SetRole
JoetName
Dominant
Desaniptive
Transitive
UserDefined
(8]

c-zxz=-r

—rer

1 HRLILRLNCL]

TRatsonat tnd” Case Tool Specifications Cenerilor

1 |[[Copynight©)

TA A Mudunindis 1995

Figure B.7.

Argument Type Partition Corresponding to Figure B.1.

141

1
!
o
H
I
|
+
|
i
H
. [\
S T I
1
I]
xx]xxxx}xxx
x
R Y
ot Lo
l AY
N
X
A
. X
A
viviviviv]v]v]v]|v
nnln!nnnn
MIMIMIM[MIMIMIM|M
.\;\\"\\V AU R ¥
_\7\\’\—\' L R N N
__\—\t'-\\\'\\
MIM[M{M{MIM[M[M]|M!
»\‘\»V\»\' viviviny
M[M[M|M|M MMM
: k
v —
\4
.\—\. A
Sy
- 4 - \'ﬁ
_ -
U B I
MM MMM M Tm e
VwV“VVVVVV
_ v
Alalajalalalajala
pvlejefvjejofleie |
Alajajala]ajalaga
cTolelelelolonlale

2z <

LaZercrrZ3 <
R IR

ZfZ—-AZ=<
Zf_?'_zr¢3;<
YR
ZrXere-racZTs=
Z{Z<f’33<
ng((fz=<

=
z

FEFYEEF

v (PARTINION]
Wtaded Eeodd ot Ustuntien
Class decune station

o : St ardinahity
21 {CLASS NAMIEY}
i
! I"artihonsd
P
~d
+

IsetMembatRole
SetMemberName
WSMRDom imant

| E~\|R|h-~. nptine
SSMRTransitnve
JSMRUserDotined
ISMREtentiny
;k\lkhh'mnu-v
SMRGenerhzaton
I SMRApprepation
SMRUDerarchy
SAMRQuahihet
SATRA NSO hion
SAMRI How
SMRGuard
SMRSequaence
SMRValue

{SMIC oncurrent
SMRSequencal

21 [IDOCUMENTATION CLASS)

PartiionSd (S

S {SMR SetMemberNoan |

SMR ~ [SMRDominant | SMRDwonpe 1 SMRTransitav e |
SMRUserDetined]

SeiMemberName o | hitesal |

SMRDommant SMREdeatfior 1 SMRLdentay |
SMREA g pregation | SMRGenctabization 1 SMRHuwae by
SMRDesnptive SMRQualfier | SMRAwscoonation 1
SMREow | SMRGuard | SMRSesquenee 1 SMRValue
SMRIransitive SMRSedquencab U SMRUanoaem
SMRUserDefined - ness et member ks mvented by the
InfoSchemasinfoMap technology users

SMRIentty « o

SMRIdentibee ol

SMRGenerabization po 1o

SMRApge pation [V AT IS B [BT
SMRUserannhy - b 1 Lon

SMRQualifner » »

SMRASsovthion -

SMRElow » u H'o

SMRCuaard S T B A |

SMRSequence ol

SMRValue

SAMRC oncurant -1

SMRSequntat Lt 1 d

1 HCARDINALITY CHASS)

volue

3 HATIRIBUTE/CHARACTTRISIICH

Sequential

Iransient

1*ubilic

{OPLRATION)

¢
Fasts

9 lU\l((.UMl N1is)

Sdartiion
! Capressian

t statement

' lowert aselvtbr
[

hitera)

1(semn o Domanantl owerC acel etier

1
|
Genene Descnptivel owerCaseletter
l Lienanie §ransibiv e Lowert asolhiter
+
JGeners UseeDafined] owesC sl otte
4
2HCLASS TYPITY
"Abstract

ICum rete:

V1 IRITIRINGT)

xkulmnul e Case ool Speafratiom Gonerator

NNt opyright T}

‘A A Muchalidis 19

Figure B.8. Class Documentation Partition Corresponding to Figure B.2.

A A A A [PARTITION}
v v v v Detaied Level of Abstraction
v v oo HasA Relationship
S T st Cardinality
P P P 21 {CLASS NAME)
p 0T partitionsd
¢ p' s
e p " SetMemberRole
‘¢ SetMemberName
¢ SMRDominant
"¢ 'SMRDescriptive
‘¢ 'SMRTransitive
"¢ 'SMRUserDefincd
A'A A 1 (REFERENCE)
vovovy Rational Inc. Case Tool Speaifications Generator
A A A T [Copyright©]
vivlv, A A Michailidis 1995

Figure B.Y. Has-A Relationship Partition Corresponding to Figure B.2.

‘A A [PARTITION)

I‘

T

Detarled [evel of Abstraction
Hrerarchy
Set Cardmality

21 [CLASS NAME)

PartitionSd

'Sd
‘SetMemberRole
‘SetMemberName
‘SMRDominant
SMRDescriptive
:SMRTMHSHI\’(‘
SMRUserDefimed
‘SMRIdentity
'SMRIdentitier
‘SMRGenerahzation
.SMR/\ggrugahm
‘SMRHicrarchy
'SM RQualifier
'SMRAssoclation
'SMRFlow
;SMRGuard
SMRSequence
‘SMRValue
'SMRConcurrent
‘SMRchucncial

"1 (REFERENCE}

Rational Inc. Case Tool Spectfications Generalor

1 :ICopyright©)

AAAAA
PO L GO L A
AR L (4 oo
HHHHHH
S
\,.h. .
.\'.h‘
.v‘ .
\‘h
v :h
v :h.
; .
REUE
v
.\"
v
v
B
o
™
-
v
} N N
Lo V.
\I
. , . N .v
AAAAAA
Z'.ZY'I"U'I”Z’
AAAAAA
Z‘hl"l"l’.l’.l’

A. A. Michailidis 1995

Figure B.10. Hierarchy Relationship Partition Corresponding to Figure B.2.

144

AAAAAANAAAANAAAAAANAAAAA A IPARITTION

G e [N Cpn oy ‘Duwhdln.l;vaslmtlum

[A L N L [N R JOperation Do ntation
T T |Set Cardinality

K K K KK K KKEKEKEKKHEKEKKEKEKKTK KK, 1 (OPFLRATION|

|.£' "‘.r,‘t,_/|51"i'm.ll‘l.’.li'H.H.lh‘ﬂ'lﬂil'l’ 2[)‘1|~ “ RATES

XXX XX X X X X X X X XX X, XX X{ X X, 21 [DOCUMENTATION OPLRATION|

o e e . R . 'opvrnlmn exists ts defined as the umversal quantifier of setmembers and seteoles
e : Do A .. : Jperation exists is apphied to SetRole/expressions/statements in arcds [1) w4}
ot e e ‘ Ve e e i earsts upper case lotter in area[1) column
S S S | exasts 1s defined for & sot member that 15 a hiteral n area [3] row column
T O i | eaists genenic dominant lower case Jetter in area (1] column o
T T L) . { i | extsts genenc descnptive lower case letter in area [1) column - .
A [A I . | Jreasts genoric transitive lowet case letter 1n ared [1) column B
v T e | | { | extats genenc user defined letter userd for new set member sules in area [1] celumn
B L R S B R oo . ! Jower case lotter o exists as et member role mdentity 10 area [1] clumn
A TR I | ! ! P .] ind numbier exists i areaf1) column
A P oy b ! | i exts lower case fetter ¢ or ponareall] column
o { R t AP i F ; P L enists lower casedetter ¢ or w oo v or b or monarea {1) column
T S A I ’ - b |] femists lower case lotter b or el numberan area {1} column
oy ‘ [‘ i i i } . ; Vo i | [1 exists lower case letter x inarea [1] column
Py g b [| | } oty) I o j N I eansts lower case letter v inarea [1] column _ R
- ; A I i R | T i | i exists lower case letter o o u o in area |1 column -
| . | ‘ ; ” by | I 1 Y H ; | vnists td number i area [1] column
[| ! T | o | l i H i the Tetters 1 area §1) row colomn are evaluated wath wor operator aganst the
! . ‘ . ! . . A SetMemberNames inarea [row The SetMemberNames are expressions
N R R } by
- i 1 A ! . | o [. ' i i | esists 1l number 1 area (1] column
[1 A T 'y - x (exsts Tower case fetter ¢ ared [1] column
| ! | i ooy 1 i by i \ ‘ 1 ») ln-\hl\ lowercase letter @ or ¢ ar ~ o d o area [1] column

"’!Ml"'!"']"']"'“"!"'l“ Mim M‘M:M MIM;MIMJM M M| 1 [ICONCURRENCY}

\!\!\ 0 \i\]\l\\ \ \\l\’\k\l\l\}\;\ xI\ Sequential

AlAa AA.A]AiAA A AA‘A /\A‘/\!A,A’A A}A 1 |{{RITERINCE) N

ol 1 eleloe|e]e i tletely ' e I o ’ i | v] el Ratonal Ine Case Tool Spoufreatons Generator

AJATA[AIA|AIAIAIAALA A'A A A}/I’A!AIA AJA] T [{Copynight©}

[l elvdleleid | I 3 1 p el lede I clo e el de A A Medualudis 199

Figure B.11. Operation Documentation Partition Corresponding to Figure B.2.

z

E4
RA ey

= -

0000 ();0 000000

e

AlAlAlAJA[AjAlA[A[AIATAA[A[AAIA[A[AIA]A|A|A|AlALA
LGN I 4 U A0 A (N A A U L I A LN O GO A A A A O A L A A O L O L AR A S L AR L AL S L
AlA[A|AIA|71ALA ‘t/\ AfAjAAAAAAJAJA[AJATAIA[AIALA

M M N

B
[
0
'
'
'
¢
}
'
‘
+
i
[
|
i

\

O

14,404

\

+
4
c
'
‘
+
i
‘
[
.
‘
o0
‘
{
|
1
i
1
b
t
t

v

MIMIM
H

[$]

o

\
H

c -~

1

{PARITIION)
bt beosdon Annactien
g ument Tups
Set Cardin dlsty
{ARGUMINITSY
‘\ll'.uhlmn
Capresaan
JStalvment
l anrttase bt
Jenal
fLomn Dommantlonertas Lottt
Lot Dosapiine b onaeCasel oo
Ganen Luansitivel omerd ase | o tie
il ser el owocaset otia

ll\l‘ll

|I| M

S lmbe tRol
1‘-|I\Iunlw Nanu
JDommant
Thsonptine
Teanstlne
Uscrihdmad

o

nl

¥

|
|
|
|
|
|
i

I

;

{RFEFRINCE)

| Ratwomal e Catse ool Spreathicatin Catietator
(Capyright « }

108 AMiduutnlys 109

Figure B.12. Argument Type Partiticn Corresponding to Figure B.2.

146

APPENDIX C. Rational Rose/C++ CASE Tool “Exported” Results

147

(object Petal
version 34)

(object Design "<Top Level>"

defaults (object defaults

rightMargin 0.25
leftMargin 0.25
topMargin 0.25
bottomMargin 0.5
pageOverlap 0.25
cliplconLabels TRUE
autoResize FALSE
snapToGrid TRUE
gridX 0
gridY 0
defaultFont (object Font

size 8

face "helvetica”

bold FALSE

italics FALSE

underline FALSE

strike FALSE

color 0

default_color TRUE))

attributes (list Attribute_Set

(object Attribute

tool “ecg"

name "roscld”

value "753117540")
(object Attribute

tool “eg"

name "propertyld”

value "760817948")
(ohject Attribute

tool Yeg"

name "default__Project”

value (list Attribute_Set

(object Attribute

ool "eg"
name "FixedBy ValueContainer”
value ")

(object Attribute
tool “cg"
name "FixedByReferenceContasner”
value ")

(object Attribute
tool
name
value

llcgll
"default__Uses”
(list Attribute_Set

(object Attribute

tool

name
value

"cgll
"ForwardReferenceOnly”
FALSE)))

148

(object Attribute

tGol "cg"
name "default__Subsystem™
value (hst Attribute_Set
(ohject Attribute
ool “eg"
name "Directory”
value "AUTO GENERATE"))))

root _category (object Class_Category "<Top Level>"
exportControl ~— "Public”
global TRUE
subsystem "<Top Level>"
logical_models (hist unit_reference_list
(object Class "PartitionSd"
documentation "PartitionSg -> {Sd}"
ficlds (list has_relationship_list
{object Has_Relationship
supplicr "Sd"))
abstract TRUE
operations (list Operations
(object Operation "exists”
documentation “operation exists is defined as the universal quantifier for a
partition of set members and set member roles”
parameters (list Parameters
(object Parameter "Sd"
type "SdPartition"))

concurrency "Sequential”
opExportControl "Public"
ud 0))
statemachine (object State_Machine
states (list States
(object State "start”
transitions (list transition_list
(object State_Transition
supplier "check for Partition™)
(object State_Transition
supplier "oL")

(object State_Transition
documentation "partition exists"

label “partition exists”
supplier "end"
action "return truc"))
type "StartState")
(object State "check for Partition"”
transitions {hist transition_list
(object State_Transition
supplier "error’)
(object State_Transition
supplier "OK™"))
type "Normal™)
(object State "error”
transitions (list transition_list
(object State_Transition
supplier "exit")

149

(object State_Transition
suppher "end"))
type "Normal™)
(object State "OK"
transitions (list transitton_hst
(object State_Transition
supplicr "exit™))
type "Normal")
(object State "exit”
type "EndState™)
(object State "ok”
transitions (list transition_list
(object State_Transition
documentation "end "

label "goto end”
supplier “end"
action “return true")
(object State_Transition
supplier "end"”
action "return tiue'))
lype "Normal")
(object State "end”
type "EndState")))
statediagram (object State_Diagram ™"
title "
Zoom 100

max_height 28350
max_width 21600

origin_x 0
origin_y 0
items (list diagram_item_hst
(object StateView "start” @1
location (267, 236)
font (object Font
size 12
face "helvetica”

bold FALSE
italics FALSE

underline FALSE
strike FALSE
color 0
default_color TRUE)
label (object ItemlLabel
location (261, 236)
anchor_loc |
nlines 1
max_width 480
Justfy 0
label "start")
size 240)
(object StateView "end" @2
location (945, 223)
font (object Font
size 12

150

face “helvetica”
bold FALSE
italics FALSE
underline FALSE
stnke FALSE
color ()
default_color TRUE)
lubel (ohject ItemLabel
location (945, 223)
anchor_loc]
nlines 1
max_width 480
Jusfy 0
label "end")
size 240)
(object TransView "partition cxists”
label (object SegLabel
location (606, 186)
anchor_loc]
nlines 1
max_width 45(0)
Justify 0
tabel "partition exists”
petDist 0.5
height 45
orientation 0)
chent @]
supplier @2
x_offset FALSEN)
(object Class "Sd”
documentation "Sd -> { ! SetMemberRole SetMember} }”
fields (hst has_relationship_hist
(object Has_Relationship
supplier "SctMemberName")
(object Has_Relationship
supplier "SetMemberRole™))
superclasses (list inheritance_relationshp_list
(object Inheritance_Relationship
supphier "PartitionSd"))
abstract FTRUE
operations (list Operations

(object Operztion "exists”

documentation "operation exists 1s applied to SetMember / Role / expressions
[statements i arcas [1) to [4]7
parameters (hst Parameters
(object Parameter "ITEM"
type "expresston”)
(object Parameter "ITEM”
type "statement”)

(ubject Parameter "SetMemberRole”

type "LowerCaseLetter"))
CORCUITEnCY "Sequential”
opExportControl "Public”
wid 0o

151

statemachine (object State_ Machine
states (list States
(olject State "start”
transitions (List transition_list
(object State_Transition
suppher “check for SetRole™
(object State_Transiion
documentation "SetRole exists m are | 2§

label "SetRole exists inarea (2] 7
supplier “enit”
action "return truce™)

(object State_Transition
documentation "SetName exists i area | 2]

label "SetName exasts marca | 217
supplier "exit”
action “return true™)

(object State_Transiion
documentation "set role or set name exist in Sg”

label “SetRole or SetName exist”
supplier “exit”
action “return truc”))
type “StartState")
(object State "check for SetRole”
transitions (hist transition_list
(object State_Transition
supplier “error”)
{object State_Transition
supplier "OK")
(object State_Transiion
suppher “check for SetName™)
type "Normal™)
(object State "error”
transitions (hst transiion_hist
(object State_Transition
supplier "exit"))
type “Normal”)
{(ohject State "OK"
transitions (hst transiion _list
(object State_Transiion
suppher "exit™))
type "Normal")
(object State "exit”
type "EndState”)
(object State "check for SetName”
transitions (hist transition _list
(object State_Transition
suppher “error”)
(object State_Transition
supplier "OK")
(object State_Transiion
suppher "error”))
type "Normal”)))
statedhagram (object State_Diagram ™"

XD

utle

152

Z00m 100
max_hecight 28350
max_width 21600

ongin_x 0
origin_y 0
Htems (list diagram_item_list
{object State View "start” @3
location (198, 263)
fomt (object Font
size 12
face "helvetica”
bold FALSE
italics FALSE
underline FALSE
strike FALSE
color 0

default_color TRUE)

label (object ItemLabel
location (198, 263)
anchor_loc]
nlines |
max_width 480
justify 0
label "start")

SI/C 240)

(object StateView "exit" @4

location (1111, 246)
font (ohject Font
size 12
face "helvetica”
hold FALSE
italics FALSE
underline FALSE
strike FALSE
color 0

default_color TRUE)

label (object ItemLabel
location (1111, 246)
anchor_loc |
nlines 1
max_width 480
justify 0
label "exit")
siz¢ 240)
(object TransView "SetRole or SetName exist”
label (object SegLabel
location (654, 211)
anchor_loc]
nlincs 1
max_width 450
justify 0
label "SetRole or SetName cxist”
petDast 0.5
height 45

153

orientation)]

client @3
supplier @4
x__offset FALSEN))
(object Class "SetMemberRole”
documentation

ISMRole -> {SMRDominant | SMRDescriptive | SMRTransitive | SMRUserDefined)

fields (list has_relationship_list
(object Has_Relationship

supplicr "SMRUserDefined™)
(object Has_Relationship
suppher "SMRDominant")
(object Has_Relationship
supplier "SMRTransitive")
(object Has_Relationship
supplier "SMRDescriptive™))
superclasses (list inheritance_relationship_ist
(object Inheritance_Relationship
supplier "Sd"))
abstract TRUE
cardinality (value Cardinality "1")
operations (list Operations

(object Operation "exists"
documentation "exists upper case letter mn arca { 1.column”
parameters (list Parameters
(object Parameter "SetMemberRole”
type "LowerCaseletter™))

CONCuUITency "Sequential”
opExportControl "Public”
uid 0y

statemachine (object Statc_Machince

states (list States
(object State “start”
transitions (list transition_list
(object State_Transition
supplier "check for SctRole™)

(object State_Transition
documentation "set role exists in arca | 1]"

label "SetRole exists i are [1]"
supplier "exit”
action
Ircturn true
I
)]
type "StartState")
(object State "check for SetRaole”
transitions (list transition_list

(object State_Transition

154

supphier “error”)
(object State_Transition

supplier "OK"))
type "Normal")
(object State "crror”
transitions (list transition_list
(object State_Transition
supplier "exit"))
type "Normal")
(ohject State "OK"
transitions (list transition_list
(object State_Transition
supplier "exit"))
type "Normal™)
(ohject State "exit”
type "EndState")))
statediagram (object State_Diagram ™"
utle .
00m 100

max_height 28350
max_width 21600

orgin_x 0
origin_y 0
items (list diagram_item_list
(object StateView "start” @5
location (206, 215)
font (object Font
sizc 12
face "helvetica”

boid FALSE

ntalics FALSE
underline FALSE
strike FALSE

color 0O

default_color TRUE)

label (object ItemLabel
location (206, 215)
anchor_loc |
nlines 1
max_width 480
justily 0
label "start")

size 240)

(object StateView "exit” @6

location (981,221)

font (object Font
size i2
face "helvetica”

bold FALSE
italics FALSE

underline FALSE
strike FALSE
color O

default_color TRUE)

155

label

size

(object ltemlabel

location (981, 221
anchor_loc 1
nlines 1
max_width 480
Justfy 0
label "exit")

240)

(object TransView "SctRole exists inare | 1]"

label {object Seglabel
location (594. 174)
anchor_loc |
nlines |
max_width 450
justify 0
label "SctRole exists inare | 1]"
petDist 0.5
height 45
orientation 0)

client @5

supplier @6

x_offset FALSE)))

(object Class "SetMemberName”

documentation
{SetMemberName -> "{"literal"}"

superclasses (list inhertance_relationship_list
(object Inheritance_Relationship
supplier "Sd"))
operations (list Operations
(object Operation "exists”
documentation "operation exists is defined for a SetMember that is a litesal i
arca [3].row.column”
parameters (list Parameters
(object Parameter "SetMemberName”
type "literal”))
concurrency “Sequential”
opExportControl "Public"
uid 0))
statemachine (object State_Machine

states

(list States

(object State "start”
transitions (list transttron_list
(object State_Transition
supplier "check for hteral”)
(object State_Transition
documentation
ISet Name exists in arca [4.row.column]

|
label "SetName exists 10 are {4.row.column|”
supplicr "exit”
action “return true”))

156

statedhagram (object State_Diagram

utle
Z00m

type "StartState”)
{object State "check for literal”
transitions (list transition_list
(object State_Transition
supplicr “error")
(object State_Transition
supplicr "OK"))
type "Normal")
(object State "error”
transitions (list transition_list
(object State_Transition
supplicr "exit"))
type “Normal”)
(object State "OK"
transitions (list transition_list
(object State_Transition
supplier "exit"))
typc "Normal")
(object State "exat”
type "EndState")))

"

100

max_height 28350
max_width 21600

origin_x 0
origin_y 0
iems (list diagram_item_list
(object StateView "start” @7
location (158, 238)
font (object Font
size 12
face "helvetica"”

bold FALSE

italice FALSE
underline FALSE
strike FALSE

color 0O

default_color TRUE)

label (object ItemLabel
location (158, 238)
anchor_loc 1
nlines 1
max_width 480
justify 0
label "start")

size 240)

(object State View "exit” @8

location (1001, 218)

font (object Font
size 12
face "helvetica”

bold FALSE
italics FALSE

157

label

size

(object TransView "SetName exists tn are [4.row.column]”

underline FALSE
strike FALSE

color 0

default_color TRUE)

(object Tteml.abel
location (1001, 218)
anchor_loc 1
nlines |
max_wtdth 480
Justify 0
label "exit")

240)

158

