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ABSTRACT

A General Formal Model for Representing Test Item Results.

David Barzilay

The measured states of knowledge, in terms of concepts and associated
entities can be represented and éxpressed in a variety of ways: pictorial,
diagrammatic, symbolic or linguistic. A symbolic approach within the
framework of matrix algebra is proposed in this study as a good
representation for modelling the learner’s state of knowledge. This form of
representation allows for mathematical manipulations and operations on the
entities that make up these matrices. This permits the determination of
knowledge gain from successive tests that are administered and recorded

within this framework. The technique is very general and flexible.
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Chapter 1: Literature Review

Introduction.

An issue of concern that often arises in school and colleges is how to
track and monitor the progress of the learner or a group of learners.
Difficulties arise when the number of concepts or items to be learned and the
relationships that may exist between them become quite numerous. Hence,
some kind of representation is required which will adequately display labels
of the concepts to be learned and one where those deemed mastered on tests
can be distinguished from those yet to be administered.

From an educational technology perspective of effectiveness and
efficiency this representation must be constructed so that results from test
items administered can be readily exhibited and used. Thes test items results
will of course depend on the specific measures chosen.

The use of concept maps by learners and teachers has been investigated
by numerous authors from both the conceptual and procedural view point,
Ausubel (1968), in Educational Psychology, L.N. Moreira (1979). The
fundamental idea is that an individual can form a mental map consisting of
various related parts or components in order to facilitate undersfanding some
body of knowledge; this map may be made at some conscious level in the
form of some imagery as an aid in conceiving scientific ideas, (Miller, 1987),
or it may be some kind of symbolic representation, or possibly it may be
formed at a subconscious level. If such cognitive maps are formed then
comprehension can be enhanced. This idea has been applied in teaching

college level courses, and in facilitating learning processes, for example in



the teaching of courses in biology, in High School, (Schmid and Telaro,
1990) and at the collegiate level, (Taylor, 1990).

Thus a student may usefully constructs some sort of cognitive map of
some material that has been taught or of some material that he or she has
read. Similarly a teacher may form some cognitive map with respect to some
topic of interest or some material that is to be transferred to a student or a
group of students.

Considering those teaching situations which involve a student-teacher
interaction, it is quite possible that the cognitive maps formed by the two
individuals may not be similar or may have structures that are in some
conflict with one another. From the point of view of learning achievement
this is an undesirable situation. An ideal learning process is one in which
there is mutual understanding between the student and the teacher. By mutual
understanding it is meant that both student and teacher agree in their ways of
exhibiting the meaning of some topic of discourse or the procedures involved
in acquiring that meaning.

The notion of concept maps can be formalized by using concept networks.
With these structures it is possible to identify a set of concepts and then
create a set of directed links which will give a measure of the relationship
between them. This structure enables one to determine some various paths
possible which will connect one set of concepts to others.

A possible mode of handling concept networks relies on expressing them
in terms of concept matrices, and in view of the vagueness that may be
associated with the elements and links representing the concepts, fuzzy logic

may have to be applied, along with its operational rules, in order to obtain



results of final outcomes. In computer assisted learning, for instance, a
formal connection-matrix based on language and a fuzzy logic based lesson
is advocated, typically as a means of implementing and exploiting learner
models, Boyd and Mitchell (1992).

The use of concept matrices is here suggested for the external
representation of a state of knowledge or understanding of a leamner and in an
analogous manner that of the teacher or instructor, in terms of the concepts
that form a particular body of knowledge. A set of operational rules will have
to be developed in order to prescribe and obtain final leamning outcomes. A
recourse to fuzzy logic, with some variations, will undoubtedly eventually be
required. Within this scheme, the most relevant characteristics of the learner

and teacher will also be incorporated.

Literature Review.

In dealing with knowledge representation and the operational procedures
which are associated with them, much work has been done within the domain
of education and cognitive psychology. However, many of the mathematical
procedures used rest on probability notions. Thus, statements about learning
outcomes as a result of instruction given are expressed in terms of
probabilities.

However, a significant shift has been made in the 1960’s in the
educational field in particular in defining school curricula in terms of discrete
operational objectives, (Lipson, 1967). Each of the objectives in these
curricula amounts to a class of behavior which can be generated by a given

set of rules, such as the ability to perform various arithmetic operations, as an



example. Scandura (1976) advocated deterministic theorizing in structural
learning. The first of his three partial theories deals with how to characterize
knowledge. Operational objectives fall into that deterministic characterization
of knowledge. A list type of characterization of this sort has the advantage
that it requires but a simple performance mechanism to determine if it has
been mastered.

Concept graphs, as defined by Brachman (1985), are formal objects used
to represent objects, attributes and relationships of the domain being
modeled. A concept graph exactly reflects these representations by having
object classes as nodes and relationships as edges, Dumslaff and Ebert
(1992). Graphical representation has been a widely used approach in order to
describe the conceptual structure of some topic to be learned in the
educational field. Graph representation structures are useful for their pictorial
representation and often enhance the learning process in that they allow for a
clearer perspective on how a topic is structured in terms of its conceptual
components.

Greeno (1972) has proposed a pictorial scheme to describe the
relationship among several related concepts, the fundamental process being
that two or more concepts lead to another one. From the mathematical
viewpoint, it is an application of graph theory. One of its uses is for the
analysis of problems and problem solving. As an illustration he cites an
example involving the concepts of :

I =length, w=width, h=height, v=volume, A = area,

m = mass, d=density, s =speed, a=acceleration, f= force

and the relationships u are given by :



u; corresponding to the formula v=/xwx A
w, corresponding to the formula A=/xw

u; corresponding to the formula v=Ax A
uy corresponding to the formula d = %

us corresponding to the formula f = ma

S

Ug corresponding to the formula m = 7

The Greeno’s pictorial representation appears as shown in the figure 1.1

Figure 1.1

Greeno’s Pictorial Representation.

This graph theoretic approach is weak in that it does not describe the
concepts themselves. It works mainly on the basis of connections that are
known to exist among them. It is always possible in principle to define other

connections and it would be a matter of further investigation to determine if



these connections or relationships actually do occur. This approach has the
advantage of flexibility. However, it can become extremely cumbersome
when the number of concepts increases and as a consequence the
combinations of their possible relationships increases exponentially.

Another graphical structural knowledge representation is based on work
by Lamb (1966) and Reid (1968) who called this approach a “relation
network™. The basic idea is that concepts are connected by a “relation”
symbolized at the interaction point. One may then construct a complex
diagram showing all the interactions.

Another form of graphical knowledge representation was devised by Pask
(1968), who named it the “entailment mesh” representation. A set of
concepts and group of concepts form sets, U. These sets are shown as nodes.
A problem is posed by X under a rule © and is solved by applying the correct
operation, a string operations or a complex one. Correct operations are
depicted as directed arcs which lead to a unique and central node, regarded as
the solution. The description of the correct operation paths is symbolized as
I(T). An example of this for three concepts A, B, C, is shown in the
entailment mesh of figure 1.2.



Figure 1.2
Pask’s Entailment Mesh Representation.

Uasc
Uc

Usy—"",
O

Uas
Ua Usc Uac
O = Nodes- State of knowledge. —— = Correct operations
‘ = Other statements of knowledge. . = Central final node

The above scheme is adequate for representing a knowledge structure of
moderate size and how different combinations of concepts can lead to other
states. Extensive labeling is required and the structure may be quite complex
diagrammatically as the number of concepts increases. Also specific
operations on each of the nodes must be specified and the directed arcs and
paths which lead to the final solution. The directed arcs are a complex set of

operations which must also be specified.

The transition from a graphical representation to a set theoretical one is
quite a natural one. In fact many of the diagrammatic schemes used must be

accompanied by some additional structure which explains and augments the



structure. Symbols and alphabets are necessary to describe entities within that
structure and possible relationships that may exist between them.

One begins by first constructing some cognitive map, which is expressed
as directed graphs, with possible cycles feedback. The directed edges from
one concept C; to another C; can indicate how much C; causes, or the extent
to which it is related to C;. The time varying concept function Ci(t) measures
the non negative occurrence if some event, which may be fuzzy, Kosko
(1986). Cognitive maps, which model the world as a collection of classes
and causal connections between them have been applied in a variety of areas
such as to model gastric appetite behavior, and popular political development,
Taber (1987, 1991), also to analyze electrical circuits (Styblinski, 1988), and
Chen (1988) in decision making situations. Kosko (1990) describes the
operational process of going from the cognitive map to a matrix formulation
in order to determine the effects that one entity would have on the entire
structure and how that structure would evolve.

A fuzzified matrix approach has been found to be most useful in
particular situations involving entities which have vague characteristics. The
fuzzy logic operational rules are applied in the computational procedures.
Such representations have been applied in document retrieval mechanisms by
Her (1983) and query type problems by Kame (1990). These works can be
related to a learning situation in so far as the process is concerned. That is to
say, one begins with little or no knowledge and as the process evolves the

desired state of learning is achieved.



Problem Description.
A body of knowledge which has to be imparted to a learner may and often

contains many concepts and sub concepts associated with it . The problem
that arises is how to describe this set of concepts or learning items in some
systematic, compact and easily displayable and retrievable form, from which
it is then possible operationalize it in some teaching situation and and provide
a mechanism which testing can be performed so that it may be possible to

monitor the learning outcomes as the learning process evolves.

The problem can be categorized in several parts,

a) How to express and build this knowledge structure within the framework
of a matrix representation.

b) How to define and construct the relationship among the topics, expressed
as elements of these concept matrices.

c¢) How to construct an operational mechanism which will involve the
interaction of a set of matrices.

d) How to devise testing measures which are to be used when test items are

administered, so that learning outcome can be evaluated.

Pask (1968), for instance, has devised an elaborate laboratory
methodology for the learning processes, utilizing “entailment meshes”. For a
more formalizable description, a different approach is required. The approach
must be such that the formalism must be expressed in such a manner that the
operations between entities are clearly defined as well as the procedures to be

followed. Adopting the view that “ learning involves the construction of



relationships among topics within a knowledge structure”, (Mitchell and
Grogono, 1993), this can then be formulated within the framework of the
utilization of the a matrix representation.

One of the features that the proposed operational framework and
representation should have is the possibility of including some student
characteristics. This aspect is often ignored in the course of a conversation,
be it a tutorial one or otherwise, or indeed in a conventional classroom
teaching situation. This is due in part to the fact that teachers cannot possibly
cope with the diversity of types of students within a classroom, and also due

to the fact that there is insufficient domain expertise.

The method.

The notion of concept maps will be used as a point of departure. These
being diagrams indicating concepts and their interrelationships by node labels
and edges. The resulting maps can represent a person’s conceptual
organization of some given topic. However Pask’s formalism, in terms of his
conversation theory, and operationalized by his entailment meshes, will be
used only as providing some very basic ideas in order to develop the required

knowledge structure in terms of concept networks, expressed by the matrices.

The proposed structural scheme will be one which resembles, in some
very limited aspects, an Intelligent Tutoring System (ITS), and one of its
features will be such as to be able to incorporate some of the characteristics
of the leamer and instructional procedure. In this respect the proposed

structure will have to be sufficiently flexible in order to adapt itself to a
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particular student. Thus the structure would have to be such as to represent,
as accurately as possible, the version of the subject matter in the student’s
concept map, (Mitchell and Grogono, 1993).

The student’s concept map will largely be a subset of the
teacher/instructor’s concept map, for a one directional tutorial conversation.
ie. one in which the student acquires all of his or her knowledge from the
teacher. The requirement imposed here is that a minimal difference results

between these two maps after learning has taken place.

Some Basic ideas of Pask’s Conversation theory.

In Pask’s conversation theory a conversational domain can be constructed
with respect to any arbitrary subject matter. One considers two participants
say A, the student, and B, the teacher. In this case the conversation is said to
be a tutorial one. This in the sense that they both learn as a result of
conversing about the domain, the domain being something to be discovered
or learned about.

The conversation takes place in a potentially formalizable language L
which is stratified into at least two levels of discourse: L =L1°, L
During the conversational act, commands and questions may be assumed at
L°or at L levels.
Atthe L° level of discourse, statements are of the form, “I am doing this”
and commands are of the form, “do something , or “solve a problem”.

Questions are of the form, “give an explanation of....”

11



At the L* level of discourse, commands are of the form,
“learn to solve a problem” or “construct a process that solves this
problem”. Statements would be of the form : “[ am constructing a...”
and questions demand the “explanation of how the process was constructed”.

In general it is taken that that each A and B have at their disposal a
repertoire of procedures which they can employ. Thus if a topic T; is under
discussion or investigation, then, in Pask’s notation,

Proc,® (T:) represents - a procedure in A’s repertoire that explains topic T;
Proca* (T;) represents - a procedure in A’s repertoire that explains how
Proc® (T;) is learned, [and if applied to Proc ° (T) itself may
be regarded as A’s reconstruction or re-explanation of A’s
memory of topic T; .
[fthere is “agreement” between A and B, this is represented as:
Proc,® (T;) ¢ Procg®(T;) similarly Procy (T) <> Procg' (T)
where T is the domain in which Proc, and Procg are able to operate.
Thus if there is a doubled layer agreement, then it is said that there is
“understanding” of topic T in L . ie. this is Pask’s definition of
understanding.
It is taken that A and B can reproduce or reconstruct Con (T) from a set of

components or subconcepts, labeled, a;and b;,i=1,2,3,....... p respectively.

It is posited that optimal conditions under which understanding takes
place is when matching occurs. That is to say, a given learning strategy must
match a given teaching strategy. Thus, if a mismatched teaching strategy is

employed, i.c. one that belongs to a class that’s distinct from the class of

12



learning strategy that a student would adopt, then virtually no relevant
understanding takes place.

As stated earlier, in Pask’s conversation notions, if Proc, (T;) < Procg
(T;) then understanding has occurred. In essence this means that if B
communicates to A his procedural derivations of constructing T; and A
shows agreement, then B’s information, when processed in A’s mind, yields
the same result that A would have obtained with his own procedural
construct of Proc * (T;). “Understanding”, from the operational sense, means

matching A’s procedural repertoire with B’s at the the two levels, L° and L".

Aspects of the proposed representation.

In the context of the work proposed for this thesis, with respect to the
level of discourse, as expressed by Pask, those being L° (Lev 0) and
L'(Lev 1), only level L° will be considered as an application example.
However the proposed structure and its subsequent operative mode will be
sufficiently general that any two level of discourse in almost any formal
language could be applied to it.

The language of discourse will depend to a large extent on the teaching
method, styles, or instructional designs chosen, that is, the particular
conversational mode. Since the learning outcomes have characteristics which
cannot always be precisely observed, then measured fuzzy variables and
possibly fuzzy logic operational rules will have to be invoked.

The underlying element in the structure and use of fuzzy logic is the
“membership” function, pu(x), relating to some fuzzy set. Thus the approach

and procedure utilized in determining this function must be taken with
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utmost care and rigor. The two variables involved are on the one hand the
degree of membership to which a given value in the fuzzy subset is taken to
belong, expressed on the unit line interval [0,1], and on the other hand the set
of values within the fuzzy subset.

In the context of this thesis, the outcome of the learning process could
possibly form a fuzzy set and the collection of hedges such as: very little,
little, fair, good, average, very good, excellent, associated with this set would
form the fuzzy subset. It seems that one cannot escape this approach since
one must admit different levels of understanding, certainly during the
learning process itself.

In principle, if one can quantify the procedures Proc * (T;), for A and B,
then one could consider the difference, D, between the two procedure
constructs,

D=proc, —procg  ...........i... 1.1
and under suitable normalization conditions one can define, D = 0, implying
full understanding, and D = 1 implying total absence of understanding.

One can speculate as to what function the learning outcome, expressed as U,
can be adequately represented by. This might take the form of some well
established leaming curve. It is proposed here that, this learning curve

assume the shape of a logistic curve, shown in figure 1.3.
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Figure 1.3

Learning logistic curve.

U
D
The above curve can be described algebraically by an equation of the type,
Us—e— 1.2
c +

with D as defined by equation 1.1, and ¢;, ¢, are constants relating to the
contextual situation. The numerical values of these constants can be obtained
during the curve fitting procedure from a set of experimental data collected.
One will note that the learning curves, of the type shown in figure 1.1, closely
resembles curves obtained for fuzzy variables such as linguistic terms and
hedges. An example would be of the form, « the degree of understanding of «
a concept Con (T).

Equation 1.2 is but one of a variety of mathematical expressions that
could be utilized to describe such curves such as the one shown in figure 1.1.
The characteristics of an equation of this type are that it is simple to use and
that the constants c,, ¢, are adjustable to a given contextual situation. This
would be necessary in view of the fact that learning curves may depend on

the learning topics.
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The parameter D, as defined by equation 1.1, is consistent with the notion
that learning is relative to some defined body of knowledge. Thus,
comparisons with what is regarded as the “knowledgeable source ©, say
Procg, or to what one might define as the absolute state of knowledge are
necessary. The learning outcome variable, U, from testing can be described

on the line interval [0,1], or as a percentage value.
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Chapter 2 : Concept representations.

A Diagrammatic Representation.

A concept acquisition process can be described in a diagrammatic
manner. In the simplest case one can consider a one way transmission
process in which only one of the participants constructs “knowledge” and
transmits it to another participant who acquires understanding. In this
situation B possesses the required knowledge (or constructs it) which is
imparted to A. In this sense B’s knowledge of some topic T; , expressed as
Procg (T;) becomes the point of reference with A’s Proc, (T).

This tutorial conversation, or one way instructional discourse, is described

in figure 2.1

Figure 2.1

One way Instructional Discourse.

17



This leads to the equivalent relation,
Procs (T) < Procg (T)
[n the above diagrammatic description, the curved lines represent some
particular process or procedure for which knowledge is imparted or
transferred from person B to person A. The vertical downward arrow
represents the higher level of understanding that A acquires, as a result of this
conversation with B. The curved lines, drawn from A to B, can represent
communication or again some process or procedure that the new level or state
acknowledgment has been achieved.

In the flow chart shown, the process may be “stuck” at a given level and
the cycle repeating itself until the higher state of knowledge or understanding
has been attained. It is assumed in this representation that B possesses all the
“knowledge” that A will acquire during this tutorial conversation process.
The coefficient A; can be made to represent the degree of understanding, that
person A has for a specific element or component associated with Con (T;).
[n this learning process the objective is to increase that degree of
understanding, or, decrease the fuzzy value of A’s understanding of topic Tx.
The k; coefficients, i = 1,2,3, . . . . p, represent some incremental increase in
understanding of that component of the topic. These incremental increases
need not necessarily be of equal values, and in practice, in most cases will not
be.

The above scheme can be extended to the situation where both A and B
learn from each other. Thus it is taken that A and B, individually, possess
some of the required knowledge, or each have partial understanding of some

concept Con(T). The initial starting point may be with either A or B.
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This two way instructional discourse is described in figure 2.2.

Figure 2.2

Two way Instructional Discourse.

(a + kp)Tx

The curved lines that connect the levels of knowledge reached during the

instructional discourse could be drawn in different graphic styles which
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would represent different teaching processes such as conventional classroom
setting, individualized learning or computer assisted learning. In the above
diagram it is not suggested that the increments of states of knowledge or
understanding reached during the discourse are equivalent at every level.

The above geometric representation assumes a simple kind of learning
evolution, in its most general form, between two individuals A and B.

One can devise a geometric representations which would describe a
specific learning activities and some specific learning instructions at different
levels and stages. This would require a much more elaborate and complicated
geometric representation, which would be quite feasible in principle but
perhaps not quite so simple to apply.

An example of a knowledge acquisition process as represented by the
geometric representations of figures 2.1 and 2.2 in the context of an
instructional discourse, or a tutorial conversation between A and B would be
in a situation where a conventional computer aided learning, CAL, is utilized.
Thus, in figure 2.1 the computer is represented by BjTgx and the student by
ATax.

Instruction takes place whereby B instructs A, and upon completing the
required learning tasks A reports the results back to B, which then issues the
next level of instructions, on determining from the report whether or not the
given level of knowledge has been achieved. The process continues until
agreement of understanding has been reached or the final state of knowledge

has been attained.
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Proposed Concept Matrix.

To account for the state of the learner during the knowledge acquisition
process, and as a basis to ensure that optimum understanding is achieved, it
is necessary to define the matrix representing the learner’s, initial knowledge
state. Here the general coefficients a; represent the initial state of knowledge
of the learner with respect to the set of procedures that must be known in
order to achieve Pask’s condition of Proc, (T;) Since it is assumed that the
learner has no prior knowledge of the topic T;, or perhaps very little, then
these coefficients, aj, can be regarded as fuzzy subsets of the fuzzy set
represented by this matrix. If person B’s knowledge is also not complete then
the corresponding matrix will also be a fuzzy set.

Since knowledge acquisition is a result of interaction between the two
individuals, in an educational context, mathematically this means that one
must consider the result of some logical operation between the two
corresponding matrices, labeled M, and Mg, which effectively represent the
individuals. Thus a function ¢ maps a domain in B to a range in A. This
association, which may be fuzzy, (M Mp) represents a system structure, or a
fuzzy system S. One can write this as, .

S:PT 2.1.

where knowledge is represented by a Q dimensional hypercube, 1%
containing all the crisp or fuzzy subsets of the domain space, ( that of the
teacher or imnstructor), or input in the universe of discourse, and IP, the P
dimensional hypercube containing all the crisp or fuzzy subsets of the range
of the learner, (Kosko, 1993). Equation 2.1 suggests that one adopts the view
that matrices M, and Mg be regarded as fuzzy subsets, since the crisp sets
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are but a special case of the fuzzy sets, hence one can always incorporate this
special case if the situation or context demands it.

Regardless of which operational definition one wishes to use for these
matrices, the common feature that they possess is that their elements must
necessarily be fuzzy or possibly be, this in view of the fact that one initially
begins with some incomplete knowledge of the topic under investigation.
Thus each of the coefficients can only partially describe the state of
knowledge of a topic.

The coefficients described in these matrices have two fundamental
functions. One, is to identify or label the items or concepts pertaining to a
domain of knowledge. Two, to quantify with respect to some measure the
level or state of knowledge or understanding reached. With respect to the
hypercube, they become their dimensions. These shall be referred to as the
primary dimensions of these matrices, or the fundamental concept of some
topic, and the a; ( i # j) coefficients as the secondary dimensions, the
subconcepts. One can use a geometric representation, as used by Kosko
(1993) to describe this.

As an example consider the simple case where the requirement of
understanding consists of only two coefficients or the description for
exhibiting a learning process requires but two descriptive components, say a;;
and a), with no overlap between them. If some vagueness exists in their
knowledge or understanding, each of these can represented by a one
dimensional axis with a range [0,1]. Thus a fuzzy subset Ap is a point in this
two dimensional cube with respective coordinates, or fit values i.e. the degree

of membership in each of the coefficients. Considering a numerical example,



a;; = 0.75 and ay = 0.33 . This can be represented geometrically by the

diagram shown in figure 2.5.
Figure 2.3
2-D Fuzzy Hypercube.
ay (01) ' (1,1)
0.75 A (0.75,0.33)
(0,0 0.33 a, (1,0)

The above is a geometric display showing the degree of understanding
with respect to two of the primary components. One could convert the
numeric range to percentages whereby a,; is understood to a degree of 75%
and ay;, to a degree of 33%. Full understanding would be represented by the
vertex (1,1). One will note that the dimensions of this hypercube, which are
representatives of the a; coefficients, does not include any overlap that may
exist between these coefficients, or in fuzzy logic terms, the intersection of
their membership values. In principle there is no reason why one cannot
include any of the a; (i # j ) coefficients using the above geometric
representation. It is a matter of simply redefining the dimensions of this
hypercube.

In the proposed structure representing the concepts of some person A, and
similarly that of a person B a set of elements, or coefficients, a; , b; , will
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represent the main concepts of some body of knowledge. This notation
replaces the labels C; described earlier and will be represented by a column

matrices, written as.

(al 1 \ (bl 1 )
a,, b,,
s by
a; = | Qu and Mb ={by| ... 2.2
\%p / kbqq J

An additional matrix M, can be constructed in which an additional set of
coefficients will represent set of subconcepts or a set of procedures required
for the understanding of the primary concept. The membership functions or
degree of association that these subconcepts have to the primary set of
concepts can replace the directed links that appear in the concept network
representation. Keeping in mind that these apply to a particular property of
the association, since there may exist several properties of associations.

The matrix in this scheme, as mentioned previously, also expresses the
knowledge state of the student. This will be the case if one regards the
coefficients defined in this matrix as representing the state of understanding
that the student has reached for a set of concepts or subconcepts within the
defined domain. The matrix can in this restricted sense be used to model the
student, where modeling of the leamer is restricted to the definition related to
the state of understanding acquired.

This representation can be compared, to some extent, with recent
developments in student modeling utilizing Knowledge Space Theory (KST)
of Falmagne and Deignon (1990). In Knowledge Space Theory, an area of
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expertise can be quantized into “items”. These items may in fact be
represented by the concept matrix coefficients. Thus an item may represent a
task in which a student must perform, if the goal is to assess procedural
knowledge, similar to Pask’s Proc,™ (T). The quantization aspect only occurs
in the setting up of the concept matrix, that is as defined in terms of its
coefficients. The body of knowledge is thus characterized by the set of items
(coefficients) called the domain. The student’s knowledge state is defined as
the collection of these items (coefficients), if they represent some procedural
task, or a cognitive task.

One of the characteristics of KST is that some inference is made when
constructing the knowledge structure. In the example used by Villano (1992),
suppose there are four items a, b, ¢, and d to be leamned, where,
ad4x7=? b.14x1/7T=? ¢ 04x7=? d.40%o0f7=27
Mathematically all possible combinations of these items would form the
knowledge space. However, due to the association between these items it
might be inferred that one cannot understand item d without having an
understanding of item a. Thus any state containing item d would also have to
include item a. Prerequisite relations play a critical role in structuring this
knowledge space. An example of the knowledge structure is shown in figure
2.6.
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Figure 2.4
Example of Knowledge Structure.

{abd}
/{a,b}< \

{} {a} | {a,b,c} {ab,cd}
\{a’c}/ /
\{a,c,d}

In the context of the concept matrix representation this would be in the

manner in which the matrix is evaluated as a whole. Thus the proposed
matrix representation is an analogous manner is a construct yielding a
knowledge space. Although a comparative analysis with Flamagnon et al
knowledge spaces will not be made here, significant differences do exist
between the two in terms of the constraints imposed on the structure via the
prerequisite relations and direct relationship between the items.

The concept matrices representing the state of knowledge for persons A

and B can thus be written in terms of all the coefficients as,

(a,, a, a; .. a,) (b, b, by; . b, )
ayn 4 Gy . . 4, by by by . by,
Ay 4y a4y . . a,, by by by, . by,
M,=\ay a, a, . . a,| My=|b, b, b, by | 2.

\%p - S aP’J \bu bp b - . by )
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In the notation described in the above concept matrix, the coefficients
a;, (a1, ap, as3, . . . ), represent the basic fundamental concepts of some
body of knowledge. The remaining coefficients, a; , b; ( i#j), along a given
row represent the subconcepts associated with the fundamental one.
With this proposed structure one is essentially simplifying the concept
network in that it does not take into account the overlap, or the subsets that
may exist. The proposed structure does not exclude the possibility of
expressing relationships that may exist between the coefficients. This aspect
will be dealt with in a later chapter. The manner in which the matrices are to

be evaluated will be of critical importance.
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Chapter 3 : Mathematical Constructs.

Basic notions.

It is possible to define the coefficients as representing measurements of
the state of knowledge that one has with regards to a set of specified concepts
and subconcepts, as was mentioned earlier. In this context the state of
knowledge can be determined by evaluating these matrices. If applied in this
sense, then the manner in which the matrices are to be evaluated will be of
critical importance. There are several methods that one can consider.

Given the fuzzy nature of the elements of these matrices, one common
technique is the application of measure theory, Klir and Folger (1988). In
principle one is at liberty to define any measure of fuzziness one wishes with
respect to some defined criteria. Of the variety that have been used, and the
most common ong, is the one based on metric distances. For a particular case

of a Euclidean distance, one has,

19] —

F(4) =(Z|y,4(a,,.)—yc(a,,.)|z] ................. 3.1

More general metric distances can be adopted, notably the Minkowski class

of distances given by,
1
Jw(4)= (ZI/‘A(aij) -.uc(a:j)l 4 L 3.2

where pa(a;) is the membership value for that coefficient and pc(a;) is its
corresponding crisp set and w € [ 1,00 ]. The value of w can be determined
from criteria set for the definitions of sharpness and maximum fuzziness,

(Klir and Folger, 1988). Also its value will depend on the specific geometric
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framework one wishes to deal with. As to which of these geometric
representation is the most suitable would be a matter requiring further
investigation.

Utilizing these notions, the “index of fuzziness” can thus be readily
translatable to an “index of learning gain”. One can note that in the case
where person A learns from person B, then the number of coefficients in
matrix M, could possibly be equal but not greater than the number of
coefficients in matrix Mg. It is possible however that the number of
coefficients of matrix M, could exceed those of matrix Mg in the particular
case where the learner has many misconceptions about a topic and therefore
many of these have to be corrected. This is often referred to as the
“ Bugs” model.

Once the concept matrices have been constructed, for the student/learner
and the teacher/instructor, the M, and Mg matrices, it would be necessary to
determine how these two matrices are to interact. This means that one must
determine the algebraic operational rules that govern the interaction of these
coefficients, which will be some form of multiplication.

The matrix multiplication to be considered will be written as My ® Mp. It
should be noted that the rules of multiplication will not follow the standard
matrix multiplication rules. Since one will be dealing with quantities that
represent vague notions of understanding, or incomplete ones, hence have
fuzzy characteristics. Then it would seem that some variation of fuzzy
multiplication rules will have to be adopted. These rules will be specifically
defined later and will have to be such as to be internally consistent with the

representation described.

29



The fundamental fuzzy multiplication rules are based on Maximum-
Minimum conditions, (Terano, 1992), with respect to the elements in the
fuzzy subsets. This however cannot hold in this context of this representation
in view of the fact that one cannot ensure that maximum learning has
occurred during a learning process or whenever a tutorial conversational
exchange has taken place. In fact figures 2.1 and 2.2 clearly show that to
achieve maximum learning or understanding, several intermediary stages of
learning take place. These intermediary stages are necessary for one may
have to take into account the occurrence or forgetting or having
misunderstood.

The objective here is that one wishes to obtain a quantifiable measure of
the learning that has occurred as a result of the interaction that took place

between the student and teacher.

Description of the Coefficients.

In the hierarchical learning stages that were described in figures 2.1 and
2.2, the a; and b; coefficients represented a factor of the knowledge that exist
in A’s and B’s minds relating to the same topic of discourse T;, or a fuzzy
value of that topic. However one should extend this notion by stating that the
full knowledge of a given topic involves a complete set of sub concepts. Thus
the index i may extend to several values, say i = 1,2,3,....... p. That is, the
topic Tk is described in terms of a set of a; coefficients, a,, a,, a;, ........ »8p
.These coefficients should however be regarded as fuzzy subsets of the set
Tk. Furthermore one must consider the possibility that there may exist some

overlap between these fuzzy subsets.

30



Using these coefficients, theoretically one can describe the concept that
person A has in his mind of some topic Tk to represent the cognitive map
formed in his mind, these can then in turn be expressed in a matrix form.
Pictorially one can describe the interacting concept maps as shown in figure
3.1 With this description it is possible to consider topological properties of

the elements that form the concept maps and the mapping that exists between

them.
Figure 3.1
Interacting Concept Maps
concept map
of A
Tak

0

concept map
of B TBK

One writes the set of coefficients a; and b; in a columns and rows and
expressed in matrix form, as expressed by equation 2.3 in the preceding
chapter. One now postulates that for a concept or topic Tx to be
“understood”, in the sense that the procedures Proc ° (Tk) exist, then all the
coefficients in the above matrices must exist and the a;’s must correspond to
the by’s. If initially some of the coefficients do not exist, at least in one of the
persons’ minds, then through appropriate interaction during the learning
process between A and B, the necessary coefficients will come into

existence as understanding is acquired. Thus interaction between the a;, and
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bi, coefficients will give rise to other coefficients, or will result in an
augmented numeric value from its preceding one. This situation was depicted
in figures 2.1 and 2.2, shown earlier.

The notion of creating learning outcome coefficients is not a strange one
in light of the fact that, initially, one may not be in possession of any
particular knowledge of a given topic. The creation of these new coefficients
are as a result of the conversation that is taking place.

In the operational context this means that some teaching operator,
represented by the by coefficient, from person B, operates on the knowledge
state of person A, thereby increasing that person’s state of knowledge by
either augmenting its existent state, a; , or creating a new one if one did not
exist at all. As was described in figure 2.1. The requirement is that one
reaches the state whereby all the a;; coefficients attain the value of (8)max -

Although the matrices described by equation 2.3 appear as P x P and Q x
Q in dimension, this need not necessarily be the case. What this means is that
the procedure required for the understanding of a specific concept need not
necessarily require the same number of procedural steps, or be composed of
the same number of subconcepts, as that of another concept. In this context,
the term procedures, in Pask’s sense, is interchangeable with the term
subconcept. Hence this matrix may have many zero elements in it. In Pask’s
terms, the set of a; coefficients represent the procedure in A’s mind that
enable him/her to construct or reconstruct the concept associated with Tk.
The number of subconcepts required can be defined a priori or created as the

process of learning is evolving.
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One can symbolize the resulting learning outcome by the letter U, and

express it as an algebraic expression given by.

Ui=)Ya, =Proca (T)) ........... 3.3
i g

How well one can operationalize this matrix depends to a large extent on
the topic to be learned and externalizability factors. It is quite evident that the
more well defined the topic is, i.é one whose fuzziness is smaller, the more
readily it would be applicable. Typical disciplines would be in the realm of
the physical sciences and mathematics, also any learning tasks that only
require the acquisition of some well defined skills, physical or cognitive.

The above description for the knowledge acquisition process, as
formulated, makes the requirement that all the procedural acts described in
the matrices A; and B; must exist. Whether one needs to actualize these
procedures every time is a matter of practical requirements in a given context.
For example, in the case of a mathematical procedure of integrating some
function, one need not necessarily be required to go through all the
intermediate steps in details in order to reach the final result. However it is
understood that one has in ones possession the necessary skills to go through

these procedures if called upon.

Augmented Coefficients.

It is necessary to explain the relationship between the representation as
described in figures 2.1 and 2.2 with that of the coefficients in the knowledge
acquisition matrices. During the course of a conversation between A and B,

say a tutorial, both A and B can augment their knowledge, or understanding
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of some topic or subtopic T; by some incremental amount £, for A and k; for

B.

These k coefficients may be well defined, discrete quantities, such as the
steps required to learn the operation of a machine, or the steps required to
solve a very well defined problem in mathematics or in the physical sciences
or engineering.

In general, however, one can assign the coefficients by a fuzzy value in
the interval [0,1] as one would in the social sciences and liberal arts where
concepts are not always and easily described as crisp entities. Thus if the
values of the coefficients in the matrices of equation 2.2, at a time t are

written as a; and b7, then in the process of learning their values are

i s
augmented by amounts k; and £; to new values a]** and 5]** respectively.
This of course depending on who is acquiring the knowledge. This can be
written in an equation form, for matrix M,, as
aj +k; =a;*
b} +k; =b;*
If sufficient time is permitted for the learning process to take place, then
one has to assume that these coefficients will each reach their maximum

possible attainable values. i.e. @™ =(a;) . and b} = (5;) nu

i

Properties and Characteristics of the Coefficients.

The procedural rules associated with the coefficients of this matrix
representation will depend on the properties and characteristics of these
coefficients. In this respect it is important to define these in an unambiguous

manner. These are defined by the following :
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a; This refers to the main elements or main concepts relating to

a given topic to be learned or a body of knowledge to be understood.
. @;=a; M a This reflects the intersection property between coefficients.

It could refers to a sub component of the main component a; . It would be
a subset of it. This typically would be the case if the main concept is
defined entirely in terms of other concepts.

More generally it could refer to a relationship that may exist between the
coefficients. This would then give rise to a set of relational coefficients.
a; # a; This is the noncommutative property of the coefficients. This
arises from the labeling of the coefficients, where the subscript i refers to
the main components.

a; 2a; This follows from the definition of the a; coefficients in
property 2.

a; < 1 and a; < 1 This is due do the possible fuzzy character of the
coefficients which are defined on the line interval [0,1].

if a;, =0 then agbjq > 0 This signifies that A can learn in the absence of
any initial topic specific knowledge, a knowledge state of zero. If the
resulting product is zero, it signifies that no learning has occurred.
. apby #byap  This reflects the non commutative property of these
coefficients. The learning outcome as a result of A learning from B is not
necessarily equivalent the learning outcome of B learning from A.

ap bix > &, if bix>a;  Since A learns from B then by definition the
coefficients in matrix M, must be less than those of matrix Mg, and its
coefficients must by definition be augmented, by some increment k;. if

learning has occurred.
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9. Z(a,p )mﬁ < z (b"q)ce,f This refers to the number of elements in each of

the matrices. Since person A has less knowledge than person B, then by
definition matrix A must have less elements in its matrix. Conceivably
many of the elements in it may have zero values in the initial stage, t = 0.
The converse also holds if B has less knowledge than A.

10. If property 1. does not hold, then neither does property 2., in which
case the learning matrix M, can assume all the coefficients and the

maximum possible number of elements in that matrix will be simply pq,

i=l j=I

or ZZ("U)W‘

i=p j=q
This means that there are no primary or main concepts, or learning items,
defined within the described body of knowledge. Hence all the
coefficients are independent of one another.
11. The learning matrix are defined in terms of primary and secondary

dimensions. The primary dimension, Dp, given by the set of elements

i=l

Dp = Z(a,.,. )., . i the matrix. The secondary dimension, Ds, is given
i=p

by the set of elements Dg = Z Z (a,.j)mﬁ , 1#] in that matrix.

This definition is imposed in view of the fact that the a; (i # j)
coefficients are possible subsets or subconcepts of the a; coefficients as
defined in property 2. Furthermore this definition of the primary and
secondary elements allow for the description of a topic or concept

Con (T) to be described in some hierarchical or systemic manner, if one

chooses. The global dimension is defined as :
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12,

13.

14.

15.

16.

D=Dp+Dg= Zz(a'j)coqﬁ'
i

I = Z Za,,b,j This defines the learning of a given component as

the summation of the products of the coefficients a; and b;;. The
summation is that of ordinary arithmetic, however, since each of the
coefficients could be expressed as fuzzy values in the line interval [0,1],
hence their sum cannot exceed the value of 1.

Ordinary scaling of I;; could be imposed such that its value cannot
exceed the value of one.

In order to satisfy property 12, the coefficients in the matrices will

have to be normalized in some defined manner.

a; coefficients may be fuzzy subsets of (@j)max, Where n > 0. Thus, the

a; coefficients may acquire n-tuple values before reaching their
maximum value during the learning process. The n refers to the n th
value that a;; has acquired during the learning process.
The augmented values during this process may occur in a manner
described by equation 3.4.

agb; =max {a;,b; }. This defines specifically the fuzzy multiplication
rule for the coefficients. The implication being that the resulting
coefficient may be fuzzy subsets of the b; coefficients, and that several
operations, m, of b;; on a; may be required before it acquires the
maximum value possible.
If b; = 1, then the product a;bj; defined in property 12 need not
necessarily be satisfied due to the temporal aspect of the learning

process, and property 15. Since several stages in the learning process
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17.

18.

19.

may be required, as was shown in figures 2.2 and 2.3. However a; may

approach the value of one in some asymptotic manner.
da]

a"bi{ _’(b"f)m , if b;> a; The coefficients are interchangeable if
;

a;> b;. This defines the important characteristic that the evolution of
the coefficients, a;;, during the learning process, depend on the effects
that the b coefficients have on them, and that they must tend towards
them. The goal is for A to acquire the knowledge or understanding that
B has. The t superscript refers to the number of times b; must operate
on the a; coefficient in order to achieve learning or understanding, as
in property 15. The n superscript refers to the subset of the a;
coefficient. i.e. its value reflecting the state of knowledge at the time.

The evolution of the a;; coefficients in the temporal context must also

2 n
ﬁa,.j

tend towards the b coefficients, if b; > a; , thus 2106 —(8;)

This assumes that the b;; coefficients are those of the expert and that

learner A learns exclusively from expert B.

The coefficients are also interchangeable if a;;> b;; .

Z Z a; — U This is a more generalized statement referring to the
J

i

fact that matrix of the learner will tend towards a state of knowledge
during the learning process and is in consistency with equation 3.3.

The « ; are the normalized coefficients of the learner’s matrix.
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20. One must admit the matrix multiplication symbolized as M, ® M, .

Whereby one considers multiplication of the elements such as a;oa,
(j #k). This implies the existence of a relationship between the a;

coefficients, thus yielding the relational matrix R with coefficients

described as ef,

k#j.
The characteristics and properties of the relational matrix would be

similar to those of the learning matrix.

J=1

2. L = ZI,., This defines the i th learning outcome for some specified

i=p
primary concept, con (T;) or procedure, proc (a).
The I; coefficients are related to the a; and b;; coefficients via the
fuzzy multiplication rule given by property 12, in which, I; = a; b;; .

22. lj<1. This must hold in view of the fact that the coefficients have
may have fuzzy characteristics, as in property 5.
The above condition creates a situation where the coefficients will have
to be normalized in view of the fact that property 7 is such that it
otherwise would be possible that one may have the result that L, > 1,

and the fact that the fuzzy character must be preserved.
i=1
23. U= Z L;  This defines the final coefficient for the learning outcome

i=p
or understanding . It could also be expressed as a column matrix,

written as.
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(1)

L,
U=| b

(L..)
24. If the coefficients a; are independent of one another, then
ef =0 (j#k). They can be éaid to possess the orthogonality property,
in the geometric context, in which case they can be represented by a D

dimensional hypercube, where D= Z Za,.j as defined in property 11.
i
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Chapter 4 : Operationalization of the Matrices.

Normalization Scheme.

Conditions 10, 12, 13 and 14 along with the summation rule described
earlier necessitate the application of some normalization scheme to the
coefficients that appear in matrix equation, 2.3. This in view of the fact that,
in the operational rules that were defined for these matrices, the coefficients
may acquire values which exceed the numerical value of one. This situation
would clearly be inconsistent with assigned fuzzy values, which by definition
cannot acquire values greater than one since they are defined on the line
interval [0,1], property 5.

A proposed normalization scheme for these coefficients can be adopted

similar to the one proposed by Klir and Folger (1988) given by,
and B, ==— ............. 4.1

" Za,, Zb

One can also impose a similar scheme for the L, coefficients, where,

Le=<=— 4.2

Thus, equation 3.3 with the normalized coefficients will have to be
written using the set of a; and B;; coefficients. The normalization scheme as
expressed by equations 4.1 and 4.2 might be adequate under certain
conditions, in particular those where the coefficients do not change
significantly under the actions of some operations on them or with time. This
however is not the case when applied to a learning process, since this is a

dynamic process, by definition.
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This can be easily illustrated in the case where learning is taking place. In
this representation the a; and b; coefficients will acquire an increased
numerical value, as both learn from each other, in the case of say a tutorial
conversation. This will result in an increased value of their sums, i.e. the
denominators of equations 4.1 and 4.2, which in turn will yield a decreased
value of the normalized coefficients. The final parameter, Ly, will diminish
in value which will indicate a decrease in learning. This would clearly be a
contradiction to the manner in which this parameter is defined. Thus a new
normalization scheme must be adopted, namely one which makes reference
to the maximum value that the coefficients can acquire, that is,
where (@) = (by)max = 1.0

In the case where person A learns exclusively from person B, the

suggested normalization scheme would be one written as,

a, = %
CES

One needs to include the fact that these coefficients will acquire different

values during the learning process, hence their values will only be valid at a
given instant in time, property 14, thus one should include the n-index in

equation 4.1. The more complete and general equation will thus be,

ar
a"=+ ..................
> e

Another normalization procedure that one can consider is the one in
which reference is made to ones own state of knowledge. This can be
considered in situations where A learns from B, or B from A, in which case

there is no absolute frame of reference to work with. In addition one can
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monitor the progress of ones state of knowledge during the learning process.

These normalized coefficients will be calculated according to the expressions,

a;
i=vw=w—— ad B, ===— - ...
2.2.9 ZZ
R

When an agreement of understanding occurs between them then the matrices

and B, =

should approach each others values, thus one can write, U, < U, asin a
similar manner to the expression proca<> procg, in Pask’s notation.

The U coefficients are calculated from the expressions,
U= a; and Up=D. 9 By eeeeeenine.. 45
i i

Equation 4.5 expresses a global coefficient of understanding as a totality
of understanding of the variety of concepts that make up the topic that is
learned. This is in effect the traditional grading system employed in most
institutions. It is not inconceivable to partition the U coefficient within this

matrix construct. The objective however will remain to obtain a global value.

Multiplication Procedures.
A specific matrix multiplication rule will have to be applied incorporating

the possible fuzzy characteristics of the matrix elements. In general this will
be written as the matrix equation,
MA ® MB =L 4.6

Written fully in terms of their coefficients, the above equation is written as,
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(au a, a; . . 4 ) (bu b, b; . b[q ) (qu )

ay, Qa, da, Qyy || by by by . by, Ly,

a3 a4 as d;, by; by b . b3q _ qu 4.7
\dpp Qpi Qpz - - Ay ) kbqq by b, . . b,q J \Lpq ),

Where U, represents the learning outcome coefficient, yielding the column

matrix, L;, as described in property 21. These are obtained from the specific

matrix operational rules, defined as expressed by the following equation.

(@b +apb, +asbs+. . ... .. ta by )=(h +l, v+ ... +1,)
(@ubsy +apby, +ayby+. . . . . .. tay by, )=y + by vy + ... +1,)
(aslbsl +anb;, +asb+. L. +a3qb3q) = (131 +hy +l+ .. + 13q)
..4.8
(@b, + 50, + @by ... + @by )= (L + L+ L+ .. +1,,)

The above can be written symbolically as,

Zaijszzzzl,j:Lk ........................... 4.9
v i

Comparison of the matrix construct with Neural Network.

The representation described above has certain features that can be
compared with representations of neural network. The coefficients of the
matrix representing the learner, M, Leaming Matrix, LM, have a dual
purpose of sorts. On the one hand, they represent the concepts or topics to be
learned and on the second hand, they represent the state of knowledge

acquired for the specific concept which they represent. The extent with



which learning occurs will depends largely on the effects that the
coefficients, b;, from the expert’s matrix, Mg, have on the a; coefficients,
along with the characteristics, A;, of the learner, characteristic 12.

It is possible to make a comparison, at the fundamental level, with a
neural network, where one is concerned with input output signals. In this
context the input signal is represented by the b; coefficients and the output

signal is the learned coefficient /;, which is in effect the augmented a;;

i
coefficients, as described in figures 2.1 and 2.2.

The difference between these two processes is that in the case of a neuron
the relative importance of a synapse to the generation of a signal is the input
coefficient, or the synaptic weight, @,. (Meaning that the neuron will not fire
unless the input signal reaches a certain critical value). Whereas in the
proposed matrix representation, the generation of a learning coefficient a; is
not restricted to any minimum values of its input signals, the b; coefficients,
and in principle, leamning can always occur so long as b; > 0. ie. the a;
coefficients can always reach some value.

A further comparison can be made with Perceptron theory, again at the
very fundamental level. The definition of a perceptron as given by Minsky
(1990) is, “ a perceptron is a device capable of computing all predicates
which are linear in some given set of partial predicates.”

A very simple description of a two layer perceptron given by (Kanerva,
1988), is shown in figure 4.1
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Figure 4.1

Two layer Perceptron.

In this simple two layer perceptron, the first layer is a set of neurons with
inputs from a “retina” that holds a (geometric pattern). The second layer is a
(linear threshold) neuron that receives the input from the first layer. Its output
is the output of the perceptron.

One of the interesting aspects of the neuron model is its potential for
learning in a finite number of trials. This result is known as the « perceptron
convergence theorem.” In this respect it is analogous to the characteristics of
the coefficients as given by 17, 18 and 14.

A further comparison, from the operational level, can be made with fuzzy
systems, in particular FAM, (Fuzzy Associative Memory) matrices, Kosko
(1988). In such systems, each entry defines an association between two
parameters, in the FAM matrix, which defines a “rule” or an “input-output
transformation”. This architecture is described diagramatically in figure 4.2.
However in the proposed matrix construct, the effect of the b; coefficients on
the a; coefficients essentially act as the inputs and the resulting augmented

coefficient values of a; are the outputs, which are in effect the l; coefficients



given by characteristic 12, shown as a comparison in figure 4.3. These I
coefficients form fuzzy association quantities if the a;; and b;; are themselves
fuzzy quantities, and equation 4.8 becomes a FAM (F uzzy Approximation
Matrix) type matrix. The FAM architecture as described by (Kosko, 1990) is
shown in figure 4.2. The architecture of the learning matrix construct can be

described in a very similar manner as shown in figure 4.3.
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Figure 4.2

FAM Learning Architecture.
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Evolution of the Matrices.

In the process of learning the objective is to reach or acquire a state of
understanding. In the construct described previously, as a learning matrix,
learning matrix, the concept map which this matrix attempts to describe,
involves fuzzy elements since in general one can make the assumption that
there is some understanding in existence, however its elements may be quite
fuzzy in nature. The fuzziness of this matrix may be even more predominant
if the topic under investigation is itself fuzzy.

As was stated earlier, the objective is to render this learning matrix less
fuzzy. This means in effect reducing the fuzzy value of the matrix elements
a;;. Since the learning process takes place over some time interval then on can

consider the evolution of the elements a; with respect to time thus

oa; X
TR This may only be

introducing time differential terms of the form

necessary if one wishes to know this temporal evolution. Furthermore, since
interaction between A and B involve the effects that coefficients of B have on

the coefficients of A, then one can also consider the differential terms such

da, . . : . :
&bl . This in general will not be constant and in certain restricted and
;

as,

well defined learning situations, it may be possible to determine that
functional relationship.

The above refers to the fact that certain components, coefficients, in the
learning process may be more difficult than others to reach the required level
of understanding, hence their evolution will differ significantly as compared

to those of lesser difficulty.
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Much of the evolution of the a; coefficients with respect to the bjj
coefficients will be very dependent on the manner in which the conversation
takes place, the modality of instruction or the method of teaching. By
modality of the conversation it is meant the manner in which instruction
takes place, in the pedagogical sense. It is possible to express the differential
term described above in a manner which incorporates this modality.

da

’
5, D 4.10

One can thus write,

The above differential expression essentially states that the changes in the
learning coefficients with respect to the known coefficients is dependent on
the form in which instruction is given or the manner in which knowledge
imparted to the learner. The form in which instruction is given, f(/), may be
the instructional design, that one chooses, or in general any pedagogical
teaching modality chosen. The choice of f(/) is highly context dependent.
However in the absence of knowing which instructional design is the most
suitable, it is possible to conduct experiments to determine the most suitable
one. This would entail using some optimization technique.

The dependency on the characteristics of the student can be expressed
generally and symbolically in an analogous manner as for the modality of
instruction expression, that is,

ca;
2%, cg(Ad) 4.11

In addition, the characteristics of the learner, person A, will have to be taken

into account, to the extent that this can be done.
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One can thus write the evolution of the resulting learning matrix, as will
be defined later, in terms of their coefficients, as a first order differential

expression, and written as,

oM da,
&b; = Z_:Zﬁ—b’_ ................ 4.12

The differential term, described above, is consistent with Pask’s notion of
Conversation in that it involves the evolution of the learner-teacher construct
while the learning process is taking place. Thus the a; coefficients will
undergo changes with respect to the b;, as expressed by property 17.

One can further generalize the matrix equation to include the modality of
instruction, labeled I; and the characteristic of the learner, labeled A;, by
writing equation 4.6 as,

(M) @MY =L .............. .. 4.13

Thus I, I, I, ... .. I; refer to different types of instruction, or modality of
teaching. For example.
I, = conventional classroom setting, with lecture delivery from a teacher.
I = teaching method relying entirely on overhead projection for lecture
material dissemination and display.

I; = computerized learning method.

The A Ay As, ... .. A; refer to the different types of learners. This would
depend on the classification of students chosen. For example one can have,
A1 = deep learner. One wishing to grasp all the concepts to their
full extent.
A» = surface learner. One requiring an overall sound understanding of the

topic to be learned.
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A; = superficial learner. One requiring but the minimum of understanding

in order to pass a course to satisfy institutional requirements.

One can also express the time evolution of the matrix, globally as,

M,
o1

The term “understanding”, U, can thus be defined as the sum of all the

learned activities, L; , or equivalently as the existence of all the necessary

— M;. This again was defined specifically in property 17.

coefficients in the cognitive map, for person A, which can be written simply

as, U= Z Ly ............ 4.14.  This expresses property 21.

Given the evolution of the learning matrix as described above, then
“understanding” must be treated as a dynamical state of learning, and is thus
subject to continuous changes. The initial conditions of the a; and b
coefficients will be given by their fuzzy membership values attributed to
them. The assignment of these values can be obtained from some initial
pretesting condition on the subjects involved, or an assignment made by the
subjects themselves.

It is not always possible to determine the functional relationship between
the coefficients a; and b;. However, if a given instructional procedure has
been employed on numerous occasions and its effect quantified in some
manner, then it is possible to obtain some relationship between these
coefficients.

The temporal relationship is more readily obtainable in view of the fact
that one can administer a series of post-tests at some regular time intervals

and measure the learning outcomes on some devised scale.
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General Procedure.

The mathematical representation described in this paper for a learning
process, can be more readily applied in the case of a one way conversation
situation, i.e. a tutorial one. In this case the underlying assumption is that
person B possesses all the knowledge that person A is to acquire. In this
restricted case the above scheme is well suited for a learning situation
whereby well defined knowledge is to be imparted on a specific task skill to
be learned. The task may be a physical operational one such as : “how to
operate a machine” or cognitive ones such as how to “solve a specific
algebraic equation”, “solve specific problems in Physics or Chemistry”.

If the skill to be learned is a well defined one, then the components that
make up the totality of the procedure, procg (T)), i.e the By coefficients are
regarded as mathematically crisp quantities. In the case where A learns or
acquires all its understanding from B, i.e. a one way conversation, then the
set of the B;; coefficients will all have the value of one. The a;; coefficients on
the other hand will necessarily have fuzzy values, since a; < 1. For
knowledge involving crisp entities one may question whether the a;
coefficients can be fuzzy. This in the sense that either one knows how to
perform a given task or one does not. However it is possible to encounter
many situations in which one has partial knowledge of how to perform a
certain task or at least some partial notions of what must be done. Thus, as an
operational procedure of using these learning matrices one must follow the

following steps :
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[—,y
.

[dentify all the b; coefficients in an unambiguous manner.

N

Classify these coefficients in terms of their primary and secondary
dimension in the matrix representing B.

Determine the order in which operations are to be performed .
Determine the initial values of the a; coefficients. i.e. their values at t =0

Normalize the coefficients.

S N AW

Select appropriate mode of instruction, for particular student

characteristic

~

Perform the assigned operations on the coefficients.

8. Calculate the final learning outcome coefficient, U.

In order to operationalize these matrices, the fourth step is a critical one
for much of what will develop in this system structure, will affect the final

a; .
Y is to reach
25,

outcome. Recall that the goal of the differential expression,

the values of the by coefficients, for the case of person a learning from B. The
time evolution of the learning matrix will also depend on certain
characteristics of the learner, which can be labeled as g(}), where g(A) refers
to some function relating to the characteristics of the learner, and also to
some extent on the form of instruction, f(/), or conversation taking place.

The complete learning matrix equation can thus be written in its most

oa.
general form as, aZ” =Qf(NGA) - 4.15
i

where 2 represents some constant, which may also be some function of time
and related to f(/) and g(4).
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It must be pointed out that the order in which the terms in the matrix
equation are used, in the operational sense, need not necessarily begin with
the first element and continue in the order in which they appear, i.e. begin
with the lowest value of the coefficients and proceed in their ascending
numerical order, but rather on the basis of some defined context dependent
procedural rules. Hence that procedural order will largely depend on the
subject matter and the judicious choice of person B. If person B happens to
be a computer, as in the case of Computer Assisted Learning, CAL, the order
will be well defined and linearized.
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Chapter § : Validation.

Applicability of the Representation.

This mathematical representation of a learning situation using concept
matrices, as proposed, could be readily applied in a variety of situations.

Some of these applications are described below.

1. Measure of the knowledge state of a given individual.

The coefficients in the concept matrix can be utilized to represent the
measured extent of learning on a given concept at a given time. By evaluating
this matrix it is possible to define an “understanding” parameter with respect
to all the concepts. This would yield a global measure of understanding of the
body of knowledge or topic that is tested. It is understood that the matrix
evaluated, My, is as a result of the operation with matrix Mg.

It is also possible with this scheme to determine the time dependent
characteristic of the state of knowledge. This in turn would enable one to
obtain temporal leamning curves, either for an individual or a group of

individuals.

2. Measure of instructional models.
This in essence would measure the effects that different instruction
strategies or teaching methods have on individuals or a group of individuals

in terms of the knowledge imparted as measured by appropriate means.
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In this situation matrix M, is the one held constant in the sense that
matrix Mp is varied and its effects on matrix M, is measured. In procedural
task instructions, the coefficients assume mathematically crisp values as
opposed to fuzzy ones. The concept matrix Mg can thus be described
unambiguously in addition to the order of operations to be performed.

The range of application can be from one requiring the learning of the
operation of a mechanical device to one requiring the operational steps
required to solve specific problems in disciplines such as Physics or
Mathematics. From this it would be possible to determine the best or
optimum teaching strategy or method which would yield the best or most

efficient learning outcome.

3. Measure of student models.

The model of the student’s knowledge can be constructed via the use of
the concept matrices. In this context the coefficients of the matrix would
represent certain characteristics of the student. One could construct a set of
these matrices, each one representing a given characteristic. The elements of
each of these matrices would then represent attributes or specific properties
associated with that characteristic. One would then evaluate these matrices
collectively, in some algebraic manner to obtain the “model” of that

individual’s tested knowledge.
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It would then be possible to incorporate this model along with the
concept matrix and determine learning outcomes. With this data it would be
possible to adopt teaching strategies and methods which would maximize

learning outcomes. That is, adapt teaching methods to fit the student model.

Validation.

The validity of the proposed scheme can and must be determined via two
distinct perspectives. Firstly, the construct validity of the proposed
representation must be determined since all subsequent applications rest on
its defined procedures. Secondly, the results obtained from its application
must also be validated.

a) Validation of the representation construct.

The first aspect to consider is the mathematical tool adopted for this
representation. The criteria to be satisfied in this regard are that it be
sufficiently flexible to itemize and display required entities and that one can
devise rules that will enable one to manipulate the matrix coefficients
appropriately. Matrices are quite common mathematical constructs and fit
well for representing concepts in a systematic way, in view of the fact that
they are fundamentally an array of symbols, labeled as coefficients. These
coefficients can represent any desired entity. This construct permits the order
and arrangements of these coefficients in any desired form. In particular, in
the educational context, subject matter is often defined in an ordered

structural manner in terms of its content, which may be a set of concepts to
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be learned. Matrices thus satisfy this requirement and hence can be valid for
this type of description.

Once the matrix is adopted as a tool or descriptive device, then the
operational rules associated with its coefficients must be examined within the
context with which it is to be applied. Matrices, from the mathematical
aspect have the characteristic that one can construct specific rules of
operations. In the context of this representation this can be achieved provided
that properties and characteristics of these coefficients are defined to
correspond to the properties of tested knowledge. This was described in
chapter 3. If these defined properties and characteristics show no

contradictions or inconsistencies, then this criterion would be satisfied.

b) Validation of its applicability.

This second aspect of the validation requires two criteria to be satisfied,

these being, firstly, the context within which this representation is applied
must be appropriate, secondly, the results which this application yields are

valid and meaningful. One can consider each in turn.

1. The context in which this representation will be applied is an educational

one. The coefficients have been described as concepts and subconcepts
associated with a body of knowledge to be learned. This was also described
with an example, page 66. This example can be extended to other cases in the

educational domain.
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2. The results obtained must be valid and meaningful. This can be tested by
considering different measures of performance utilized in the educational
field. Since a normalization scheme was devised in order to render the
numerical values meaningful, i.e. they will not reach values out of proportion,
and the adopted scale of measure was the line interval [0,1] which in
consistency with the standard scale. The validity of the measure itself needs
also to be considered. This is discussed in more details in a subsequent

chapter.

Formative Evaluation Procedure.

In order to implement the validation on the aspects of the proposed
formalism, as discussed in the previous section, one can utilize some
established criteria such as defined by Flagg (1990), who defined four kinds
of formative evaluation performed during curriculum materials development
for electronic technologies. Since this thesis deals with a formalism
representing test item questions, it falls within this category of evaluation.
The four kinds are :

1) Connaisseur-based, 2) Decision oriented, 3) Object based, 4) Public
relations-inspired studies.

With respect to the proposed formalism the first category, the connaisseur-
based, would be the most appropriate to apply for validation since it
prescribes for expert in a given field to describe critically, appraise and
illuminate the particular merits or demerits of a given object. These expert
would examine the developed formalism with respect to the theoretical aspect

of it as well as its subsequent applicability from their individual perspectives.
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The evaluation requirements would be met by determining the following :

1.

SAN T S

Correctness of applying matrices as constructs for knowledge
representation.

Correctness of applying matrices to describe learner/ teacher interaction.
Correctness of operational rules devised within this construct.

The self consistency of the formalism.

Applicability to a wide range of educational subject matter.

Adequacy of determining specific learning outcomes on specific
concepts.

Adequacy of representing state of knowledge.

A numerical example.
Person A learns from person B.

Consider the situation where a Physics classroom is taught the concepts

and operations of a body moving in two dimensions.

It will be assumed that the modality of teaching is the conventional

teacher-blackboard method. Following the procedures of the proposed
scheme, the first step is to define the primary concepts required in order to
acquire full understanding of this 2-D motion, these are the set of a;

coefficients, and then the set of subconcepts associated with the primary

ones, the a;;, coefficients.

In this case, person B, the teacher may define these as :

6l



a;; = vectors

a2 = pictorial representation

a3 = displacement vectors

a4 = velocity vector
a;s = acceleration vector

a>>» = rectilinear motion

dat

a3 = uniform acceleration, a =

a;; = uniform motion, v =
& _d'x
dt dr?
a4 = graphical representation of the
relationship between the defined
kinematics parameters.
ays = general equations of linear motion
\ % f - V,-
4

ad=
1

2

v: —v2 =2as

s=vit+—at’

as3; = vertical motion
a3) = acceleration due to gravity
as; = upward projections
a34 = downward projections

a44 = 2-D motion
a1 = angles of projections
a4y = resolution of velocity vectors
a43 = choice of equations
a45 = common variables

ass = circular motion

as) = direction change of acceleration

as; = vector diagram

as3 = centripetal acceleration, equation a, =

|
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The modality of instruction A, is selected. Let this be a set of Six, one
hour lectures spread over a time period of two weeks, given by a teacher in a
classroom lecture format. The type of the student can be taken into account
from which the teacher decides on the level and depth of the content to be
taught. It is assumed that there exists some homogeneity of the student
population. This may be an extreme assumption to make given that the size
of a classroom has typically 40 students, at the collegiate level. One will
generally choose a level of the order of I;. This to satisfy the surface learner.

The student concept matrix will appear as shown below, and the teacher’s
matrix will have the same number of coefficients with the numerical value of
one for each, since it is assumed that he possess all the required knowledge.
Matrix Mg also defines a structure of the concept matrix in terms of the
coefficients that are required to describe it, correspondingly, matrix M, will

also acquire the same matrix form as expressed below.

(ay, a, a; a, a;) (1111 1)
Ay Ay Ay Gy Gy 1 11
M,=lay; a, a, a, ¢ M= 111 ¢
A, ay Qp QG 1111
\d5s ds1 4s; As3; @ ) 111 ¢/

The dimensions are Dp = 5 and Dg = 18, thus D = 23. There are two
nonexistent coefficients.

The initial state of knowledge of the student can be determined by
administering a pretest. This would be done most efficiently on the terminal

of a computer, since through the matrix representation the result can be
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displayed for each of the coefficients. Utilizing the line interval as the
numerical scale, the initial, normalized and final, understanding matrix would
appear as shown in table 1.

Table 1.

Numerical values of Coefficients and U.

matrix M, normalized matrix L matrix
matrixatt=0
0.00 000 025 015 010 . 000 0.00 001 0.00 0.004 0.02
080 055 040 020 000 . 003 002 001 0.00 0.000 0.08
0.90 060 040 0.00 . 003 002 0.01 0.00 0.08
013 050 020 015 010 . 000 002 000 0.00 0.004 0.04
0.80 022 035 0.00 . 003 001 001 0.00 0.06
matrix att = t1 . U= 0.30
085 090 072 075 064 . 003 093 003 0.03 0.028 0.16
099 080 076 082 069 . 004 0.03 003 0.03 0.030 0.17
0.98 0.85 090 087 . 004 003 0.03 0.03 0.15
078 095 082 080 077 . 003 004 003 003 0.033 0.17
095 062 071 050 . 0.04 002 003 0.02 0.12
U= 0.801

As one can note from the results displayed in the above matrices that the
cases of i;< a; and a; = 0, a; # 0 at t = 0 can arise. In the example given
above, a; =0 but a;3=0.25, a;4=0.15 and a;5=0.10

This can be explained in the following manner. A student may have no
knowledge at all regarding a certain concept, however he or she may know
something with regards to some of the subconcepts, although in an unrelated

manner. However it is assumed that as learning progresses, property 4 will be



satisfied. Thus at t = 0 the global understanding coefficient U = (.30, after
instruction, at t = t;, that coefficient has acquired a value of U = 0.80. The
above seemingly very simple example is but to illustrate the procedure. A
more elaborate example could be devised to show how matrix M, would
evolve in time as the tutorial conversation unfolds, between A and B.

The numerical values of the coefficients will be derived from a test item
bank of questions. The questions formulated are constructed so as to extract
the degree of understanding for a specific component, or subcomponent of a
given concept or topic to be learned. The constructed questions can be of two
types :

a) Those that require numerical solutions to some specific problem, related to
the concept in question, a; or a; .
b) Those that require a verbal responses.
It is possible to deal with linguistic variables through the use of fuzzy
logic. Equation 4.8 defines the multiplication rules for the matrices, and the

understanding coefficients were defined as, U 4= Z a; and Uy = Z B
iy ij

where a;; and B; are the normalized coefficients. Using the computer as an
operational tool it is possible to carry out the multiplication brocedures of
these matrices. Figure 5.1, which follows, is a flow chart showing how this
can be actualized for the specific case of student A acquiring knowledge
from person B. The essence of the operation is that a comparisons of the two
matrices are made at every stage of the learning process. Thus , one begins at
some time t = 0 and obtain the initial state of knowledge of the student,
yielding matrix (Ma) 0.

65



A differential matrix, (AM) o = (M4) =0 — Mg, is obtained by considering

the differences of all corresponding coefficients, thus,

(ﬂu —ay Pun-a, PBi-a; . . ,qu -alq\
Bun—an pu-—ay, By &y .. ﬂlq — &y
(AM) = B —ay fy—ay Bun-—as .. ﬂ3q—a3q 51
\ﬂpp—app ﬂpl —a, ﬂp2_ap2 .o ﬂpq‘am)

An evaluation is done by the expert with respect to every coefficient and a
decision is made whether to proceed with the teaching or instruction for each
component in the matrix. This decision can be based a chosen criterion.
Taking into account the relative pre-requisite, importance and absolute value
of each concept. In particular one can chose a boundary value for the
differences, ¢;. Hence if B — a; > ¢; this would signify that the knowledge
difference between the expert and student is too large and hence learning
must take place so as to augment the value of the coefficients. This process
was in effect shown in figure 2.1

At every stage of the learning process the matrix M, will acquire a new
numerical value, since its coefficients have been augmented numerically.
This would be described by the matrix M, at different times T = T, T=T,,
T=T;s,...., T=Taua. The set of |; coefficients that appear in equation 16

in effect represent those new o coefficients. Correspondingly if this

difference is less than g; then the learning process is terminated.
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Figure 5.1

Operational Flowchart for the Matrices.

TOPIC/CONCEPT
TO BE LEARNED
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A general case description.

In the following, a general case situation is described as this proposed
formalism would, or, could be applied in a pedagogical setting. The case
described here is one in which student A learns from an expert B. The case
will first be described in a more generalized form and subsequently applied to
a specific situation. This in view that the formalism of the proposed leming
matrix representation can be taken as a fundamental basis from which one
can structure a particular application procedure. Although the application of
this scheme is not meant to fall entirely within the ITS category, it will
nevertheless employ many of its concepts.

The application proposed here is meant to be used as a secondary source
of instruction and more importantly as a means of monitoring the state of
knowledge with respect to the various concepts defined in the topic to be
learned. The flow chart, as described in figure 5.2, (page 75) will form the
basic architectural structure of this application and the following describe the
procedural steps.

L. The set of primary concepts, a;, and corresponding subconcepts or subsets

of them, aj, are clearly defined by person B since A’s knowledge is taken

to be a subset of B’s.

2. Instructions/teachings are given to the student. This is represented as the
operation of the by coefficients on the a; coefficients. Thus, B explains or
describes his understanding of the concepts.

3. With respect to each of the a;; coefficients a set of questions are devised

which will effectively test the knowledge acquired by the student. These

set of questions can be labeled as ,f ,Wherethek=1,2,3,....n
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refers to the number of questions one wishes to assign in order to test the
student’s understanding of this particular a; coefficient. These will form a
column matrix for each of the coefficients. The number of questions
relating to each of the coefficients need not necessarily be the same. Thus
n can vary for each coefficient aj;.

4. The student now sits in front of the computer terminal and systematically
answers all the questions posed. The outcome can be described in a
corresponding column matrix. This column matrices will be subsets of

of the aj; coefficients. They can conveniently be labeled as the set a,§.

5. An expert evaluation is now made with respect to each of the a;
coefficients. This is done by making a comparison with the expert’s
answers. Thus the differences b —af = a! are calculated. Where the as

coefficients represent the knowledge state of the student at this

particular stage of the learning process. These coefficients will have to be
suitably normalized, as described earlier in the description of the
formalism.

6. A criterion &} is set for each of the coefficients.
If a;; < £} then the student is judged to have acquired sufficient

knowledge in this particular element of the concept and his task is then
terminated. If ;; ) & this signifies that the gap between the expert’s
knowledge and that of the student is to large and the student requires
additional instruction or practice to gain sufficient expertise in the concept.
At this point the student is looped back for additional instructions and

subsequently retested, however a different set of questions % will have

to be used. Therefore, one will require several sets of the column matrices
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Oy in this operational scheme.

7. Atevery stage of this process one can display the matrix with respect to
the knowledge coefficients, and in addition one can calculate the global

value of the coefficients, as given by the equation U, = Z Z a;

Figure 5.2 shows the “generalized operational flowchart” for the matrix.
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Student and Teacher characteristics.

In the application of the proposed scheme as described in the previous
section the type of student or learner was not taken into account. However in
order for effective conversation to take place between a learner and a teacher,
it is desirable that both have an adequate model of each other, (Mitchell,
1993), in order to maximize the understanding between them. Thus if a
teacher has a good model of the student, he can then construct his teaching
method and style to suite the student in order to maximize learning.
Correspondingly if the student has an adequate model of the teacher then an
adjustment in learning can be made to suite the teaching style being used. As
mentioned earlier the task of modeling the student is far from being trivial
and easy to perform. At best one can construct some models in terms of
categories of students identified from the results.

The central point of this section is how the a; coefficients, which
represent the student learning state, vary with the b; coefficients, those
representing this expert or teacher. The variation between these coefficients
was expressed as a proportionality with respect to the student characteristics
g(A) described by expression 4.11, in chapter 4. The question of how to
determine these characteristics which will in turn describe the type of the
student still remains unanswered. It is however possible to give a symbolic
description of the coefficients of the matrix representing the student. If one
writes the proportionality expression of 4.11 as an equality by inserting an

appropriate constant, then one has the equation,

In principle the above is solvable since one can write the coefficients as,
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a, =k, j gAMb, ... 5.3

The above equation has a rather significant interpretation associated with it
namely that the values of the coefficients of the student’s matrix will depend
on how the characteristics of the student are related to the coefficient of the
expert’s or teacher’s matrix. The conclusion being that for learning to take
place the teacher’s characteristics, which are related to its b; coefficients,
must be interwoven with those of the learner.

If one incorporates the expression 4.10, which relates to the modality of
instruction, which in turn can be related to the characteristics or model of the

teacher, then one can write a similar equation, as,

oa; <
o"_bjz [f([) ...................... 3.4

i

Solving for the a;; coefficients as in the previous case, then,

a, =k, j f(db, 5.5

Equation 5.5 has a more obvious interpretation associated with it in that
the model of the teacher expressed by the manner in which instruction is
chosen is related to its b;; coefficients, by definition. Combining equations 5.3

and 5.4 then the generalized equation for the a; coefficients can be written as,

a,=Q j f(Deg(R)db, ................ ... 5.6

The above equation follows naturally from equation 4.13, namely,
(M) ®(M,)" =L

and has the more generalized interpretation in that the models of both student

and teacher must be taken into account in order to maximize the value of the
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3; coefficients. Equation 5.6 assumes that the functions f(/) and g(1) are
both continuous. While this may be the true from purely theoretical terms, it
may be quite difficult if not impossible to actually determine these functions.

From the applied context it would seem that these functions can be utilized if
treated as discreet quantities, in which case the integral sign would have to

revert to a summation sign. Equation 31 would the be written as,

(q;) = QZZ D"y .o 5.7

In equation 5.7, the indices m and n have been inserted to account for
different forms of instructions possible and for different existing learner’s
characteristics. This is also consistent with the I; and A; indices that appear in
equation 4.13. In theory there would be mn combinations to yield (@) max
however in practice one would accept only those combinations which are
compatible with one another, as justified by B.

Equation 5.7 is more readily interpretable, in that in order to obtain the
maximum possible value of the coefficients (@jj)max, in the matrix, one might
have to resort to a variety of teaching methods or styles, m of them, and
appeal to various characteristics of the learner, n of them. This in itself is a
process that often takes place in a classroom setting, where é teacher will
resort to different methods of explaining a given concept, such as a
diagrammatic one, a symbolic one and then concrete exemplary one.
Similarly the teacher would try to seck the different characteristics of the
student by, for example, speaking sofily, or gesturing more or apply a more
theatrical form in the delivery of the lecture. With respect to equation 4.13

the matrices can be related to the factors of equation 5.7 by,
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(Mp)" = f™(1)b, and (M) =D g"(Wby oo 5.8

By incorporating the characteristics of the learner and teacher, the concept
learning matrices defined previously can thus be developed in a more detailed
manner. With respect to the above, one can ask the following question :

Given a collection of students which must be taught the same subject
matter within the same time interval, can one devise a set of teaching
instructions to suit each of the categories of students so as to achieve
equivalent learning outcomes .

Fundamentally one would desire any construct to adapt itself to a variety
of student models, or at least designed to achieve this goal. Research in this
area is substantive and elaborate computer programs have been written to
render this possible. An example of one is SIFT ( Self-Improving Fraction
Tutor), Gutstein (1992). This is a production system with a tutor and a
learning module which learns from its interactions with students who use it.
The above discussion simply illustrates that it could be possible, in principle,
to incorporate these factors into account within the proposed construct,
although no attempt is made to describe how this would be done other than in

some very general context.

General formulation.

Symbolically, if the element of understanding a; of some topic T; as

A1, A3, 45,...... A, represent the different types of students, then if the learning

outcome is the same then the values of these coefficients should also be the
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same. This signifies that the learning matrices must have some final invariant
character associated with them. This invariance can only come from an
evaluation of these matrices by the same expert or related to some accepted
standard of truth. It is possible to describe in a generalized manner, as in
figure 5.4, the process by which it is possible to implement learning
processes, incorporating forms of instructions f”(/) = [,, to different models

of students, g"(1)=A,. In practice the implementation would be possible

through the use of a computer where the available software is sufficiently
flexible to accommodate the different models.
The process would be as follows. Consider any coefficient, a;, in the

defined matrix. The value it acquires may depend on the model or type of
learner, A, hence one can write this coefficient as [a,].]ﬂs,. This model of

student can exercise a choice of form of instruction, /,, for that particular
concept and be tested or queried through a set of questions, q;.
Jk=123,....... ,h, and k represents the number of questions devised for
testing the knowledge for that specific concept. The responses will be
compare to those of the expert in a similar manner as described in the flow
chart of figure 5.2 and the final numerical or fuzzy value obtainéd to yield the
coefficients in that matrix. The flow chart associated with this process is
shown in figure 5.3. The central feature in this representation is the column

matrix as expressed by equation 5.9.
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The above notation is equivalent to the one used in the chart of figure 5.1.
As in the scheme represented in figure 5.3, one assumes that a set of &
questions are constructed to test the knowledge of concept a;, and a set of
such questions are constructed so as to be compatible with the mode of
instruction given, in this context this is said to be equivalent to the model of
the teacher or instructor. In this architecture, the set of questions associated
with the ith form of instruction, /;, must be made available to all types of
students. Thus a learner has the option of choosing the form in which the set
of questions are constructed. It might well be argued that all the learners
should be tested with respect to different forms in which knowledge is

represented so as to yield a better representative value for the coefficients.
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Figure 5.3
Flow chart incorporating /,, and A4, .
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The generalized operational scheme shown in figure 5.4 allows tor all teacher
and student types to interact. [n order to determine the knowledge outcomes.

one could consider a simple averaging from all the instructional models. Thus

l -k (A
the term, ——ZZ[[:,, —q,,]
m
r A
represents the average from a set of m instructional models for the / the

student model that appears in that flow chart. This would yield the

coetticients [o‘ ‘,]/ . Lo be defined later. from which one can then obtain the

set of coefficients. Z[a, /]4‘ for the 1 th student type. However, this may not

be an easy process to implement given the complexity of the situation that it
would pose. One ot the more obvious problems would be to determine all the
different possible types and thereby deal with all the possible combinations.

tHence if there are m instructional models and s student types then one would

. A .. . ,
have to deal with combinations of /4., where M =m+ 5. A way

to simplify this situation is to define some set theoretical criteria in which one
would group a set of common characteristics and thus establish select types
falling under those groups. Thus modeling techniques would tirst have to be

applied to achicve this.

Degeneracices.

A problem that might arise is the case of degeneracy. That is to say, the
situation where one of obtains the same learning outcomes, or knowledge .L'.
by applying different models of instruction f"(/) to a given model of
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learners g”(4), or applying the same instructional models to a set comprising

of different models of students.

These cases would yield the following equalities,

ypi el - gylal
J K j kK

and, Z};[ -qt] ZZ ) A 5.11
J

and after sufficient number of iterations of the process to minimize the

term[E,.jf -q; ] as in the process described in figure 5.3, one would obtain the

final set of normalized coefficients, ZZ a ,-5!'"{‘
i

There are two cases that can be considered separately.

a) Instructional model I kept constant and Student model A varying.

This is the standard conventional approach taken by most educational
institutions, whereby the same teaching method is applied to a collection of
students which can range from a half a dozen to several hundreds.

The chart as shown in ﬁgure 5.4 would yield the set of terms,

ZZ —q,, Y =123

s kj

from which the set of learning matrices, LM, can be obtained for the
different models of students. Applying this to all the coefficients representing

the topic to be learned, then the set of LMs will be written as,

ZM"“ =N, ] 5.12

s ij
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From the set of learning matrices generated by the above equation it is then

possible to obtain the corresponding Understanding coefficients, U, as
expressed by equation 4.14, U = z L,

The degeneracy that might occur in this case is not a problematic one. In
fact, it is quite expected since in a classroom of students of various types,
many will achieve equivalent understanding of a topic. This is usually
indicated by the equivalent score that students will achieve on the same test.
Generating this set of learning matrices for fixed / and varying A will enable
the determination of the function g(A4), as given by the expression 4.11. This
may be useful in determining which type of student learns better on a fixed

form of instruction or teaching method.

b) Instructional model I varying and Student mode! A remaining constant.
This is the case where a well defined set of types of students are exposed
to different instructional forms for some topic. This may arise in situations
where it is desired to reinforce the understanding. This often arises in
physical science disciplines where one would employ a theoretical approach
to teaching a given topic and in addition apply a practical approach to the
same topic. Again the chart in figure 5.4 would yield the terms,

ZZ[E; -q; ][M m=123,..... from which the set of LMs can be
m k.j

obtained in the similar manner as in the case above, this will be written

similarly as,

> M= Z;[a,j]"‘ e 5.13

81



The case of degeneracy as might arise from the set of learning matrices as
generated by equation 5.13 may be more problematic in that one might
question whether it is necessary to have different forms of instructions which
yield the same learning outcomes.

One of the features of equation 5.13 is that it would be possible to
determine the function f(/) as given by expression 4.10. This would be
extremely useful in determining which instructional form is most effective
for a given type of learner. One way in which the redundancies of equations
5.10 and 5.11 can be resolved is by pairing the functions f™(/) and g" (4) in
such a way that they are pedagogically compatible. If one uses the same
indices to indicate compatibility, then one can construct an operational
scheme involving a new coefficient, ( delta, J). This coefficient will be
described in detail in chapter 6 which follows. The flow chart involving these
coefficients is shown in figure 5.4.
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Figure 5.4
Flow chart incorporating the J coefficient.
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Chapter 6 : The Relational matrix.

Relationship between coefficients.

The coefficients that make up the learning matrices have the
characteristics that they specify the pertinent subtopic to be learned within the
global topic of interest or universe of discourse, and represent the knowledge
state of the learner at a given time for that particular element. When
structuring the learning matrix it is important to take into consideration that
many of the coefficients may be related to one another. This could be from
some knowledge domain subset characteristics that they may possess, or
some common procedural learning characteristics. In general a relationship
could arise depending on the specific properties of the coefficients. The
strength of that relationship may not be easily quantifiable, if at all possible,
nor may it be easily described. One should however make an attempt to
determine the qualitative relationship that may exist between them. Failure to
do so will diminish the richness of information associated with the learning
matrices.

In work related to the level of knowledge acquired by leamers, Frasson
and Ramazani (1992), using the representation of inheritance systems,
learning is described in terms of items of knowledge to be learned from an
ensemble K=[k;, kj,..... , ka ], with the idea that an element k; inherits
from an element k; if one can find characteristics of k; in k;. In this sense a
relationship between these items of knowledge is described. In addition, one
defines the strength with which these inherited items are linked, termed

“coherence”. This enables the introduction of weight factors within this
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scheme. It then follows that in the matrix representation proposed here, one
should give it a similar consideration.

The qualitative description can be rendered feasible by defining a set of
qualitative properties and consider the relationship within the elements of that
set. Jaworski and Grogono (1990) have devised a structural scheme which
expresses how a set of elements are related to one another. They refer to their
scheme as infoMAPS or J-maps. tnitially one introduces the sets of interest,
thus defining the universe of discourse. This is placed on a grid, such as a
conventional spreadsheet, and entries are inserted which specify all the
relationship between the elements of the defined sets, thus structuring the
infoMAP. This scheme has the advantages that it can be used as a simple
form of structural documentation of any topic of interest, which may quite
useful in describing a course of study or as a structural description of specific
learning processes required the understanding between elements of the sets.
One can use the infoMAP matrix structure in conjunction with the matrix
representation to specify and describe the relationship between the
coefficients representing knowledge or learning procedures.

In order to obtain the relationship between the coefficients of a matrix one
would require to perform a matrix multiplication of the matrix with itself,
yielding the relational matrix, R. The multiplication rules however do not
follow the standard matrix multiplication rules as described by property 20,
page 47. This was expressed as,

R=M,®M, ... .. .. .. ... ... 6.1
The resulting matrix referred to as the relational matrix R will have elements

labeled £7" where m, n, i and j represent the indices of the coefficients in
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matrix M ,. Each coefficient will have to be considered with respect to each
and every other coefficient in the matrix. The following exemplifies the

operations between the coefficients.

(a“ alz al} L alq \ (all alz al3 alq \
Ay Gy Ay - - dy An dn Ay - - 9
R _ a33 asl a3:)_ . - a}q ® a33 a3l a32 ¢ a3q ......... 6_2
\%pr Gp Gp Ape) \Gpp A Qp2 Apq )

Considering the multiplication of elements in the i th row only for the above

equation, this would yield a sub matrix r’as,

il il il il it
(@ a} a) aif ... al
i i2 i i2
a; Gy s - . . Qg
i3 i3 i3
. . .ooay a: . .. a;

r' = ! ',i A 6.3
. .ooaig ... .
ig-1)
\ - : . - - - g

If there are non zero coefficients in g columns and in p rows in the matrix,

then the number of possible combinations of the coefficients will be

(pq)!

' ],2' , and Ze,f}' =0, since the relation of a given coefficient cannot

[(pq)-2

be considered with respect to its own self. In practice however many of these

product coefficients will have zero values.
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An example.
Consider as an example the area of knowledge to be learned as the Linear

and Rotational Kinematics encountered in Physics. Procedurally, the

Leamning and Relational matrices are constructed in the following manner.

a) Identify all the elemental topics of interest and importance that
constitutes major topic of “Kinematics” in the knowledge domain.

b) Group all the identified elements into their primary and secondary
elements, in view of property 11, page 44.

¢) Assign coefficient labels to these elements.

d) Construct the Leaming Matrix, LM.

e) Determine what operations, relations and, or, procedures exist between
these coefficients.

f) Construct the J-map as the architecture for displaying the relationship
between the coefficients.

g) Construct the Relational Matrix, R.

h) Perform appropriate operations on the R matrix to determine the level or
degree of understanding achieved by the learner. This as a result of

operations of the corresponding R matrix of the expert or teacher.

The coefficients of the elemental topics of relevance for the example related

to the concept of kinematics are described in table 2.
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Table 2.

Description of the Cocfficients.

a;1 - Rectilinear motion a--> : 2-D Motion
;> vector representation d»; - acceleration due to gravity
ay3: lincar displacement ax; : resolution of velocities
a4 : linear velocity oyt x=v.!
) . | .
Qs : linear acceleration sl V=V LAl

ai6 - S versus t graph
a;7: S versus U graph
aig - V versus t graph

v, -V

dig: a= — a:: : Rotational Motion
e . o L

A S=v1+5al a;, : angular displacement

dppn v - v = 2uS as» : angular velocity

a4 - angular acceleration
a:s : angular acceleration

dyy : Circular Motion

) i o, —,
ay; : change in velocity dip . A= —————
{

. . 1 .
dy> - vector diagram : Qdi7: B=awt + Fat
ay: - radial acceleration By ©; —w =200
ds D od v
dys - d = —

R

From the set of defincd coefficients shown in table 2 one applies the J-map
architecture. in a variant form, to describe and display the relationship

between these coefficients. This is shown in table 3.
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Table 3.

InfoMap.
infoMAP FOR LINEAF AND ROTATIONAL KINEMATICS
LEGEND
F = |Figure O =| Opetratiotrn d = | Definition
=|Diagram | G =| Graphs
E =|Equation | M =| Man,
MOTION
v d_{RECTILINEAR MOTION)
| Vv v Vector representation
F iv v | ¥ Linear Displacement
| F | D v I O I o Linear velocity
F D |D v v Linear acceleration
2 : v 3 {GRAPHS)
G1 . s versus t
G2 s versus t squared
_ G3! . v versus t
i 3 {EQUATIONS)
E1: E1| is absent
E2 E2 final v absent
E3 | E3 | E3 . t absent
v d_{{2-D MOTION)
o) i Acceleration due to gravity
| Angles of projectio%[
F O | D Resolutions of velocities
2 2 {EQUATIONS) [
Ex along X axis
Ey along Y axis
v d [{ROTATIONAL MOTION)
D E4 Angular displacement
o) ES Angular velocity
o) E6 Angular acceleration
2l 2 3 3 {EQUATIONS)
E6 | E6 angle absent
E7 E7 final w absent
E8 | EB | E8 t absent
v d [{CIRCUALR MOTION)
D Velocity change
F Vector diagram
o Acceleration
1 1 {EQUATION)
E9 centripetal acceleration
M {EXAMPLES)
M {PROBLEMS)
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The learning matrix, LM, from the description given in table 2 can thus be
written as,

a, a, a; a, as as a; ag Ay dyo du
ay Q) Gy 4y G 4y 0 0 0

M= as; Qs A3 Gy Gy Ay Ay 0 0 0 0
a, a, a, a; as 0 0 0 O

Using the infoMAP as constructed in table 3 one can now write the relational
matrix as,

R
el e? e e} e 0 0 O O O O
13 13,13 ,13 i3 I3
R= eli el efl, e ei €3 e e ey 0 0 6.5
- 4 4 14 14 14 14 14 4 A Nt o .
el ez els e €3 ep €5 €7 ey 0 0

15 15 15 15 15 15 15 15 15 LIS
€0 €1 € €3 €3 3 €3 €33 €5 €5

The above describes, in a matrix representation, the relationship between
the coefficients. If these coefficients represent processes to be learned or to
be performed then it is possible to assign numerical values to them in order to
quantify the state of understanding.

The important aspect of the relational matrix is that it can replace the
original matrix and therefore would share the same properties and
characteristics if it were to be applied in the context of a learning process. It
is therefore taken that the expert, or person B in the tutorial conversation,
would have a similar matrix representation with maximum numerical values
for its coefficients. The relational matrix becomes a much richer entity since
it refers relational knowledge as opposed to isolated concepts and one could

argue that this aspect of knowledge is more relevant and important.

90



Characteristics of the relational matrix.

One can regard the learning matrix M, as expressed by equation 2.3, as
a pq = n dimensional vector with binary components. Depending on the
context for which this matrix is used, these vectors can represent points,
patterns, addresses, words, memory items, data, events or procedures.
The R matrix then simply describes the relationship that may exists between

these components and hence can serve the purpose of :

a) Specifying the relationship as a purely declarative representation.
In this context, the matrix merely serves as a descriptive device for
representing a leaming topic with respect to all the subtopics associated
with it. The R matrix will then describe a verbal relationship, i.e.
similarities of the descriptive words used that may exist between these
subtopics. Although this may appear as trivial, it does have the advantage
that given the systematic and well ordered structure it may facilitate
understanding of the description given. More importantly it is a

stage in the operational procedure of constructing the R matrix.

b) Specifying the strength that exists between any relationship.s;.
It may be useful to know the strength or the degree to which the
coefficients in the matrix are related to one another, the reason being that it
may affect the modality of teaching or instructional methods chosen.
Numerical values can be obtained, for these coefficients through similarity
measurement techniques or fuzzy logic methods.
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¢) Specifying operational procedures that define these relationships.

In many cases, in particular in the context of education, the relationship
between the coefficients may be such that some kind of operation or

procedure may be required to be performed in order to reach an

understanding of another concept.

In such cases the R matrix will be a much richer and more meaningful
entity, and will in itself become a learning matrix since the operational

procedures require understanding within their own sphere.

Characteristics.

1.

A relational matrix R occurs by virtue of the existence of a relationship
between at least one coefficient and any other coefficient in that matrix.
There can be only one defined relationship between any two coefficients.
The coefficients e} describe a one to one relationship between a
coefficient a; and a, where j # k.

If each and every coefficient in an LM, with even number of coefficients,
(a special case), has a relationship with only one other coefficient, the

relational matrix will be a pure and a reduced one, since

Z(a,j)mj >Z(eg‘ )mﬁ, expressed as, R? .

If the LM has an odd number of coefficients the relational matrix

will be a mixed matrix, written as R,,. It will therefore have elements e}
and a,,.

I[f the coefficients in the LM have a many to one relationship with other

coefficients, the resulting relational matrix will be an augmented one,

expressed as R*, if Z(eg‘ )coeﬁ >Z(a,.j) ;-
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6. It may be possible, in principle, to reduce relational matrices to smaller
reduced matrices. This is could occur if the topic to be learned can be

represented in a well defined systemic structure, as for example in the

physical sciences.

Operationalization of the InfoMaps.

The learning matrices are initially written in a manner which simply
describes a topic to be learned in terms of its primary and secondary concepts
and expressed by equation 6.4 in the example used. In applying the infoMap
of Jaworski, in a variant form, it was shown that a relational matrix can be
constructed, equation 6.5, which shows the existence of some relationships
between the coefficients in the matrix. Since these coefficients can represent
a process or procedure to be performed, it was subsequently argued that the
state of understanding, U,, should be of a higher order of magnitude as
compared to that derived from simply U.

It is important to specify, in a manner as precise as possible, the exact
nature of the coefficients in that constructed relational matrix, RM. To
achieve this one can return to the initial infoMap and now write it in the
format of an n x n spreadsheet array. The use of a spreadsheet- is one of the
architectures that can be used which happens to be a simple one to use for
leamners. Using the example of chapter 6, the relational matrix of equation 6.5
appears as shown in table 4. Note that the spreadsheet format is a matrix in
itself. So that any knowledge represented in a spreadsheet can easily be
subjected to the new matrix algebra diagnosis and prescription method of this

thesis.
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Table 4.
Spreadsheet Coefficient Display.

4 B C D E F G H I J K L M N
lla, a; a, as ag a; G Gy Ay A Gy G Ay G
2| e el el
3 e e e el el e ex
3 il el e el el et
5 el; el e e e

O P QO R § T U V X Y Y
Ilay a; a; ay, ay ayx ay ay a, ag g
2 e
3 e es es; e e
4
5

As can be noted, the display of the coefficients as they would appear on
the spreadsheet differs from that on the matrix representation, as given by
equation 6.5. This difference is due to the operational function of the
spreadsheet architecture. The spreadsheet architecture is executable in that
each entry in each cell either describes a situation, a concept or a topic of
knowledge, or a procedure to be performed. The entity in a given cell will in
many of the cases make reference to entities in other cells by either assuming
knowledge described in other cells or make direct reference to procedural
steps described in other cell. The entries in the cells shown in table 4 have the
following operational functions. ( Note that the relational coefficients do not

commute, thus e;f = e}, ).
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Cell A1: a,- vector representation.
This would define concept of vectors. The choice of definition would
depend on the pedagogical context and the level of complexity. As an
example,

a) The existence of the set of solution (of a system of homogeneous linear
equations, which a nonhomogeneous system can be reduced) consists of

n-tuple of numbers : y =(x',x?,.....x"), has a definite algebraic structure

in which one can construct linear combinations. Such a structure is called
a vector space and its elements are vectors, Behnke (1986).

b) A vector is a tensor of first rank, this has three components transforming

as, T, = ) a,T;, Goldstein (1965).
J

¢) A vector is a quantity which specifies magnitude and direction,
Fowles (1977).

Cell Bl1, aq;, Cell C1, a,,, Cell D1, g,;, : describes concepts of linear
displacement, velocity and acceleration respectively, thus,

a,, - Displacement. Net change of position of a body with respect to a
Cartesian frame of reference.

a,, - Velocity. Change of position of a body with respect to a Cartesian frame

of reference over a specified time interval. v = ﬁt AS=§,-S,1=0

A [ e §
a,; - Acceleration. Change of velocity of a moving body over a time interval,

Av

within the Cartesian frame of reference. a = N

,Av=v, -y, =0
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Cell B2, 7, Cell C2, 7, Cell D2, e, : describe the concepts of linear
displacement, velocity and acceleration, respectively, in terms of the
concept of vectors, thus,

e;; - Displacement. Resultant distance of a body relative to some point of
origin, given by its magnitude and direction. The direction being
specified by the angle of that displacement vector with respect to some
specified linear axis on the Cartesian coordinate system. Thus requiring

two numbers to fully describe it. S =(S,6)

e;; - Velocity. The magnitude of the speed of a moving body and its direction
of motion, as related to the Cartesian frame of reference. Thus requiring
two numbers to fully describe it. ¥ =(v,8)

e;: - Acceleration. The magnitude of the change in velocity taking place over
a time interval and the direction in which this change is taking place.

Thus requiring two numbers to fully describe it.

Cell C3, ¢j2, Cell D3, ¢!3, Cell C4, !5, Cell D4, e}, : Describe the

mathematical functional relationship of velocity and acceleration, thus,

e; - Velocity, rate of change with respect to displacement, v = %‘:—

This assumes displacement is expressed as a function of time, S = f(¢)

d*s
dr*’

This assumes displacement is expressed as a function of time, S = f(¢)

e); - Acceleration, rate of change with respect to displacement, a =

el; - Acceleration, rate of change with respect to velocity, a = %

This assumes velocity is expressed as a function of time, v = g(¢)
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ej;s - Velocity as an integral function of acceleration, v = Jaa’t
This assumes acceleration is expressed as a function of time, a = A(z)
el; - Displacement as an integral function of velocity, s = jvdt

This assumes velocity is expressed as a function of time, v = g(¢)

The operationalization of the infoMaps-maps thus become the operational
process of the Rms. In the spreadsheet architecture, these matrices become
“mixed” and “augmented” matrices, R;;. In the example described above the
choice of information entered in each of the cells is subject to the decision of
the expert or instructor. Quite clearly one can chose to amplify the
descriptions of each of the entities entered by giving more details and
associated examples, or enter numerical values to obtain solutions to
particular kinematics problems.

Applying the spreadsheet as the operational mode renders this process
more accessible to a wider range of learning audience at a variety of levels of
learning depths. Furthermore, through the “window” computer environment
it also becomes easier to use for the learners and it is possible to display the
contents of the coefficients in the R;} for a variety of instrucﬁorial modalities,
I;, discussed in chapter 5. This can simply be done by choosing a specific
sheet within the spreadsheet application. It would also be possible, in
principle, to cater to certain learner’s characteristics through the use of

different sheets for different characteristics. This is shown in figure 6.1.
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Figure 6.1
Operationalization for chart of Fig 5.5.

Instruction [, Instruction I, Instruction I;
student characteristic A;  student characteristic A, student characteristic A;

sheet 1 sheet 2 sheet 3

The above figure thus shows how the scheme as described in figure 5.5 of

chapter 5 can be implemented.

Associated learning coefficients.
The understanding, U, in the LM representation were obtained from the

l; coefficients and were expressed by equation 4.8 as : U = ZI,.,. .

iJ
It is possible to obtain a similar expression for the understanding as would be
derived from the relational matrix R. This can be achieved via the same

procedure as adopted for the LM. Let U, represent this coefficient, then,

Up=D. D eloff 6.6
a B .

where a=i,j, B=k,, ef are the relational coefficients, and f/ are the
corresponding coefficients of person B or the expert. The multiplication rule
as applied to the above equation is the same as for the ordinary coefficients
that appear in the learner’s matrix M, and that of the expert Mg. Thus only
products of corresponding coefficients can be considered.

Let the acquired learning coefficient be given by &, then one can write the

expression : ef o f# = £% this being consistent with property 8.
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It should be noted that &2 is equivalent to the augmented e’ coefficient

that would be created when learning is achieved. Of interest is how the

I, and £° are related to one another. Equation 6.6 can be written as,
2553 CRARCRTA
Ug= Zzp:(a“ ob,)o(asob,)
Up = Zzﬂ:la ol

hence &8 =1, ol, since D D Lol=D l,o Y I,
a B a B

It is clear from the above expression that £2 >/ hence U, >U

.......... .'...-6.;

This can be validated on the grounds that in order to reach the state of
understanding given by &4 one requires to understand the relationship
between two concepts, which may require understanding of a procedure or
process in addition to understanding the concepts themselves.

Whilst understanding concepts in an isolated context may be important,
one could make a strong argument for the case that understanding the
relationship between concepts is far more important and relevant. An
example of this can be taken from the realm of Physics, in dyhamics where
one requires an understanding of the concepts of force and acceleration as
separate entities. In addition one would require to reach an understanding of
the relationship between them which involves not only the mathematical
expression and its associated manipulation rules, but also the concept of mass
that arises out of this relationship. It might further be argued that, from a

neural network representation of the process of understanding, the only
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process of relevance is that of the relationship among entities, or in the

pedagogical context, the relationship among concepts.

Weight factors.
Since U, > U, as was postulated earlier, then it might be of interest to

determine the equality relationship between them. This can thus be written
as, Upg=wlU (w>1) ... . 6.8
The above equation leads to the notion of a weight factor, w. The question
that needs to be addressed in this regard is where should these factors be
introduced in the representation. Clearly these factors would be associated
with the individual coefficients that appear in the matrix. The notion of
weight factors is a natural one to consider and may indeed be a necessary
inclusion in the matrix representation, since one would argue that when
devising learning topics one invariably attaches more importance to some
topics over others. It then follows that in measuring the state or level of
knowledge one ought to take this fact into account. Therefore the weight
factors need not be introduced in the initial learning matrices but rather in the
subsequent matrices, Ly of equation 4.9, these being the learning matrices

that have evolved as a result of the operations of the b, coefficients on their
respective a; coefficients.

The inclusion of the weight factors in this matrix representation is quite
consistent with the FAM representation as described in figures 4.2, and also
with Inheritance Systems described previously. Hence equation 4.9 would be

rewritten as,
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(w1, + opl,+ osl;+ ... .+ wlqllq\
Dyl + @yl + Opls+ . . .+ Oy,
S 6.9
\@ulp+ Oplp+ o+ . . . . w4l )

U= wly=dwl, ... 6.10
N a

The value of w can acquire a meaningful value only with respect to the
individual set of w, coefficients.
It is possible to obtain the relationship between ww and w,,w,, by
considering the case involving the relational matrix. From equations 6.7 and

6.8 one can write,

U =Z;w,,wﬂ(1,, oly) 6.11

Z;wa,wﬂ(l,z o lp)
= Zwal,, ......................

a

therefore, w

Equations 6.10 and 6.13 require that the weight factors be defined in

some way as well as the product /, o/;. In the simplest manner, the expert

could assign numerical values in an arbitrary fashion to suite his or her sense
of what the relative importance is of the coefficients in the LM. The
numerical scale could also be one of personal choice. However, in the context
of the teaching of a certain subject matter or topic, it is important that a
universal standard consensus be arrived at with respect to the importance of

the coefficients, since that is what these weight factors represent. This for
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instance would be of importance in an environment where multisectional
courses are taught.

It is possible to obtain standardized values for these weight factors the
details of which are described in appendix A. Assuming that these factors
have been established, then, when applying equation 6.10 one must keep in
mind that property 22 must be satisfied, that being that U <1. If the
numerical scale chosen for these factors is in the line interval [0,10], this
would result in U > 1, in clear violation of property 22. This can be rectified
by considering the weighted sums, then equation 6.10 would be written more

appropriately as,

similarly, equation 6.11 would become.

) ZW‘ZZZW‘ZWﬂ(Ia 01,,)
- ZZwawﬂZwala

a B a

Uem—ss———— oot 6.14

With respect to the product of the learning coefficients that appear in

equation 6.14, there are two possible operations that can be considered.

a) Applying fuzzy type multiplication rule, such as, [, o/, = max(l,./;).

This would be an easy operation to apply. However it would seem
inappropriate to chose the maximum of the two since they may be mutually
exclusive. Furthermore, understanding a set of concepts does not imply

understanding another set.
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b) Applying the standard Boolean multiplication rule. This would seem more
reasonable since it may lead to a more “averaging” type value. In performing
this type of operation one would clearly have to deal with the normalized

values of these coefficients, thatis, 1, = Zl"l .

The numerical values of the weight factors can be unambiguously
determine through a mathematical procedure involving solutions of
eigenvalue equations. The details are given in appendix A. One of the aspects
of the procedure requires obtaining data from pairwise comparisons of the
weight factors from a group of experts. The details of the procedure are given

in appendix B.
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Chapter 7 : Measurements of acquired knowledge.

The Delta coefficient.

In the procedural chart shown in figure 5.3 an important stage was the one
involving the expert. This was expressed by showing the difference between
the expert and the responses from the student/learner as E; —gq;. This
difference is important because it provides some numerical measure of the
variance that might exist between the expert and the leamer. This can be

expressed by a single coefficient § } defined by,
Se=Ef—qf ..l 7.1

This coefficient will have properties depending on the nature of the set
g, - This is due to the fact that g; can arise from questions involving strict
computations or questions associated with linguistic variables. The
distinction between the two being that in the former case one is dealing with
logically crisp values which are associated with terms which are either right

or wrong, true or false, in which case the determination of & ,’j is easily

obtainable. The latter case involving questions which have vague or
ambiguous notions will require linguistic terms such as quite weak, very
strong, moderately good, etc. for their final response, and will thus require
the use of fuzzy logic operational rules. One can thus make a distinction
between the two case by writing this coefficient as, {q,f}v and {q,f}F :

Where N represents numerical questions, and F representing verbal question.
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Relationships between {5 5}» and a;.
Casei, for {5 fj}V

From the definition as given by equation 5.3, the set {5 ,’j}V would acquire
values ranging from 0 to 1. Thus, 0< {5 ;}v <10, where {6 ,’j}v= 0

signifies complete agreement with the expert, or complete knowledge, and

{5 fj}\= 1.0 signifies complete disagreement or complete misunderstanding.

The next stage requires a summation of all these differences in order to
make an assessment of the understanding or agreement reached, from which
the o coefficients can then be obtained. In the first instance it would appear

that a simple arithmetic averaging would relate these two coefficients, such

| ) :
as a;= ;I-Zé’ » where n represents the number of questions to which the
k

student must respond to. However, given the numerical properties mentioned
above it is clear that this relation cannot hold for in fact the diametrically

opposed values are related. Thus if {5 ;}»= 0 then &, = 10 and if
{5 {}}.\_= 1.0 then a; = 0. In order to satisfy the above, the relationship can be

written as,

k=n
a,=1-=3 {8} 7.2
n k=1

An example of the prototype of the set of numerical questions is given.
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case i, {q,f } v
Consider the case of the concept of acceleration represented by the

coefficient a,, as the primary concept within the global concept of kinematics
that is to be taught. Suppose this has been taught in the traditional manner,
say in the classroom, and it is desired to know the degree of understanding
reached by the students. Following the procedure outlined previously, one
needs to construct a subset of this primary concept. This subset then
constitutes the conceptual representation of the concept acceleration. In this
context we have the following,
a;; = acceleration.
a;» = Graphical representation.
a;; = Rates of change.
aj4 = Linear equations of motion.

With respect to each element in the above subset, one devises a set of

questions, Q5 k =1,2,3,....., which will reveal the degree of understanding.

[f the questions are of the multiple choice type, which will be the case in this
example, then their numerical values will be a crisp one as opposed to fuzzy
values. The set of questions devised are :

@/, = If the velocity versus time graph is a linear one, how would you
determine the acceleration ?
a) read the intercept on the velocity axis.
b) calculate the area under the graph.
¢) calculate the slope.
d) read the intercept on the time axis.

O}, = If the velocity versus time graph is a horizontal line, how would you
determine the acceleration ?
a) one cannot determine the acceleration.
b) calculate the area under the graph.
¢) read the intercept on the velocity axis.
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sz = In an acceleration versus time graph, the area under the graph yields,
a) the velocity of the moving body.
b) the displacement of the body.
c¢) does not yield anything at all.

Ik

a

Q{‘2= Calculate the velocity at the time of 10 seconds, and 20 seconds, if the
initial velocity was zero.

O}, = Calculate the average velocity during the entire time interval of 25 sec.

14

Qxéz =
Vm/s
0 -+ +

l 2 3 4 tsec

What is the average acceleration in the first 4 seconds, between the 2nd and 6th
second, and in the 8th second

Q; = A particle moves along the X axis according to the equation
X =2.0+5¢ . Calculate its velocity and acceleration.

a) v=(2.0+10t) m/sec d) a = 5t m/sec’
b) v=15 m/sec e) a = 10 m/sec’
¢) v=>5t m/sec f) a = 10t m/sec’

Q% = A particle has a velocity given by v = 8t? +3t + 5, is this acceleration uniform ?
find it’s acceleration at a time t = 2 sec.
a) a = 35 m/sec’
b) a = 19 m/sec?
c) a = 40 m/sec®
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O}; = A body moves according to X = 5t° -12t* -6t -4 . What are its velocity
and acceleration in the third second ?

a) v =57 m/sec dya=56 m/secf
b) v =63 m/sec e)a =66 m/sec”
c) v =135 m/sec f) a =70 m/sec’

Q\, = The initial speed of a body is 5.2 m/sec. What is its speed if it accelerates
uniformly at 3.0 m/sec” and at -3 m/sec’ ?

O, = A hockey puck sliding on ice comes to rest after traveling 200m. If its initial

speed is 3.0 m/sec, calculate its acceleration, its speed after traveling 100 m and
the time taken to travel the 200 m.

Q},= A body travels along the positive X direction for 10 seconds at a constant speed of

50 m/sec, it the accelerates uniformly to a speed of 80 m/sec for the next S seconds.
Find the average acceleration for the first 10 seconds and in the interval between
the 10th and the 15th second.

Oy, = A body moving with uniform acceleration has a velocity of 12 m/sec when its

coordinate is 3.0 m. If its coordinate 2.0 seconds later is -5 m, calculate its
acceleration.

Case ii, {q,f }F .
While the proposed formalism is quite precise, that does not.imply that its

constituent coefficients are themselves precise and crisp quantities, for
example the coefficients would have to be fuzzy if one were to apply this
formalism to cases dealing with verbal descriptions and responses from
leamners. For such cases the evaluation of knowledge or assessment of
agreement is somewhat more complicated since the responses would involves
linguistic variables which have fuzzy properties and as a consequence the

evaluation or assessment itself would also involve linguistic variables.
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Typically the resulting assessment or evaluation, from modeling with some
constructed production rules, might be that the student has :

a) not understood the topic very well.

b) has some understanding of the topic.

¢) understood the topic quite well.

d) has a very good understanding of the topic.

The determination and quantification of such verbal ratings would
necessitate the use of fuzzy membership curves. The determination of these
curves may be initially tedious in certain respects, but once obtained they can
be used continuously. Consider for example a case where a certain concept is
to be described, the description of this topic may be such as to have to
include a given set of words, as judged by an expert to be important and
relevant to the full description of this concept. These may be the set {w;, w,
W3, Wy, Ws, Ws, W7, Wg, Wy, Wjo}. Fuzzy membership curves can be
constructed to represent the “degree of understanding” from the fuzzy subset
described above. These hypothetical membership value curves are shown in
figure 7.1.

Alternatively, one can devise a set of fuzzy production rules that could be
used for cognitive diagnosis, as in the case described for ACME ( Abstract
Modeling and Evaluation system.), Mitchell (1989). These could be of the
form :

a) [F ALL of the above terms are used AND the order in which they appear
offers NO contradiction AND no inconsistencies, THEN the understanding
is VERY GOOD.
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b) [F MOST of the terms in the set are used AND there are NO
inconsistencies, THEN the understanding is GOOD.

b) IF FEW of the terms are used AND no contradiction exists, THEN there
is LITTLE understanding.

¢) [F FEW of the terms are used AND there is inconsistency in their order
of appearance, THEN there is VERY LITTLE understanding.

d) [F some of the terms are used AND there is contradiction in their

appearance, THEN there is NO understanding.

Figure 7.1
Family of hypothetical membership curves.
1.0

u(x)
0.5

0 Wi Wy W3 Wy W5 Wg W7 Wg Wy Wpo

The set of curves shown in figure 7.1 would be adequate if detailed
classification of verbal ratings were required, however, for the purposes of
determining the a; coefficients of the matrix it is quite sufficient to simply
establish one membership curve representing the term acquired knowledge

and apply the numerical value of the membership p(x) as the one which has
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direct correspondence with the a; coefficients. This however would imply
that it would be necessary to establish a collection of membership value
curves for each and every element in the matrix, the fuzzy set.

Suppose that one of these membership curves has been obtained and

hypothetically is as shown in figure 7.2.

Figure 7.2
Hypothetical fuzzy membership curve.

1.0

u(x)
0.5

0 Wi Wy W3 Wy W; Wg W73 Wg Wg Wi

The above curve resembles, geometrically, one of the collection shown in
figure 7.1. This family of curves can be represented algebraically in a more

general form than that as written by equation 1.2, namely,

Us—F——sorse ... 7.3
c +

In order to establish the correspondence between the terms of the equation

above and the ones defined previously it can be seen that the understanding
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symbol U represents the understanding for that particular concept, a; and
hence could simply be replaced by that coefficient, and D effectively

represents the degree of difference between the student’s response and that of

k—n

the expert’s, thatis, D= [5 p ] where 5 o= —26

ij
The relationship between the a; coefficients, which represent the degree of
understanding of the learner for the ij th concept and the & ; coefficient can

now be written as

Equation 7.4 can be used adequately to determine the coefficients of the
matrix for situations involving linguistic variables, where in effect u(x)
corresponds to a; and the horizontal axis can be scaled in the interval [0,1] to

represent [5 fj]m. An example of descriptive type questions for the same

concept, as in example i, is given by the below. Note that the correct answers
to these questions must contain all the relevant parts, in terms of the correct

words or phrasings, as for example the set of words {w;}.

Example ii.
Oy, = How can average velocity be described ?, exemplify.
@}, = Give a conceptual description of uniform velocity and exemplify it.

Q), = Describe non uniform velocity and exemplify it.
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0., = How would you describe the rate of change in kinematics, and give

at least two examples of it.

0!, = What are the fundamental quantities required in order to establish the

equation defining acceleration ?.

Q% = What are the distinctions between uniform and non uniform

acceleration ?.
0}, = Describe the motion of a light object falling freely in the earth’s

gravitational field.

@}, = Can the equations of kinematics be used in situations where the
acceleration varies with time or is equal to zero ? explain

Q7 = If there were three unknown kinematics parameters, can one use the
three derived linear kinematics equations to solve for those three
unknown ? explain.

O}, = A person throws a ball upwards with an initial velocity v, and another
ball is dropped at the same instant, how would you compare the motion
of these balls before they hit the ground ? explain.

O} = A ball is thrown upwards from the edge of a building of height h with

an initial speed of v,. A second ball is thrown downwards. How would

their final velocities compare as they hit the ground ? explain.
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Applied measures.
The coefficient representing the acquired knowledge for a given learning

situation, for some learner A, was given by equation 4.5, expressed as,

U,= Za ; where a, are the normalized values of the a; coefficients
i

determined from either equations 4.3 or 4.4, depending on which case is

applicable. The determination of a; in turn depend on the &}, coefficients, as

defined previously, for which their relationship was given by equation 5.3, as
exemplified in case i, if the question-response situation demanded crisp
logical values, or equation 5.5 if it demanded fuzzy set logical values, as
exemplified in case ii.

Since &} is a critical value to be determined during the learning process, it

is important to reconsider it in view of the manner in which the original
notions  of the matrix were used to define it, that is, as a collection of
coefficients which describe the degree of measured understanding acquired
during a leaming process from a person B, the expert. The example that was
used in the section “ a numerical example” shows that within the described
formalism, the coefficients can be taken to have fuzzy set values. This
character arises out of the way in which these coefficients are 'assigned their
numerical values (despite the fact that the concepts which these coefficients
represent may themselves be crisp and well defined). It was also stated as one
of the properties of these coefficients that their values had the range
0<a; <10, property 5. In addition this was also described in the initial
proposition of the concept matrix and the fuzzy character was described in

figure 1.1. Hence it would appear that a formal use of fuzzy measures ought
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to be made in dealing with the process of determining the numerical values of

the coefficients.

Description and choices of measures.
Common measures of fuzziness used in the literature, referred to as

indices of fuzziness, are defined in terms of metric distances of a fuzzy
subset A from any members of the nearest crisp set c. These are the
Hamming, and the Minkowsky metrics, of which the Euclidean is a special
case of the Minkowsky metric, Klir (1988). The Euclidean and Minkowsky
metrics were mentioned earlier in the section under “Mathematical Concept”

and written as equations 3.1 and 3.2. The Minkowsky metric, equation 3.2,

L
f(4)= (Z[m (x)- /tc(x)]w)w

xeX

is a general metric expression from which it is possible to express the

Hamming and Euclidean metrics by assigning the value of w =1 and w = %

respectively . f(4) representing the index of fuzziness. On closer inspection
it appears that these metrics are in fact the § | coefficients defined earlier, in
particular the Hamming metric. A comparison of each term giv.es Hi(x)=q;}
and g (x) = Ef. However in order to obtain the a; coefficients an averaging

operations was imposed giving equation 5.4. It can be argued that the general
Minkowsky metric is also some kind of an aggregate operation and may very
well be a better index of fuzziness. It is therefore worth while to consider it in
the context of this formalism and subsequently make a comparison. The

underlying reason being that since the matrix represents a set of concepts and
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its corresponding numerical values represent the measured understanding of
these concepts, then it is important that these numerical values are as true as

it is possible to generate.

The Hamming and Euclidean metrics.
Consider the Hamming metric, from equation 3.1 given by,

F(A) =) |u(x) - po(x)

xeX
and the Euclidean metric, which is the Minkowsky metric for which w =2 as

was written in equation 3.2 but now written as,

l

f(4)= (Z [.4(0) - )] )E

xel

in the context of the matrix the above can be written as,

f(A)=D[Ef-qf]=D)65 .. 7.5

and  f(4) =(zk:[5,; - q,;]z)i =(Z[ ,!;]2)ll ............... 7.6

In order to interpret the above equations one must appeal to their
geometric aspect. This geometric representation was used earlier, in the
section “Proposed Concept Matrix” and shown as a two dimensional case,
for two concepts a;; and a,,. Applying this same diagram in the context of

the & ,f coefficients then for a two dimensional case one can describe it as

shown in figure 7.3.
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Figure 7.3

Two dimensional case.

qi, (0,1) _ ES @
J
0.75 A(D.75033) O ;
(0,0 0.33 g}, (1.0)

The above geometric representation would be valid if all the £}

coefficients were normalized to the value 1.0. Thus if there are n questions
posed by the expert relating to the i = 1 and j th concept, then these n
questions would form an n dimensional hypercube. For a two dimensional
case then the degree of understanding over a domain of knowledge given by
the two questions g;; and g;;, as conversed with the expert, could be defined
as the geometric distance of the point A to the vertex (1,1). For this two

dimensional case the Euclidean distance is then given by,

. |
slEy @ 7.7

This can be extended to a three dimensional Euclidean space, or higher,

quite easily, where the metric distance would be given by,

1
s ~[EL @+ 7.8
The corresponding geometric diagram for a three dimensional case is

shown in figure 7.4 and & ; is represented by the vector PQ.
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Figure 7.4

Three dimensional case.
Q
©0,1,1)~ 1,1,1)
(0,0,1)
(1,0,]) ,1,0)
qlsj / P
L g
(0,0,0) q.; (1,0,0)

(61,)" =06y (83) =05 (5%,) =(0.8)
In order to compute the numerical values of the a; coefficients it is

necessary to establish the valid algebraic relationship between a; and the
metric coefficient & ;. This relationship will differ depending on which

metric one chooses. The properties of the a; coefficients will impose the

constraints on those relationships. For the Hamming metric, now symbolized
. i i i |
as {5,.,.}H, equation 5.4 is valid. If one writes {5,.,.}H = ;Z&{‘j then the
relationship with the a; coefficient can be written as,
a;=1-{6,;} ...l 7.9
However, for the case involving the Euclidean metric, symbolized as {5 "f}s’

the above equation does not satisfy the properties of a;. This being due to the
fact that it is quite possible that {5 ,,}E may acquire a value greater than 1.0
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but one cannot determine an average value because {5,.,.}5 IS unique. A

simple 3-D example illustrates this point. Taking the coordinates of point P in
figure 16 to be P(0.4,0.5,0.2) then,  &,, =+/0.36 + 025+ 0.64 = 111

if one uses equation 49 this will yield the value a; =— 011 which is in

violation of its definition. It is necessary to have a term which when
subtracted from the value 1.0 will yield a value which does not exceed 1.0.

{9,1

{5'7 } E max

where {5 "i}gm is the vector from the point (0,0,...,0) to the vertex point

To ensure that this does not occur one can consider the ratio

(1,1,....,1). For an n dimensional hypercube {5,-,.}Em=\/;z_.

since {5"/'}m =\/=12 +12+12+. ... +12 =+/n One can thus write for the

Euclidean metric,

[T

where {5, } ={Z(é‘,’j)2:l and &%t =E} -qf asdefined earlier
k

Comparative values.
Using the set of questions described in case (i) and assigning arbitrary

numerical values for the responses obtained, fori=1andj=1, 2, 3.

the values of a; can be calculated using equations 6.8 and 6.10.
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Table 5 shows the data and calculated values for the §,; coefficients.

Table S.
Numerical Values for Q; and 6.

On 6u (B 05 65 Gu)']| @0 66 (B

060 040 016 | 052 048 0.23 025 0.75 0.56
045 055 030 | 0.44 056 031 046 054 029
032 068 046 | 081 0.19 0.03 065 035 0.12
074 026 0.06 055 045 0.20
025 075 0.56
056 046 0.21

From the data in the above table and using equations 7.9 and 7.10 to
determine the a,; coefficient, one obtains the following values from the
Hamming and Euclidean metrics:

From the Hamming metric: a,, =049 4,;=049 g4, =048

normalized coefficients : a,=016 a;=016 a,=016
hence U, =048

From the Euclidean metric: a,, =053 4a,;=043 4q,,=054
normalized coefficients : a,=017 a,=014 «a,=018

and U, =049
From the results obtained it appears that these are noi significantly
different. The extent to which these metrics differ depends on the relationship
between them. However, the functional relationship is not a simple one and
follows some complicated polynomial in n. But it suffices that a difference
exists to merit a closer look at the choice of metric.
In considering the criterion to be used in making the choice it would seem

that the error factor associated with these procedures ought to be taken into
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account. A simple error analysis reveals that for a set of errors of 6, the
resulting errors for (a,)_ is considerably less than that obtained for (a;), .

Therefore on these grounds one would be justified in choosing the Euclidean
metric for §;.

There is however a more fundamental reason for choosing the Euclidean
metric, and that stems from the basic notion that measurements
understanding can make sense only in a framework of comparison with
respect to another source. Hence a students understanding is measured with
respect to that of the teacher or the expert, for example in a tutorial

conversation.

Alternate operational definitions for U.

The operational definition for the “understanding “ coefficient U was
obtained through the defined properties 12, 19 and 21 and was expressed by
equation 4.5 as, U, = ZZa,., with the normalized coefficients «;

i

expressed numerically on the line interval [0,1].

As was discussed in the previous section, it is possible to adopt the notion
of metrics such as the Hamming and Euclidean in order to gauge the distance
or gap between the understanding of the student or learner, A, with respect
to the expert, or person B. It seems then reasonable that one could adopt the
use of these metrics in the final evaluations of the learning matrix M, of the
student. This would also preserve an internal consistency with respect to the
manner in which the coefficients of the matrices are obtained.

Since the properties of the coefficients in the matrix are defined such that
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a; <1, property 5. It is possible to replace these coefficients with those
representing the difference between a; and B; thatis §, =5, —a,. One
can then obtain a matrix AM similar to that of equation 5.1, and at a given

time T, written as,

(511 512 513 .- 51:;\
0y Oy 0y . . 0,
AM = On O On .. Oy 7.11

\app 51:1 51’2 - 5”)
The above matrix describes the difference in knowledge, at a given time.
It is thus possible to determine the understanding coefficient U using the

notions of the metrics as described by equations 3.1 and 3.2. For the

Hamming and Euclidean metrics one has respectively,

1 1 ’
UH=1“,;;50' and UE=1—7—;[Z(517)]

i

| -

Table 6 displays data taken from table 5 and subsequent results obtained for
the three definitions of the understanding coefficients, U, U, and U,.
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Table 6.

Comparison of the U Coefficients.

LEARNING MATRIX NORMALIZED LEARNING MATRIX
L
0.850 0.900 0.720 0.750 0.640 0.037 0.039 0.031 0.033 0.028 0.17
0.990 0.800 0.760 0.820 0.6S0 . 0.043 0.035 0.033 0.036 0.030 0.18
0.980 0.850 0.900 0.870 0.000 0.043 0.037 0.039 0.038 0.000 0.16
0.780 0.950 0.820 0.800 0.770 0.034 0.041 0.036 0.035 0.033 0.18
0.950 0.620 0.710 0.500 0.000 0.041 0.027 0.031 0.022 0.000 0.12

0.150 0.100 0.280 0.250 0.360 1.140 0.023 0.010 0.078 0.063 0.130 0.30
0.010 0.200 0.240 0.180 0.310 0.940 0.000 0.040 0.058 0.032 0.096 0.23
0.020 0.150 0.100 0.130 1.000 1.400 0.000 0.023 0.010 0.017 1.000 1.05
0.220 0.050 0.180 0.200 0.230 0.880 0.048 0.003 0.032 0.040 0.053 0.18
0.050 0.380 0.290 0.500 1.000 2.220 0.003 0.144 0.084 0.250 1.000 1.48

The resulting value for U are : U, =080 U, =0.71 and U, =0.76

From the above results it is clear that there exists a significant difference
between them, which would indicate that a choice between the metrics have
to be made. From previous arguments given, it would seem that using the
Euclidean metric yields the most reliable value. The same procedure would

be applied for the R matrix.
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Chapter 8 : Conclusions.

Contribution to the field of Educational Technology.

This discussion relating the contribution that the proposed formalism
presented in this thesis makes to the field of educational technology is
centered around the definition of what educational technology is and what
educational technology aims to achieve.

The definition assumed here is that, educational technology has as its
fundamental aim and purpose to facilitate educational and leamning processes
through the use of technological tools. To do this one needs to consider three
aspects of educational or learning processes.

1) A description of the subject matter or body of knowledge that must be
learned.

2) The application of a mode of instruction or a teaching modality based on
some chosen learning theory.

3) An evaluative process consisting of methods tools and procedures utilized
to measure the learning outcome.

Of the three categories described above, the contribution that the
formalism proposed in this thesis makes relates to the first and third. The
contribution made is in terms of the “tool” that has been chosen, namely the
matrix construct. While matrices are common mathematical devices their use
in the educational context is not very common.

The proposed formalism demonstrates how, through the use of matrices,
one is able to describe and present a given body of knowledge in terms of the

concepts or items that make up its content, in a relatively simple and
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systematic manner. A given discipline can be analyzed as a system of
concepts or procedures, and a topic labeled for a cognitive system can also
function as a label of performance as well.

Through this formalism it is also shown how the matrices representing the
learner and teacher interact to yield a learning outcome. Some general
description incorporating the learner’s characteristics, types, and the variety
of instruction that can be used is given. It is shown that the formalism can
accommodate these features if one chooses to engage these levels of
complexities.

The advantage that a matrix representation has is inherit in the ability to
manipulate the coefficients. This manipulation could constitute an
externalization of the interactive process between the learner and the teacher.
The precise description of these processes may be quite complex and would ,
in general, require further and more detailed description within this structure.
This aspect of the representation is not dealt with in this thesis. However it
could in principle be achieved.

The use of matrices as a tool permits a detailed description of the
characteristics of the coefficients that describe it and its operational mode.
This in itself is a necessary requirement whenever any tool is utilized. This
has been extensively discussed in the Properties and Characteristics of the
Coefficient chapter 4.

Since, as was mentioned previously, a matrix construct can be used to
describe a system and its coefficients can also function as labels representing
performance, this allows for the display of the state of knowledge of a given

learner at any given time during the learning process. This matrix technique
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is facilitated by the fact one can use simple spreadsheet programs to display
the coefficients. Once critical values are set for these, it is then possible to
make decisions as to what next operation to invoke in the leamning process.
The numerical values representing the state of knowledge of the learner can
be obtained from a built in reservoir of test item questions. This aspect was
discussed in chapters 6 and 7.

The additional contribution that this formalism can make is in the
evaluative or progress of the learner. Since, in the educational context, one
needs to measure the progress of the learner, the model allows for the
construction of test item questions within the formalism and the systematic
recording of results that will exhibit the knowledge of the learner. It is shown
that within this testing structure it is possible to chose different measures.
The choices fall within the categories of geometric measures, and, given the
simplicity of description and interpretation of the Euclidean metric, it is
chosen as the most appropriate. However, the advantage of the proposed

formalism is that it can accommodate a wide variety of these measures.
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Conclusions and Recommendations for Future Research.

The description of concepts within the construct of matrices have been
applied in various fields, in particular when vague concepts are involved,
such as query structures, retrieval systems and decision making processes, to
name a few. Within the educational sphere, various notions of concept maps
have been used extensively, but for most part they have not been formalized
into a matrix system. It was shown that the transition from concept mapping
to a matrix system representation is a natural one. Such matrix representation
immediately lends itself to mathematical operations between its constituent
elements, hence the ability to determine detailed needs and possible
outcomes. As an example, these matrices are applied to a learning situation
between two conversing individuals, a student and teacher or expert, the
properties and characteristics of these coefficients in this case have been
defined and described. This provides a basis for a description of the full
architecture of this knowledge representation, which is the essence of this
thesis.

In its defined structure it was shown that it is possible to incorporate the
learner’s characteristics, or learner type, as well as the model of the expert in
terms of mode on instructions chosen. The possibility of applying this
representation to real learning situations is an important aspect of the thesis.
It was shown that several approaches are available for obtaining numerical
values for the measure of learning outcomes. These are obtained primarily

through the use of various defined metrics.
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A more detailed analysis has shown that it is possible to apply the matrix
system representation in situations involving either crisp sets of numerical
values or those associated with fuzzy sets. For the fuzzy set cases, one would
have to obtain membership curves for the particular learning areas of a given
topic. The matrix representation discussed in this thesis has several
advantageous features associated with it, as compared with other concept

mappings or diagram representations, which are

a) Since, by definition, this matrix calculus representation necessitates
numerical values assigned to the coefficients which represent test results,
this affords an ability to make simpler and perhaps more meaningful
comparisons when dealing with a set of related concepts.

b) The numerical values for the coefficients can be obtained via conventional
testing mechanisms. Since one is interested in the effects that the
coefficients have on one another, say representation of the effects of a

teaching method on a particular topic or concept, then clearly a numerical
representation is called for.

¢) The matrix representation enables a wide range of computational
approaches, orders and procedures to be adopted. One of its bowerﬁ;l
used features is that one need not restricted to use the conventional
computational rules of matrix algebra. If this were not the case, it’s

applicability and capability of generating meaningful results would be
severely limited. The whole discipline of teaching and learning is context
dependent and as a consequence notations and calculii must allow for a
wide range of situations and cases, that this matrix representation can

accommodate.
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d) By virtue of the numerical association with the coefficients, the matrix
system representation is well suited for use in the computer as a
computational tool. It greatly facilitates the programming of
computational procedures and the speed with which they can be carried
out. Thus, resulting outputs can be generated within shorter time
intervals. This is important for on-line teaching operations. The use of
computers also enables one to deal with matrices of higher dimensions.
This in turn allows one to deal with topics that have many complexly
related concepts associated with them, define and describe these concepts

in greater details.

Further Extension and Research.

One of the primary purpose of this study was to devise a plausible and
practicable mathematical matrix representation of concepts associated with
topics to be learned or taught in an educational environment.

This study has laid some basic groundwork for this form of knowledge
representation, however considerable work and research can and remains to
be done with respect to this mathematical framework and its computer
implementation. The work to be done lies primarily in two categories, one

being the theoretical aspect, the other being experimental.
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a) Theoretical aspect.

Further research can be done to establish a more rigorous mathematical
basis for this formalism. In addition more research will be required to
determine further properties, characteristics and mathematical operational
procedure associated with the coefficients describing these matrices.

[n particular the situations involving fuzzy entities and metaphors, along the
number dimensions of association how many and what kind, will require

more detailed analysis and defined operational procedures.

b) Experimental aspect.

Various applications and examples have been discussed and mentioned in
the course of this study. The major application may be for Intelligent
Tutoring System, in this regard it would be of interest to apply this proposed
construct in a real learing situation and determine its efficacy. It would also
be of interest do a comparative study of this matrix construct with other
system representations that exist and that are utilized in this field.

Student and teacher measurement modeling are an integral part of this
construct, hence more detailed work will be required to establish their

interaction and how to operationlize it.
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APPENDIX A
Numerical determination of the weight factors.

The weight factors w, associated with each of the coefficients in the

matrix can be determined :

a) Through judgement on the relative importance of each of the coefficients.

b) The judgements are quantified to an extent which permits a quantitative
interpretation of these judgements among all the coefficients.

Let C,C,,C;,......C, be the set of items. Quantified judgements on pairs of

items, C,,C,are represented by a p x ¢ matrix, M.

X . o,
Let the comparative ratio factor w; be defined by w, = w—'.'['hen @,
J

represents the r th weight factor associated with the a,th coefficient.

It is possible to construct an associated matrix of the weight factor ratios, as,

(Wi Wiy .. owy,)

Wi Wi . . Wy,
W=

\Wet Wp2 - . wqu

If one multiplies the above matrix by the column matrix for @, one has,

(wy wy . . w, (@) (@,
Wiy Wi . . Wy, ||®, @,
=Y
\Wor Wp2 . . Wy J\®,) \?5 )

One can write the matrix equation, as an eigenvector equation. Following
procedures as outlined by Arfken G. (1985) for solving eigenvector equations
in the example given, we have,
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Weo =y
(" =yhow =0
(-7 =10

.

where @ is the eigenvector and y is the eigenvalue.

An example.

Suppose the matrix contains three coefficients, then there would be three
weight factors to be determined. The eigenvector equation. in matrix form
will be,

W, oW s [y W,
Wa W o [ W SV W,
T T AR W,

We thus have the equation,
W —-7mw=0
i . : : v
The only known values are the elements of the matrix W, which are W, = 5'—
/

To find the values of w we need to first solve for the cigenvalues. 7. This

can be done by setting det /¥ =0. and solving for »in the conventional

manner.
Wy = Wi Wis l
Wy o o Wan—y o owy 1=0
W, W o Wi — Y

Having obtained the value for the cigenvalue. it is now possible to sove for

the eigenvectors. since in the matrix form we have,

(Wwa-y w.  wi)(o,
11’;[ lr;\ - :', ‘t"~~ a)~

- bRy

‘we
‘I



This leads to three simultaneous equations for which the numerical values of
®,,0,,0, can be obtained.

i¢ set of simultaneous equations are :

(Wi — 7)o, + w0, + ww; =0

Wy®, +(Wy = 7)®, + Wy0; =0

W@, + W30, +(Wy, — ¥)w; =0
Clearly the greater the number of coefficients the the greater the
corresponding number of weight factors associated with them, hence

correspondigly a larger number of equations to solve.
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APPENDIX B.

A Computational example for the determination of ,.

Suppose it is desired to obtain the weight factors for the coefficients
relating to the study of linear kinematics, discussed in chapter 6. These

coefficients can be grouped as shown in the table below.

coefficient verbal weight

label description factor
a; Vector representation o,
a; Linear displacement o,
a, Linear velocity o
as Linear acceleration o,
ag Graphical representation | a,
a; Set of equations W

( | @ @ o 0 o )
®, O, O, 05 o
@ | 2, 0 0, o
W, ®, O, O O
o; W, 1 Q; 0; 0,
Wl @ @ @, O; O
@, @ Oy | O O
0, 0, o, ®; o
ws @5 @5 O | O
0 o, 0, o, @

Dy D5 D5 D5 B5
\?, @, @; @, ; y,

. \ @, . . ..
Since w; = w_,, where w, = w_j it is only necessary to obtain judgments for
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n(n—1)
2

only 15 of the coefficients.

coefficients. Since n = 36 then one needs to obtain judgments for

In order to remove any bias in the selection and order in which the pairings
are presented to the experts, a random choice of the 15 coefficients is made.

This choice is shown in the circled coefficients of the matrix shown.

(1 o, @, o, )
(@)oo
o) ! G5

@; as :
HeRCor
W, W

o) o, 0, ®5 )

A verbal scale is devised in which judgments of the  relative importance “ is
required. In the survey presented, the respondants only need make a selection
from the scale shown.

Note: The numeric scale does not appear in the form given to the experts.

5 3 1 3 5
“I,” ‘GL ‘SL” . ‘6R1’ “R” ‘6R7’
left | much more more both | more much more | right
item | important |important |equal | important | important item
than “R” than ‘CR” than “L” than ‘(L”
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The table below would be the actual form given submitted to the experts to
fill. bascd on their personal judgement and expertise. from the circled
clements in the matrix described previously.

L “L —_y “R™ R “R"
left much more{ more both | more much more;  right
item important | important | cqual{ important| important| item

than "R™ | than"R™ than L™ than "L™
velocity graphs
equations velocity
graphs displacement
displacement vectors
acceleration cquations
vectors graphs
graphs acceleration
cquations velocity
acceleration vectors

displacement

acceleration

vectors velocity
vraphs equations
velocity displacement
displacement cquations

veloeny

acceleration
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