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ABSTRACT '
Computational Complexity of Bilinear Forms-Algebraic Coding Fheory
and Applications to Digital Communication Systems

5

Hari Krishna, Ph.D.

Concordia University, 1985 . ) -

In teis work,vthe correspondence between linear (n.k;d) codes and
algorithms for computing ; system of k bilinear forms over GF(pm) is
explored. A npd%er of properties are eetagiishedqfor the linear codes
that follow from a coﬁphtatipqal procedure of this“type. A parchular
system of bilinear forms is.considered and a claes of linear codes is
derived with varying k and d parameters. The i’[elength n is equal to
the multiplicative complexity of the computation of an aperiodic ‘
convolution and an efficient computation thereof leads to the shortest
codes possible using gbis appfoach. M;hy of the codes obtained are
optimal or near optimal in terms of their rate and distance. A new
decoding procedure for th;y class of codes is presented which exploits
the block structure of the'generétor matrix. This decoding procedure
can be realised using parallel.architecture. These codes are
characterised by their modular structure which, in turn, can be used to
design codes_with variable minimum'digtance but having a similar
encodipg/decoding procedure. Several ogservntions which are very
importaet from a practical standpoint are mede qé the nature of the
codes obtained as a resuli of the computational method used for the
system of bilinear forms., Such a computation can be generalised to
lnclude other bilinear forms and the related classes of codes. The

concept of generaliged-hybrid aqtomatic repeat request (GH-ARQ) for

adaptive error .control in digital communication syatems is discussed.
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This scheme utilises the redundant information available u{:on successive
tetransmiaétons ixlx an efficient manner so as to provide high throughput
during poor channel condit;ons. The class of linear ct;des derive;‘l in
this work,.is proposed as an excellent candidate for sinch an
application. One unique feature of this class of codes is that the

encoder/decoder configuration does not change as the length of the ;:ode

s

"1s varied, As a result, the receiver uses the same decoder for decoding

the received information after every ‘retransmission while the
‘ - B

error-correcting capability of the code increases, thereby leading ';o an
improved performance and minimum omplexity for the overall system
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CHAPTER 1 ) /
INTRODUCTION

-

The theogies of digital signal processing and error—correcﬁing
codes have historically different‘origins. In spite of this, it is
'possible to adopt the philosophy that the theory of etéor—gotrecting
codes may be considered as a branch of digigal signal processing, gsince
Aerrorfcorreca:on coding 1is essepti@lly a signal processing technique
used to imprové the reliability of commu@fcation on digital channels.
Error-cotrection coding has been devéloped By~algebraists while
. electrical\engineéra have developed the techniques used in digital
signal processing. Both subjects rely heavily on the properties,
techniques and algorithums for aperiodic and périodic convolution and
Fourier transformatién. The relationsﬁip’between tim; domain sequences
and thei;lfourier trgnsforms is used eiténaiveiy in the analysis,
"design, and implenentacioﬁ‘of digital signal processing and
error—-correcting systems. The major difference in the two t;eories nay
bé attributed to different number systems: digital signal processing
technique; employ to a great extent the field of complex numbers
(infinite nomber of elements) as compared to error—correcting codes
which‘emplby'éalois fields ‘(finite number of elements).

Any codeword cétresﬁonding to an érbittary code may be treated as a
sequence such that each element of the qequéqce beloégs to GF(q), where
GF(q) fgprgsepfs the Galois field bf'd elenent;. Fourier transforms
deﬁigéd in 4 Galois fieid,play an important role in the design and

analysis of coding schemes."Fot,éxamp}e, cyclic codes can be defined as

codes in which each codeword is a.sequence having certain

-]
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prespecified spectral components equal to zero [IJ. Thus, alteénative
techniques for encoding such c;&eg can be realised by using frequency
domain properties of the codes.

| A number of fast and efficient algorithms which were developed fo;

digital signal processing can also bé ugsed to reduce the complexity of

the decoding procedures of coding schemes. Furthermore, -fast algorithms’

may be used Cg’?btain accellerated procedures for. the decoding of several

coding schemes, thereby resulting 1n'mote’efficient,and'iMptoved
, f ) ,

! [
i ey

decoding procedures.
Fourier transforms defined over a kfnite field, aﬁd having the

cyclic convolution property, were first descriSed.by Pollard [2]. The

use of these tranaform,techniqués in coding schémeaﬂwas disguased‘by

Gore [3] and was extended further by Chien et .al [6],'and Lempel et al

- [5]. The relationship between the fast Fourier transform glgorithma‘and .

the complexity of decoding:wgs desgribed by Justesen [6] and Sarwate

y H

~ t

+
.

7. L

In this thesis, we study the relationship between the ,
’ » . P v e
multiplicative complexity associated with the computation of a class ;Z
algebraic functions called bilipear forms and linear érrot:caffécting

codes. Based on the computation of a,pdrtichla; bilinear form, a new

class of linear error-correcting codes is derived from the bilinear

algorithms used for aperiodic convolution of cett&inigequencqs. :Such a

class of codes possesses certain'uniqge feautures in terms of the code*
parameters, code family~re1at1qnshipsg‘and encoding and decodin}
procedures. Decoding procedures for small codes form’;he basis of the

overall decoding procedure forﬁfﬁé codes generated. Therefore, it is

possible to design a decoder that processgs parts of the received vector

! ‘4 ’

,/’,




13-

—

1.3

. independently, thereby leading to a parallel architecture for the

decoder implementation,’a desirable feature in high data .rate
. ) . -
communication systems. Also, it is p&ssible to vary the error

correcting capability of-the codes very easily,” and therefore, a number

of different co&es,;ah be’ incorporated into a single ®encoder/decoder

design.~11t {s 1nterest£n£/;o note that due to the parallel architecture

¢ »
of the decoder, the processing throughput of the decoder remains the

game for all codes incorporated in one design.
\.,, ‘c' ’ N
The fstructure of tre codes is such that they can be very,
{

effectiv used to obtain édap%ive érr05:§orrecting capabiiity for
. ) , / e

digital communication over channels having non:stqtionary €rror rates.

Based on the codes generated, an error control scheme 1s proposed and

*

analysed which can be used to ﬁrovtde high throughput for digital
communication systems that use the aﬁqug;ic repeat request technique.

The proposed scheme takes into consideration all 'the properties of the

* codes 8b as to keep the complexXity of the overall scheﬁe to a minimum.

Due to the unique properties of the codes derived in this work, it may
be possible to uae them to improve the performance of communication
systems which rgﬁuire codes of a specialised nature. . This forms the

= L
topic of ongoing resgearch .work.

El

Readers not familiar' with th; théory of error-correcfing épdes’may
1 . .

find references [8], [9], and [10] useful. A compréhensive coverage of
algebraic coding'thedty and qf Fhe‘relevang‘relationships between
algebraic coding theo;y and digital signal brocgdsing is contained in

teferénce [1]. Also, the reader is.referred ta [11] and N2] for the

Euafhematiqal analysia and .description of the theory of -polynomial

- algebra as used in digital ;ignal proceésing. "
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1.1 Major Contributions of the Work

‘This work unifies a number of coﬁcepts which are furdamental to the
theories of error-correcting codes and digifal signal pr::essing. The
ma jor concributiéns of the work can be summarised as follows:

(1) Based on algoriéhms for aperiodic. convolution of two B
seqﬁences, a new class of error-correcting codes is described ﬂﬁ$;jr
in Chapter 4. | &§
(2) This class of codes possesses sever;I interestiyg features
vhich are highlighted in Sections 4.1 and 5.4, and Lemma 5.2. .
The algorithms and codes may be constructed over any field;
\Q?weyftt siﬁce systems predominately use binary codes, we
concentrate on constructions over GF(2).
(3) The new decoding procedure for this-class of codes is based on
. Lemma 5.1 and Theorem 5.1. Due to the inherent concur;ency of
the decoding algorithm described in Section 5.2 and '
1llustrated in Figurels.l, the decoder design ;:; be realised
using parallel architecture.
(4) It is demonstrated in Section 5.4 that these codes can be used

‘to provide adaptive error correction. This property is used

to describe & novel gen;ralised hybrid automatic repeat
request scheme which Incorporates such codes for error >
correction. This sclreme is described in Sections 7.1 and 7.3,'
and it is established in Section 7.5 that the proposed

+  generalisation regults in high "throughput' (Figures 7.i and

7.8) even during poor channel conditions.




1.2 Plan of the Thesis

-

The thesis ;s divided into two parts; Part I countains four chapters
and is an 1nde;th study of the relationship between the computation of
bilinear forms and the linear error-correcting codes. Part II contains
two chapters and describes an application of the class of linear codes

"obtained in Part 1, for providing adaptive error-correction in digital
léoimunication systems. A brief description of the chapters follows.

In Chapter 2, we study the multiplicative ngplexity of certain
néncommutative algorithms that may be used to compute a system of k
§111near forms anqrest;bliahga connection between linear (n,k,d) codes
and the algorithms. A particular system of bilinear forms is considered
and by using the property of duality, it is shown that the
mult{g}icative complexity of the biiinear form 1s the same as the
multiplicative complexity of a length (k+d~1) aperiodic convolution
algo;{thm. i .

In Chapter 3, efficient algorithms for aperiodic convolutions are
deQeloped. Two approaches for aperiodic convolution are described;nthe

-first approach reduces the problem of computing a large length aperiodic
convolution to a number of small length aperiodic convolutions using the
Chinese Remainder Theorem {CRT), while the second approach éonsists in
converting a one~dimensional aperiodic c9nv61ution into multidimensional
aperiodic convolutions. It is worthwhile to mention hbre that the
‘eﬁphasis in this thesis is on the first approach and the related class
of linear codes.

.In Chapter 4, bilinear algoritjfms for aperiodic convolution of

sequences defined over GF(2) ans%d F(3), and the corresponding linear



error-correcting codes are derived. These algorithms are based on the
two approaches developed in Chapter 3. Knowledge concerning the field
of constants 18 incorporated in the design of the ngorithms. As the
binary codes are most extensively used in preéent-day syste;s, the
emph;sis in -the thesis 1s on the study of binary l;near codes and thelr
properties. Some of the unique featurés of this new class of codes are
also illustrated in this chapter.

In Chapte; 5, we present the decoding procedure for the clasJ‘of
codes obtained from the aperiodic convolution algorithms developed in
the previous chapters. This decoding procedure possesses certain unique
features which are also highlighted in the sequel. It 18 establighed
that the length and the ;rror-correcting capabilit§ of these codes can
be varied easily, and consequently, the encoder/decodkr canlbe designed
to incorpoMste a large number of these codes into a single
configuration: -

Chapter 6 is a brief introduction to the basic automatic repeat
request (ARQ) schemes and their retransmission protocols. It also
dwells onvthe problem of the throughput of ARQ systems for high error
rate channels an;.we describe two types of hyﬁ;id ARQ techniques that
can be used to combat such a problei. o

The type—~I1 hybrid ARQ scheme of Chapter 6 is generalised in

Chapter 7.. This scheme is termed the GH-ARQ technique. It is

demonstrated that the class of codes derived in Chapters 4 and 5 can be

" used in GH-ARQ systems to provide high throughput for communication over

channels having non-stationary characteristics. Finally, the GH-ARQ
) i .

scheme is analysed with respect to the two important measures of

performance for ARQ systenms.

-
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-

In Chapter 8, the conclusions of the wotk are presented.

4 «

4

We hope that this research work will provide impetus, motivatiom,
and stimulation to a future researcher to explore further the

computational complexity aspects of bilinear forms, their relatigpships'

' g
to algebraic coding theory, and the applications of the resulting

classes of codes to digital communicatidns systems.
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CHAPTER 2 .

" ' «

BILINEAR FORMS AND LINEAR CODES

{

The mathematical preliminaries fundamental to the content of this

4

3

work are presented in this chapter. The multiplicative complexity of a

)

system of bilinear forms is defined and a number of useful results -7

relating the system to linear error-correcting codes are des:fibed,.l A
particular bilinear’ f&rm is considered and it ts shown that 1its
comp;xtation can be perfo;med as an aperiodic convolution.

The correspondence between linear (n,k,d) codes and algorithms for -
‘computing a system ¢ of k bilinear forms was first studied by Lempei et §
al [5] This correspondence indit‘:ates that the codeword length, n, is

equal to the multiplicative complexity of the algorithm used for

¢r

computing the system ¢ and, further, that the minimum distance of the
code, d, is lowerbounded by the minimum number of multiplications o g

! ]
require% to compute any linear combination of k forms in the bilinear

-

system. In the previous work, specific bilinear forms associated with

Bose-Chaudhary-Hocquenghem (BCH) and Reed-Solomon (RS) codes were

described along with an unconventional proced}xpe"for a part of the - f

" N’ ‘, «
décoding process. In other work along these lines, the connection P ]

¢

between algorithms used for computing systems of bilinear forms ‘and

binary linear-codes has been observed by Brockett et al [16].

. T~
2.1 Mathematic&], Preliminaries
(I 3

3

In the field} of arithmetic complexity, algebraic problems such as

function evaluation are analysed to determine the number of gifhmetic \

3 s
operations required by an algorithm. Let F be a given field and

X, ,X,,+.«, X_ be indeterminates over F. The extension of F, denoted 5y
1°72 T .

_9_ >
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! Ca F[xl,xz,..., xr], is the smallest commutative ring R such that R

contains F Ll{xl,xz,.. y X } The model of computation we employ is the

straight line program model, wherein a computation consists of a

14
sequence of instructions of the type .
fi “ 8 €] hi
where O is one of the operations +, - or x; fi is a variable not

appearing in any previous step; and gy and h

q are eith;r indeterminates,
# elements of F, or varlable names appearing on the left of the arrow at a
previous step. An element of F appearing in a computation is called a
- constant. A computaﬁioh computes E, a set of expressions in
F[x1 Xyreees xr], with respect to F 1f for each eipression e in’ E, there.
* is some gariable f in the computation such that the value of f = e. The
multiplicative complexity of an expression e is defined as the minimum
number of instructions of the specific type f1 + 8 x h1 requifed to
) compute e, where instructi 1nvolv1ng‘qdltiplicationh by constants are
not included’ [17]. ‘ ] .
v‘} “‘ 0 *
2.2 Multiplicative Complexity of Bilinear Forms and Linear Codes
Here we, consider the problem of computing a system ¢ of k bilinear
; CooA
N . forms which can be formulated in terms of computing the product of a
S .
\>' matrix X and a column vector y. Thus, the problem may be represented
as, ™
, - :5 . s
7 I Coemxg
’I . r
The elements of@e matrix X are.linear forms of the type ) a,x, N
. ’ . . i=]
‘ a, €F, in the indeterminates 'x.,x,,..., x_ and y is a column vector
& . i 172 _ r
(ylyzo-o ys)T. Here, T denotes matrix transposition.
& ' o
{ .

- . oy T
3 il s e

2

v
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It is well known that without division, bilinear forms can be
computed as linear combinations of products of pairs of iinear f;rms in
the indeterminates [18]. An algorithm to compute ¢ 1is ;n Expgession of
the form, L

C(AxxBy),
wherL'A,B,C are matrices of dimensions (nxr), (nxs), and (kxn),
regspectively, over F; 5213 the column vector (xlxz'-- xr)T; and x
" denotes a component-by—component multiplication of vectorse The
algorithm C(Azfax) for computing Xy is said to be noncom;;tative (NC).
Since the straightline program model of evaluating C(AxxBy) requires n
multiplications, the multiplicati#e complexity of the algorithm is n.
We now state various results that establish: (1) the lower bound for
thé multiplicat{ve compiéxzzy of the algorithms used to compute the
system of bilinear forms, and (ii) the connection between the bilinear
formg and linear (n,k,d) codes over an arbitrary finite field F. The
reader is referred to. [18)] and [5] for more detgiled descriptioﬁ and
proofs. .
Definition. Let Fm[xl,xz,...,xr] be the m—dimgnsidnal vector space w&th
components from F[xl,xz,...,xr], and F" be thé Q—dimgnsional vector

space with components from F. A set of vectors {11""’Xa} from

Fm[xl,xz,...,xr] is linearly independent modulo Fm, 1f for 8153500058

a
a o .

in F, 2 a v, in F 1implies that all the a, are zero. The row ypank of
i=1 ) .

i

a (k§s) matrix X modulo F° (referred to as row rank of X in the sequel)

is the number of lienarly independent rows of X modulo F®. The column
rank of X-modulo Fk is defined analogously. s @

Theorem 2.1. (A row-oriented lower bound on multiplications)

o

C e e ——— o ——

Let Xy be a systenr”of bilinear forms over F. If the row rank of X

-

~

il‘? - ’ - - '41-i-i:;
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is « (over F), then any computation of Xy requires at least «
multiplications. | . ]
Theorem 2.2. (A column-oriented lower bound on multiplications)

Let Xy be a system of bilinear forms over F. 1If the column rank of

X is B (over F), then’ény computation of Xy requires at least §
13

multiplications. _ -

Theorem 2.3. (A row and column oriented bound on multiplications)

Let Xy be a system of bilinear forms over F. If X has a submatrix '
1

"W with a rows and B columns such that for any vectors uand v in F* and

FB, respectively, E?WX is an element of ¥ 1if and only if '(iff) either

u = 9.0} v = 0, then any computation of Xy requires at least (a+f~1)

muitipl;cations. - . - a

¢

Let p be the.minimum number of multiplicatfohs required to compute
=4 . .
a system ¢ of k bilinear forms. Then, for any integer n » p, a

computation of ¢ can be e;pressed;as C(AxxBy) , where A,B, and C are

magiices of dimensions (nxr), (nxsﬂ, and (kxn), respectively, over F.
=y

If the row rank of X, pr),“}s k, then by Theorem 2.1, n > k and the

F

rank bf C is k. The matrix C can be treated as the generator matrix of

a linear (n,k) code over F.ilA typical codeword E? is ETC, where a is a.
. ‘;‘)

k-dimensional column'véctor of information symbols. Since the bilinear .

form E?Xl - E?C(Angx),'we see that the weight (number of nonzero
components) of ¢ cannot be less than the multiplicative complexity of
ot T - T
the bllinear form a Xy, which by Thearem 2.2, is not less than p(a X),
the row rank of g?x. Hence, we state the following theorem [5]:
Theorem 2.4. Given a system ¢ = Xy of k linearly independent bilinear

4

forms, for every computation of the form ( = b(A§XBz), the (an)'matrix
2 _ . '
C generates a linear (n,k,d) code over F, where

e e g et e —————— -
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d>d= min {p(g_TX)} , a#0

5
aer*

Here, d is the design distance of the linear code and d is the actual

minimum distance of the code generated. ‘ ]

2.3 Dual,of a Bilinear Form

Let z be the column vector (zlz2

soe zk)T and ((AxxBy) be a

! computz;tion of ¢« The P~dual of the computat;lon is the computation
AT(CTE_XBX); the R—-dual of the computation is the comp‘utation‘BT(A_)gCT_g_),.
The prdc'edure' employed to obtaln the dual for a given computation for a
éystem of bilinear forms is described in [5]. 1In this connection, the

* following theorem is also of interest to us ia this work [18].
Theorem 2.5. There 18 a computation for¢ the system of expressions
repregented by C(AxxBy) having n multiplications iff there is a
computat;ion having n multiplications for its P—dual 'AT(CT_z_;Bl); its
R:dual BT(AE_XCT_Z_); the vector reversed system of expressions C(ByxAx);
and the vector reverged system of expressions’ fog‘ the P-dual and R-dual
represented by AT(B}:XCTE_) and BT(CTEXAE:_), )tespectively. s

2.4 A Particular Bilinear Form

Let us consider the computation of a system ¢ of k bilinear forms

given by, .
. %o X b R ) *3-1 Yo
1 % < T 1 *3 N
“, - xx - ' :
. x x x [ ] [ » - [ ] L ]
% 03 l: R ’ . »—-yd-l
e . 1, .'.f,! . . * -
. . ,;'n‘” ? . . ,
" X Kow e e e X
| *k-1 *x gt - Xkba-3 ktd-2_ (2.1)

It can be easily shown for the aﬁov% form of X, that for Va € Fk, a#l0

4
and ¥p € Fd, b # Oy ve have g_TXQ_ # 0; therefore, p(_a_TX) = d for all
. " ' - e )
; . . .
- ' ﬂ

|
-
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p

nonzefo a € F*, Heﬁce, if C(AxxBy) is a computation of such a system of

bilinear forms, then C generates an (n,k,a) linear code over F with
d>» d, where n 18 the multipiicative complexity of the computation
C(AxxBy), which by Theorem 2.3, is at least k+d-l. If the actual
multiplicative cﬁmplexity of the computation, n, is equal to the

theoretical lowerbound given by k+d-1, i.e., if n = k+d-l, then the

corresponding linéar‘COQeé are referred to as maximum-distance-separable

codes [9]. ‘

In order to derive an algorithm for computing the system (2.1), we

consider the P-dual & of the above computation, AT(C?EXQx), where z is a

column vector given by (zozlo-- fl_l)T. It is observed that such a

computation corresponds to the following lower triangular system of

bilinear forms,

Zo 0 » 0O o o o 0 0 yO
z, z, 0 : : %
. z z ) )z o o o 0 * :
2 1 0
=2y . . X Yg-1 .
. . z 0
Zx-1 . ‘3
: . . ] ‘ ) z
I E Ze-1 0
N 0 0 ¢, 0 J 0 zk—l_ (2.2)

o

Here & is a column vector of bilinear forms (¢, ¢; <°° ON—I)T of
% *
length N, where N = k+d=i, From the structure of the system given in

(2.2), it 18 clear that tbe ¢1. i=0,1,..., N-1 can be considered

q

as the simple aperiodic convolution of two sequences, z ., j=0,1,...,

j)

k-1 of length k and Yy L =0,1,..., d-1 of JQngtﬁ d, L.e.,

\
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&

- , ¢1 = ) 25 Vg 1=0,1,..., N-1. (2.3)
0< j<k-1 . .
- 0<a¢d-1
=1
Let us define .the generating polynomial of the sequence zj, j=0,1,00.,
, k1 -
k-1 by Z(u) = ] zu”. Ve assume similar definitions for Y(u) and
- j:o .

®(u), the generating polynomials of the sequences Y and~¢i,
respectively. It is easily seen that &(u) = Z(u)Y(;). Therefore, the
dual bilinear form can be computed as a polynomial product. We
summarise this discussion in the following manner.

- The linear codes éenerated from the computation C(AxxBy) of the
system of bilinear forms defined by (2.1), have the parameters (n,k,a),
where n is the multiplicative complexity of the aperiodic convolﬁtion
algorithm of length N = k+d-1, and d » d. Note that if the |
myltiplicative complexity of the algorithm to compute the dual of a

[y

computation‘is n, then it follows from Theorem 2.5 that the multi-
plicative complexity of the computsﬁion itself 1s also n. ;f the -~
aperiodic convolution is computed as & = P(Qixxi), then by comparing the
expression for tﬁe dual to the co;putation C(AxxBy), we obtgin the \
generator matrix of the linear code as C = QT.

Using ‘the propéity that over~$ field F having at lgast N-1
elements, the myltiplicative complexity of an aperiodi; convolution of
length N expressed as Z(u)Y(u) is N, RS codes have been derived over

GF(pm) in [5]. In the'folfdwing‘chapters, we discuss the;design of

€

efficient algorithms for computing the aperiodic anvolutdon over an
arbitrary finite field using the Chinese remainder theorem and

multidimensional convolution techniques and generating the associated
¢

class of linear codes.
{




CHAPTER 3~ .
EFFICIENT ALGORITHMS FOR THE APERIODIC CONVOLUTION

OF SEQUENCES -

'
t

In this chapter, we develop efffcilent algorithms for the aperiodic

-

convolution of two sequences. Since the multiplicative complexity of
the aperiodic convolution also determincs the lengtﬁ of the linear
codes, 'a worthwhile objective is to develop efficient algorithms with as
low a multiplicative complexity as possible.,

Let us consider the aperiodic convolution of two' sequences
zj,,j = O,l,..f,kfl and'yi, = O,l,...,d-l as the polydomial product
P(u) = Z(u)Y(u),-where o(u), Z(u),‘and Y(u) are the gcncrating
polynomials of the corresponding sequences. Ihére are two techniquea.
that can be uscﬂ to compute such a pfoduct: the first techniquz
represents a la;ge degree polynomial prodqct‘ds a number of small degree
polynomiol products and the second technicuc converts a ongrdimensional
polynooial product intd multidimensional polynomial produects. The |
Chinese remainder theorem plays a central role in the computation of

convolutions and we begin this chapter by describing the theoren.

- .
3.1 Chinese Remainder Theorem for Polynomials.

Let a polynomial P(u) be the product of t relatively prime

. t
polynomials Pi(“)’ 1=1,2,...,t, that is, P(u) = Il Pi(“)' Two
i=1

polynomials Pi(u) and P (u) are relatively prime if they have no common

h|
polynomial factors. Then, in the ring of polynomials modulo P(u), the
polynomfal Y(u) can be expres%sd uniquely as a function of the

poiynomials Yi(u), obtained by reducing Y(u) modulo the polynomials

-16- ™
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... (CRT) can bé‘expreséeq as, - A !
PR ° Y . {
' t
Y(u) £ § S, (u)Yigu) modulo B(u), . ' .(3.1)
i=1 - .

where the polynomials éi{u).satisfy,the following congruences,
, ! ' ‘ v ? ' & ,' N \
Si(u) E 9 modulo Pj(u), j-1,2,...,§; j#1i : "(3.2)

1 modulo Pi(u)'

“«

The polynomials Si(u) have the form,

t.

S(u)'R(u) IR FO U
. j-l .

R ) j#i . . ; ‘

vhere the polynomials Ri(u)’are determined from the single congruence,

t ' Cw .

R (u) nme (u) 1 modulo P, (u) : (3.3)
= S
j#1
" Y
% The Chinese remainder theorem may be proved by reducing (3.1) modulo the
. ' various pelynomials P{(u) to obtain the’condition expressed in (3.2).

Since each of the polynomials P (uf is relatively prime to all the other
polynom!als Pj(u), j#i, P (u) has an inverse modulo every other |
polynomial. Such a constraint’ga egsential on the forms of the
ﬂ ) polyngmialé Pi(u) for Fhe existence of the polynomials Ri(“) that
‘satisfy (3.3). The problem of comp;ting the polynomials Ri(u) is the

polynomial equivaleét of the diophantine equation, and is solved by use

of Euclid's algoritha [12].

Pi(u),.i‘- 1,2,...,t. The Chinese ;eﬁaindér_thebren for polynomials . *

' = i- ?’ “‘;WW”‘WJV*
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.

3.2 Convolution Algorithms Based on the CRT

We begin this section by describing a basic procedure to compute P

Y

the aperiodic convolution as a polynomial product. N

3.2.1 Basic procedure

Consgider the polynomial product, pe

¢(§) = Z(u)Y(u) ) (3.4)

where the pof;;omials Z(u) and Y(u) are of degree k-1 and d-1, ' ' ‘qhh

' respectively. The degree of the polyn8m1a1 ®(u), therefore, is k+d-2.

Let N = k+d-1. Since &(u),is of degree N-1, ®(u) is unchanged if it is
defined modulo any polkynomial P(u) of degree st least N, that is,
®(u) = Z(u)Y(uw) modulo P(u), deg[P(u) >N (3.5) .

”~
If P(u) is the product of t relatively prime polynomials Pi(u)’

t 1
i=1,2,...,t, that 18, P(u) = 1II Pi(“)' then ®(u) can be computed by
1=1 )
firat reducing the polynomials Z(u) and Y(u) modulo P,(u), °  — -
- . i //
Zi(g) = Z(uf modulo Pi(u)
’ r i- 1,2;.nn’t ) ) (3-6)
Y,(u) £ Y(u) modulo P, (u)
i 11

The polynomial ®(u) is obtained by computing the t polynomial products,

P

and, then, using the CRT to uniquely reconstruct ®(u) from the products

,Qi(u) = Zi(u)Yi(u) modulo 'Pi(“)’

© e e o o

»

modulo Pi(“)'

3.2.2 Complexity of the basic procedure

1f M(ai) denotes the number of multiplications required to
calculate the ith polynomial product &1(u) = Zi(u)Yi(u) modulo Pi(u), E

where'deg[Pi(u)] =a, then the multiplicative complexity of the

—
—

- , 5 .

it ' p—————— A . N
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procedure, and congequently, the lemgth n of the linear code genenqggg\

is,

-~

- T
© no=MN) = ] M(ai) v (3.7)
1=1

\ ~

Note that the multiplicative complexity is deqoted by H(ai) for‘
convenience; however, the complexity depends on the precise form oé
Piku).

As was stated earlier, the objective is to develop algorithms with
as low a multiplicative complexity as possible for given values of k and
d. Therefore for a given degree D, of the polynomial P(u). the factors
Pi(u) are selected in such a way that the multiplicative complexity of
the computation Z(u)Y(u) modulo P(u) is as low as possib%e. In general,
a large number of relatively prime polynomial factors leads to a
computationally efficient procedure. With this in mind, the following

criteria should be satisfied:

(1) Pi(u) and P (ui relatively prime 1<i<j<t; i#],

3

, . _
(11) ) deg [Pi(l)] = deg [P(u)] = D, and
T i=]

(111) Each of the polynomials Pi(“) have as low a degree as '
possible.
Note that the form of the polynomials Pi(“) depends on the field of
constants, F. For example, there are two distinct polynomials of degree
. . \\ -
one defined over Z;}2), u and (utl), while there are three distinct
polynomials of degree one defined over GF(3), u,(u+l), and (u+2). Thus,
knowledge about thé field of constants is incorporated directly into the
&

u

design of the algorithm. )

s

s

e e o
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3.2.3 Improvements in the-basic procedure

*

The multiplicative complexity of the algorithm can be furthé’;
redu&;ed by suitabl& médifying the above described basic procedure to
permit intentional wraparound of the polynomial coefficients. For
exanple, {f M(N-1) < M(N)-1, then it is more efficient to calculate 0(‘u)
from the product Z(u)Y(u) modulo P'(u), where degﬁ?'(u)] = N-1, with one
extra multiplication, {.e., Z 1Y g-1"
< M(N)-3, it may be preferable to compute ®(u) from the product ~Z(u)Y(u’)

modulo P"(u), where deg[P"(u)] = N-2, with three more multiplications.

a

Also, 1f Pi(u) is of the form '(u-ai) 1, where a, € F, the product

i
¢y
Zi(u)Y:l (u) modulo (u—ai) is relatively less complex to compute, in

general, as compared to Zi(u)Yi(u) for several values of a'i. The
modified algorithm to comput‘{a the praduct Z(u)Y(u) can be describe:d in
three schemes, as given below:
Scheme 1. Computation of Z(u)Y(u), deg[Z(u)] = k-1, deg[Y(u)] = d-1.
If k = d =1, the result is obtained in one multiplication; otherwise,
select an integer s so as to minimi'se the total number of
multiplications required to compute,
(1) Z(u)¥(u) modulo P(u), deg[P(u) | = N-s, and
(11) i(u)‘?(u) modulo u® using scheme 3, where
Z(u) = z(u H)u*™ and F(u) = vt
\ . ay
Scheme 2. Computation of Zi(u)Yi(u) modulo Pi(“)' If Pi(u) = (u-ai) ,
vhere aie F, use Scheme 3 to compute 'Zi(u)}i(u) modulo Pi(u); other-
wise, conp\_xte the ordinary product Zi(u)Yi(u) and reduce modulo Pi(u).

" similarly, if M(N-2) < M(N-1)-2 -

R S s
L B
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. ‘ a
Scheme 3. Computation of Zi(u)Yi(u) modulo Pi(u), Pi(“) - (u‘ai) ,
ai € Fﬁg If a, = 0, use one of the following two methods which is least
computationaliy complex, in terms of multiplicative Eomplexity:
(1) Use Scheme 2. ' pa
aiwl
= M ' ese ' -
(11) Let Zi(u) zytz]ut +zai_1u and Yi(u)
~ a,-1 - L .
1 A sse ! A 1 4 . oo
y0+ylu+ +ya -4 and define mlll = ( z ,ze)( 2 yf),
i~ 2 e=1, f=1, .
then we have ’
zvyv +z|yv = +I;l . = m , - m B . /
11 12 22 ll 1112 11+1,£2 1 11,12 1 £1+1,12 X
It can befshown that the number of multiplications required to
6b the product Zi(u)Yi(u) modulo Pi(u) is givengby ﬂ(ﬁ+1)—1*fot '
a, #2p-1 and B(p+2) for a, = 28 [19]. : {.
1f a # 0, define Zi(u) - 21(u+ai) and Yi(u) - Y&(u+ai) and
a
compute 81(u) - Ei(u)Yi(u) modulo u i as described above. The product
¢i(u) is then given by Qi(u) - Qi(u-ai).
By using bilinear small degree polynomial multiplication A

algorithms, some of whiéh are given in Appendix A, and the procedure
described above, we c;n design bilinear algorithms for larger values of
N. Such a procedure is quite straightforward and requires mno further
elaboration. - . ‘

In the next chapter, several examples. of algorithms for aperiodic
convolution and the corresponding binary linear codes generated are
presented. ‘The vatiouéﬂproperties of such a family of codes are also

™

described. . . N .
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‘ 3.3 Multidimensional Convolution Algorithms 3 é;ﬁi‘\

i
3

In multidimensional coanvolution technique, the‘one—dimensional
‘,’polynomial product is computed by converting it into a multidimensienal’
r ‘e§9013nomial product. This technique can alternativeiy be 1nterppeted as . | ‘
an algorithm that uses small degree polynomial products recursively to
compute the product of large degree polynomials. The aperiodic .
convolution algorithm based on the CRT (described in the previous
gsection) and the multidimensional convolution algorith;'(describgd in
the following) may be compared in terms of the associated mdf?lplicativé
complexity. For a given value of k and d, the algorithm having the

smaller multiplicative complexity is preferred for reasomns discussed

earlier. Let us assume that we want to compute the polynomial product,

o(u)

Z(u)Y(u)

' "Nl
where o(u) = 2 ¢1u ,
1=0

f°~

N k-1 1 NT ) ’ ) - .
Z(u) zju s ' . ¢
j=0

- hats dapet A e s

d-1 st ' , o
) ylul . . . |
1=0 .

.and Y(u)

Let k and d be composite numbers having a common factor, that is, k and
d have the form k = klc and d = d, c. “Then 2(u)Y(u) may be transforimed _ .

into a two—dimensional polynomial product ian the foilowing manner.

i - N ’ "3
Define the quantities,
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s
j = Cj2+jl, jz-o,l,-.-,klgl; ]11’ jl-o,l,oco’c—l
L 0= C12+1.1, lé'o,l,-..,dl-l .

c J .

u, = u .
B | \ : G

and let Z(u’ul)’ Y(u,ul) and @(u,ul) denote the two-dimensional

<

polynomials corresponding to the polynomials Z(u),—Y(uf, and &(u),

i ) w . Pa
respectively. Using the above, the polynomials Z(u,u,) and Y(u,u,) can
. 1 1 X

be expressed as,

' cil - jl
Z(u) = Z(u,u,) = Z, (g,) u’, ,
| A e :
]. a -
T c~1 11 )
and  Y(u) = Y(u,u;) = ) Y, (u) u, -
2,=0 1 ¢
1 B
k,-1 ) . | e
) () = ] o )
where Z,(u,) = z u,, . .
jl. ! 1 jz-oa cj2+jl l‘ '
’ ‘h—-—q‘
-
) - . | :
o d;-1 L, ¢ ) . :
and Yy () = b Yoy 4pe U o . 5
1 2,=0 271 s
q‘\% ' 1 i
Thus, Z(u,ul) is a (c-1) degree polynomial in u, where ‘each coefficient, ' }

in turn, is a polynomial of degree (k,-l) in u . Similarly;‘Y(u,ul) is
a (c-1) degree polynomial in u, where each coefficient, in turn, is a v
polynomial of degree (dl-l) in u - The product of Z(u,ul) and Y(u,ul)

is a two-dimensional polynomial ¢(u,u§), and 1s\given by,

-1 -1 ‘ 3+ : ;

1 .
P(u,u,) = Z, (WY, (u) u (3.8)
ol 1120 jIZO Y v »

The polynomial $(u) may be obtained from ®(u,u,) simply by replacing u,

by u®. It is clear from (3.8) that Q(u,ul) is computed as the product
[
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of twq polyn ia;;, each of degree (c;l), in which ever} m;ltipligation
is replaced Hy the product of two polynomials“of degrees kkl—l? and
(di-l): Let ny be the number of multiplications required to compute the
ﬁroduct.of two polynomials of degrees (kl—l) and (51-1), and n, be the
numbet of multiplications required to compute the product qf‘two ‘
péf}ngmials_each of de%&ee (c~1). Hence, the product of two polynomials
of degrees (k-1) and (d-1) is computed in n wmultiplications, using
(3.8); where
n= oo, !
The above described two-dimensional approach can e;sily be

A}

extended to obtain m-dimensional (m'>2) convolution algorithms. It is

" worthwhile to mention here that this approéch is also based on
=

‘computations of products of small degree polynomials. However, in order

to convert a onp-dimensional polynomial product into a dultidimensional

_polynomial proddét, éhe lengths of the polynomials must be composite

with a common factor. Such a.constraint restricts the applicability of
this approach to the generation of linear codes. For example, 3, 5 and
7 have no composite factors and, consequently, this approach cannot be

employff if any onétdf k or d is equal to 3, §, or 7.
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CHAPTER 4

\

A NEW CLASS OF LINEAR CODES

r

In this chapter, we develop algorithms for aperiodic cbnvolution

over the finite field of interest and the related class of co@eg. As

the binary codes are most extensively used in éystems employing error—

correcting codes, the emphasis in this chapter is on the study of bimary
linear codes and their propertles.

binary 11near codes obtained from aperiodic convolution algorithms based

N

We beglﬁ’this chapter by deriving

* on the CRT. Such a class of linear codes possesses a number of ///

&

interegting properties that can be used <¢n digital communicatfon

' systems.

procedure is also gilven.

r

B -

A shift-register based implementation for the encoding

Finally, linear codes defined over GF(3) and

linear codes obtained from the multidimensional convolution algorithms

are also described.

4.1 -

g

»

CRT-Based Convolution Algoritﬁms Over GF(2) and Related Codes

‘Given /b

less than 6,

»

degree
degree
degree
deq?ee

degree

For each degree i, only those polynomialdlare l1sted which are not

elow is a 118t of certain.pelynomials 6:2: GF(Z) of degree

1:

,u, utl
2. 2 2

7

u, u+l, u +u+1.

3 3.2

3

3

2

u”, utu +utl,  uTtutl, uTtuT+l
4 4 4 2 4

u, u+l, u+u"+i,

5 5,4

u, utu +tutl, u +ﬁ&+1

u5+u3+u2+u+1

5 4 13

4 3 2 4 3

u +utl, u +u+u+u+1 u +u T+l

5""ul.+u3-!-uz-!’]. u5+u6+u2+u+1

5 3 b

u tu +uTdutl, utu+l

products of two distinct polynomials of- lower degree. For example,

(u3+u2) is not listed as a degree 3 polynomial; this is to help in the

’

=25~




j D =13: P(u)

+ choice of tﬁ% polynoyial P(u) as a product of relatively prime
polynomials Pigu), i=1,...,t. For a given degree of the polynomial
P(u); its factors areg selecEed in such a way that the multiplicative
complexity of Fhijsompﬁ}ation }(u)Y(u) modulo P(u) is ;s low as
possible.

%or example, given below 1s the list of polynomlals of degree up to

15 obtained by gelecting the appropriate polynomials from the list and

arranging them in‘the manner dés;ribed in Section 3.2, .

D= 3:  P(u) = (uwtl)(u’tutl)

D= 4 JP(u) = ) (ulhetl) ' \}%
D= 5: PB(u) = u(ui+l)(uiHutl). |

D= 6: P(u) = ul(uitl)(u’utl)

D= 7: P(u) = u(u+1)(u2+u-i-1)(u3+u}f’l)

D= 8  P(u) = u(ui+l)(uliurl)(utu’+)

D=’ 9  P(u) = ul(uitl)(uitutl) (y Hul+l)

© D =10 P(u) = u(uH)(uBhe) (ulrer) (ot S
C D=l B(w) = u(uBHl)(uBerl) (o ekl (w4 1

w2 (a1 ) (el ) (w3 ) (03 +uH)

D =12: P(u)

w21 ) (B ) (0 ) (u a2+
2

D= 14:  P(u) = u(uwtuirutl)(ultukl) (ututl) (utu+l)

w(u21 ) (2t ) (w3l ) (w341 ) (o et )

D = 15:. P(u)
Note that the choice of the polynomial P(u) is not unique for a given
degree D. For example, for D = 5, P(u) can have eit;er one of the two
forms, P(u) = uz(u+1)(u2+u+1) or P(u) = u(u2+1)(u2+u+1). However, the

nultiplicative complexity of the procedure Z{u)Y(u) modulo P(u) is the

v -

=

e
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same for all such choices. In the following, we derive bilinear

éouvolution algorithms of length 6 and 16 and the corresponding binary

N . [
codes. . ’

4.1.1 Bilinear éonvolution algorithm of length 6 and the corresponding
(' / ! 3
code
Since N = k+d-1 = 6, we have ktd = 7. Let d = 3 and k = 4.
2 3 2
Therefore, Z(u) zo+zlutzzu +z3u and Y(u) y0+y1u+y2u . , We choose
A
P(u) = u(u2+1)(u2+u+1) and s = 1, to compute the aperiodic convolution
d(u) = Z(u)Y(u). Let Pl(u) = u, P2(u) = (u2+1), and P3(u) = (u2+u+1).

Reducing the polynomials Z(u) aad Y(u) modulo each of Pi(u)’ we obtain

Zl(u) = Z(u) modulo u
1N "o
Pa= Y, (u) = Y(u) modulo u

yO‘
Lgt m, ;/&O-yo. Then ¢l(u) z.®(u) modulo u is equal to LI Similarly,
z,(u) = Z(u) modulo- (uZ+1)
= (zo+zz) + (zl+z3)u
Yz(u) Z Y(u) modulo (% +1)

) - (y0+y2) + ylu'
e, m =gy - g
=, = (zg¥z)+2y%25) * (yohy4,)
my = (z)¥25) © 5y

®(u) modulo (u’+1)

w,

then, @,(w)

*
-
4
]
s
i
4
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- (m1m3) + (m1+m2+m3)u.

Z(u) modulo (uZ+utl)

11}

Also, ‘ Z4(u)

= (zgtzytzy) + (z,425)u

Y3(u) = Y(u) modulo (u2+u+l)
—- = (yOﬂz) + (ylﬂz)u' ‘
’ -
Let, m = (zgfzgtzs) + (3ghy)
-~ \V mg = (zptz,+25) » (ygty;)
. , ' 0
. - me = (2y%2,) ¢ (y ) ‘
then, o @,(u) = &(u) modulo (u2+u+1)
T
= (m4+m6) + (m4+m5)u. 7
- \
.The polynomial ®(u) modulo P(u) can be recovered from the polynomials
Qi(u), {1 =1,2,3, using the CRT, ..
' x
3 * N
d(u) = ¥ Si(u)éi(u) modulo P(u).
i=1 -
The polynouiials Si(u), i=1,2,3 are found to be Sl(u) - (u“+u3+u+1), ) '

¢

5, (u) = (u +uP+u), end 55(w) = whl). If ou) = "6+°1'“+°2'“2+°5“3+°"‘“ A\\ |

modulo P{(u), then it can be shown that

!
% = T

[ - :
ol n e, Hmotm 4w ) o

1

¢! = a+m +m

2 = Wiagtng (4.1)

63 = mytm,im g

- ' - '
6 = mytn tatmgtntn
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L2

. Letting By = 2a0Yys the ordinary polynomial product &(u) = Z(u)¥(u) =

¢d+¢1u+¢2u +¢3u3+¢4u4+¢5u5 can be computed from (4.1) and the various

coefficients ¢, 6, L = 0,1,..

1)

Hence the bilinear form for
convolﬁtion is given by,

b 1000000
¢1 1101110
| -

¢2 0010011
¢3 1010110

o, | f1111011

05 0000000

e N S

- P[QE szJ.

«, 5 are given by,

- m

= m0+m1+m3+m 4+m 5+m7

25 6 7

- m0+m2+m l‘+m5

= m0+m1+m2+m3+m5+m6+m7
]
-m7.w

0 '

the computation of the above periodic

o[ [1o007}[ 2]
1 1010 || z
1 1101 z
L %2 |,
0 010 1/ '_?3_-
‘)
1 1011
1 1101
-
0110
0 .
;’M

o e

R
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The generator matrix for the corresponding (8,4,3) single error

i
correcting code is,

c= '
0 1 1 0 1 0 1 0
(00 0 1 1 1 1 0 1

This is the best possible binary code in terms of its rate and distance
properties, i.e., it is not possible to find a code with the same n and
d for which k is L? ger.

4.1.2 Bilinear convolition algorithm of length 16 and the corresponding

codes

Since N = k+d-1 *\}6, we have ktd = 17. Let k= 8 and d = 9;
g Y N
therefore,

- .

2 3 4 5 6 7 o
Z{u) zo+zlu+zzu +z3u +zau +z5u +z6u +z7u ‘

and, N
; 2, 3. 4, 5 6, 7. 8 L
Y(u) = y0+y1u+y2u +y3u +y,u +y5u +y6u +y7u +y8u . j
3,2,..,3 3, 2,..,2,
Choosing P(u) = u” (u+1)(u+utl)(u+u"+1)(u"+utl) and s = 3, it can be
shown that the polynomiél product ®(u) = Z(u)Y(u) can be computed using
the algorithm P[QzxRy], where the matrices P, Q and R are given by,

~

. 5




-31-

0000000600000

e

1

1

1

ty

1

1

1

it




-32-

and, \\\w;

000

o
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000
0000001111011100011001100000
0000010110110111001110100011

0000001101110010110010101100

00001011100101100101101101 0_|

The matrix QT is also thé generator matrix of a (28,8,9) four

| 0

error-correcting code. The above matrices can be easily modified to
accomodate the case when k = 6 and d = 11. The generator matrix of the

corresponding (28,6,11) five .error-correcting code can be shown to be,




PRI

-33-

10011101101 1.0 010110010 i 00000
0101001190110 1.0 11 0\8 1011000000
0010110111000101100101100 0,00
0000001110111001110111000011

0000010101101010111100001100

} L_O 000001111011100 6 11001111010
~

Similarly, the generator matrix of the (28,10,7) éhree error-correcting
code can be obgained as,

" MM 001110110110010110010400000]
0101001101101011001011000000
é 010110111000101100101100000
’ 000000111 011 1001110111000000
0000010101101110111100000000
000000111101110001 1‘0 01100000
0000010110110111001110%00000
0000001101110 6 1011001010001 1,
0000010111001011001011001100

0000001110100101100101111010

— —

Table 4.1 lists selected Binary linear codes that can be obtained using
the CRT based convolutiod algorithm for length up to 30 along with their

parameters.

b s e
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TABLE 4.1

BINARY LINEAR CODES OBTAINED FROM THE APERIODIC

CONVOLUTION ALGORITHM

Length of Design
'Conv. N Codelength n Dimension k Distance d
© 5 6% 3 3
6 8% 4
8 5
7 10 5 . 3
10% 3 5
8 12
12% 5
12% 2 7
9 14 7 3
‘ 14% 5 5
14% 3 7
10 16 8 3
16
T 16% 4 7
11 18 9 3
18 7 .
18% 5 7
18% 3 9
12 20 10 3
20 8 5
20 7
20% 9

i RIS
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Note that all the codes marked with an asterisk are either the same as

o~ N\

¢

I35.

1

TABLE 4.1 (CONTINUED)

Length of ' Design
Conv. N Codelength n Dimension k Distance d
13 22 9 5
y 22 7 7
22% 5 9
22% 3 11
14 24 10 5
24 7
24% S
k 24# 11
15 26 11 5
26 9 7
26% 7 9
26% 5 11
26% 3 13
16 ‘28 10 7
28#% .- 9
28* 11
28% 13
17 30 11 7
30 .9 9
30%* 7 11
30% 5 13
30 3 . 15

the best known cof:f}g;éﬁ%ry close to the already known best codes

¢
Ty

i

.
b
IS S
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[10,20]. The 1ist of ;inary codes that can be derived using the

algériyhm in this section is quite large and we have derived codes of

jlgngth up to 100 and distance up to 41. There are certain advartages to

this ‘approach for linear code geheration: s;me of which have not beeﬁv =
previously observed: (

Q\\Sf Knowing k and d, we can derive an error’correctfng code for

4 . these parameters. A wide cholce 1s possible because the’ .
codes are not restricted to be cyclic. \
(11) The codes have the unique property that k+d-1 = c&nstant;
‘ this give; a particular set of codes of length n. For
eiample, the (56,9,7), (26,7,9), and (26,5,11) codes belong
o - . a

to the same set. There 1is, therefore, a systematic way to

decrease (iﬁbrease) k in order to increase (decrease) d for

o

; @ glven n.

4 )

.
1

(ii11) The columns of the.genetatgr matrix-C’/correspond to (a)
multiplications required- to compute the product Z(u)Y(u)
modulo P(u) or, (b) muitiplicat;ons‘?equiredﬁto compute the 1 ' 1
" product i(u)igu) modulo u® (wraparound). We can decrease k
by suitably shorteniﬁg the columns of the matrix C. The

. P2
columns corresponding to (a) are shortened from the bottom

¥
<
.

A and the columns corresponding to (b) are shortened from the
top. For example, the generator matrix of the (12,6,3) code

is given by,

e ' .




(iv)

- wraparound. Hence, the ge%:rator\matrix of the (12,4,5)

i st
1 0 1 10 11 01 00 2
’ 01 101 16011000
" Cume
000101110 000]°"
C= | ‘ . (4.2)
000011101000 ’
00 01010 110 11
00001 11 101 01} ) .-

Here, the last 3 columns of the matrix C ‘corresponds to the

code can be obtained by shortening the columns of the matrix

"C appropriately as shown in (4.2). The generator matrix of

the (12,4,5) code, therefore, is oo 5
o ™ 0 1 10 11 010 0 O] R
01 101.1011000
C = : (4.3) .
00 010 1110011 7
000011101190 1_| {

Thus, a change in k does not imply a, significant change in
the encoding procedure. It is worthwhile to mention here .

that a change ih k does not alter the decoding procedure

[

significan'tg: This point is illustrated further by the .
generalised decoding procedure pres?nted in the next

chapter. s -
For a giveﬁ value of k, 1t is possible to decrease
(increase) the minimum distance d of thé code by simply .
deleting (adding) columns of the generator matrix, thereby

leading to an appropriate decrease (incfease) in the length

n of the code. The encoder/decoder design for all such
AN ° *

L

/
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codes remains essentially unaltered. The system designer,

therefore, can incorporate a wide range of different codes

in a singré encoder/decoder structure. This property is

egtablished 1;'Chapter S. "
. .~‘£‘
(v) The above two points indicate that the efror—correcting

capability [(d—l)/2], of the codes generated can be altered
P quite easily, a feature which can be valuable in a
’
fluctuating noise environment. Now, in many cases, one has

to change code families and, consequently, the entire

~

encoding/decoding procedure to accommodate such situations.

)

4.2 CRT~Based Convolution Algorithm Over GF(3) and Related Codes

Given below is a list of certain polynomials over GF(3) of degree *
less than 4,

degree 1: u, utl, ut2 ©

’

degree 2:  uZ, ultl, ultutl, ultut2, uOH2uk2, ut2utl

3 3 3 3 3 3, 2

. degree 3: u”, u™tl, u'+2, @7 +2utl, h +2ut+2, utu +2,

3

u +u2+u+2 R u3+u2

+2utl, u3+2u2f1, u3+202+u+1,

'
B

. 'u u3+2ugi2u+2 - ¥
Once-agaln, kor each degree i; only those polynomials are listed which
are not products of two distinct polynomials of lower degree. Based on
fée ébove polynom}als; given:below ig the 1list of polynomials of degrees
upto 10, obtained 30 as to minimise the complexity of computing the
polynemial prod;ct Z(u)¥(u) mo@ulo P(u).'

D = 3: P(u) = u(utl){ut2) ‘ -

D =4 P(u) = (wH)(wt2)(ultut2)

RN

D =i5: P(u) = u(uHl)(uk2)(u>+ut2) . B .

@
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D A6 P(u) =u (u+l)(u+2)(u +u+2)
k Z;_ P(u)

D = 8: P(u)

u(utl) (utr2) (u +u+2)(u +2utl)

aCurtD) (u+1) (24w 2) (02420t )

D = 9: P(u)

w(uHl) (u2) (a1 ) (w2 uk2) (w2420t 2)

'D =10: P(u) uz(un)(mg)(u2+1‘)(u2+u+2')(u2+2u+2)

“In the following, we derive bilinear convolution algorithm of length 8

and the corresponding code over GF(3).

} ‘ .
4:2.1 Bilinear convolution algorithm of length 8 and the corresponding

-

ade
Since N = ktd-1 = 8, we have ktd = 9, Let k = 4 and d = 5.

Therefore, Z(u) = z +z_ ut...+z u3 and Y(u) =y +y1u+~..+y4u . We/choose

0 1 3
P(u) = u(u+1)(u+2)(u +ut+2)(u +2u+2) and s = 1 to -compute the ape/riodic

convolution ®(u) = Z(u)Y(u). Let Py (u) = u, Py(u) = (1), P,y(u) =

(ut2), Pa(u) - (u2+u+2),~ and P5(u) -"(u2+2u+2). Reducing the

polynomials Z(u) and Y(u) modulo each of Pi(u), we obtain

A ~
Zl(u) = Z(u) modulo u -
' = z ‘¢ /
P 0
o F
J
'{i(e) = Y(u) modulo u
- \
Yo- '
. t gl
Let By = 25 Similarly, ?
Zz(u) = Z(u) modulo (u+l)
~ -
: z0+2z1+zz+223
Yz(u) = Y(u) -modulo (utl)
= Yo*2y 1y t2y4hy,
- ! \ *
Let . my (z5+22]+z,+22,) (Y0+2y1+yz+2y3+y4).

..f
n,L?

e

<
il TR e - > [N A

[

- e o vn

s s

oy .

i
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Also, “ Z,(w)Z 2(u)" modulo (uw2)
k ; B = 2gtzytzyteg
A4 Y,(u) = Y(u) modulo (u+2)
o ERA e S
Let, . Tom, = (z0+zl+22+23) . (y0+y1+y2+y3+ya).
. Also, | g 24(‘-1) = Z(u) modulo (u2+u+2)
‘ ] - (zo+z2+2z3) + (zl+2z2+223)u
Ya(lrl) = Y(u) modulo (u2+u+2)
' = (ygH,*2y4%2y,) + (3, 42y 42y )u.
LeF, S mg = (zg¥2,422,) « (yoty,+2yq,+2y))
-, ‘ . m, = (zl+222+223) . &xi4-2y2+2y3)
mg = (zgtz)tz3) © (ygty Hyghly,).
Aiso, ' | ZS(“) = Z(u) modulo (u2+2u+2)’
. = (zo+22+z3) + (z'1+zg+2z3)u
@ Ys(u) = Y(u) modulo (u2+2u+2)
':‘ ’ ' o (yowzﬁ:3+2y4)"+ (y,+y, *2y,)u.
Let, L mgm Ggrrgtey) ¢ (g,

n, = (zl+zz+223) . (yl+y2+2y3)
By ™. (zo+z1+222) (((-yn-!fyl+2y2+2y'4)

Let mg = z,°y, ‘(wtabarou‘nd). The multiplications my, m,,..., mg are

I

sufficient to compute ®¥(u) Z(u)Y(u) modulo P(u). Se

The 5eneruto't mqt‘x of the associated (10,4,5) linear code

defined over GF(3) is given by, -




.
PR —

R

41~ .

— e p—
11 11 011010
~ 0 2 10 11 011 0 -
¢ 01 1120112 O
02 12 211200 \
| 0 1_ 1 %“ o 2 2 Q 2 1 |
. The above code compares well with the omnly known noantrivial perfect ¥

,nonbinary (11,6,5) ternary code [9]. Also, it can be easily observed

that the length of ternary codes is‘smaller than the length of binary
codes for the same value of k and d. This is due to the fact that as
the field of constants grows in size, the number of poi}nomials of any
degree defined over the field also grows. Table-d.Z contains a list of
selectgd ternary codes that can be obtained from the CRI-based aperiodic

convolution algorithms.

\‘\
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TABLE 4.2

TERNARY LINEAR CODES OBTAINED FROM THE APERIODIC
CONVOLUTION ALGORITHM

Length of Design
Conv. N ' (IZodelength n Dimension k Distance d
5 ) 6 3 3
) 7 4 3
7 2 5
7 9 5 3
9 - 3 5
8 .10 6
10 5
10 2
9 12 7 3
12 5
12 3
10 13 B8 3
13 . 5
. 13 4 7
11 ° 15 9 3
15 7 5
o 15 5 7
15 3 9
12 17 10 3
17 - 8- 5
17 6 7
© 17 4 9

o
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4.3 A shift-Register Based Encoding Procedure

t
Let P(u) be of the form P(u) = I Pi(u) and Z{u) repregent the
i=1

k-dimensional information vector as a polynomial of degree k-1. The
encoding procedure then corresponds to the following steps:
. (i) Compute Zi(ul = Z(u) modulo Pi(u), 1 =1,2,...,t.

»
(i1) Fqrm the ‘appropriate linear combinations of the coefficients

-~ \,,//
of Zi(u), so that the product Zi(u)Yi(u) modulo Pi(u) can be
conputed. '

(i11) Form the appropriate 1inear combinations of the Fpefficients
of E(u), so that the product E(u)?(u) modulo u® can be
computed (wraparound).

Note that step (iii) can be treated as a special case of step (iif
and, therefore, we will only study (i) and (11i) for the encoder design.
It is iiear that Zi(u) 1s the remainder obtained by d;viding Z(u) by
Pi(u)fJ Such a procedure can be implemented by a division circuiF, which
is a ai—étage shift-register with feedback connections determined
according to Pi(u) (a{:9Eg[P(u)])\[9]. Figure 4.1 shows the three basic
types of units that\ébnstitute a shift-register. Based on Figure 4.1,
the general configuration of‘; shift-register based division circuit is
shown in Figure 4.2.

The multipliers and the adders shown in Figure 4.2 are from the
D
appropriate field. 1In the binary case, the multipliers and the adders

"are from GF(2) and, consequently, each of tﬁe multiplier cogfficient is

‘gither 0 (open circuit) or 1 (short circuit) and the adders are réflaced

by exclusive—0ORVgates. We require t such circuits, one for each of the

. polynomials Pi(h)z Figure 4.3(a)-(f) shows the shift-register

e ] — - SR—
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(a). Adder ~

.,\(b)' Delay or storage unit

-

(c). Multiplier (multiplies by a)
L}

K

o d

-

Figure 4.1. The three basic units for sbift-register
implementation '
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(a). P(u) = utl (b). P(u) = u’+l
< ) < ’ r—e
) 4 L < 4
" (e). P(u) = ultutl , (d). P(u) = uwtultutl

- -+ - - -
O ‘——-4{___ + | \/ U
(€). P(u) = witulsl (£). P(u) = wutl

oy,
Figure 4.3. Examples of shift-register circuit for division
by a polynomial P(u) -
S
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configurations wigh feedback connections for some of the polynomials
defined over GF(ZSL he

If Pi(u) is irreducible over the field of comphtation, Zi(u)Yi(u)
modulo Pi(u) is computed by first computing Zi(u)Yi(u) and then reducing
the product modulo Pi(u). Therefore, in this case, the equations for
the linear combinations of the coefficients of Zi(u) are independent of
Pi(u). Figure 4.4 shows the linear combinatlons of the coeffictents of
Zi(u) as required by (ii) for some\gf.ftf polynomials Pi(u) defined over
GF(2).

We now consider the encoder design for the (24,6,9) binary code.
Here, P(u) = uz(u2+1)(u2+u+1)(u3+u2+1)(u3+u+l) and s = 2, The shift-
register implementation of the encoder 1s shown in Figufe 4.5. fhe

A d

information vector is represented as Z{u) = z ut...+z us. The

tz) 5

0

encoder circuit requires 14 delay units and 17 exclusive-OR gates,

——
ﬂ.4 Multidimensional Convolution Algorithm And Related Codes
' o
& It was demonstrated in’'Section 3.3 that a one-dimensional

polynomial product car be converted into a multidimensional polynopial
product for composite k and d, where k and d are the lengths of the
polynomials Z(u) and Y(u), respectively. For example, if k = klc and
d = dlc, the product Z(u)Y(u) is computed as a twd-dimensional
polynomial product. The first dimension corresponds to the pfoduct of
two polynomials of degrees (c-1) each and the second .dimension
corresponds to the product of two polynomials of degrees (kl—l) and
(dl-l). Each of these products can be computed either by using the
algorithms derived on the basis of the CRT or they could be further

decomposed into multidimensional polynomial products. e

s = e e - “ e ol
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It is clear from the description heré, that the_f%rst dimension

-

corresponds to the generation of a code Vl having dimension equal to c
and minimum distance equal to ¢; and the second dimension corresponds

to the generation of a code V, having dimension equal to k1 and minimun

2

distance equal to dl' Hence, the resulting code can be interpreted as

the product code obtained as the product of the codes V. and V2 [8]._

1

-
he algebraic structure of the product codes are well

The properties and t
ot

known, and therefore, the multidimensigaal convolution appfoach will not
be pursued further. However,\we conclude this section with an example
»
illustrating the multidimensional approach for computing the product
®(u) = Z(u)Y(u), where k = d = 4, and the corresponding linear code over

GF(2).

Using the notations described in Section 3.3, the one-dimensional

- polynomials Z(u) and Y(u) are converted to two-dimensional polynomials

as follows,

Z(u,hl) = (zo+zzu ) + (zl+z3u1)u

Zo(up) + 2, (updu
and Y(u,ul) - (y0+y201) +\(Y1+736?)0

Yo(ul) + Yl(ul)u '

2

where =4 .

\11 .
The two-dimensional product @(u,ﬁl) = Z(u,ul)Y(u,ul) is computed
by recursively using Algotiéhm B described in Appendix A. The '
computations are given by, ‘ ‘
Define m, = Zo(ul)-Yo(ul)
3y = 2y (e)eYy(uy)

m, = (20042, (u)) ]+ [ Y0 4T, (u)) ]

~

4,

Souniehs
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L'? [ . \\I

‘The two-dimensional polynomial @(q,ul) is then computed as,

2
Q(u,ul) =, + (EO+21+9-2)‘1 + mu .

. By By and m,, in turn, are computed as follows,‘
) : v ‘
Let, mo = zovyo ,
™ T BT, )
- ) L[] ’ ki
‘ mz (zo+zz) (YO+Y2)) }
s #
then, m, = m0/+ (m0+m1+‘1n2):%+m1u1 .
Let, - T Ut S WP ) ' 9
\ckkf Z3%Y; ' - ) ! -
\ Ry
mg = (z,+2,) ¢ (y,%7,)
L . 2 o
then, o, /o, (,maﬂaijns)ul + mu.
Il7 - ,(22ﬂ3((y2+‘y3) ) ' ' . )\—..
ma = (ZO+ZI+ZZ+Z3) . (yOﬂlﬂz"'y3)! M
] ‘ 2 .
t‘;h‘en, m, = m + $m6+m7+m8)u1 + mau, .

\ )
The polynomial &(u) is obtained from Q(u,ul) by replacing uy by u2. The

resulting (9,4,4) code is the two~dimensienal product code, where each

of the constituent codes are (3,2,2) codes. The entire encoding

~

procedure can be considered as an arrangement of the four ]‘w{xfomation

A

bitr&to a squire (2x2) matrix with a parity bit adjoined to each row

y) =0,

. then the encoding can be shown pictorially as, -

and column of the matrix. For- éxanple, if zo-l, zl-O. z.=1, and Z,

-

A}

. .
5 . A
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It is interesting to observe here that this algorithm is used in the
CRT-based convolution approach: for tle\computation ¢1’(u) = Zi(u)Yi(u)
modp*o Pi(u), if deg[Pi(u)] = 4,  and Pi(u) 1s irreducible. .
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y CHAPTER 5 <

ERROR DETECTION AND ERROR CORRECTION )

In this chapter, we consider the problem of error detection and
error correction for the linear codes generated by the aperiodic

convolution algorithms based on the CRT. For a code of length n,

obtained as a result of an aperiodic convolution of length N = (k+d‘15,
it is shown that the decoder design does not change significantly when
() k and d are var%qﬁ in a way that N, and consequently, n is a

constant, and (ii) k'is kept” constant and d is varied, changing N and n

) -
’f;robley of error detection for, such O

.accordingly. We first consider the
"~
n

codes.

5.1 Error Detection ‘ o~

.With this technique of error contrel, a recei block of digits
correbpondiqg to a transmitted codeworg is inspected tojfascertain 1if it
is a valid codeword. An error pattern willhgo undetected by the decoder
iff it 1s'1dent1cal to one of the non-zero codewords. irhis certainly is
the case if the all-zero codéword is trdnsmitted, but also holds for the
transmission of an arbitrary codeword due to the linearity of the code. )
An.(n,k) linear code forms a vechr gpace of dimensién k, with |
corresponding null space of diﬁension (n-k). fhe null space {s spanned
by a set of (n-k) linearly independent (henceforth,;bbreviated as 2.1.)
vectors; hence, a réceivéd‘vector is ;ssumed.erEOt free 1f it satisfies
. (o-k) 2.1, équationé. In the following, ve_sstablish a procedure to

obtain the (n-k) %.1. equations for a given set of codes of length, or

complexity, n.




Prag—

v an

' for each of the t relatively prime polynomials Pi(u) of degree a

b .- =54- '
AN
. We see. from Chapter 3 that the generator matrix C of qﬁch a linear

Y

code has a blgck structure. Such a-structure arises due to a
N . L4

‘computation of the type,

s

$4(u) = 2, (WY, (u) modulo P, (u) { =~1;'z,..., t

i)

{=1,2, i.., t. Also, there is a last block that corresponds to the

. cohputatign E(u) ?(9) modqlo uB (wraparound). There are-(t+l) blocks in

the generator matrix C of the‘(n,k,d) code; we label these plocks of C
as‘C;, i=12,..., t+i: The number 6f columns in each hlock is given
by.M(gi)) i=1,2,..., t+l. Since 5252 355‘of the bloé&s corresponds to
a computation of the type described above, it 1is clear that in each
block Ci’ there are exactly ay (at+1 = g) columns which are f.1. and ghe
remaining [M(ai) - ;i] columns are linearly dependent on them.
There?ore, each such block gives rise to [M(ai) - ai] parity check

equations. It is assumed that the dimension k of the code under

i=1,2,..., t+1. This assumption

investigation, is greater than ai,

does not restrict our analysis, rather it simplifies it. Any received
vector can be segmented into t+l partitions gyd the gart of the reéeived
14

vector that corresponds to each block C, should satisfy the [M(ai) - ai]

i
par1t§ check equations for th;t block. A conventional procedufg‘mdy be
employed to find tpe [M(ai) - ai] l.i.\par{ty check eguationg én ea;h
block, with the reader referred to [9]'for the details‘i. e shall,
however, illustrate the technique in the sequel by an example.‘

Thus; we have estgbliéhed [M(ai) - ai];parity check equations
satisfied by-the code digits ébrrespondiné to each one of the blocks.

Moreover, they are also %£.i, of the [M(a ) - aj} parity check equations

b
satisfied by the code symbols corresponding to the block Cj’ J#1. The
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total number of parity check equations obtained by this straightforward

procedure is,

t‘{l [ t+l t"il
- ¢ [M(e)) —a,] = ) M(a,) - a
i=1 1 t i=] 1 =] 1
= n-N
, -k - @ - ’ |
_since N = (kt+d-1). X

JThis set of (n-N) parity qbeck equations does not change when the
value of k 1s increased (decreased), as n and N are constant for a given
ser of linear codes obtained from the convolution algorithm for a fixed
length. Wé also observe that there is a need to obtain an additional

(é-l) parity check equations which are £.1. Jf those obtained  above.

]

These are obtained from the relations between the columns of different

blocks of C &

’

‘Each block C i=1,2,..., t of C is in two parts. The first «

1 .

-

i’

columns of each block can always be arranged in a way so as to
correspond to the polynomial

Zig?) = Z(u) modu}o Pi(u), 1=1,2,..., t.
The remaining [M(ai) - qi] columns arise due to the multiplicative

complexiﬁy of the block C,, and we have already established‘the

i

corresponding“parity check equationst In each block Ci’ lét us consider
only the first ay columns. The polynomial Z(u)Lfan be recov;;gﬁ\from
the. residue polynomials Zi(u)’ i= },2,..., t using qhe.CkT. Such a
reconstruction gives a polynomial of degree D-1, where D is the degree
of the polynomial P(u). However, since the information poiynomial is

of degree k-1, for a reconstructed polynomfal to correspond ‘to an

<+ oo s o = ¢ oot s e e . S -

P
. A
S
-
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infofmation polynomial, its last [(D-l) - (k—l)] = (D-k) coefficients

should be identically zero. If Z{u) is th; reconstructed polynomial,

(1) The first k coefficients are the information bigs, if no errors
ﬁave taken place. | ’

(ii) The expressionsfor the last (D—g) coefficients provide us with

(D-k) R2.i. parity check equations, i.e., if the reconstructed

polynomial Z(u) is,

- D_l
Z(u) 2 + z,u + oes + Zp U Lo
" then w%’have, zy =0 ¥ 1 =k,k+l,..., D-1 (5.1)
The first @41 ( = s) columns of the block corresponding to the

wraparound prowfde us with the polynomial

S - - S
Z(u) Zpy tz gut etz v (5.2)

1f no errors have taken place, then the corresponding coefficients of

’

the polynomial Z(u) and Z(u) should be the samé, i.e.,

z, = z f=k1,.e., ks (5.3)

Equation (5.3) 15 an additional set of 8 L.1. equations. The total
number of equations given by (5 1) and (5.3) 48 (D-k) + s = (D+s~k).
Also, N = (D+s) = (k+d-1) and, therefose, (D+s-k) = (d-1). Hence, the
p;rity check equations given by (5.1) and’ (5.3) provide the remaining
(d-1) paritcy check\\suations. These equations are also f.1., due to the
fact that any coefficient of a polynomial cannot be expressed as a
linear sum of the other coefficients.

0f these (d-1) parity check equations obtained from (5.1) and

(5.3), the parity check equations given by (5.3) are altered, and

PN
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\

d; = |d1-d| equations are added to (5.1) or dropped froﬁ (5.%).when a

new code is selected from the same set, depending on whether k 1s

decreased or increasea, where dl is the minimum digtance of‘thé selected

code. Néte that all the codes in a given set have the same(zode length

n. It 18 also worthwhile to mention that the above p;ocedure not only

gives the required set of parity check equations, but it Also.provides 7225

the equations that can be used to find the transmitted message

¢

polynomial once the received code vector is found to contain no errors.

The complete ‘procedure to /find the parity check equations i1s {llustrated

Iy

below for the (12,4,5) code.

Examé&e. Consider -the (12,4,5) code. Sincé\N = k+d-1 =8, we have

ktd = 9. The polynomials are Z(u) = z0+zlu+zzu2'+z3u3 and Y(u) =

y0+y1u+"-+y4u4. Let Pl(u) - uz, Pz(u)’- (u2+1), and PG(U) = (u2+u+1),

and therefore, P(u) = uz(u2+1)(u2+u+1) and 8 = 2 are used to compute ol

.

the aperiodic convolution $(u) = Z(u)¥(u). Reducing the polynomials)

2(u) and Y(u) monin\each of P,(u), ve obtain y X
Zl(u) z Z(u) modulo “2
’. b zohlu N - -‘
- <2
Yl(u) = Y(u) modulo u
. yo'.'ylu’
Let, By = Zy°Yp
b S R )
[ nz - (zohl) * (YOﬂl)'
‘ %.
H
‘ ‘ ] !
3
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Also, | Z,(u) = Z(u) modulo (ul+1)
= (zo+zz) +(zl+z3)u

Y(u) modulo (u2+1)

-4
~
”~~
[
A
n

Ao (YO+Y2+YI') + (Y1+Y3)u- ‘
Let, . ' m3 - (zo+z2) * (yO+yZ+y‘)
m, = (zl+z3) . (y1+y3)

mg = (zo+zl+zz+z3) . (y0+y1+...+y4).

Also, 2,(u) = Z(u) modulo (u’huH)
/’ - (zo+'z2+z3) + (z,tz,)u ; .
Y3(;1) = Y(u) modulo (u2+u+l) ‘ oo
= (3ghyy vy + Gt e .
Let,’ mg = (2g¥zp73) * (35*9,%Y3)

' II7 - (Zlﬂz) . (Ylﬂz*‘yb)

g "(zohl"'za) i (Yo"'ylﬂj"yl‘)-

For the wraparound, let

5 = 5y,
o ¥ 273 ‘
mll - (234'82) o (Y4+Y3)-

A

It is easy to establigh that the 12 multiplications are sufficient to
determine the polynomial. product bi(u) S Zi(u)Yi(u) modulo Pi(“) as well

as t6 compute the ordinary polynomial product Z(u)Y(u). The Qpnerator




)
~ﬁ"“’®

¥ ' _ .
-59=
matrix of the corresponding (12,4,5) code is given by,
- ) ! |- —_
1 0 1 1 0 1 1 01, 00O
| \ | :
011|010|011|ooo P
. C = ' = [€,,C,4Cx C, ]
00,0:101|110|011 11721730
|
ooo|011'101|101~
— | , | | — .
t;;“‘<F9r ' For ' For wrap
P (w) | Py(w) Py | ’

It is worthwhile to mention here that the design minimum distance of the
above code 18 5, while the actual minimum distance 18 6. Each of the
blocks Cl’ CZ’ and C3 corresponding to the computations modulo Pl(u),

P2(")’ and Pa(u), respectively, provide M(2) - 2 = 3 - 2 = 1 parity

check equation. These equations are given by,

For Pl(u) cO«!—cl‘i—c2 =0 | /
For Pz(u) c3+c4+c5 = Q . (5.4) e

For P3(u) c6+c7+c8 =0

where <y is the 1ith digit of the code vector ¢ = (coclvo-cll). The
block“ca for the wraparound computation provides 1 equation, given by,

c9+clo+c11 =0 . (5.5)

Now, if we take
Zi(u) 2 Z(u) modulo Pi(“)’ 1i=1,2,3,

-

» then, using the CRT, the polynomial Z(u) can be written as ;

ey
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s

 Z(w)

where Z, ™ C

5
z +zlu+i..f zsu N a o '

(=R =]

wN
[ ]
[gll

1° 4
c. tc.+c

2 T Cotetegte

6

23 - c0+c3+c4+c7

Z, = c1+c3+c4+c6 >
Zg = c0+cl+c3+c7
4
If Z(u) corresponds to a message polynomial of degree 3, then,
z, = zg= 0 o (5.6)
Also, the wraparound corresponds to the polynomial coefficient Z,, and
Z4, and therefore,
Z,tc, = 0 or c tc tc,+cte, = 0
3\\2\\\\ 073774 7779 (5.7)
and zz+c10 = G\\\QE\\\CO+°1+C4+C6+010 =0

Equations (5.4) and (5.5) aiéhé with (5.6) and (5.7) give the complete
set of n-k = 12-4 = 8 R.1. parity check equations that a received vegéor
must satisfy-before it is declared error free for the (12,4,5) code.

If we now were to write the parity check equations for the
(12,6,3) code, (5.4) and (5.5) remain unchanged. For k = 6, the message
polynomial 18 of degree 5 and, therefore, there is‘no parity check
equatfon corresponding to‘k5.6). The parity check equations due to

wraparound become z.+c, = 0 and z,+c 0. Thusg, only 2 equations are
579 4

10~
altered when the parity check equations of the (12,6,3) code are_

P obtained from the equations of the (12,4,5) code.

5.2 Error Correction

a

We again consider the block structure of the generator matrix.

. 4
The polynomial P(u) factors into t relatively prime polynomials f

RN

A
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Pi(u), 1=1,2,..., and there are t such blocks in generator matrix of
the code, each block{ corresponding to a computation of the type,

@i(u) Zi(u)Yi(u) modulo Pi(u) -~ 1 f 1,2,..., t
The last block of fhe generator matrix arises due to the computation of
the wraparound coefficients of the ordinary polynomial product ®(u). A
key property of such a block structure can be describgabﬁs follows:
Lemmé 5.1. If the polynonmial Pi(u) 18 irreducible, then the block Ci
corresponding to the computation Qi(u) = Zi(u)Yi(u) modulo Pi(u) is a

(ni,ai,ai) co%F: where n, = M(ai).

Proof. For all the polynomials Pi(u) that are irreducible, the

computation @i(u) E Zi(u)Yi(u) modulo Pi(u) is done in two steps:
' =
(i) Compute @i(u) Zi(u)Yi(u)
(11) Reduce @i(u) E ¢i(u) modulo Pi(u)'
Step (1) corresponds to the computation o6f the ordinary polynomial
product; therefore, if the deg[Pi(u)l =, then such a computation

generates a (ni,ai,qi) code, where n, = M(ai), the multiplicative

i
complexity associated with the algorithm for step (1). .

The only form of polynomials for which the above procedure is not

a a

-adopted are the polynomials Pl(“) =y 1, Pz(u) = (u+ai) 2, and the

computation of the wraparound coefficients which is given by the
computation E(U)i(u) modulo ua. In our analysis of the decoding

procedure, however,nwe assume that computations of the type Zi(u) Yi(u)

xQ

modulo (u+ai) 1, a, € F are also performed using steps (1) and (ii)

i
above. It may be ohse;ved that this assumption does not result in a

higher complexity algorithm (which also means a code of Targer length

for the same dimension k and distance d) for values of oy < 2. For
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values of ai> 2, the rise in the complexity is v%ry marginal. Also,
such a rise in complexity depends on the field of computation. For
example, in the binary case, for ay, = 3 and 4, the complexity increases
by one multiplication only.

Since each block Ci' i=1,2,..., t+#1 is a computation of the type
given in (i), each block is a (ni,ai,ai) code, { = 1,2,..., t+l, where
n, = M(ai) and T4y = S- We, therefore, start our attempt to decode a
received vector by first partitioning the received digits into t+l
blocks, and then independently decoding the received digits for each
block Ci. 1f ZDi(u) represents the decoded vector for the block Ci“
th?n ZDi(u) is the éaqe as the transmitted residue Zi(u) for the block
Ci’ if no more than [(ai—l)/ZJ errors take place in the part of the
received vector corresponding to Ci'
Zi(u) is decoaed erroneously only if more than [(ai—l)/ZJ or at

a ‘ a,~1
least (51 +1) (for even ai) or at least ( 5 + 1)(for odd ai) errors

take place in the block Ci. . Note that for even a,, a decoding failure

i!
‘takes place 1f block Ci is received with a1/2 errors. I1f a decoding

failure takes place in a block, then such a block can be eliminated from
further analysis. Elimination of such a block C1 essentlially means that

'a »
we have to analyse a code of dimension k and of minimum distance d-a

e

However, we have also eliminated at least [(ai—l)/ZJ +1 errors by

excluding ;uch a block. Therefore, 1f we recover Z(u) from the reduced

code (code obtained by eliminating a ylock), we ;an still correct a

maximum of [(d—l)/ZJ errors in the ove;all recelved vector. A
Let oy be the number ?f eréors in the parf of the recelved vector

cotrespond{pg to .the block Ci' We have to establish a procedure to

recover Z(u) from the received vector if,
(

o

i 3 T
PRPRE T L e
l  Sani




. =63-

t+l
[ o, <[(e-1)/2]
1=1

Once the decoding for each block C, is performed, there are two

i

pgkiibilicies, namely: - .
» .

(a) It‘is error free, i.e., 9, < [(ai-l)/ZJ
(b) It is incorrectly decoded, i.e., o, > [(ai-l)/ZJ

be decoded inébrrectly. The
f ’ .

Now, let the blocks Cil, 12 i

least number of errors in the received vector for such an event to take

=

C gy C

plaée is given by,

min{ ¥ a,} = )) {[(aj-l)/ZJ + 1}.
L U DRI L P BURPRNE I8

The decoder 1s to correct the errors for such an-event only if,

[(a-1)/2] » ) {[(aj~1)/2j + 1}.
i S SURPE .

It 18 easy to show from the above that,

d> ) @y
LS SRR )
or, alternatively,
t+l , ‘
321'a3 kT A . (3-8
L T PTRPNE

The'above discussion can be gsummariged in)zhe form of a theorem.
Theorem 5.1. If the number of errors that take place Iin a code vector
is less'than [(d-l)/Z], the error correcting capability of the code,
then after e;ch block Ci is decoded according to its minimum distance

di, there i8 at least one set of blocks which is error free such that
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the sum of the degrees of the polynémials Bj(u) corresponding to these

blocks @s at least k. ) -
We will use this theorem for further analysis. Since the

information vector is representéd as a polynomial Z(u) of degree (k-1),

it can be recovered using the CRT from any set of residues of the type,
B

-

Zl(u) = Z(u) modulo Px(u) L= 2 .2

11X

provided that,
N T
Let © be the set of integers m = {1,2,..., t+l}. The integer 1 in

the set n corresponds to the polynomial Pi(d) of degree a - The integer

[

t+1 corresponds to the wraparound. From the abpve set, we form subsets

of integers Ty, such that each set is the minimal set with respect

g1t

to the property that ths sum of powers of the polynomials corresponding

to the integers in each subset is at least k. Let this sum be k1 for

the subset ny and so on. Since kl > k, we cag use the CRT to
reconstruct a polynomial Zi(u) of degree (kl—l) using the residue
bqunomials Zx(u), L e Ty This procedure can also.be°perf6rqed for the
subsets LITLETRRRS and so on; If the. reconstructed polynomial Zi(u) for
the subset L3 is of degrée (kl_l)f then, <¢learly, such .a polynomial has

to satisfy the following (kl—k) equacibns for it to be accepted as a

candidate for the transmitted polynomial

' - Py -
. zli 0 . i‘ k,Hl,-'o, kl. 1, ' ('Slg)
where _ F [ ‘
- . g . : k-1
' P ' [ veotz!
2w = mpgha e Y L
%

R ey — N,

. e et
.
| B
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Similar relationships hold for the remaining subsets Ty yees o '. e

3

Let'Zi(u), zé(u),... be the candidates for the transmitted message
polynomial. As the code under consideration has a minimum distance d,

the code vector corresponding to a valid information polynomial will
/

differ from the received vector in a maximum of | (d-1)/2] places.

Theorem 5.1 guarantees the existence of at ' least one candidate

‘information polynomial which is the valid information polynomial, 4
provided the. number of errors present in the received vector is less
than the error correcting capability of the god;. Hence, 1if the'codé

vector corresponding to a candidate information polynomial differs from )

.

the received vector in at most [(d-l)/ZJ places, it 18 accepted as the
valid information polynomial.

The complete decoding algorithm for the codes may be enumerated as
follows: )

1. Partition the received vector according to blocks
CI’CZ""Ct+1 of C.

2. Perform the decoding for each block independently.

2

3. Discard the blocks for which a decodihg fallure takes place.
4. Using the CRT, construct the candidates for the information
polynomial from the residue polynomials obtained from the ‘

blocks declared efror-free in Step 3.

'

5. Comstruct the candidateléode vectors for each®of the candidate

.
a

. information polynomials.

3 -

‘ . )
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6. Accept a candidate code vector as a valid code vector 1if it
differs from the received vector in at most | (d-1)/2] places.
. x""'Tﬁé corresponding candidate {nformation polynomial is then
accepted as a valid 1nformation polynomfal. \ I

The Chinese remainder theorem establishes the unigueness .of the

\n

dedoding procedure described above. A block diagram of the decoder is

.

given in ngure 5.1. The decoding algorithm for each of the blocks is
‘the same as the décoding algorithm desaribed above, as these blocks are

obtalned from a computation of the same nature as the origfnal code.
]

-Since each of the blocks 1§va co?e of small dimension and distance, as
£

compared to the dimension and dfstance of the original codé, we can

~xamine these codes further to simptify the design of the:decoddr for
, -

these blocks. For example, the small (3,2,2), (6£3,3), and (9,4,4)

n

codes are one-step majority logic decodable, and this fact can be

incorporaféd intﬂ the design of the decoder for the blocks. Clearly,

o

the decoder configuratiod is such that.it can be implemented using,

. i ’ .
parallel architeécture, a feature which may be useful in high data raﬁg)

communication syetems. Furthermore, since codes of this type form the

basis. of (he overall decoding prOcedure, it is glausible that the
‘oveaall performance of the system may be improved using soft—decision
‘ decoding for the small odes [22] HoweJer, this 1ssue will not, be

pursued further 1n thig work.
Let. us bfiéfly analyse the .complexity of the other blocks
5 [ “

& conbtiﬁuting the decoder. Consider the implementation for the et
/

recostruction for the set . Txihset Lt é&rraaponds to the CRT
20 - & ‘ ’
reconstruction of the polynomial i(u) of degree (kl-l) from the: 4
/ + e ‘-'-' .
knowledge of the feéidqe 3p1ynomihls Zl(u) 2 Z(u) ngdulo Pl(u), 2 €. .

. -~

‘:!\-‘-z—' a
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Using the CRT, Z;(v) is obtained as,

Z}(w) Do Sy(wz () modg1o P} (u) (5.10)

e nl

where Pi(u) = 1 Px(u).

tem

.The polynomials'sk(u) are determined a priori from the knowledge of
Pl(u), L E Ty The expression (5.10) can be implemented in three steps
as folloys:

(1) Compute Sl(u)zx(u), 1 e LI

(11) Form the sum ) Sl(u)ZR(u).
' LE =

1.
(111) Reduce the resulting polynomial modulo Pi(u).
Step (1) can be implemented by a multiplication circuit as shown

in Figure 5.2 [9]. Step (i1i) is implemented uging a series of adders,

one for eveﬁy coefficient. Note that adders are equivalent to

exclusive-OR gates over GF(Z). Step (1i1) is implemented by the
feedback shift-register configuratig; shown in Figure 4.2. The
reconstruction for the sets‘nz, ﬁ3.... éan be implemented 1; a similar
manner. A shift-register based implementation of the codevect;r
generator was discussed in SectiPn 4.3, Finally, the implqﬁentation of
the candidqu tester and the comparator and selector blocks is clear
from.the description of the decoding algorithm.’

- Aldo consider the decoder design when k is imcreased (deﬁfeased),
keéping the length of the code n constant. Steps\l,2, and 3 of the
decpding algotithm are unaltered. The decoder circuit for Stepbé of the

)

algorithm hag to be suitably modified. It has been shown in €hapter &
that a ¢ ngj\ﬁn k does not imply a sigﬁ;ficant change in the encoding

»

R

N |

&N

vamEan &

gt B oo -
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procedure, and therefore, Step 5 -does not involve a significant change

as k is varied. 1In Step 6, we only have to adjust the threshold of the

o«

comparator to the error correcting capability, L(d-l)/ZJ, of the new

code. In the following, we present two examples to illustrate the

’

decoding algorithm developed above.
Example 1. Cong}derrthe (8,4,3) code. P(u) is chosen as
P(u) = u(u2+1)(u2+u+l), and 8 = 1. The received vector is partitioned

into four blocks C C3; and C, corresponding to Pl(u) = u, Pz(u) =

1 G 4
(u2+171 P3(u) = (u2+u+1), and the wraparound, reépecciqely. The blocks
él and C4 are (1,1,1) codes for which no decoder 1s required. The

decoder for blocks C2 and C3 is a decoder for the (3,2,2) code and
simply checks the block for even pafitﬁ. If this test fails, the block
18 rejected. The sett n 1s given by,

n = {1,2,3,4}

with possible subsets,

“ S
. Comy = {1,2,4)
. n, = {2,3} ’
L2 {1,3,4} A . )
The subsets T nz,)and n3qcorrespond to differen§%ghoices of the
resfduebpolynomialﬁ that can be used to recover the information
bolynomial. No candidacy tester and comparator are required for the
subsets.~ If we are interested only in the recovery of the information !
"polynomial, éﬁé code vector ge;erator 1s,also not required in this case.
A circuit diagfam‘fot the resulting decoder 1s given in Figure 5.3. The
generator matrix of the code is derived in Section 4.1. RN
! Example 2. Consider the (24,6,9) tode. The polynomiéls are P, (u) = uz,
“ I . ' ;
- [
- o —————— - >
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My = {2,3,6}, n, = {1,2,6}, ng = {1,3,6}, =

.subsets for the (24,8,7) code given by, =n

-72-

B,(w) = (uP+utl), By(u) = (u™1), B, (u) = (a+url), P(u) = (u +u’41)
and s = 2. The received vector is to be partitioned into 6 blocks
Cl' CZ""’ C6 corresponding to the polynomials Pl(u),..., PS(U)’ and

the wraparound, respectively. The blocks C., C C_ are (3,2,2)

20 C30 G

codes and blocks C4, C5 are (6,3,3) codes. Therefore, decoders for

1’

blocks C C,, and C

10 G G 6

rejected if it has odd parity. The decoders for blocks C4 and C5 are

identical. This decoder {R one~-step majority logic decoder. The set

are simple parity checks and a block 1is

n is,
n = {1,2,3,4,5,6}

and there are 17 possible subsets given by, m, = (4,5}, =, = {1,2,3],

2

o = (Li2y4), =, = {1,3,4),

ng= {1,4,6}, ng = {2,3,4}, n = {2,4,6}, =

0

= (3:4,6}, m,= {1,2,5},

g {1,3,5), = {1,5,6}, = o= {2,3,5), e~ (2,5,6), and' = = (3,5,6].

17

For a parallel implementation,; the decoder requires 17 “locks for

reconstruction of the polynomialé to be tested for candidacy. The

7,’.1-, 1'[17. The

code vector generator .18 not enabled 1f the candidacy tester falls. The

comparator 1s a set of 24 exclusive-OR gates followed by 8 counter and a

candidacy tester is present only for the subsets Mgy T

threshold)detectot set -at 5.
Given the decoder for the (24,6,9) code, ‘let us analyse the
overliead required to decode the (24,8,7) code. The design of the

decoder for the blocks Cl’ CZ""’ 06 1s unaltered. There are 13

«

= {1,2,3,6}, =, = {1,2,3,4},

1 2
L {2,3,4,6}, T, {1,2,4,6} g = {1,3,4,6}, T, = {1,2,3,5},

;= {2,3,5,6}, =g = {1,2,5,6}, ngy = {1,3,5,6}, n,, = {1,4,5},

0

L {2;4,5}, Ty, " {3,4%5}, L {4,5,6} and we require 13
7
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reconstruction blocks. The subsets = and 7,, do not

1 Mo M1 M2 13

require a candidacy test. The design of the code vector gene¥?tor and
the cohparator is essentially as before, except that the threshold

detector 1s now set at 4.

5.3 Experimental Results

Since majority logic decoding is a simple method of determining
the error digits f?om the parity 6geck sums} we examined the majority “
logic decodability of a larger number of linear codes belongihg to this
new class of linear codes. The reader is referred to [8] for a detailed
description of majority loéic decoding of linear codes.

At the receiving end, we are generaliy interested in reliably
recovering only the information symbols, therefore, we restrict'our
attention to finding orthogonal check sums on the error digits that
correspond to the message digits. The following defiﬁitioh c

characteristics the majority logic décodability of linear codes.

Definition. A linear code with minimum distance d is said té Be 4

.able, but the, converse may not be true. .

3
sufficiently orthogonalisable in one step iff it is possible to form

.J = d-1 parity gheck sums orthogonal on each of the ef;%r digits that

correspond to the message digits. For a code that is suff%piently
orthogonglisahlé, we can estimate the message vector correctly even 1if
| (d=1)/2] errors take place in the received vector. We also note that a

completely orthogonalisable code is always sufficlently orthogonalis-

In our analysis, the following codes wegg*found.to be sufficiently

&

orthogonalisable in one step. - .

¥ N
B - a
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(1)  (6,3,3) 1 error corrécting

(i1) (8,4,3) 1 error correcting
(111) (10,5,3) llerror correcting

< (1v) (10,3;5) 2 error correcting
(v) (12,6,3) 1 error corFecting
(vi) © (12,4,5) 2 error correcting
‘(vii) (14,3,7) 3 error correcting
(viit) (14,5,5) 2 error correcting /
(ix) (16,4,;) 3 e?ror correcting

, ’(x) (16,6,5) 2 error,correcting s

'Exi) '(18,5,7) 3 error correcting -
(xi1) (18,3,9) , & error correcting )
(x1ii) (20,4,9) 4 errof correcting
(xiv) (22,5,9)° 4 error éorrecting !

(gv) (22,3,11) 5 error correcting

(xvi) (24,4,11) 5 error correcting

(xvii) (26,5,11) 5 error cPrrecting

(xvii1)(30,5,13) 6 error correcting

Also, the (24,6,9) code was found to be a 2-step sufficiently
4 oréhogonalizaple code. The parity check eqﬁatiqns fo; the above listed

codes are given in Appendix B. \\

5.4 Code Family Relationships for Encoding/Decoding

It has been shown that the encoding/degoding methods utilise the
block structure of Ehe codes, arising due to the computation zi(“)Yi(“)
nodplo the relatively prime factor polynomialé Pi(u),‘i = 1,2,... t and

the‘wrapéround of s points. Such a structure can be used to‘advantage-

4
. \ . 4

I "',! ‘: g g
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to design codes with thﬁ same dimension k, but different minimum
distancé d. In this section, we analyse the block structure of the
generator matrix and show that it 1s possible to obtain a group of codes
of dimension k, having different error correcting capability, in a way
that the encoder/decoder design for this group of codes 1s essentially
the same. Such:codes may find application in communication systems that
employ variable redundancy codes for adaptive error correction [29].

For the computation of an aperiodic convolution of length N =
k+d-1, the degree D of the polynomial P(u) and the number of wraparound
points s satisfy the relation,

N = k+d-1 = Dts (5.11)
If the polynomial P(u) has t relatively prime polynomial factors, Pi(u),

each of degree Tys then,

t
D= ) o (5.12)
i=1 .
Combining (5.11) and (5.12), we obtain, N
~ £+l
) kbd-1 = ] a,, (5.13)
i=1
where @ 4y ™ 8- Based on (5.13), we state the following lemma:
Lemma 5.2. If the block Cj corresponding to the computatioﬁ
¢j(u) = Zj(u)YjEu) modulo Pj(u) is deleted from C, the resulting matrix
is a tn—nj, k, d—aj) code. . ’ . . .
Proof. Equation (5.13) can be written in the form, -
t+l .
k+ Wd-_ § a) - 1= I oo (5.14)
j-il,iz,... : i=1
’ 1#11,12,-10

The length of the code is equal to the sum total of the complexity

N
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assoclated with each block, that is,

t+l

T 1Zi“y6ui)

4

In accordance with (5.14), the above equation can be written as,

v

t+l -
n- M(a,) = ] M(a) T (5.15)
3 i
i 04, i=1
1#1,,1,,...

{

Equation (5.14) indicates that it is possible to obtain a code of
dimension k and distance d' from a given code of dimension k and
distance d(d' < d) by 'discarding the computation with reggrd to the

factor polynomials P ,(u), j = 11,12,... such that,

j .
d' = d - Z, a
L3 OUE SRR

while (5.15) indicates that the generator matrix of such~; cade is
qﬁﬂ obtained by simply dropping the columns of the original enerator matrix
- belonging to the blocks CB"J - 11,12,... énd also esta;jzgkb{ the
length n' of the new code. | =
Hence, by uﬁing Lemma 5.2, the generator matrix C' of the (phk,d')
code is obtained ffom the generator matrix C of the (n,k,d) code b
approPriately deleti‘g columns‘of C. Bor a’given value of d', the
various aj, j= 11,12,... are chosen so as to minimise n'. Such a
choice then leads to the most efficient code possible for this
procedure.
Let us consider the (24,6,9) code to 111ustr:té this .unique feature
-of these linear codesf’ T;: various polynomials are,Pl(u) = u2, Pz(u) =

. (uPutl), Py (u) = (W2+1), B, () = (W), P(u) = (03+u?+1) and @

-
Id
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8 = 2. The generator matrix for this code has 6 blocks. from the

(24,6,9) code, we can obtain the (21,6,7) code by dropping any one of

the 4 blocks (having 3 columns each) Cl, CZ’ C3, or C6 from the

generator matrix of the (24,6,9) code. Using similar techniques, we can
- obtain the generator matrices for the (18,6,6), (15,6,4), and (12,6,3) .

codes by discarding suitable groups of columns from the generator matrix

C of the (24,6,9) cbde. -

P

Given the decioder of an (n,k,!ifcode, we now consider the problem
N,
of designin decoder for the (n",k,d') code obtained by dropping

(/ﬂ_;IBEkQ {CJ} - {Cj’ = i},iz,...}’from the géveratpr matrix C of the
(n,k,d) code. The blocks present in the resulting (n',k,d') code are
also present in the original (n,k,d) code and, therefore, Steps 1, 2,
and 3 of the decoding procedureﬁhescribed'in éection 5.2 are unaltered.
The decoders for the blocks {CJj‘are simply disabled. In Step 4 of the

procedure, the reconstruction for a subset w {s disabled if the subset

B

L has any of the decoder outputs corresponding to the blocks {CJ} as

input. ' The reconstruction for the remaining subsets is the same as that

1
¢

of the (n,k,d) code. In Step 5, the outputs of the code vector
generator corresponding to the blocks {CJ} are again disabled, so as to

obtain the code vectors of length n'. In Step‘6, the threshold of the

®

comparator is now set at |(d'-1)/2], the error correcting capability of

+
.

the new code.

Since the (ur,k,d') code is a lower minimum distance code as .
compared to the (n,k,d) code, it is expected that the decoder structure
for the (n',k,d') code be simpler than the (n,k,d) code, which is indeed

the case. It is clear from the above description that the decoder for

the (n',k,d') code is obtained by simply disabling a part) of the decod;r

T - "‘,.x“';e} . e i




_7QT

Y~
for the (n,k,q) code. As a res&lt,“the processiﬂg througput of the
decoder for all such codes is the samé.

” For example, considef ;he decode? design for the (21,6,7) code

obtained from the (24,6,9) code by dropping the block C Therefore,

1
{CJ} - {Cl} and, consequéntly, the decoder.for the ‘block C1 is disabled

in Steﬁ l. In Step 4, the reconstructlion for the subsets Tor Wy T

Tes s ﬁB’AnIZ’ Ty and T4 are disabled, as all these subsets have\

the output of the decoder for the block as one of thé‘iﬁinputs. Note

5&
that this also,reduces the number of comparisons to be performéd at the
final stage of the decoding prohgﬂure. For the (21,6,7) code, the
threshold of the comparator is reduced to 4 in gteplb.

' A similar approach can be adopted to obtain an (n',k,d') code from
an (n,k,d) code when d' > d. 1In this cas;, groups of,columns are
appended té the generator matrix of the (n,k,d) code.} Every new group
of columns corresponds to a computation with regard to a new polynomial
Pj(u). Howevérr cgre nust be taken thaﬁ the polynomial Pj(u) be coprime
to all the existing pglynomials Pi(u), i1 =1,2,..:, t. The decoder

structure for such a code can be easily analysed. It is worthwhile to

observe that tHe_decoder would be more complex in design and require

" additional hardware; however, the additional processing :gQUitements can

easily be determined due to the ﬂighlz structured, systematic decoding

procedure shown in Figure 5.1.

. 5.5 Burst Error Detection Capability

In this section, a procedﬁfé is outlined which can be used to
determine the burst error detection capability o§ the codes under'
fnvestigation. The information ;ector ;an be expressed as a polynomial
Z(u) of degree (k-1). Consider ghe polynomial Zi(u) obtained as,

. Ty

PR
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2, Q) = 2w modulo P (u). | )

-~ . y .
Clearly, Zi(u) 18 zero 1ff Z(u) is a multiple of Pi(u). Consequegtly,

if Z(u) is almultiple of Pi(u),'then the block corresponding “to the

i

computation, - o :
, ) \
¢1(u) = Zi(u)Yi(“) modu}o Pi(“) < 7(5.162
is zero. Let the blocks corresponding to Ci‘, C, be zero in a ‘
) 1 2 . ' ” . 3
3 N » " .’
codevécggr. Since Z(u) is a degree (k-1) po{yﬁomial, the following
constraint must be satisfied for the blocks Ci . C1 ye ooy .o »
1 2 :
ay < k-1. \\ . , -
. 1-11,12:00 I . o N ’
e
Also, ‘o = k+d-l.- " o,
1ep 1 : : :
R ‘
Combining the above two expressions, we obtain, '
I o £>4d. f g“
1*11,12,00- ) "‘Vf ! “ ?

This discussion can be sunnariged in the fbtm of a lemma as follows:

Lemma 5.3. for any arbitrary infopnhtion.vector, th; sum of the dégrées

of the polynomials Pi(u) such thkt the associated blocks of the . b ‘
cod%Vector are nonzero, 1; at lingt‘d. ‘ J ) o e

Convergely, 1f there is a vector having nonzero elements

[

correspondiﬁg to Ci, C1 ,ees, and :
1 "2
‘<, ’ % ) ‘
v ai +ai +60,' <d » B a (5.17) !
1 2 ‘u At r\\ .
. o - , !
then, such a vector cannot -be 9 codevector. We, further, assume that the .
‘ o ‘l' N
. ,& ) . ’ . .( . .
. i
N r » 4
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computatich (5.16) is performed in such a way that each of the blocks
i

Cf is agxcni,ai,ai) code. Therefore, for ?fery codevector ;he numher of

nonzero elements in a nonzero block is at least ay .

The Lemma 5.3 and the above stated assd@ption can Be ysed ta
determine the £mrst error detection capabilitivof the codes. For
example, for the (2@,6,9) code, 1f blocks Cl’ 62,..., C6 corrébpl;g to
B =, 2y = (), By = (), B = (Pher), (o) =
(u3+u2+1), and the wraparound s = 2, then it cad~be shown that the code
can dete;c error bursts of length upto 12.

Unfortunately, the burst error detection capabilﬁty for these
codes depends on the ordering of the blocks and, therefore, it is not ~

possible to derive a-tlosed form expression as is true in ‘the case.of

cyclic codes.
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DISCUSSION OF RESULTS: PART ONE
L[S ,J‘

As described in Chapters 3 and 4, it is clear from the construc-—

A

tion of* the aperiodic conyolution algorithm that the associated multipl-
icative complexity is directly dependent upon the complexities of the

polynomial multiplication _algorithms and the choice o&' the mddulo bolxn-
omial P(u). A number of algorithms are possible and in this work effort

is directed towards construction of algorithms with as low a multiplic;x—
tive complexity as possible, for the reasons given earlier. The formul-
<

ation of the problem is such that the additive complexity of the algori-

.

thms does not play any role in the design of the algorithms. “The
examples presented in Chapter 4 illustrate that a wide variety of

\
algorithms may be genera\fed.

\

It is of interest to compare the actual complexity of the

aperiodic convolution algorithm to its theoretical lower bound. If

B : 3 :
Pi(u) - Qii(u), and Qi(u)%is irreducible over F, then the minimum number

1

. AN
of multiplications required to comput\e Qi(u) - Zi(u)Yi(fu) modulo Pi(u)

is Zai-l, where deg [Pi(u)] =a, [11]. This result can be extended to

obtain a lower bound on the multiplicative complexity of the CRT based
procedure to compute the aperiodic copvolution of length N. If P(u) has
t factors and the wr‘e;)ar%und of s8(s»l) coefficients is used to compute

..® .
®(u) = Z(u)¥(u¥ then the lower bound on the multiplicative complexity

of the procedure (and the length of the associated code) is n'! =
e -

- ) min
N-(th). For extuple, for N = 14, P(u) = u(ulhrtl)(u)(udhetl)”

(u3+u2+13%;&-.%, and therefore, n
o

= 28-6 = 22. This compares
min

favourably with the actual complexity of the aperiodic convolution

N
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algorithm of length 14 which is 24. We are not familiar with any
melaningfuLupperbound on the complexity of the aperiod\ﬁc convelution
algorithm except for tl;e trivial bounmmich states that the product 'of
two polynomials of degrees k-1 and d-1, can be computed in kd
muitf.plicat ions.

It has beep shown that a bilinear algorithm over GF{p) which is
valid for input data over GF(p) 1is also valid for input data over GF(pm)
[21]. Hence, the results of this paper, including the technique
to design Ehe bilinear algorithm, "femain valid even if the prime 2 is
replaced everywhere by a power of 2. This increases the field czf
constants and this fact ;:an be further\incot:porated :ant()]'the design of
the.algorithm, thereby reddcing the multiplicative complexity and,
hence, reducing the length of the codes over GF(Zm). '

The linear codes obtained from the algorithms compare well with

similar codes which are already known in texms of their rate and "

1

distance properties. The complexity of the decoding algorithm presented
in Chapter 5 is in direct proportion to the number of relatively prime

factors of Fhe polynomial P(u). A large number of such factors \
increases the complexity of the decoder while minimising the over:ali '

length of the code for a prespecified value of k and d. Hence, a

tradeoff is possible between the complexity of the decoder and the

v

length of. the code.
Another interesting feature of the decoding algorithm 1is that {1t
uses s‘mall length codes as a basis for the decoding of a large length

code. The design of the decoder for the codes ‘of small length and

distance is very simple as compared to a large length code. Because of

x

this modular strugture, the decoder can also detect and corred?® several

-

o

f:
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error patterns having Hamming wg’igl;t gt;eater than the error correc~ting
capability of the code. For exafnple, the (iecoder circuit of the (8,4,3) ‘
code given in Figure 5.'3', can detect 32 percent, of all the poesib1e~
error patterns of Hamming w;ig'ht 2. Also a large number of r:hese codes
vere found to be one step major.ity logic decodable.
) Amo;\g the binary codes generated from the aperiodic convolution

algorithms, a large. number of these codes were analysed with the help of

the computer in order to determine the actual minimum distance of the
J

code as compared to the designed minimum distance. The actual minimum

distance of most of the codes tested was found to be the samé as the
designed minimum distance. -Also, the weight distribution of a selected

.

number of codes 18 given in Appendix C.

3
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~ CHAPTER 6
. AUTOMATIC REPEAT REQUEST SYSTEMS

+

There are two fundamental techniques for error control in digital

.

communication systems: Forward Error Control (FEC) schemes and :
vAutomgtic Repeat Request (ARQ) scﬁemgs [9]. In a digital communication
system using FEC, the transmitter employs an error-correcting code to
add redundant digits to the information digits in a manner so as to
correct the error patterns that are most likely to occur during
transmission. At the receiving end, the decod;r attempts to recove; the
1qformation digits from the received digits in a way so as to maximise a
certain system performance measure. o
In digital commupication sysgéms using ARQ, the dapa to be

transmitted are first organised in biocks after which an error~detecting
code is used to encode each block in order to achieve the required
error-detection capability. No error correction iswperformed b; the ‘v
receiver. When an error is detected in a block, a request for
retransmission is made through a reverse (or feedback)'channel. Thé
. transmitter is informed of whether a block is correctly or incorrectly

received by an acknowledgement (ACK},or‘nonacknowledgement (NACK),

respectively. 1If an ACK is received at the transmitter, a new block\;s

,transmitted; bhereaq, if a NACK is received, the same block is

transmitted dgain. With this procéd
. .'V v
only when no errors are detected by the receiver.

1§§, block is delivered to the user T

Both of these error-control schemes, FEC and ARQ, have their
relative advantages and disadvantages. An Important medsure of

performance of such systems is their throughput efficiency 23], The

\ o -85~
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throughput efficiency 1is defined aé the ratio of the number of informa-
tién bits to the total number of bits transmitted. Since there are no

retransmissions in a FEC system, the information throughput efficiency
‘ ' . ' ! .
is constant and set by the code rate, regardless of the channel,transmi-

¢

gsion conditions. The most severe drawback of an ARQ system gé its

throughput efficiency. The information. throughput of an ARQ‘Ayatem

-

depends strongly on the number of requested retransmissions, that is, on

channel quality and therefore falls rapidly with increasing ‘channel
. J
error rate [24425,26]. . /

. /
Another important measure of performance 1s the system reliab-

/
1lity. Reliabilitﬁ is measured by the probability of /the event that the
. o o .
transmitted code vector and the vector accepted by ghe receiver as an

i

estimate of the transmitted code vector are not tzf/samg. In FEC

systems, the reliability of the received data 1s Nery semnsitive to any

A
degradation in the channel conditions and the selectioh of an approp-

/ -
riate error-correcting code depends on the detailed knowledge of the

.code, the probability of 'undetected error ﬁan be made very small E&].

B /
A§ the probability of a decoding error for an error-correcting code is

’ mﬁch greater than the probability of unéetected error, the ARQ systems

/
are far more reliable than FEC systegé. Furthermore, a cpde used for
error detection 1is not very senaiti#; to the actyal error patterns, and *
1t can detect the vast majority gf/the error patternms, Consequeﬂtly, ‘
unlike'FﬁC systems, the use of AﬁQ error control 18 effective on most
channeis. ' / ‘

/ ,
The cost of an ARQ syséem is also substantially lower than that of

a FEC system. This 18 du¢/ to the fact that error-detection is, by its

error statistics of the channel [9]. By us}ﬁg a proper ertror-detecting

a




-87-

nature, a much simpler task than error-correction. In addition error

-
[

detection with retransmission is adaptive, i.e., transmission of
redundant infgrmatiog_is“increaséd when err;rs ocCué, This makes it
possible under certain circumstances to get better pgrformancé witg an *
AﬂQ system tha; is theoretically possible with a FEC system.

From the above discussion, it is clear th;t the ARQ scheme can
provide high system reliability reasonably i&dependentiy of lhé channel
qualitcy. However;\as the channel becomeg noigiertﬁ§he requests for
‘ retransmission increase, 1e€ding to a reduced’éhroughput. On the othgr.
hand, FEC techniques provide a cQgstant throughput regardless‘of the
channel quality, but the system reliability will fall as the channel
degrades. ’ ‘ . ’ o

In situations where the channel error rate is too- high to guar-
antee desired throughput usiﬂg,ARQ and wvhere thé required system reliab-
111ty is too high to be achieved by FEC alone, a combination bf\FEC and
ARQ systems ma§ be ;ttract;ve: Such a scheme i{s termed as hybriq ARQ
[8,27]. 1In principle, the hybrid scheme combines the advantages of both
tedhniqués. A coﬁﬁinstion of correction of the most frequent error
patterns (FEC) and detection coupled with retfansmission for less frequ-

.
ent error patterns (ARQ) provides high throughput efficiency ‘as well as .
high system feliability« |

It was sﬁown in Chapter 5 that the class of linear error-
c;rrecting codes derived from the aperiodic convolution algorithm using
: the.CRT ié characteriged by modular structure which, in turn, can bg‘

‘used to design codes with variable minimum distance héving the same

encoding/decoding procedure. ‘In Part I1 of this work, this class of
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linear codeg is proposed.as an excellent candidate for the hybrid ARQ

-

application [28].

6.1 Basic ARQ System

.

In this section, we describe the three basic types af ARQ schemes
that can be used fgr error control in digital communication systems.
Thi; is followed by a brief analysis of their relative efficié}hies and
the complexity of the systé;‘?équiﬁgg to implement them.

There a;e three basic ARQ schemes:

1. St9p~and—Wait ARQ

2. Go-back N or Continuous ARQ

3.  Selective-Repeat ARQ

. Stop—and-Wailt ARQ. This i{s the simplest of the three ARQ techniques.

In this scheme, a block is transmitted and a copy of it stored in the
transmitter buffer. The nextlblock is not transmitted until an ACK 1s
received; one or more NACK's simply result in retransmission of the
buffer contents. Such a ?cheme is shown inaFigure 6.1, The transmitter

idle time is at least equal to the round-trip delay time.

Go—-back N or Continuous ARQ. In Go-back N or contihuous ARQ systems,

the blocks are transmitted in order over the channel without waiting for

an ACK/NACK response. The transmitter buffer is now larger, holding a

number of consecutiyve blocks with total length equal approximately to

the ratio of round-trip delay to block time-duration or N. The ACK or

. NACK for.a block arrives after a round-trip delay. Whenever a NACK is

received by the transmitter, the buffer is accessed with the entire
contents transmitted in order to preserve the natural ordering of the

- -~
blocks. At the receiver, the erroneously received block and all the N-1

succeeding blocks are distarded. Retransmissions continue until the

o

->

o an S
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‘ _blo¢k 1is positively acknowledged. As soon as ;& ACK is received for the
L} B ~ v ' . ' ! ) .
block, the transmitter proceeds to transmit new blocks. The bagié

" go~back N ARQ scheme is {1lustrated in Figure 6.2.

Selective<Repeat Agg.‘éghe Selective-Repeat ARQ technique is a variaFion
of the continuous ARQ scheme in which the transmitter ré;ends.gnly those
blocks that are negatively acknowledged (NACK'ed). After resending a
NACK'ed block, the transmitter continues to transmit new blocks.
However, as the blocks are not always received. in consecuti;e order by
the receiver, more complex logic and large buffers are reqﬁired. When A
the first NACK'ed block is successfully receivéd; the recelver releases
e ’ ) ’
any error-free biocks in consecugive order from the receiver buffer
until the next erroneously received block is reaghed. The
selective-repeat ARQ scheme 1s shown in Figure 6.3,

o

The stop~and-wait ARQ scheme 1is simple but inefficient because of
PR % N I

the idle time spent waiting for an acknowledgement of egch transmitted -

block. i; a go-back N ARQ schegz, the receiver also rejects the next

~N N-1 received blocks wheneiea a received block is detected in error.
Consequently, they must alsc be retransmitted, thereby reducing the

“efficiency of the overail system. The performance of these two ARQ
schemes depends strongly on the data rate and the round-trip delay. For
a selective-repeat ARQ system, sufficient receiver buffer storage
(theoretically infinite) must be provided in order to assemble the

recelived blocks in consecutive order, otherwise buffer overflow may

occur and the blocks lost.

e ' »

y ]
6.2  Hybrid ARQ Schemes

In this section, the various hybrid ARQ schemes that can be used

for error control are presented and their main features are highlighted.

)
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There are a number of factors that require analysis in order to select

an_appropriate scheme for the error-control problem. The main factors
aj;,the channel characteristics and the cost-and cdmplexify of the
sistem;required to implement the scheme. . '

As it was stated earlier, hybrid ARQ schemes can be used to
overcome the drawbacks of the FEC andﬂthe ARQ systems. Such schemes can
be broadly classed agg!Z&]ﬁ 5.3

i. Eype— I H;;rié ARQ Schemes

2. Type~1l Hybrid ARQ Schemes -

6.2.1 Type-1 hybrid ARQ schemes

A type~I hybrid ARQ scheme'employs a code for error-correction
(FEC) and error-detection (ARQ) as shown in Figure 6.4. At the

b

receiver, the decoder first attempts to,corrsgt the received block.
Then, the decoded block is ‘checked for error-detection. 1If an -
uncorrectable error pattern is detected, the received Block is rejected
and a NACK is sent to the transmitter; The transmitter, upon receiving
a g?CK! rétranamits the same bloci. This procedure is continued until
the block is successfully accepted by the récexyer. In this technique,
an erroneous blsck is delivered to the user only if error patterns in

the decoded block cannot be detected by the error-detecting code.

Since a type~l ARQ scheme uses codes for error-correction as well

3 ' .
as 3rror~detection, it requires more parity* check bits than a code used

a

for error~detection alone as in the ARQ sche%gs discussed in Section
6.1, ~,Comuéquem:ly, for good channels;.the ;‘roughpnt,of a type-I hybrid
ARQ scheme may §e lower thavfthat of the cof:eaponding ARQ acheme.q&
However, when the channei error rate-ié hi#ﬁ, a type-1 hybrid ARQ scheme

Y

provides'higher throughput than the corresponding ARQ scheme, because

its error-correcting code is designed to correct the most frequently

e e A SR
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occurring channel error patterns. Fo% this reason, type-~I1 hybrid ARQ
schemes are best suited for communication over channels whose
characteristics are known a priori to be fairly constant.

For communicatidn systems in which the channel characteristics
Ehange, a type-I hybrid ARQ system may not be very efficieﬂt. When the
channel 1s quiet (that is, errérs are introduced very infrequently), no
error-correction is required and, éherefote, the extra parity-check bits

for error-correction included in each block are not needed. When the

i

" channel is noisy (that is, the errors are introduced frequently), the

error-correcting>code may becbme inadequate. This, in turmn, increases
retransmission;, thus. lowering the throughput. It can alternately be
argued that it is difficult in practice to design good error-correcting
codes for channels having varying charactgristics. An example of such a
channel 1is the satellite channel which is very quiet in good weather and

behaves poorly during rain.

6.2.2 Type-11 hybrid ARQ schemes

. For a channel having non-stationary behaviour, it mfght be
desirable to utilise an addptive hybrid ARQ scheme. Error—detection
with retransmission is adégtive, i.e., tran;:1ssion of redundant
information is increased when errors occur. This forms the basis of
type-1I1I hybrid ARdxichemes. The concept of variable redundancy codes
waa‘firqt introdiced by Mandelbaumx[29] and based on this concept, a
type-II hybrid ARQ scheme was propased by Metzner [30,31], Lin ;t al
[24], and Wang et al [32].

In the type-II hybrid ARQ system, the parity check.bits for error

correction are- sent to.the receiver only when they are needed. The

type-I1 hybrid scheme uses two linear codes dénoted by V0 and V., where

1
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VO is an (n,k) grror—detecting code and V1 is a (2n,n)'half—rate
invertible code, designed for efror-corgection only. A (2n,n) cédé is
said to be an invertible code 1f, knowing only the n parity—check bits
of a codeword, the assoclated n information bits can be uniquely
determined by an inversion process.
~Let I denote the block of length n formed 6n the basis of the

message D of length k and gh€ (n,k) code V,. C;rresponding to the block
I, a parity block P(I), also of length n, is formed using I and the code
Vl' _Now, I is transmitted; the corresponding received block is denoted
by I. When T is received, the réceiver attempts to detect the presence
of‘ertors using VO' If no errors are detected, T 1s assumed etror-frqe,
and an ACK is sent to the transmitter. If the preaénce of‘érrora_is
detected by Vo, the receivgd block is stored in a buffer And a NACK is
gsent. L '

ﬁpon receiving a NACK, the transmitter sends the parit;ublock,
P(I); the corresponding received bléck is denoted by ?(I). When‘ﬁ(l) is
receiveq, the receive{)takes the inverse of F(I), denotqd by 1(5), based
on Vl', If B(1) is error-free, I(?) is the same as the origi;al block I

and 18 a codeword in Vo. Therefore, once I(P) is calculated, the

-

receiver attempts to detect errors in 1(5)'baaed on VO' »If no errors
are detected, I(?) is assumed error-free and an ACK %s sent. If errors
are detected in I(?), then the blocks P(I) and T are used together for
error-correction based on the (2n,n) code Vl.“ Let I denote the decodeé
block after the etror—correction process.” Now, Tis checked based on

A Y

Vo. If no errors are detected, then I 16 asgumed error-free and an ACK

»
3 £




o

~

is sent.-..If errors are detected in 1 , the receiver discards the block

-~

1, stores the block ?(I), and sends a NACK. 'The second retransmission
is the block I itself. The jerror detection{;orrection procedure 1is theﬂ
repeated. The retrapsmissio%s continue until thé block is successfully
received. The r%transﬁissions are alternaté repetitions of the block 1
and the parity block P(I). ’

Depending on the ;hoice of the ef%or-correctinglcode Vl, two
variatiéns of the above scheme are available. In [30], Metzner proposed
a scheme wherein’small subblocks of thénoriginal n-bit block are taken
to be the data bits of a rate one—half code. The choices for. the code
are stated to be limited to the (6,3,3), (8,4,4) Reed-Muller, and
(16,8,5) codes. In [32], Wang et al described a.scheme wherein the code
V1 0pera£es on the compleée data block and, consequgn;ly, it 18 a code
having large length, dimension, and distance properties. It is
-worthwhile to me?tion here that for ARQ applications, a ld;ge.value
(n ~ 500) is usually selected for.n [24].

~It 18 clear from the ab;ve deséription éhat.the overé}l‘
performance of the type~II1 hybrid ARQ system depends very sftongly on

the choice of the error-correcting code V In this respect, .the scheme

1
performs better for the codes given in [32] as compared to the subblock
encoding aﬁproach of [30]. However, the complexity of decoding a large
(2n,n) cod; is much greater than the complexity of decoding a small

code. In addition, long codes must decode after hafd digit decisions,

whereas soft-decision decoding of block codes can be used to make a

combined hard deciéion for each of the subblocks in the subblock
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encoding afproach. Furthermore, since long codes generally have large
decoding delays, it may not be feasible to use such a code in high data
rate communication systems. o

In Figure 6.5, typical plots of throughput efficlency versus
channel bit error rate for the selective-repeat, type-I, and type-I1
hybrid.selective-tepeat ARQ schemes are presented for comparison [23].
It can be obserged from the figure that the throughput of selective~
repeat and type—1I hybrid ARQ schemes 18 constant (and, cloée\io 15 for
the channel error rate upto 10-'5 while the‘throughput of the type-I,
hybrid ARQ scheme is constant (though, less than 1)'f0( channel error
rate upto 10-4. Alsé, the throughput of thélqelecﬁiveJrepeat-ARQ and °
the type-I hybfid ARQ technique decreases rapidly as the channel begins
to degrade, while the throughput of the type~I1 technique falle less
rapidly as it apﬁroacheb 0.5, In fgct, the throughput has an inflection
at 0.5 for the type-£1 hybrid AﬁQ scheme. This is due to the'reason
that error-correction is performed upon the first retransmission in
type-11 hybri& ARQ system, and therefore, the probability of further ‘
retransmissions is considerably reduced. - ‘

In the next chapter, the above described type—Ii hybrid ARQ scheme

. 18 generaliged. Such a generalised scheme utilises the redundancy

.
3

Availablg upon successive retransmission in a more efficient manner,
and, consequently, leads to higher throughput of the ARQ scheme -in

situations when. the channel error rate is high.

s
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of G be denoted by G

CHAPTER 7

A GENERALISED TYPE-II HYBRID ARQ SCHEME

In chis‘chapter, we generalise the type-I1 hybrid ARQ scheme desc-
ribed in Chapter 6,'Se i 6.2.2. It has been stated earlier that
error detection with rettansﬁission is adaptive. The first retrans-
mission‘ef a block provides the receiver with n reduhdant digits and
this & the basis of thé type-11 hybrid ARQ scheme of the previous
sectiond A natural‘quesrion arises at this stage: 'What 1s the most
optimal“§ay of using the redundant_&ﬁfzrmation when more than one retra-
nsmission is requgsted?'. For example, in the'rype;II ARQ scheme, the
second retransmission 1s the same as the information block. Clearly,
the performance of the system eanvpe further improved 1if the second
retransmission is another parity blggﬁ which may be used to form a

(3n,n) error-correcting code. Such a scheme can ‘be generalised to eny

number of parity blocks before the transmitter resends the blocks in

[

‘ ’ *
_repetition once again. We will refer to this scheme as a Generalised

4]

of

Type~11 Hybrid ARQ (GH-ARQ) scheme.

-

= '
7.1 Description of the GH-ARQ Scheme .

The GH-ARQ scheme also uses two codes; one is a high‘rate (n,k)

[y

code V0 which is designed for error detection only, and the second is

the code V. which is used adaptively for error correction. The code V

1 1

1s an (mn,n) error-correcting code having distance d, selected in a way

»

that its generator matrix can he partitioned into n 3u§?10cks each of

" dimension (an). The integer m will be referred to as the egt of the

code. Let the generator matrix -of V1 pe denoted by G and the Bubblocks

I’GZ""' Gmg Then, G\can'be written as,

-100- : A
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' '.oo‘ o -
“02| .cm]. (7.1)

For the code V., to be useful for the application under cod:;deration, it

1
is assumed that subcode Vii) (1)

¢ =[G

with the generator matrix G , Where

c(i) - [GI' c. Lol ], has m{nimum distance d
17207 % !
(1

all 1 <1 < j € m. The depth of the subcode V1
(m)
1

such that di <_dJ for

i
) is 1, by definition.

Note that the code V is the same as tHe code V

1.
Such a code can be incorporated into a GH~ARQ scheme ééafollows.

Let 1 denote a block which is formed based on the message D and the

(n,k) code V The mn-bit long codeword is formed using I and the

0°

(nn,n) code V

1 Let such a codeword be represented by
T T2 T.,.,. T, ’ -
e = (Ei <y gm), where the vector g corresponds to Gi’ i

1,2,..., n and has length n. We know that the data block I can be

recovered uniquely from the knowledge of &y if and only if the

2 .
g

corresponding (nxn) matrix Gi is' invertible. Therefore, the generator

- o
matrix G }s assumed to be invertible so that the data block can be

1
computed from-c, alone (first transmission). In addition, it is desir-

able (although, not necessary) that the (nxn) matrices G,, 1 = 2,..., m

1
be invertible as well. This 1is particularly important for the case in
vwhich aAbursc of errors might de;troy one of the transmissions, yet
leave the other transmissions relatively error—free. New codes having
éhese ;ésired properties are discussed in the sequel. /

For the block 1 to be transmitted, the sequence of blocks which
are transmitted to the receiver, until the block 1s successfully accept-

ed, is given by.glg/ 99001 s Synvecs Coo Eyoene o Upon receiving a

block, say (PP the receiver adopts one. . of the following two strategies:

f{(ﬁ;
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(1) Iﬁ&ert ¢, (if the associated G, is invertible), perform

-4 i
error—-detection based on VO' If required, decode using &
and the previously received blocks; perform error-detection

(basedvbn Vo) again, or

(2) Decode using <
error-detection based on VO'

An ACK is gent to the transmitter whenever no errors are detected. For

and the previously received blocks; perform

-

the above transmitted sequence of blocks, the receiver performs error—

correction on tbe basis of the codes V{z), V§3),..., Vl, Vl,... having

the distance d2,d3,..., d, d4,... . Thus, with each retransmission, a
s
code having a higher distance, that is, a larger error-correcting capab-

ilicy, 18 used for error correction until we reach the code Vl'

Note that the type-II hybrid ARQ scheme described in Chapter 6 is

a speclal case of the GH-ARQ presented here, for which the depth m = 2,
'y .

the matrices G1 and G2 are invertible and, furthermore, the matrix G1

an identity matrix. ) .

Ais

-

7.1.1 Complexity of the GH~ARQ scheme

" We briefly analyge the complexity of the GH-ARQ scheme described
above. To begin with, for any block I ;o be transmitted, the transmi~
tter computes a codeword of length mn based on Vl. Therefore, a buffer
of length mn bits is required at the transmitter amd the receiver for
each of the blocks to be transmitted. The transmitter a}so requires an

!

encoder only for the code Vl.

of the codes Viz),..., Vim.l), v Also, an inverter circuit is needed
for each of the [ i= 1,2{&; , W,

From the analysis of the system complexity given here, the comple-

The receiver requires a decoder for each '
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xity of implementing the GH-ARQ scheme may appear to be prohibitive.

Specifically, the configuration of the receiver seems very complex as it

(2) (m-1)
1 1 Ve

and if the decoding procedure for these codes is not the same, the cost

~fequirea decoders for more ‘than. one code, namely V yeesy V

of having (m~1) decoder circuits at the recelver may offset any gain in_

system performance. Alternatively, if the decoder configuration for the

" codes is the same, then the GH—ARQ scheme may offer a significant adW'n-

tage over the type-1I ARQ systems while keeping the additional system
complexity to as low as possible.

A class of linear codes having the ne;essary properties was
discussed in Chapters 4 and 5. These codes are referred to as the KM
(Krishna-Morgera) codes in the sequel. The decoder configuration for
the KM codes, é%::n in Figure 5.1, can alternatively be desc;ibed as a
procedure which computes a smail nunber of candidate information
polynpmials and selects that candidate information polynomial as the
transmitted information polydomial whoge corresponding codevector

S
' e
differs from the received vector in the least number of places.

Therefore, the decoder configuration can also be described Sy the block

. diagram shown in Figure 7.1. . Co

Since the (12,4,5) KM code will be referred to extensively in this
chapter, the ;enerator matrix of this code is reproduced in the
following: TheAgenerator natrix has 4 blocks gbr:esponding to the
codputation Zi(u)Yi(“) modﬁlo Pi(u), 1-1,2,3? where Pl(“) - uz, Pz(u) -
(n2+1) and P3(u) - (u2+u+1), and the computation of the wrapafound~fo;

8 ='2. 'It 1is given by,

;e

. ‘\\ . &
— S me e ey T e T — it~

L - B T - - - B a5
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C= (7.2)
0001011071 00101 :

L_ o 000111 1-0 1-01

It has been stated earlier that the actual minimum distance of &he above
code is 6. Before proceeding further, we outline the basic procedure to

obtain the partitions of the KM codes tequired in the application of o

B |
these codes to the GH-ARQ scheme. ' i

7.2 Procedure for Partitioning the Generator Matrix of KM Codes

Consider an (n,k) KM code. The generator hAtrix C of the code has

1 corresponds to a computation of the ggn‘xm

» 1]

(t+l) blocks, whe:e_each block C

type,
_@i(u)'E Zi(u)Yi(u) modulo Pi(u).

1f deg[Pi(u)] =a,, then there are exactly ai‘x.i. columns in Ci

corresponding to the reduction of Z(u) modulo Pi(u) to obtain, *
Ny T
Zi(u) = Z(u) modulo Pi(“)'
,ua\\) As each of a, 1is small, the above computation for Qi(u) can be

performed such that the rank of the remaining n-ay columns is the

maximum of ¢, and n, - - This is to ensure that the partitions of the

1 17 %,
generator matrix are invertible. Also, since the information polynomial

ié of degree k-1, it can be computed from any set of k L.1. residues.

Furthermore, the block C, corresponds to the computation

i
ai ' -
Zi(u)Yl(u) modulo (u+ai) x .

1]

Gi(u)
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where a, € GF(2), can be partitioned into subblocks C;, Ci'i"'cf such,
that subblock Ci corresponds to the computatiog ,
¢i(u) = Zi(“)Yi(u) modulo (u+ai) :

and, in gené}al the subblocks (C1 ci---cj) correspond to the

M -
computation .

M n,.i-w

o, (u) =z, (WY, (w) ,modulo (wa,) *y . :

for j = 1,4,...,f and @ = a,

This property also holds for the wraparound block. Thus, the minimum °

.

distance of the code 1s increased by simply introducing columns to the

generator matix. Also, these columns are chosen to be %.i. go that the

.‘,

-assoclated partitions are invertible.

st

Example. Consider the generator matrix of the (12 4,5) KM code given in
[«3

\a(

(7.2). The block corresponding to the computation 2 (u)Y (u) modulo uz

. l’
is given by, , .
J 1 0 17 }
C1 = 011 //f/(
a . v "\// ‘ «
) 0 0 ' .
0 0 - .
L g

This block can be partitioned into two subblocks Ci and Ci, where

‘ '&" : . N

!"/

28
-
1
o__..e

s st

.

o R
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) . ’
11 4
\
. i ¢
2 1 1
( and C1 - ~ ~ .
| 0 0 ) - -
f ’ [ 0 0_ : | .
such that C;‘ corresponds to the computation Zl(,u)Yl(u) noduld u.
- ¢ ° .
§ Simflarly the block C2 corresponding to the computation Zz(u)"‘lz‘(u)
E . modulo (u2+1) is given by, h ' o
{ Y !
1 ® 17 '
i ‘ " -
S L »
; . AJ 2 l. 0 1
l ) R IR O -
12 - .
This block can be partitioned into two subblocks 02 and C2, where it
o , - ‘ . .
. 1 F ’ o .
v 1 K X 1 ' ‘ ‘ :
C2 = .
1 o
° 5 /\——\ . L_l | . : ) - g
TN e, : o 1
P 2 .
cz\ Lo \
- 5 .
St e I
e ¢ . P n
h 4 8 . -
' & }
[} 3 . u;,
R - L
<
{ T B ,
‘ ¢ - 3 L f" .
’ N " .
{ . ¢ Y
s “ ¢ - v
v ‘ ) —E{
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*

“and C; corresponds to the computation Zz(u)Yi(u) modulo (utl).- Finally,

the Graparound block CA for 8 = 2 is given by,

1 . €

- o o C

[«R ol eoNe]
[ e =)

This block can be partitioned into subblocks Cz and Ci, where

b——O »
oo |o -
€ 0
4 1
_ -
- o o7 | ‘
C2 - 0 0 . 45 , -
4 11 ‘ .
¢ Lo 1 .
¥:1 Ca corresponds to the wraparound computation for s = 1.

The (12,4,5) bode is obtained from the computation ®(u) =
Z(u)¥(u), where P(u) = uz(h2+1)(u2+u+1) and s = 2. Consequently; 1f the

subblocks pf and Cz are deleted from the generator matrix of the

(12,4,5) code, the resulting code is a (8,4,3) code corresponding to thﬁ
computati&% ®(u) = Z(u)Y(u), where Z(u) = z0+zlu+zzu2¢z3u3, Y(u) = g . ’ ff
yb+ylu+y2u2, P(u) = u(u2+1)(u2+u+1) and 8 = 1.4_The,generaFor matrix of

the (8:4,3) code canrbe divided into two partitions so thét each of v

. . these partitions are invertible. Such an arrangement of the columns

results in the following form for the generator matrix of the (12,4,5) '

KM éode, . .
. ‘ b
- 1 10194,1100,0100 ~
c=|0010j1 1 10,1100 © (3.3
. 0101, 31010,0011 : )
‘ © 011y} o1 ,0000.1], -
- leh e, - L
1:2:—95']/' ', ° | .

It 1s easy to verify that the matrices bl’ C2 and C, are invertible and , :

V. L.
the matrix [01 'Cz] i8 the generator matrix of the (8,4,3) KM code.

S . " . .
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-

7.3 A GH-ARQ Scheme Based on KM Codes

We now describe a GH-ARQ scheme that employs KM codes for error-
correction. To be specific, we take the example bf'the'(12,4,5) KM code

and i%lustrate the complete scheme for such a code. Such a scheme,

"

hewvever, 1s general in nature, and in Appendix D we present the genera-

tor matrix of several KM, codes along with their useful features for such

S

an application.
4

. Let us assume that we wish to use the above code in the GH-ARQ
4L .

system. Choosing an (n,k) code VO’ for error detection, we proceed as,
\ ’ -

foilows. Define three matrices G G, and G3 each of dimension (nxn)

1’ 72

as,
r 6y " Ci®1n/4 £ =1,2,3 T (T.4) T

where In/& is an identity matrix of‘orderﬁn/4 and()represents the

' Kronecker product of two matrices [35]. It is worthwhile to note hérg

N k¥
that‘%ince Ci’ i=1,2,3 1s invertiS&e, the matrix Gi’ i=1,2,3 18 also

-y

1$yertib1e and Gb1 is given by,

i

-1 -1,
Gy -‘ci ®1n/4 i=1,2,3.

Let 2 denote the vector corresponding to the block f to be trans~-

mitted. The transmitter computes three (nxl) vectors,

et = 2%, 1=1,2,3.
Since Gi’ 1i=1,2,3 1s invertible, the data block I can be computed

uniquely from 1 =1,2,3. Note that the above encoding procedure

L
corresponds to partitioning the block L into subblocks of length 4 each,

and then encoding each of these subblocks using the (12,4,5) KM code.
. o )
- denote the blocks associated with the vectors & &

I.and I Sy

1° 72 3
S reépectively.‘ The transmission procedure for' the block I1s

Let 1

shown in Figure 7.2. .




&
e
L .
' ) “)
Tran$mit the _ . ¢
‘block 1. : o
*
. ¥
Qransmit the ) < -
block Iz. . — o )
* Proceed to ' .

+— the next
- data block.

12

Transmit the
block 13.

Figure 7.2. Transmission procedure for a GH~ARQ scheme
vusing depth 3 code for error-carrection

L]
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J

Let Ti denote the received block correéponding to the block Ii and

1. be an estimate of the block I based on T, and the matrix G

i { g0 1=

1,2,3. 1If no errors have taken place during transmission, then Ti - Ii
and éogsequently fi = T, 1=1,2,3. The recelver configuration for the
block I is given in Figure 7.3. In Figure 7.3, the integers i and }J
correspond to the totai.number of transmissions for the block I and the
most recently received glock, respectively.

It was’implicitly assumed above that the length of the block 1 was
an integral multiple of 4, the dimension of the KM code used. In
general, the length of a blpck n an ARQ scheme may be restricted due to
other'éysteﬁ constraints. Keeping this in mind, we present a number of
KM codes in Appendix D that can be used in the GH-ARQ scheme for

adaptive error control. The generator.matrices (in block form) and the

important properties of such codes are also given.

7.4 Error Detection !

In this section, we analyse the error—detection capability of the
GH-ARQ technique. This is an important parameter for the perfbrmance of
the system. Let 3& denote the probability of an undetected error of the

(n,k) error—detection code V If V. is properly chosen, Pe is

0’ 0
upperbounded by, P

5= (nk) 0<ech (7.5)

Po<[1- (- )]
P
where ¢ 1s the bit error rate of the channel [32]. If a code that
satisfies the above bound 1s used for ARQ systems, then Pe ¢éan be made
very small by using a large number of parity bits. The bound is an
existence bound and very few codes have been theoretically shown to

éa?\sfy it [34]. However, it is intuitively seen that there is an

abundance of codes that will satisfy the bound. We note that the

2
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Figure 7.3. Receiver operatiom for a GH~-ARQ scheme using
) (12,4,5) KM code for error-correction
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reliability of an ARQ scheme depends ‘strongly on the existence of codes

for which Pe can be ﬁade arbitrarily small. 1In the following,\we
examine the proﬁability of undetected error for each transmission in a
GH-ARQ system as compared to the probabi&ity of undetected error for
each transmission in an ARQ scheme using the code VO.
Let r denote the received vector ‘and the (n-k)xn matrix H be the

parity-check matrix of the code V.. The procedure for error-detection

0
corresponds to computing the vector-matrix product E?HT. If the product

results in the zero vector, the vector r is a codeword in V., and is

0

declared errof—free. In the GH-ARQ s8ystem, the receiver first takes

4
the Inverse of the received vector r in order to obtain an estimate of

the codeword I and then examines it using V Such a procedure can be
described mathematically as the vector-matrix produét E?G;IHT, where the
subscript 1 represents the ith tranB&mission. Let ﬁI =- G;IHT; we can,

"
equivalently, state that, in a GH-ARQ system, an error pattern e in the

0.

.}

4

ith transmissioﬁ of a block will be undetectable 1ff e is a codeword in

the linear code having ﬁi as its parity-check matrix.

Though it is not possible to show at this stage that the probabil-
ity o; pndetected error in the GH-ARQ scheme satisfies the bound given
in (7.5), we present two examples which satisfy the boun@.

Example 1. Let Vo be the (500,480). code obtained by shortening the
distance 5 (1023,1003) BCH code and V1 be the (12,4,5) KM code described
in Section 7.2. Figure 7.4 shows the probability of undetected error
when V0 1s used for error-detection in a GH-ARQ scheme th;t uses the
(12,4,5) code“Et error-correction. Note that, in this case, there Qie

-
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: ) GH-ARQ scheme using (12,4,5) KM code

' for error-correction
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”

. 3 plots for the probability of undetected error corresponding to the

first transmission and first and sepond retransmissions.
Example 2. For the same code VO as in Example 1, Figure 7.5 shows the
probability of undetected error for.successive transmissions in a GH—ARQ
scheme that uses (15,5,5) KM code of Ap;tndix D for adaptive
error—corrgction.

- We observe that in both cases, the probability of undetected error
is a monotonic function of €, 0 < € < %, a condition necessary and suff-

icient for a code to satisfy the bound of (7.5) [34].

7.4.1 Burst errorjdetection capability of GH-ARQ scheme

Usually,;for ARQ applications, the error—detection code VO is
chosen as an (n,k) cyclic code due to 1ts burst error~detection
capability. Every (n,k) cyclic code can detect any burst of length
(n-k) or less as.no codeword of a (n,k) cycl}c code is a burst of length
(n-k) or less [9]. A natural question to consider is the burst error-
detection capability of the codes used in the GH-ARQ schemq. For the
GH-ARQ scheme, the receiver multiplies subblocks of the received‘véctor

\

with the inversion matrix, i.e., C—l. Therefore, 1f there are errors in

i
a subblock, these errors are contained within the subblock itself after
the'iuversion. For the worst case, we assume that if there is an error
in a subblock, all the digits in the subblock are in error after inver-
sion. If %' is the length of gach subblock, and n' 1s the number of .
subblocks that are affected by a burst of errors, then, after inversion,
the length of the burst is at most £'n'. For a burst to be detectable,

we have £'n' < (n-k), or, n' < Int[(nk)/4'], where Int{x] is defined as

the integral part of x. Therefore, the maximum value of n' is given by

-
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1 k = 480
7 1: 1st transmission ’
10~
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L
n;ax = Int[(n-k)/2']. It is a stmple exercise to establish that the
maximum léngth of a burst that affects only n;ax number of subblocks, 1is
1'(n;ax—1) + 1. Hence, the burst error-detection-capability is under-
bounded by l'(nmax-l) + 1, For example, if (n-k) = 20, and ' = & (as
i1s the case for the (12,4,5) code), then n' = 5 and the burst
- max -

error~detection capability is at least 17. '
7.5 Performance Analysis of GH-ARQ Scheme

In this section, we analyse the throughput and reliability of a
GH-ARQ scheme. These are two important parameters associated with the
performance of any ARQ scheme. -
7.5.1 Throughput &

‘/Mv'n"-

Since selective-repeat ARQ 18 the most efficient ARQ scheme, we
©

consider the throughput of the GH-ARQ scheme in the selective-repeat
mode. The throughput of such a scheme deﬁends on the buffer size, and
in this regard, we restrict our attention to the infinite receive buffer
case. Also, it is assumed that the feedback channel is noiseless.

Let Ag, Ag, and A; denote the events that a data block contains

no errors, detectable errors, and undetectable error, respectively, in

-

e
i

that the {ith retransmission for a block contains no error, detectable

its first transmigsion. Similarly let Bc, Bi, and B, denote the events
errors, and undetectable errors, respectively, 1 » 1. Note that the
ith retransmission corresbonds to a total of i+l transmissions for a
block. Also, upon the 1ith retransmission, i;t Qi, Qi, and Q: be the
events that the block obtained by decoding the blocks received upto the
{th retransmissfon, contains no errors, detectable errors, and

undetectable errors, respectively. Finally, upon the ith
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retransmission, let E; be the event that receiver recovers the data

block, correctly; Ei be the event that the receiver cannot recover the
« L

ve

data block, detects the presence of errors, and requests the next

e

e
be the event that the receiver accepts an

i

erroneaous block. Therefore, using elementary law of probability,

retransmission ; and E

i L4

c c d .c
By =B YV OB ﬁ
d d .4
Ei Bi Qi

®
®

d e
E B, U Bi Q1

where Bg Q:, for example, denotes the intersection of the events B: and
/& '
c ©
Qi.? ,
If A/denotes the number of transmissions required to recover a block
successfully in any ARQ scheme, then the expected valwe of A is,

c d_c
E[A] = Pr(ag) + 2Pr(AE]) + oo

‘(7.6)

+(1+1)Pt(AgEg oo Eg_lE;) 4 oee

and the throughput efficienc? of the ARQ system is given by,

"= EE @
]

Here k/n is the rate of the code V. used for error-detection.

0
The expression for E[A] given in (7.6) 1s a general expression for the
average number of transmissions in an ARQ system. However, it involves

the probability of joint events which are difficult to calculate. Ve,

therefore, adopt the following two approaches for our further analysis.

N




-119-

)

(a) Approach 1. Wang et al [32] obtained a lowerbound @&:g%g\thr0ughput

'//'/)of'the type~11 hybrid ARQ system by analysing the throughput of an ARQ

o

- system which performs error~correction at every odd retransmissfon and

jﬁ3§77gﬁ~on1y error-detection of every even retrangsmission. Their expressions

can be appropria;ely‘modified when an (8,4,3) KM code is used for
error-correction. These expressions are given in Appéndix E. Note that
this code corresponds to the simplest form of a GﬂﬁéRQ system having

m = 2 and is the same as the subblock approach of [3Q]. Figure 7.6
shows the throughput of such a system. It also shows thg«{hroughput of
the type-II hybrid ARQ system for the error-correcting capability

t, = 5,10, and 20 of the code vy [32]. It can be seen that the
throughput of the GH-ARQ system decreases slowly as it approaches O.Sé

.
7

Although an exact analysis appears to be complex,'Lt can be af§uéa’that
since the receiver performs error-detection as well as eg}o:—correction
upon the first retransmission, the probability of furthgr -
re;rinsmissions is reduced significantly and, theFefore, a higher
throuéhput is achieved. Also, so long as the probabiliﬁy of ’
;rro;-correction upon the first retransmission {is high, the tﬁ}oughput

will stay close to 0.5.

(b) Approach 2. Let us consider a GH-ARQ s&stem, denoted by Sm that use

an (mn,n) code V1 for error-correction. Also define a serles of .GH-ARQ

as the GH-ARQ systems that use the subcodes Vij) of V1 for

systems Sj
error-correction, j = 1,2,..., m. We further assume that da < dB if
« <p, where de denotes the minimum distance of the subcode V{e). If

Ej[AJ i1s the expected*iumber of transmissions for the GH-ARQ system Sj

defined above, then we have,

g
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E,JA] = Pr (AS) + ) (4+l)Pr (F,) 3=1,2,..., m (7.7)
3 0 i1 :
i=1 . N
d ' c ‘ c -1
se* By Ef- Also, psj[i} = Pr(ag) + y Prj(Fl) is
. r/ A=1
. the probability of the event that.for GH-ARQ system Sj’ the receiver

recovers the data block successfully in i transmissions. Intuitively, we

]
: d d
where F1 AOEIE

~ A

gsee that, . .

Pg [1]-ps (1] for 1 < a and 1 < B (7.8)
a

i
-

B
and p.{1] > p f}i] for > B and 1 > B ' (
s, 7 Ty Y

a

Equations (7.8) and (7.9) are mathematical analogues of the statement:
'Thétprobability of the event th;t a block is successfully accepted in i
transmisaions is equal for two GH-ARQ schemes that use codes of depth o
and 8 for e;ror-correction if 1 < o and 1 < B, since the two schemes

. v
) .

‘. behave in an fdentically same manner for such’a value of 1. Conversely,

1

the probability of the event that a block is successfully accepted in }/‘

transmiésions is higher for a GH-ARQ scheme that uses a greater depth

. E/)code for error-correction.'

L

o

Therefore, the throughput of a GH~ARQ system using a depth a code ~ ' 4
for error-correction is always higher than a GH-ARQ system that uses a
depth B code if a > B. However, the relative improvement in the

throughput depends on the value of PS [1]. For example, 1if the

error-rate ‘of the channel e + 0, then, Pg (1] = Prj
j »
EJ[A] + 1 for § = 1,2,..., m. Therefore, all the GH-ARQ schemes perform

(Ag) = (1-e)" + 1 and

equally well for lowverror rates. As £ Increases, we require & larger

value of 1, 1.e., more transmissions for a data block in order to make

p .

3 v

4 e el
WL NR SR v
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P [L] close to 1, thereby, increasing Ej[A]. Also a GH-ARQ scheme S
j .
<Q
will perform significantly better than a GH-ARQ scheme Sa only if

a+l

[a] =\PS [e]. Furthermore, for any

8 a+l a

a

P [a+1} >» P s
<

S [a+l] since P
atl .

GH~-ARQ system, S,, if PS [i] + 1 for the smallest value of i, then the

. 3
throughput of such a system will fall atmost to 1/i. For example, for
oy '
¢+ the type~II hybrid ARQ system (SZ)’ the throughput falls to 0.5 when

retransmissions take place and ¢ 1s such that Pg [2] + 1.
2

In Appendix E, we analyseTthe throughput of a GH-ARQ scheme using
the (12,4,5) code by defining two systems inferior to the proposed
gystenm. TheVQ}rst inferior system A performs error-correction at every
odd retransmission using the (8,4,3) code and only error-detection at
every ;ven retransmission. The second inferior system B performs error-
cor;eq}ion at every third transmission'using'the (12,4,5) code and only
error—éZtection for other transmissions. Since the expressioﬁs de;ived

. are similar to the expressions derived for Approach 1, only the
pertinent detail's are given. The throughput of the actual GH-ARQ scheme
is underbounded by the maximum of the throughputs of the two inferior
systems. The expressions for the GH-ARQ schemes employing other codes
for error—-correction can also beﬁderived using the expressions derived .
in Appendix E. Figures 7.7 and ].8 show the throughput of GH-ARQ scheme
using the (12,4,5) and (15,5,5) KM codes for error-correction for
various values of data block length n. Such scheme; have a debth of 3
and it 1s demonstrated in Figure 7.7 and 7.8 that the throughput of the
schene 18 close to 1/3 even for very high values of error (e » 10-2) and

; large block length (n = 2000).

o

/.,
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7.5.2 Reliability
It has been establisfied that the type~11 hybrid ARQ system

provides the same arder of reliability as an ARQ system [32]. In the
GH-ARQ scheme of depth ﬁ“ error-detection is performed on the basis of

codes having H,, 1*1,2,...,n as the parity check matrix. If Pe is the
i

probability of undetected error for‘auch codes, let

Pe = max (Pei, i=1,2,...,m). ‘ -

QBing similar arguments, it can be shown that the GH-ARQ system leq
provides the sa;e rder of reliability as an ARQ system using a code V0
for error—detection having Pe as the probability of undetected error.
This property 1is esg:?lished in Appendix F. It is worthwhile to mention

" i .
here that the Pe , 1=1,2,,..,m are agsumed to satii?gﬁthe bound given
. i

/
in (7.5), and therefore, Pe can be made arbitrarily small.

s - oot
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DISCUSSION OF RESULTS: PART II

It 1s clear from the description of the ARQ schemes that these
methods provide high system reliability, and are simpler to implement as
compared to FEC schemes. However, at high channel error rates, the
throughput of such systems falls rapidly while the throughput of a
system using FEC is constant, irrespective of the channel counditions.

T practice, ARQ and FEC schemes may be combined to provide high
reliability as well as high throughput. 1f the channel characteristics
are known\g priori to be fairly constantg ARQ schemes can be combined

L4
directly with FEC schemes to provide high throughput. Such schemes are

¢

termed as type-I hybrid ARQ schemes. ;m
In many system applications, the channel characteristics are not U
" constant. Typical channels may be very qulet most of the time, but -3 ,

behave‘poorly during certaln periods of time. Such channels are
characterised by non-stationary error rates. One example of such a
channel 1is the satellite-gh;ngel. Thus the system is able to maintain
high throughput duriné long periods without any error—correction, while,

the performance deteriorates during poor channel behaviour. In such

-y

cases, the redundant Information available upon successive tranmsisaioﬂs
is ;sed to adaptively perform error-correction. These schemes are
termed as type-I1 bybrid ARQ schemes.

" In tﬁis part, the type-II hybrid ARQ schemes that are based on a
(2n,n) code are generalised to (mn,n) type~I1 hybrid ARQ schemes (m>2).
These schemes are termed as GH-ARQ schemes. It is shown that the codes

obtained i{n Part I, and referred to as KM codes in this part, can be

incorporated into a GH-ARQ scheme to provide adaptively error-

-128-
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correction. Thege codes provide acceptable throughput even during

P

extremely poor channel conditions (very high channel error rates).

Since KM codes have small length and dimension, they are relatively less

>
e

complex to implement as compared to codes ha;iﬁg large length and
dimension proposed elsewhere for similar applications. Another
attractive feature of these codes is that’the decoder configuration can
be implemented using parallel architecture, making them an excellenguii‘
.candidate fox high data rate commurtication systeq?. Finally, {t is
established that the GH-ARQ schemes described here also E:::i?e the same

order of system reliability as a pure ARQ scheme. ~-

L )
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CHAPTER 8 “

CONCLUSIONS T

In Part I of this work, we have developed a new approach‘for
obtaining linear codes. The properties of such codes depend on the
computation of the aperiodic.convolution of two sequences over the
finite Eield of interest. The computation considered is bilinear in
nature. The emphasis, in this work, is on algorithms over GF(Z; and the
assoc{gted binary codes, although codes over GF(3) are also discussed.

A dense distribution of binary linear codés is availabfe with a wide
range of rate and distance properties. The length of the binary codes
is determined by the complexity of the small polynomial multiplication
algorithms involved and the overall length of the aperiodic convolution.
Detailed examples of the code generation procedure are presented for
convolution lengths of 6 and 16 over GF(2).

This hitherto unexplored approach to design of 1{§;ar codes holds
much promise for understanding structures of codes possesaing good
properties. We feel that this work offers means for unifying many gobd
codes having disparate mathematical origins and encoding/decodipg
procedures. ,

The codes generated using the procedure given in this work may
prove to be be extremely useful in’ system applications where codes of |

varying error correcting capabilities are required to combat errors in a

fluctuating noise environment. The problem can alternatively be

considered as the problem of designing a linear code having a large
dimension and distance by using the codes of small dimensions and

distances as its building blocks.

-130-
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The codes presented here can be generalised to codes over GF(Zm).

The length of the codes 1s not restricted to a maximum of (Zm—l) for

such codes as 1s the case for the RS codes over GF(Zm). It may be
possible to find good linear codes over GF(Zm) which, though weaker than
the RS codes, may be relatively simpler to decode.

Due to their unique structure, the KM codes discovered in this
work find an immediate application in ARQ systems for providing a;zptive
error-correction. It is clear from the description of the codes in ’
Appendix D that it is possible to choose from a wide range of codes for
error-co;rection in the generalised hybrid automatic repeat request
system proposed here. These codes have a depth upto 4. We have
demonstrated that these codes can be used to achieve high throughput
under conditions when the channel is beha&ing rather poorl;.

The emphasis 1ﬂ this work, is on GH~ARQ schemes which are simple
to implement, and do not require excessive system overheads.. The ;M
codes can be Incorporated into a GH—ARQ system using simplé
encoding/decoding procedures. The length gnd the minimum distance of
the KM codes can be varied easily without changing the encoder/decoder ‘
configuration, and, therefore, these codes are useful in providing Y%
adaptiJe error control when frequent retransmissions are required due to
ﬁegrading channel quality.

The proposed schemes compar; well with the type-1I hybrid ARQ
scheme which is a special ‘case of the general scheme described here.
However, it may be relatively less complex to implement the codes which

are described here as compared to implementing the large length BCH code

- described in [32] even for moderate error-correcting -capability.
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Since the codes studied here have small dimension, they can be

decoded usign soft-decision decoding of block codes. This can' lead to

further improvement in the overall system performance. The receiver can

also operate on a number of subblocks in parallel and the time duration

of the complete procedure can be reduced. This feature may be important

for high data rate applications.

Finally, we would like to state that all the GH-ARQ schemes

I

proposed in this work are based on one class of codes and it may be

possible to find other classes of codes which are equally simple in

their encoding/decoding procedure and effective in providing higher

throughput when the channel degrades.

8.1 Directions for Future Research

There are a number of‘distinct directions that a fut;re researcher -
interested in this area can explore. Some of Ehe important ones are as
follows: ~ v
(1) Study suitable architectures and implementation of the '
decoder configuration for the codes studied here, with ;
special emphasis on‘high date raté applications.
(2) Genefalise the procedures to obtain efficient algorithms and
. %
the associated liqear codes over GF(Zm).
(3) Study the complexity of the decoding procedure and the
trade-offs between the complexity of the decodér and the
length of the codes. ' rl ( ﬂ‘
¢ .
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(d)“ Study the complexity of the decoding procedure in terms of

soft~decision decodability of the codes.

’

(5) . Investigate further into other potential applications for the

w
. KM codes. We feel that the uniqueop}operties associated with
: ' - .
these codes may be further exploited to improve the
At: performance and redqce the overall complexity of several
. y—r
communication systems.- \
We conclude thig thesis by stating that all the binary coies
generateﬁ in this work were found from the computation of a particdlar ’
-bilinear form and it may be possible to generate other classes of codes
by considering different bilinear forms and their computatién over. the
finite field of interesty We hope that this work will open up much
fruitful and exciting research in this area. °
I f
%
, ""0 . ’
& ~ ‘
. ! ) \
, . “
Y o
~
S
o ," .?' ‘;‘
5 )
L




- (4]

(5]

. [10]

[11]

W ey e b e e e Ao

‘e

REFERENCES

R.E. Blahut, Theory and practice of error control codes, Addjison-

Wesley Publishing Company Inc., 1983.

)

JeM.' Pollard, "The fast Fourler transform in a finite field,"

Math. of Computation, Vol. 25, pp. 365-374, Apr. 1971.

W.C. Gore, "Transmitting binary symbols with Reed-Solomon codes,"”

Proc. Princeton Conf. Inf., Sci., Syst., Princeton, pp. 495-497,

1973.

R.T. Chien and D.M. Choy, "Algebralc generalisation of BCH-Goppa=-

Helgert codes,” 1EEE Transactions on Information Theory, Vol.

1T-21, pp. 70-79, 1975.

A. Lempel and S. Winograd, "A new approach to error—correcting

"

codes,” IEEE Transactions on Information Theory, Vol. IT-23, No.

4, pp. 503-508, July 1977. .

“

J. Justesen, "On the complexity of decoding Reed-Solomon codes,”

L] -
1EEE Transactions on Information Theory,, Vol. IT-22, pp.

237-238, 1976.

-D.V. Sarwate, "On thi complexity of decoding Goppa codes, "IEEE

[ .
Transactions on Information Theory, Vol.IT-23, pp. 515-516, 1977.

S. Lin and D.J. Costello, Jr., Error control coding: fundamentals

and applications, Prentice Hall. 1983.

‘

W.W. Peterson and E.J. Weldon, Jr., Error-correcting codes, The

MIg Press, 1978.

F.J. MacWillisms and N.J.A. Sloane, The theory of error-correcting

«

codes, North Holland Publishing Co., 1977.

J.H. McClellan and C.M. Rader, Number theory in digital signal

processing, Prentice Hall, 1979.

-134-




e

* -135- N

-

-

{[12] H.J. Nussbaumer,) Fast Fourier transforms and convolution

algorithms, Springler-Verlag, 198l.

'
« 2

[13] H. Krishna and S.D. Morgera,,"A"éodpuCBtional complexity app&oach

to the design of linear codes,” International Symposium on

Information Theory, Brighton, England, June 1985.

[lb]r H. Krishna and S.D. Morgéra, "A computatiogal complexity approach

[15]

to the design of linear codes,” submitted to IEEE .Transactions on

]

Information Theory for publication.

3

H. Krishna and "S.D. Morgera, "A new error control scheme for

‘%
hybrid ARQ systems,” To be presented at International Conference

on Communications, Toronto, Canada, June 1986.
/

[16] R.W. .Brockett and D. Dobkin, "On the optimal evaluation of a set

of bilinear forms,” Proceedings Fifth Annual ACM Symp. on Theory

¥

of Computing, pp. 88—95, 1973,

[17] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis

« of computer algorithms, Addison-Wesley Publishing Co., 1974.

(18]

[19]

[20]

¥
J. Hopcroft and J. Musinki, "Duality applied to the complexity of

a ~
7

matrix multiplication and other bilinear forms,” SIAM J. Cou¥ut-

ing, Vol. 2, pp. 159-173, Sept. 1973.

J.L. Dornstetter, "On the computation of the product of two

‘-polynomiala over a finite field, "International Symposium on

Information Theory, St. Jovite, Canada, Sept. 1983.

L3

H.J. Helgert and R.D. Stinaff, "Minimum distance bounds for binary

linear codes,”™ IEEE Transactiona on Information Theory, Vol.

 IT-19, No. 3, pp. 344-356, May 1973.

¥4



L ~136-
_—_— / 4 ’ @

o

IS
[21] ‘g

D. Wagh and S.D. Morgera, "A new structured design method for

convoiﬁtions over finite fields, Part I," 1EEE Transactions on

Information Theory, Vol. IT-29, No. 4, pp. 583-595, July 1983.

[22] G.C. Clark and J.B. Cain, Error-correction coding for digital

%
communication, Plenum Press, 1981.

[23] s. Lin, D.J. Costello, Jr. and’M.J. Miller, "Automatic-repeat-

. »

request error-control schemes, IEEE Communications Magazine, Vol.
22, No. 12 pp. 5-17, Dec. 1984,
[24] S. Lin and P.S. Yu, "A hybrid ARQ scheme with parity retrans-

misslop for error control of satellite channels,” IEEE Transac-

tions on Communications, Vol. COM-30, No. 7, pp. i706-1719,~J#iy

1982. ' ' |
[25] A.R.,K. Sastry, "Improving automatic repeat request (ARQ) perfor-

mance on satellite cgannels under high error rate conditions,”

A "
IEEE Transactions on Communications, Vol. COM-23, pp. 436-439,

o

. April 1979, -

o

' K '
[26] P.S. Yu and S. .Lin, [An efficient selective repeat ARQ Schej7/;or

4

satellite channels anglith throughput analysis, "IEEE Transactions
N\

on Communications, Vol. COM-29, No. 3, pp. 353-363, March 1981.

[27] E.Y. Rocher and R.L. Pickholtz,‘"An aﬂalysis of the effectiveness

of hybrid transmission schemes,” IBM Journal of Research and Deve-

lopment, pp. 426~433, July 1970.

’

(28] H. Krishna and S.D. Morgera, "A new error control scheme for

hybrid ARQ systems,” submitted to IEEE Transactions on Communica-

1

tions for publication.
-



iorg ey

-137-
[29] D.M, Mandelbaum, "Adaptive-feedback coding scheme using incremen-

{ ~ tal redundancy,” IEEE Transactions om Information Theory, Vol.

IT-20, pp. 388-389, May 1974.”

[30] J.J. Metzner, "

Improveménts in block-retransmission schemes,"” I1EEE

Transactions on Communciations, Vol. COM-27, pp. 525-532, Feb.
1979.
[31] J.J. Metzner and D. Chang, "Efficient selective repeat ARQ strate-

gles for very noisy and fluctuating channels,” IEEE Transactions

on Communications, Vol. COM-33, No. 5, pp. 409-416, May 1985,

[32] Y.M. Wang and S. Lin, "A modified selective-repeat type-II1 hybrid

ARQ system and its performance d#nalysis,” IEEE Transactions on

—

Communications, Vol. COM-31, No. 5, pp. 593-607, May 1983

[33] C.W. Therrian and K. Fukunaga, "Properties of separable covariance

matrices and their associated Gaussian random processes,

IEEE
- Transactions on Pattern Analysis and Machine Intelligence, Vol
PAMI-6, @ 5, Sept. 1984. ‘)
[34]. T. Kasemi, T. Klove and S. Lin, "Lineat block codes for error
" detection,”.

IEEE Transactions on ILiformafion I keory, Vol. IT-29
No. 1, Jan. 1983.

o~

] L \. . J

-

.
e - DS N S
' T e .

-



o ne pg v gt s

~

APPENDIX A

¢

‘Noncommitative Algorithms for Small Degree Polynomial Multiplications

' Algorithms B, ancf C are taken from [21] and Algorithm E is derived
from Algorithm’B by muléidimensional techniques; Algorithms D and F are
derived from Algorithmé C and E by makiné suitable alterations. These
,Ja‘lgorithms are valid over, any field.

Algorithm A  Degree 0, 23°Y, * 9

Computation: direct 1 multfplication.

Algorithm B Degree:. 1, (zo+z1u)('y0+y1u)‘
2
v . - 00“'¢1\I+¢2u
Computation: 3 multiplications. . -
~ Let oy = Z5*Yg
\ i B R ,

m, = (zytz)) (yotyy)s

then ¢0 = m, . - .

L e e R
47
eAlgorithm C Degree: 2, (zoﬂlmzuz)(yoﬂl\rﬁzuz)
B

Computation: 6 multiplications. «
Let By = Z4°Y,

m =20y

m = 2,

my = (zytz,) * (ypty;)

"‘r ~138- |
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Algorithm D
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(2y%2) * (3,%7,)
mg = (zgtzy)) * (yghyp)s /-
tﬂ n QO = m

¢1 ] -mo“ml+m3 /{ : ¢

‘¢4 =o,.
Degree: 2, (z.tz,utz u2)( +y, uty uz) modulo u3
gree: &, zptz urzu Iyt WY,
- sgraperg
Computation: 5 multiplications.

Let By = Zg°Yg

TR

m, ™= zzoyz

(zgtz;) = (y4ty;)
m, = (zg%2,) *"(y547,)

then 06 = m,

¢, = m

ooty ;
6 = mgtmTmytE, ,
Degree: 3, (sgtewtzptheye’)(yghy wruthy )
= ggtbyubeertp o’

Computations: 9 multiplications.




Let

then

3 ‘2
Degreei\JJ, (z°+zlu+zzu2+23u Yy ty, wy,u +y3u3)

¥
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“6 " %Yo
ntE

5 = (zgtz) » (y,5ty))
B3 7 27,
By T 2303 >
mg = (z,%24) v (y,%74)
m = (29230 ,0 (yg%yy)
wy, = (z;%z3) ¢ (y,%y4)
mg = (agtz +2,%25) © (5gHy 47,473)
%" % \
¢1 - -mo-m1+m2
2 = Tmgtm Ty

= mgtm) mmytmyte g m g

b4 = mtmymim,
bg = myTm4tE,
b6 = By

modulo u4

- pyroturoulhotu’

Computation: 8 multiplications.

Let

o " %p*Yp

e NS R

m, = 2)'7,

e ’3"3“

m, = (zo¥2,) * (yot7))
‘ ¢

mg = (zptz,) * (y5ty,)

PYTERS
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APPENDIX B

Orthogonal Parity—-Check Equations for Sufficiently Orthogonalisable

Codes

In this appigiif;-the orthogonal parity check equations on each of

the error digits thatcorrespond to the message éigits are presented for
the codes which }re found to be sufficiently orthogonalisdble. All the
codes examined were l-step sufficiently orthogonalisable with the
exception og (24,6,9) code which was found to be 2-step sufficiently
. orthogonalisable. | )
(1) The'generator matrix of the (6,3,3) code in systematic form

is given by,

1 -
C= 1
1

0
0
1

=N
or- O
)
-0 -

Let (cocl...es) be the transmitted codevector aﬁd
(eoel...es) be the error vector. The 2 parity check sums

orthogonal on e., e, and e, are {0+2+4, O+3+5}, {14243, Y

0’ &1 2
1+4+5} and {2+0+4, 2+1+3} respectively, where atfty etc.

corresponds to the parity check sum ea+es+ev+... .
(11) The generator matrix of the (8,4,3) code in the systematic
form is given by, ™
1 000017 1
C = 01 001 010
0 0.1 01 1 1 1
0 001 01 01

The 2 parity check sums orthogonal on ey 5, e, and e, are

-142-




(ii1)
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{0+243+5, O+4+6}, {1+2+4, 1+3+647}, {2+0+3+5, 2+1+4}, and
[3+0+2+5, 3+1+6+7} respectively.
The generator matrix of the (10,5,3) codekin the'systematic

form is given by,

1 0 0 00 00 01 1
01 000 10 011
c= 6 01 0010101
0 001 001 110
0 0 001 01 01 1

+

The 2 parity check sums orthogonal on ey &), ey, e, and e,

. are [O+143+4+48, 0+2+5+6+7+49], {14245, 140+3+4+48] (24145,

(1v)

(v)

2+43+7}, {3+4+6, 34247} and {44346, 4+0+142+49} respectively. ’
The generator matrix of the (10,3,5) code in the systematic

form is given by,

i 0 00 0111001
c=]01 01011110
¢ 01 1 110 01 1

The 4 parity check sum orthogonal on ey eljfnd e, are .

{0+3+45, 0+1+6, O+4+7+8, 0+2+49], {1+42+3, 1+5+49, 1+0+6,
1+4+8}, and {2+143, 2+4, 2+5+6, 240+7+8) respectively.
The generator matrix of the (12,6,3) code in systematic form

is given by,

IOOOOOHI
COOoOOrrO
OO OOCO
OO OO0
OO0 0O0
OO0 00QCO
QOO =0
[N N NeNeoNe
OO O0OCO
O~ 00O0
et O e
- e

—

The 2 orthogonal parity ChﬁSk sums on e , € s ereg are

{O+1434+4+5+10, O+6+7+8+11}, {14246, 1+43+4+5+10}, {2+1+6, N

r :
:

I
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o 2venionnn], (30047, 34549}, {44347, 445+8) and [5+4+8,

5+3+9} respectively.

(vi) The generator matrix of the (12,4,5) code in systematic form

is given by,

1 000000101 11
c- |01 00011001 11
0010340111010
0001 17t-¢01 011

The 4 orthogonal parity check sums on eps €10 € and ey are
{0+247, 0+1+9, O+3+6+10, O+5+11}, {1+3+5, 1+2+6, 1+o+9w,
14447411}, {243+4, 2+146, 2+0+7, 2+10+11}, and {3+2+4,
3+145, 3#0+7+8, 3+9+11} respectively.

(vil) The generator matrix of the (14,3,7) code in systematic form

18 given by,

, 10000 111011101
c=]l010 1% 110101100
001 11100010111

The.6 orthogonal parity check sums on ey and e, are
{0+6+8, O+7, 0+2+9, O+1+10, O+3+11, O+4+13}, {1+2+3, 1+5+49,
14647, 1+8, 1+0+10, 1+11+15}, and {2+1+3, 2+4, 24049,
2+6+11, 2+12, 2+7+13} respectivély.

(viii)The generator matrix of the (14,5,5) code in systematic fﬁrm

is given by, \

1 0000 101011111

61 0 00 10 011 0101

C= 0 01 00 01101 OO0 11
0001001011 0001

0 00 01 00 O0O0O0OT1T1 11

>

The 4 orthogonal parity check sums on ey €1ser0s@, are




o dlor

(ix)

(x)

=145~

3

[O+1+5, 0+2+47, 0+4+10, O+3+6+8+9}, {143+8, 1+0+5, 1+10+1,
142+4+6+7+13}, {24346, 24047, 2+10+12, 2+1+4+5+8+13},
(34246, 3+1+8, 3O+5+749, }10+11412+13}), and {4+0+10,
4+5+11, 4+7+12, 4+9+13} respectively. )

The generator matrix of the (16,4,7) code in systematic form

is given by,

oo
(=N «N ol e)
OO0
= 000
e e
O O
- -0
O Q-
-0 =
—— - O
-0 - O
o~ OO0
O~ -
- O
OO =
O

The 6 orthoggnal parity check sums on eqr €1» €y and e, are
[0+4+9, 0+2+7, OFl+14, O+8+10, O+5+12, O+3+11+15}, {14245,
140+14, 143410, 1+4+6, 1+8+11+15, 147412}, {2411, 2+0+7,
2+145, 2+4+8, 2+12+14, 2+10+13}, and {3+1+10, 3+4+12, 34647,
3+8+14, . 3H+5+9, 3H0+2+15} respectively.-

The generator matrix of the (16,6,5) code in systematic form

is given by, v
T 0 0 00 0 00 111 11 00 0]
01 000011 00001011
c= {0 01 0000100101110
0 0010010 111 0010 1
000 01 00O 10010110
0 0000100110 1110 1]

The 4 orthogonal parity check sums on ens €p»---,eg are
[0+2+48+13, 04149415, O+7+10, O+4+5+11}, (143+6, 1+247,
1HOH+9+15, 1+548+11+13+14}, {24147, 2+3+4+10+11+415, 2+649+12,
24048+13}, {3+1416, 3+8+11, HA+9+12414, 3+2+5+7+15}, and

‘ -*
{4+8+49, 4+7+14, 4+0+5+11, 4+2+1+13+15} respectively.

(x1) The generator matrix of the (18,5,7) code in systematic form

is given by,

N




(xii)

(xiii)

oo

-146~
1 000©O0CO0O11 0106010010110
o100 01001 100111011
C=Jj0 01 00 60111011 1-001T11
000101110110 010111
0 00 01 000O0OC1 11 011101

The 6 orthogonal parity check sums on ey Bisteer®y are
[0+6+7, 0+8+412, 0+3+10+11, 0+9+13, O+1+15+17, 042+45+16},
{14345, 1+7+9+11, 142412, 1+4+14, L+6+416, 140+15+17},
[0+6+13414, 24347, 2+4+11, 241412, 240+5+16, 2+9+17},
{3+1+15, 3+2+7, 3+9+11. 3+0+11415, 3+8+16, 3+4+12+17} and
{4+5+9 4+6+10, 4+2+11, A+1+14, 440+T7+15, 4+3+12+17)

respectively.

®

The génerator matrix of (18,3,9) code in systematic form is

given by,

1 00 11 1011011011101
=lo1 0% 1 01 01010101100
001 0101111001110 011

The 8 parity check sums orthogonal on.ey, e and ;2 are
(0+1+3, O+i+6, O+5, 04247, 0+8+12, O+11, O+13+16, o+9¥17},
{f;O+3, 1+4+47, 142+6, 14+8+13, i+5+10, 1412+16, 1+14+17,
1411415} and {2+8+10, 240+7, 249, 2+1+\157fz;‘_§'+;x\}, 2414415,
2+16, 2+11+17} respectively. ‘

The genererator matrix of (20,4,9) code in systematic form

is given by

0 0001010100101 1110 1
1 00110101 0101100110
0t+1r01 1111001110111 00
o 0o100110111001 11011

The 8 parity check sums orthogonal on ey €y €y and e, are

3

, ~
[0+4+5, O+7+11, 0+9+18, 0+2+12, O+6+15, O+8+10+16, 0+13+17,

N




-0,

(xiv)

(xv)

4411415, b+5+14, 4+13421, 440+1+18+20, 4+6+10+17+19}

-147-
0+3+19}, {142+4, 145410416, 147415, 1+6+11, 148413, 1+14+19,
1412417, 143+18}, [243+6, 248, 240+12, 2+1+13, 24749,
2411+18, 2+15+19, 2+1o+14+17}, and {3+2+16, 3+5+7, 3+8+9+17,
3410, 34411, 3+12+16, 3+1+18, 3+0+19} respectively.

The generator matrix of (22,5,9) ‘code in systematic form 1s

o~
given by, .

_
1000911000101010010110
0100010000010111011101

C= [001000111111000100101°0
0001000110111101110001
0000100101011010101101

The 8 parity check sums orthogonal on €ys €y:-vr€, are
{0+2+8, 0+1+5, 0+8+10, 0+12+16, 0+13+17, 0+3+14+21,
O+7+15+19, 0+4+9+20}, {1+6+5, 143413, 1+8+15, 1+9+18,
1416+21, 1+11+12+20, 147+10+19, 142+4+6+14}, [2+0+6, 2+3+8,
2+449, 2?¢¥T%, 2411421, 2+13+15, 2+1+5+14+18, )
2412417419420}, {3+248, 3+1+413, 3+4+16, 3+7+9, 346+10,
3+11+1a; 3+5+17, 3+0:3k+21}‘and {4+249, 4+3+1£, 4748,

respectively.

The generator matrix of (22,3,11) code in systematic form is

given by,
' Q 4
1001111011001101001010
cC= 0101010110101010101100
0010111100010110010111

The 10 parity check sums orthogonal on ey € and e, are
{04143, 04244, 0+5+7, Q+6+11, 0+8+10, 0+9, 0+12+16, 0+13+17,
0+15, 0+20+21}, {14043, 1+4+45, 1+2+7, 1+8+9, I+10, 1+12+15,

1411414, 1416, 1+17+18+20, 1+19+21}, and {2+0+4, 2+3+5,
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2+6+9, 2+7+10, 2+11 ,' 2+13+15, 2+1+14, 2417, 2+16+19, 2+21 }
respectively.
(xvi) The generator matrix for (26;4,11) code in systematic form

is given by,
oy

(@]
[ ]
Qoo
OO~ O
O QOO
Ll = B o B =
QOr O re
(=N N =N
Bl i = N
e
OO
-0 O -
- O R
- OO0
ot O o
OO\r;'H
Sl e el o
-0 0
- =
SO~ O
~ -0
el ==
-0 O
o O+
-0 MO

The 10 parity check sumg, erthogonal on ey €y € and ey are

[0+2+4, O+1+6, 0+3+10, O+5+L3, 0+7+16, 0+8+19, 0+11+423, ¥
%uno, 0+14+18, 0+9+17+21}, {14046, 1+2+9, 143423, 1418,

14748, 1411420, 1410+17, 1419421, 1+12415+22, 1+5+13+14},

P

{24044, 24149, 243416, 2+13, 247410, 2+8+l1, 2+12+21,

2+Zza_, 2415+17, 2+5+6+18}, and {3+0+10, 3+1+23, 3+2+16,

3+12, 3+4+<,/ v£i+6+11, 3+13+21, FHL4+17, H9+19, 3+5+é+18} C N

? e respectively. ‘ fro .

7

(xvii) The generator matrix for (26,5,11) code in-systematic form

- ) ’ .

is given by, o . v

(@]

"
[eN=NoNoN
OO O
CoOr~ QOO
[oR ol =N« Ne]
[alieNoleNe]
OO
OO O
-0 00
O s
- O O r
———0 0
(=R N
O
OO0 OoO -
- Q-0
o~ OO
O =00
o e = O
= O =
et O
(,/SHOOH-
oOr =00
O O+ O e
H OO
SO OO
Ll o ]

|

2N . ' '\ , The 10 parity check sums orthogonal on ey €pscrerey, are

e -

{o+2+5, O+1+6, o+3=+20,'0+17+25, 0+4+13, 0+10+12, 0+11+24,
O+L4+18, O+15+19, O+7+8+9+22}, {1+0+6, 1+3+24, 1+12+25,‘
1418+23, 1411420, 149413, L+7+15, 1+4+17+£1, 1+10+19+22,
& 142+5+8+16}, {2+o'15, 243+16, 2+194+25, 2413423, 249+18,
2415417, 248+11, 247410, 244+12+420, 2+1421+24}, {3+0+20,

- .

3+1424, 342416, 3+4+7, 3+6+11, 3+l21’63’ 3+14+17, 3+18+25,

~
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y ' (xviii) The generator matrix for (30,5,13) code

(9]
n
oo oOr

\“;§

~149-

4

345410413, 3+15+19+421422}, and {440+13, 4+3+7, 4+8+25,

4+15F24, 4422423, 4HLO421, 4+11419, 4+6+9, 4+1+16+17,

4+2+12+420} respectively.

is given by,

Q000110
1NV0O0101
0100011
0010000

001001

in syét

t

001100L1101111000
011101110001 00101
0110.111001001011'0
11011111001011101
11110010110101,110

ematic form

= O
Or - = r
- OO ™~O
OO
OOD—‘OO.

The 12 parity check sums orthogonal on €gr €)ye+,€, are

O+145, 04246, 0+8+21, O+18+29, O+7+10, O+9+14, 0+12420,

o

0+13+26, O+15424, OMs+16, O+L9+27, 0+11422425+28), [1+0+6,

L

1411421, 1420426, 147417, 1412413, 1424849, 143424, 1+14+25,

@

146+10423429, 144427, 1+16¥19, 1+18+22+28}, {24046, 2+7427, .

2421425, 2+3+12, 2+10f19, 2415426, 2+4+17, ?+13+24,

2459428, 2429, 2+l11+14, 2+8+16+20}, {3+4+8, 3+10+14,

3416421, 342412, JH5HLS, 3HLIH2P42T, 41424, 346420,

“\' 3417418+28, 11419, 3+7+9, H22+75+26+29], and {4+348,
5 4

449413, 4+11+15, 4+0+16, 4+16+26, 4+5;6+7, 442427, 4+§+19, !

W

M423429, 41427, 4+20425, 412418421} respectively.

J -0

(xix) The generator matrix of the (24,6,9) code in systematic: form

is given by,

10000010111110011000000 1-
010000101011011011001011
cC=1]-0010 8:0 001110101011100110
000100001101110011101100
000010010000101011001011
1 000001000010010110111011_§.
1 1 1 1 T A
Let El = o+e1, E2 - eo+e2, E3 - e0+e3, Eh - e0+e5, ES'-
¢ . ‘
4
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¢

1
otegs Eg = egte);s By = epte, g = egteyy be elght

selected sets of error digits. The 8 parity check sums

e.te E1 and E1 = ¢ +e

orthogonal on E1 are {4+5+13, 12417, 3+11, 10+14+20,

1
9+13+18, 8+21, 6, 2+7+15+422}. Similarly, the 8 parity check

kY
1 1 1 1 1
sums orthogonal on E,, Ey, E,, Eg, E, E7 and E8 are {22+23

16420, 5+15421, 3+4+12, 1+10419, 9, 7+11+14, 6+13+18},
{20+23,<6+22, 5+H15, 2+4+12, 1411, 9421, 8+13+18,
+

THL0+14+19),. [16+17, 3415, 2414423, 4+11420, 1410+21, 9+18,

7+8+22, 6+13}, {2, }0-21,/5+18, 5+17+23, 14+19+20, 4+13+22, s

. -

8+11, 1+6+7+12}, {1+3, 445420, 13+19, 12+18+23, 10+15+21,
849, 2+7+14, 6+16+22}, {4+21, 1418420, 5+13+17, 11+16+19,-
10423, 8+9+l4, 247, 6+15+22}, and {4+23( 3+12+422, 11419,

10+21, 149+18, B+14+20, 2+47+16, 5+6} respedjively. From

these orthogonal check sums, the gums E1

1 2,...,E1 can be

8
correctly estimated provided that there ade no more than

four errors in the error vgftor. Clearly, E}, E;,...,E; are

orthogonal on ey Hence, e, can be estimated from these

sums. Furthermore, €15 € €4, &g, &g, €, €, §nd &4

can be estimated from the abd&e sums, once e, is estimated. -
2 2 N 2 \
E2 " ek+e3, E3 -7e4+e6, E4 f/eate7,
be

2
Also,“let E1 - e4+e2,

2 2 2 2
. B5 = egteg Bg = eteg, By = oegteqand By = oegtey;
another set of eight digits. The 8 parity check suiis
2 2

orthogonal on ED) Eayeen s are (1414, 13422, 0+3+12,
SHLIHL6, 849+17, 7421, 6+18+23, L0+15419+20}, (142417,
13420, 5+11+237 010422, 9421, BH16+1, 7, 6+14+15+18]
(5423, ov1ss22, 2+16+19 15420, 1412421, 10413417, 9414,

6+7+11}, {3+5+19, 0+16+19, 14+18+20, 11+12+17, 2421, 1+8+9, -

i
~ ’
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¢

6313415}, (3418423, 0417, 546, 15422, 1412, 9+14+2L,

T+10419, 246413420}, {1+16+19, 2413423, 3H12, 11417, v
1‘o+'21'+2'2, 548420, T+15+18, '6;14}, (2+3423, 045417, 16,

:14+‘15, 12+13,‘ 1+1]1+22, 9.-0—20,“74:84-19}-, and {0+5+20, 19+23‘,

16418, 2415422, 10413414, 9417, 647, 1+3+12+21}

2 2

respectively. - From thése orthogonal sums, El" Ezr, cee ,}32
1Y . . 1 . N

8
be correctly estimated provided that ‘there are no 'more than

2 2 2
1’;E2’...’EB

are orthogonal on e, Therefore, el.; and ,t};lre‘aft'er, e',

can

four errors in the error vector. We see that E
eq, €y 5 &g, g, €1 and eucah be estimated from these
smsl

¢ . - .
Thus, using the above 'parity sum equations,.eo,-el,...,gs

can be estimated correctly if no more than four errors are

present in the received vector. }fence, (24,6,9) code 18 a

. 2=step sufficiently orthogonalisable ‘code.
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S\\ ‘ APPENDIX C ‘.
o,/ | : : :
| \ © Weight Distributiossof Some Codes Obtained from the Aperiodic
% \‘\\\\\lv//ijﬁx\\*a_f/,ff"‘\\ Convq‘ution A}ggrithms
. 8 Vo
% ) Weight S
: Code 4 . 0 7 8 9 10 11 12 13 14 15 16 17 18
g Parameters B
C N . (18,5,7) 156 6 6 5 3
(20,6,7) 1 58 13 11 !11 7 1
; (22,5,9) 1 4 7 8 3 4 5
: , (24,6,9) 1 4 8 16 22 4 8- 8 3
o 5 (26,6,11) 1 2 6 4 2 1 |
(26,7,9) 1 5 13 21 17 15 15 15 18 8 ) J
(26,5,11) 1 2 6 12 &4 2 5 Y -
(28,6,11) 1 4 8 16 12 4 1 B &

Note: All blank chries are zeros.

e A T MR
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APPENDIX D ) ~

List of KM Codes Suitable for GH-ARQ Schemes

L]

In this appendix, we list several KM codes that can be used for
adaptive error control ih-a GH-ARQ scheme. Also, described are some of
the properties that can be used to identify and géneraﬁe these codes

from the basic design procedure described in Chapters 4 and 5. Note

g

that the generator matrices are completely characterised by Eghe

dimension k, design d, the choice of the polynomial P(u), and the
p

wraparound s. .

(.15,5,5) KM Cq;de. Here P(u) = u3(u2+k)(u2+u+1); 6 = 2, The generator
- 1

" matrix C 1s given by

1101 0 :'o 110 1: 0010 0]
"loorool111 11 : 01000
C=10 1 0 1 o.: 001 10311100 (D-1)
0 o110}l001 0t : 0 00 1'1
|01 001 : 0°'0 1 1 \1 : 000 0 1_|
= [¢, : ¢, ; Gyl - ' .
Features:
'a. The matrices C s .2’, and C3 are 1nver’t1‘r.‘~1e. -

b. [Cl: C2] form the generator matrix of a (10,5,3) KM code
corresponding t \I}(u) - uz(u2+1)(u?'+u+1); g =1,
No direct comparison of the above described code with the (15,5,7)

BCH code [9] appears possible, si‘uce it is not known if. thei (15,5,7) BCH

-~
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code satisfies the requirements to be useful for the application under

consideration.

(18,6,6) KM Code. Here P(u) = ul(ult1)(ultutl)(uirul+l); & = §.| The
generator matrix C is given by -

_ l ' _ .
110001}101101) 011000 tj}}
001100:101011: 110100
000‘101'110110|001ooo ,
i (D-2)
01,010,1‘111001| 000100

'o1looo|11001*1 001011

‘ _01111,1:100110|o\&0101‘__
g

- |
[Cl : ) \ Q3]

Features: , ‘ .

a. The matrices Cl, C2, and C3 are invertible, . . »
b. [CI: CZ] form the generator matrix of a (12,6,3) KM code i

1

cortesponding)kf P(u) = u(u+1)(u2+u+1)(u3+u2+1);'s =1, X
v

(24,6,9% KM Code. .,If we append one more block, CA’ to the generator.
matrix of the (18,6,6) KM code of (D-2), we obfaindthe (24,6,9) KM code.

Such a block corresponds to the computation for the factor polynomial

<

1 q

(u3+u+1).and is given by

(Y .Y -




1

X .
(28,7,10) Extended KM Code . Such a code i{s obtained by adding an

overall parity to the (27,7,9) KM code having P(u) =

*The decoder configuration of ‘the extended KM code 1s the same as that

o
o

o o
o

o
(=4

o
D GEES S L S GIML G CSEND IS S S
(=

—

[=]

+ul+l) (uHutl) & = 3.

o

—
o ©

—
o

The generator matrix C is

00
10
00
10
01
10

00

L

00:100

00{010

00001

00;110

1101 1.
|

V] 1' 111

' ¥
190 '1 01

C2 and C3 are invertible.

| CZ] form the generator matrix of a (14,7,3) K4

1010
1100
0110
0110 ] (D-3)
1010

0000

1101

code;

of the associated KM code followed by a simple parity check.

’ 0
N .
¢ T
. 0
: . I
Note that CA is not invertible.
» ' uz(u2+1)(u2+u+:'1)(u3 2
givén by ;
111100001 9/
oioo110/1101
011001 0: 1010
C=/ 011101 0| 0111
010110 O:,l 110
0111110J100 Q
b_0\1_10101:0111
q =[e ey teytel
B
Features:
a. The matrices C»
‘b, '[cll
2w = u(utl) (uPre) (uPhley; s - 2,
%
"
? e

R
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|
c. [C1 C : CB] form the generator matrix of a (21,7,6) KM code;

N o e

2
P(u) = u (u2+1)(u2+u+1)(u3+u2+1); s = 3.

(32,8,9) KM Code. In this case, P(u) = u3(u2+1)(u2+u+1)

(u3+u2+1)(u3+u+1); s = 3. The generator matrix C is given by

— l | |
Jl.l 00100 0' 1110110 0' 0100010 0' co0o110110

b J

0011011 0' 1r0101000l1100001 1' 01 0“% 0001

0101001 Ol 1101010 0| 0000000 l| 11101100

0010101 O. 111110004000 oo111lo

o
(=]
o
(=]
—
o
(o]

|
0101110 Ol 1011000 0| 0000001 O| 600011111

oo111110|11000100|oo

-
—
[
—
—

oloooo1001

01000100

o
o
-
-
(=]
o
o

|
1111111100001 010140

|
! |
@_0 11100 1: 10101101 |0 0001100,00010111

. | | -
=[c,Vec Ve, Ve,
Features:
a. The matrices Cl’ C2, 03 and Ca are invertible.

b. [Cl :Cé] forms the genetatorrmatrix of a (16,8,3) KM code;

P(u) = u(u+1)(ulturl)(utu?+l); s = 2.

c. [cl: Cz: C3] forms the generator,matrix of a (24,8,6) KM code;

P(u) = u2(u2+1)(u2+u+1)(u3+u2+1); g = 3, J
F
Note: The first 30 columns of the matrix given in (D-4) are the same as
the (30,8,9) KM code. The last two colﬁmns are introduced in such a way

Y
as to render C4 invertible and the overall length, mn, a multiple of the

dimension k.

>
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APPENDIX E B

Throughput Efficiency of GH-ARQ Schemes Using Depth 3 Code for

3

Error-Correction

In this appendix, expressions which can be used to compute the

throughput of a GH-ARQ scheme usipg a depth m=3 code V1 for adaptive

error-correction, are presented. The generator matrix of V1 has the
i
form, .
=Y I "‘
G [Gl|62|u3]

Let Vi be derived from a (31',L') kM code having t1 as its error-
correcting capability, using (7.4). Also, Let Vl(z)

|
(6,16

be the code having
\ 2] as its generator matrix.

Clearly, Vl(z) is obtained from the
(28',4') code having t

, as its error-correcting capability. Note that

=
In order to compute the throug

Q;:t of the GH-ARQ system under
consideration, we define two inferior

1

H-ARQ systems A and B. The first
inferior system A performs error—correction at every odd retransmission
usinﬁ Vl(z)

L
and error-detection at every even retransmission [32]. The

second yngegior system B performs error—correction at every third trans-

mission using V1 and only error—detection upon other transmissions.

\

»

This approach is very similar to the approach in [32] and, therefore,
only the pertinent details are given.

———

In the GH-ARQ schéme, error—detection is performed on the basis of
the codes having k|

T i1 =1,2,3 as the parity check matrix. If Pe is

i
the probability of undetected error for such codes, let
. . .
M f
Pe = max (Pe , 1 =1,2,3).
n ‘
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In the sugaequent analysis, it is assumed that Pe satisfies th; bound
given in (7.5), and, ftherefore, can be made atbitrarily small. If Pc is
the probability thaty the jth transmission of a block is received error
free, then,
'a

Pc = (1 - c)“. Kw’
Also, the probability that errors are detected in any transmission, is
at least I-PC-Pe. Since the analysis for the systems A and B is
somewhat similgr, we enclose the description for system B within
parenthesis along with the description for the system A.
System A(B). For the two (three) consecutively received blocks ii—l and

T,

1 and Ti) for a data block I, let,

1-2* 111

99 = Probability of the event that correct coding taken place based on
(2)

vy V-

y = Probability of the event that_ correct decoding takes place based

(2) x ¥ ¥ ¥ -
on Vl (Vl) and at least one of Ii—l and Ii (11_2, Ii—l an? Ii)
is errorfree.

9, = (Conditional probability of correct decoding based on Vl(z) (Vi),

1~1 1-2* i

Therefore, probability of correctly obtaining I from Ti—l and Ii

(Ii-Z’Ii-l and Ii) given that 11_1‘(11_2 and Ii-l) is detected in

o~

given that 1 and T; (1 and Ti) are detected in error.

-

error, is given by, ’ ‘
Pt - Pc + (1 - Pc)q1

For system A, E[A] is underbounded by,
2R
EAl ¢ v r (EL)
c t ¢t

The probabilities 9, ¥ and q, can be evaluated using the expressions,

a
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t s .
2 .
20"y 1 20'-4n/8"
- ) ev(1l~¢) (E2) .
% * [jzo ( 3 ]
t, . .
y = (o) {2] L (4) eda-o* PR - (£3)
j-
dg; q = I—%—; (45 = ¥) (E4)

« r
If VI(Z) is the (8,4,3) code (as is the case for the GH~ARQ scheme based
on (12,4,5) KM code), L' = 4 and t, = 1.
For system B, E[A] is underbounded by,

E[A]B < (Pc(1+2a1) + az(2+al) + 333) -t (E5)

(1-a))?
where a = (l—Pc)2 (1‘?t> '
a, = (1-P ) P_
and a, = (1-Pc)2 Pt

The probabilities 9 and y are evaluated as follows,

t
4 = [ 2: (4 - I (6)
3 . .
v = (1-e)® [3( ] (21') Ej(l_E)ZL'-j}n/x' : L
gm0 3 *
tl ‘
+ 3(1-e)" {jzo (ﬁ') eda-eyt' I/t | @

=5 (1-e)2")

The expression for q, is same as (B4). If V. is the (12,4,5) code, L'=4

1

and tl - 2IJ , 0




-

APPENDIX F

Reliability of GH-ARQ Schemes

L d . f
\\\\ It has been established‘that the type-II hybrid ARQ system provides
the same order of system reliability as an ARQ system [32]. Similar
arguments can also be used to establish that the GH~ARQ system provides

3

the same order of reliability as- an ARQ system.

Let E dencte the event that the receiver of the GH-ARQ system
accepts a block containing undetectable errors. The reliability of the
GH-ARQ system can, therefore, be characterised by the probability of the

event E, i.e. Pr(E). Such a probability is given by,

e pos d._d d e

It has been stated earlier that the probabilities of the Soint events
required to evaluate the above expression are different to compute. Iﬁ
the following, we proceed to upperbound each of the terus in (Fl). -

In the GH-ARQ scheme of depth m, error-detection is performed on
the basis of the codes having ﬁi’ 1=1,2,...,m as the parity check

matrix. If Pe is the probability of wgdetected error for such codes,

i .
let Pe = max(PeI, i=1,2,...,m) and Pf = min (Pei, i=1,2,...,m).
. , ‘
Therefore,
e
Pr(AO) 4 PF
and

Pr(B:) < P, 1 =1,2,...

Also, the probability that errors are detected in any transmision is
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d d d e d d e e d e
Pr(AD"°E1- Ei-l E;). Since E Bi Qi and Ei‘ Bi ] B1 Qi’ we have

upperbounded by rl-Pc-Pf. Let Pd - 1"PCTP£-" Consider the term
d

i

d 4 _e, ‘a.d d _e

Pr(Ay...E{ ; E{) < Pr(A; BJ...B{ | E) >
d

i-1 "1

d
i-1

d
1‘1)

<4
| ]

d e}.d
Pr(4y B ... )Pr(Eion...B

d
i—l)

‘'
n

i e d el d
P, Pr(s} B} Q1|AO...B

- Pﬁ[Pr(Bi) + Pf(Bi)Pr(QilAg...Bg)]

i ej,d d
pylp, + B, Pr(af|ag---BD] ' (F2)

N

. Since the decoded data block is checked for preéence of errors at every
retransmission, we have |
ej,d - .d N
Pr(Qi AO"'Bi) < Pe ' . (F3)
- ‘ 0
Subgtituting (F3) into (F2), we get,

d .4 e 1 |
Pr(Ag...Ej_; EJ) < Py (1+P,) P

Using the above expfession, Pr(E) ‘can be upperbounded as,

o

g @ ’ . B . . . . ’ s
Pr(E) <P + ] Py (L+B) P
1=1
P
2 e
cU+P) 535
c £
N o | |2 ' Pe.Pf Pe ’
= AR A+ v 9 (F4)
- ¢ c-e .

For a GH-ARQ system Pix 1 and Pc 3> P therefore,
. ' w e .
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and i . PP, - (F5)
P +P *
£ V X

Uisng (F5), the expression for Pr(E) is simplified to,

Py
P

Pr(E) < 2 ¢ 55 ¢ (F6)
c e .

Por a pure ARQ system, using a code Vo for error—-detection having

probability of undetected error Pe’ the probability of the event E 1is

»
.

given by [8],

"

P . : .
e
Pr(Bppe = T90,
c e
and,"gherefore, Pr(E) < ZPr(E)ARQ'
‘ It is clear from above that the GH-ARQ scheme proiides the same
order of reliability as a pure ARQ scheme using a code V0 for

error-detection having Pe as the probability of undetected error.

.
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