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ABSTRACT . o
i

Computational Methods for Multivariable System’
Analysls and Deslgn

.
!

Pradeep Misra Ph. D, 8

oo . .

This thesis is concerned with developing c'omput.atlo'nal algorithms for’some of the

frequently encountered problems in linear multivariable s;ystem analysis and defsign. The

results presented here can be used to translate theoretical conceptsTinto algorithms that

-

can be implemented to solve practical problems. . .
“ '
The computational methods presented here rely heavily on numerical methods that
5 /)

are used routinely in matrix computations. It is shown that use of severel condensed
forms of 4~t\uples (/;,B,C,E ):* ¢.g.. upper Sg‘ur form, real Schur form, upper (lower)
Hessenberg form, and block upperl (lower) Hessenberg forms, enables us to apply sound,
welt-established techniqnes rrofn numerical llnw’algebra to solve-v.arlous/ probiems of

multivariable system an alysis‘and design.

©

In this thesis we consider two 't,ypes of systems: centralized and decentralized.. For

centralized systems, we treat the problems of eigenvalue assignmént by means of state as

_ well as constant and dynamic output feedback and computation of transfer function and

, o
frequency response ‘matrices. "The eigenvalue assignment problem is treated as the con-

_verse or the a]gebra?‘c eigenvalue problem and a variam of the QR algorithm is developed

to compute the state and output feedback matrices. The computational technlques for

transfer ‘Tunction and frequency response matrices are based on Lhe use of a_ determinant

“~

idenmy and are significantly more eflicient than existing methods. For decentralized

1

systems, we provide a new characterization of decentralized fixed modes and develop an

efficient aud reliable met.hod for computing t,hese! modes. The problem of eigenvalue

'3

.= lii - \,\ . \ ) .e"

A



‘ ., sssignment, in decentralized systems {8 created by extending the results of .eigenvalue . . .
4 ' sssignment using output feedback In: centralized ‘systems. Numef'ical performance of the '
K T algorithins proposed in this thesis is illustrated by apply‘ing them to seyeral practical 63— '
L tems. - . . - of . S B Q%, L :
¢ T “ ¢ ! ‘ [ . ¥y oo T R r\ v : A e s
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CHAPTER I

-

'INTRODUCTION? . AR

1.1. MOTIVATION

’

In the last two decades numerous techniques have been proposed for the analysis

"and design of various aspects of multivariable systems, However, until recently [1-14],

—

researchers have pald very little attention to the numerical aspects of the proposed algo-~
rithms. glt is becoming increasingly clear that the translation of elegant theofetlcal ideas

and design and analysis techniques into numerically reliable algorithms is far from

, trivial. Fortunately, significant developments ang advances have been made in’‘recént

years in the areas of ‘numerlcal analysis-and Inumerlcal linear algebra which have not

\f-"‘"—‘
only highlighted thé problems mherent in many or the existing Tuluvarlable system

analysis and design methods, but have also shown ways to alleviate the dlﬂ‘lculties*
(méinly computational) 1n a number of cases. In some cases thls has led to alternate
methods of solution and in many others to reﬂnement of the exlstlng methods to enéhre
better‘numencal performance, applied to realistic problems. The cc’>mputaucnal com-
plexity involved in solving such pro_blem.s necessitates consideration of various nufnerical
issues. Unfortunately, e;pecialist.s in coqtrol theory are ‘rreéuently unaware of l;ow
advanced ttichniques of numerical flnegr algebra may be applied to their problems. ‘As a
result, a.common belief among some researchers is that if an algorlthm works for a few
(usua]ly low order well-conditioned) examples, there is no.rea.son why the same a}gorichm
should not work in general. They aré often surprised by the error that accumiiates
when the séme technique i8 used for a high 6rder or badly conditioned problem. Unless
the algoriih;n is carefully planned and implemented, it could encounter numerical prob-

o« .
lems such as “‘floating point overflow (underflow)” or “round-off errors”, as discussed in

-
-

the next cllap ter. il

e~

- . . . s
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Development of superior comp;n.ationz;l‘ schemes is especially important with S.n
lnéreaslngly wider use of Cpmpute‘r-Aided C‘ontrol System Design packages (CACSD) [2).
In application areas such as a;erospz)»ee, power systems, elc., system 'm‘odels tend to be of
considerably high order (~160). When applied to such high ordef syét'ems, conventional
techniques would have limited success despite be;ng 'based on extrefneiy sbunqp
mathematical principles. This is mainly beca'use most.of these t,echniq.ues were de;rlsed
as analytical solutions to the problems under consideration, rather than to prévide
nun.ferlcally accurate methods of solving the problem. If a CACSD package used for
analysis and design of such systems is based on poor numerical techniques, it. would be
virtually impossible to obtain ’reliable results. The recent thedry {15-17] is perhaps a
perfect example to support the above statement. The mathematical roundatipns of H®

theory are very strong However, one of the reasons why this theory has not yet become

popular in actual system design Is that the researchers_have had limited success in for-

a

mulating computational algorithms for implementation of these theories in solvfng realis-

't,lc problems. The importance of this theory would be fully realized only when it could

be translated into design packages ba:c,ed on computationally reliable algorithms.

In designing a reliable algorithm, two of the most important properties thhat, must

be taken into account are (1) minimization\ of the number of operations required by the

-

algorAlthm and (2) the type of operations required by the algorithm. Each time an opera-

<
’

tion i8 performed, the output of the operation is stored as the ‘‘closest” machine

represefitable number by rounding the number off. As the algorithm proceeds, it uses

the previously- ap[;roxlmated ;xumbers. for the next operat'ion. As the number of opera-
% .

tlo‘ns increase, the results get increasingly farther from the actual ones becausé of these

errors. Therefore, it is desirable to minimize the numb;ar of operzitions that an alg'or.ithm

requires. The second properéy is equally important. If an algorithm requires a Iz;.rge

number of operations that are known to lead to numerical errors (czg.; addition of a very

l'arge'number to a very small ‘number, successive divisions by numbers that are m_uéh

-

% -
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smaller than 1 - leadifig to floating point overflow or successive multiplications by

numbers, that are much smaller than‘unity - leading to floating point underfiow), one

" cannot "expect accurate results when' it is implemented. In designing algorithms, such

operations shquld be kept to a minimum if they cannot be eliminated altogether.. Algo--

rithms that d¥ not take these probertles in:o account, usually lead to analysis and design
‘9

‘methods that are computationally unreliable. .

v

The control systems literature has a large number of seemingly simple problems
, : v .

wjth mostly unreliable méthods for solving them. When results are obtained using these

unreliable methods, it is possible to make sg:rlous'errors in interpreting them. As polnted
out above, a Igck of reliable computational techniques has béen a maJ%r drawback In
various approaches to control system analysis and design. This thesis is an attempt to

provide reliable solutions for some of the basic p‘roi)lems frequently encountered in con-
- 5 .
trol system analysis and design.

e

1.2. REVIEW OF RELIABLE ANALYSIS AND DESIGN METHODS -

In this thesis, wa~consider linear tiyhe-invariant (LTI) muyltivariable system in thelir .

*

state-space Jepresentation, given by:

“z(t)=Az(t)+ Bu(t) . (1.2.1a)

y(t)=Cx(t)+ Eu(l) , v , (l._2.lb)

where (L) ER", u({)ER™, y(t)ER? or their transfer function representation
deflned as ¢

W)= C(sl - A)?B + E. (1.2.2)

The matrices%'A ,B,C and E are constant matrices with appropriate dimensions. The

system deBcribed by (1.2.1) is usually denated by (A ,B,C .E).

Some of the basic problems encountered in.studying control systems described by

(1.2.2) can be classified as (1) Analysis, (ﬁ) Design and (3) General. In the rest of this -

section, we will discuss some of the reliable computational algorithms dealing with var}-

_ous analysis-and design aspects of linear multivariable control that have appeared

4

name®

v
Ky
L Wiy



.the rank of che'cont;ollability matriz &/, defined as (}8-21]5

. » :4_ . “ . . -

, recently in the literature. Note that\only the algorithms with good numericgl properties

-
. )

are considered. For information on the more convention,a‘ methods used for analysis and

design, the reader is referred to Several excellent text books [J§-21].

> JUCH -

1-2:1.‘ A.nﬂl;(sis . . . ! ' ' \

In this sect,ion we outline some important, properues of multivariable syst.ems Con-
* ’\. o

ventional as well as numerlcally reliable techniques for studymg’ mem are dlscussed

— .~
K}

. ) 4 . ' .
Controllability and Observability

N

The conventione;l way of checking cohtrollabiliby of a LTI system is by examining

v
- -

&, = [b,AB,A”B,...,A""B].

If rank <‘l> < n, then the system is said to.be uncontrollable and t,he rank deficiency indi-

cates Lhemumber of uncontroliable modes of the system
1 £ . : . -

.

Numerically, the rank test of th& matrix P, is an"e)cpénsive and unreliable method

¢ ) ~

_ fqr checking controllability. Forming the épmrollability matrix ¢, requires a large .

[ .
number of matrix multiplications. Moreover since the opefations are being performed in

finite precision arithmetic, we may"lose valuable informat,ion in form?ng the prodilcts.

An alternatlve test for ghecking the controllablhty of a system' is based on reducing the

- -

3

pair (A ,Bjtoa “condensed form" ‘called block upper Hessenberg form [4-7]. The detalls

“of th'e reductlon to this form, as well as%its significance, are discussed in .t,he ngext'h

. N

chapter. It should be mentioned, however, that this reduction is considerably more reli-

- L

“able and efficient than the conventional method of perforrﬁing the rank test of the con-

troflability matrix. ;< ~ )
) o ; ) ) - . \
Order-Reduction s .

If the system under consideration has any dncqntrollable and/‘or unobservable

modes, then the ordelr of the system can be reduced by removing these mo'des@ibhout
. ¢
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. affécting the input-output behaVioﬁr of the system. The order reduction i& achleved by

‘ LA
_transforming the given system to a block upper Hessenberg form to remove the uncon-
. " . .

trollable mod{:s and a further reduction, of the controllable subsystem to a bloc¢k lower .

Hessenberg form to remove the unobservable modes of the system {4-7). The sbove
[y / s . N

reductions may be performed using singular value decomposition or orthogonal (riangu-

larization |22-25). Softwarge code for singular value decomposition as well as orthogonal

. . . ' - ]
triangularizationﬁn be found in FORTRAN packages such as EISPACK,_LINPACK.

elc. - - ‘ - . — -

P;ales_, and Zeros of the System s ’ )

' Knowledgé of poles and zeros of a system is important in analysis as well as design. ;

t a

‘Poles’ of the. system (A .'B.C,E) are the roots of the characteristic polynomial of the
¥ . , .

-

state matriz A . Computing roots of a polynon{ial is extremely sensitive to variations in .

its coeflicients and is not recommended ip general. A Teliable way ‘of computing the

s

poles of the system is to solve an algebraic. eigenvalue problem Lo,dgj.ermfne the eigen-
. ,

’

values of A using the QR algorithm [22-25].7 -

. , ) 3
- Multivariable systems have several different, types of zeros assoclated\wiih, them.

. ,
"These zeros can be characterized as: (1) Element zeros - For a system described by a’

. @x t
transfer-function matrix W (s ), an element zero is any ‘value of 8 for which the numera-

tor of an element w;;(s) vanishes. The& are not of any special interest. (2) Decoupling

zeros - For a syétem (A ,B,C.,E), the decoupling zeros consist of the uncontrollable

and/or unobservable modés that do not appear in 'the corresponding .transfet function
R . . *

matrix Wl(a) [20]. These zeros-can be computed ‘efficiently, by reducing the system to

block upper and lower Hessenberg forms. (3) Invariant zeros ¢ These are the roots of
*  monic greatest cammon divisors of ,all maximum order minors of P(s) = ['{&,A g]

. % * . ' i

[20,26], (4) Blocking zeros - These are defined as those values of/aTor/whlch, given

(A.B,C), Cadj(sl-A)B =0 (27]. These zeros will be discussed further in Chéapter V,

o

N . Ly

[



,
-6- . S oy -
: .
'

-

(5) Transmlﬁsion’zero'— These are a very important type of zeros of the system (18-21].

\

. ' \ ¥ .
A system described by a transfer function (1.2.2) can. be transformed to its S(mith-

~

MeMilian form [19,20] given by M (S).—= U(s)G(s)V(s) = [a,-(s )/ 8; (s)], Then, the

’ rgou-; of Qhe" n'umeratérpolyn'omials 'a,: (s) are the transmission zeros of t.h;' system. In
‘ [?;10,28,29}. it"Is shown t;i{‘é.t‘. g:oﬁ:putat,jon of the transmission zeros is equl\!lalent t,o solv-
‘ix.lg‘a ‘‘generalized eigenval"ue problgm" 122-55], for wﬁich the numeric;my reliable QZ
.algorithm exists [30-32]. This appfox%ch Is conceptuéily somewhat complicated, howeve;,

it is conslderably superior numerically to computing transmission zeros via the Smith-

+ McMillan form.

:

Evaluation of 'i‘ime Response o 5 ) .

The response of system (A ,B,C ,E) to step input impuilse [input, ete, is equivalent.

to evaluating expressions of the type [16-20]:
i

- L <o .

{ : ; v

y(t) = Ce*' x(0) + [CeAU-"Bi(ndr.
. 0 '

For the convolution in the above equatioﬂ, methods b:ised on Padé app}oximatipn 0)‘

~ s

' . ’ . ’ . ' )
reduction of A to a real Schur matrix are quite efficient. Of course, il A is a diagonal

—

matrix, it would be even cheaper to evaluate the integral, but, reduction o(A to a diag-

onal form is numerically not reliable. Several methods rc;r'comput.ing the matrix

exponential appear in [33]. .
G- :

Frequency Response Matrices — R
A T
The jrcqucncy response of a system is ancther import,ant representatlon of the"
characteristics of K} syst}em For systems. dwcribed in state-space by the 4-tugle
(A,B,C,E), the frequency rg;ponse matrix is given by C(le ",A) 1B +E. For
) eyaluatlnz frequency response matrices, accuracy z;s'\iwell as éﬂicien?:y are equally impor-

tant because, In_general, we need to compute the matrix at a very large number of
. . . b} .

values of w. If the matrix A Is a full matrix, evaluhting frequency response matrices is
' \ t v '
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. '\ - » *
, . . N N -7

" very expensive computationally. Howe€ver, as showh in"{34,85], i the state matrix A Is

‘

. reduced to a colnd‘ensed form b'efpre’ev_al'uating theifrequency' response matrices, the’

.+ order of computfabloq can be.reéuced significantly. In [35] and Chapter VI, it is shown

that further improvemens in e‘mciency can ,be achieved by using the controllability: and

observability properties of a Sys‘tem‘

3

o . , ’ <

+

&veral eleganh theoretical approaches for_&psign of systems exlst [15-21 36] How-

ever, there are only a few good numerica! one§ most, recent’ development,s still need to be'

‘

, implemenbed in sound numerical ways. " Here, we briefly review gome of the design tech-

.

niques that have'good numericdl propertigs. In practic'e linear systems are usually

~ - Ky

obtained by lmeanzation of a non lmear system about Minﬂ operating polints

' {18 21]. To ensure t.hat the‘onginal Bystem has good tracking properties the Ilnearlzed

system must be stable [18-21] Stabikty and ot,her properties or the systems such as t,ra.n-

e

sient resppnse‘, elc., can be improved by reassigning the poles and zeros of the system

[18-21,26]. Some of.tht design-techniques that have good numerical solutions are'l[sted

next. * . ' ) . ‘ o
) ' N

Optimal Feedback Design by Solution of Matrix Riccati Equation

'
v

For the systems described by (1.2.1), the optimal lifear quadratic control problem
#

'is stated as . \ : o o
o .
minimich (s7Qz + uTRu)dt’
. .0 . . !

L

where Q is a positive semi-definite matrix and R is a positive definive matrix [22°25],

The solution of the problem is given :by - <

. “opl = -R- lB Pz ——K,P,z

1

where P €R"*" is the unique posatwc acmt-dcﬁmte so]utlon of the algcbrazc Riccats

cquatton i K
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'

ATpP +PA PBR ‘B P+Q—-o

A rellable approach to solving the optimal control problem above is t.o compute the

stable sub—space of the Hamiltonlan matrix (37] bw .

-AT

| _|a -Brpr] N
H"’[-Q ] R

using the QR algorlt.hm (14]. This approach has coné;derably better numerical propertles
compared to reducing che system to. its diagonal rorm obtained by elgenvalue elgenvec-

- tor decomposmon

Design methods such as eigenvalue (pole) assignment by means of st;ate';ind output

feedback fall under this category.. Although these are two of the - most studied

approaches:-for st:abilizing systerhs, it is only recently that so:ﬁe"good computational pro-

™

cedures for so}ving the eigenvalue assignment problems have abpeare'd [8:9]. Some of the

I3

. conventional technlques require reduction ol' the state matrix to "companion" form and-

then determlne the Feedback by comparing che coeﬂ‘lclents of. the characteristic polyno-

mials of open-loop apd closed-loop systems. But, because of the sensitivity of the roots .

of a polynomial to perturbations in Its coeflicients, this approach is«,n‘umerlcall'y ‘unreli-

able. Recently, several at.tempt,s; have beep made for,p'r'oviding numerically reliable

methods for solving eigenvalue assignment problems These methods will Be discyssed in

- greater detail in Chapters HI and 1V.

Design of Observers. l - ' ‘ .

When all the states of a system (1.2.1) are not. available for measurement, to imple-

4

ment & feedback of the form u(t_) = Kz (1), an “‘observer’’ that providgs estimates of

the unimeasurable states is ~erﬂp]oyed ‘|\18~21]. If p is the number of independent outputs

v

of the system, then an observer of order (n ;p) can be constructed with state }(t) such

'

that z(¢) approximates a linear combination of the system state given by Kz (t), v'vhere .
- . . 2 ‘

<

X}

.

ot
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Kemr ‘"‘“x"". ‘The observer for the system (1.2.1) is given by

z(t)=Dz(t) + Ty(t) + Ru(t)
Construction of the observer involves the solution of Sylvester’s equation -
KA - DK =TC . -
for K. The matrices-D and T can be choéeh_ arbitrarily, a‘s'long as D is stable. Usu-

ally the eigenvalues of the observer are made more negative. than those of the system so

° 'y ‘ +

that the states ql' the observer will converge rapidly to the state of the system. If D Is
chosen to be an upper triangu{lrar\matrix and t‘he.syétem (A ,B,C’,E)‘ is in block upper

, i . ,
Hessenberg form, then a numerically reliable approach |38}, can be employed to solve for

K. .
' ’ - ‘ ‘ \ 3

1.2.3. deperal ! ) «

Herf we -consider techniques that are required for both analysis and design. They

-

LS M ’ N
are-basically concerned wjth the representation of systems in the appropriate ‘‘domain".

The 4-tuple (A .B,C ,E) isla “time” domain representation‘ while W(s) in (1‘1.2.3) s a

. -

frequenc'y domain or transfer function representation, Once a system has been

represeme;j, in an appropriate domain, the available gnalys'ls and design tools can -be’

‘ : s : [

employed. . . o

-

Transfer Function Matrices/

s

There are several powerful techniques for analysis and design that use the transfer

function représentatidﬁ (18-21,39-41]. "Therefore it is important to have numerical tech-

niques\ror computing tfansfer function matrices from 4-tuples (A ,B/C .E') accurately
and eﬁicientfy. In [42-45], it is shown. that computation of a transfer function matrix

can be reduced to evaluating the poles and zeros of several slngle-/npqt. single-output

subsystems. Knowing the poles and zeros, the coeflicienis of num7/raior and denomina-

tor polynomials can be computed easily. ‘ However, t.h'ié,method : based on “lterative”

H

. { ' . ' " . . :
“solutiorr of algebralc and generalized eigenvalue problems. If-these prgplems are' fll-

s . !

EEN

[
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conamoned“, then the computed denominator and -mumerator polynomials can have

Inaccurate coefficients.” In {44,45) and Chapter VI, a direct approach for computlng
{

Lransfer function matrices is presented. This approach }s considerably more accurate
j B}
and less expensive than those in [42,43].

+

This is z'a, natyral generalization of the scalar b‘ransfer fupction representation. A
transfer function matrix W+(a) cap be represented as W(s) = D™Ys )N(a) (o} W(s)=
N(s)DY(s)) "known respectively as left (right) mattix rract,ion descnptlon (18-21,38].
When N(s) and D.(s) have no factors in common, the representauon is known as a

. . .
coprime matrix fraction description. This representation is of considerable interest in

-
the faclorization approach to analysis pnd design of systems [17] A good .numerical

1

method for computation of matrix rractlbn descriptions from state-space representations.
LY

appears in [5).
. In the factorization approach, the central idea is to factor the transfer function
. - - 2 .
matrix of a (not nece&arily stable) system\as a ratio of stable matrices. Formally, the

problem can be st,at.ed"as: Glven the transfe\r function matrix W(s),

etermine rptional
runction‘matric_es N(s), N(s), D(s), D(s), U(s ) Us), V(s), antt V(s) such that (1)

all of above '\‘matri.ces are stable rational matrices, (if) D(s) and D(s) are non-sigular,

() W(s)= N(s)DYs) = Ds)N(s) and (iv)

’ / A Vi) U)|(D(s) -Uts)| _ [1 0] ‘
: e . ' -N(s) D(s)|[N(s) V() o1 J

The above m’gtrlces can be easily evaluated using eigenvalue assignment by state, feed-

¥

back ‘and a technique fot computing transfer function matrices for LTI multivariable sys-

Ttéms [17,468). The above factorization is also called doubly coprime factorization of

.os ' .

W(s).

Tliese are some of the problems in the c‘ontrol systems literature that have,numen-'

cally réllhple so[utions. Several other problems c.g.;' computation of multivariable

¥

¢

I



’ -11- T

’ , “ /

system ‘illwerses using the ‘‘structure aigorithm”, {47, transformation’ of a transfer func-
tionyxnatrix to its Smith-McMillan form [48], etc., have varying degrees of numerical rell- .
’ ~ :

ability. However, this is only a small subset o‘r the [Sroblems that need to be examlned .
/ s M B

A‘rom a numerical analys(;s point, of view, _A large number of problems still remalns
unéolved For example, recent development of H®™ theory has an excellent mathemaucal
foundatlo’n, However, very little attention has been paid to developing rellable algo-

rithms that would enable us to apply it to practical systems of ;moderately high orders.
;; . ) i N

1.3.° OUTLINE OF. THE THESIS D )

The thesis presents some new computational methods for analysis &Iid design of.

'

Jinear multivariable systems. Chap'ter’lll and IV are mainly concerned with cgmputatldn
of feedback matrices, while Chapter V contains some analysis of “decentralized systems''

followed by comﬁutition of decentralized feedback. Chapter VI falls under the ‘General’
. - . ( .

. category described above.' New algonthms for eveluatlon of transfer runctlon and fre-’

* quency response matrices afe,proposed ' The main contents of each chapter are élven

- ~
'

next.

"

Cha:pt,er II: Preliminaries
>

This chapter introduces some of the concepts from matrix theory and numerical analysis

.
\

that form the 'fqundation of most of the cgmputationa]\méthods ex\lsting'ln the literature

and presented in this thesis Several useful condensed forms for linear multivariable sys-

" tems are discussed. Notation to be used throughout the thesis is formalized.

¢ - . .

Chapter III: Eigenvalue Assignment by State Feedback

This chapter introduces Lhe problem of elgenvalue assignment by state fee back A brief -,
(

ks
survey of exnstlng technigques for solving t,he problem is rollowed by an outlihe or g

. ‘approach that can be constdered as the “‘converse’ of the algebraic eigenvalue problemt%

Based on this approach, a compu bational algorithm for single-input systems.is presented.

'

_The results are Lhenextended to multi-input.-systems and the performance of the pro- °
L . .

¥



-

T i12-

posed method filustratggd by means of numerical gxamples.

Chapter IV: Eigenvalue Assignment by Output-Feedback * - g ..

L3

'I’hfs ias 8 generalization of the eigenvalue assignment prob’lem c(onsidered‘ln Chapter III. »

.

The underlylng principles of the technique developed are the same as in Chapter lll
"The t,heory is developed for eigenvalue assignment by constant garn output, feedback for
slngle-lnput,‘mulﬂ-output systéms. It ls L’hen shown how the case of multi-input, multl-

¥

outpllt, systems can be treated vla a two-stage. eigenvalue ass 'ent problem This
‘J . PO
vlewpolnt leads us to determine a rank 2 feedback The results a}e then extended to the

compusatlon of dynamijc output feedback compensators. Numérical examples are con-
¥ < ' [ .
* sidered to illustrate the performance of various algorithms. - P

’ ! ~

Chapter V: Control of Decentralized Sy:étems‘ .

1

Decentrallza.t,lon: of system is a natural generalization ‘of the systems c.onsldered in
(1.2.2). When the system has several non-interacting ‘coYtrol stations and observation o

points, and only local feedback is permitted, the system ‘is said: to be_decent,ra.llzed. The

r-4
’ ’
(

first half of the chept,er develops. a computational method lor. determining- the “fixed-

modes'* of decentralized systems 'These.are the modes that cannot be moved using local ,
i ! . - i f
output feedback. It is' them shown that when the System does not have any decentral

fzed fixed modeé.'vye ‘can generalize the results of Chapter IV Lo'elgenvalue assignment {n -,

decentrallzed svstems.‘ A few -theéoretical issues remaln,‘ to be sdlved. However 8 first

attempt at developlng a good numerical techaﬂ]ue l'or decentrallzed eigenvalue asslgn«‘

- w

ment is deecrlbed. S

\r]

,Chapter VI: Transfer Function and Frequency Responnga.trlces . ’ .-

\ -

+

This cl}'apt.er is concerned with comput,‘at»lon of tninsl‘er function and ‘frequencyvresponse

matrices of systems glven in zhelr state-space represent,atlon Uslng a det,e'rmlna.nt iden-
!

tity, we develop algorlthms that. are more accurate and efficient th-an the exﬁtlng ones. .

These aspect.s of t.he algorlthms are dlscussed in detalil and lllustrated by applylng them
* . . ) . Lo . N . ' }’ . ) .
to an fil-conditioned system. : . . . .
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those who

tinuation 6f,the significant effort tha_t is being made to ’brldge the gap between elegant

theories and reliable computational techniques for their Implementatlod. Several issues

| S - i :
y R T o . )
Chapter VII: Conclusions and Future Work ’ . . >
This thesis is not a start.of a néw-field nor culmination of an existing one: It is.a con-
B - . C v . —_

that arise from varlous consigerations in the thesis are presented in this chapter. Poasi-.

ble extens_ioixs of the'results to more specific problems og;p_erhaps new problems are dis-

cussed. A brief section on the t,hing? that were not treated Is included as a pointer for
- ‘ - = ’

)ght,wiéh ‘to contribute to this exciting al:ea of research. ’

- It'is perhaps worth ‘mehtk;ning at this point that the various steps in niost, of the
r - . \ -

- > '

e algorithms presented in this-thesis have been kept rather general and extensive e)&plan&

’

)'i.ofy remarks kha}ve' been lnu:oduced where 'neces_qary. "‘This serves a twofold purpose:

First, it permits us },o. understand the actual concef)t, behind that step and second, it

AL .
‘. I N

gives fnéedom toa édrt.wa.fe specialist to code these algorithms as: portable software.

'

3 s T 4 o »
4
' .
N .
N ¢ . - -, -
‘ - ! ~ . . M "
v I
. 4
. N - N - .
s .
. A}
o ¥ - ' ‘
. L
- ’ i %
- - B . o
® ' \
. .
A W
2, ©
PR !
1‘ !
M - e ! . 1 <
N .
B ’ ' A
. o~ -
3 v g, - ' “ "\
- v P N
1
)
. - [
. - \ - -
- ~ - T
- 9
!
“ s N Y - '
b B -
, ¢ R N
-~ &t - - -
- . ; a - AT
A L r N ¢
' = * » . "
. . K ' . N
" 3 ~ . ~ .
- ‘ 4 .
-
- . -8

+

.
.
Y
"
-

2



e

14.

1y

[ 2]

[ 3

([ 4]
[ 8]
[ 6]

[ 7]

[ 8]

[ 9]

(10]

~(11]

12
[13]
[14)
[15]
(16]

{17]

(18]

(21)

f22)

(23]

'~ 14 -

REFERENCES -

Control Systems Magazmc (Special issue on CACSD), Vol. 2, Dec 1982.

Proc. IEEE, (Special Section on CACSD), Vol. 72, Dec. 1984.

g:4)"{.‘5" IMS SIAM 1984 Joint Summer Research Conference on mear Algﬁra and,

. its Role in Systems Theory, July 29 - Aug. 4, 1084,

C.C. Paige, “Properties of Numerical Algorjithms Related to Computing Controlla- -
bility”, [EEE T¥ans. Automat. Contr., Vol. AC-286, pp. 130- , 1981.

R.V: Patel, “Computation of Matrix Fraction Descriptions of Linear Time- |
Invariant Systems'’, [EEE Trans. Automat. Contr,, Vol. AC-30, pp. 148-161, 1981,

P Van Dooren, ** The Generalized Eigenstructure Problem in Linear System
Theory"”, IEEE Trans. Aitomat. Contr., Vol. AC-26, pp. 111-128, 1981.

R.V. Pat'el ““Computation of Minimal Order State-Space Realization and -Observa-

.bility Indices using Orthogonal Transi‘ormations » Int. J Contr., Vol. 33, pp. 227-

2468, 1981, ‘

G.S. Miminis and C.C. Paige, “An algorithm for pole assignment of time invariant
multi-input systems”, I[EEE Con[ Dec. Contr., Orlando, FL, pp. 62-67, 1982.

R.V. Patel and P. Misra, “Numerical Algorithms for Eigenvalue Assignment by
State Feedback”, Proc- IEEFE, Vol 72, pp. 1755-1764, 1984.

A. Emami-Naeini and P. Van Dooren i‘Computation of Zeros of Linear Multivaw
able Systems’, Automalica, Vol. 18, Pp 415-430, 1982. : . ‘

A.J. Laub, “Efficient Multivariable Frequency Response Calculat.ions IEFE
Trans. Automat Contr., Vol. AC-26, pp. 407-409, 1981.

P. Misra and R.V. Patel, ""A Computational Method for Frequency Response of
Multivariable Systems”, IEEE C‘onf Dec. Contr Ft. Lauderdale, Flonda, pp.
1248-1249 1985

R.V..Patel and P. Misra, “A Numerical Algorithm for Eigenvalue Assignment by’
Output Feedback', in Computational and Combinatorial Melhods in Linear System
Theory, C. Byrnes and A. Lindquist, Eds. .

A 4. Laub, “A Schur Method for Solving A]gebraic Riceati Equation". IEEE Trans:

Automat. Contr., Vol. AC-24, pp. 913-921, 1979. ,

‘G, Zames, “Feedback and -Optimal Sensitivity: Model Reference Transrormlations‘-
Multiplicative Seminorms and Approximate Inverses”, IEEE Trans. Autamal.‘
Contr., Vol. AC-28, pp: 301-320, 1981

J.W. Heltorl, ‘“Worst Case Anaiyéis in the Frequency Domain The H® Approach
to Control”, IEEE Trans. Automat. C’ontr Vol. AC-30, pp..1154-1266, 1985.

‘M. V‘idyasagar, Control Systems Synthcazs A Factorization Approach MIT Press,

Cambridge, 1985. -
H.H. Rosenbrogk, Computcr-A:ded Control Systems Dcs:gn, Académic Press Lon-

. don, 1974.
(19].
~ {20].

T. Kallath, Lintar Systems, Prentice Hall, Englewood Clin‘s N J 1080.

'R.V. Patel and N. Munto, Multivariable Systems Thcary and Dcstgn Pergamon.

‘Press, Oxford, 1982. -~ ' s Q
W.M. Wonham, Linear Muitwarmble Control “A Gcometric Appraach Sprmger_ ~
Verlag, N.Y., .1979.

G. W Stewart, Introduction to Matrix’ Computataons Academic Press NY., 1073.

J.H. Wilkinson, An Algcbrmc Eigcnvaluc Problem, Oxford University Press Lon- .

- donm, 1985




o) -
) (25
[éél
127
(28]
[29]-
30
' [{5;}

| (32]
" [33]

(34]
(35]
[36]
[37]
(38]

(30]
[40]

[41]

[42]
|43]

[44]

[45]

[46] .

‘niques”, Automahca Vol. 14, pp. 557-566, 1978..- - . t

-15- ) - ‘ .

G. E. Forsyt.he M.A_ Malcolm and C.B. Moler, Computer Methods for A!athematwal
Computations, Prentice-Hall Englewood Cliffs, N.J., 1977. .

G.H. Golub and C. VanLoan Matrizx Compututions, The John Hopkms Press. Bal- '
timore, MD, 1083.

F. Fallside, Ed., Control Syslcm q:.s:gn by Pole-Ze?® Assignment, Academic Press,
London; 1977. - .

‘R.V. Patel, “On Blockmg’ Zerosi ip_ Linear Multivariable Systems" IEEE Trm
Autamat Contr., Vol. AC-31, pp. 239-241, 1971.-
Int ‘j)

R.V. Patel, *'On C-Omputing the Invanant Zeros of Multivariable Systems"
Contr., Vol 24 pp. 145-146, 1976. - .

Al Laub and B.C- Moore, ‘“Calculation of Transmisslon Zeros using QZ Tech-

o

B.T. Smith), ef al.,, Matrix E:gcnsystcms Routines --EISPAC’K G’mde Lecture. notes
in Comp Sci., Vol. 6, Springér Verlag, N.Y., 1976 '

B.S. Garbow, et al, Matriz E:gﬁnsystems Routines - E[SPACK Guide E’zlcnslon,
Lecture notes in Comp SCI Vol. 51, Springer Verlag. N.Y., 1977. .

J.J. Dongarra et al’, LINPACK Users’ Guide, Phxladelphla SIAM, PA 1079

C.B. Moler and C.F. Van Loan, ‘“Nineteen Dubious Ways to ‘Compute the
Exponential of 2 Matrix", SIAM Review, Vol. 20; pp. 801-837, 1978.

A.J. Laub, “Efficient - Mult.lvana*ble Frequency Response Computations”,” IEEE
Trans. Automat Contr., Vol. AC-26, pp. 407-408, 1981.

P. Misra and RV Patel, “A Determmant Ident.lt.y with Appllc'ation in Compl;tlng
Frequency Response Matrices”, to appear in ‘Linear Algebra in Signals, Systcma
and Control’, B.N. Datta, Ed., SIAM, 1087. .

W.A. Wolovich, Linear Multwarmble Systems, Springer-VerIag,NY 1974.

C.C. Paige and C.F.Van' Loan; ‘“A Schur Decomposmon for Hamlltonlan
Matrices’, Linear Alg. and lls Appl.—- Vol. 41, pp. 11-32, 1081,

G.H. Golub, S. Nash and CF‘ Van Loan, 'A Hessenberg-Schur Method for the
Problem AX+XB+C ", IEEE‘ Trans. Automat Contr., Vol. AC-24, pp. 900-913,
1979.

I. Horowitz, Synthcszs achedback Systems, Academic Press, N.Y., 1963.

D.H Owens, ‘“Multivariable Root-Loci: An Emerging Design Tool?"", IEE Int. Conf. ..

on Contr. and Appl., Warwick, 1981.

I. Postlewaite and A.G.J. MacFarlane, Compler Variable Methods for Linear Mul-
tivariable Feedback Systems, Taylor and Francis Ltd., London, 1980. .

A. Varga and V. Sima, “Numerically Stable Algorithm for Transfer Funcuon
Matrix Evaluation”, Int. J: Contr., Vol. 33 pp. 1123-1133,.1081

A. Emami-Naeini and P. Van Dooren, '"On Computation of Transmission Zeros
and Transfer Functions”, [EEE Conf.- Dec Contr., Las Vegas, pPp. 51-56, 1084.

P. Misra and R.V. Patel, “A Novel Approach for Computlng Transfer Function
Matrices 6f Multivariable Systems', IEEE Int. Symp. Circuits and Syst., Philadel-
phia, pp.296-200, June 4-7, 1987.

P. Misra and R.V. 'Patel “Computation of Transfer Function -Matrices of Mul-. .
tivariable Systems’’, to appear in Aulomalica. _

C.N. Nett, C.A. Jacobson abd M.J. Balas, “A Connection Between State-Space and
Doubly Coprime Fractional Representations™, IEEE Trans. Autonfat. Contr., Vol.
AC-29, pp. 831-832, 1084. ‘ .

LS8



3 7
e \
P
g ’
. -
. . -
)
.
» .
) }
- .
A .
* -
' f o
-
. N
. .
B
. 1
. ¢ ‘
b ' .
»
Yo
.
~ + h
.
, .
. [
+ "0
- - .
&P .7 K i
..
- S oes . 3
-
t - r S
L . - Y
- AN .
o
¢ WL M
» N » .'. - -
K ES . .
. e,
. s
v ' ’
[ N
= B
pre . . v
e .,
. B
= o -
v . B
r
. .
. . o
,
3
-
. " ! -
.,
A
-"\'
» .
. PN
* ~ R "
Y N .
"
.
-
<8 .
' - Lo v
- ~ .
' .
- e
. o# . -
[N N
P
LRSI
. . . M
. e . R
' o hd
) .
R N . AN
[P
P ' AR PRI '
. < s v
. R - .
%, - i) b
o« L -
5 R vt
M oo r WY -
o .
' o
Be.,
' .
ot N A (OO
ot ~ . .
R -
2 > 4
4 .o

foa - e . L
- : p RN b sy fe
¢ - R
- ‘ -16- SR -
., " . ) L . ' ,
. »
v ' . ) - .
e i34
L.M. Silverman, ‘Inversion of Multivariable Linear Systems”, IEEE Trans,
] ? e ' " .
Automat. Conlr., Vol. AC-14, pp. 270-276, 1989: . ‘- O £
1 . “ 3 A} *
.. T #¥ W
P. Van Dooren, P. Dewildé and J. Vandewalle, *On the Determination of the
¢ : , ”"
Smith-Macmillan Form of a Rational Matrix Trom its Laurent Expansion”, [EEE
Trans. Cir. Syst., Vol. CAS-26, pp. 180-189, 1979. ) .
’ MR - N . L
- ae 2 ’ .
. ! ) , . o [N R . '
. : v - J
. . ~
. '. 7 ..‘ 5 h "', L - ' T ‘, .
. : LY ' \ ’ N . - ’ -
. . . B R ’. e N . N
T N te ' " . ,’: “ - 4
- = ' ACT " -
¢ ! . > FEIE I a W - (e
W . o' . . "L
> . , K * u‘ ~ 5 .“ v v\‘ A L
. . ~ b r, < vy, «
\ ¢ [ . P ‘«‘\4 s f
L ., . . . . N L
. Lot N . . e R . “
e ! i - ' - te - . TN
. - ) s v) - s ) ' . e \’, ‘ L
P * SO . R Ty P N
A Y ) . s RN
. . N o N 4 3 B Sl PO
. . A TP N . ey C
'3 - . i e, . - - . Lf‘ . . vt
N ‘ 6 L e . * oo, T C
’ oL ~ 4 S . T
’ [ i R s R e W ) ' . . ’,.' A‘.wi
F] i \ , s ‘.. 4 AN -\ - . ‘.' ' \
s . . . ; > * : A N 8 ". ’ o " - "1 w
* » Yot - - > . .
- " . * Lt "”"i '&n"- ' A - v J"{ . ’ - : - o * t
. N " L] 3 v N ~ .
Y ’ % C e . Lo 3 .
- A e -t » ,‘ - : v !
- N e < N
. ! 0 N M ! . "‘ *, |( \‘ \' v - ' * *
. - N ) T i Nt ) N N
o - . : . . . A . . .
< 4 v
_ : U ) T R
' . [ c o ) ) . - ’ . N . ) .
’ ¢ [N N ) . < e P
. FEERY N r a1, \. Y L ' N ’ .
oo A A il K .
. ’ 4 ' “ PR Ty
v ™ ] + ~ 1 ‘¢ v B
PSS e e A .
. ’ : . b i ., N . ) v
. 2 ¢ [y R Tt o LT
i * * :’\ . T " T L ,” . “ ‘..
’ - v Lo . w,o . ~ . T
4 M - - % .
' —_— . DR - T s
< - . . P - * '
. ° o hw . .' - A o 8 [
v ! N ~ "o T omt e R
- . — ’ . s . - . .o
. o A \ e e
PRV % e T ) " WO .
b ‘ Y T . B ST
' e , e G ' e
- L - - ." . . h - ' ' ‘a
. : Lot PR vt s . N s )
b T T TN ST T, v, Lt
. N v ., - ‘“ L o'
, R o v T e S
" . . v . Lov ot g RS g - RO
. . w . . * s L LTI U AN ' A
i A s - D . ’
. . . . ' . KO . & U T TP A o
- . g 1. Tt e I - - PR T S .
oo . . o v e oL, A
T T t “t ARS . 1,"" ,'_, T A 4’,__'\, o, * ' ~
- . ; ’ . 3 L. A . “ . . S e
. 3 4 ‘e o N . . . ‘\. - PR v . , .,
‘ ' / s N , . p Lo RS howe ] . e [
o - o L “ DR ¢ L T % Ry
. Yo 4 P [ RN - * AN LT M . i
B L. b . .oy, " 2 o ! an ek P ot L.
. - ~. . - o O .
) ! . . . N J:‘ r . . (9 ﬂ_j..‘-‘- '.l




> B &

-17 -

CHAPTER II ' .

-

NOTATION AND PRELIMINARIES

This chapter presents the notation, several definitions and basic concepts from [inear .
olgebra and linear system theory. These results are later used to develop computational
methods for analysis and design. of multivariable systems;. The topics from linear algebra
sgrrace quite naturally when studying linear systéms because the information required to
describe the systems, usually in terms of high order differéntial or difference equations,
can be expressedv con-lpa.ctly in the form bf matrices, linear vector spaces, linear transfor-
mations, ete. 1t s, therefore, useful ;.o review the-relevant topics from linear algebra and

- to express them in the framework of linear system theory.

-——

S The chapter is divided Into two main sections. Section 2:2. contains results from -

[}

malriz theory and numerical analysis where topics such as stability of algorithms, forma- -
> - tion of orthogonal transformations a'n'd‘.reductibn of matrices into condensed forms are

. > o
discussed. Section 2.3. is.concerped with describing some basic principles and various

©

.

useful representations of linepr multivariable systems. :

i . |
) 2.1. NOTATION 1 ] b
Ll ‘ - - .
’ Unless stated otherwise, we will use the following notation in this and subsequent
g 4 chapters: o
IR . real n-dimensional vector spa,ceu h e .
o - . a zero vector of appropriate dimension :
“e; .  s-th unit vector (a zero vector with only i-th eleme/xt eqpal to 1) -
‘ IR "™  the set of real n Xm matrices -
! . 0'. a zero matrix of apbropriace dimension

I, " an n Xn identity matrix




7

"y

AN
: e -18 - "
: TN .
T \ l' ,‘\\" ~ A
A transpose of A ’ - !
c" camplex n -dimensional vector space N
C" X™ the set of complex.n Xm matifes
. [ ) ' . 3 - ‘ . A -
o(A) the set of eigenvalues of A
%"‘ ' inverseof A - -
rank(A) ‘rankof A . o
adj(A)  adjoint of A 9 ce Lt
\\ ' L. T " ' ! A
det(A)  determinant of A ‘
» .
1)1, p-thnormof () ) - St
] o .
i) the expression (-) evaluated in floating-point arithmetic

The following abbreviations are used frequent;ly\‘in rest of
. t . L.

UHM
UHF
B,U‘HM
BLHM
BUHF

'BLHF
USM

USE

) \/ . ya x o ) ’
A single-input system (A ,b,C) in upper Hessenbérg form

’

8

P ’

Upper ﬂessepberg m;‘mx .

Yoy

Bléck uppeiﬂess'enberg martix -
t

Block lower Hessenberg martix

A multivariable system ;(A .B,C) in block upper Hessenberg form - '

A multivariable system (A .B,C) in block lower Hess'enberg form

-

~ N 4
Upper Schur matrix

e

¥ o~

-

.

A mul(lyar‘lable sys‘t;\r’gc

Real Schur matrix

-

A multivariable System (A.B,

complex—con,lpgate

1

!

C;)4ixi rea

Eigenvalue-assignment * * "

.

-

Deceritrallzed fixed. mode.

' )
[ L

+

-

li

n

¢

’

.-

- A

4

»

o+

’

:
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kil

¢

(A ,B,C).in upper Schu
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r form
N i

chur form
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Throughout the text 'iupper case letters will denote real as well a8 complex matrices, vec-

tors that correspond to ? column or row of 8 matrix wlll be denoted by lower case bold

-

b. itallc letters with a slngle subscrlpt The subscrlbt wlll correspond to the column or the

-

Tow of the matrix. to whrch the vector corresponds e.g., a denotes the.t-th column of

e

A. Lower case Greek and roman Ietterswill denote scalars. Elemente of a vector wlll

be lq\ent'iﬁed by a single subseript and.elernents of a'matrix_by a double Subscrlpt e.g..

the element in the 1-th row and- ]"th column of matrix A i denoted by g, ; and the r-

‘th element of a vector b is denoted by b;. Al vectors are assun'.d to be columnavec-

~

tors, the row vectors are denoted with a tranposition sign.

AN

2. MATRIX THEORY AND NUMERICAL ANALYSIS .
. . 24 s

’I‘he maln-purpose of this section is to r'evlew the reievant results and not to pré-

vlde an exhaustrve treatment ol‘ the vast literature that exists on numerlcal analys and

matrix theory The interested reader is referred to exi&‘ent texts on matrlx theory (1-6]-

o [

.and numerical analysis [7- 1‘.] ’I‘he topics«:glrscussed here will be used extensively *in ‘syb-

» > \
. This 'section presents' the notation, terminology énd deﬂnltlons from matrlx theory

a

sequent chapters N

2:2.1. Matrix Theory ‘*.'\/'

that wlll be used in the subsequent chapters. The followlng deﬂnltlons will be used fre-

i

quently (10]:

e -
I,

Y

Definition 2.1. Norms of Vectors,and Matrices' A vector norm on IR." is 4 function v

‘k

: ER" — IR that satisfles the l‘ollou/ing conditions:g - B ' . ,
1.I'z;éo;——\>:»(z)>o, o . \ — a .ot
' | 2. {az) = | al “z),
3. Uz ty) = nE) + )

- The most commonly used norms are the 1-, 2-, and oc- horms defined as

-

I

-

S’
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-20- ,
LY . ! . .
! . _'—— o t Ve
Izli=" |zl' R " .
- ' ) u-x ) . |
- ' T o - d. ’ N R
Iz].= Elz,ﬂ (’ ’)',’ , ) s
. . fom] . , - ¢ .
ﬂ;nd ' . > ! ' : K e B » ﬁ\ * :L
[z o= max|z|:i=1,-"-.n I -
" The 2-norm’is glso k’f’nown as the Euclldean norm of a vector For matricps, the 1-, 2-
and oo norms are defined as (for 4 € R " ><"')
,l , . K \
lA l.l max E*Gl)l J"‘l m
) l-;l . ,’ ,
z | = max Az . .. L
.I‘:I,Q \I_SIfIrIa-llv [-. : ' ',", e
, and\ , - , '
~‘|A|oo—m9"‘ Ela,,lt-—l ’
J=t .. ' o
\ : ) - N 4 v
Another commonly used norm, Frobénius norm, forimat,r;]c'es is defined as:, Lt
N “ ’ - . ) ~
S (am 3 . . "' .
A lr = E.Eaf.j] - . - ]
) . Fmlj=1 . . . .

s
P
AN

It can be easily shown that the é‘fobenius norm satisfies all the properties of a n'orm

8,10,12. - L Lo ' A

"D‘eﬁnitlion' 2.2. Or'thogonal and Unitary Matrices: A square matrix A ER"*" 8" °
[y % ” »

said to be an_orthogonal matrix and the columns of A are orthonormal If
{

v "\ l !
L AT=AT | ;
Tle., . ' ’ " * ‘
ATA =1, S |
*_T—_he complex counter;pértmr an orthogonal matrix g‘atlsrying‘A - = Al lé-s’aid to be
fﬁnitary. ' ‘ - ‘- .’ . } - ‘,: '

- . .



‘Definition 2.3. Householde

-

N Wy

e

\
&

- 21 -

[

i
~t

r Transformations and Plane Rotations: .These transforma-

tions are. iised for annihilating the elements of a vector or.a rmatrix in certain’ order e.g.-

"iIn QR 'dé’comp'qsi‘tbn of-a matrix dénnéd Iater in this section. The 'maprjcég repr_esenilng

LA

't‘h'es,e' transformations are orthogonal.. Typically, & Hous'ehqldcr'tranéfomiat{on Is &

FY

" uses the ¢-th and 7-th elements of a vector at a time.

" accounts of-their. properties and aﬁpllcagions can be found in {7-12].

-

matrix of the form—’

T

L3

\1—|m

where u 7

T .

u =].

u =1z +o0¢,
and ”

3
i

= }u |,’

¢

.

1 o
‘ 03}
i [0 o
P.'j= .
o 7 joo
e 9 ) <
00
L

where, a®+3%=1.

N

0
0

0
J

A

|

q"\

2 0 -0
c 0 - 0
aﬁ. 0
o 0
QN"(I

J

o

A plane-rotation in the {1, ) plane is a matrix of the l‘orm,l

Consider z € IR " and let o—=x+ |z| 2 s'uch-tha,t‘z#:ae, where e,=[1,0,.- - - 0]. Let

" . Then, U=I, -7'uu T is’a Householder transformation matrix and Uz =-oe .
. n } 1

A plane Totation may be used to annihilate the elements of a vector.

o

[ G .

o 5 .

.

[y

C(2:2.1b) -
;‘ v ‘
. (2.2.10)

e

£

, - 1 . .
However, it is different from the Householder transformations, because while the House-

holder transformation operates on the-entire vector at one time,

®

a plane rotation only

( -

. The transformatjons described above are used I'requenym numerical linear dlgebra

P

.bécause they are orthogonal and have very desirable numerical .properties. Furtfaer

>

(2:2.18) . ~ -

a



" Further,.

' able way of con;puping the inuverse of a rﬁ'airix (8-12].

s . A . v ) . - -
b N . - s
. : - , .. . .
. _22- . v \
T, r - .
)
.

Definition 2.4.. _Elementary. ‘Transformations: ApQ elementary’ trarisformatfon s

L3

repr,csé'nfed'by ah elementary lower triangular r‘natrix‘orv'order-n ,and index k of the

‘rorm \": - o \ § o .‘ . . ot . PR ‘
M=T1"-mel = ' SR (2.2.3a)
where, B o ) ) e R
, . ) , ¢ \ ‘ ! .
. . » . ’ PR
meir =0 1=1,2"'". ,k’," ! . R <y “ P . (223b)
More specifically, Ty Co . “ P
. , i ' " . ' " ) -~ X N ’ '
1,0 o --0 T
01 0 - 0 - -
M=loo 1 0 ' ' (2:2.3c)
. " R 0 0 mk +1 k 0 , .
- 3 ) . - . A kd
8 ~" - -
00 m, 1 -~ “i ‘3.,

Element.ary transformauons can also be used for annihilating the elements of a. I or

,»‘

a ma,trlx— e.q., in Gaussian ellmination or LU, decomposmon of a square, matrlx discussed
- R

’ . s
¢ N v ‘. . N ',

later in this section. ., . _ ‘

.. v . ' '
[ .

. One rrequ-wly needs to perrorm transformations on a matrix to represent it in a

more convenient form.- Deﬂnmons of some of the, more useful transrormatlons and
decompositions are listed next. -
7/ -~ ! . ’ i . ' *

Cwm

Definition 2.5. LU Decomposition‘:' Any non-singular 'matrix AER" " can ‘be

represented as a product of a unil ‘l'ower triangular matrix L (i's along the diagohél) and

an upbef t‘righgular_matrix U sﬁgh that : ' : o \
v A=LU . - © (2.2.4a)

det(A);{qe‘(U) _'Huu' - | - | ., '? S ' .(‘2.‘2.4b)
fm=] R ‘ HN

&
s

& .The LU d"ecomposmon t,oget.herwnh solutions of two sets of linear equations form a rell

N

LY N

\ AN

N\
L »
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R TR SRR
.Definition 2.8. QR Decomposition: Let A/GIR"X"' with n>m, have llnea.rly

‘independent column‘s. The matrix A can be wrmen uniquely in the form .A = @R, ‘ ,
where @ is an orthogonal matr[x and R is an up’per triahgular matrix with poemve ele— T

. .. : L% : ‘ ‘ : .
ments along the'diagonal. Note that if n <m, R is an upper trapezoidal matrix.’

\,

The QR decomposition is useful insrow and Jor column oompression ol' a2 matrix. lt“

, als{rorms the basls of en‘lcient algornhms for: computatlon of elgenvalues or matrlcea 7=
12]. The QR algonthm produces a sequence of mntrices A0 -—Ol 2, © a8 follows. s
At the i-th step, given A;, a \; scalar called shift of origin, is determined from the ele-

N M A N . . ) [ ,

ments of A;. “The matrix' A; ~X\; ] is then factored as = ° ]
A ' ’ - e \ ) . .

: o ' e ' o ' . .
A; -NIT = @Ry . oL .. . T (2.258)
“where Qi is unitary and R; 1s upper triangular. This factorization always exlst,‘s pro-

4
- N ¢

vided 'A; - \; I'is non-singular {10]. Finally, A;, Is computed as - o

' , N -
« “ !

-v l+l = Q1R + >‘ I ) ' ’ ‘ . (2-2-53);

+

With a proper choice of )\;, the subdiagonal elements of A; quadratically converge to
zero and the diagonal terms towards the eigénvalues of matrix A . -~

. Definition 2.7, Singﬁ& Value Decomposition: For a matrix A €R " Xm the singular

value decomposition is obtained by finding two orthogonal matrices U and.V such the °

-

r_ |20 - ' S ' T
| UAV = [0 0]. ) ) t 3 , .
where, T=diag (7,0, - ' * ,}, ). the terms o; are in descending ‘order and o, >0 [1-8].
. “ .
: A . ‘ . .
The s'calars o;, 1=1,2, -+ - ,r are called the singular values of A and r denotes the

rank orA (10].

s

The LU and QR decomposltions descrlbed above are obtalned by trahsforma,tlons o

7

" on eithe?rows or columns only Such t,ransformauons whlle preservlng Yhe tank deter- 5
minant, {c,, do not preserve the eigenvaluesr All of - the above properties, lncluding the R
'eigeqvalues are preserved under, srmalaraty tranaforma‘trona of a matrix B to A, charac- o

Y

‘terized by I ' o - , S
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—

A = T"'BT,‘

'where T 18 a square invertible transformation matrix. - a .

If the transformationi matrices uséd . are oithogonal or unitary, it can be shown
- . * .

[8,16] 4hat the resdltlng transrormed matrix A is exact for a "slightly“ perturbed origi-.
*
nal matrlx B However, if a general simflarity t,ransformation involvlng the inverse of a

.

mamx is em‘ployed r;othlng specific can be said about' the ‘“‘exactness” of the |

‘ corresponding solut,lons The terms,“slightly perturbed" and ‘exactness" will be dis-

L

cussed in detall in"the next secuon In the next few paragraphs, .only those reductions of

[

a square matrix have beentdiscussed which can be obtained. using orthogonal or unimry

o

similarity trax}sforma-.tions‘ L -

1. Hessemberg Matrix: Any square matrix A EIR"X" can be reduced by means of'
3 . V\
an orthogonal similarity Iransrormauon T e R " X% o an Upper Hcsscnberg Matnz

r

(UHM) F Pe. . *
RN flnljl\ } " SO
, N Fa2 o Jana [an ; ‘
o . - (4] : - . - . " L
. F=TTAT = || f}"’ ‘ !3-_"' ! [f"" . : . (2.2'8)
’ , _‘0 . 0' e fn‘n—x fnn._ ‘
The matrix F s said to be an unreduccd UHM if f;,,;5%0, i=12, - ,n -1 Slmilar :

=results can be stated about the reduction to a lower Hcsscribcrg matnz (LHM) [8-12]

.

Not,e that in above reduction, due to finite precision arithmetlc we cannot expect the

elements of the eub—diagona.l to be exa,ctly “Yero. It can. however, be shown that com-

puted F is orthogonally similar to A+E, where 4 E || F < %A |f where n is

the order of the matrix and v is a constant of or\;er unity. In practice ¢ is taken to be of
. : ) ¢

l:he order of 10~¢, where ¢ is the numbér of significant digits used in calculations.

[t . N

2" Block Hessenberg Matﬁf@ the elements of the matrix F in (2.2.6) are them-
. . L )

g lves matrices of approprldt’e 'dl_ngensio'n, then the matrix is said to be a Block Upper '
. [ \ ' ‘

Hessenberg Matriz (BUHM). Further, If each of the sub-diagonal block sub—'matt“ices‘ bas
\ . . ;' R ' .
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L ST P o | .

rull rank then the matrix is snid to be an unrcduced BUHM The reductlon to BUHM
can be achieved using orthogonal slmilarlty transformations Similar results can be

-stated.foueductlon oi' a matrix to a block lower Hessenberg matrlx’ (BLHM).

\
N

3 Real Schur Mat.nx Any square matrix A. € IR"*" can be reduced by means of
orthogonal ‘similarity transforma;tions i.o a Rcal Sdi‘ur Matrrz (RSM) F such that -
; F= TTAT ls a quasr-uppcr tnangular matrlx with only’s 1 and 2)(2 blocke along

« the (block) diagone’l [l 8] Each scaler on- the diagonai corresponds to'a real eizenvalue( -,
of A and each 2><2 block corresponds to a compiex-conjugate peir of eltenValue%T A.

'\’ . . ’. .

4 Upper Schur Matrix: Uppcr Schur Matnz (\USM) is the complex counterpart of an

RSM Tl?e tran rormations requlred for reduction to USM are unltary An USM maly .

‘ ha.ve~ complex ele ente as it has its elgenvalues (real as weil as: compiex-conjugate pairs) . :
alongthediagonai ' f &"" I C .
For both real and upper échur ma.trices. it iszaiweys posslble to: rearr'ange the order
In, which the eigenvelues appear‘ along tim diagonal. )'Num'erilcelly emcient and stal;le ’
~ aigorit.hms as yeii as software exist for the above- reductions {13-141 ‘ ' f/ o : -

For various condensed rorms described above ei‘iicient FORTRAN codes may bei .

[y

found in [15-17] it should be pointed out that there are several other useful condensed

)

: 'i‘orms to which a mAtrix can bb reduced e.g., diagonal Jorm, Jordn. canomcaljorm, com-

‘

. 'pamon jqrm elc., but reduction to these forms is numerically unreiiabie and thererore

) their use in developing aigorithms i'ot analysis and design of multivarlable systems Is mot

retommended The interested reader can lind a detailed exposition on the subject in [1-

' B ) @
. -

y . a7
. '8). . , o . .
. S .t N * 7 .

4 . & -

2.2:2. Stability a.nd condiﬁonrng - L :
The algebraic operations represented by the algorithms in subsequent chapters are o

: executed on digitai computers. Because of the limited -precision arithmetic used o%he ;

computers. the basic operXtions of addltion and multipiication invariebly incur roundlng

erfors. Wben an algorithm invoivin&such operations is implemented on a compuﬁr'ﬁe
“~N

. ) \ ' ) - ! » \ ~ -

~ -‘ | . . 4’.
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. ) result cah be far from the expected one. The errors.incurred usually arise from.the fok*
lowing two sources: © - - -~ : , - ’
’ [ o - " g ! . " . h —_— -
. ' 1—Use of a “'bad"’" algorithm to-solve the problem )

- 2. Inherent "ill-posedness™ of.the problem itself. ¢

. ' termlnology ln the next few paragraphs Whlle‘one has some control over tlie type of

Py

alzorlthms used to solve Lhe proHem. t,he second source of error when it exlsts. cannot '

- - ’
l

) be removed {his Is illustrated by t.he examples given below where for the sake of illus--

tration, it Is assumed that all operatlons are carried out on 8 computer accurate to 4

significant places. ) ' T

-

M ) ., . ~4\’. . -
- - Example 2.1  Find the determinant of the matrix .
_- 4'm’m 8.780 . . - b , - . . ;' ~ , "" <, ) .‘ R - .
! . A= [2000 4391]' ,' .- ‘ C . ' (227)
There are, several ways ln whlch one could evaluate the determlnant One expresslon for -
EI : . &y
' a, a, . e .
. the determinant of 3 matrix A = is given by . :
T K . an 022 . :
, . det(A ) = a,;; X agy - a,gXay, ‘ R (2.2.8)
v , ! R > X . ‘ », I -
therefore, ' o -7
’ . | det(A ) = 4.000X4.301 - 2.000X8.780. , .

The above computation on implementation on a 4-digit compur,er is executed as,
det,(A)_fl(4 000X 4. 391)-_fl(2000><8780) J

- = f1(17.564) -* f1(}7.56) L ‘ v
17.56-17.56 ‘ '
oooo .o - . : :

»

"L

« [

whlch is Wrong because t,he actual answer can be-easily seen to be 0. 004

A aecond method for evaluatlpg the determinant. is bys carrying out an LU decom-

[ .
: ‘ poemon of A as given in (2 2.4), glving us e
' [4000 8.780]'___ [1 .000 0.600 (4,000 - 8.180 ) . ('2,2 -
. 2000 4301] ~ [0.500 1.000] ¥.000" 0.001 . 2.9
] ~ ) ! '.‘ 5 _ $ | ' , . - ' ).
, ‘ . s '
. ; - -

. ) . The terms‘ “'bad""and “ill-posedneéS" will be@ and_explained in humefical *aualysist‘
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(def (A) = det(U) = [1(4.000X0.001)

Ry

(2.2.10)
= 0.004 ,
' ~ , f ]
thereby, giving the correct answer, . N -
. Dy . ‘ : f LN
Exa,mple.2.2 : Find the determinant of the matrix: ’
~ [4000 5000] = - .- N ) '
4 = [3s11 4.39:] ‘ ’ ' - @1
The a‘c\t,_ual determinant is,0.009. On a”pply]ng the algoritlym in (;2.2.8).
) ' s @ . )
det(A)=.f1(4.000X4.301) - f1(3.511X5.000) e L, T
e = f1(17.564) - /1(17.855)= [1(17.56 -17.56) ,
‘ e — 0.—0 ' - ) . . 7

N ~

Again, applying algorithm in 9.2.'4); we haye o S

]

The ans&ger obtained by using either of the algorithms is far from correct.

'Oq first sight, the inaccuracy incurred can be attributed to the rounding errors In

the Ilm‘pleméntation. Byt a elosér examination reveals that despite the underlying cause

-

béing rounding errors, the actual reason for ‘getting wrong answers in the two cases are

quite different. The fallure to get an accurate answer in ijampl'e 2.1 was caused' by

using a bad algorit.hm because the use of auernaté algorlthm in (‘2.2.4) gave the correct

~ 3

. &
. answer. Whereas in Example 2.2, the error- was not because of the type of the’ also»

nthm used rather the data ftsell does not permn’ the algomhms to obtain the a.ccurate‘

. answer A problem whose data exhiblts such behnviour is said t.o ‘be lll-condmoned and

* . v, ¢

- one cannot. hdpe to obtain correcz answer lrrespecuve of t.he algorithm used Note that

e .
. “
. ) - vl

an

~

[4.000 smo] [ 1000 0000] [4.000 " 5.000
35511 4.391] — - 1.000 | {0.000 . o .
; 3.511 3.511
. 1 [ . l 5. - . Ol N -
_. ) / l«ooo ol i) > o0} - 43
: T [1.000 aoooo] [4.000 5.000 CC
: 0.8778 1.000] [0.000 - 0.002; }
Therefore, * . = N ! ‘ -
. " i ‘ ) . - . .~\ ‘-“‘ i B
det(A) = det(U)= /1(-0.002 X 4.000) o - BN .
S -ooos S v N L

o
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in bot?‘l of the ab@gxambles, t}:e matrices are iH-cE)nditioned with resbect; to inversion,

the same cannot be said about computation of their determinants,

P

. In Example 2.1, ltowﬁs noticed L‘hat tpe accuracy of the answer is dependent on the

type of aﬂlgorlthm'employed. If .an aigorithm yi‘elds a solution that is the ezac! solution’

Th‘e“cgncepts.of stability a:nfi conditiom;lg can be defined more p;eclsei} as rollows‘,
1}0]:‘ Assume that we are given a mathematlcaily deflped rim’ctlo‘n f thit, on operation
on séme,daia d élD glyea' an evaluated solution f(d) where ID is sorﬁe set of data.
The numerical problem I8’ then to, compt;te an apgroxlmétion to f(d) glv;en d. As was

shown in the examples above, the nature of the function f limits the accuracy of ‘the

.

evaluated s&lutlons. Suppose that only a “close’’ approxim“auqr) d of the data d is .

v

known to us. If the evaluated solutions f (d)and f (Z)k differ greatly, then the problem

is sald to be sll-conditioned. ‘ . ’ ’ - .

-

Formglating an algorithm for 'solving the given mathematical problem associaged

with [ Is equivalent to defining a new mathematical function I that, given data d,
. . y . ‘ .y .
approximates a solition f(d). It is not reasonable to expect that Id c% give a more

.gecurate solution than the data would permit, however, the following is expected of f:

, 1 ’ : : .
For any d.€'ID, there Is a nearby d €ID such  that f (d) Is near J (d). Equivalently,

v

it i8 expected that the selected algorithm fvields a solution that is near the exact solution

b

‘of*a slightly - perturbed problém. An algorithm with this property is called backward

v

stable. It is-easy to see that while condition is- a property of a problem, stability is a

“

)

" property of an algorithm.’

It becomes Increasingly important to use numericglly stable -algorithms as the -

“‘size’” of the problem increases. The effect of usipg a stable algorithm‘_is,t,o minimize the

’ -

errors incurred in implementation. Fherefore, for well-conditioned probiéms’, the conclu-\

»

sions drawn from using numerigaily ‘stable analysis and design techniques would be con-

aldlera.bly ‘mor'e relisble.

w? ~

v
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2.3. REDUCTION OF A SYSTEM TO CONDENSED FORMS .
Y * A large number of methods useq for analysis and deslgrg of systems are bas“ed on

availability of a linear model of the system under consideration. Such models are usually

» .

. obtained by_llné’arizing the given system about ce}taln operating points. It may happen

(a.s & usually the case in practlce);that the operating point of the system (ls not nxed‘

and ther®fore, several models at different operat.ing polnts may have to be consldered for

[y

‘a sat,isfact.ory perl‘ormance of "the system over the whole operating regaon Unless one

-

can represent these models in compact, forms that are especially sulted ror analysis and .

1

design the actual analysxs and/or design ol‘ these Iinear models uslng numerical tech-

niques at all operating points can become a formldable task. Most of the technlques

developed for analysis and ‘deslgn in the subsequeng sections are based on atatc-apace

Pl ! s

\ ' representation of linear multivariable systems.

Representation of a system (A ,B.C.E) in condensed forms .enables us to a?pply

‘several well-known numerical linear algebra techniques for analysls and design of sys

! L

tems. In this section, several frequently used condensed forms are described. The sec-
tion also serves the pdrposé of familiarizing the reader with the format ki~ which the

algorithms will be presented in the §ubsequenb chapters. The algorithms in this s.n‘d‘

e later chapters, are presentéd keeping readability in mind and not to describe the details
. . /

-

of coding at each step. Thus a matrix product is written as A =BC Instead of eq., .

'f_kEJJlk Cky» '—1 n, j‘—'—‘-l.ﬁl.
l .

Comments are used to clariry the steps in a|§orlthrh to enable the reader to understand

-

! the seqﬁence and significance of each step. The reason for keeping the stater‘nepts and

steps of the a:lgotitfflms'rather general is to permit the software speclalists to code the

. ~ [
P—_— - . 4
f

‘ algorifhm for best performance (both in terms of efficiency and st.abll'ny).

o o . ~
' In transforming the system (A ,B,C.E), using simllarity transformations, the

matrix E' is left unchanged and hence instead of considering the system (A,B,C,E), we

a
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‘ order (13-14].
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simply consider the triple (A ,B,C) [18,19]. The condensed forms of the system triple

(A .B’,C) uged in subsequent chapters are the following:

»

.1. Upper Schur Form: Any system (A ,B,C) can be transformed by means of unk-

tary slmllt;rity transformations T to (F .G H ) in upper Schur form (USF) such that,
A Hip 7H
LF.GH)= (T AT.T¥B, CT]
where)he matrix F Is an USM .and the matrices G and H haVe no spet¢ific structure.

The eigenvalues or A c¢an be made to appear along the diagonal.of F in any desired

i

7 i

/

S 2. Real Schur Form. The above de&nmon can b“e readily modlﬂed to describe a sy$-

tem ln/ics Real Schur Fonia (RSF) The transformatlon matrix T in this case ‘will be

’ orthogonal and the matrix F is consequently reducegl to.a real Schur matrix Tbe '

(1X1) and (2)(2) blocks a!ong t,he diagonal can be made t,o occur in any'deslreg:l order. .

1

3. Block' Upper Heuénberg Form: A system ti'lple'(A B ,C) can be reduced ta a

Block Upper ‘Hesaenbcrg Form (BUHF) (F,G ,H.), by means of an o'rthogona.l,'sﬂa}e Icoor-v

dinate transformation matrix T [20-22], such that R 4
- o r -
- Fll Fll A Fl.& Fl,k-*-l
t Foo Fooo - Fay Fapyy - ‘ )
0 Fg " " Fau Fapyy “ ot
F=TTAT=| - - - . v - (2.3.1a)
) 0 o0 . Fiyx Frpy g
. 0 0 .. 0 Fryin . ) R
T’ i T T - L - - l
G=T"B = |G, o-v-'oo] . ' (2.3.1b)
H=0T=[H H, - B H,,,,,'] . 7 (2.3.10)
where F,j €ER" _,xl_,  H; ER PXh and G, € R o™, The integers I;, 1 =0, - - k
are defined as [,= rank (B) [;= rank F,“,, i =1, Ic -1 and El =pu Iwhere b is

§ =0

the dimensjon of the conirollable subspace. Furtherr u=n if and only'll‘ the system Is

controllable [21-23].

Ll
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A_similar result can be stated for reducing the triple to a Block Lower Hessenberg
Form (BLHF). An algorithm for reduction to BLHF appears in {20]. Reduction to BUHF

can be formalized along the same lines. ’ ;

4. Upper Hessenberg Form: This condensed form is the single-input analog™ of

" BUHF. Given a single-input, multi-output system (A ,b,C), there e_xi'sts an orthogonsl

P

' state coordinate tré.ngrormation T .such that (F,g H) = (T’oA-T,TT b,CT) where f

is an upper Hessenﬂberg matrix, g =[¢g, 0 - - - 0]7 and H has no specific structure [24]."

The matrix F is an unreduced upper Hessenberg matrix if and only If (Ab)is a

controllable pair. Further, if F is not unreduced, then the system can be partitioned as

, F .F N o ) ‘ ,‘ . .
L F = [o“‘ F;:] . 9.= [’0‘] . T (2.3.28)

: andH—[H }({,] . D o (2.3.2b)

v
-

v ' -

F‘rom where, it is easy to see that the pair (¥ ,,,¢,) is controllable. Slmllar results cah be

st‘.ated’ for reducing a multl-input singﬂe—output system to a lower Hessenberg form

- A slight variation of the UHF is given by (F,G ,h) = (TTAT,T B.c T_) where F
. . p

-

is an upper Hessenberg matrix, G has no-specific structure and- h =0 --- 0 h,].

5

. The matrix F. is unreduced if and only if (A ,c) is an observable pair, failing which, the .

«
~

system ‘can be partitioned as -

. Q
v \f'ir:):pxz G, . g
B 1
cand H = [0 by . - o (2.3.3b)
14 ) 3 - 4

V'

Here, (F 29.h 3) forms an observable pailr. Th? form finds applications in evaluating fre-o

" quency response matrices of multivariable systems. Note that the matrices F;, and F,,

-

are both square madtrices of appropriate diemnsions.- Further detaﬂs appear in Chapter
YL An algorithm for reducjng a single-input pair (A.,b ) to UHF is given next.
\ Algonthm 2.1: (Reduction of single lnput. pair (4 ,b ) to UHF)

-
. - @

‘

* M ~—

Y '. *
' ¢
b g . * . a
. -
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StepI{Trunajormb) o '\,- I

S

\

. 3
by an orthogonal matrix To )on b such that -

L3 ! A <A

;T
‘g=TT.bo=[g,‘°)o---o] )

) 2) Set Fo=YI4Toand T=To . o
4 . . © } Yy 4

.S'tcp Ir: (Rcducc A to an UHM)

3
.

1) If ¢ =n-2, go to Step III (1) else partition F, as’ b

° » -
TS L S S 1".1+’§ .
° UL - PR N
B Y LA £ VPR A
F'_ F. . .o . . ot
0 o o(+‘2|+1 fi(-;-fx).n‘r+2 g
). Lo 0 f8kin Fig%.i-kz‘_

Iy

B

where F¥):.. € IR“"“'X".""‘. L

(. Set i =i+1and b= -f §10.
- -

o rotations TTon b; such t,hat . ’
. . T
e — Th = [ &l o ‘,'\°] .
- 5 T - ¢
. r -
! ' 3) Set Y R o
N - . ) . o .
) i Sl o L o c
F; = | F;.'la .
! [°~, Ty i o T,
. A\
. and -, s,
N V7 Qe .
- T =T 3[0 T, = Cer
o/
* ‘ where I; Is the ] ><| ldentlw matrix. . ’ . f‘j.‘ Ca Wt
" Go to Step 11(1) T S
- Step I (E‘:at) T B ,
o - 1:" o
. o ¥ P
. ' . ) \7. . ~ ;‘
: - s PR

LAt - :
ewd e o P K e - Y

—aey
-

[
o
'
-
-+
-
¢ -
- v
.
I
M
Gu .
“ -
P
v
.
[
©
L]
L

Y

1) Set 1—-0 and peﬂ‘orm Householder tr\arsl‘ormations or pla.ne rotatioqs (denoted’

2) If b =0 go to Step IIT (2), else perl‘orm Householder r.ransrorma.tlons or ‘plane
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CHAPTER III

EIGENVALUE ASSIGNMENT BY STATE FEEDBACK .
‘ ‘ . , IS L} ys
ln chis chapter numerical algorithms for solving the eigenvalue assiznment (EVA)
problem ggr multi-lnput, systems by means of state reedback .are considered The out.line
of the cbapter is as i‘OIIOWS' In Sectlon 3.1, the problem Qi‘ EVA by stale reedbacl( is

stated and a survey of the existing compuiat.lonal methods i‘or soiving ‘the problem Is

rithm for EVA‘ in single-fnput systems -is presented in Sect.ion 3.3 and the resdlts gre

. exten—ded to multi-input systems in Sect.ion 3.4. SecLion 3.Vdiscusses some variations on’

,

-the multi-input EVA problem together with _treetment; of several special cases that may -

e o

arise in practice, and then proposes various modifications to the algorithms to deal with
. . . . .

these speciai cases( 'The numerical performance of the algorithms are illustrated 'by

Q
means of numerical exampies in Sect.ion 3. 6 F‘inaily in. Section 3.7, t.he results pre.eent.ed '

I'd

in this chapter ahd their possible exl:ension to‘more specinc applications arg__dlscussed

I

briefly. v A ' ‘ - . . : - -

e
1

1

3.1. STATEMENT OF THE PROBLEM ° - o

Consider a linear time-i}ivarlani, multi-input system described by its state equation.

(1) = Az(t) + Bu(t) . . , (3.1.)
'where z(t)€EIR" and u({) ER™. Assume that the pair (A.B) is controllable The

- problem that we consider is to find an m Xn consrant gain matrix K such tha.t under

\

the feedback law, R F
Ce(t)y=u(t)-Kz(t) + . _ . (3.1.2)
the resulting cloSeg-lbop state matrix ‘ L
Ay =A - BK ' \ (3.1.3)

‘,- has aHl its -eigenvalues at desired loestions in the ‘complex plane- (symmetric about the
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real axis). Thl\s‘ problem h'as. been investigated by numerous researchers and several algo-~

- . ’
g

few recent ones [7- 14}, not much attention has been palid to.the numerical properties and
- . O . - \ .
peri‘ormanco of these algorithms. Theconceptual simplic’ity of the eigenvalue assignment

' (EVA) problem tends to hide the potential numerical dimculties‘ that .can arise when

. . , . 8 ’

L using many or the weli- known algorjthms. Some techniques (e.g. -[1-4]) require the reduc-
tlon of a gliven state space system to a canonical rorm Such reductidns are a potential

A [

murcegwmerical instability. Some other algorithms\such as the One in\[s} require the
system to be in transi‘er function i‘orm and usea polynomial arithmetic which can cause

numericaldimculties - i R o ' B

'l‘he algorithms presented in [7-14] have: attempted to address the numerical issues

‘involved in the EVA problem: In [7], #n algorithm has been presented i'or carrying out.

r Yol : ‘- 2

/ EVA in.singie-input systems. The algorithm is based on the well-known QR algorithm

[15-181 and uses only numerically stable orthogonal transrormations The»multi-input

.
'

* case is treated in [8-14]. The algorithms in [8, 11] reduce the system to a block upper

-

Hessenberg form by means of £th6gonal ‘state coordmate transformations However the

Ny

methods in {8,11] are not straightforward extensions of the method’in (7] and in ract it -

\ .
can be shown that they can lead to floating point overflows or underflows. The algo-

‘rithms in {13-14] are based on the reduction of the system to a RSF by means of orthog-

. onal state coordinate transformations. If the eigenvalue problem br the state matr"u& of

v
'open-loop:system is ill-conditioned [15-18), the RSF (and hence the computed eigen-
values) obtained can be extremely inaccurate: If the i'eedback gains are computed usmg
the inaccurate values of the op.(en-loop eigenvalyes, then on applying the feedback, the

closed-loop poles can be far from the desired ones. This is, therefore a weak point of

>‘ “ this and other algorithms that require knowledge o_r the open-loop eigenvalues.

Numerically, the EVA problem can be treated as the converse of the algebraic

/ .

eigenvalue problem; in the latter, the problem is to‘find the eigenvalues,of a matri)f while

\‘ / S - -

. r
R .
¢ - - N

- rithms exist for solving the problem, e.g., see-[1-14]. However, with the exception of a  _ )

7

l
'
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o 1n the former, the problem is to modify the state matrlx of a glven syst.em by means of

"

state’ feedback stich t.hat the resulting closed-loOp system: has a deslred set. ol’ elzen-

)

values. Approachlng the EVA problem from thls polnt or view makes 1t slznlﬂcantbz

easier for us co take into account the numerlcal lssues lnvolved slnee the algebnl.lc elzen~ g

.
- ,') o

va.l.ue 'broblem has been treated extensnvely in ‘the numerlca,l an‘alysis llterature The

"proposed approach~ls based on the numerically sheble QR"algorlthm [17;1,8] for, ﬂndlﬁg

~
1

PPN Lo o ) ' . ‘r
the eigenvalues of a matrix. L S ‘ S

4 - -
b N B . - . . -

-.3.2. THEORETICAL DEVELOPMENT FOR' SINGLE-INPUT EVA PRQBLEM

<

i -l“or simplicity of preSentatlon we glve‘bel% some theoretical conslderatlons for

single-inpuat- systems. These conslderatiohs will also apply 10 multi-lnput systems as will

N . . -

be seen ln late: sect.ions We shall assume wlthoul, léss of generallty that. the system .

" palr (4 .b) is’in UHF Further it ls assumed that (A b)isa controllable pair.
- . /

It is ‘well kn:\&{ that the elgenvalues of a system can be asslgned at any dgglred

* [N o -

locations in the- complex plane, subject to complex-conjugat,e (c-c) palrlng. by means or

b

. state feedback if and onlyif the system Is com,rollable (2] N’ote t,hat, if the system is not

Ed

controllable, the eigenvalues correspondlng to the uncontrollable mode!or the’ system

i

cannot be altered. Hence t.he\assumptlon‘that (4 ,b ) .ls_a‘controllable pair is not a res-’

~

. triction on the proposed method.

~

3.2.1. Explicitly shifted EVA . cos

Cortslcrer thé con trollable slngle-input system
Ca(f)=Az () +bu(l) " I (321)

where z(¢t) EIR" and u(¢{) € R . "The problem that we conslder in this section 1s to

i

" find a feedback vecto; k E’IR such Lhat. the closed -loop state matrix A,y = A - bL'T

‘

hes n-eigenvalues at desired locations. Let A = {)‘u’- “ = Na } denote the set of dealred

. . -
’ . v

locations where the closedaloo;)"elgenvalues'. are to be assigned and assyme that at the .



“

f".

B

v

I - ’ N e
)_')k‘rls the state feedback,vector and . ' . , ) ,
fwe] R N B '

o ‘T R T SRS\ EA Cr S \
. Ul-l O Uob= bl—l* bl . 3 . ’F - . (3.2.3)'\
wnnb',(em"-“);.~=[b,,,o»--o]_ . ——— R

- diagonal elements of R, have non-zero values:

" where kTQ | = [k,.?. :

N -38-
. ° . R »
A , 7 M ' s
° ?

start of the l-th szep (1 <n) we have the rollowing structure

f .

. v
'

W , RIS ‘ A * :“.:’ .
LUT U(,T[A bR U, - U,_, [ 6‘ .A‘] AR € X )
' Cor im=1 : ‘ ,

. Since, by ‘assumption, the system is controliable A, E IR""'“X""‘“) is'an unreduced .

A '1

' upper Hesaenberg matrlx A, 1 is an uppe\' Schur mat.rix with )\, * Ni-1» the assigned

elgenva.lues belng the ,elements.alpng,ns diagonal. U0=l,,, (the: n ;(n ‘ideng..ity xpairﬁt),
- ‘ i - ' : ‘ fa ’ - AR

“ In -ihe 1-th step, we calculate kT in order.to assign an ”eigenvalue at X,". To accom-

. plish t,his we ﬂrst, transform the matrix A, —)\, f,,_,_,_, to an upper triangular form by

-4 ‘& o ’
means or orthogonal plane rotations R S N
b B . s A : |
s (AN, -{+1)Pn-1.;1 o Prgiaa SR ‘ L (3:2.4)

‘ ':Irg the trivial case, when ); is.also an ei.genvé.lue‘ of the open-loop system, usihg the algo-

rithm in [19-20], we can rearrange: the elgenvalues ‘of the ‘st.at'elmat.r%such that A/

'abpga(s'alqng the diagonal. In this case; the matrix R, will be a singular matrix. How-’

-ever,.In ‘the case when )\, is not an eigenvalue of the open-loop system, since A, is.an,

_unreduced upper Hessenberg matrix, the plane 'rot.ations‘abqve are J_xbn-trivial and the®

’

[N

Denote' the product P,_;, -~ Py _y1n by @, and consider the matrix A; -
)‘,I 41 - b kT where ki has only “its {-th elemént non-zero. Apply the similarity
‘transrqrmauon' Q | to the closed-loop system, - ' -

Q. (A -“N l;-llﬁ-_lI -6 kT)Q; = Q.T(R-b KTQ ). . (329)

A

a
R

0]’ - Due to ‘the st,ructures‘ of. Ry and b;, the matrix R, -.

‘\



-expression on- thE- left hand sk_ie of (3.2..5) are zero vectors, Also, O

—

..
L
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b, th '.retglns_hh'e upper triangular structure and _it.s (1,1) element Is_ 'glven by .
"bl ky ‘ ‘ ‘. . (3.2. 8)

where r{, is the (1,1)-th element of R, and b, s Lhe first element of b,. We choose k,

[}
to elimindte the (1.1) element;or R, - b k, Q ." Since by assumpuon or cont.rollabllty.

b;:, is non-zero, this can be done by selecting

s ‘ * ’
ky o= —iL 4 ‘ o s . (3.27) .
~ . bl.: , ' ¢ )

-Then, the first colﬁrm‘n~ of Q T(R; - 5,k7TQ ) and therefore, the first ‘column of-the °

] . - . * A

v

P Lo .
Ql (A - Mdy l+l‘blkl )Ql +)‘z -1+x~ Ql (A - bk )Ql (3.28)

- ot -

. where the right hand side has Lhe followlng struqtu?e 2 ‘ j " ’ .
e . . ~ , ’ r L v " ' A‘ . ) '
aTia b Ny - )‘ -, ! : U . -
A - b E = , N 3.2.90
Ql[l tl)Ql [ Al+l oo \ ( )
with an eigen\;alue_ at N;. To veril‘y t.hat. X is also an efgemzalue or the closed loop state
matrix, define o L [ :
A ° R N oo - -
S I, 0 . o o i . -
L U"T[“ Q:] | o T B20e.
where Q 1 is the product of the plane rot.at,ions definéd in (3 2. 4) Then, using (3 22 . -
(3.2.4), _ N
3 V R M "» ‘ ¢ .
. ; o r . . . . A -
- 'u,t---ug[A-agk,-)uo--—-u, S e L
. K ’ i=l _ - . : . -
. o
=U,"[U£,-- U’[A 050 [
. ) AL . '
e '(_U:lfx - USB) (KTUG - - Up,y) ]Ul'. ~
A * E ] %
T -1 _ .
. R \
. B Al—l ) P , ’ . - ' .
- ' ) : ' . / e (8.2.11)
SR 0 @ /F(a-bkT)Q, i
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3.2.2. Implicitly shifted EVA. - K » S S

- Q arelboth’ unlquely determlned by t.he‘la.sl: column‘..or'Q. o : ) o

.-.w YQT__QTX '., . . 3 . y o o : - .

‘ : - 40 ‘ . /
( Al-l 4 * }‘ / - . ’
= |97 » T \ \ (3.2.12)
. 0 0 Al-l-l . - . LR MO

where we have substltuted ror Q, [A, -b, k, ]Q, from (3.2 9) F‘rom (3.2.12), lt is -
| Y " o
clear that we »have assigned -an elgenv&ue‘at A, While preserving the previously asslg'iled

. : *
P » -
. .

elgenvalues X,, = )q__, -Morgover, completing’ the similarity transformation on the

5

wr(Ab)wegec T S c,

le,—,[b“bm].‘ S 2y

- 1

On noting that controllablllty is invédriant undef state feedback, the pair. (AH,,,b,.H)

* 1 ' ‘~
Further, because‘ of the sequence in whlch the’ nonitrlvial T,

t 1

remalns a controllable one.

é‘lane rotations are applled only the tlrst, elemenb of b,y is noh-zero and AH_, ls an .

-

unreduced upper Hessenberg matrix Therel‘ore, the EVA process may be cont.lnued to

i,

asslgn )‘,“ by applying the feedback to t,he pair (A,H.b,ﬂ]

A -
€. X

p J .
Uslng the expllcltly shll‘ted EVA &lgorithm we would requlre complex arithmetic to .

vl

asslgn ¢ ~c¢ palrs.of eigenvalues. Therefore lt. is lmport.ant. to develop a method that,

1

would enable us to asslgn ¢ —c pairs of eigenyvalues using real arlthmet.lc only ’I‘hls can o

\ .

_be done by perrormlng the shlrts "‘lmplrc:tly" [15-18] We shall lllustrme t.he use of

X}

lmpllclt sbll‘t.s for assigning real elgenvalues first’and then.extend it for aselgnlng c -c
palrs of eigenvalues The following result, in a slightly modified rorm is taken from [15]

Theorem 3.1: Let X Y.Q E R "*" with Q orthogonal a.nd Y an unreduced upper

Jay

Heesenberg matrix wlth positive sub-dlagonal elements. "If Y Q XQ ,then Y and

1

Proof : Conslder the relation ‘ v e

]

%

Assume that we have already cOmputed the columns q,,,q,._,. ca .ci,,ﬂx(q; is the i-th
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N
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LY " e,

column of zhe orthogonal mat,rix Q) and the last n -k -1 rowa Yn .y,. e 1ygr+g oY.

‘. . S .
.

v . . . .- * : . ',
' . - 41 - N ) S N

. ' Siiice Y is unreduced, we rﬁay compute the k +1- th row of Y and gy a8 .
’ 4+ & . \T ; T . , v .
. !lk-n k Qk + !I.t+1 k+1‘h at " e = X (3.2.14)
W oo - By virtue or the fact that Q is ort,jxogonal 11, q9; = 0, i%j, t.hén, postmultiplylng the
- N /(3 2. 14)' bY qi we hﬂ.ve '. “ - ) o M ‘; . o o
~ 4 . yk+l"‘ - ’q‘?;qu', , i=n\ 'r, - 1K . . .' k +l o ' l»' . ‘ (3'2'15) l\ :' 0y

' thereby detprmining the (k +!])-t.h row of Y except for yh,,,, However, since Y s

unreduced by.assumptlon y,H,,, #o, glvlng S .
v . . ' ‘ . . . , ‘ L= ,'/.
* ‘) ’ i i '
o' = —— qmX 5 i) - \ -

~ . ’. yk+l,k ¢ fmn s . \/\\
- - ® ' . .

-~ : vt . -
Further, since @ ‘is orthogonal, q,, ¢; == 1, and hence qkT and, the element ;{‘, +1,4 are

- " uniqu*e]} determined. It should be pointed oyt that since we know ¢,, the process for '

P .
' . L . * 4

finding the remaining columns of Q imgi the matrix Y is well started, ..

- .
e 4 < . - I'
~ -,

g that if Y js not unreduced i.e., at least one of the sub—dl'agonal'element.s of Y

——
I zero, then t,he elgenspace of X' is split lnt,o two subspwces such that If Q =

w A , P P .\ ] . 1
Lo Y Y,
| [Ql'Qz]. and ¥ = [ o" Yer ] where Q.em”' 0¥ 3y €R X7 then' XQ, =
Qlyll [21]. M.Ol’fj’qver, !f‘r =1, . ’ . l‘ . ’ o o . .
» .qu=qul.l' .. ’ - . . \
N In c;t‘her words, if the éub—diagonal element y.i,,’is zero, then q‘, is an elgenvector of X .
C S_Corresponding to an eigenvalue y, ,. o . “ B

~
®

To apbly the results of Theorem 3.1 to formalize the basig for lm‘pllcl/tly shifted
EVA "algorithm, a,ssurﬁe that 6!/1e step of QR‘/ algorithm In (2.2.5) with shift M has been
4 , A ,I co . -
applied to the unre_dv.uced, upper Hessenberg matrix A;. Then—we’can state the follawing -

, N

result: - > -

r o . ’ )
‘ . Theorem 3.2: Let 4, = QT4 q,, where-'Q, is the orthozonaj part of QR factoriza-
“ 'v , ’ R
‘ tion of A, Wé can comput,e Z, employing the rollowlng steps:

f .
N . 2 -
- - . ’ ' . PR E te
P - ~ !
-~ .. .
.o . . - [ .
LY . N .
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1) Find an onhogo'nal' matrix P that has the same last colump as Q

. 2) Reduce PT A, P to upper Hessenberg form I, using the transformations in (3.2.4)
then Ap= A;. - . e .

Proof: To show that I, = A, set

| @ = PP.,-.}. " Ptiin , T
where P,._; :,, i 8= ,\ -1 are the transformations in (3.2.4). Note that unlike the

conventional QR'deconi poslt'lon, the decomposition here starts from the lower right"hand

Y

- -~ T ! * ’ . ’ ) L . .
corner, Now, A, = Q', X,Q', However, because of “the strugtures of the matrices
: ! ', :

’

Py, i n.i+1 POst-muldiplication by these:matrices does not change the last column of the

. '_'product. PP, _,© - P, _ii1n-1. Thus Q; has the same last column as P, which by

~

construction has the same last column as Q. Therefore, by Theofem 3.1,'Q, = §; and

' —-— - J‘ ' .
-~ hence A; = A;. Further, since Q; = {; the transformed matrix @7 (b k) @ will be

‘ v
[

the same as Q T'(b,k,T)é. in  (3.2:11). . Therefore, ° the closed-loop matrix

-

'Q,T(A, - b k,T] Q7 will have an eigenvalue at the desired location ). o

Clearly, we have concentrated the effect of the shifts of the origin into®the brar’:sfof-

L : ' o ‘
.mation matrix'P.' To determine P, wé need to find the last column-of' @,. Consider

‘ - ®

s (A[ -N 1,,_.[+;) Q‘ = R,. . . S " (3.2.16)
. Defining @, a (ql, LR ) and premultiplying thesabove equation by e,,T, we have
en (A -MIan) = RiQN. ST e
. , ‘ , :

Equivalently, .

(00’.' 'oar:.n-l avf.n'xl) ="Tfan q;ﬂ'

. T \ AY
x 4 =ryn an' N .
Selecting P such that
&P = |4 .t s @ ’ (3.2.18)
o N - : B :
we have, , Lo L
)
- . , . o ¥



s

" We then apply another shift N4 to Apyy to gef

l' T ‘ 4.1. . T ~ ‘ - ’ ’ .
€cn P! = = q ’ . - (3.2.10)
' T n ,
Na'ls . ‘

i.c., the last columy of P is the same as the last column of @,. Hence with this choice

of P and therefore of Q;, we can transform the pair (A ,b) and find the feedback k7 in

. —

(3.2.5) that assigns an eigenvalue at \;.

[

TqQ assign a ¢ -c pair of eigenvalues, we need- to form a double-atep implicit shift.

.To apply the double-step sh'irt, ‘assume that we have already applle(d one QR step wi/t.h Y

-

‘shift \; to A; to obtain ' L

A= @TA Q.

v A .

T T AT ' - Co
Alya= Qn@ A Q Qi - - ‘ _ (3.2.20)
Using similar reasoning as for the, single step shift, we can compute A; 5 by the follow- ., —
[ . A . . ] . , ,
ing the steps: Y K

- * . ¢

1) Find an orthogonal matrix P with the same last column as Q,“'Q,,

2

2) Reduce the'matrix P TA,P to an upper Hessenberg matrix /-l-,‘, .

o N ’ . : N
Once again, because of the cture of the p rotation matrices required to transform

~

’

PTA‘P to an upper Hessenberg matrix ,T,“,.the prpducm of these miatrices have the

- " -, — )
“same last column as @ @, Therefore, from Theorem 3.1, Aj,; = A;,; and we have

accomplished the transformation without explicitly using the shifts A\, and ),. ‘It can be -

shown in a manner similar to that for single-step shift that the vectors b;,, and k,’;,

\

would be the same whether we employ two explicit shifts-or one double-step implicit

shi(t. Next, to determine the transformation P, let'R; and R, be the upper triangular "

parts of the QR decomposition of A;dand A;,, Then,
. ) o .

e

»

L (A M) (A - Meaidaan) = RIRL,Q5.QT (o (3.221)

Premultiplying by c,,T, we get i ’ , \ .
¥ . } ,

{ { T . Lo
(0” * 08y 4.2 Gy nay d,,,,) =r"'-"r"j‘lq" . : B

-

v

-

KN
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_value mignment for real as well a8 ¢ —¢ .pairs oi‘ eigenvalues

) ¢ - - 44 - g

. e . i H—x T \
! - ' 4r =y nrn.nQu 3 l

(3 2, 22)

where al is the last fow . or (A, A ) (A,H —)\H,l ). \qT is t.he last row of ,

P
.

Q‘ﬂ and the elements of d,, are ziven by

Y .
. dn,n—z = Gn.1,n-38n ,n-1 ¢ s

Gn-1 = Gp ny [an-l.n~l + an.n - ()‘i + >‘2) ] ,\
"h.n =ann + 8y 018010 = Bn.n (A +X2) +>‘)‘ é

Now It we select P such that . - ‘
’ ’ ¢ P ’

Ty QTP= 'dvl’aenr ,‘

R fal,: . . . VRN

. {141 ' I

- o . TanTnn : ‘
RN ="'—'—'""‘an01+: . . NN

udnlﬂ ‘k \\

e, P and @; @y, have the same last column R \

Lt
e
. \

vaiues ln the case when )\,.H is the-conjugate of )q (3 2.23) becomes ~

-

. Gng= G40 g8a 01 L. - \

« Gy oy = G ny [a""'f"l"*' G n —‘(M +)\l‘)] ' . \.. i‘

o 4...=%’..+dunmwin-%»(N+N)+M>\u "

. -

1 . P N ’
arithmetic only. . . . . . P

N . IS

'
-

3

°
-

AN ALGORITHM FOR EVA IN SINGLE-INPUT SYSTEMS

<4

T .
r__4 : ' A

(3.2.238) .
(3.2.23b)

‘ (3.2.23¢c)

'
v

L g The main applicat.ion oi‘ the above discussion is In assigning - c pairs "of eigen~

Y

‘(3.2.243) . .

(3.2.44b) | ..

'(3.2".2'4(:5'

. Nocing that N\, +X; and N, )‘, are both real a.doubie shirt. can ‘be errorrhed usiug real .

Based on t.he developments in this section, we now outline an algorithm for eigen-

We coneider single-lnput systems described by (3.2.1). Using Xlgorithm 21 the‘

palr (A 6) can be reduced to an UHF (F g) It is assumed wlthout. loeg or generallty )




a7 St . - e ° A v . "%
:D' \ A . e - /5
) e , -_45 - . +
. N . - - |}
| - that the pair'(A,d) and therefore, the pair (F .99 is controlable le F is an unreduced
upper Hessenberg mamx and g = 1¢,0 0 0] o . - ‘
. e o "L , I .
° - ., The problem of EVA by means of. state feedback Is to determine a -vector
.- kT € IR " such that the unreduced uppér Hessenberg ratrix Do o .
: f . Fa=F-gh 0 n T AT 3.3.1
o . ,
) has all its elgenvalues at desired lo’cations in' the.éomplex plane. These desired locations "
. ¢ . . £
in the complex plane. ‘corresponding’ t/o the eigen\ralues of t.he closed- loop- ayatem ne
v ‘ . A VR ’
-‘,n‘}. It is assumed that the‘desired'elgehvaliies have been .-
’ ' ._ ai'ranged suc that t.he complex elgenvalues occur in gonjugate pairs and dppear cons‘ecuh ; _‘i
' N = \ 1Y . v,
. tlvely c S, ';.‘ . . NUEN : .
o ) T Algonthm 3. 1 (EVA in single-input systems using lmplrcit; shifts) .o .
to ) N \ . ", '.‘ :",M * ‘ E ‘* A ’ ) - ' -—
Lo StepI (Imt:ahzataon) : L ' :
. snkT_—.(:oT——d g1=9.F,=F, T=:71 ind i = 1. .
. N -1‘ - , & Ly . . . - . - .
s Ty Slcp AT [Rcal Eigcrwalucs} S ' :
JJEN . AN ve e ) ) . .
SR (4 )‘; is comple& go to Stcp lII else . . ) o
(1) If.y=mn, go t,o (8); else determ!ne an orthogonal matrlx P such that
" \‘ * r b kS LA ! - : i ’ Ir ] ' ’ -
o T ‘TP. =2/l ' (3.32) -
. N 9 a . e ‘ -
where oS T . o, o i
e e ;', . . LR ’ ' ' -
\ “ . \\ N v :’ .‘\‘: " j ir== [ - 'jn n -1 fn n -X ] ‘ . (3-3-3) @ \ -
1 ~ - '| - N ‘e ‘«. . - ﬂ\
‘ ) C " . & " KN ) \ AN @ : ‘
; SR ) is the last row” of F1 Nl || f, |Z ]’ I ] and e, is a vector of
. LA . ) . ' . N ] i -
< oL e leng&h n: deﬂned a8 [0(1 ']. o, t c» ST
.-'.‘ I‘ v N ‘: " " A ' ’ N\ c
2% . v i , -
. . : s C’ommcnt ! A matrix P; can always be round to accompllsh thla step The © e
- o - aim is to eliminate Snon- using fa, -\ ,-. .t o .
AN " v . . . ° . o : v ' - ' -
'\:“’ . T e Vs , o . R \ . . DY .
Con ' : (2) Set.F; ==Rs'T\F-' P; and 5;=P{Ty;. ° NN ot
, . L R v ~ - . hs ' N - " .
B AT A ’ o Bove T ’
- Ty a ¢ . & © \ o i “
\ - f > 1: 3 ‘ - 4 . .
N . . . . (3] -;,_ .\L‘-:} . g )
- * . to - - -
& el o - R B L




e & . e ST '
n w . ", . : .
. - . s o T Y 14 <
; /. e . ’ h N . = 46 - L0 l ]
. -8 - - s < .,
*, Comment Note that the .tran rorma.t}ons represented by- P; are applied to
]
. o’
.o . : F, and not to Fi =X l This is because’ t,he shirt has been accounted for in
o forming the matrix P;. The“niamx F; (i.e, at the i-th iteratlon) has the fol-
u N N ! v "
) B . " lowing structure: ., P R ’ i
\' L r)‘,‘t'-.- # PR e‘__{. ' % #
- Lo o e T [y I VR PR Y R %
. " { . . ) . . - P , ’1
g - 0 © o~ N v * & %
' \/ o F'. = 0 0 0 MY ,\~ :‘* + % I«‘ B v _', “ ca .
‘ s 1o o - 0 @ 70w & @ . o
, 0 0 Y 0 #+ - - # + 3 ‘ - "L 3 )
- “ '.u . . . . ‘. ;; .$ . . ) . -_ c ) ‘ L
& . JO 0 - - 0 V0 #+ o DU
' Lo |0 0 - - O 0 0 - - * ¥ ¥] - oo P
' v T C ot . v -
- 11 12 - - ' ‘o N
« 1o F” : _ DRI C 5 2L
P - ' ‘ Co T
. ‘ Not.e that the nbove matrix s not ih UHF since its (n’ n,—2)-t,h element ls
‘ h . - il el
. nonzero This Is a consequence of performing the row operation represented
Co by PT For ease pf representatian, it was assumed that the oigenva]ues X,, Ny, -
N , w . IR M-y’ aré real pnd thererore the subm_atrix F;" is an upper triangular..
) - 'mairix., 5 - o, - "
_ o (3) Reduce F, to ,' an UHE, .F; By 'means of plane _rotations ‘P,-",-;_.,’,'
. . ‘ Al N - M ‘. o ;
&‘ : . j=1,2,---‘n—t—l iee. - ~ -~ ‘ C :
N :\ ! - A T . . T ' o (N ‘7 ' rJ ‘
_ . o WF =P Pi,rﬂ',Pi.r*' ‘ '_Pl.n—i—r-' * : ( ‘;(3-3:53)
« '\Also, let . s ! ’ w " ’ .
o : Y ’. ..4,..: ’ " * ;1‘,
~ - ’ N ¢ T . . w
Ga=Pho,  PhEm. - (3.3.5b)
: Comment : Note that since the tran,srormaegnmi'atrlces P; "j have t}ie struc-
c . 1, o . . . n
©C ture | o e tlre (¢ < 1)X(s - 1) upper triangular matrix F, is not altered
¢ R ) - - . K
) 4
Y o d‘ B 2 , '
by this transformation and only’ the submatrix F;* is reduced to ‘an unre-
- [ Juced UHM, The vector g; ,, has the following structures: -/ T .
: AR T e g
ne o * - .
%‘&x-’ o - :—- 2 e " . o , M 3

AR S

A A
N




' ’ . ¢ “en
) ) ) ) - . ' P
N - ~ 47 - Yo Poee oy
. ) - J , . . . . N
. . - 9 411 == [t .. @ l * 2.0 :.,0 O]T ‘ . (3.3.8)" . .

‘where the partition .is conformal with the partition of F, o Ol ) '

" «(4) Determine a feedback vector kT sich that the (i+1,i)-th éleﬁent of - s

: F ,-’—g,-“k,-r'is zero. The.vector kT has the following it.i'ucture: )
, ) SR Ic,-"--.—_'-n,.[qo oo o+ o‘o- - -o\o]. ) (3.8.7)
oo . 'Comment : If the non-zero element of the feedback vector'is chosen so as to
. AN ) o o .
L - ‘ " - reduce the (§+1,1)-th ‘element.of F; to zero, then the (f,i)-th element of g
P k ‘ﬂ. R 1 X ) . 3 . . . . . “4 -
P F;~g; o kT wil be equal to X;. ° . g Sy
. 7 (s) set - S
: »" —\ N . N . ) , ’ ’ -
o - Li=PP, Py A .+ (338)
R R T = TT; o R (3.3.9)
Do, kT = kT + k11T ' L L (3310) g
. BE ..FiﬂzFi "9-’+1kr~' 3 O ‘ o33 .
R Set {==i+1 and go to Step Il. . __ ' . " .
"+ .- GComment : The ‘vector g;+, required for the next itération is glven by
— (3.3.5b). Equations (3.3.8-9) accumulate all the transformations perroi"me“d up S
‘ ’ to that s;t,age and ('3.-3.10),giyes the state reedbagkdlvect.or in the'coordinates of
(3.3.1). o ‘
‘ . “ ) T Ll ! . ' : ™ ' s )
- _ (8) Determine 8 feedback vector k, such that the (n,n)-th element of F, -g, kT
r ,' ‘\ .is'equal to X,. The vector k.,f is a vector of length n with only thé last ele- -
' . S v, _ ment being non-zgfo. Y I .
n Comment : 'The non-zero element in kT is chosen such that -
\ : , :
Ty __ ' “ 1o
T (F,, )u',n = (9n ')n (k. )" = A\, (3312)
o ” " Where (F,)nn denotes the (n,n)-th element of F,, and (k,), and (9D
| h' ‘ denote the nth elements of g, and k,,T respectively. Note that (g,), ¥Q . )
SR "+ gince the pair (A ,b)is controllable. ' o
} @) st L B | e
o i ’ i ‘
Ed e
T : ! = - © ! we O ‘
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Fiyi=Fn -0 [T 1 L. ' ‘ (8.3.13)

" On -i:i =¥ Gn - ' ~ ‘ / ~ . : ~(3.§.,l4)

COkT =kT ¥ kT ’ L c " (3,3.15)

and STOP. ' oo ' - o .

Step ar: ( C’omplez-Con]ugatc patra of E:gcnvalues) ' -

(1) ) n -1, go to (B); else determine an orthogonal matrlx P, such that _
f.TP —:i:l]:lnbr o | (3.3.15)\
where ) T o .

)

5>

(2) Set F,»-— TF, P; and 9 -—P g

o ] "‘[00 fnn-mfnn—lvfnn] ‘

18 bhe Jlast, row of (F Nl (F -\, '\ being. t.he c-c of \;. The elements

<
L)

+ Jnm-a [nn-r60d ] . Bre given by . ‘
fnn 2_fn~1n-2fn n=l - ' . . | @.173)‘
In.n-l fn n-l[fn—ln-1+fnn (X +)\’)] ""‘ .3.17b)
.f fnu+f....-1f.,-;,. Fan (i +N) 4 X N (3.3.17¢)

" “where j,, denot.es the (i,J )-th elemenb of F

' Comment': The elements [, w2 Jan-y and fu, are all real since A; +);"

"and ®; \;* are real. Therefore  P; is real (orthogonal) and can be determined

using real arithmetic only.

- -

Commenl : The matrlx F has the strucmre shown below

9[ p . -
“ F e ‘ ' ] .
F.=1"' ' e E (3:3.18)
= 22{ . ‘ - 3.
tole K : 5 ) o v
where, Lt . ' ;
B R T Y \
P S S ‘
. 0 ¢ - - &' &% 4
Fa_ | . . Co ‘
T S
. 00--%# P

The matrlx F 'Is ‘not ln UHF slnce its (n-1, n~3)-ch (n, n-3)-t.h and

-

~

<

oy



@)

T\H-tlons. The vector g,";._, is a'vector of length n- with the l'ollqwlng strutture

-

(2)

". Comment :

. 182 matrix with following structure:.

"Comment :

£
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i N . . -

(n ,n-2)-th elements are nonzero. - oo - .

o

Apply plane rotations P, -—I 2, . ,.3(n -1 -1) in order to make F,-” as
close to upper Hessenl')erg as possible, l.e., \' ) ’ ,
. )
F P: 3n-i-1) " ° Pl'TlT;Pl'.l o P:,s(n-i-:i (3.3.10a) .
Also, let * - o o - '
9|+1 = Pl H(n-i-1) Pl 191 (3. 3. 10b)

It should be pointed out that F 22 cannot be reduced to the UHF.

by .the transformations described in the above st,ep. Th_e closest we.can get to

[+ » » s & 4] .

 » # P . )

@+ » LI o ,
\‘1':.22200“"*" * N -
- PR e .

o e e L

000 - : # + # ‘

000 -0 * #]

where the encil_-cled‘ element cannot be ellminateci by the orthogbna! mralys‘ror-

{ N .
mations. The upper triangular matrix P,-" is "unaltered by the transforma-

g'.+2= [t#- | o+ ttO---O]T

Determine a feedback vector kT such that the (H—l t )th and (t+2z+l)-th

'elements of F -g,“k are zero. The required vector kT will have the follow-’

ing structure T ' . ’ T

kT = [oo---o'i ttow-(l)]._ (3.3.2)

where the two nonzgro elements are chosen s0 as to, reduce the (s +2 1)th ﬂnd

(¢ +2,§ +1)-th elements of F,- Qq zero by applying feedback. This results in a~<

N

2% 2 matrf;c in the sth and (n'-‘f-l)-t,h rows and columns of the closed-loop

matrix l':',- -g,-Hk,-T with elgeﬁvalues X,- and X\;".

The matrix F; —g,-.,,k,-r has the following structure: ,

FM o» ¥ . ' . ' ‘ . "
0 F » . , 3 g
0 0 Fa T .

’ .

"
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A}

where F'..” = [f; g] This implies that we have assigned t‘wo‘déslr(_ed eigen- '

- values at the eigenvalues of the matrix F;*>. Because of the block 'up;‘)er trl-

. S { Lo o
- angular structure of the above matrix, F "‘-—g,-Hk,-T has the desired eigenvalues

vt oy

- at X,' ifd X.‘ ‘

(5) Set h .
""’ - 7} =PiPiy Pign-icy ’ ‘ | . — '(3.3.“2})
T =TT | . (3322)
kT = kT + KTTT : S T (33.23)
o . - E
Fiva=F; - gipokT. .. ' ' - (3.3.24)

. Set § =4 +2 and go to Step II. .

Comment : I this step, we.increment ¢ by 2 because we have assigned two

. EY -

eigenvalues.

‘e

(6) Determine a feedback vector k,,T_, such 't,l‘na,t, the 2X2 matrix m' the last two

rows and columns of Fo_1-9n1kT, has the eigenvalues \; and )\, The vec-

- tor k,,T_, will be a vector of length n \wit,h only the last two eleméntfs being

’ -~
nonzero.

b; given by
s 4]z [+ ‘ o . -0 ‘
[t a] - [o]:[‘ ,*] ) ' i (3:3-2“5)
“The effect or\applylng‘rgedba.cl'( 'k,,T_l iIs to change the first row of the 2X2

e cmite—

matrix above so.that by the appropriate choice of the two nonzero elements qf

i

the feedback vector, we can ensure that the ?)@2 matrix in (3,‘3.25) ras eigen-

values at X\,_; and \,_;.
. - ' . !

. v

(7) Set ' - o ‘ . .
Foiy=Fy_ - gn -1*»:1:-; - P ) (3.3.?5) "
1 . Bl / , N
In41 = @nh : P . - (3.3.27)
kT =kT + kT, ceL _ .o (3.3.28)
’ . 4 . -

Comment : The structure of the last two rows and colufns of Fy_1-9n _,k,,’;_,

-t
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end STOP.” - o -

At the end of the Algorithm, the vector k£ ‘contains the gains reqt.xlred to assign all the

eigenvalues of the given system to the desired locaﬁtlons in the complex plane.

A few rggarks‘are required to cla’r\ll\'y cgrt.a!n point;rezardinz t.h’e implemepntation

and properties of the algc}rlthm. |

Rcmarka ‘ ; .

" (1) Algorithm 3.1 assigns real as well a|s ¢ —c pairs of eigenvalués using real arlthmetlc/
On_e| e}er‘nent of kT is determined for each real eigenvalue and two elements for assigning
a ¢ —c pair. The ;esms‘ of ‘thz algorithm consist of matrices F, ., and T and:vect.ors

'g,,ﬂ and )cT where F, ., is an RSM with each 2X2 block on the dlagonal of the matrix
corresponding to a, desi;-ed ¢ —c eigenvalue pair a‘nd each scalar on the diagpnal beinz' a
desired real engenvalue The matrix T is an orthogonal :n/atrlx that transforms the
‘\closed loop upper Hessenberg matrix F - gk T to its RSF. The vector k7 is the desired

' state feedback vector in the cBbrdinates of}JHF (F.g). |

(2) Steps II(8) and 1[)(6) require a direct computation of the reedba.cl:k gains. This is

necessary because we cannot apply a real implicit shift to a 1 ><1 ‘block or a double step

implicit shift to a 2><2 block. The case of a real eigenvalue in given in Step Il(e) for a

¢ —c palr of eigenvalues M2\’, assume that the system in (3.3.25) Is glven by

[}

gl Pl el s

_ where k, and k, are to be determined such that the resulting closed-loop matrix has '

eigenvalies at A\ \‘. The élemepts S s-J a2 S a1, [ 2g and g, are known. By some

simple algebraic manif)u'lat.ions, the values of the feedback gains can be determined as

’ knu=-g-l—[[ 1 +'/zz—(>\+>\')] and ' ‘ (3.3.30a)
k,=___[xx +/,,/,2+122 - ,,[x+x )] - (3.3.3op)
s [ 911

Since the system has been aésumed controllable, the elements [ 4, and g4 are both

o\ \

Y
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\

‘ : ' { ‘ -
non-zere. Further, since the sum and products of X and A\’ are real numbers, the feed-

back gains can be computed using real arithmétic only.

) ) ‘

(3) Algorithm 3.1 Is based on the implicitly- shifted QR algorithm [15,16] for computing

~
r

» : . .
.the eigenvalues of a matrix. However, ur_xllkeaQR algorithm, the algorithm for-eigenvalue

- . " assignment Is not iterative in nature, since-the shifts (desired closed-ibop elgenvalues) are

o

known a-priors. While the former converges iteratively to the eigenvalues'of the matrix,

the laszer recursively modifies the state matrix using the state feedback a‘nd reduces it to -
S ) ’
8 RSM with the desired eigenvalues appearing along the quasi-diagonal. '

(4) It is worth noting that the proposed algorithm, unlike some of- the al@mhms that
7 ' s
require the state matrix to be a RSM, would not suffer fram round-off errors accumu-

lated in reducing the state matrix to a RSM. Any ill-conditiomng in the‘elgenval_ue

problem of.the open-loop system will, therefore, rﬁ't directly affect the numerlcal perfor- \

.0 mance of the aigorithm.

: (5) EVA problem depends on controllability of the syst.e.m. For tﬁe system (F,g) in

el

’

* UHF, a “wea‘k" controllability may result in small subdiagonal el_ement,s of F or asmall _
- g l.'th.ereby leading to highrer gains in the feedback matrix. This, however, Is due to the

. lll-con_ditioning of the EVA prob)em rat.he‘r than restriction of the algoritilm. - A ‘useful
(eature that may e,ntiance ‘the performance of the algorithm would be an a-p.rior'x' esti-
o mate of the condition of the EVAA problem. ' L P %

~3.4. EXTENSION TO THE MULTEINPUT EVA PROBLEM

\\\\ [ . ’ . %L
\ For a given multl-input controllable pair, (A .B), s'uppose' that the system is in UHF
. with respect to the first input; i.c., the pair (A,b,) is in the UHF, where b, is the first
\\ . ' ' ‘ »
input of the system. .Let the integer u denote the dimension of the controllable subsys-
tem from the first input. If B <n, then the state matrix F = TTAT is a block upper
triangular matrix as shown in (2.3.2), with F,, € IR **# an unreduced upper Hessenberg
~ 1
'Y
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matrix. The rollowlng‘ result then gives us the.required extension for solving the EVA

*,

problem for multi-input systems.

' ’ N

Theorem 3.3 : Given the controllable pair (A B) corresponding to the mum-input

system (31 1) there exists an orthogonal mamx V such t.har, o ‘
R Fuplz-«“Fl.pll .
. e . |0 F22 R P
FLvTiav=|... : '

“.-— ‘l‘ . . 0 0',...‘F' " . 1 T ’ AN
oo S TR SRS TIPS e , N
LT T r © 0 922 - - 9250 - Fom ‘ ' :

o e =viB = l , (3.4.1)

L Lo R _,0‘ ' 01,‘:"i‘ gﬁvl’ T 9p.m

Pt . . ’ .- » o2 t
where the matrices F,-,- ,'j-a-’}, _ ,p,rare unredu&ed upper Hessenberg matrlcea and g, - ;

=l 0-. QJT."",-“-,.= o .pwnw.,aéo
Proof : The proof ls by const.ruction and a.n algoﬂthm for obbaang the matrlces

.
[ " [
. L~ L)

F G Vi is outlined next. I_ A a','

)

Algorlthm 3 2: (Redubtf'g‘r‘r’ol‘ ’an m:’;in_pltzr‘-tr EVA prxob'l‘em't,o m single-input EVA prob< ,
lems) . ’ ; ' '
Slep I (Imtaalzzatron) T

! (1) Set. l——l Al—A and b, = ﬂrst column or B

-~
R

(_2) Apply Algoritbm 2r1 to the pair (A 1»”1] to get an orthogonal transformation

B

atrix T and dimension of bhe controllable sub1space By
'(3) St F, = T,A:r,, G, = TTB V=T, and me=moo B
Slep II (Detcrmmatwn of Controllable Subsystcms) -

(1) If nc = n\, go to Stcp UI else pamtion F; and. G, as rollows:

3 Co ) N :
‘Fu F,z .. ‘Fx,.‘ Frin | . o
' .0 rF‘,gz o Fz,i F?J"i'l . o ‘ o
Fi=|. . e o
" lo o - Fy Fiin
(0 o "0 Fi+l.r‘-+l.
- ’ 7 N |
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. - . . .
' [N o N ’ . ..
¢ - . '
N @

: : 9;1 Jaz . . il,i Iritr . . 91m |- te,
. . 0 g2 - . 92 J2i+p - - Yom ..,

. Co . ' . 0 o - g i Sider Gm | . o .
[N " . v . @ i 0 ~ o . o g' +1, |+l . g"_’_,'m ] l
. . |

eL ,lwbere F, r € R “ <% and g,. ” EIR”' = 1,--',i. The matrix Fiirisr .

>

_"‘

. ',E‘IR("'" OX(-n) o d the Vect,or g,“ ER ™.
' o . ' (2) - Set 3=3+1.»A" = F.‘," and b.‘ = 9 ’ ) . v

(3) Apply Algorithm 2.1 to the pair (A; b, ) to get an orthogonal transformation L.

. s ! ~ .7 .
@ . . f . -

e .. ~matrix T; and dinmension of the cgntr,ollable subspace ;.

T 4 set > . . , ' L

- i ) "F N In" O F 'Iﬂ‘ 0 .. .,‘.:." ."; . )
- IR '1. R . ' 3 .
S TP le i e T Lo P

LA

Il

B B . ' . . Lk

. Co ~  and'n, = n, + p;; and go to Step I (1) . Coe Voo

R .o PR - o .
T v o Step HI: (;;\ﬂ)\ ' 2 ‘ 5 ) SN
Lo v ‘ : SetF=F,-,G'-—_'G’.. and p = 1.

; K Not.e that the vect,ors 9op ° ’. +9pm cannot all be zero, because then the system

would be uncom.rollable. whlch is contrary to the assumption This completes the proof

v

. ' s Oof Theorem 3 3.

A
.

- Algorithm 3.2 uses only numerically stable, orthoéonal,transfbrmé.tipns by repeated
applicatlonn of Algorithm 2.1, ‘Note that integer p denotes the smallest iumber of inputs,.

T ' st,amng with' the ﬂ'rét, from which Lheﬂsysten} (3;1.1) is controllable. It is also clear rrbgri

t.he structures of (F., ,g,, ) t' =1, -,p, that they are controllable pairs if (A B)isa

rd

controllable palr Also the eizenvalues of F (and thererore of A) are the eizenvalues or'

F; + = '1 ,p." We can t,hererore ‘assign the eigenvalues of A by carrying out EVA'

v

>

3, . . L -

. . . .
r PR PR . . -
v - . N . - -
J . . 3 - .
S . - - ' ot
: N o
A . T * - B v
s )
5
«
.
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' N
for the single-input Systems (F,-,- Gii ] =1, - ,b using Algorl‘thm 3.1.
. . . i L |
‘ 3.5. SOME VARIATIONS ON THE MULTLINPUT EVA SCHEME

In this sec’tion'. the results o( the preceding section are modified to allow for gréater
ﬁegcj_lziliQy iri_solvlng the multi-input EVA problem. Some special cases arej als6 con-,
‘sidered. From the design point of view, it may be &esirable to spread the task of EVA oo

t,o severalwnputs mst,ead of the ﬂZst p inputs as suggested ln Section 3.4 Thls may

T allow the desngner to use lower feedba@k gains to achleve EVA, which ln turn would .
{ ! yield better numerical .accuracy. There are also some special cases whe;e it, may not be '
R J \ , . L. N . N

possible to assig& any desired set of eigenvalues using a, subset of the inputs. To illus-

trate this case, we consider a simple example. Assume that the given system Is of order, -

-

3 with three inputs and that both the state matrix as well as'thc input matrix are kiiago-

-

~ nal_with the input matrix ha\;ing non-zero diagonal entries. The given system is there- -
fore controllate. Aisp, it is clear that each input&an control at most one of the st.at.’(g.

Using the single-input EVA scheme, we can assign three }eal,eigenvalug at‘any arbitrary

'

‘ location. However, we cannot assign one real and one c-c pair of eigenvalues using Algo--
) * . - '

rithm 3.1. o

—

, The case mentioned above can be handled by combining the baslc operations of
K * Algorithms 3.1 and 3.2. More specifically, consider the & -th iteration of the EVA scheme
' where we wish to-assign upto r; eigenvalues'by feedback -to the ¢-th lnpup. Assume that

. "*_ n, eigenvalues have already been assigned in the preceding steps and that at thc;' start of

the i-th iteration, the pair (A;.B;) is in the form | X I

\

1

'

_ ' ) Al 402 ‘ B! ‘ ‘ ’ ' * ' '/ . . '
A A; =" Ll B =1, - . (3.5.1). |
. [ ' [ 0 /A'.'n] [Biz . . :

where A;"' €. R" ™" s an RSM., ' : . ' ‘ !

B =¢LB . R A C @)
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QI—I(A - BK: 1]Qa—1 . h ! - (3.5.3)

where Q, 18 an orthogonal matrix and K; -1 I8 the state feedback matrix (in the coordi~

nate system of (A ,B)) required to assign some of the elgenvalues of A at the same loca-
\ N 2 : - ’
tions as those of A;". . ! CP

!

.

L4

Let b, be the i-th cdlumn of B;? and let W; € R-"?* "2 be an orthogonal matrix

which reduces (A,-",bh,- ) to UHF, i.e., °

°

. . - %3 .
- ) w T T A T N & »
- P N ) * o
. 0O +-: » ¢ ~ 0 ,
~owWIARw = |0 D0 LW =] (3.5.4)
L 00 - * » * 1) : )
00 - 00 43 ) 0
< = . . o . # . !
where A, denotes the uncontrollable part of {A4;%,b ;). ' i

-
4

Complete the coordinate transformation on (A,- ;B; ) to get K

.

© o [h, o I, I, o], |
.I.-=[o w,T |4 [0 w] E-__[o wT]B ' (3.5.5)

Let:the controllable subsphce of (A,-”,b,- ) be of dimension #; so that by feedback to

~ vy, . N

' \ . ) o
the 1-th input, we calassign at most #, eigenvalues. Note that we wish to assign upto
. AN

" r; eigenvalues during ihis\iteration. Two cases are possible:

(1) r; < f;» Here we assign all r; eigenvalues by feedback to.the i-th input using Algo-

rithm 3.1. Settingn, = n, + r; and n, = n-n,, we get a pair (A;,3,B;,,) with. .

o A ag - [B SR .
A, = i '“ B, = |Hl . . 3.5.8
s +1 [ 0 A. 2 1 +1 B, 2, . ( )
_where A;}}, €R "’—~X"’ is an RSM. ) ,

!

(2) r; > f: In t.his case, we .can only assign at most f; eigenvaiues by feedback to. the

“$-th inpub,, therefore, we set ri=#f.. Here we have the following two possibilities

- —— -




-'The latter situation means t,hat there may be one or more cre palrs of elgenvalues that '

right han de of the equations are chosen such that the mamx

‘57' ) ) ‘ < N ° ' . . A “.'

(i) If the set'A; can be partitioned into two disjéint'set.s Aj, and A; sxich' that Aq,

l"
. | .
. has exactly f; elements and that 1he members of a ¢-c pair belong-to the same -

f
set, ‘then we use Algorithm 3.1 to assign the f; eigenvalues in A; by l‘eedback to

o

_tiﬁ {-th input. S_et.t,ing n, = n, + P.- and ng = fi-n; we get a palr
(A;ﬂ.B,-H] with the structure in (3.5.6). _ ST ! -
(if) If the set A; cannot be partitioned as in (i), then it can be partitioned such that oL

4 F -

A;, has f, -1 elements and all elements of A;, are c-c ‘palrs. The f; -1 elements In -
- v w3 ' ’ —J .

-

A;, are assigned b‘y the reeiback to the £-th inpui using 'A'lgorlthm 3.1. Setting, -

ny=n,+f -1 and n,=n -n,,.we get & pair (A,H'.BH,) with the stfuctire i -
. @56, . g ' ' R

-
\

The above procedure can be repeated until all n eig'envalues have been assigned at the
desired focabions or all m inputs have been considered but not all n eigenvalues-have.

i

been"assighed. The latter will occur if case (1) with r; _>_ f; or (if) ‘or chse (2) he.s'

¢ v

occurred for one or more of tl{e inputs. The rormer situation can be treated’ ‘by repeat-

—

ing the above procedure stan,mg with the first input to assign MMwelgenvalues

‘cannot be a.SSigneq by‘reedback to one input a.IOne using Algorithm 3.1‘ Tf?ese elgen-

values must be assighed by applying feedback to a pair of inputs., A typical situation

v

would fnvolve solving Iipear equations gf_ the form \ . . . C

/ - y \ , .
iy G a4 “_' Top big kpi Ky - &,  &in |- -
0 Gy 0 biiy, ] ,’fq,.ia ":V-Vrle ' di+_1',n Giriva]- -

for the four feedback elemeﬁt,s_lcp_,-, ky . ky o4y and kg o, where the elements on the

- | " i &in |l o
[dwn A+ls+l hes )

the desired c-c pair of eigenvalues. The abové equation can be solved for the elements o

-

ky i kpiy1 ki and kg ;o if and only if ’b,-,,‘ 7% 0and b; 4, , £ 0.

v



e .7 In afeedback matrix of norm 10.841.
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3.6. NUMERICAL EXAMPLES . ) TN |

.
- o ~
-

- " 'I
rlphms’by meahs of some numerical examp[es. The computations were performed on a.

VAX 11/780 in double precision (accurate up to 1.0 E-186).. The desired closed loop

~

~ .eigenvalues were chosen to illustrate the numerical performance of the algorithms and

not to'meet any specific design critefla. A comparisong of the'performances of various

. ~ b

existing EVA algorithms with the proi)osed one Is not posslbie without a’detailed

analysis of each one of them and therefore has not‘been included. '

~

e . "5‘ » ‘ , . . L~
o, Example_&l: This example illustrates the use of the algorithm for EVA in single-inf)ut

7y

- parameters of the syst.em‘ are giveLn in Table 3.1. The model is controllable I’rom each of

)

o . its five ihputs. For the purpose or lllustration we use the first inpuf to carry out the

s
S

EVA. To get an l_dea. ‘of the numerical perl‘orm_ance of the algorithms, it B a.ssumed that

the .data given Is exact. This is, of course, not true in practice since there will be :
. ) w
degree of uncertainty in the model.- Table 3.2 gi\{es the desired closed- lwp eigenvalues

{column 1) together with the computed tlosed-loop eigenvglues columh 2) i

A T e

p ;
Example 3.2: Thls e)gample fllustrates the special features described it Section 3.5.

! For the"examp,’le considered above, Algorithm 3.1 w.ashé‘pplied such that the EVA load

. was distributed arbitrarily as 3,3, 3, 4 and 3 from the five inputs respectively. The first

N ’ -~

" Input was responsible for assigning eigenvalues at —5_7‘5‘0. -175.0 and -59.0, second at

R - .
-38.5 and -17.844.78:, third at -505 and -21.340.81, fourth at -21.3, -47.0 and
. A} \ . .

-6.7;!;1.3:’ afld the fifth input at -0.65, -1.9 and ‘—5.8. The results for such a distribution

are given ln Table 3.2 (column 3) “The feedback gains for this case were reduced consid-

»

erably When all eigenvalues were assigned from the first input only, the F-norm of the

feedba.ck matrix was 48. 299 whlle dlst,rlbut.lng the EVA between the ﬂve inputs resulted |

In this section, we \illustrate the numerical performé.nce of zhejpropoeed EVA. algo- -

. , L ! - “
systems. The example is the 16-th order model of the F100 Turbofan engine [22]. The
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- 4.3280E+-00
- 4.4020E - 01
1.0380E-+-00
5.3040E- 01
8.4760E- 03
8.3500E - 01
6.7680E-'01
-9.6960E - 02
- 8:7850E - 03
- 1.2980E - 04
- 1.2070E+00
- 2.7300E - 02
- 1.2060E - 03
- 1.6130E- 01
- 1.2440E- 02
- 1.6530E+-00

a

e

1.0200E+-00
2.0400E4-00
- 5.3140E4-00
- 1.1460E+00
- 8.8040E- 03
£ 1.8130E-01
- 2.0470E+-01
5.9430E- 01
5.6660E - 02

8.3050E- 04"

~ 7.4800E+00
1.7940E- 01

8.0500E- 03 .

. 1.3850E- 01
1.9810E+01
- 2.0400E+00

1.0080E+-01

- 6.0630E- 01
1.7970E- 01
-2.1110E+00
- 8.1780E~02
~2.2010E-01
- 2.9100E- 01
. 2.5600E-01
8.9830E - 02
1.3470E- 03
3.0650E+00
1.0110E- 0L

- 1.9960E+00
- 3.0180E+-00
. - 1.3470E- 02
- 1.0780E+400

. ’Table 3.1a : F100 Turbofan Engine

1.7140E- 01
-:5.6430E4-00
8.0730E+00
- 1.0860E- 01
- 1.8630E - 02
- 1.2490E- 02
- 1.2640E- 02
8.6660E- 01

- 1.6360E-02 ~

+— 2.4300E - 04
- 8.7170E+00
- 4)5390E- 01
- 2.0170E- 02
- 2.4600E- 01

3.0200E- 02
1.8310E+00

- 9.8200E- 01
- 2,5920E+00

5.0970E+4-00
- 2.4080E+4-00
- 2.1100E- 02

- 2.9620E- 02"

- 3.9280E- 02
- 1.9970E4-01
6.6238E+-00
9.8120E- 02
3.6840E+01
9.7500E+-00
4.3330E- 01
4.4860E+00
1.2490E- 01
2 6.1660E- 01

- 6.0170E- 01
- 7.4880E- 02
2.4070E- 02
- 2.4600E- 01
3.4280E- 02
- 2.5140E- 02
- 3.3Y00E- 02
2.8350E- 02
5.3490E- 03
7.1310E- 05
3.6240E- 01
1.2030E- 02
5.3490E- 04
- 1.9770E+01
~1.0700E- 03

+ 3.0630E-+01

- 59-

. 1
5.3760E+Q0
1:2750E+-02

- 1.6500E+02
1.3130E+02
5.6020E - 02

.- 3.5670E- 02

- 9.6830E - 02

1.6870E+01

1.8470E- 01

2.7180E- 03
2.6260E+-01

- 5.2720E+01

. - 2.3430E+00

- 2.4050E+-01

- 1.1980E- 01

- 3.8220E+00

9.9900E - 01
*1.1320E+01
- 9.3890E- 03
- 3.0810E+00

2.0900E- 03
- 1.9530B- 02

1:8780E - 02

2.2530E- 02
- 4.9990E+01
- 8.6660E- 01

2.8540E- 01
- 9.6270E400
-4 2780E- Q1
- 4.4140E+

- 1.1270E- 03

5.0040E-01

- 1.3120E- 01
- 5.9360E-01
1.1000E+0Q0
- 4,6860E- 01
4.9950E- 03
- 3.7490E-03
8.8730E- 02
- 3.7490E- 02
0.0000E+00
0.0000E+-00
- 4.3430E- 01
- 4.6860E- 02
- 1.9990E- 03
- 4.9900E- 02

- 2.0000E+01 - 2.0570E- 03

1.9860E+-01

»

° P

1

4.0160E4+02 - 7.2460E+02 - I'0330E-+00
-2.3350E+02 - 4.3430E+02 2.8500E-+01

= 4.4830E+00 1.0400E+03
- 5.7830E+02 1.0200E+02
1.6730E+00 - 1.0050E+01
- 6.0740E-01 3.7650E+01
- 3.5870E- 01  8.0240E+01
1.0510E4+00 - 1.0230E+02
2.1690E- 01 - 8.4200E+00
3.2140E- 03 - 1.2460E- 01
1.2490E+01 . 1.2690E+-03
1.9880E+02 - 2.8000E+01
8.8350E+00 - 1.2480E+00
2.3380E+01  1.4630E+02
- 4.8210E-02 5.6750E+00
1.1340E+402 3.4140E402
1.5210E+00 - 4.08620E+00
1.0900E+01 - 4.0710E+00
1.3520E- 01 5.8380E+00
- 4.5200E+00 5.7070E+00
- 5.2560E- 02 - 4.0770E- 02
.~ 1.6220E- 01 - 6.4390E- 03
- 2.1200E- 01 -9.3370E-03
1 7810E- 01  8°3700E- 03
6.7600E- 02 3.94860E+01
- 8.6570E- 01 5.8470E-01
2.3320E+00 - 4.7650E+01
- 9.6570E+00 3.8480E-01
- 4.2450E-01 1.7100E+00
- 4.3540E+00  1.7660E+01
- 8.7600E- 03  1.8350E- 02
- 1.4370E- 01
9.6020E- 02|
- 9.6020E - 02
2.7430E- 02 i
- 3.2230E-01 1 +
-~ 1.2560E- 02 .
- 3.3610E- 02 g
- 4.4580E - 02
3:6360E- 02 .
1.37205-02| - e
2.0570E - 04
4.6810E- 01 ’
1.7150E- 02
7.5440E - 04
1.5000E- 02 .

- 5.0160E-+01 |

Model, Matrix A

- 8.2450E-+0)
- 8.2400E+00

1.9520E- 01
- 1.9790E+401
- 8.2300E- 02
2.9660E+01
7.0030E - 01
1.0390E - 02
1.0300E+02.
- 2.2430E+400
9.9750E - 02
1.6380E+00
- 4.5250E~ 01"
- 2.7340E+01

9.5670E+00 -
- 5.7300E - 02
2.2460E- 02
- 2.3460E-01 _
- 0.1820E- 03
- 2.3460E- 02
- 3.1440E- 02
2.6450E- 02
4.9910E- 03
6.8540E- 05
3.4080E- 01
- 5.0010E+01

.~ 2.0000E+00 :

- 3.1130E-+00
- 9.9810E- 04

- 2.4160E+400 - 1.0730E-0}-———-- - —
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) ~ . e ;‘60'_ P . A
- ) ! ' : EE . . - 1 ‘
[ - 4.5700E- 02" - 4.5160E+02 - 1. ossoE+02 7‘1}1 :5060E+00 * 8.5150E+02 |
1.1140E- 01 -5.4610E+02 - 6.5750E-+00 =1.0780E+02  3.5260E+03 | .
" 2.1530E-01  1.3620E+03  1.3460E+0[ - 2.0140E+01 - 68.7770E+04 ‘
3.2620E-01 ~ 2.0800E+02 - 2.8880E+D0 - 1.6530E+00 - 2.6010E+02 >,
0.0480E- 03 | - 9.8300E-+01 . ' 5.0600E-01 ~- 1.9400E-01 - 9.4700E+01 '
2.7260E-02 | - 7.1620E+01 9. 6080E+-00, " 3.1600E- 01 - 1.8410E+02 o
, 1.7160E-02 ' 7.1710E+01 _ 8.5710E+00 . 7.9800E-01 - -5.1520E+02 | | .
| - 7.7410E- 02 - 1.4120E+02-, Z8.2150E-01' ,3.9740E+01- 1.3760E-03 .
’ { 8.8550E-02 . -7.7100E+00 - 4.3710E-02 - I.0240E-01 - 6.6840E+-03 :
' 5.7070E- 04, - 1.1440E-01 -6.3500E-04 2 1.4320E-03 - 0.9020E+01 : Lo
, 5.7270E+00 - 1.7450E+03 - 8.9400E+00 - — 1.7960E+01, 8.8980E+04 |
1.3020E- 01 _ - 2.4300E+01 ~2.7360B-01 - 3.4030E- 01 5 - 6.9310E+-03 s
8.1720E-03 -1.0820E+00 _ - 1:1830E-,02"" - 1,4520 © - 8,0770E+02 ,
. 8.7770E-02  1.6600E+01 ~ 3.9800E-01 ~ 2 3110E -02 . - 2.5880E+03 L)
1.8800E-03  0.)\70E+00 - 8.2410E-01', . 8.9840E-02 - 3.2310E+01 ’
| 1.6770E-01 *  4.3580E+02 -89940E+01 . /4.8000E+00_ - 2.9550E+02 ] ., "
e :" JI “. : ' \ .
Table 3.ib : F100 Tu-r‘boranj‘Eng'i‘h'e.Model, Matrix'B ) 4
¢ s . D R . "t *t ! ' -
v [ 4.8660E- 01 -6.7410E-01 §. 3920E+00 0 5420E+01 . 2.4030E+01 °1.0520E+01
1:3830E- 02  .7890E-06 '0.0000E+00. 0.0000E+00 - 1.0810E-02 - 5.5450E- 05 .
0.0000E+00  0.0000E+00 | '0.0000E+0g" -0.0000E+00 0.0000E+00 0Q000E+00 '+
7.4180E- 05  5.4060E-06 = 4.790DE- 6 1.4700E-04 - 1:5040E-02' - 6.5030E- 05 - .
. - 1.5380E- 05 - 1.2010E-04 2. 5700E- 03 1, 6090E 04 -1.B180E-02 1.0710E- 03 :
o - 8.1000E-01 -4.4920E-01 S5.1050E~ m 843705:- 01 - 1.8630E+00 . 57080E-02 . :
oy 4.7220E- 05  0.0000E+00 ' 0.0000E+0(,-0.00Q0E+00 ' 0.0000E+00. :0800E+00 .
. 0.0000E+00  0.0000E+00  G.0000E+00- 0.0000E+00 - 1.0000E+00” 0.0000E+00
8.8200E- 05  4.0990E-06 :3.4340E- 068" °2,7270E=05 ' 1.1280K-06 . 4.0020E-06
0.5610E- 05  5.5030E-08 . ' 3.7320E- 06 . 290503 05 1.2340E£08 4.3800E-06 '~
4.8150E- 01 . 3.4280E+00° 2.1610E-§-00 7681013» [P
N 0.0000E-+00 . 0.0000E+00,." 0.0000E+00 :0.0000E+00 : : L
0.0000E+00  0.0000E-+00 ~“0.0000E+-00 0.0000E+00 e ; o,
.. 8.6730E- 05  4.2000E- 08 - 4.9580E- 08’ 5:6000E- 06 | . T o .
. 4.0240E- 05 g 7210E 08 - 8. 32;10E; 06 g 1q3g§:u oe : v
' \‘ - Table Z1¢ : FIOO Turbofan Engine Model Matrix c 5
- - . i T "’ :‘ ‘1 " :54ﬁ I :
\ . A ' . 4 : r' ¢
\ . P, ) s l' -’ - M N tor ' K
» " , ; ..-’.l - ’ d.." | ] ‘r‘ f 'r
s . . "~ . . .. , . ) -,‘.' "."‘:j" _., 4;," o : ~ o
. | - e e ‘e ] e
> MM ’ :' : ”" 4 :‘ A "‘iI?. ‘. .’l' i “. _* \ '\\
.. g R S |
' ‘:F 4 'Z‘ I LA ;‘l ' "’P'\‘ ! "":‘ ’
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Desired” | Computed closed- loop eigénvalues for
'e.v.'s Example 1° Example\E
- 5.75E4-02 - 5.750000000000001E+02 - 5.750000000000001 E+-02
- 1.75E+02 - 1.750000000000000E+-02 - 1.750000000000000E+02
. - 5.90E+4-01 - 5.800000990999997E+-01 - 5.900000000000082E+01
- 5.05E+01 ~ 5.050000000000009E+-01 ‘ - 5.049009000000804E+01
- 4.70E+01 - 4,700000000000013E+4-01 - 4.700000000000078E+01
A 1S ' - 3.85E+401 -,3.850000000000002EE1 - 3.849000000000928E+-01’
- 1.78E+01 \1.7799999999999983 T - 1.770000000090000E+01
+4.78E+-00i 4.780000000000059E +00i +4.77090090009990884E 1001 -
- 2.13E+01 - 2.130000000000001E+-01 - 2.130000000000030E+01
. %B.00E-01i - +8.000000000000813E-01i - +8.000000000005607E -011
-1.86E+01 - 1.860000000000000E4-01 - 1.859990099980976E+-01
- 6.70E+00 - 6.700000000000017E+-00 - 6.700000000000349E+00
+1.30E+-00i i~ +1.299999999999992E 100} +1.209000699000160E+001i
_'-8.50E-01 - 6.499009999996976E - 01 - 6.500000000000173E~ 01
- 1.90E4-00 - 1.8000000999909096E+00 - 1.900000000000093E+00
— 2.60E+00 * - 2.509000009999958E+00 -2.590000000999334E+00

1

~

3.7. CONCLUDING REMARKS

Table 3.2 : Desired and computed closed-loop eigenvdlues for Examples 1 and 2

* In this chapter, we described numerically reliable algorithms for eigenvalue assign-

I

mer;t‘in linear m’ultivariaple systems by mgans of state feedbapk. For a ntll'u-input. s)"s-
tems (A ,B), the EVA problem was reduced to one or more single-input EVA prob’lems_s.
The algorithms for EVA.were ba.:sed on the converse of the principle on' which implicitly
shifted QR algo’rithm for eigenvalu’e détermination is based. In the p‘rop'osed algorit.hms.
a double step enabled us to assign a c—c pair of eigenvalues uslng‘real arithmetic only.
Starting with a controllable pair (E,g)'in the UHF, Algorithm 3.1 determines a state

feedback vector kT and an orthogonal transformation matrix T such that the closed
“ LSS

loop. system (-F - ng has The desired set of eigenvalues. Apart from the fact that

the shifts (the desired closed-loop eigenvalues) are known a priors, an iteration of Algo-
rithm 3.1 differs from the QR algorithm essentially in the step that computes the ele-
‘ments-of ,the feedback vector kT ]n fact, a few minor changes to a computer code for

+

QR algorithm (23,24] would enable us to obtain a code for Alzdrlth;n 3.1. T

For multi-input systems, a varla.tion in the application of Algorithms 3.1 and 3.'2'

a
? {
. “



* only a few inputs were used. - \
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enaples us to distribute the task of EVA between several inputs. Ap;xrt from enabling us
to assign any desired set of eigenvalues, this modification is also desirable rro_{n the

design point of view since it provide‘s greater integrity (against failure in some feedback

paths). Furthermore, the feedback gains will in general be smaller than when & single or -

-~

"The numerical performance of the algorithms was illustrated by means of a model
of the F100 Turbofan engine. The elements of various matrices descfjbing the system
‘ L4

are wldel‘y separated. However, as can be seen from the computed tlosed-loop eigen-

values, they do not seem to affect the accuracy of the algorithm.

It is perhaps worth mentioning that while for the single-input systems, the feed- )

baek vector is unique, for the multi-input systems, the feedback matrix is highly non-
unique and provides us with extra freedom [25]. "There are several ways in which the
researchers have tried to use this freedom. In [11)], the extra freedom has been aused to

make the system ‘‘robust’ in presence of errors in the system parameters, while the pro-

posed method can utilize it to lower the feedi)ack gains. The best way to utilize this

freedom Is still an open question-and.would make an interesting research®problem, It

and the choice of inputs from which those elgen\'alues are assigned also has some eﬂgct

on the feedback gains. A syster_na:tic method of determining the subset of e\igenvalues

N

and the order in which they should be assigned from a particular input so as to obtain a

minimum norm sta:t}a feedback matrix is also open pioblem.

Since the EVA by state feedback is depéndent on( thé controllability of: the open-
l/oop system, it is reasonable to assume that the conditioning of the EVA problem is
related to the contro:nlabillty of the open-loop system. [t is not clear how the two are

related explicitly. A more detailed analysis-of the problem may reveal this relationship,

and lead to design of an algorithm with an even better numerical properties than the

proposed one. .

appears that the order in which the eigenvalues are assigned (in the multi-input systems) -
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-CHAPTER IV )
EIGEN‘VALUE ASSIGNMENT BY OUTPUT FEEDBACK

In this chapter, we extend the results of the previous chapter to EVA by means of
output feedback. The chapter is organized as follow,s The problem orw means of
output feedback is stated rormally in Section 4.1 where a survey of existing methods for

EVA is also included. In Section 4.2, we develop the theoretical foundation on which the

algorithms for EVA in sirigle-inéut, multi-output (SIMO) systems are based. “The results

are then extended to multi-input, multi-output (MIMO) systems, where it is shown that
q

the EVA problem for MIMO systems can be reduced to solving EVA problems for two

3

SIMO systems. A suflicient condition under which the eigenvalues of the closed-loop sys-

~—

tem can be assigned airblt.rarily close to desired .locations in the complex plane Is that for

the given controllable and observable _system. triple (A -B‘.Ci the sum of number of

lnputs (m) and number of outputs (p) is greater than \the number of states (n) {1 2].

I3

Based on this condmon, numerical algont‘hrps for EVA by means of output feedback In

\

< SIMO and MIMO systems are ihen presented in Section 4.3. In Section 4.4 it is’shown‘

b

that the same algorithm can be applied (with slight modifications) to ‘compute dynamic

output feedback for the case when the sufficient condition (m +.p > n) is not satisfled.

~

Numerical prdpert.les of the algorithm are illustrated by means of examples in Section 4.5

A}

and finally in-Section 4.6, we\discuss the results presented in this chapter.

~

4.1. STATEMENT OF THE PROBLEM " -

-~

Consider a linear time-invariant multivariable system described by its state-space
oo . -

-t

3
-

. .
Aot - ~ |

equations \ } . . :
i(l)= Az(t) + Bu(t) . . o (4.1.18)
v(t) = Cz(l) S . (41ab)

where 3([)6 R", I(t)G IR™ and y({) € lR’. We assume thalt (A ,B,C) is a con-

trollable and obseﬂable triple. It is desired to compute a constant. gain output feedback )
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matrix K € m'n; xp deilned by— the feedback law : . ) ’ , . ,{ .
u(t)—u(t)-Ky(t) T I A '-(;.1.2)
such‘ that the resultlng closged- loop s;ate matrix : ’ . .
'Ac_,-A\-Bl(C L o | (4.1.3)

has some desired set of eigenvalues ln (4.1.3), if the matrix C is an ldentity madtrix of

order n, then the closed- loop state rriatrix is given by- Ac, = A - BK , and the prob- '

lem is reduced to Lhat of EVA by means of stat,e»i‘eedback [3-5] whicb was considered in - '

the previous chapter EVA by output feedback can therel'ore be considered as a. géneral«

N

A,

izatlon of EVA by state reedback For EVA by means of out,put feed back, conslderable' .

)

",. theoretical work has been done (1,2,6-9]. However untrl reeently, hardly any attention .

was paid to developing numerically reliable algorithms to solve' the problem. The algo-
rithms described in this chapt,er were. report,ed in ['10-12].‘ The results presented in this
chapter and in [10-12] appear to be the ﬂrst of their kind in. the literature. Cdnse—

quent.ly, the derivations required in developing the algorithm‘s have been described in .

Y

detail

PR
- -
.

There are several other numerical algorithms existing in the litérature that achleve

EVA by output feedback. However, they are not based on sound numerieal analysis

o principles and therefore thelr numerical reliability Is questionablel Several algoriciims'{&

9] require Lhe system to be in compamon or other canomcal i‘orms e. g controller or con-

-~ trollability canonical forms (8). " Such algorithms will invariably inculr numerical ’

. SU { - :
difficulties because reduction of a general triple (A ,B,C) to'a canonical form is a numer-

lcally unstable step. A‘lgoritl\me, that uge.the-transi'er,i‘unction'm'atrix (6-9] of the given

system will .be extremely sensitive to perturbations in: the coefficients of the numerator

and denominfnor polynomials of transfer function matrix. Another approach is'based on
. . - . . .Q

-knowledge of the eigenvalues of the open-loop system. However, for systems with state -

matrices having ill-conditioned open-loop eigenvalue problems, this approach mé.y'lead to

»N
unsatisfactory performance. . .

I3
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L

The algorithms described in subsequent sections avoid the use of potentially

unstable transformations. EVA by output feedback (as that for by- state feedback) Is

treated as a ‘‘converse” of the algebraic eigenvalue problem. In developing the algo-

rithms, we. use sufficient conditions [1,2] under which the feedback law of the type (4.1.2) .
exists.. s

-

In this section, we will develop. the theory on which the EVA algorithm Is based. ,

For the sake of simplicity, the results for explicitly shifted EVA are 4dlscu’ssed for real

. eigenvalues.” The case for c-c pairs of eigenvalues is similar to that for the EVA problem

’

by means of state feedback, treated in the previous chapter and has not been repéated

here:. Using the sufficient condition [1,2], we will develop an algo;lthm for “‘almost" arbl-

\

trary EVA using constant gaih output feedback (of rank 2) for the systems in which

(m +p >n)

. In ‘order to achieve this, we reduce the EVA problem to two single-Input EVA prob-

lems, "the first to assign p -1 eigenvalues and the qther to assign the remaining n-p +1
. ’ ) , \
eigenvalues while preserving the'p -1 previously assigned eigenvalues. In Section 4.2.1.;

we discuss the design philosophy for EVA in single-input, p -output gystems using expli-

0}

cit shifts and in Section 4.2.2., the results are extended to EVA in mul',tl-lnpu't. multi-

6u tput systems.

’

4.2.1." Explicitly Shifted EVA for Single-Input, Mhlti:Output Syst;ems !

Consider a controllable and observable single-input multi-output system
L

S ) = Az(1) + bu(l) B T (a21a)

y(t)=Cz(t) . : ' (4.2.1D)

‘wherez(l)EIR",u(t)ElR y(l)ElR”and rank(C’)~—p(<n) We shall assume

without any loss of generamy that, the given syst.em triple (A ,b C) is in UHF More-

over, since the system (4.2.1) is cout.r.ollable, the stap,,e matrix A is an unreduced upper

T




"start of the [-th step (I S‘r ), we have . ' : -

-output feedback vector;

Hessenberg matrix. |

- N v

It is well-known“that, in a controllable and observable single-input system with p

- +

outputs, we can assign p closed-loop eigenvalues at almost any desired’ locations in ‘the

¢

complex plane by means of finile, constant gasn output feedback. The‘locations where _
the eigenyalues cannot be positioned lexactly by finite output feedback correspond to the

transmission zeros of the system [1,2,6-9). Note thak we have no control over the

2

remaining n -p eigenvalues. We next discuss how “explicit’’ shifts of origin_fnay be

employed to é.sslgn the eigenvalues by me/a\ns of output feedback. ‘

The problem that we consider in this section is to find a constant gain output feed-

back vector k € IR ” such that the closed-loop state matrix Ay = A + k7 C has r

(<p) eigenvalues’at desired locations. Let A = {\Xl, RN W } denote the set of desired

-

locations to which the closed-loop eigenvalues are to be assigned and assume that ai the

' Tv ’ T l-l T ; Al'—l *. ’ ‘
ut, - U [A ST kU, U= | 4 (422)
t1=1 , S

where By the assumption of controllability, A, € IR ("-/+DX(n-T+1) i an unreduced

upper Hessenberg matrix, A, is a upper Schur miatrix with the assigned eigenvalues,

I

G §e==1

. - 1-1
A - Ny, along its dlagon\alt Uo=1I, (the n'Xn identity matrix) and 3} kT is the
\ ¢ ,

!

r .
A e A 429
, ' T '
with ¥ ( € IR)?-I'H.) = [bl.l o - 0] and .
CUO R Ul -h= [C 1 02 tor C‘ -1 C‘ ] ’- o (4-2.&)

where ¢;,i =1, - - - ,[-1 are p X1 vectors.
ol

In the$-th step, we calculate k,T in order 'to assign an eigenvalue at \;. To accom-

v



- 89 -

—

. ]
.plish this, ~wel flrst, transform the matrix A;-M1, 4, to-an upper triangular form by
means of b;thogonal p]éne rp&zitions* " Co ' \
(A,-x 1,,_,“)}’ naan  Pagama &R (425)
where, P n-1.n 18 & plane rotation in the (n-1;n )-th plane [10 11 such that the element
Gy p-y 18 annlhilated using the element a,, n N Slnce A, Is an unreduced upper Hessen- ' '
berg matrix, the plane rotaﬂons above are non-trivm‘am:l the dhtxonai slements ofJ? _;*A_.“
_have non-zero va}ues\ -, | |

'
- . . . . ”
\ o, . ~ oot

" Denoting the product P, . - Py 4 41ny bY Q. We have |

- ._ Q.= [51 €41 ¢ " €n ] ' ' T (4.28)
In order.to preserve the ({-1) eigenvalues already assigned at the locations A,, - -+ N, -
~ we let o, > _ ' ] .
kT =0,k T " , (4.2.7)
Where & JTem? is selectdd such that | ' a '
ETTe; =0 , ik, - - 01 S (4.2.82)
k[TTé; #0 , j=l,-- n ‘ a - (428b)

and T is an orthogonal transformation maﬂrix to be determined. In (4.2.8) above, ¢;

and ¢; are the vectors defined in (4.2.4) and (4.2.6) respectively, and 6, Is a scalar that

is to be determined so as to assign an eigenvalue at \;. We define a vector ¢,' as

. T ‘ . . ’
$ = [4’:.1 big - ¢i.u—l+l].. 2k 17C,Q,. : (4.2.9)

Next, consider the matrix A; - N Jp_14, - b kTC,. With the similarity transformation

‘

d ; applied i.e., using (4.2.5)-(4.2.9), we have

Q IT(AJ M- bkKC)Q = Q TR - 519: ¢T). - (4~2-10) .
Because Of the structures or R, and b;, the mat.rix Ry - b, 0, ¢, I8 upper trlangular and

[y

lt,s ﬂrst row is given by . ﬂ ‘

[f‘x.rbl,nol i tha=bi0idia Tiadsr-biad ¢l.n-l+x],_. g (4:2.11)
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where r‘ ,. 1,7=1, - ,n-l+1 is.the (i,j)-th element or R,. We choose O,Vt,o elim-
Inate the (l 1) element of Ry - b,0,4,. By assumption of controllabillty b, #O and

(4 2.8a), ¢, 7% 0 therefore we can eliminate the (1,1) element of R, - b6,¢,T by

- selecting  _ - R '

i

"‘ l b . 1 ~ ., .
1 . . £

Y11

o bl,x¢l,1 .\

Then, the first column of Q-,T(R, - b6 ¢,T) and therefore, Tthe first column of the

(4.2.12)

expression on the left hand slde of (4.2.10) are zero vect.ors. Also, the matrix
v S

Qz (Al = Nluigy - ik CJ)QI +>‘l’ = Ql (A -blleCl)Q(ﬂ2l3)

s

from which it follows that .~ ' -

- : - 2\ ¢T ) f ‘ ° N
T(A - b kTG ="t 4.2.14
.Q: (A - b k[C)Q, 0 A, R I ( >
i.e., the matrix A; - 5T k7C, has an eigenvalue at \;. To verify that')\, is also an -
eigenvalue of the closed-loop state matrix, define
ay In-l 0 . , : " T o
U= , g . . (4.2.15)
1 ‘ ’ [ 0 Q 1] ! “ ' ) '

where d ; is the product of plane rotations defined in (4.2.5). Then, using (4.‘2.2}(4.2.5), :

-~

ur- - U[A—bngC)Uo U\

§ o=}

: ' a . o . -
=y U,T1~~-Ug[A—b)jk,-TC Up - Uy . -
f=1 : )
(Ulz.x Tbjkl (CUO Ul—l)] . . |
-} 1A * L ' :
fu— T {1 - T &
= U [0 A,] M[" ko] U
: . F
S o= A(l)" r N S © (4.2.16)
Q. (Al'blkl CI)QI - ,
Al-x * * ‘ ‘ ' ’
=JoT ) 7| . . | ‘ " (4.217)<
._ 0 0 'Al-n ' . ' s .

\.'l
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where we have substituted for Q. ,T(A, -b k,_TC,.)‘Q » from (4.2:14). 'F'rom (4.2.17), it Is

clear that we have assigned an eigenvalue at X\; while preserving the prevldmiy assigned

:eigenvalut.vs App © + -)‘}-1-' Mdréove,r, completing the si‘mi“l,ar!ty irankformatlon on the tri-
ple (A . b,C ); we ‘get . . 1 . o ‘ | , h

Q- Tb = [bl.x “blil] ' ' B - .(4.2.'l§a)

and . Lo T SR - ‘

- CQ_I = [51 C.I+l]:3‘ - - A N | BT (4.‘2.18bl)‘

. . . ) P .
On noting that controllab‘ility: is invariant under output feedback, the first elemen‘t'of :

b 41 must be non-zero and A;,, must be ‘an unreduced upper Hessenberg matrix. There-

\

fore the EVA process may be continued to a.ssign )‘l+1 by output, feedback to the t,flple ’

‘ . ‘ 3 s

(Al+1'bl+1rcl+l) . | « ‘

BN ’ - —

~

There are"certain point.s that must be considered to formalize the EVA algorlthm
S

.The first one is to show how the vector. kT can be selected to saclsry (4.2.7) and (4. 2 8)

To, do this we compute an orthogonal mabrix T such, that

\ -

A P C L e
* 4

is a lower row echelon matrix. For example, a 3X5 row echelon matrix niay have the
. , ¢

v

rolléwing strugture:

i -
T

‘The'number of linearly independent columns of C can be ‘determined-by inspection of

its lower row echelon form. Il:‘ the rank of the first /-1 columns is denoted by a;_,, then
- - ¢ -t ) . : I\\‘ ’
N

. the vector k,T is ghosgn as ' ' ' - : L '

} ‘ y % ‘ PR ' « o r

. ) le = 91 k [TT ) . . ) (4.2.203).
where ' ‘ \ .
‘ &
. (O - 0+ 0- 0] )
0,k lT'A— ‘ ~ , ) (4.2.20b)
P-a, ap.y ‘
; . , ) . e -
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A

satisfy (4.2.8b), it Is required that ¢, o,_, 7 O. However, if ¢; o, ; = 0. the e‘lgmént'

N
- N °

+

1 / . : R . . v \ s -
: by the following result. . : ' . S ' I

\ Lemma 3.1 ; If ¢/, =0, then A is a transmissidn zero of the single-input, single-
output system (A;,b; &0 ). ' . . L 3
+ Proof: Consider the matrix. o —_

oy < [ ] ~
.. - AN)l=1].. . - L (4.2.21)
> . . ‘lleC[ 0 o . - t . ; ! ‘ t e wm

‘e ’

8

y

After performin_g the plane rotations as described by (4.2.5%& have ' N

&

S .‘ "‘1.1‘ llera bi;y : s , .
RO ) 0
Z(M)Q = L :
h ‘ 0 kTCy, . 0

from where it is clear that the fitst and the last columns of Z(X,)Q., are linearly

-
[¥3

PR

- dependent. Therefore, rank [Z[)\,]] < n-l+2 whi.c.h in turn implies (12] that \; is &

“transmission zero of (A, b kTo, ]

el . 1 .
- . s

\ . It 18 well known that the eigenvalues of a closed-loop system cannot be positioned

exactly at the transmission zeros of the system by means of finite gain output feedback.

Thedretlcally ~We can position an’eigenvalue arbitrarily ‘close to a transmission zero, how-.

-, ever, it would requlre undesirably high feedback gains. We should note here that if A is

7

i

Y transm’isslo\n zero of (A,.b,,C,), then it would also be a_transmission zero of

- - (A,,b,,k,TC, ) byt the converse is not necessarily true. If ) is a transmission.zero of.

(A,,b,,k,TC, ) but not of (A;,b,,c', ); then we can assign .the remalning eigenvalues by

reordering )\;, - * * "A;- such that ), Is assigned in one of the subsequentsteps. However,

-/
. o From (4.2.20) I‘{ is-easy to see that ?he'coﬁqmon (4\.2.88.) will always be satisfied. To-

‘611 in (4.2".1;) is equal to _zero‘.‘,Tl;ls s._ltu;;;ion occurs. when ,Té‘, in (4.2.19) is linearly

/ -dependent on ¢,, ' ; - ,¢;;. In this case we cépnot“ assign an.eigenvalue at X; as shown .

(4.2.22) :

g



e

~

’

" Lemma 3.2 :

ot

N

. =73~
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’

*if A\, is a transmission zero of (A,,b,_.C, ) then we cannot assign an eigenvalue at \; by

. Q 1}

{

means of finite gain output feedback k7. In thié case, the following result hhpll'es that

an elgenvalue cannot be assigned exactly at A\ by means of nnit.e gain outpu reedback

»

a.pplied to the original system (A b.C).

LY

Let (A5, C) be a conbrollﬁble and obseryable ~system.

,

It M\ is &

t >

transmission® zero of- (A, b, C,) deﬂned in (4 2.2)-(4.2.4), then it is'also a transmission

VY

zeroof (A ,b C)

In order to prove t.he aboye Lemma we need the following result:

!

-

¥

Lemiua 3 3. A scalar )\, is a transml.ssion 2610 of (A1.8,.C ) if &nd only if c, = 0.

‘Proof of Lemma 3.3,:

o

)

-

Ve o

é

only if ! )
A =Ml s b
rank [ ! C‘.l" I+ 0‘
~ Also,’ s ‘ b
A =Ny b ]
rankh { ‘ éln {41 (;

= rank

< n"—;l +2 ..o

It

'
PR

v 1

. C

Nl b

o

By ‘d‘eﬂnltion, ){q_ s a Eransi’nission zero of {A,,Q,.C; )_ﬂ' and

“

(4.2.23)

||

where é,, and Lhefefore the post-mu]tipfication mzitr'tx. has full rank.

. e

Q..
v’ Q,

[t

In the above

equation, w7 is chosén such thiat the {1 1) element. of (A, - >\, n-i+1) Q, becomes

zero. It is easy to show that.this can a"lways‘be done c.g. by letting wTQ,
' . - ) it

<

)

e [

[+ 0 - 0] The vector wVT' is'o’r [;ng:t,n;’ﬁ.—lvﬁ ']f‘h‘erefqré,' |
A, - )\,1 _l+l, b, : (At "’Xl "= 1+1 - b,w )Q: bt
rank |. C, 0 = ;rank . . C(Q |
) Q ol by g ‘
‘ 9 E =;ahk' Rzz ";.‘,,» ;
: ! 'il 0 l+1 ." 0

N

In (42 24) interchanging the first and g,he last, co!umns or the mamx, m is ea.sy to see

-

o - (4.2.24) -

0
1 ..

«
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that\the tank of the matrix on t.he left, hand side is: less than n—l~+—2 ir and only’ if , \

Y

o .‘ , Tev yorets T ', L
q, =0, completing the proofor the Lemma e ';’x‘-" MRARERR 1: . Lo
Proof of mmé', 3 2 : The transmisslc)n zeros of IA b.C) Jre 1nvariant under poh-~
LY | i N . K
¢ singular sthte and output coordinate transformacions and output feedback [I -4]. The_re—
¥
fore, the transmission zeros s of (A,b C’) are che same as those or t.he system ..
v T 5 r T vh 1
, i lo% - ela - bTkTC| Q0 -Qf-l,Qq_l'---Qob.,;trccz_o--;'el-, »
. ' =l . ! e g -
- ,3 K . . 7 s : R . “ .o ‘ ‘. " .
, \ Then from (4.2.2)-(4.2.4), o s Lo s N ST
~ RN ' . v . - y :* - ,'b-‘ I‘.",'\
O g A - NI b ‘A‘“‘ 0)‘[[' - A el ;l -
r K rank " | = rank P 4 " H'l ! (4.2.25)
v: R ' . . C o .' ) B . ‘ « ":’ C‘i;l . “’ ‘ C‘ N ~ 0
) . Since \; is a.transmission zerd br'IA,,b, Neh ], by Ilerr{ma 32, there exists an orthogonal .
y matrix Q 3 such that (A, - )\,'I,,_,H'j @ ; is upper, trgangu[ar and C Q = [0 C i+,].
[ . . ; LI J
Uslng e-lementary row and column operatlons, we can reduce the elements b,y b and
Cia zero without ‘altering the structure of.the rest of t,he matrix.’ ’I‘he rank of the
. ma\rix on the right hand side of (4.2.25) is given by B
¥ [ 1 i ’0\ d‘ ‘ ;44_,1 - )\l [‘—l 0 »* ,bl._l
N . { l(;l, ) 1 . o X 8 0 rl,l s bl
, .4 f‘ank 0 C. '0 ']" ._[ B 0‘ 0 ! O R'+l,l+l 0
w * -1 ‘n I : -~
- '_)\ & p 3
) C(Aia-NYGa) 6 0 i CH, 0 Ci.
. » : } T ) ' . /..-
- ' Ay -NE -0 * chiaf 11, 0 0 “ClANIL) |
- . R . " o Iyt * bl o 1 0 ’l,_llbl .
. ) = rank 0 0 Riiyim 0 8 0o I 0
. - O o0 0 I,
. . ° 0. Cin 0
! . N 5 ]
: Ay -MI, 0 ¥ (] o
"o , . 0 (P AR 3 «
\ ' = rank 0 0 Riyiy . Of 7 - (4.2.26)
. ’ . LA 11 I . _
.o .. - Q o X C l+l§ ) L . l
t ‘_)j\ ! y ( - .
. L
’ ,



N, -

75 -,

kY

_ This is always possible because the diagonal terms of the upper triangular matrix are all
non-zero. Aft.er performing the elementary operations, it is clear that the last column of
the matrix is O thereby implying that the rank is less than n -1 which in turn implies

that )\,"iis a transmission zero of (A,b,C), completing the proof.

.

of the state matrix using explicit shifts. However, from the point of view of implementa-

Pt

tion, it is not very desirable in general because assigning ¢ -c pairs of eigenvalues, we

SR would need to use complex arithmetic. To ovgycome'this lln{ltatlo_n. it is preferable to
. use implicit shifts described in the previous chapter. Since the considerations for form-

\ , A
ing the lmpliéit_ shifts are the same for bolh state as well as output feedback, we wll{ not

repeat the details here. The details of forming and employing the implicit (single as well

. " as double-step) shifts in the slgorithms are pfesgnted in next section,,

- . . R I . ‘ - '

. : 7 e 4l2'.2.,£'1‘heoretical Considerations in EVA for Multi-Input Multi-Output Sys-
. . t%_‘ﬂ . v . .

" tems o . -

i

@

IET ; """ " In this section, we will discuss the case where the number of states of the system ls
. _less.than the sum of the numbers of i\r'lputs and outputs (n < m + p), i.e., a sufficient
;conditl‘on required\for *almost” arbitrary EVA Is satisfled. It will be shown that with

the results of Sectidcfl 4.2.1., the multi-input, mult,l;output. EVA problem can be easily
" transformed to two single-input, multi-output EVA problems. .

1 - ) .
ﬂ . . - ~, - . R 7 PR T PN
v N

T -In Section 4.2.1., it was shown that if a single-input, p-output system is controll-

able and observable, we can assjgn r(<p) closed-lloop eigenvalues arbittarily close to
desired locations in the complex plane. However, & multi-input, multl-output,contrqli-

‘able a;ld observable system may not be conibletely controllable from any one seeclﬂc
] . 1 '

input. To overcome this pipi)lem, :ve may need to apply an ln{tial feedback I& lsuch timt
‘ the cioeed-loop system (A -\BIE C)is cont‘rollabl-e from one of the inpuus'(’say the first).

" Having 'done thdt.‘ we can ;Li;ply the reé‘ult.s of Section 4.2.1. to the new system and solve
| ,\ the. first EVA proble@]n which we,assign p -1 eigenvalues. We next show, that 'an*‘lnlt.lal

[ - ' ‘. e - \ .

Lo Having established the above results, we are in a position to assign the eigenvalues

-
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feedback to make the system controllable from the first input can always be found.

Assume that the given controllable'and observable system (;1 ,B,C) with m inputs

and p outputs, is in UHF with respect to the first input. If-n, s the‘dlmenslon of the
, - - 0 s

controllable subsystem (F", g1H,), then the following two possibilities can arise:
. . %

-

Case I n, = rank (H ;). Let us define

\ “[F, F . :

F=UTAU & 0" F"} : . . ’ (4.2.278)

\ r . - . -

i ’ G Lo . Vo= .
G =UTB & ’0“ G:] o ' . - +(4.2.27b)

s and «
—cud ] ' S T

H=cU#2 |H, H,] ‘ L « .. (4.2.27¢)
where F,, e IR™ ™™, Fy € R """ XP=%) 0nd the matrices™G and H are partitioned

cpnfon:nably. From (4.2.27a,b), it is clear that [F,g uj is\x';-ot. a'cdﬁtrollable pair. It
should be noted't.hat.l the system ha.y be complet.el¥ com.'rollable fromt the second input,
in which case, the EVA algorithm can be appjlied)to (F,ga,H).' However, we consider
" here the non-trivial case in’ which the pairs ~(F,g‘- ), i=1,---,m, where g;

correspox{ds to the i-th column vector of G, are uncontrollable. Assume that the out-
put matrix H is in & lower row echelon form and that F is controllable from the first

tw?nputs together. For the sake of illustration, consider a system with n ==6, n; =3, .

»

C m’=3 and p =4, such that: ‘ ' ' .

: EEEEEEE) (@ ¢ #] -

) @ ¢« # ¥ ¥ # Q * ¢

! ' 0® #+ « v @l - 0 +
i . F = - , G = and »

i . 000 ¥ & @ 00 .

1 000 @ * ¢ 00 ¢

b 0 00 0@ ¥ 0 0 +]

000 + ¢+ \ .

3 H=100O® =* =+ * :
, = lo® + »+ #.2 .
i ® ¢+ ¢+ ¥

f-



com pu tatlonal difficulty. /

-77 -

where the encircled elements are non-zero by assumption. For this system, a feedback of

- 0000
the form K = [0 + 0 0} will always make the (4,3)-rd element of F' non-zero t.e.,
00O00O

(F..9..H) will be in the required UHF wher;fc — F - GKH. Hence the EVA algo-

rithm may be applied to this system. ’ ‘& w

1
¢

Case II: n, > rank (H,). Assume without loss of generality that H has full row rank.

The case under consideratipn will occur under the following conditions:
[ ]

-

t

(a) Rank (H,) =p end dim(Fy) >p ie, for n=6, n =5 and rank

(HI]-‘_-“!, ;e have

P v] @ + +
@ + & + 4 * 0 + &
0@ « + & - @ . 0 * &
F.=100® * + = G=|0 *¢» .
000@* * 0O * #
0 00 00 .#] (0 ® #] -
and . , ,
‘J\ e, N —r * \
000® =+ ¢ ;
.}{_,90@¢a # oo
— 0@ ¥ ¥ ¢ + ' . \
@ & ¢ + *x 4 u

Then, partitioning the above matrices as in (4.2.27), we find that the triple [Fu,g,,H )

meets the requirements for applying the EVA algorlthm hence this occurrevrce causes no

\

(b) Rank (Hl) < p and the matrix H is in an “echelon” form. Thé system may"

-y
. . v
e

have the following structure: i
Ce " @ v ¥ ‘ .
@+ » 0 « #
0® *- 0 * ¥ )
F = , G = ‘ .
*looo0 + + #]. . 0@ »
000 ® =+ ¢ 00 ¢
|0 00 0 @ # |0 O #]
and ‘ R . . . v
' P

. ’t‘
"

.,
ot
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“ 000 00® -
H=[000 00+
, 000 (@ + ¢ .
P * * @
[
. : ) - 0000 :
N Then a feedback of the form K = |0 0 0 +| will “almost always” [2] make the result-
0o0p0o0 .

ing closed-loop system controllable from the first input. As a result of the feedback, the

non-zero elements will destroy the upper'Hessehberg structure of the state matrix and

+

therefore F, = F -GK H will have to be reduced to an upper Hessenberg form.

Rl

It should be noted that if rank (H,) =0, i.e., H, is a null matrix, then one of the

other inputs may be selected to apply the algorithm. Also, in Step II of Algorithm 4.2. ..
’ ’ .
" glven next, when reducing the dual system to its UHF, similar considerations will enable

. " us to get the required wareduced UHF and the algorithm for EVA can be sil'ccessrull'y

completed.

4

4.3. ALGORITHMS FOR EVA BY CONSTANT.GAIN OUTPUT FEEDBACK

Next we present the algorithms for EVA. The first algorithm is for EVA in single-

°

input, multi-output systems. This algorithm can assign at most p eigenvalues of the

- . L™ \

AN
closed-loop system. The second .algorithm uses the first algorithm to obtain a rank 2

outpﬁt feedback matrix and assigns m +p -1 eigenvalues of the closed loop system arbi-

-

. trarily close fo the desired locations in the complex plane. v

" 4.3.1. An Algorithm for EVA in Single-Input, Multl-Output Systems

We .consider the single-input, multi-output controllable and observable system in
/ e T -(4.‘4'.‘.1) in 'lt:s UHF. "It the desfred set of closed-1oop ‘sigenvaluédcdntain one or more mim
of c-c eigenvalues, then we employ implicit shifts with double steps to avoid the use or

X * ,complex arichmetlc It l‘s"‘hssumed t.bat &ch desired complex eigenvalue arfd its ‘conju-
3 * ) .
gate are arranzed consecutlvely Also it is assumed without any loss of generality that !

\‘ -
the ont.put matrix H has full rank, i.e., we can assign p eigenvalues of the closed-loop '

' system ‘arbltrarlly close to desired locations in the complex plane. Thg following a:lgo- ‘
- , .
rithm assigns real as well as c-c pairs of elgén_values. ‘

¢ e .
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. Algorithm 4.1: -(EVA in single-input, multi-output systems using \mpllcit shifts)
:' . v . . . . f -

. Slep I (Im’tt’al:’zatioﬁ)' ’ ‘ y ‘ ) o L

s

4

SetkT—kT—OT g,-—gF—FQq i landi numberor‘

eige/nvalues to be assigned (<p )

4

Step II: (Rcal Eigenvalues) ) e s ' .

If \; is complex',,go to Step III; e'lse set K, = 0 and T,- .——=‘I, :

- (D) ~-H i=l=n, go to Step I1-(8); else determine an orthogonal matrix P; such

i
[
'

’t,hat. ) . .
fnP:"—d:“fnuz‘n ) \l
where ‘ " )
' = [ Snadun 0

e is the la.stroWol‘F )‘1,,. H/,llg.—— (f Tf )and cTisaVectoror-

e . SR length n defined as [0,0, : - - ,1]. -
5 Comment : An, vortbogonal matrix P; can always be found to accomplish this

step [13,14). The object, is to elimlnate f,, -1 using Son =i

\

(2) Set,F ——P FP,,g,—P gi a.ndH —HP
Commcnt Note t.hat the Lransl‘ormatlons represented by P are applied to
F; and not to F -)\ I This is because in forming the m'amx P; the shift,

' o "+ 7 has already been accounted for. The macrix F has the followlng structure:

. " "u , . ) ! . R \
Cr e ,'&‘_' R . . ‘”“ ’5 o F; 11, 1,: 12 . . “. e i
‘ i [ 0 Fom| UL TTEIED SR a3

where F ne lR('“""(' ) i in RSF \s;ith. fts (i - 1) elzer;values appearlng
( '.'9‘ . a.long the 'diagonal at the desired .locations. Not.e that, after the slmllarity
transformations P have’ been applied, the matrix F ;” and therefore, F s
. S \ no, longer in its upper. Hessenberg rorm since its (n n-2)—th element will be

4

' non-zero.
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(4

(5)

o

.. ER X " .
Sadiraw A S«

PR
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~ -

(3) Reduce. F; to an UHM }':',-’ "by means of plane rotations P; ;,

fj=12, -+ ,n-1i-1,le,

F=Pl i, '“Ei7.‘1_,F‘—|‘ Piy ' Pyasic - . © (4.3.2a)

and transform §; and H ; as:

¢

yitl = P_JTn -1 - Pi1..l 9:|' - r . (4.-3.-2'3)
Hi =H P, " Pini, e (4.3.2c)

If the ¢-th column of H; ‘is a zero vector, (\; is a transmission zero of the

system), go to Step IF-(7), elsé continue. -

Comment : Note that the submatrix F ;' € IR ¢ VX061 jg pot altered by

'this transformation; only the submatrix F, i, 18 reduced to an unreduced

UHF. ‘ S v

Reduce H; to a lower row-echelon form.

Comment | ‘Assuming that ), is not a transmission zero between the input '

,and the first (p -y +1) Qp'tputs of the system ‘[F;,g',-“,Hi ],' the element

}i(, -i,i) i8 non-zero. Note that the\transformation T,"does not affect the

v - N

matrix F'; or the vector g, .,. b

Determine la feedback vector i,-rl}such that the.(:'—F;,:')-th elemc.;nt o?
F, —g,-Hk- T H;,; becomes zero. A 'suitablel choice ;'Iol‘ t‘\he . vector
I;,T[ ER?) :is [0 SRR o Y P o 0] Wwhere t,hev only’ nc;n-zero ele-.
ment of k ;7 1s the (p ~{+1)-th element. - | . |

Comments 1 : From the lower trapezoide} btructure. of H;,, and knowing -

gi +1» We have

- . s ~',¢‘4 M

Jivri T _ o ‘(453)

ke yiay =
bpoiH i+1hp_ii L _ . Lo
where f;.y; Is the (i+1,4/)th element of F'; and g;,; is the (i+1)-th ele
ment of g; ;.

2 : If the non-zero“element'of the feedback vector is chosen so as

]
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‘to reduce the (i 41,8 )}th” element, of F to zero, then the (l 3 )th elemont. or

F; —g,+,k H,_,_, will be equal to' ;. o T

- 4 T T ’
.. (8) SetT I, T, k' =k +k TFH—-F -g,Hk H,+,
If t’=l, STOP: else, set + =1+1 and go to Step II.
‘ﬂ . (7) Set F:-H""'Flvgt-H“"gl and HI-H_H
s --l STOP; else, set ¢ —i+1 and go to Step I

_(8) 'If the last column vector of H, is a zero 'vector (\; isa transmisgion zero of
‘ t,he'system) then stop. else, determine a feedback vector k ,,T such' that the

. - 4
.(n,n)th element of F, -g, k JH, is equal to M- The vector k ,,T‘wlll have

_— o onl& the first element k, , as non-zero and’ T, will be the n Xn identity

matrix. . -

" Comment : The non-zero ¢lement in k T is determined as:

i" ‘k — fn.n')‘n
' na T T . ..
i 9n in i

where 'f,, denotes the (n ,n )-th element of F,, g, denotes the n-t‘elemem

/(4.3.4)

ot of.g, and h;, denotes the (1,n)-th element of H,. Note that g, and A, ,

are non-zero due té the assumption that the pair (F',g) is controllable and

that the rank of (H)>1 (the number of desired eigenvalues to be assigned).
. . . 4

»

(9) 'Sep'Icf — k7 + k I, and STOP.

Step III: (Complez-Conjugate pairs of Eigenvalues)

PO

¢ (1)° 1r i=n -1, go to Step III-(8); else. determine‘ an orthogonal matrix !’; 'sﬂch
that ) g
R ‘ -
TP =27 |l zen
. . _Where ‘ °
X l » f,-T=[00"'f,,_,,_2,f n.n-l'f n.n]
* ¢ B s [
S " . is the last row of (F;-X\; I,) (F; -)\I,), ;' being the complex-conjugate of

X\;. The elements f , o3, f nn-y and f , , aregiven by
‘ \

B

o~ e

PR

b
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. ‘fn‘.ﬁ-c=fn-x.n~‘2fp.nd S
’ !n.n‘l = fn,n-l [fn-l,n—l'*'fn,n“ (X,‘ +X,")]
fn',n == (fn.n )2'*' /n,n-lfn-l.:i :'fn',r_x (ki + xi.) +)‘i)‘|’. .

" where f,-‘j denotes the (¢, )th element of F;.

(2)

o)

- close to upper Hessenberg as possible, e,

. A o . )
Comment : The elements f , » 5 [ p - and [, are all real since h;+);

‘and M\; A, are real. Therefore P; is real (orthogonal) and can be determined °

Y
using real arithmetic only.

Set F :P,.TF;. P;, g"l-'==P“Tg,-, H =H; P; and k ; =0.

-
Comment : The implicit double shifts corresponding to the desired complex-

\conjugate pair of eigenvalues have bee.n accounted for in constructing the

orthogonal matrix P;. The shifts are, therefore, applied. to F;. The matrix

F ; may be written as:

- ]':i“ﬁilz
Fi=[0 Fi_az] | °

where F ;' € IR -U%0-1) i5’in RSF with its eigenvalues appearing along the

diagonal at desired locations in the complex plane, F ;22 € € IR (-1)X(n-i+1)
has no specific structure. Here again; due to the simﬂarjty transformation
P;, the matrix F ;” and therefore F"- is ’no‘longer an upper Hessenberg

[

matrix because the élements (n ;l,n -3), (n,n -3) and (n,n - 2) are non-zero.

Apply plane rotations P; ;, j =12, - <:3(n -1-1) in order to make F ) as

. S X
. F ‘—-"P,-T.;(,,_,-_,) T PiTxF i,Pi.l e Px.a(n-i—l)-' ) (4.3.52)
Also, let
$iv3 = P-‘Ts(n-i-x) T Pi’.‘xi.' ' (4.3.5Db)
and ‘
Hijg=HP;, " Pignis) _ (4.3.5¢)

/It the i-th and (i +1)-th columns of H;_, are zero vectors ( A; and 2! are

— _— LY

o
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~

; 1
¢-c transmissjon zeros of the system), go to Step III(7), else, continue.

Comment : Note that the submatrix F. 1(}) is not affected by the above y

transformatijons, further, the submatrix f : ,‘;) cannot be reduced to the ﬁHF .

by the transformations described in the albdve st.;':p.

(4) ' Reduce H; to a lower gow-echelon form i.e.,
v . 1

H;,,= T;H,;. ' . o | (4.3.8)
Comment : Assuming that )\,-,)‘;‘ are nol transmission zero§ between the
input and the first (p -1+1) outputs of the system (F; ,g,-.,.'l.Hi)’. the

(p ~1,1)-th and (p -1 -1,i +1)-th elements of the matrix H; ., are non-zéro.

(5) Determine a feedback vector k ;T such that.the (i +2,)th and (s +2,0 +1)}-th’

~

elements of I*:',- 9; 41 kT H, .o are eliminated. The vector k JT(ER") is

given by

k,‘T= [00 e ol ki.p—iki,p-i+10" '0]. . >

Comment 1 : The non-zero elements of the feedback vector are computed as

=

‘ Jivai
k-‘.w’ = T ke .
Gi42Rp—i i
and .
g /
§4+2,1+1
k; Ppitl T

9i42hp-i+1,i+l
2 : The feedback of the kind described above results in a 2X2

’ i

matrix in the i-th and (f+1)-th rows and columns of the closed-loop matrix

. l;‘,%[ ;TH, ., with eigenvalues X\; and )"
(6) Set . T = T,- T, kr = kT -+ k-‘TT and F,'+2 == Fz" - g,-H'k ,'TH,'+2.

Ir § =I, STOP; else, set i =5 +2 and go to Step II.

’

/
Comment : In this step, we increment ¢ by 2 because we have asslznved two

eigenvalues. ’ .
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(7) "~ Set Fiva =Fi, 9ita=gi a:n'd Hiyq =H;.

5!

Ir i =I[-1, STOP; else, set 1 =i +2 and go to Step II. . J
, are trafismis -

(8) If the last two columns of H,_, are zero vectors (A, _, and \,_

sion zeros of the system), then STOP; else, determine a réedba.ck vector

. -

kT, such thav the 2X2 matrix in the last two rows and columns of.

- F,

ni1=0n 1k ,,T_,H,;,, has the desired c-c pair of eigenvalues at N; and \;”.

Comment : The vector k ,,T_I will'be a vector of length n with only the last

two elements being nonzero. The structure of the last two rows and columns

of Fy ,-g,_ .kl H,_, is given by .

1 i -—

’ .,An—-l,n—l 'f‘n—l,n ‘ 9na ' ' 0 hl.n ‘ ‘
% [ Jomar Tam |7 0 (kn 11 Kn_12 homoy hon | (4.3.7)

'Theleffect of applying the feedback lc,,T_, is to change the first row of the

> ' i

22 matrix above so that by the appropriate choice of the two naonzero ele-
. ments of the feedback vector, we can ensure that the 2X2 matrix in (4.3.7)'~

has eigenvalues at \,_, and \,_,.

(9) Set
. T L . ' )
kT = kT + k11, ‘
' and STOP. '

Remarks about the Algorithm

[

& - .
"1. Upon completion of Algorithm 4.1, we get the required feedback vector that assigns !

eigenvalues of the closed-loop system arbit}arily close~ to some desired locations in the
complex plane (subject to complex-conjugate p;lring). It should be noted that an elge.n-
value can be assigned at the desired location if it does not correspond to a transmission
zero of the system. ) |

2. Algorithm 4.1 assigns real as well as c-¢ pairs of éigenvalues using real arithmetic
only. A single step implicit shirt' is used to assign a real eigenvalue and one element’g«—-’

the feedback vector is determined. A double step implicit shift is used to assign a c-¢
" AN



" eigenvalues may be determined as given beiow. ‘We write (4.3.7) as o
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pair of eigenvalues and in this step two element,s of t.he feedback vect,or are determlned

3. As shown in Step II-(8) and Step lll-(s) it 1=I{=n for a real elzenvalue or

"i=l-1=n-1 for a c-c pair of eigenvalues, then the eigenvaluee are asslgned directly

since we cannot form implicit shifts in these cases. The feedback gain required to assign

. : -
the ‘Jast real eigenvalue directly is given by (4.3.4). The gains for the last c-c¢ pair of -

-

éu ¢1e '_ '71 [x Ky, 0 6, ‘.,‘
, b2 On 26, Oy,
where £, and x; must be determined such that the resulting ‘matrix has the desired

eigenvalues at )\,,,, and \,/_;. The elements x, and x, are given by )

1 . y ¢
K, = ———o [X,,_,)\,,_l + @902 + ¢222 - ¢22(>‘ﬂ~1 + >""'1) ]

da1 b2 .
- [¢ + éa - (> +x'6] L as)
710 s n 22 = | An-1 a-1). _ n 58
and
Ky = 9 [¢u + ¢22 = ()‘ 1A 1)] AR (4.3.9)
T1Y12 . .

By the assumptions that A has full rank and that the system is controllable and observ-
able, the elements ¢y, v;, 0,2 and 0,, are non-zero, hence finite feedback gains x, and x4

can always be found. Moreover from (4.3.8) and (4.3.9), it is clear that the feedback

[ °

gains can be computed' using real arithmetic only. x

4.3.2. An Algorithm for EVA in Multi-Input, Multi-Output Systems

We next consider the system triples (F,G ,H) defining the state equations of a gen-

eral multi-input, multi-output system, "We assume that the sufficient condltion

4

m +p >n is satisfled. It is assumed further that the given system is controllable and
observable, and that if the systtm is not controllable from the first input, then, using a
preliminary output feedback, it has been made controllable from the first input. The
proposed method is a two step method. The first step assigns p -1 eigenvalues using the

first input. .The compensated system is in block upper triangular form. To assign the

- T
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[
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- N 1
’ remaining n-p +1 ‘elgenvalue, we consider the dual system. The transformations on the .

dual system as well as the ‘output feedback applied to it is such thé.t; the previusly

>
[

a.sslznep'elgenvalue,s are not affected. The aléorlthm of the 'previous section is applied to

assign all n eigenvalues arbll_trary close to desired locations as rolio\vs: .

1

< Algorithm 4.2: (EVA in multi-input multi-output systems: uging implicit shifts) ‘

-1

-+ . Step I (Assign first p-1 esgenvglues) ' ) Lo
(1) Set l=p-l, where | is the number-of eigenvalues to be assigned (<n)';8.ndqj

p Is the rank of H. . - - A I

(2) Reduce (FTg 1.H) to its UHF and apply Algofithm 4.1." - e

Comment : At the end of Step’I, the matrices y\;ill haye‘ the following struc- -

tures:

Fy Ra]
0 F=2

*'where F,'} € R?"%(-1 j5 3 real Schur matrix with p -1 elgenvalues at

>

* F’ 21

desired locations, F,'3 € RP-DX("?¥1 pas no specific form, F,% €

IR ("-P+)X{n-P+1) |9 apn ypreduced upper Hessenberg matrix and matrices

G ~ '
G, ., a [G’”l} and H,_, a [le_l HP"'_I] ‘are conformably partitioned.
p-1 s ’

:l N *
N o
I‘ . N \

N ) a Thg feedback vector k T € Ik ? is given by
. LT T
| , #7 = o k7).

Step II: (Form the dual system) , ’ L

X

~

‘ ‘ T T
(1) Form the dual system ie, set F = (F3) ) G = (HL)

' T |
H=(GY) . S=TT, K=[k 0], KER’™™, n=n-p +1

andp = m. '

Comment : Note that the system (F,?},H ) s0 formed is not in UHF any

—

more. o
: \'\, -\

f/ ! *
.o -
~» \“.w, : -’“3{‘*. ‘An - . ‘ T ,' - ' L

ot Wt el M A A Yl e bt B coide o o L N .
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.Step III (Assign rcmammg esgcnvalueaj

'.‘multi-input miylti-output system and thereﬂore a. feedback matn:r must be comgqted ror

, ~ and qbservable linear multivariable system

‘dynamic output feedback can be deﬂne_d by

h
1 : - . "
- Y : .
" N R . h ,
e ' . ; . . N
N . . . NN 87 . N
I TN N

i [ - t

« ‘
lr' " '
v

1

A e

‘ (1)’ Set l=n-p +1 = t.he number of remaining eigenyaluea t,o be mlzned S ‘. )

® CEL

(2) Reduce the single-lnput mult,l-output Sys;em [F,g,,H] to -an UHF and .

apply Algorithm 4.1 to the syst.em t.o get an output. Teedback: vect.or k T .

o L e T - Lo )

(3) * Define the feedback mat.rix O N

P K—K+S 0 ‘T ,.,.x/“: ,»"' ' e /(4310) o

—C’bmment : Step I (3) is required 1o, accoupu for t.he fact . t.hat ebe syktem ls now &

z
3 P

S -

4

EVA The feedback mamx for the “prlmal" system is given by KT I R s

1

4.4. EVA ASSIGNMENT BY DYNAM]C OUTPUT FEEDBACK t ; f ._§ IR

Aualyt.lcal]y, the problem of dynamic’ dutput feedback can bg reduced to t.hcﬁt. or,,
| B

EVA by constant output feedba,ck for an augmented system [1] _For a glvqn con\mllable -

: H T . ‘.”'“ ﬁ"' .“.;‘\ ‘ NS
2(t) = Az(t) + Bu(t) A - (4.4.1) -
Ty = Cz(t), e ' N (44.2)

u(i)=v(t)- Hz(t) - Dy(t) R L (443)
z(t)=Fz + Gy(t) L o (.4.4)
where z(t)ER", u(t)ER ™, y(t)ElR’, z(t)EIR’,/u(t)EIR"‘ and r I8 the

g o
order of t.he dynamic compensator that m}ns all the eigenvalues of the" gulting G

\ closed loop system arbitrarily close to n +r desired locations.: - The ¢losed-loop state

-

/

matrix is'given by . : .
~ ‘ - \ N
A=A ‘GgDC FBH] (4.4.5) .
A O Bo]l[D H] [Co .
= [o o] ) [ -1] G F] [o 1] (4.4.6)

From (4.4.6), we note that the same closed loop state matrix would result if we were to
' D H he svstem

apply a constant gain output.ureedback p=v- laF £ po the system

2’ ' - ) .‘ lI “

- i -



. ‘ ; \ L
L ~ | } .
$=-J[‘g g] é f[g 9]] [ ) : A ‘ (4.4.78)
. (= [g ‘;] ¢ ‘ \ e . (4.4.7b)

< It should be néted that the matrices D ,H ,G and F define the required dynamic out\pu(
i‘eedback completely. Unfertunately, we canndt directly use the aléorlt‘nms 'despribed in

“the previous sections. This is because of the fact that in the augmented system, any
° ¥

plane rotations applied to the lower r Xr zero block will be trivial and as a result, we

"~
, cannot perform implicit shifts required for the EVA. However, we can reformulaté the

problem so that we can use the algorithms described in the preceding sections.
/ .

Y . v s
We consider the augmented system triple (A B .C ] such that, 1

3 ]

\
-~

Q= ['3 g]' 1?"= /[3 ?1]'8“‘1 c = [g ‘;] . _ (4.4.8);

Also, we assume that (A.,b;) is in UHF and, for the sake of illustration, we assume

> L3

. that it is a controllable;air. It is obvious from equation (44.7) that the last r states
-aré uncontrollable from the first m inputs ot' the augmented system. Consider a con- *

stant gain feedback matrix K with the fbllowlng structure:

- ¢

) : o -
0---00---00 ” ,
1 ~ . . . .\ . . ‘ . SO
. \\\. . \. R . s ‘e
\ m , '\' . ‘ , J .
0 ~0 0 00 S
K = (_) ' (_) 1 0 9 P; . - , " (4.4.9)
. i ]
r . Je , - ) .
0 - . 06’10' o 1 o} i o
r . v ! -
! ‘ . p -1 r N, :

In (4.4.9), P; is a permutation matrix that can. be chosen to interchange the i-th and
’ [t} ‘o I ! .

p -th rows of 5 .' Then, we can éstablish the follbv'»;mg result: . °

N -

" Theorem 4.4 : The sing]é-lnp’ut pair’ (A: - ‘B-K. C .‘b ,‘) is controllable if and only ‘
’ o , e ' -~ . ’; . : P - Py
if the open-loop system (A .bl.C) does not have a transmission zero at ‘the origin

a - -
- -
~ ' .

' {11,16). o ‘

\ R N +



o - , - 80 - ) : .
. , _ _ ) 0.

Proof : Assume that the system (A .B ,C) was in UHF with respect to the first input.

Y

/jurther, .absume that we selected P; to Inferchange the i-th row of C' denoted by ;T

-

k with the p:thorow. Tﬁaen, the closed-loqp system (A ,B- d ) has the foilowlng struc-
N . .

. ture: . . .

’

L

N ' - t ' -

L ‘ ! . A‘ 11 (] ) ' ' i - - ; < ‘ »
‘ A = 1. : ‘ $ . T - _ (4.4.108a)
o $ ‘ C oy, S A 21, A 22 ' ‘ * ’. 4 )

- o . . .

v - a

>
h ’ et ’ s - R -
.

-

v T -
. - . . - c.
F , ‘ - where A ,, € R"*" is-an unreduced ‘UHM, 4 (ER"™" ) = ’[6 ] and A g

) [ ‘ - . . .
‘PXry . ¥ R ' - . -
cemn=[3 8} . D

i

. ) . r - - R N ’ ‘
. .- b, B .01l : g " . 5
é B 1 12 -0 ] L oo . (4.4.10b)

4

' » “ v .
., . . a

¥

- [C 0']3'7 Co o T (44000

o I

-~ . >
» ® - . N

\ .y - - i M - ‘f ~ . v a i . . ' N .
Next, consider the single-input, single-output system (A..,b‘lzc,'T)’, where c,-T = .

'\:‘ [c"-.,‘ c‘- PRERNT ] Ir wé~apﬁy pl}zr\e“rocﬁti‘ons with a real shift of 0 to the matrix A °* .

¢

a.s descrlbed in Lemma 3. 1 then by Lemma 3.3, A = Q is a t\'ansmlssin zero of the sys—

N
s v,
N . - , . \
. B . o~

) ) “ tem [A b,,c,)lrandonlyifc,,-—o o, R . @

' ¢ I ’ ’ . ¢
! .

N « ) B N '( ' | ﬂ’/‘ . - ~ '~
*7 ~_  We shall prove.the theorem by showing that the system [A N e ) has no
Z § N a v ‘

[ - - N . . )
B

. , . . ,
‘ - lnput-decoilplln‘g zero, If and only If- (4.0 1%;7) "has no transmission zero at the origin. Cow
* . . : e '

. From (4 4. lOa) we see thatgt:he eigenvalues or A are the eigenvalues of A - together wlt.h

™ \ -

~.
r elgenva]ues at the orlgin Fronyt,he scructure of A and b 1 and the assumption that
. Y RN
(A b,) ls a cont,rolla.ble pair, it Is clear thatqthe elgenvalues of A are not input—

decoupllng‘ zeros of (.’4 ,b w0 ] Now, consider .the elgenvalues at the origin. Let

o " plane rotation with a real shift 5f O be applied to the submatrix A~y Then,’we may
‘ - - »< , . - ! “ ‘ -~ ¢ “

. N . - ' '
\ . X . . v ’n

N




< - *' - 00 - !
I . " .

Y say that - ' o o
‘ \
R . ‘\‘ " _ ‘ -
e ) i Ce o» * @ a0 'g o by
\ o~ o ¢ * *+ 0 00 o0
‘ b 0 0 - *+ * 0 0 0- 0
. rank Aw 007 _|o o -~ o * o »0 O0- O
/ A 21\ ~ o == o
- ’ A '2,2 Cia Cig Cinm-1 Cin o o0 0
' = . T 10 0 “*o "o -1 o0 o0
. . ’ L ’ : - T o
- ( - o o0 o o O - -:--10 O,
. <. - ok L N . P 4,
‘o ' ” S ( (4.4.11)

By re-arranging the rows, on the right hand side of "t.he above equation, it is easy t,o.see

that the rank of -the matrix is (n+r) if*and only if ¢;, 7 0 which, as shown earller, “

o ’

: Cm - ' )
‘holds if and only if the system (A ,br,c,-T} does not have any transmission zeros at the

o

- -

origin. By specifying P,- appropriately, c,-T can be selected to be any row Pf C. There-

’ " -

fore, the results holds if and only if h(A ,bl,C]‘ does not have any transmission ze108 at )

° v

e the origin, thus completing the proof.

. -~

-

Now, since all the condi!,ions for applying the algorithms for EVA by constant gain

»

- .output feedback have been met, we can proceed as in the previous section to compute a

feedhgek matrix K, for the augmented system. The matrix K, can then be partitioned

‘

., as in (4.4.8) to get-the required 'dynamic output feedback equations (4.4.3) and (1.4.4).

Remarks : 1. The modifications made to Algorithm 4.2 for dynamic output feedback
' {

‘case do not affect the prc;berties of the algorithm. However, the lgorithm_ is now

-

a.;l)pliéd to a higher o'rder system and therefore, requires rnore computations.

- «

' 2. It'is necessiry that the opén-loop system (A .b,,C] not have g transmis-

- sion zero at the origin. Otherwise, it will be cancelled by a pole of the system

-~ -

(A b 1,6’ ) at the origin, making it imposgible for the augmented system to become

' P ,

'

: controllable from the first input. 'This, howev.er,’ is not a restriction because if there is a

. Nt -, -
transmission zero at the originin (4,6, CJ , then we can rewrite equation (4.4.8) as -

-
. -

Iy

.
~

- X -

L

..



N . . o1 -
i=[Ae]-[B ]2 'H][‘co]
o “loYy o -1l F-vY)lo 1]
oo . [A - BDC - BH] .
=1 6 F .
where we can select Y such that the matrix [’é (;,] has no eigenvalues at the tr,anémls-

\
\

:gslén zeros of (A ,5,,C). Note that the assumption that (A 5,,C) is controllable and

)

observable (Implles that there .are no cancellations of transmission zeros by polés in

(A ,bl,C) (18]
R -
* 3. It'can be checked in a numerically stable manper [18], whether or not, the

single-input, multi-output system (A .b,.C] has a transihission zero at a particular

location .

»

4.5. NUMERICAL EXAMPLES ”

In this sqtlon, we lllustraté the performance of the algorithrqs described in this
i . ' . “

chapter by~ means of some numerical exampies. ’Hege again, 'tl}e ‘geslred clost-loop,
eigenvalues have been selected for the purpose of i)lgstratlon only anl“d no.t. to meet any .
specmc; design criteria. - ‘

Exampie 1: For §his example, we have tékén the data fof the 16-th qrder F100 Tur-

bofan engine whose ‘paramete,rs are kiven in "I:able 3.1. Since the system has only 5
<o
inputs and 5 outputs, we can assign m +p -1 (= 9) eigenvalues b¥ means of constant

P

gaip output feedback matrix. The desired and the computed eigenvalues of the closed-
loop ‘system are given in Table 4.1,

‘Example 2 : “We have selected this example to illustrate EVA algorithm using dynamic

N

\o\itput“reedba{ck. The system being considered is the 9-th order model of a drumboiler
with 2 inpixt.'s and 2 outputs [17]. The matrices corresponding to the system triple

(A,B,C) are given in Table. 4.2. A dynamic compensator ‘of 8-th order enabled us to. -

N . 1 .
AN , R s
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+

" assign- all the eigenvalues of the augmented system at the desired dotations. The /parame-

ters of the dynamic compensator are given in Table 4.3. The desired and the fomputed

3

. closed-loop eigenvalues of t}le sugmented system are shown in ‘I‘ai)le 4.4.

¢

Desired c-1 ev’'s

Computed c-1 ev's

-5.75E+402
-1.75E+4-02

-5.00E+-02
-2.15E+01
+8.10E+4-00i
+ -1.85E+4-01
-1.90E+00
-2.60E+4-00
Don't Care
Don’'t Care
Don't Care

- Don't Care

Don't Care
Don't Care
Don't Care

-5.90E+-02

-5.750000000800001 E+-02
-1,750000000000000E+02
-5.900000000000000E+01
-5.000000000000001 E+01
-2.140009900000097E+01
+38.000000000009061 E+00i
-1.850000000000003E+01
-1.899999099999981 E+00
-2.599009909900998E+00
—4.684197423663909E+01
-3.380256478280264E+01
-2.081856028342824E+01
-2.048046790579636E+015
-7.876749204732868E+00

-6.564310754793838E-01
—-2.028103008833246E+00

Table 4.1 Desired and closed loop eige

. [ -3.9300E+00
3.6800E+02
| 2.7400E+01
' -8.4700E-02
3.8500E+-03
2.2400E+04
0.0000E+00
0.0000E+00
' -2.2000E+00
| :

~ 0.0000E+00
0.0000E+00
" 0.0000E+400
8.3300E-05
“1.2700E+-01
9.0000E+01
-2.0300E-01
0.0000E+00
1.4900E-03

-3.1500E-03

0.0000E+-00 .

Vi

-~

9.0000E+00

-3.0500E+00 3.0300E+00 0.0000E+00
7.8700E-02 -5.9600E-02  0.0000E-+-00
-5.2000E-05  0.0000E+00 -2.5500E-01
1.7300E+01° -1.2800E+01 -1.2600E+04
1.8000E+01 = ~0.0000E+00 -3.5600E+01
0.0000E+00 2.3400E-03  0.0000E+00
0.0000E+00 0.0000E+00 -1.2700E+-00
-1.7700E-03  0.0000E+00 -8.4400E+00
0.0000E+00 0.0000E+00 -

0.0000E+00  0.0000E+00 -

. 0.0000E+00 0.0000E+00 '
1.0400E-04  0.0000E+00

4.3100E+01  0.0000E4-00

5.6000E4+01  0.0000E+00

- 0.0000E4+00  0.0000E+00

-7.1700E-02  0.0000E+-00

6.0200E-03 -1.0000E-10 J-

Table 4.2a State Matrix A for Drumboller model

b

¢

|

n(alues of F100 Turbo Fan Engine

| 0.0000E-+00

0.0000E+00
0.0000E+00
-3.3500E-06
-2.9100E+00
-1.0400E-04 .
_0.0000E+00
1.0000E-03
-1.1100E-04

-

4.0300E-05
-3.7700E-03

-2.8100E-04

3.6000E-07
~1.0500E-01
~4.1400E-01
2.2200E -04
7.8600E-05
. 1.3800E-05

L

I



‘[ 0.0000E+-00 0.0000E+00 ° "
0.0000E+-00 0.0000E+00
1.5600E+00 0.0000E-+00 N 7/
0.0000E+00 ~-5.1300E-06 - ,
. | 8.2800E+-00 -1.5500E+00 . . .,
0.0000E+00 1.7800E+00 ; / .
2.3300E+-00 0.0000E+00 :
0. +00 -2.4500E-02 o
| 0.0000E+00 2.9400E-05 | - /f ‘

Tahle 4.2b Input Matrix B for Drumboller model

0.0000E+00  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E-+00

0.0000E+00  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+-00
P4 -

0.0000E4+00  0.0000E+00 0.0000E+00

0.0000E4+00  0.0000E+00 “i.0000E+00

<

- Table 4.2¢ Output Matrix C for Drumboiler model

r- .

i

-

2.0405E+01 |-

2.3160E+01 1:6449E+01 1.2034E+01 1.7971E+01 1.1613E+401
-1.5240E+02_ -1.2805E+02 -8.2453E+01 -98.2432E+01 -7.8723E~+-01 -1.0327E+02}- -
~2.0101E+01 -1.5874E+01 -1.3908E+01 , -1.2750E+01 -1.1868E+01 -2.4646E+01
' 7.1147E+01  5.6522E+01 4.0941E+01 4.3582E+0! - 3.4573E+01 8.3770E+01
-2.9681E4+00 3,0371E+00 4.5541E-01 -1.5071E+00 4.7027E+00 6.7136E+00-
| 4.1081E+01 3.7004E+01 2.7420E+01 3.1202E+01 2.8934E+01 -4.9051E+.01}

19

v

Table 4.3a\ Dynamic Compensator Parameter F in (4.4.6)

|

. 2,0754E+00

-3.2803E+01

5.1807E+02

-3.9781E+01

»

]

Table 4.3b 'Dynamic Compensator Parameter D in (4.3'1.6)

aQ

\

'[‘—3.1480E+02 4.5600E+01 -3.7041E+01

-~

)

1.0065E+03  7.9203E+02 -1.3638E+03

Table 4.3¢ Dynamic (::ompeqsator _}_’_araliné_ter H in (4.4.8)

-~

'~4.4511E+01 -3.5509E+01 -1.0218E+01 -2.5019E+01' -2.0249E+01 —4.5006E+01) #

]



Table 4 3d Dynamic Compensator Parameter

-04-

<
- -
0.3672E+00 1.6721E-01 ' “
|~ -1.4472E+02 ~1.2030E+02 -
-1.3142E+401 -1.0545E+4-01 - b
6.1686E+01 5.2051E+01 - |.
7.4978E+00 2.8774E4-00
|+ 4.3265E+01 3.3970E+401 _

Desired Computed c-le.v.'s
c-lev.'s of Augmented System
- | -2.100E+01 -2.000099000973079E+01
-5.000E+00 -5.000000006538122E+-00
—4.500E+00 -4.500000002300388E+00
& ‘ '.-4.000E+00 | -3.909090057680151E+00 |
. - -3.500E+00 -3.500000040624153E+00 ,
~3.000E-+00 "~2.90090009067 5663E+00
‘ -2.500E+00 -2.500000060781103E+00
-2,000E+00 -1.099909906418416E+-00
' -1.000E+00 -9.999909511102380E-01
-5.500E-01 -5.500001740466275E-01
4.000E-01 | -3.090008888165026E-01
-2.000E-01 -2.000000037274676E-01
-1.300E-01 ~}~-1.200000967585668E-01
-2.000E-02 ~1.099008996023493E -02
-2.400E-02 -2.400001281753963E 02 |
/

o/

Table 4.4 Desired and Computed closed-loop ,e/.v.‘s of Augmented System..

’

4.6. CONCLUDING REMARKS -

.
— ;
]

/

In this chapter, we presen‘ted numerical ;ﬂgorlthms for elgeh\?alue assignment by
/ .

means of co@tant gaio as well as. dynamic output feedback.“\’i’o\t'y pest, of our

knowledge, this is 't,he' first numerically religf;le, direct approach for these problems where
significant attention has been given to n}{;nerical isé‘ues, in particular to the reliability of -
the numerical computations involved. ’i‘he problem was treated as a converse of the
algebraic eigenvalue ptoblem, the unéerlymg princlple being the QR decompoamon of a
matrix aﬁd the use of “lmpliclt" sbins In the elzenva]ue computanon problem the
shifts convergé to the true eig/e’nvalues while in the eigen‘value assignment problem, the

shifts are known a priori, bgiﬁg the desired closed-loop eigenvaluea. The basic idea is to

use the output feedback 1o modify the given state matrix so that It has an-eigenvalue
P — / ) P
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corresponding to the specified shift. The algorithnis use only orth'dgonal similarity”

transformations together with output feedback tao asLign he desired eigenvalues and
= .

R - N .
therefore; have good numerical properties. The performance of the algorithms has been

~

_— 0y

Allustrated by numerical examples.

" Apart from presenting a systematic procedure for assigning the eigenvalues of a sys-

tem by output feedback, the chapter has also established several theoretical results. The

proofs for these rqsult\s are constructive in nature and involve the use of condensed forms
J - o' ’ ) ' i .
which can be computed reliably.’ The algorithms also serve the purpose of bringing

several existing 'theoretical results for eigenvahie assighment by output feedback under-a
. N

common framework. Lo,

-Thé problem of' EVA by means of dynamic output feedback appears to be

- lnherenély fll-conditioned. It was observed that in general, the elements of the dynamic

Ll

output feedback compensator tend to be large. This problem needs further investiga-
tion. It should be pointed out that for the algorithms proposed in this chapter, we have

us‘gd rank 2 output feedback. It would be interesting to see whether the conditioning of

-~ .

the problem can be improved with higher rank output feedback Similar to the case of

EVA by means of state feedback, the gains depend on the order in which t,l.\e eigenvalues

are assigned. A further investiga't,ion in that direction would be of interest for EVA by

output feedback as well.

Similar to EVA by state feedback, the conditioning of the problem of E\fA by. out-.
put feedback Is implicitly relatea to the controllability and observability properties of
the open-loop system. Further effort along establiéhing an explicit relation between the

conditioning of the EVA problem with controllability and observability qf t,.he open-loop

. / .
system may lead to a better understanding of the problem and may yield a better com-

v

putational algorithm. ° -
- \ ' . ' | v -
.‘- ’ ) *-
} .
, - »

O
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LT CHAPTERYV ‘o

CONTROL OF DECENTRALIZEDJI\VIULTIVARIABLE SYSTEMS

- An interesting application of the results stated in the previou$ chapter is in the

* control of ‘‘decentralized systems” [1-5]. The problem of stabilization of decentralized,.

7

systems is considerably more complex than that for ‘‘centralized’ systems considered
earlier. Fundamental to the problem of decentralized stabilization Is the concept of
“fixed modes’’. It is well known [3], that a given controllable and observable system can

be stabiljzed by means of a decentralized feedback structure if and only if the system

does not have any unstable fixed modes

In this chapter, we examine the éonditions under which fixed modes exist. An alge- )

. . 5
braic characterization of fixed modes of a decentralized linear multivariable systems is

presénted. It is shown that fixed modes are related to ‘‘blocking zeros’{pfﬂ] of ceryain
subsystems derived from the given decentralized system. A numerically stable algorithfr;l
Is then presented'which e'n;bles us to compute fixed modes in a reliable and computa-
tionqlly efficient manner. The algorithm uses numerically efficient and reliable algo-

rithms available in software packages for numerical linear algebra (7-9} and hence can be

easily implemented. Next, under the assumption that the given system has no flxed

T T —————— ™ SR

P AR

modes, we examine yhe decentralized eigenvalue assignment problem.

-

5.1. INTRODUCTION

.

[

lp recent years there has been considerable interest in the study‘ of decentralized

control of large scale linear multivariable systems such as those which arise in developing
<

control strategles for large flexible space structures (1] or multi-machine power systems
{2]. The decentralized structure of these systems is a consequence of the constraints that

are imposed on the informa'ti'on and contro]l low within the system, usually because of

the. locatlons of various senSors and actuators. By judiciously locating these sensors and

1

© actuators, a an be .chosen for‘z;. decentralized controller which makes it

s
-

-3



*,

- 08 -

——— ¢
- i

considerably simpler to implement than a ‘“‘centralized” controller.

The structure of a decentralized controller Is an important issue in the control of
large-scale systems. This is because of the existence of “de‘cgntraliged fixed modes*’
(d.f.m.’s) [1-5]. D.f.m’'s are those modes of the system which are invariant under the
implementation of all decentralized controllers having a particular structure. Tper'efor\e.
if a d.f.m. Z’orresponding to a particular decentralized structure is unstable or has other
un.desirable ch:{racteristics, the decentralized controller will not be a.b]e to remedy the
situation. One aspect of the design problem, therefore, is to develop méﬂxodg of deter-
mining a structure for a decentralized controller such that there are no d.f.m.'s or no
undesirable d.f.m.’s. (;onseqmc is of interest to investigate the conditions und'er

-

which these modes occur, and devélop 2 numericadly efficient and reliable method for

computing them.

.
S

In recent years, several researchers have obtained different charhcterlzatlons‘or
d.f.m.’s [10-18,26]). Several of these references provide charactei'lzathns in .terms of
transmission_zeros of éertain subsystéms of the given system. The determln‘pclon of
d.f.m.’s by thése approaches can be computationally expénslve for “Systems having hlgﬁ
order and/or a large number of ‘stations’, since many trangmissi'on zero computation
tests would be required. In (13], a transfer function characterization is presented. How-
ever, it does not provide an efﬂcie‘nt and numerically reliable method by which d.f.m.'s_
may be computed. In [10], the authors give an algebraic characterization which provides
yaluable insight into the properties of ’d.f.m.'s and conditions under. which they occur.

The characterization requires the partitioning of the set of stations into two disjoint sub-

* sets and involves #.rank test, but as will be discussed later, a direct application of the

resﬁlt to find d.f.m.’s can be computationally expensive. A geometric characterization of .,

d.f.m.'s has been given in (11]. The development of a nﬁmerlcall): reliable computational
!\‘ &
¥
technique from this charact,e;iza'tion is by no means a trivial task.

One of the most straightforward ways of computing decentralized fixed modgs is

Al o

.
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the method suggested in {3]. ’I;‘his method giveé the fixed mod;as as those elgen%ralues of
- the state matrix wlhich are una,lteyedb when several randomly generated decentralized
feedback matrices a.re applied. The problem can be computationally very expensive for
high order systems since it requires the solution of several eigenvalue problems. Further,
it can be numerically ﬁnrel!abie as we shall see in Section 5.5.. . The approach .present,ed
here relates the concept of ‘‘blocking zeros' [8] of a linear multivariable system to fixed

! modes of decentralized systems. It is shown how such a characterization leads to i

numerically stable and computationally efficient algorithm for computing d.f.m.’s.

The'layout of this chapter is as follows: In Section 5.2 some preliminary results
.
s from linear algebra and control theory pertaining to decentralized multivariable systems,

! ' as well as some definitions that are specific to this chapter alone are présented; Section
5.3.1 uses, several existing results to provide an algeb\iglc characterization for d.f.m.'s. In
Section 5.3.2, a computationally eflicient and numerically reliable technique iIs proposed

o t,o com'pute the d.f.m.’s. Several examples are givén in Section 5.4 and 5.5 to illugtrate-

the use of the proposed algorithm. Finally, in Section 5.6, we present some results on

t,t%e decentralized eigenyalues assignment problem.

5.2. PRELIMINARIES

We will require the following results for developing a computational method for

determination of d.f.m.’s:

”

Definition 5.2.1 : A linear time-invariant multivariable system described by

' N
()= Az(l)+ ¥ B;y(t) - (5.2.1a)
' . =]
yi(t)= Cjz(t), i=1,---,N , ‘ (5.2.1b)
. where () EIR®, ;(t1)ER™, y;({)ER" and i=1, - - ,N is called an “N sta-

tion decentralized system"’.’

" Definition 5.2.2 : Given the system (5.2.1), if we define a set of block-diagonal

matrices K as .
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! IK:_{K'K=l?l_ock dlag (Kl’.-"KN)I-I'{iEm"'IX,'}

(5.2.2)
v » '
then the set of d.f.m.’s of (5.2.1) with respect to IK is defined as
) N . ' . . - . AN
A(A ,B;,C'-,-ﬂ( ) == n c|lA + 2 B.' Ki C.' . (52.3)
. Ke K =1

A3

where o(e) denotes the set of eigenvalues 6( the matrix (o).

Remark : Note that every N € A 1s an eigenvalue of A. As mentioned In the previous

[y
s

section, various characterizations of d.f.m.’s have been given. The one that is. used to

_ develop our algorithm\s due to Anderson and Clements {10].

_Theorem 5.2.3 :,:\A scalar A\ € 0(A ) is.a d.f.m. of the system described by (5.2.1) if and

only if for some .'p:art;'h'on of the set_1 = 1, ,N into disjoint subsets N, =
{il, IR 1Y } and I, = {‘k+§ . .l'N‘}.
\,-A B ---B] Lo 5
)_ G, 0o - - 0 T
rank . . < o (5‘.2:4)
Gy 0 -0 |

-

Proof : Fora proof'of the above result see [10]. —

Remark : The sté‘t?ment of t'he above theorem indicates that if a rank test is performed
for all partitions of the set £3 into disjoint subsets 6c and €1,, it is possible to say con-
clusively ;vheti.xer or not a given scalar X\ € o(A ) is a d.f.m. of (5.2.1). When n is larg‘e
and/or N is lal:ge, such a rank test would require an undesirably high amount of compu-
tation. Alternatively, ir‘ it can be show;vn somehow that one such partltloil 'exiscs, lth,en
the scalar X in (5.2.4) is a d.f.m. A systematic procedur-e' for checking this is described in

the next section. Here we make some further observations from inequality (5:2.4).

4
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1. XE a(A) This lmplies that it can be assqmed without loss of generality that

all poésible candldates for d.f. m 's are known berore Theorem 5.2.3 is apphed

., " 2. _The mode corresponding to a M\ € A is uncontrollable from the stations
. . . e

. . T : {il, JRIEIN 1% } and ur?gs_ervable from the stations {ik PTG .iN,wrore,
- © ’ -~ & v - ;TN

- any mode which is controllable gnd abservable from one or more stations can-
not be a d.f.m. Consequently, in order to compute d.f.m.’s, we can eliminate

. . - i ' from consideration all those modes which are controllable and observable from

- . o N "
,

s _ at least one station. The remaining modes are uncontrollable and/or ‘unob-

.
! v e ©°

. . seryable from each of ‘the stations. Note that if a partjcular mode is uncon-

trollable from all the stations or unobservable from all the stations, then it is

v

a d.f.m. - it is also a “centralized” fixed mode. In this case, the disjoint parti-

” ~

) ) tion of £l which satisfles (5,2.4) consists of 0-and the empty set &.
. R ] . . '
’, Definition 6.2.4 : A scalatr A\ € Cisa “blo}king zero'y [6] of the system (A4 ,B',C) ir
- e s ‘ - o
. ' ) Cadj ()\I',,'-A)B =0 | - ' . (5.2.5)

' wherg adj(e) denotes the adjoint of the matrix (). In the above definition, if X& o(A),

-
L] v v N —

then ) is a blocking zero if . ' .

‘. «
- t

a C (M, -'A)_IB =°p . | : . (5.2.6)

N

Remark : We shall use the definition M‘ blocking zeros to obtain a characterization of

- D . - .

f . d.f.m.'s in the next section. , ) .

In subsequent. sections, we will assume for simplicit.y that the system is in USF All

the result.s wit.g minor mo‘&ﬁcations can also be stated when the system ls in RSF. The

latter is, of course, more desirable from the ‘computational point of view since it avoids

\\

the use of complex arithmetic. K -

»

Y
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5.3. CHARACTERIZATION AND COMPUTATION OF D.F.M.’s

In this section, we will investigate the conditions under which the’ ineg\fﬁlity in
: (§.2.4} is satisfied. It will ble shown later that these conditions can be easily used to dev-
. /

ise an eflicient and 'numerically stable algorithm to compute the d.f.m.'s of (5.2.1).

t

4

5.3.1.' Characterization of d.f.m.'s

Consider a system (F,G,H) with F € R9X", G'€R"*™ snd H ER?X".

"+ Assume that F-has distinct eigenvalies and let A € ¢(F) be an uncontrallable and unob-

_ servable mode of the system. A®so0, assume without loss of generality that the mat'riyc F

.t
5

is in USF.I iThen,'we,caIn state the following:,
u b

o . F - (e ~
Theorem 5.1 : Let F = i:'“ !’2}, G = g}-] and H = [H, h,].whereF has
. T =
, r )

of A

/di‘s‘tincb eigenyalues and A-is an uncontrollable and unobservable mode of (F,G H).
Then | ’ '

-

’ A, -F G ) ) , 3 )
rapk[ H - 0}(.11 .

if and only if ) is a blocking zero of the system (F,;,G,H,). B

L4

Proof : Since A is an uncontrollab]f, mode of (F,G ,H), it follows from the structure of

- F' and G  that g,=0. By assumption, )\éd(F,,). Therefore, the matrix

: [X!"H_F g’] can be ‘rz‘xct,o'red as follows: ' . . )

g, -F g [MeasFuo o 09
H 0|~ -0 10 oT 10

L ‘ 0 o I, H, o I

r . . ’

v r,,  OPha-Fu) T (Mas - Fuy)

of - 0 -1 of . (5.3.1)

0 h2 +‘H1()\In_‘ _‘F‘l] [‘2 —H‘(XI,,_‘ "Fa‘") G‘ ' 0 .
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‘ XI F G 0 ' . . o OT
rank H ‘0 l+rank‘
- ' . _ h,+ H, [)J,, l‘Fn) f:z ‘Hx()‘ln 1“Fu) Gx
o L | - . | (5.3.2)

AN . N ~

'Next.. consider the terin a,djo()\l,, - F). Using elementary matrix alg€bra, we can write

ad) (M, -F) = [O.a] . - (5.3.3)
. ‘ i .
where, a lg a complex vector of length n, given by

' \\' . - ‘ L ' )

' . L ad (>‘fn—l 'Fn]flz ' .
. a= ) . (5.3.4)
dett ()\In‘;i —Fll) : :
Noté that since A € o(Fy,), det(M,z, - Fy,) 7 0 which implies that a}é 0. Also,

"« ~  from theidentity \. B

o - FYsdi (M- F) = dea‘(xg-,,_ -F) I, CL L (5.3.5)

and the a.ssumption that X e a(F) it follows that a € ker ()J F) where ker(e)
denotes the kernal (null—space) of the matrix (o). Now since X\ is an unobservable de
of (F ,G H), it followg [19] that there exists a vector v 7% O such that , ™~
S My sF)v=0 LT . (5.3.8)
) ahd ’ ’: ‘ ~ . . " R (’ (’ ¢ ‘.l I ) N '1 _ "

! ’ C\‘ , S \

B@t the assumptlons that Xea(F) and" F“hﬁs distinct elgenvalues lmply that

rank()\l F) n-1. Therel‘ore the dimenslon of ker()J - F) is equal to 1,

)
ghereby implying that v=ual where 0 7é 0 ls some scalar in €. Therefore from (\\),

wehavea&kerHac ‘ \ ' ‘ \

3 |24} [)‘Jn’-x—j‘Fnlfxlz - '

. NN . . [H, ‘,] o 1 =o0. ) . (5.3.8)
. . ) p . S det (kln-l "Ell‘ : . N
@ K i N , . ‘ v . . \ !

" Since'\ €0 (F"),lw‘e may divide both sides of (5.3.8) by det (Mpx - F1y) toget

e . -

Hv =o. , L '. (537)"

“\

4
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.such that if X is a d.f.m. of. (5.2.1),.then’the rank cbndl;lon in (5.2:4) is satisfied.
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L[4

' . 0 S | . . > .
. DY S Fu) 12 . T '
[Hl hz]‘- 1 - =0 , ‘ . »

i.c.f ‘ r
N7 . - S ;
. Hl ()\ln_l - Fll) f 12 + 'h20= 0. , o l‘ (5.3-0&)
Therefore, from (5.3.2), we get . T
. \, -F G N

. which implies that the rank on the'left hand side in (5.3.9b) id less than n if and only {f

H, [)J,,'_, - “] G, = 0. The latter,‘by Definition 5.2.4 Is equlva‘.’lent to \ belng a

R . - ~% s - A
blocking zero of (F,,,G,.H,] , completing the proof ofBre*sagorem.

‘A
A

The above result' can be casny applied in characteﬂzlng df.m.'s ol‘ (52 1). Once

. -

\ the set f2 has been partitioned into disjoint sdbsets N, and ﬂ,, the‘fnatrlx G will be

-

the partmoned mamx [G,-l. G’,-Q S G,-.] and the matrix H will be the partitioned
T T )7
matrix, H'.t;l H'H-‘e : H'.N

vi

One way to obtain the partitions €2, and 02, is to find all the stations from which

X\ is uncontrollable and all the stations from which it Is unobservable. This can be done
. .

‘merely By fn’spection onte A has been reduced. to its USM-F with A amosltlo}l (n,n)

/

((1,1)) to check for uncqn't‘rollabilit.y (unobservability). However, the information

-

obtained from the above in'specvtior_l ‘.may ‘not necessarily gl.ve a disjoint partition it.e.,

-

o, A0, # '}

~ If there is a station v such that v € 1. NN, , then for (5.2.4) to hold, A must neces-
, ) .

sarily be uncontrollable and unobservable from the ~-th station. Let ¥ == Q,N3, be

. . N 1 .
non-émpiy. To verify the rahk condition in (5.2.4); it is necessary to assign each element

of W to 1, or 0, such that 1,N0, = @ and at the same time, the part.n'ion should be

.
)
14 .
i : .



6.3.2.. Computation of d.f.m.’s %

The problem of cbmputiqg the d.f.m.'s of the system described by (5.2.1) can be

’

divided lntc_; two smaller problems: .

SR
1. Obtaining a set A such that the set of fixed modes, A C A g o(A ). The set

A consists of all possible candidates for d.f.m.’s.

- -

2. Obtaining a disjoint partition of 0 (if it exists) such that the rank condition

(5.2.4) is satisfied. ‘ ‘ . ;

" Using the reduction of centralized system to its BUHF and BLHF, we can find the
Set A Co(A). The main steps in obtaining the set A consist of repeatedl application of

| ’ N
the algornlhm for reduction of a single-station system to its minimal éw\subsystem.
T~

°

. ' ~
This is done by first reducing the system (A ,B,C) to a BUHF (to obtain its controllakle

.F(C) F G {¢) . ) . )
11 12] 01 [Hx() HQ]). S
o .

0 FJ)
In the next step, when we find the controllable and observable subsystem of the given

' N
subsystem). This would result in the structure: l[

system, we consider the subsystem (F,(f) .G o) ,Hl(”]. The observable subsystem of

(Fi.6 ,H [°)) would be in BLHF. Assuming that the transformation for both the

Al

reductions are accumulated in an orthogonal matrix T, we have

) F_'x(xo) 0 * Gy HY
(rTAT.TTB.CT)={| * Fg) * | |* | |o] ‘

o o FEI o |]+*

where, (F,‘,“,G,,,H“f gives the controllable and observable subsystem and the -

remaining subsystem is uncontrollable, unobservable or both. In the case of a.decentral-
ized system, we proceed to clieck the controllability and observability properties from. \

. _ ) , F(uo) * -
the next station. The state matrix at this stage woulq be [ :)2 Fé;“l ,‘and the

corresponding input and output matrices would be partitioned conformably. Next, we

~ . * )
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formally state an algorithm for obtaining the set /; .

Algorithm 5.1: (Determine the set 1.\ ) g
o, ’ ‘ ‘a
Step I: (Initialization)
Set 1 =1, n; =0and A =A ' . ' A

Step II: (Controllable subsystem Jrom i-{h'station)

’

Reduce (A .B,.C,) to its" BUHF L (Fi.G ) H))  such ‘that -
< - 7 '
(Fi),G 1) H,()} contains the su¢bsystem of (A .B,.C;) which is controllable

from the 1-th station. s ! )

4

Step TII: (Observable subsystem fr:om i-th station)

Reduce the system (Fﬂ",G,-‘”.H,-‘"’]‘Lo its BLHF [F,'“),G’,-(”,l{,\(’)] such that

!

(F;),G;°),H,°)} contains the subsystem of '[F,-t"'),"G,.“),H,(‘)] which Is observ-

i
able from the i-th station. ;
Set n,=v;+n, where y; 1s the dunension of the observable subsystem
[F,-(").G;("),H;(”)] S ‘
N ,

Partition the system such that (A‘ ,B,-,C’j] 7=1, - ,NJ correspond to the

Lol \

\ subsystemn which is uncontrollablée and/or unobservable from jthe ¢-th station, i.c.,
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| FO FQ o - o 0
F) FQ FZ - - o 0
F"(O;)= - ~
|F F,‘;’ F.5 P RGN
/ B \F l)l F F l) F r(-:).r F r(«:).r-;‘-l

The sub-matrix F £2) " Is a non-zero matrix if and only if (F; (¢)H;(*)) is an observ-

-~

able palr {20-22]. If, however, F A2) | is a zero matrix, then

<

};j ) p: @) -0.“ o 0
Fi{) F FQ 0 0
Feo=| - . S :
| . : ¢ N
' F’r(ox)x F,r(—ox?a F_r(—ox?a ) 21?—1 F_ (—ol)r
F,9 F9 F9 F,‘.",?,-, F ) .
- . 9 N
] 1 ] [ ] «+
v, [ % ! ! ! ! ! 1
1 ] 1 t [
ﬁ ] ] ] ] ]
vy ‘ ¥ i i |
- ' T I /
: : ' ' y '
G = + | ! P -
v, ' L - i
----z-)--f -------- 1 e ' jemm———-
) [] ] ] N
L G G 1 G 1 G4
_ vy Vs ' v
s ] ] [] L} 7]
‘ * ' : : '
0 ' 0 1 * [) * - [ | : H(O)
PR E A= mmmmmeea e e it “deceloe
...... *oL.l*oooco b ox ¥ L H
H= |.__.__ ... e e R ‘
I e e i®0 o0 3 H©)
i * L OHA)

where-#'s denote possible non-zero matrices.

The triple (A. ,B;,C; ) Is given by

) F: (02 1 ¥ !
A —_ r+i,r+ - if F ,
[ (1) Fl'-H rr+l ‘

-

is a zero matrix

Tt
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)/ A =F;,, 1t F Lo has full row rank
// . B = [G,"” . Gl~5°)] : | - -
. - . ’JT r T .
: C; = [Hl(") ”Hl‘$°) ] .
Step IV: (Termination) ' s

If n,=n (the dimension of the given decentraliz;ed system), go to Step V (Exit 1)

If ¥ =N (the number of stations), go to Step VI (EXit 2)

-

Set i =1+1, go to Step 1l

Step V: (Ezit 1)
- o _ ¢
A is an empty set and since A C A, the given system has no d.f.m.'s; Stop.

o

: ( ’
,Step VI: (Exit 2) ’ ' :

A =o0(A ) where A 4, is the sub-matrix containing the modes that are uncon-

trollable and/or unobservable from all stations; Stop.
Remark : All \; € A need not be d.f.m.'s of the given system. The set A contains

those eigenvaltes of the system which are possible candidates for being d.f.m 's. "Usually

the set A is a very small subset of o(A).

- Y é' L.
Having obtained A , we now need to examine each element of A to determine

whether or not it is a d.f.m. of the system. We denote the subsystem obtained in Step

‘111 above, after thee controllable and observable sub§ystems \frdm all stations have been

-

removed, by an 1 -th order ‘system (A B,.C, ] i=1, -~ N. <

.

To abtain the disjoint partitions 1, and {1, that also satisfy (2.4),- ltl_fwnl be ., -

required to compute several transfer relations of the form . o %
. ‘ )

o L )

where {,7 € and ¢ 7&3 The matrices A ,,.B,; and C;, p.bc?ve are obt‘ainec‘i from the .

Fi

system (A B;,C; ), i, j=1,""" ,N as shown below:

~

"
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. - A, ¢ . ’ B,; :
- : A= [OT“ ;”] B; = [b;,j] and C; = [0,., c,-,]. (5.3.12)
On noiipg»that A is in its USF, we can solve (5.3.11) by first ‘solvlng
(Maa-A n)Z = B,j for Z and then computing S',-,- = C;,Z. It is worth mention-

ing here that a similar method is used to com;lllte frequency response matrices of a cen-
tralized system. The details of the method are given in the'n chapter. Next, we
describe a systematic procedure which will enable us to find the required disjoint parti-'

tions of 11 Into rf“,, and €2,. Note that in the algorithm, the tableau need not be con-
. | .
structed, sfnce all the information can be stored in the two sets. However, it makes it

easier to understand the algorithm. .

- ’

Algorithm 5.2: (Disjoint partitions'ﬂc and 1,) \

Step I: (a) Set ¢=1 and =9 . .
. N . . M - ]
(b) Transform (/{ B, +C, ), {=1,- - ,N, toa USF such that ), €A inits
| : ‘ ) e .
(1,1) position.

(c) Form a set {1, where €1, contains / if the first column of the output matrix

C | is a zero vector. o . I

0 ~ - - . - ) & - e
Step II: (a) Transform LA’ ®..C, ] =1, N,such that A is a USM and )\, is’

~" in its (n ,7 ) position. ' .
. ' )
(b) Form a set 3, where €, contains [ if the last row of the input fatrix B

is a zero vector. ) -

o

Step III: Set up a tableau such that its columns correspond to the elemenis of 2, =

} o {; AR A AR ,i,,}'and its rows correspond to the elements Owyé
| ’ . . .

. . | o M
- {.'.0-.0—1' .- o .iu';;+l s .i&}., Let y:—.nc'nﬂo [={'.l+'1' T v'.u} ] The

-
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tab}éau will have the following l_ayoub: ;

~

~

I . ‘.8 . .
1, | P I N W ) 1, | P o o0 3,
S e 0o’ LX)
Y N X X3
3 ’
* h b .,
. ° - ° )
® ° ®
o
1, ! ® (X
3
141 * o o e
. \e . .
- . . . '
° ) e .
3 -
’N ~ e o ® 60

-
where the “starred” elements are the ones which correspond td the stations

‘from wherel)\q "is either controllable but unobservable or uncontrollable but

v -~

observable.
é

\

Set 0¢={i;. : ",i.'}, ﬂ.,_={i;+l,;",iﬁ} and k = 1.

Step IV- (a) Corresponding to the k-th (st,arr’ed) station of £2,, form

’

..1~ Lo » - -\
Su=Cri(Nloor-4n) By Ll €8, . '

(b) For each valueof { € 02,
(1) “ If S, 70 and | €0,, gotoStepV

(i) . IrSy 0 and ! €V,

Set 6¢ = 0, e{l} (remove | from 0, ) '

Setnl, =0, ® {l} (add ! ton,")

Set ¥ = \P@{l}, go to Step IV(c) .

()  IrSy; =0 | €1,, go to Step TV(c). .

(iv). © If ¥ = & (empty set), go to Step VI(b)

r'S

i s .
(c) If all (starred).stations of £, are exhausted,

-
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+ ® go to'Step VI(a). Else, set k =k +1, . R , ‘ -

~ ' ‘ _ go to Step I'V(a). %

. Step V:~ There is no disjoint partition for which (2.4) is satisfied. Therefore{, A, is not a

f q.‘r.m. ’ . !

1

<. Go'to Step VII.

¢

Stcp’V[: (a) The disjoint partition satisfying (2.4) is given by £1, and fl; . Therefore A

is a d.f.m. SetA:iA@ X : -

Go to Step VIL ’ .

(b) The disjoint partition satisfying (2.4) is given by 2, and €2.. Therefore ),

isadf.m. SetA=AQ )\q
Go to Step VII. . ‘ -

Set ¢ = ¢ +1, g6 to Step I(b).

-

At the end of the Algorithm 5.2, the set A (CA ) contains all the eigenvalues of A
“which are d.f.m.’s of (5.2.1). The steps of Algorithm 5.2 are illustrated by means of an

N © >
- . example in next section.
’ }

H -5

5.4. 'DISCUSSION OF THE B.ESULTS .
. ' , 7 ] .
In this sectién, we will discuss’ various .computational‘ and numeri¢al properties of
: n \ .

the proposed algorithms. : ) . - <
. F » . o

.o 5.4.1. General Remaa,'rkp' T . o
- i B ‘ - “ -
1. The ciiaracterization provided in the previous section gives us “structural”

A

information about decentralized systems. This is obtained by relating the elgenvalues of

v -

the system that ‘are also d:f.m.'s to, bfocking zeros of certain subsys;tems derived from the

9

given de::éntralized sj'stem’. It should be rnentioned that the characterization’ given

a.bbv.e is fairly general and does not impose any restriction on the structure of the decen-

’

- T
- ]

.
. ; . .
-, T - {
% ' -
% pe '

-
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-
tralized system. Simpler results can; a! course, be ob)talned when the system has certain

additional properties, e.g., block dlqgc;né.l structure for A, or interconnected systems

with only input and output matrices in block diagonal form, etc.
« ~ R ° N
2.  Algorithm 5.1, used to obtain A , uses only orthogonal (numerically stable)

state coordinate transformations and is numerically “‘backward stable” [22-24]. Thisis a
desirable property from the point of vievy of application to very high order systems.
Note that Algorithm 5.1 and most of the ;axisting algorithms for detérmination of
'd.f.m.‘s require the knowledge of the eigenvalues of open-loop system. I;Iumerlcally. this
iIs not ;iesirable because the performance of the algorithm would be affected by the con-

ditioning of the open-loop eigenvalte det_ermlnatlon problem.

3. In obtaining the sub-matrix A , whose eigenvalues are the possible candidates
for d.f.m.'s, only numerically stable algorithms are used. Moreover, since the order of
A is in general very small compared to the order of the original state matrix A , the

conditioning of the eigenvalue problem of A would, in the worst case, be the same as

that of A. Hence, from the point of view of the accuracy of determining the set of

]

d.f.m.’s, the use of Algorithm 5.1 is very attractive,.

4. 1t should be pointed out that since the matrix A is real, all Its complex eigen-
. values occur in conjugaté pairs. ‘The same is true for the blocking zeros of (5..2"‘.1). In
Algorithm 5.2, the use of complex arithmetic would be necessary to examine the control-
lability and observability of a particular mode and also to compute ~t,he equaljty in
(5.3.11). Ho:vever, the use of complex arithmetic can be easily avolded by using the RSF
instead of the USF. It can be easily shown e.g., see [15], tha‘t if in the triple (F',G H),
F is a RSM, with a ¢ -c pair of eigenvalues (A\,\*) in the first 2X2 block of F', then

(M X\°) is unobservable if and only if the first two columns of the c/orrespondlng output

matrix H are zero vectors. A similar result can be Stated for controllability of (\,X°).

To avqid the use of complex arithmetic in (5.3.11), the #eal and imaginary parts of

the expression in (5.3.11) can be obtained separately as described below. The approach



'

o

used is similar to that used for computing frequency response from state-space models as

P

discussed in Chapter VI. -

. : 3
Consider the triple (F,,,G;,H;,) and let A=a+jB. The transfer relation in

(6.3.11) can be evaluated by solving

- '[(0""']'/9)'111—1 -FylZ = Gy (5.4.1)
for Z and then computing - ’ b

. v

fl

Let Z==Z,+jZ ,, then, equating the real and imagigary parts on both sides of (5.4.1), we

?

get , .
O’In-g'le Bl Zyl |Gy
[ Bha el -Ful| 2T | o] (43
From (5.4.3), it can be easily ‘shox.bn that- N
Z,= %[aln—l -Fule, - ) . (5.4.4)
Lot -Fur - #0265 . (5.45)

The system of linear equations (5.4.5) can be solved by carrying out an LU decomposi-

tion of [(a[,. -1 —Fu)2 - ﬂ’]nﬂ] and subsequently solving the triangular systems of

P

linear equations. Z, is then easily evaluated from (5.4.4). Knowing Z, and Z, the real
and imaginary pa.rt.s'of S,.j in (5.3.11) may be evaluated as

N ImS;; = H;,Z,

-

5. From (5.3.9), it is clear that if the given system has distinct eigenvalues and A

B

satisfles (5.3.9a), then the rank ,!;1 (5.3.95) " is"1less than n if and only if

-1 -
(M T2 - Fu) Gylies in the null space of H,. Therefore, if the dimension of the null

-space of Hl is zero, then X, cannot be a d.f.m. A preliminary rank test by Householder

-

triangularization or \islng' the singular value decomposition of H, may be used to deter-

mine the rank of H,. The transfer relations in (5.3.11) may then be evaluated if and

-

\

.- 13- ‘ o

o

N
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v

only if the null space of H, has non-zero dimension.

.

6. The breakdown of the operations count required for the proposed algorithms is

as follows: -

-

) Obtaining the matrix A  i.¢,, eliminating all controllable and observable modes

from various st,a.t,ibns: This requires O(n”) operations.

(i) _Finding the eigenvalues of A € IR" *": The total number of operations

required here will usually be insignificant because in general 1 <<n. But for the

case when 7 is large, O[ﬁsl operations will enable us to find the set of eigen-
values which are also the possible candidates for d.f.m 's. : -

(1if) Obtaining the partition flc and £2,: Since we need to rearrange the eigenvalues

of A to check for uncontrollability and/or unobservability, obtaining the parti-

tion would require O\ n 3] operations.

.

e

(iv)  Finally, evaluating Llﬁé/;transl‘er relations S,, will re}uire O(Jns) operations.

The total number of operations reqiired to compute d.f.m.'s will be approximately

O(na) with a constant multiplier ~5. However, if the approach in (3| or {10] is used,

the count will be considerably higher because the former approach requires solutions of

several algebraie eigenvalue problems for matrices of the same order as that of the

decentralized system, and the latter requires several rank tests on systems‘of order

greater than n.
[ * f

5.4.2. Examlples

We will now illustrate Algorithm 5.2 by an example of a decentralized system with

6,={1,2,4.5.6,7}, 60={1,2,5.6,7}, nc'={4} and ﬂa={3} Assume that

H
<«

-1 «
Ca ()\,l,“l -A “] B,, = 0 i.e, the condition in Step IV-b(i) is not met. Given below

are the tableau at various stages:



IV-b(il) 0,

»e

étep 1V-a Evaluafe [Sa, Sy S
i R Y .

Let SSI’S”% o N

-

= {2,4,3,7}, V= {2‘,5,‘7}, f =

34 Sas Sﬁu 337

»

-]

-

-

-

=]

~ o N

4

14

il

IV-a Co?fesponding to station 1, Ikt_Smaé 0 as indiqate;i above. .
- ‘k\ S Y ’ ) —L
IV-b(ii) QCT\ 4,57}, ¥=16,7 ,52,,= 4¢ and 3,=13,1,2,6 ;.

now has the following layout:

;

»

(]

*

pust

S 1T A

N

»

As can be seen from the above considerations, if either S or S,, were non-zero,

-

-

¢

e wrlet
LRSI

-

¢

IV-a Assufne that corresponding to station 2, all Sy 's are zero

IV-c (Set, %=k +1, go to IV(a)

IV-a Assume that all Sy 's corresponding to station 6 are zero

'is & d.fm. and the “disjoint partition 0,

0, = {4,&.7 } satisfles the rank condition (5.2.4).

(X
PP 0 TN

The tableau

= {1,2,3,6} a:@'

A
\

then My would not, be a d.f. m. If Sy and Sgp wWere non-zero, however, SM and Sy, were -

T
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zero, . ‘ ' L - -

- -« g

/ - “)\q would be a d.f.m. with Q, = {1,2.3,5.6,7} and QQ, = {4} The algorithm qndé

" when a disjoint partition is found or else when 5conélusion is reached. that no disjoint

;\ntmon (fo-{ the value of A, under consideration) satisfying (5.2.11) exists. . -

«

5.5. NUMERICAL EXAMPLES _ : : o,

In this section, we consider two'numerical examples to illustrate the proposed algo-
M v

rithms. . - q -
AN

.Exampl‘e"‘i : "Consider a 3 station decen‘t}allzed syétem, The matrices describing the

) \ . system are given in Table 5.1. .The state matrix has eigenvalues at

4 ) ' ' A t,
{—2',—1.5,5.1.0,3‘0,2.5,2.0,1.5,‘1.0}. At-the conclusion o’?\'AlgoriLhm'T;.l, it is found that

’
< v
. -
- N ’ ¢ e ?

~ ' o) :
A =‘{2.0} t.e.; only A=2.0 is a.possible d.f.m. Next, on applying Algorithm 5.3.2, jt

~

is found that A\=2.0.is uqobservable from stations 1 and 2 and uncontrollable from sta- )

-

tions 1'and 3. Therefore 2, = {i,,z’;} and 0, = {i,,i;}. Following the steps of Algo-

. ’ : -l
rithm 5.2, it is found that Sopy=Ca(Mlaaa-An) By and

=~ —

. ) -1 3 .
S =10y ()\q I, -{11,] B, are both z&o matriees for A\, =2.0. The elements of .

-18 s

‘the matrices S, and S,; are given in Table 5.2. They are of the order of 107'° and can .

5 '
. be safeiy assumed to ‘be zero. 'I‘heréfore, we have the partition 3, == {t’,,is‘} and

z o _ ¢ ~
- 1]

a, = {i,} which are disjoint and satisfy the condition in (5.2.4) implying that X = 2.0

2
N

is (a.'d‘f.mr. of the given sys}em.



.+ 1.3545E-01

2.0023E+00
1.4576B+01

"1-1.3017E+01

~9.3585E+4-00
1.0002E+01
7.4390E+4-00
4.5910E+-00
L1.6853E+01

\

o~

- ~11852E+01

'5.5830E+00
‘9.7734E-01

-1,0080E+01'

-5.9165E+00
-5.1261E+00
-1.1474E401°

/
iy

€

[_6.2881 E+00

6.9803E+00
-1.3548E+01
-5.1983E+00
27.6482E+-00
-5.8085E4-00,
-6.2881 E+00

[ 1.3601E+00

f.

-2.6200E+00
2.9122E+400

| ~5.8440E+00

-2.1860E+-00
-3.1868E+-00
-2.4581E+-00
-2.6200E-+00
5.6672E-81

N

4.0023E400

3.6081E+00

S =117 -

b

-1.0017E+00

2.8336E4-00

8.6636E+00 4.4715E400° -8.1638E--00

5.2428E+00 6.8087E+00-'_ 3.G585E-01

© 9.3585E+00 9.2334E+00 -1.2498E+-00.

1:0338E+01 '6.5778E+00 -~6.5275E-+00

6.0263E+00 4.3652E+00 -4.2282E+00
7.4765E+00 -4,9822E+00 -3.6650E+00
5.7854E+00 2.2048E+00 ' -5.7854E-+00-
1.3545E-01 |
5.2806E-01'
-1.8385E-01 ‘
9.7734E-01 - ' \
1.3014E+00 .,

' 6.8663E-01 4 B
4.7701E-01 * "4
1.0062E+4+00 ] .

' .Table 5.12 State Matrix A ',
-8.3841E+00 . -1.0480E+01 | 2.4081E4-01"
9.3101E+4+00 1.1649E+01 | 1.6408E+01
-1.8064E+01 -2.2580E+01 | 2.5208E-+01
-6.9311E+00 -8.6638E+00 | 2.3850E+01
~1.0108E+01 -1.2747E+01 | 1.0157E+01
-7.8660E+00 -9.8326E+00 | 1.9488E+0f
-8.3841E+00 -1.0480E+Q1 | 2.9748E+01
1'8135E+00  2.2660E+00 | 1.7730E+01
-3.1440E+00°  -1.3100E+01

3.4946E+00 1.4561E+01

-8.7730E+00  -2.8224E+01

~2.5002E4+00  -1.0830E+01

-3.8241E400  -1.5034E;01

—2.9408E+00  -1.2201E+01 ‘

-3.1440E+00  -1.3100E+01
6.8007E-01 i

-1.3306E4-00
~-1.0319E+00

-1.2503E-+00

-1.1024E+-00 "
-1.4633E+00

-1.6595E+-00
*2.282%E+00
-1.7986E+-00

8.86904E+00_
1:9285E+01
1.8083E+-01

11.9948E+-01

9.9392E4-00
2.6586E+01
2.5045E+01
1.7020E+-01

7

Table 5.1b Input Matrices [Bl | B4 53] e

- J- 2.6324E+00 - 8.8163E- 01

2.2165E- 01
6.9654E~- 01 - 6.9654E~ 01 ¢~ 6.3860E~ 01

1

8.8165E-01
8.7892E- 02

*.

'S

~3.8336E-+00
1.6921E+00

--9.4017E+00
-1.0211E+01 .

-1.2775E+00
-1.1370E+400
-2.5444E4-00

3.5806E+00-"

7.8089E+00

8.9405E+-00 |

3.1479E+01
1.7032E+-01
4,7007E+00

- 3.1634E-01 |
.'1.7088E+01 { .

I.4477E401

3.0600E- 01 "- 1.1033E+0Q

6.9897E - 02

$.5073E- 01

1.2513E+00 7.4134E-01 3.5784E+00 -2.6605E-01 - 0.9435E-02 ‘- 3.6871E+00

-
[y

[
1
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1.2231E400 .  6.2765E-01 - Co ' o e
-1.2046E-02  ° -1.2046E-02 Lo - \ N
~3.7007E+00 2.0408E+00 . ; : - : '

/3.3578E-01 .  -5.9450E-02

_ Table 5.2 Trens;fer relatiqns [32,| Sz,] in Example 1.
: Example 2 : In this example’ we will illu‘stréte the dit’ricdlty that lmay be encountered .
‘in. decidmg whether or not. a part.icular elgenvalue isad f.m. using the test proposed I;x ', -
- (3] For instance, if the open loop exgenvalue problem is lll-condmoned Lhen dependlnz o

on how a “random"‘reedback matrix aﬂects the closed-loop exgenvalues some of the‘ -

us t.o concl’ude with greater cert.ainty if a certain mode is fixed or not. The data for this

-

o ! J

0.7288E-01 © -6.8240E-01 8.3212E-01 " 7.3755E-02 ~ 5.1544E-02 -8.0594E-01
6.3385E-01  1.2532E+00 ' L8749E+00 -7,7794E-01 -2.2260E-01, -1.4717E+00

|7.2518E-02 -7.2518E-02 -4\.003ZE—0'1 .6.0481E-01 -l.§815E—0)/ 5.7008E-01

\ [T
| . . .

-LT26TE+00 ° 1.4404E+00 e S ¢
~7.4462E-01 11140E400 |- -~ . «
-1.8070E01  -1.6970E-01

Y B .

9.5268E-02 , -6.8710E-02  6.6781E-03 ' ' '9.0577E-02 '—’1.0730‘E~01' ' 1?5351&—0’1’ .
-2.2525E-01.  9.9213E-02  1.7152E-01  1.4171E-01 -4.7781E-02 -0.4807E-02 ' ..
| -2.3147E-01 1.2077E-01  2.0020E-01°  1.1203E-02 -2.8055E-02 -8.583pE-02

P

L5B10E-01 . 4.7215E-02 , o SRR
1.2588E-01 . ' 6.3608E-02 |- o S

! [ ! ' . " . )
1 . .

Table 5.1c Output Matrices C,.Cyand Cy. -~ -~ . " ' -

‘"11102d-16 - 1.1102d- 16 - 3.3307d- 18 |- 8:3267d- 17 -5.5511d-17 - 2.2204d- 18
-2.2204d- 16 - 4.4409d- 16 - 4.4400d- 16 |- 1.1102d- 16 -1.1102d-16 0.0000d+00
'2.2204d-16 0.0000d+00  4.4400d-16 | 1.1102d-16 1.1102d-16  4.4400d- 16 .

PN / . , \ . LN

\

/. , . .-

‘eigenvalues may change. By inspection' or t.he eigenvalueiﬁe open-loop and closed- '

. loop system, it may not always be posslble to say concluswely whether or nqt. there are

f

any d.f.m.’s. The charact.enzat,ion and computatiOnal algorithms present,ed here enable

/ . ’

example is given in Table 5.3. F‘or sevetal randomly generated values or the feedback .
. o ‘, \ ,‘\V . ‘ ’
\ - N ~\ ! - o
< b 1 . - ’ g R 9 .
‘/ ¥ ‘ ‘} .
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N matrices with their eleménts multiplied by factors ranging from 1072 to 10% it was found °
P L . B ! .
: that certain eigenvalues of the system do not ‘‘move” appreciably. However, as the

b4

'

. .magnitude of the elements of the feedback matrices were gradually increased to 10'°, the

_ eigenvalues changed completely. Table 5.4 compares typical values of some of the open-

loop eigenvalues with those of the closed-loop eigenvalues for 3 representative sets of

values of feedback gains: k;; ~107, k;;~10% and k;; ~10" where the ki are the ele-

ments of the randomly generated feedback matrices.
- N . . ]

It should be not'e;d that the eigenvalues at -3.0 and 2.5 do not change éppreclably

’ ¢ " for the kij~10"% and 10° but are albered completely for k ~10'. In contrast,
)' '
‘ correspondlng to the eigénvalue at —4.6, we have engenvalues at 4. 59579 4.59492 and
2
l'”» , '

—4.46601 for k;; ~ 1072,10* and 10 respectively. With reference to the eiggn"alu at

8.0, We see that for k,~ '~ 1072, there Is an" eigenvalue at 8.0120 while for k,-' Q, '10%, we

X -~

have an eigenvalue at 7. 99998 Such observatlons with this and several ot,her examples .
suggest that some dimculties could arise in computmg the set of d.f.;m.’s using the char- -

acterization given in (5.2.3). Applylng the algorithms pr0posed above,’ it was found con-
. cluslvely that the system does not have,;my d.f.m.’s. This was further conﬂrmed by per-
}
rorming the rank test (using the smgular value decomposition) on the syst,em matnx in
' . . N . '

(5.2.4).




pm

8.0000E+00
.3.0500E-+01
-7.5000E+00
1.2000E+01
2.9500E+01
3.1200E+01
3.0300E+01
-6.2000E+-00
1.9800E+01
3.8000E+00

1.0200E+-01
3.5300E+01

- 7.5000E+00

'1.0200E+01
1.5500E+01
.3.3200E+01
3.2300E+01
1.2000E+401
2.5000E+-01

v

-120-

* v
-2.1500E400 8.4500E+00°
-3.4050E+4-01  1.2850E+01
"6.5000E+ 1.1000E+01
’ -6.4000E+m\4.2006E+00
-3.3000E+01 >2,0000E+00
'-3.860QE+01  1.2160E+-01
-3.2100E+01 . 1.0200E+01
2.0000E-01  1.5100E+01
-2.8550E+01  1.2350E+01
2.1500E+00"- 1.3450E+01
0.0000E+00 -1.0200E+01
-1.5500E+01 -1.0900E+01
0.0000E+00  0.0000E+00
0.0000E+00 -1.0200E+01
-1.5500E+01 -0.0000E+00
-1.5500E+01 -1.0200E+01
-1.5500E+01 -1.0900E+01
~7,5000E+00 '0.Q000E+0N
-1.5500E401 .-5.0000E+00 *

IEOSOOE-HH 0.0000E+00 -1.0000E+01

L B

4

Table 5:3’a State Matrix A in Example 2.

.-8.0500E+00 |

+

-2.5500E+00 4.0000E-01

-4.4050E+01  4.1000E+00
1.4000E+01 -7.5000E+00
-1.2800F4-01 ' 4.0000E-01

-4.7000E+01 , 8.0000E+00
-4.4100E+01 5.5000E+00
-4.6500E+01  2.5000E+00
9.3000E+00 -9.1000E+400
-3.2450E+01 3.9000E+00

1.7500E+00
1.3550E+-01

~8.5000E+00
* 8.0000E+00 .
1.7500E+01

1.8100E+-01
1.6200E+-01
-3.1000E+00
1.2650E+-01

-1.2500E+-00 -8.5000E+00 —2.5§00E+w

4.8500E+4-00
-1.4000E+-01
-3.8000E+00 T
1.7500E+01 :
5.4000E+00
'5.7000E+00
-1.220nE 01

3.5500E+00 | - .

=1.86050E+01

. ol

J \‘\'

\7 0000E-01 -

~4.0000E-02

[

»

1.4100E+00 -4.8920E+-01 - ‘
1.2401E+02  {1.2630E+02 | 3.5000E-01  -4.0800E+01

2.0800E+00  21700E+00 | -1.0300E+00 *  0.0000E--00
1.4100E+00 - -7.0000E-01 | —4.9010E+0l1  -1.8300E+00
1.2503E+02 ‘1.2093E+02 | 9.0000E-02  -4.2770E+01 .
1.2042E402 ' 1.3202E+02 | -5.0180E401  -4.1020E-+01

1.2401E+02  1.2577E+02 | 5.0000E-02  -4.2600E+01 . ,
2.0700E+00  1.5400E-+80 | -1.3300E+00 ¢-4.0990E+01 .
1.2050E4+02  1.3148E+02 | -1.2400E+00 ' -4.1020E+01

-1.9200E+00" '—4.1600E+00 | 3.1000E-01. -1.7100E+00, '

4 . R 5 ' )

L.

-/

Table 5.3b Input Matrix B = [B ,|B,] in Example 2.

L}

\

4

I @
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-4.7323E401 2.3526E+01 - 2.6854E+Ql 2.1844E-+01~ 1.6820E+00 - 2.3577E+01
.4.2880E+01 - 6.2423E+01 1.9768E+01 - 6.4265E+01 - 6.7000E- 02 2.1385E+01
1.7693E+01 - 1.8059E+01 1.2830E-+00 —2.6374E-+01 8.9410E+00 §.7710E-+00
" 7.3712E+01 - 7.4850E+01 2.1835E+00 - 1.1087E+02 3.7831E+01  3.6946E+01
-5.0887E+01 0.0000E+00 4.9056E+01 2.7161E+01

4.1270E+01 - 4.0006E+01 - 1.5800E-01 2.1269E+01

1.0105E+01 - 2.2000E- 02 - 9'7580E+00 8.0050E-+00

3.8950E+01 - 5.1000E- 02 - 3.8877E+01 3.5917E+01

Table 5.3c Ouput Matrix C = [ClTl C’,T

»

in Example 2.

+3.066671782119345d+00i
4.909457853060178d 100
3.005864118165678d +00

2.499967133489732d+-00

+5.340405101541089d+041
4.794988863438237d+-00
-2.272479821115828d4-00

5.9 5.833571910641285d+-00 5.806693718086567d+00 | ~ 6.761211902258197d - 01
'-4.6 | - 4.505705886440305d+00 | - 4.504925581006383d+0Q0 | - 4.457406647868712d+01
-8.0} - 5.995408391604500(1 +00] - 6.003566998606624d+00 | — 4.752607649352673d+04
-3.0| - 2.009789534354356d+00 | - 3.000821692878285d+00 4.101839349739446d+-01
8.0 8.012032200920436d +00 7.999057871270422d+00 | - 4.466914156228984d+00)
2.5 1.240053279603918d+-01

2.500010816079302d+-00

LN -
Fome’ ¢/l ev.'s for * ¢/l ewv.’s for ¢/l ev.'s for
o/l k"j_ 1072 L k.'j- 102 k,‘j- 10'°
P.v.'s \ . ‘ .
-5.359871211893602d 00 1.9817057 136,'22234d+02 2.007855000236094d+14

4-5.349407732726706d+ 16}
8.994344754265372d+-00
+2.495595121512005d+01 }

Table 5.4 Closed-loop eigenvalues for K; ~ 1072, 10% 10"

-~

.

A natural question that arises from’ Example 2 is what zero threshold value (re.,

numerical value for '‘zero’”) should be used in the algorithms proposed in the previous
section. Among the numerical techniques u%d'm the above algorithms, the maximum

. , .
error is accumulated in the reduction of the state matrix to its RSF and hence an error

5
\

1

i)mfhd on this reduction (23,24] m‘t&be used to define the zero threshold value.

-

~

. 5.8. DECENTRALIZED EVA PROBLEM

TN *

Iy this section, we consider the problem of control of decentralized linear multivari-

v A )

_able systems using dynamic output feedback between the sensors and actuators of each

station. Under the assumption of certain controllability and observability propert.iés of
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the system, it is shown that a reedbzipk c¢ontrol law that stabilizes the given system can ° .» o
always be‘foupd. These results are presént.ed as extensions of Lk)e ‘problem Sr' elgenva'luej
assignment by dynamic outpu‘t fee;dback in slngi'e-stot,ion'sygt‘ems:.\ It should be pointed
out that there are still some theoretical issues whicm to b‘c'so'h‘led'ln the decen-
tralized EVA problem., Howeve}, ’the issues discuss/e\d in this Secglop can l\'ea‘d t,o an,
efficient compupaﬁional’brocedure for ossigping' t‘ho e_:igenvah;es of the given decen:t;@]‘lzeo
system. ‘ | o - s I .

5.6.1. Problem\Statement ' . e - o ' i

For the systeims described by (5.2.1), the problem of E\ZA that we invespigate is to

o

determine a decentralized control defined by local dynamic out‘.pu't feedback controliers

¥

u(t) = v(t) - (1) IR Go1m)
N 61y =H; z;(t) + U, 9y, (1) =~ .. . o o " (3.8.1b)# )
, z(t)-—Fz(t)+G,y.<t) C - ' . (5.8.1¢)

where ¢,(t ) € R ™, zZ,(t)ER 9 such that the state matrix of the resultlng closed- loop )
system has eigenvalues at any desired locations in the complex plane (subject to ¢ ¢

pairing).- _ 7 '

The only methods available currently for solving the problem is Lhat proposed by

DeCarlo et al. [25] and Corfmat and Moise {11 The continuati v methiod is
mathematically sound, howevgr, it reouires non-linear programminé approach for solving
the problem. Computational‘ly it could be extremely demanding. The approach used in
[11] {s to convert the decontralized EVA problem to 5 ‘‘centralized’’ EVA problem by
app]ying constant dcccntraltzcd fcedback to make the system controllable from a single
station. Dynamic output feedback is then apphed to, this station to assign all the ’
closed-loop eigenvalue§\at the desned locations. Computamonally. the approach is not"
very attra,ctlve especially for hlgh order systems, because bhe mechanmm of EVA& con-
centrated at one station. The proposed method shares the burden of EVA between vark

ous stations. The ngcédure is sequemial in .nature in that each station g.sslgns a
P I .
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L4

number . of adqinianal eigemj;ilues without altering the ones that have been assigned by

o \th‘e p'recedthg stetlons._ For each station, the algorithm for EVA by output feedback,

‘

proposed in the previous chapter is used to é.ssign the additional eigenvalues,

-

5“.6:.2. Preliminary Considerations

\
- ®

In general fdr a controll‘atﬁe ana observable single-station, multi-input, multi-

- .output, sy\‘tem output feedback between any input—output palr affects all the eigen-

yalués of the syst.em. For a multi-station systemn, unless the system is ‘*diagonally

- decdupled" or can be. diagonally decoupled, an output feedback from any given station

will affect all those modes that are controllable and observable from that station. This

\couid in ium affect the controllability and observability properties of the sysfem from

the other stations. The problem of decentralized control, therefore, is a two part prob-
lem. First; from a given set of stations, we as@%n a desired set of c¢losed-loop eigenvalues

and second, we must ensure.that the feedback at any other station preserves these eigen-

values and possibly -assigns some additional eigenvalues.

’
\

N - . s
. For simplicity of presentation, assume that we have a two station system described
T N .

2 ~

C s

'by"
. :(l)—-Az(t)+B u,(t)+Bzu2(t) \ S : (5.6.2a)
yECEy o - — ‘ (5.6.2b)
yo(t) = Caz(t) I ! - ' (§.8.2c)

. where\ M (t)EIR ™ y,(tYER P Fur‘t,her. assume that the system has no centralized

Ay

or decentralized fixed modes. This essumption is by no means a restriction on the-stra-

tegy to be proposed since under the glven decentralized structure, these modes are

unaffected by decenhralized output reedback and hence cannot be relocated. Let t.he'

, ~

dimensions of the controllable a'nd observable subsystems from the first and second sta-

- ‘e
tions be n; and n, respectiyely. Note tﬂat undes the assumptions above, if we denote

[}

the'set of all modes that are controllable and;\observabie from the 1-th station-as {n,- }

¥

~

- o - #

-




¥

: -124- - -

- 3
N

then '{nl} U {n,} ~ {nl} N {n2} = {n} Therefore, all those

modes that are

-
-~

>

uncgntrollable and/or unobservable from the first station would be‘,controllabl_e and

o . o
observable from the second station and vice versa,

. 4
Under the above assumptions, the following two situations can arise:

) I
Case 1 - {n,} N {nzl = @ : Controliable and observable sub-systems that are block

diagonally decoupled or those which can be block diagonally decoupled, fall under this

category. This situation is easy to resolve. An output feedback from one station will

4
not affect the uncontrollable and/or unobservable modes from that station. Since the -

»

same modes are controllable and observable from the other station, we can deslén 16cal -
\

dynamic compensators of appropriate’ order as discussed in Chapter V, that would assign
the closed-loop eigenvalues arbitrarily close to the desired locations in the complex plane

(subjeét to complex-conjugate pairing) . ‘ /

Example 1 : To illustgate the above case consider the system described by

-

, 5 0000 00 10

) 13010 00 00
z(t)=|0 021 0|z(t)+ |0 1] u,(t)+ [0 O uyt) , (5.8.3a)

1 004:0 ‘ 00 . 11 .
0 101 1. 1 1] 00
1 110 1] . )

yi(t) = [1 011 0l%®) (5.8.3b)
: 0001 0] , :

For the system (5.6.3) described above, {n,} = {1,2} and {n,} = {3,4.5}. The out-
A '

put feedback from the first station affects only two of the eigenvalues (located at 1 and
2), while the output.feedback from the second station affects the remaining three eigen-

values at 3,4 and 5. Therefore we can design-a compensator to relocate the eigenvalues

R}

such that there is no interaction between the two stati®gs i.c., the eigenvalues assigned

by output feedback from either of the station will not affect those assigned by the other

-2 6

0 _4]andK2=

station. For example with constant gain feedback matrices K; = [

v

-
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’

_20.71875 16.40625 - et - ‘e sy: -
[ 10.68750 ‘27 56250]’ we can assign the closed-loop eigenvalue of the system at -1,

-2,~ (3;—4 and -5 where the output feedback from the first étation assigns elgenvalﬁeg
at -1 and -2 without affecting the other three eigenvalues and the output {eedback

from the second station assigns the remaining three eigenvalues at.-'3, -4 and -5,
?

without affecting the previously assigned ones. i

v

Case 2 - {n ,} N {ng} 75 @ : This is perhaps, a more realistic situation. It is_eaéy to

see that if we a.sslgn (say) n,.eigenvalues by dynamic output feedback from the first sta-

’

tion, then, while a.sslgning the rer.‘nalnlng eigenvalues from t,he second station, we would,

e

also affect all the eigenvalues of the set {n,} N {n,}. In the worst cas¢ when the sys-

tem is cqntrollable and observable from~both stations, feedback from the second station

will affect all the previously aséigned eigenvalues.

* Example 2 : If the data in Example 1 is modified slightly to the following:

A

]
N

50 000 00 . 10 .
) '3 010 10 0o -
' z(t)= 100 2 1 0[z(t)+ |0 1[%,(t)+ |0 0] uyt) (5.6.4a)
1.0 040 : 00 11
01 01 1] 11 00
.. 1 1.0 1] ;
vilth= |0 110l W r (5.8.4b)
. F 3 ,
00010

where, we have changed the (3,1) element of the ir{put matrix of the first station from 0

to 1, glving {n,} = {1,2,3} and {n,} = {3,4,5}. Béth station‘s‘can now stabilize at

least three eigenvalues by means of local output feedback. Note that after the feedback

from the fifst statioh® the system'may becomne completely controllable and /or observable

r

“from the second station. Therelore, it is necessary to sacrifice some freedom in designing '

the compensator’ in order to retain the previously assigned modes. By means of an out-

-16— 43

“put feedback K, = [ ] we can assign the three controllable and observable

8 -23

v
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-modes from the first station at -1, -2 and -3. Ther in .order to preserve these assigned

N

values and assign the remainlng two eigenvalues at 4 and -5 a'dynam{c compensé.tor of

!

sgeond order will enable us to assign t,he complete set of elgenvalues at the desired loca- :

N tions. Fhe parameters of one such dynamic compensator are \given by t,he rollowlnz

~

tquations: i ,' - o \ ) Lo
- ’ . . : »

.
pd

- , ‘ __ [ 5.1084 " 20055 ], 2.4441 3.5018 e
Lo k)= [— 10.858 -4.4890]'2(‘)+ [-11.477 -7.9749]”?‘” (5.8.5b)

'

For the low order, two station examples considered above, one could easﬂy analyze

o

\ o which modes can be assigned from-which statjon and pr_ocegd with the design. However,,

in general, when NV becomes'éonsiderably larger, a systematic procedure must be/devlsed

~1

that would enable us to assign the eigenvalues at the desired locations By means of a

‘ o -

~decentralized compensator. In the next section, we develop such a procedure.
' 5.8.3. Main Results ‘ - ’

.

Consider 2 single-station system (A ,B,C) where A € R "*", Bem"xm and

C € RPX". Assume that the input matrix B and the output matrix C’ are block par-

. titioned as B =- [B,Bg---BN]- and CT = [C,’ cy - CNT].M If the total

. .

dynamic compensation from all stations to achieve some desired set of closed-loop eigen-
N

values requires a dynamic compensator ofeQrder r = Y3r;, then the problem of EVA

P f

may be restated as follows. For the system

3:- N [:E:;]= [o o] [ (t ;]“L {B 0] ['3((:))] - | (5;6.83)
[eT= |3 2] G3)-- T am

where z(t) € IR", find a constant gain feedback matrix K € R (m+%X(E+1) of the form

ua(t) = vg(t) - dolt) S . (5.8.5)

. v_ [ 25308 10630 10.201  10.585 e
25(t) =, [ 4.4061 59269]"2(‘)+ [ 8.0400 »98286]3’2(’) (5.8.5c)
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‘ K= %, F, o (5.8.7)

- o

such that the resulting augmented closed-loop system has its n +r eigenvalues at desired

locations. Permuting the (block) rows and (block) ¢columns of the feedback matrix K,

‘we can easily obtain K = block diég‘ "K; with the following structure:

J. H
]

Therelore, if we can determine the order of the compénsators a priori, we can replace the.

(5.6.8)

K =

- -

problem of EVA by .means of decentralized dynamic output fee'dtgack by N pr}oblems of

EVA by ‘means of single station dynamic output feedback. It should be pointed out here

r -

" that these single station output feedback problems may or may not be independent of
, ' . 7 '

. each other as was shown by examples.in the previous sec_tion. Further, itlmay be possi-

n

ble that-all stations considered independently may not form a disjoint partition, how-

-

ever, grouped together as {:’1, e :',l}. {a',.lH, cee :',2}.’ v {i,‘ TR t','} where
3 ‘ .

. ) :
3 r; = N, might still form disjoint partitions. The above-partition is formed from the
foml . “

stations that do not affect each other when a local dynamic output feedback is applied
from them (Case 1 of the previous section). From the definition of partitions, it is clear
that no two partitions have a common station. Once we have obtained such partition, if

it exlst.é. then we hiwe several decentralized EVA problems described in Case 2 of the

previous section. ,

~

. - ~
The algorithm for EVA in decentralized system then consists of the.following two”

-
maJjor steps: « . "

1. Obtalning the disjoiht partitions {i,, e ‘r;}».{"nw S i,,}, Cee

o’

l'.
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{ir.-,+1» T '},} if they exist. ™ . -

L4

Y

2. Designing a dynamic output feedback from each of the above partitioﬁs such .that

collecth;ely, the feedback from the various stations inside’each partition enables us to

control the complete decentralized 'system. ' -

1

’
&

1 '

The first step above is a preliminary examination of the given system. The partitions

" can be obtained in a systemkatic max;ner by examining the controllabllity and observabil-

»

o %

ity. of ‘the mode of open-loop the system from each station. This is -easily achieved by

using Algorithm 5.2. T T S

[ a

Formally, we may state the a.lgof‘ithm l‘o;;'ﬂnding the disjoint sets {:’,. . .ng"}"

Y

“

{i;,'l“‘\- i,n} R {z',.,_lﬂ, LR i,‘} for tﬁe g‘iven,decentra'llzed system (A ,B,,C;),

. 7
1 =1, .- - N, as follows: .o P

o~
[ -

Step I: (Initialization) . _ :

hd el

. .
(1) Find a unitary transformation U, such that - /(F°G,°H,°) =

" (U°HAU°GoUCY B; H,°) is in UHF.

(2) Set n=order of the system.

Step I ; (Check controllability and observability of eigenvalues)

b7 (3) Set r=0 ..

(1—)‘ Determine a'unitary matrix U’ using the algoritht?i" EXCHNG |[24] such that

1
.

Fro—uyrHpr UP with X\, (the r-th eigenvalue of the system) at (1,1) loca-
tion. @ : . '

+

" (2) 'Cqmplete the similarity transformation on the -system, setting G; ==

: UrHGitand ) = H{ WU i=1,- - N ‘
. a )

- =
- -

B
& “ - N Y 4

£

"
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\ (3) Examlne the first column of the m#rices H' If the first column of the output
. ! matrix of & certaln st,a.t,ion is a zero vector A, is unobservable rrom that sta-

tion. Store information in an array as shown in the tableau below (¢ in a

-

block stands for observable modes while ¢ stands for controllable modes).,
s - ) o, .~ ,
LY ) - . C IS

r ... (4).Determine a unitary matrix V' such that F' = V' HEFT™yr with \, at

5

- {n,n) location.

\
»

r

(5) Complete the similarity transformation on the system, setting G =V, g G-

. . , )
. *
. i ’ . < .

and Hf = B!V, i=1, - ,N. ‘

- ] ©

(68) Examine the last row' of matrices G;". it isa zera vectors~, \\vncontroll-

able from the f-th station. Store information in an array (for the sakq} of

~ )
© Y

'Aillu"stration, the‘array given below is for a S-th order 3 station system): &

N

o~ : YN N Y5 IP Y EP Vil IR D VU B VI I Y
’ “ ‘o, Station 1 | .‘co o c 0
* - - Station2 |. o . co cO co
: Statioﬁ 3 co 1- co co ’

v
(Q) Ifr = n GO TO Step 111, else set r =r +1, GO TO Step ) -

"

i ’Step Iil: (Find Disjoint Partitiops if they_exist) - o
) ¢ 4}' T . M
- ¢ (1a) Set £ = set of all stations to be part,id’oned.
r o !
.. (1b) Set_s =1, j=1, . .

€, . . -~

(2) Form a set: E}'cdrres;')ondingst.o.al{ stations from which )\, is controllable -

r A -
e . v

and/or‘observable, assign the remaining stations to set Z;,,. . R

" @) © . - /
.' v . F N ! . . ,
N “ If'E;4, =0 GOTO StepW(l).
3 Il ° s . o
(4) 1Ir X\, is controllable and/or observable from any station €,-S5;; i=1, - n,
« . set Ej =sz'S|' &l’ld E)+)=EJ'+D'S‘. *

-

(5) rL;,, =0 Go 10 Step 1V (2). ) | .

If s <n,set 8 =s+1, GO TO (4) . .

)
El

R - FEETINY ‘T T et ' . a

.
a9
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' . [N s, '
' N '
o SR Il‘ s§=n, Set. n ‘—- humber of modes in T, ., T =al tatlons in Z; 4.
S L Setg = i+, GO TO.(1b). P |
» - “Step. IV .. (Exit:) o ( .

' T .7 ~'(1) ‘No-disjoint partition exists. \-/ L
) . . / . . . ot .

] ,
. . (2) Thesets ;,i=1, - - -,j+1 are the required-disjolnt partitions.
.+ . «At the end émhe algorithm, we" will have the required disjolnt partitions. It is worth

nbtmg that the EVA problem has now been decoupled to ]+l EVA p/oblems of the )

u

. ' ' > kind descnbed in Case 2 of the previous sect.ion i

. ¢
. ) - : .

"We next show how EVA can be carried out l‘r‘om within each.qfgthe partitions. The -

-

rmetho(d' is best illustrated by means of an example. ‘We consider a partition that has -

three stations, (A.B:. G ) 1=1,2,3, such that the qutput feedback from one station -

aﬂ‘ects controllability. and observabr]rty ‘of all other stations. Assume that t.he system is R *

oI‘ 10-th order and each station has 2 inputs and 2 Artputs« The I'ollowlng steps then

[ [

give Lhe'required dynamic output feedback. . ‘ .

- o .

StepI: ' . . . . . - , :
i\‘ N ‘, 7’

) ° (1)) Find controllable and ohservable subsystem (A} .B),.C}), from the first -

) y ¢ - N ° R Y
)

P ) station (observable followed by controllable). Let the dimension of minimal- .

|
)

. order\iﬁbsystem be 4. . : - ’ ’

- —;’fz)"xﬁgme%uth'e controllable and observable subsystem and solve the const,ant,"
% ! ¥ P N .

ol o

a

Blll 0 Cll‘ 0 l ) . : . R : } L4 ' . s
i . . \ o
0 T _ 1y O;T 1 . ‘ o

. -

- - N N ‘ . . ,‘r . Al'o, _ N
.gain output feedback problem for .the -augmented system [[ ¢ ‘],

-

' > . (3) Define the parameter of resulting dynamic compensator by partitioning K, as

: —_— . . o "o .
. J h . AN . - - v . .
- . « . l l B " - 4 -
. . . L . ' . . -
N - s A : -
¢ N gl f " - , - N \ -
3 ~ . . ' K Y N
. . .

. ..

- - . . N S 4
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Commcnt Aft,er applying the l’eedba.ck the augmented system is or order 11

- w i
. . . ’ - . . [
| .

SteplI ~ . I

5,
'

(1) Find éontrollable and observable subsyst.em (Au ,Bu, ";""], of the aug- . - =
*, o ] . ,

mented closed-loop 'system m:thve second station (observable roll'bWed by e ,1,'

controllable) Let the"( mension ol‘ mlnlmal-order subsystem be 8 (gay) with .~ .
} -t 3
three of t,he eigenvalues belng the same as the ones asslgned from the previous:

) s,tatlon . ’ i " i
\ . .

-

+ Comment: ‘A fifth order dynamic compensator would enable us to_assign all

S
&

’ ,eigenvalues of the minimal-order subsystem. ~ . . .

. &-ﬁﬂt Augment the controllable and observable éubsystem and solve the constant’

- . D

; , ) ) A
| ’ ‘ gAln output feedback problem for the augmented systern i[O“ 8],

4 - '
. - . . ' \
-y . . . S .
. - 4 s

. . . |Bh o Ci 0 I . IR
l - o "o 1) o .

»

-

(3) Define the parameter of resulting dynamic ~compensat6r by partitioning K, as

A _ C{Ja Ha . - E ' /. o - N
) ‘ GQFQ" " . .

e Comment L : After épplying the feedback, the augn’:ented_ system is of order

v 16. o

s —_—

r : ' 2 : Note that out;'put. reedback fromn the second station would- affect

¢ . '

” ' ] %aii the ‘comrollable and observable eigenvalue that, may have been prevlously
o . - - -~

’ . assigned by the first station. Therefore these elgenvalues must be asslgngd
: ’ = ' > ’ Al I3
- i " from the second station aé well. . : . .

T . 3 : The augmented closed-loop system now has: 13 eigenvalues where '

. ‘g ; they were assigned from “the second statlpn, 2 eigenvalues at the locatlén._ o

\vllere they were a.sslgxled from the first station and ’1‘ eléenvalue at the same

v
- - . ! ~ |

location as the open-loop system. o C . o .
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Step I+ BRI e

1

- . . . . -t . L} -, N - O ' N . . . T
(1) Find controllable -and observable subsystem, (A} ,B)),C}). of the %yg‘-

[

mented closéd-loop system from the second station {observable followed by

/
AN

2 control!éblg). Let the dimenslon of minimal-order subsystem be 3 (say) with
. . v ’ . M ] , ', .

one of the eigenvalues behi"g the same as thqt of open,\loo'p system. .,

s -

Commcnt: "Note that m3+p(3\> ‘3. "Therefore & constant gain output feed-
back would be sfuﬂ"nclept to assign all ;emaining eigenvglues.

{ N ~ . . .

. (2) Find a constant gain output feedback matrix K 4 10 assign ‘the eigenvalues of \

- H ©

‘

- the 3-rd order system (A3 B3.c3). = i

© ‘At the end of the third step; the augmented closed-loop sysiem'(lﬂ-th order), will have

'
i

all its eigenvalues at the desired lacations. Note that if from the final station, the

'
'

diménsiérj of “‘the controllable a%d obse.rvable, subsystem was greater than 3, \‘vé would

5 . o - AR S

require a dynamic output feedback. £

-

The algqrith‘fn preéent.ed above employs repeated application of (1) Algorithms Tor

'
]

. dynamfc Qutput feedback. Bot.h' of these- algorithms use orthogonal state.coordlt;ate

L

transformations and therefore, have good numerical properties.

r o
v
.

-

5.7., CONCLUDING REMARKS :

| ( ’ 3 ' .

\ r multivari-

, ' ) ‘
In this chapter, we presented_a new characterization of d.f.m’s-of linea

N

able systems. Based on: theﬂcharacterization, an efficient and reliable method was pro-

posed jo compute d.f.m.’s. The computational method is numerically stable and uses

)

soft;wa.re available in varfiouws sci?ntiﬁc programming packages such as IMSL, EISP}\CK,

»

' LINPACK, etc. It was shown that the propdsed method has significant advantages over

- ‘ . -+ \
existing methods from the point of-view of computational efficiency and numerical stab{}-

ity. Numerical experiments carried out'so far'suggest that this approach is ‘numerically

more reliable than existing methods for computing d.f.m.'s. R .

1 «

"~ computation of minimal-order subsystems of a given system and (2) computation of -}

LNy

A
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For the systems tliat do not have d.f.m.’s, a compqtatio;lal procedure for eigenvalue

- - u&iﬁnm?nt by means of decehtrallzqd output feedback was pregeh_te&. The algorithm for

- ‘.

. d\eqentr'allzed EVA can be considered to be a generalization of the results in.the previous

. L I

éhap‘t.er. In the decentralized EVA problem, unléss the stations are block decoupled, as

""dlscussed In Section 5.6.2, an output feedback from one station would affect some or all

v

_of the eigenvalues assigned rrc;m other stations. As a first step in solving the decentral-

i ) ized EVA, ‘we divided all the stations into several partitions such ‘that feedback from any

.

A ] . . N
station in one partition would not affect the eigenvalues assigned from a station in other

bartitiops. -The second step consists of systematlcallj assigning the qigenva]ges from .the

-

.stations within a partition. Com'pubationally_ the decentralized EVA consists of repeated

-applications uo!" reduction of a éystqm to its minimal order sub-éysr.em. followed by apply-

\

f

' ) ' ‘ ~ kR ' ' 3
. ing the algorithm for dynam}ic output feedback in a s}ngle station system. -

Al L .

Q0

s
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CI;KPTERVI‘ e

TRANSFER FUNGTION AND FREQUENCY RESPONSE
: MATRICES OF MULTIVARIABLE SYSTEMS C

P

i

In this chapter, we consider the ’problems’or comput,at,ion of tranéfer function and

frequency response matrices of Iinea.r multivariable systems described by their state-

1

space equat.ions A determinant identity is used to comput,e t,l'e above matrlces whlch
play an lmportant role in !'requency domain analysls and design ol‘ llnear multlvariable
systems {1-8]. The algorlthms proposed here are conslderably faster and at least as accu-

‘raée as thé more reliable ones in the literature. The layout, of the chapt.er is as follows:

Section 6.1 sta{tes’ the problems of computation of Lransrer function and frequency

; . : : . ’
(’g';sponse matrices and contains an overview of some of the existing methods for solving

»

‘them. Section 6.2 iht'roduces a determinant identity and describes the theoretical basis - -

of the algorithms. Computation of transfer function matrices of linear multivariable syp-

Y

tems together with various computational issues and numerical examples is consldered in

Section 8. 3 Section 6.4 contains the algorithm and numencal examples for eValuatlng

the frequency response matnces.' A brief discussion of the results is presented in Sectlon )

6.5.

ro- o

6.1. INTRODUCTION

- A -

Many so called classical ang;moderln control system design methods for linear time-

+

invariant systems e.g. see [1-8], use frequency response characteristics and transfer func-.

tion matrices to design controllers which achieve desired stability and -robustness proper-

ties for the resulting closed-loop systems. Efficient and accurate computation of fre-

quency response and transfer function matrices is' therefore of considel;atgle importance.

.

We consider a linear time-invariant, multivarlab_&system described by its state-space

equations: . /

A .
¢
v “
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. - C£(t)=Az(t) + Bu(t) - “ (6.1.18)
- y(t)=Cz(t) + Eu(t) ¢ o o . (81 1b).
K - where z)ER", u()ER™ and y(t) €IR?. The transfer function matrix W(a)

of the system (A B C E) is given by o ' .

’ . . ¢ . . . «

W(a)—— C(sl, —A) '‘B+E N T vea2)
Ty \\
and itis frequen;:y response’matrlx W( 7 W) by ,
W(jw) = C(jwl,, -A)‘ B +E \ , (0.1.3)

One dlrect_ method of computing W (s) is to determine the ‘resolvent matrix

, -1 ' ' . .
\. (al,, - A] . However, when the order of the system is high, this approach is prone to

pdmerlcal réuhd-oﬂ‘ errors. Using an alternative approack{ proposed in (7,8], which- we

. shall refer to as the pole-zero app.roach, the coeflicients of ~t,he denomin;tor polynomial of
the (1,7 )th ezlpmént of W(s) are determined by computiné' the eigenvalues {9,10] of the

+  state matrix of the controllable and observable subsysl:em'cér’fesponding to the (5,1 )-th
lnp:ut-outptit pair. The goefriclent.s of the corresponding ‘numerator polync;mial |aré
obtained by solving a generalized eigenvalue problem (11,12] and ﬂndir;g a co;lstant mul-
t.lplle’r. The accuracy of this scheme depends on the accuracy of t,he computed eigen-
Yalues and generalized eigenvalues. ,For systemé wnth lll-condmoned engenvalue problems

or lll-conditioned generalized eigenvalue problems, the computed coeflicients of the

numerators and denominators of transfer function elements can be very inaccurate.

These difficulties can be avoided by’ computing the coeflicients directly [13 14]. In subse-

quent sectlons we present an efficient and reliable technique for doing t,ms .

— Computation of frequency response matrices usually requires evaluation of W(jw;)
at a large number of frequencies wy, k ==1, - - - V. If the system description is given in"

terms of the transfer function matrix W (s), then the computation of frequency response, ‘

s

- is a relatively slmplé" matter. However, if the state-space description (A ,B,C.E) is

given, then the problem is not so straightforward computatjonally. Obtaining frequency

3

1
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) response by first converting the state-space description to a transfer function description

is justifiable only when the initial cost of computing the transfer function matrix is offset

/f‘ by the number of frequencies [lS)IB] at which the'frequency response is desired. From

x - ° . .

the operations count in Section 6.4., it is possible to determine approximately when a .

N <
direct determination of frequency response would be more. economical than computing

, the transfer {unctipn matrix followed by evaluating the transfer f‘unc,tlon matrix at varl-

M N C - ' v
ous frequencies. In [17], a method for computing the frequency response was proposed

which, starting from a given state-space description, determines the frequency fesponse

-

matrix at.a given value of w by first reducing the staté matrix to ap upper Héssenberg
, ' ' &
matrix and then solving a system of n simultaneous linear equations. Depending on the

number of frequencfes at which the frequency respénse matrix is desired, the methods

described in subsequent sections are comparable to or more efficient than the method in

7). ° H .

[

-

6.2. PRELIMINARY CONSIDERATIONS . «

Here we introduce an important determinant identity and show how it can be used
for developing our algorithms. ’ ’ . ' . o
Y

S s :

Fact 8.1 : For a single'input, single output system (A boeT ) , we may write [5,13-18],

¢ .o

~ -

det(sl, - A +b cT) = detv(sl,, -A) + cTadj (81,. - A)b. -, (8.2.1)
Further, . ' . . . : ,
' » cTadj (81, - A)b o ‘
CT‘(SI,, —A} b == - . : \
: o det (8], —A) -
- det(al, -A +b cT) , .
' , o = — - -1 \ C o, (8.2.2)
: - det.(sl,. —A) v ; . o
Now, in (8.1.2), the (i,7)-th element ’Of, W(s) is given by
) . a .
. ‘ : w;;(8) =_.c.-r(al,, -A) by +.¢; (6.2.3) :
3 . Al - 7 .
. 6
- - o, )

4

i

?:
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which may be written, using (6.2.2) as L L
. ’ N det (s],, -A +b; c,:T) o e
' . ' . o w;; (8) = - - -1+ eij- o ‘ . (6’.24) ’
. . 2 - . de;(sln,—A) ! - - . ! Lo )
Similar results can be stated when*s has been assigned a valie jw. Sy Co T
. T . . - ‘ - N o
. Fact 6.2 : The determinant of.a matrix whose k-th column can be expressed as a bum_ | -
’ of column vectors a; +4& , may be written-as [10], - P Lo .
’ t N . ‘ , . . * - .
O v ' " .- L ' ’. , - ' ' ~ LT A
v det(aqa; - :a; + & - 8,) =det{a, 0, " a " a,) :
) o [ ) “ "” : [ t "‘t‘ detr ( aQ 1 az '—":\' & * " ¢ a—’l J . , ° ! (6-2;5) ; ' \/
¢ ‘ A similar result can als6 be,stated for the matrices whose k-th row can be repreéehted as "
¢ _— ' . R o }
~ sum of'two row vectors. . o ‘ . ,
Fact 6 3. The characteristic polynomial of an_upper Hessenberg mat,nix A can be com- \\/' -
YA ‘put.ed en‘lciently using the following recutrrence reiations (18: - .~ .
Dcﬂne u,,(‘g)-—=l.0 and compute the vector [u l(.s) u'2(8,) c e u,,,(s:)] by ' using- the
N . * . . S P [ ' -
. f , - N . S o » - .
.recurrence relatjon: - I N -,
, ] \ o P vt ) \ ; H -
. ) 1 ~ & N . ,
. "t(s‘ = —— (3 - ak+1k+1) “k+1(3) - 8 ak+1l+1“(+1(3) ' (8.2.8a) -
. ag +1, k R ) > [=k +1 } } . ! Lo
the characteristic polynomial is th'gn given by - ',\»' oL Y o
. »~ ! -2 L . !
B . * ' , ’ e T ,‘ ) : L 4
! A .. L, . .n , » " ' <. . -
. ‘ ,)’.(’)= [(a - a,,)u,(s)— Sa, )l - . - 7 (8.2.8b)
o . e r=2 . , ' o . .
. oo . ' - ,‘ . . -, - cl
o ‘ 6.3. éoMPU'rA'rmN OF TRANSFER FUNCTION MATRICES T
! S 'I‘he proposed method determines one gfement of the transfer runction matrlx ata -
) ’ tlme. Assume that 2 controllable and observable subsystem (A b,. ,c,,] is In its B
. Y o R ) ]
UHF. ’I‘hen (8. 2 4) may be written as . . N ) .
. ‘ det(A +btc,7]~det(A ) - : I e e
T e w., (,a)_.—— - + e ’ .t .(8.3.1)
N o aelA) T T
- . - ! - N h
. . / /y
‘ g g s )
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- where: A - = (8l,* ~ A). Note that because of the structure of b;, the product 5,- e,T will

. * ' . N N : o/ - \
- have only its first row as a non-zero row, given by b,,-c,»r. Next, we define A as the

{

matrix obtaihed from A by replacing its.first row by b,,-c,,T, where b, ; Is the first ele-

ment of b;. Then, using (6.2:5), we have | e T -
N Foa \ - ,

o L de[4) S , ' SRR .

3 o wi(8) = ——e—te; . 0L o - (832)
' R "Q. \“det(A‘) ’e o LT

' o . '7.";(3‘)-; £ij dij(e) - L - L

o ‘._‘ ‘ / d,,(g) ‘ s o ’

; o A ﬂ,) (8) o o - RN 3 v . '

, : ,}\ . u(a) . C \\ . ' e e

- -
\ .

w,here n., (s)— det(A l and d,,(a) =é det (A ]

¢
i

- 8.3.1. ’An Algorithm for'Computilng Transfer Function Matl:ices

-

The determinant identity described above win be used in Algorthm '6:1 ta compute

< the umera.t.orfand\ denominator polynomials of individual elemerﬂts of the transfer runc-

, o
) 1 * A

tion. matrix. However, since the single-input, ;ingle output subsystemg_[A bJ ;c, 185 )

may not. be contr llable and /ot observable for each input-outpub pair, we must. remove
the input and/or tput decoupling zeros before computing the “transfer function ele-

' ments” correspondinglo that input-output pair. The algorithm to compute the transfer

controllable -and observable subsystem .of (A ,b;¢;7.e;; ). The
P .

first s p: ensures that there will. be no cancellafion in the numerator and denominator

¢

S fpolylhomia]é of the (i,j)-th element: of the transfer function matrix. An &fRorithm for

%

comput.ation of a transfer funcmon mat,rlx may be formaw described as roflows
. )

J
Algonthm 6 1: (Tranéfer Function of Lmear Multivariable Systems) -

CT Step I [Initialization/ o \ SV o | /

NN
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»»»»»

2

. .
B
oo . v i
Ll ’ ' }
* * ‘ /, ' .
el ‘ . o
- il
.

(1) *Set i =0, n, =0, n, 0. Y

@

3

N

' (3), Set (FGhT T]—(AB:,;:, ).

Step Ir: /Rcmovc output dccouplmg z(roa]

~

{

.

~

(2) - Set t =1 +l. j =Q, n !=order of the zlven multfi-lnput, mult}-output systems.

’

) }
(1) Reduce the shigle-lnpu‘t., ,rﬁulﬁvoutput. “'dual” system\(FT 4,GT) to UHF.
‘Comment : *This can always be done by means of an \orthogonil state coordinate
- ' . ~ &
trans‘formatioh ‘matrix U € IR " X" such that. \ ) . :
f ot . A N : N ! [y
L R \ . |
, .t o E(,l * , ) | . 3
UTFTU = R R T U R '
T o R T AR
, “ | L N R - .
R ) ' - N
. i rh (o)[° -~ i ' V- ?’.. . oL . N .
- UT’I = S , ; , _,‘\ ’ T .
. ‘0‘ \\ , .
- : i - » N e :
and’ , B o . -l . )
7 /- " ' - R N - ' . \, ) " - >
GT = cm.mu)] \ \ LT ’
. (2) . Partition the system and ‘set ( h e) = ('/F("’,G(W’T,h ©)T ¢} and n,
- o vell, T
. — dim (F“)) o o : ’ ,
A ) Commenl : Note t,hat the dimension of the observable system is easily deter-
’ " mined by inspectlng' the sub-diagonal of the upper Hesse,uberg matrix UTFT U.
“The partlt.lon is performed if any ol the elements on th}e sub-diagonal is zero
P " For'a completely observable system n,=n. . o /
. N . ! B s
. ) s . i
Step Il [Remove input decoupling zeros] ; o ;
. .. g N = v._ = ‘ . ¢ ‘ ) ’
(1) Set-j=j+13nd (F. g.h Tie] = (F .4;.h te) ~
Lo ’ . ‘ -~ -~ .t ot . . » . .
(2) Reduce the system (F g A T,c)- to UHF by means of an orthogonal transfor- -
‘mation matrix U € R ™™™ such that




B ) ' 4 ‘ - .,KE"ai'g
- s R 0 . ﬁ
- ) . - 142 - - . o )
, e, - - - - (‘; N . gL . '
- ) T Sy ; F (¢) ..*x . . . - .
- ’ u F’U,—, [ 0O F W)} ) i .-
AR ¥ . ! .
UTj — [g-rc_) T o‘T ] ‘ . ’
PRy N ’ . ;.hd ‘ . ? v. - o B cos . ’ .
! ~ X _ . . . " 2 ¢ 7
. d h Tu,= [h (c)T l',,(uc)T]. . ' . o
~ . RN ../ , - -
. (3)," Partition the system and set (F,g,hT,e) == (F (cXg)h ()T ) dnd n, =
. ' Sy ' ‘
. m (F‘ ) N ) . PN

. - b . M-
Comment : Note that at this stage W Luv e ispluicd the controiiabic and observ-

L e
. 1

. » ,
able subsystem of (4 ,b;,cT.¢;;) and therefore, we are in a position to evaluate
0

W o : : ’ )
. o . thespumerator and denominator polynomials of tpe corresponding subsystem.
L N . o o
: e ‘ ]
Y - Step IV: {[Compute the transfer function element w;; (8 )}' ..
- T C - ' Toa ” . .
* ., .. (1) Compute the vector [u,(s) ug(s) - - u,,‘(s»)] using the recurrence relation: .
R o - ' ‘».‘ %' ™ . ’ ' . ) '
K N .~ ' 1 ‘ . e . * L -
’ u(s) = (5 = Sirp ) 1(8) - 02 Srpinte)
e Sk . - . l=k 1 - ; 7 .
where u, (8)=1.0 and f; ; is the (i, )}-th element of /. - ‘ I
' (2} Compiite the dgnominator’ polynomial from * )
- ! m o S ,
d;,-(s) == (8 - f‘,.)u,(a)— E f”u,(s) . ~ ] )
.- . o “ r=2 -’ -
’ .+ * (8)] Evaluate #j;(s) as. S - S .
i ‘ E . -p , n . - ) JE . ¢
! e ﬁ.’j(s)=,912hr'{r(8) . ) L ' , ‘ . ‘e
[ 6 - - . . r=1° ' . c e N ’
A N " where h, is the r-th elemens of b and g, Is the first (the only ‘nonzero) element )
. oty ‘ c, i .
, R () Compute't.'he numerator p9fynomial from ‘ ¢ . -
. i-' e & . . - : i
- ni;(8) = R (8) + e;;di;(s) / : '
) BN “andset - . _ ‘ : - R
© L, 4 ' - » s
" : B
\ ~ 3 - . -



A\

ot 8
ANy o

S\ ,
P \ * L . e’
ni;(s) - o
. W (8) = e, :
) T dij(s) " "3 . .
.h (5) ]f] < m, go to Step Il - (1), else, . . .

lr1<pand1-—-m got,oStcplr (2) else .

‘\k>§, STOP . ” - S D

.
-

'At the end of the Algorithm, we will have the desired transfer. function matrix Wi(s).

6.3.2. Discussion - \ '4 K

* ]

" Algorithm 8.1 overcomes several problems associated with existing methods for

»

computing transfer function matrices of,.lineaf multivariable systems. In this section, we

N
a © . v

discuss various properties and implementation issues associated with the algorithm.
o !

(1). To obtain the minimal order subsystems corresponding to edch input-output

pair, only orthogonal similarity transformations are used. - Tpls 1s very desira,b%from

the pumerical point of view, because the round-off errors incurred by the use of finite

.precision arithmetic are well bounded for orthogonal transformations,[8]. This. aspect ‘of

~

computation 4f_transfer function matrices has also been discussed in detail in [7,8]; |

0 ~ A .

(2). Unlike the pole-zero method, the proposed method is direct. 'It should be K

“ . f

pointed out that the pole-zero metfh"od obmins the minimal order subsystcm correspond-

ing to each input-output palr - in a similar manner. However, ha.ving obtained the
"*\J

- minimal order subsystem it is necessary to solve the algebratc ezgenvalue problem for the
. 8

corresponaing state mat.rix to obtain the denominat.or polynomial followed b(a general-

tzcd ceigenvalue problcm to obtain the numerd.t,or polynomial The methods for solving

the algebraic and generalized eigenvalue problems are ztgatwe in nature and are, there-\ ,

fore, computatjonally much more expensive. Moreover, if these problems for a given sys-

“tem are tll-condjtioned, then thé transfer function matrix computed using this approach

@

. .
may lead to inaccurate results, T

/

¢

. P4 . . 1
order.system and therefore does not suffer from thie shortcomings discussed above. Since

The proposed. algorithm'works directly from the unreduced UHF of tlie/ minimal

e
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7.

t

Lhe algorithm computes the determinant of a'mat;rix.in & s!ng'le step, It lss:omputatlon-

afly inexpensive. Note that in the algorithm, we need to form. products of the elements
. . .//

of the first subdiagbnal of an upper Hessenberg matrix. If ghese elements are extremely
small (large), one could run into ﬂoatingfpoint underflow (overflow) [8]. While imple-

- menting the algorithm, one can store the elements of p.(s) in a product form until the

'

. . . final step, thereby avoiding the floating point overflow.or underflow. : “

b «
+

(3).. The bulk of the computational effort is involved in finding the minimal order -

’

subsystem for each input-output pair. From the algorithm, it is clear that we i-equire p -

" " reductions. of single output systems to their lower Hessenberg forms, followed by m

" reductions of the gbservable subsystems to their upper Hessenberg forms for each out-

N
\

put. For a single input, single output system, these reductions require approximately .
¢ . 1 » N

L

%n3+8n2 + %—n03+8n02 floating point operations, where' n, is'the dimension of the*

+
v

’ 6bservable subsystem .from the specified output. The final step for éémputlng the two_

determinants can be‘ completed in ai)proxlmately %—nca%-nc’ floating .point operations,

. N where ‘n, is the dimension of ‘the minimal order subsystem fof a specified input-output

. -pair. It should be pointed out that the pole-zero method aiso requires the initial reduc-
v * ” ’ -

t.iqu to Hessenberg form to obtain the minimal order subsystems and subsequently needs

-

to solve the computationally expensive algebraic eigenvalue as well as generalized eigen-
\(alﬁe probler;ls to obtain the e‘lements of the transfer function matrix. It is safe to say

. A ’ that Algorithm 6.1 has significant advantage in computational cost over the pole-zero

technique.

\'l ' (4). The proposed method and the existing methods used for computing the

coeflicients of numerator and denominator polynomials of the elements of transfer func-

tion matrices are based on entirely different principles. Therefore, one cannot directly

"compare the pe’rforr'nance of the two approaches. However, the computational costs dis-
N q .

o ' cussed above and the numerical exampleé given below illustrate that the pljoposed;

- -
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L%
\ method has significant advantages over the existing n‘zhods. ! X co -
6.3.3. Numerical Examples g 7—?

‘ Here, we illustrate the accuracy of the proposed algorithm by means of a numerical .

example All computat,ions were carried out on a, VAX 11/780 using double precislon as

. . well as slngle preclsion The accuracy of the coeﬂiclents computed using single preclslon

is shown by the underlined diglts. ‘ ' S .

In t,his exampie we conslder the 9-th order boiler model {11} with 2 inputs and 2 °

. ﬂ

out.puts This is an extremely illéconditioned syst,em wnth eigenvalues ranging from,,,

o . ~10719 to ~10. ‘The parameters of the system are given in Table 4 2. The pole-zero

1'tipproa,vch in this case will not. be reliable because, forming'the coeﬂ‘icients,; with eigen-

vallfes as far apart as mentioned will lead to cancellation’ of several significany places..

A

The coefficient w,;, computed using the proposed algorit,hm wii,h double preclsion ancl

single preclsion shows t,hat the algorithm is quite rellable ’f*he underiined dlgits in t,he‘

% "‘{
o columns with coeﬂicients computed us‘ing smgle precisnon give an ldea of the accuracy, of
Y .o . .
the algorithm (Table 8.1 and '6.2). For t.he sake of iilust.ratlon only the coeﬂ‘icnents or‘
' ' \
wy,(8) have been shown. \
. ) , . . .
i . o Powers of 8 . _Double Precision N Single Precision
o . © o .6 . 2.096991388799999d+02 2.006901405487061d +02 .
' .5 2.240810305906802d4-03 -2.25!2810370028320dﬂ-03‘ - R
) 4 8.058142904149724d+03 | ' 8.058]12883300781d+03
3 t 1.054129331589858d+04 LQ§_1129_3_2'1280083d+04 .
—t 2 l 2.6673153016763114—10o ' 2.067315307617188d+03 ‘
, 1 N 3 1.470991471959572d+02 1.47099]1382598877d+02
‘ g 0 1.189248270895743d4-00 1.189248189330101d +00

Table'e.l Numerator polynomial of wy,(s)

l




}

.+ | Powers of s. Double Preclsion Single Precision '
, 8 1.000000000000000d +-00 1.000000000000000d 400
A 4 1.089339000000039d+01 1.0893290009685287d+4-01
- 6 4.255744585600835d+01 4.255744528770447d+01 -
5 6.7012157740120814+01 8.701215744018555d+01 : b
4 3.338350280658865d+01 $.338350039750671d+01 -
. . 3 6.338532196643809d+00 133_8_539098732834(1'{'00
2 4.170298730139534d -01. 4.170327670872211d-01
1 5.786203583399542d-03 5_,]_&5365599286034(1 -03
i 0 2.266130444584768d -05 2.266192825572944d-05 -
- . . Table 6.2 Denominator polynom{al of w,,(s) .

‘ B ) P
6.4.. COMPUTATION OF FREQUENCY RESPONSE MATRICES

"+ 'The methoqd fO( computation of frequency response matrices described in this sec-

S

. .
tion determines one row of the matrix at a time i.e., we evaluate the frequency response
of multi-input, single-output systems (A .B,c,T]', t =1, --,p where c,'T is the ¢-th
row of C. 'Note\t,hat for the sake of clarity, we have dropped the matrix £ frém the

~ A L]

system description. It can be easily incorporated 1n each final frequency response mapt,rix

vl .

/

-

/

by a simple addition. In evaluating the frequency rc{sponse, each triple described abo\re

is first reduced to the condensed form described in (2.3.3). This reduction is done only

t
N

once-for a given system.

-+
The (i,/)-th element of the frequency response matrix W{jw) In (6.1.3) with £ = \
- 0, is given by ’
‘ L T¢ -1 ' .
., wGwy=¢ (jwl, -A) Y " o _

- where b, is the I-th column of B. Usirig the-determinant {dentity (8.2.2), we can write
~ # . i =
‘ det,(jwl,, ""A +bl (E,'T] ' : . *
w (jw) = —- 1 . (8.4.1)

det (jwl, - A) L o .
Equation (84.1) can be further written as

.o det(jwl,, —A+b,c,-7'] - det(jwl, -A) '
. - wgw) = det(jwl, -A) N ' . )

\

"y
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| ‘ ‘ (@ it ) - det (A1) .
- P . . = . ‘ - .~ : : " \ _— ‘(6"4..2)
. . . A ) ‘w det{A ) k . \:A. K R } ) . ,

where A = (jwl, “A ), éi- s the k-th column of A and Ciw i8the n'—t,l_; element of

'
’
S,

‘ c;.and Is the only mon-zero element in that vector. Then, using the determinant jden-
. B ‘. -

tity in _(é.2.5),’§he\\abo;e expression can be simplified to L

) Ve -
. ~, M ot . 5

- - * LI ‘
/ “ » ' ‘
! o - -~ . g

. . - s detfa" v . ,dn..pbl Cin ) , =
, y . . detd !
N . <o " w,-‘(] (4)) == - ~ = detA (8'4-’3)
‘ | v det[4) ) et ( L
&« b - L
] ‘ “ \\ ﬁ' . ‘ \ ,
; — M . . (6.4.4) .

N ~e . - - . M n
'Fréom the LU decomposition of A = L U , we have det [A ) = dec[ ) IT#
C T A "_
' It is perhaps worih,poihtlng out the matrices A , L and U are respecﬂvely an UHM, ’
. . +

, .
a u'nit, lower bf-diagonal matrix ‘and upper triangular matrix: Moreover, changmg the

- Iasb colimn of A aﬂects only the last column of U Therefore (6 4.4) gives ,
- o ‘ / o
.
, . wy(jw) = T ) . ’
’ o T n-1 . >
N . Uy TT, - . ' -
. — r=1 _° A
- n-1 ' . L
% H"zr.'r ’ o b4
. v re=] ‘ ':
N 4" ﬁ' - , R ) . ‘ :' \
e = _"" . oot ‘ (6.4.5)
i Upnp . - ) . .
In(6.4.5), ¥, is the (n,n )-th element’ or the mahrix U AWl U, is the (n,n)th éle
ment of the matrlx U in the LU decomposmon of A ’l“herefore, for eva]uatlng the rreu .
quency response,‘instead of computing the determinants as in (6.4.2), we only nged to
find the ratio in (8. 4 5). A small saving in computation can be achieved by noting that
7,, = &, ¢;,, Where &,, ls the (n ,n )-th element of the matrix U t.he LU decomposl-
\ ’ .
‘ vion of A = (64 - “.@p-1.b1 ) The(i,l)th element of the frequency response matrix
Is, therefore, given by ) ) '
. 3 - % N
2.? . - . « b
o .
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" Cip - o ) T (8.48)

,u nn

wy(jw) =

.

68.4.1. An Algorithm for Computing Frequency Response Matrices

This algorithm utilizes the fact. that if a single-output system Is reduced to the con-

densed form described in (2.3.3), then, one can easily partition the system into observ-

" able and unobservable subsystems. Since the unobservable 'su‘bsystein does not contri-

bute to the fréquency responsé, it can be removed. An allgorlthm based on the above

t -

'd,iscussion rﬁay be formally given as follows.

!:slg‘qrithm 6.2: (Frequency Response Matrices of Linear Multivariable Systems).

——

Step I: \/Inftials'zation/ . . ) \
, : -\
" (1) Set i==0, k=0, {=0 and n, =0,
. (2) Sét i=1+1, n =order of the system (A ,B,C). . '
f . z}’ - .

(3) 'Set (F:C:',I;T ) = (A ,B,c,-T].

’

Step II: [Remove output decoupling zeros|

.

(1) Find an orthogonal transformation matrix U € IR " *" ‘such that

+

KTU=[00---oi{,,,] , o

and set I;T=I;TU,i'=UTi’U and dz,UTé'.

(2) Find an orthogonal transformation matrix V € R" Xn such that VI FV 15 a

3

upper Hessenberg matrix and the structure of h is preserved.

e - [ )

0 F©
. .
T~ |Gle) N
VTG = [G“’)
3 and
h‘TV==‘[0T h.(a) 1:] ‘-. '\ N L]
(3) Partition, the systeém and set (F,GAT) = (F,G)h¢IT)  gnd

e,
~r
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n, = dim (‘F.'(’)).
o . k I ‘
Comment : Note that the dimension of the observable system is easily deter-

mined by inspecting the first supe'r-diagonal‘,or the lower Hessenberg matrix

VIFV: For éc,ompletely obsetvable system, n, =n . - - |

¢

+ Step II: [Compute the frequency response vector w;(s)/
(1) Set k=k+1

(2). Perform LU décomposit,lon of (jw‘kI —~F(‘)], denote by’ l: (")(} ) and set

un("") = (n n )-th element of U ®, . : . ’

(3) Set l=I+1 ‘ T - . o \
(4) Replace the last column of [jw,,l - F(‘)) by ¢,"? and (!en'oﬁe it by 1;'("), per-
form LU decomposition of F) ang sepﬁ,‘,,"””’: (n.n)-th element of gtED °
Sy -

(5) Set wa(fwk‘)=-7nwcin-‘ - o _ .
' Upn . o .

(8) ‘1£! <m go to Step 11T (3), else ,
| lf l-m and k <N go to Step III(I) else |
iIr l=m, k=N and i <p, goto Step 1(2), else .
If l=m, k=N andi;p,STéP.‘ I | ‘ . &

At the end of the algorlthm we get the requlred frequency response mamx W w) at N .

s desired values of wg.

- . g

6.4. 2. Discuunon -

—-

(1) The triples, (F(') G4, hT) are in the speclal condensed form described in (2.3. 3).
-As'shown in that section, only the Jast element of h,»T is nqn-zero. " Consequently, form-

" ing ( fa‘). I, -F (‘)+g4(‘)h;T) \rgtains the upper. Hessenberg structure of F (1), Also, the
matrix U®4) differs from U %) in only its last column. This enables us to compute the

‘ : s LN
- . . ', - ~n

’ Fow o pt ows Lt o N PN . P} -« .

- N o vty
e e T i e adewe P A el e T ey
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N

thereby, reducing the number of operations.

- ‘lated in double precision, the factor n can be replaced by 1. The discusslon above does

f - s .
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[
N

frequency“ response, matrix without act,uélly, dal\culaqlng'the determinants in (6.4.3),

-(2) The LU decomposition of 'an upper Héssen'berg matrix F -requires only -;-n’ ﬂbatlnz o

u
i

point operations. Once the lo“'rer‘subdiag'on«al olf[ L in the LU éeco’mpoéit!on of i‘ is

known, subsequent evaluations of ﬂ,.‘,," '”;for all g, I'=1, - ,m , require only nm extra

operations. .

(3) An error analysis of the LU depomposit-io’n pf‘ﬁ matrix F with L belhg(a unit lower

- Dbidiagonal matrix yields , - o ; ' Pl
. LU = F+aF ’
-.w_rhere L and U are exact i‘or a sliéhtly perturbed matrix F'. The elements of the error ’
¥ ' - A . » 1
" matrix AF satisfy [9,10]
- |aF;] < napyo”f 0 o <

‘ wherg n is the order of the matrix, 7 is some constant of order unity, Bls the largest

element of .the_matrix F and 4<2"'. Although 2"~! appears to be a rapidly growing

\

fp‘nction, in practice for upper Hessenberg matrices, large growth factors 7 are almost
; . , -

. ‘ -~
never encountered. Moreover, if inner products in the LU decomposition: are atcumu-

a

. not permit[usgo make a sb;or‘xg statement about the stability of the b.lgorlthm, but for|
, :'ail practical p rposeé, the results obtained from using the proposed algorithm' will, in

. general, be very reliable.

' (4) The problem of evaiuating the frequency response matrix can be divided into P

\ » »

.(=the number 'of,ou'tputs) independent sub-problems. Therefore, p processors may be

"+, employed to.compute the frequency response. Th[s will reduce the actual time of com-

- .

putation \signiﬂcantly. g If, h’owever,‘ -only one pfocessor is used and if thg number of

inbut,s,lé smaller than the number of outputs, then.computing the frequency response of N

. '

K thé dual' _systein would enable further redluction in computational gﬂort. This will

-

R



H KXY
.20
1

b
° - 151 - ‘ ) - 0

? 0

become clear from the operationas count given later in this section. !

\

(5) Iut, f{s worth mentioning that any technique for efficient evaluation of the deter-
s . : ‘ .

minants of ‘Hessenberg matrices may be used to determine frequency response matrices

e.g. Hyman's method and its variations [9,19]. But such methods may ,ru‘n‘ into floating

point overflows as the value of w increases. The proposed method as well as the method

in {17] do not suffer from this drawback. . ‘ .

(8) The algorithm proposed above uses complgx arithmetic. The use of éo’m’plex arith-

metic can be av%)'jed by making minor modifications to the algorithm. The r'eal and

1

imaginary parts can be computed independently as described below. ’ T ' h
) l \ix A:g
Consider the triple (A ,B,C); its frequency response matrix can be obtained by -°

solving , -
» 4 ) , SR

(jwl - A)Z =B + g L . {6.4.7)
for Z and then computing . ) ‘ S ’

G(jw)=CE& B o T ' (6.4.8),

'

Let Z=;¥N'Zg, then equating the real and imaginary parts on both side of (6.4.7), we

get

t

: A el 4o |B B ( S 1(6.;19)
o er a2z =t

It is easy to see that 'in (8.4.9),

o
N . 3

Z,=2Xaz, - o . , (6.4.10)
w , o o
and . ‘ \' ‘ L .
. : : g o N . :
Z,=-wl(«*1+A%) B. o ' S (8.411)
The term G (w’) = (w?[%-A R)-IB can be eyaluated by applying Algorithm 6.2 to the

system (-A%B.I). Then, ‘ B S -

3

© Z=-AGWH) A
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- N . N 1

’ - +

- .

{

N

T Z.z*‘-‘;’é(w?)- S .

Note ‘that only real arithmetic -is used in- pomputlng‘both Z, and z g The frequency

~ * !

arithmetic, in forming the matrix A2, significant amount .of- information can be lost; and- .

therefore, this alternative should be'used only as the last geéorp.

(7) In the transformed triples (F“’,G“ )_,h,-T}.’ the matrix FU) is an unreduced upper
i . , . Lt ) \ Y -

- 4 ¥ , . .

Hessenberg mactrix and h;, 50 if and only if F is completely observable from the ¢-th

R output. However, . if that is not the case, Ll{en F %) Wwill have a block upper triangular
. ' structuré and the systein equations may be rewritten as:
C. ) . e

- i Fif =, + G, o C , o ‘
0 Fy Zg G, o R ‘ ’ .
) w'— o nrl |2 o : |
n i = [0 b, ] [12] ) e ‘ _'
. - ) .
where F',, is an unreduced upper Hessenberg matrix and AT = [00 o by ] The

‘

i

‘ , o - ' Is
(observable subsysten is (Fn,Gz,h;T]‘ and the frequency response ig given by .

x

3

: -1 ‘ I
W(jfu)'=h,-7'(jwl— Fz) G0~ ' ) ‘

Since the s&stem beihg conside\red now has order equa,l,to t,hg dlmehsiqn of F’z.‘&,'the com-
; i . R N s - “ /
putational eflort is a.cco;dingly reduceq.“ \ o o
f . . . : ’ .

6.4.3. Operations Count. -

- | \
\

Next we compare the operations count for several efficient methods for computing

:frequency Tesponse matricgs. We consider three methods:, (1).the method in (17}, (2) the

method proposed in-this section and (3)’ by first cémputlnzahe cr_ansrer,funct'ion matrix .

'
- |

.

and then evaluating it étivarious desired frequéncies:

transformed to an upper He7senberg matrix while matrices B 'and C have no specific

N

e
44

\ - ; . N . N . -
response is then given by CZ ‘7— JCZ, Although the above approach uses only real

N o, co! . L

; Method in [17): In this method, for the given triple (A ,B .'C)., the matrix A is

- iy
D 4
%
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4

‘strgciure An LU deqomposmon of (Jwl - A) is carl;ied out and Z' ls obtained from

' UZ = L lB where U and L are respecrlvely upper #riangular and unit lower bidiago-

- ’

nal triangular- matrices. The frequerrcy response for one vqlué or w.is th’erx given by'

-

’W(jwj = CZ. Wh'en efliciently ‘ir'nplement'ed‘ tlre above steps, together with an inltial
reduction of A to an upper, Hessenberg rorm and the corrésponding t,ransformar,ions on

L

B and C,. rcqulreWa proa(imately —(n -1»m+p)n2 (real) a,nd l[(p +1)n2+2nmp]N

——

\

+ (complex) flpating point operations (flops) for N values of w. ‘ -

j, a Pr@oséd Method: The proposed method requires an initial reduction of several
. : \ T .
. .~ mult#input, si\rlgle-ourput. systems to a condensed form. This\reduction requires approx-

-

imately %(n‘+m +1)n’p (real) operations. For each value of frequency, evaluation of

&

| o> ‘ . < / . ~
: ™~ ) .

) in. Algornhm 6.2 requires -g-n operarions and subsequent m values ot‘ i, ) for all
Q t -,

inputs require a Lotai of.- nm operations. This is done for each triple [A ,B‘,c,-r).

Therefore, W(jw) cak be eyz;luatcd in approximately -g—(\m +n+1)n?p ‘(real) and
v . ' ‘ ., s s

% (n2+2nm)'N (c"_'o“?nblex) flops for N valne of w  Further saving can he achieved by

considering the dual system if p >m, as can be easily seen from the expression above. ‘
N . N ( - v ’

Considering remark (7), we note that the operations count given for Algorithm 8.2

i

above. correspouds to the case when the systcm is obse’rvabl—e from cach of the outputs.
However. t.his is usua.lly not the case for very high order systems.If a system is not

' observable from the i-th output the frequency response calculatlons are carried out on a

. ’. lower order subsystem and a. signiﬂcant savi.ng ln the computatronal efrort, can be
achieved To lllustrate the above poinr, consider g 40—th order system wnth 5 inputs and

5 outputs and 100 rrequency values. If each ol‘ the 'out,puts can observe only 20 sc::tes

the method in [17] requires approximately 2,453,000 "figps compared to 1, 213000 flops -

required by theproposed method. - L
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By Evaluating§ the Transfer Function Matlriz: . Evaluating the transfer function

o

matrix" requires approximately -g— (n8+nc3] m + 8 (n2+nc2] mp + [%n,’+n,’, mp
o : . . "
flops as discussed 'ln Section 6.3. Consider the example lntrdduced above where only 20

states are observable from each of the out,put,s Further, assume that only 15 ptates are
controllable from each of the inputs.. Then evaluating t,he transfer function matrix will
require approximately 560000 ﬂgps Evaluation, of frequency u response matrices for 100
different values or w requires a férther n, mpN flops. For the example undef consldera—
tion, this is approximately 540,000 ﬂops, giving a total of 1,100,000 flops. Not.e that thig
"appronch Becomes extremcly eflicient il‘_ the 'number N is very large, 'hecause once the
transfer function is known, it requires a very small number of computa‘cions for evaluat-

14

ing it at different values of w. ' . £

<

The operations counts‘giv/en abové are nnly representative. In prnct.lce, frequency
response matrices may be computed with nliﬁhtly less or more computational effort:
depend;ng on th.e controllnbility and observabi.lity ‘propert,ies of the eystem u'nder'con-
siclleration‘ ‘ —
6.4.4. NumerncaLExample

’ .For the 9-th’ order boiler model consndered in ectlgg 6.3, the frequency response’

was calculated using the ‘three approaches mentioned above. ’I‘/he frequency response

N i

was first calculated i'n double precision using ge proposed method. as well as the method
in {17]. The results agreed. up to the 15-th signmcant' digit. We shall call the frequency

s ' FRd )
response calcul in double precision as the “Actual” response. Next, the value for the

- ’

proposed method, uslng the transfer function obtamed in the previous sectlon and using
the met}lod in [17) for a selected number of rrequencies The results for the three

‘memods are shown ip Tables 6.3-6.8 below. The' underlined digits indicate the accuracy

o

" of the computations.

v -

e
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" be especially useTul bgc&use the methods in the factorization appt,oach rrequently need to
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Actual

via TFM - 1.764752655020207d+02 +7.363056165313721d+011
Proposed - 1.764752702713013d+02 +7.363956117330102d+011
Method [17]. | - 1.784752664566040d-+02 +1.1m5§4031323004+ou

- 1.7647526031768270d-+02 +7. 363956117(;3‘0005d+011

Table 6.3 (1,1) Element or Frequency Response Matrix for w=1

1

Actual —2 125151613822383d+00 +6.456438212270100d - 02i
via TFM 2425_m574811664d+00 +68.456438358873120d-021

. Proposed -2.125151604413086d+00 +6,458437520682812d-021
Method [17] -2.125151515007019d+00 +6.456438017666674d-02i

B M [ M
" -Table 6.4 (1,1) Element of Frequency Response Matrix for w=10

Actual - v -2.007382268402725d~02 +4.376591200620528d - 051
| via TFM - 2,007382233478120d-02 +4.376591778054717d-05i
*~ 1 Proposed -2.007382280044258d -02 '+4,3768592733024154d -05i
; | Method [17] -2.007382198553532d -02 +4.376593006822085d -05i
° ' - N . )

Table ﬂ6.5 (1,1) Elemenb of~Frequency Response, Matrix for w==lQQ,

Actual -2 oocosssmssooezd ~04 +4. 350784524412990d 08}
© via TFM - 2.006095276588132d -04 +§,350785731688234d -08i
- Proposed . -2.006095312067920d -04 -+4,390783444628803d-08i
Method (17) .| -2.006995267493185d-04 -+4.340020956769893d ~08i

6.5. CONCLUSIONS

i
'

-’f‘able 6.8 (1,1) Element of Frequency Kesponse Matrix for w==1000

- ’ : ~

t..ransfer functlo‘n and frequency response matrices of linear: multivariable systems were

presenced The properties and perfo‘rmance or the proposed methods were illustrated by

means of extremely ilI—condltioned praqt,lcal examples’ Although some or the steps g of the '

alzorithms do not use orthogonal transformatlons, the accuracy. or the. computational

result.s was very good.. These algorithims would ﬂnd applications in both classical fre-

' quency response methods for analysis and design of systems as well the new “ra.ctoriztion

napproa.ch"’ In’ the latter the alzori,zhm for computing transfer functjon mstrices would

A=

<

evaludte; the transfer function matrices.

. Using a determln‘gnt identity, computat,ionally’émcient, methods for determining the
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

IS

This thesls has been concerned with the impogfant problem of translating elegant

theoretical developments in multivariable system theory :aﬁ design, into computat,lon-

ally reliable algorithms. The main difficulty with man f t;he existing techniques in the ) N

’

control system llt,era.ture is their limitation to epeciﬂc problems or to “low order" S}/é-
".1-‘

tems. Reliability of algorithms becomes an important issue when the algorith;igs are,

applied to “‘high-order’ and/or ili-conditioned problems. The main feature of the algo-
rithms presented in this thesis is that they are based on sound principles from numerical

linear algebra ﬂ’s far as possible, orthogonal transformations are used in t,he comput,a-

tions. Slnce these transformations are numerically well-conditioned, they are very much

suited for computer implementations. The numerical problefns of rounding errors are

significantly reduced by usc of these transformations and therefore, the computed results

"

are, in general, more reliable than those obéain"ed when non-orthogonal tyansformations -
. . A - A

'S

-

are used. )
R -

The maln contributions of the research described in this thesis have been to prp;ride

numerically rellable algorithms for several problems that are comm@gnly encountéred in

-

the analysis and design of linear multiveriable systems. The results presented fn this

thesis and relatel jssues that may benefit from further investigation are summarized
l\— . ¢

_ next: ) . : : .

-

In'Chapter I, ‘Dumerical algorithms for solving the EVA problem for multi-infput

systems by means-of state feedback was @ldere‘d. Since the state reedbe,ck required ‘co‘

carry out EVA in multl—lnput systems is not unique, an interesting problem tha.t needs
further investigation is whether this degree of freedom can be exploited to improve the
numerical performanee of the EVA algorithm. Another related aspect is to determine

how the EVA tesk shou'ld be distributed among various inputs. The feedback galns can

t a9
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1 I

. " _
.. -vary by several orders of magnitude, depending on the input from which{{t is comp\|1ted.

Our experience with many numerical éxperiments suggests that this is closely relatLd to
. ' the_ controllability properties of the corresponding single-input system. However, a

. v

the task of EVA between various inputs. y

The results of EVA by state feedback were generalized to EVA by means of con-

stant as-well as dymamic output feedback' in Chapter IV. The conditioning of the output

t ‘feedback E\;A probler;l (like te state feedback EVA problem) appear‘s to be related to
“the strugtural properties, of the,given systém, such as co}ltrollabillty and observability.

A rigorous study of this should prove interesting. The proposed algorithms for EVA by

output feedback use rank-2 output feedback matrices. Perhaps the conditioning of the

rigorous mathematical treatment is needelh to determine an “optimum' distribution of

problem ,cq‘z.m be improved by using higher rank output feedback. Preliminary numerical

results seem to reflect™this. A systematic study of higher rank output feedback might

plead to better computational‘algorithms.’

Based on a new characterization of d.f.m.’s, Chapter V presented a reliable numeri-

cal algorithm for determining them. A computational method for EVA’in decentralized

‘

systems was formalized. Several problems in decentralized control need further investi-

gation. The characterization presenied in this chapter assumes an accurate knowledge

of open-loop eigenvalues of the system. It would be interesting to see whether flxed

modes can be characterized Without the knowledge o'r open-loop eigenvalues, Another

in},eresting problem would be to determine the minimum increase in information

exchange between various stations, such that tt!e' resulting system has no decentralized

2+

fixed modes. In the decentralized EVA problem, an open theoretical as well as computa-

tional problem is to 'det.ermlne the minimum order of the dynamlc\combensat,or,l'or

“almost” arbitrary EVA.

Finally, in Chapter VI, the problems ol' computation of iransfgr function and fre-

quency response matrices of linear multivariable systerps described by their state-space

v

o

U
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‘
1 . . . .
N ’ . \ 1

o equatlons were consldered A determlnant, identlty was uaed to comput,e the abdve .
- . ~ N

matrlces Some of the transformat,lons used In these algorlt,hms are not orthozonal

'

" However, the numerical perl‘ormance of the algorithms has been round to be very good

Qo

,The reason for this would perhaps be revealed by carrylng‘out; an errc:analysls‘ of tbeee.

It is worth menblonlng that quite a few of th'e 'resﬁlts presented in this thesis cab be

extended to multlverlqble systems in ’d'eacrlpt,or form:

, - zi(t)=¢z(t)+ru(t)' _' o L L . ) ,
—_— N u(t)—ez(t)+au(t) : T~ T

0

For example, when T has full rank, a converse ‘of the generalized eigenvalue problem (QZ .

+ \ \

algorithm) can be applied for arbltrary EVA by\means of state reedba.ck The case when

¥ I8 not of full rank and corresponding output, feedback problem should be lnterestlng .

- ‘
o \ . - ‘,_. N -

problems for further lnvestlgatlon. ' . o . )

’
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