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ABSTRACT

COMPUTER VISION TECHNIQUES FOR

TRAFFIC DATA COLLECTION AND ANALYSIS

Xidong Yuan. Ph.D.

Concordia University, 1994

Eight new models have been developed and presented in this thesis to process and
analyze digitized monochrome and color images. The functions of these models include
moving object detection, vehicle signal light detection, noise removal. overall vehicle
dimension estimation, and vehicle classification. These models are then integrated to
form four algorithms, each dedicated to a specific function: measurement of traffic
volume and vehicle speed: detection and count of vehicles intending to tum: classification
of vehicles; and measurement of pedestrian flow.

In order to verify the accuracy of the proposed algorithms and their associated
software, field studies were carried out using software that has been developed to extract
associated traffic data from video tapes. These field studies consisted of apprcximate ten
hours of video tapes which had recorded the actual traffic scenes of several locations in
downtown Montreal and a main highway in the Montreal area. Subsequently, these video
records were utilized for collection of traffic data pertaining to traffic volume, vehicle

speed, vehicle classification and pedestrian volume. Correlation was observed between
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the traffic data generated by the algorithms and those collected by human observers from
a video monitor. The accuracy leve! obtained n all cases was higher than 90¢.

The newly developed models and algorithms provided a new method for increasing
the capability and reducing the detection error of currently used video traffic detection
systems. With further improvement, the models and algorithms can be used to offer a
wide variety of possible applications in intelligent vehicle-highway systems (IVHS).
Potential applications include automatic incident detection. automiatic queue detection,
electionic toll collection, statistical data collection from installed cameras or videotape
sequences, and automatic control unit or system for variable-message sign applications

in tunnels and on motorways.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

1.1.1 Traffic Data Requirements

Traffic data are required for a variety of activities including those related to
research, planning, design. accident analysis, traffic operation, and enforcement. For
example, traffic data in terms of speed and headway in advance of intersections on high-
speed highways have been used in research to determine the length of yellow-clearance
and all-red intervals as well as the need for flashing yellow "signal ahead" signs (ITE
1982). Classification counts provide data for estimating the proportion of trucks and other
vehicle types for intersections, individual links, systems, etc. Information on deceleration
rates on speed-change lanes and ramps at signalized intersections has provided insight into
the demand for pavement friction and required friction or skid numbers (Rizenbergs
1976). Data on traffic volumes may be the most significant item for transportation
planning, with the possible exception of road mileage itself. Continuing traffic volume.
turning movement, speed, classification, and weight in motion data provide the basic
information needed to design new highways; relocate, reconstruct, and modify existing
ones; and resurface highway pavements and redeck highway bridges. Examples include
geometric design, timing of signals, and channelization of intersections (AASHTO 1984).

Real-time traffic data in large-scale street and highway networks are required for
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the Intelligent Vehicle-Highway Systems (IVHS), especially for two of its six functional
areas: Advanced Traffic Management Systems (ATMS). and Advanced Traveller
Information Systems (ATIS). Inherent to the concept of IVHS is the use of this newly
available information to integrate the traveller, vehicle, and roadway infrastructure into
a comprehensive system. The traffic information distributed from the ATIS would help
travellers both before and during the course of their trips to make fuller use of existing
modes of transportation. The major assumption of the ATIS is that accurate and timely
information on travel conditions becomes factored into a person’s decision on where to
travel, when to travel and how to travel (Khattak 1993; O’Neill 1993). The ATIS is able
to mitigate traffic congestion problems by either informing an en route driver of traffic
incidents ahead and providing alternative routes or allowing pretrip travel decisions to
factor in the benefits of delayed trip starts, or alternative routes and modes. The ATMS
is another important portion of the IVHS. The ATMS is most often identified with
incident detection and congestion management. One of the management functions of the
ATMS is to control the traffic signal systems for street networks. Determining the proper
cycle length, splits and offsets of traffic signals requires information on traffic volumes,
platoon speeds, turning movements, and other data. Based on the ongoing collection of
traffic data or the time of day associated with certain traffic conditions, the signal timing

is changed in an appropriate fashion.

1.1.2 Data Collection Methods and Problems

During the early part of this century, most traffic data were obtained by manual



means. Manual data acquisition requires one or more observers, properiy equipped. to
record the pertinent traffic information. Such a manual method is flexible and allows data
to be collected on the basis of complicated categories. However, this method incurs a
high labor cost, particularly when massive quantities of traffic data are required. In
addition, the data collected by an observer is sometimes inaccurate because it is difficult
for an observer to pay attention to a street scene for a long period. Although traffic data
can be obtained by videotaping traffic situations and then analyzing these permanent
records in the laboratory (List 1989; Young 1989}, this method is also time consuming
because the extroction of data from the video is still carried out by human observers.

Presently, most traffic data are obtained and processed by automatic devices and
computers and transmitted directly to central offices. The vehicular detectors commonly
used are inductive loop detectors, magnetic detectors and other types such as pressured
pads, radar and sonic detectors (Moore 1981; Kell 1982).

Detectors such as pressur d pads, radar and sonic detectors were the earliest types
to be used in traffic data collection. While these units are still available, their use is very
limited. Pressure and rada. detectors are becoming less common as they can only provide
passage data, are expensive to install, and relatively complex to maintain. Sonic detectors
have similar problems. Although they are capable of detecting both presence and
passage, they are relatively expensive to purchase and install, sensitive to environmental
conditions, and somewhat inaccurate in congested situation.

Magnetic detectors are divided into three types: the standard magnetic detector,

the directional magnetic detector, and the magnetometer. All three types consist of two



components. an in-road sensor and an amplifier unit. For these detectors to sense a
change in magnetic field. the vehicle must be in motion. Vehicles travelling less than 10
km/h are generally not detected. Consequently. magnetic detectors can provide the
equivalent of passage or motion data, but not occupancy or presence data.

Inductive loop detectors are the most commonly used today. This detector consists
of one or more tuns of insulated wire embedded in the road where vehicles are to be
detected. The ends of the loop are connected by cable to an electronic amplifier usually
located in the controller. A vehicle passing over or resting in the loop will unbalance a
turned circuit which is sensed by the amplifier. Such detectors are thereby able to detect
either presence or passage of vehicles. Unfortunately, the drawbacks of inductive loop
detectors limit the range of their usage in the IVHS. Their principal shortcomings are
discussed below.

(1). "Blind" detection. Inductive loop cannot measure some important traffic
parameters and accurately assess traffic conditions. This is because the technology
employed represents a "blind" type of detection. Traftic data such as speed and tratfic
composition queue length must be derived from vehicle presence and passage and require
multiple detections, which increases cost and exacerbates the reliability problem.

(2). Inflexible functions. There are many different designs of inductive loop to
suit various detection purposes. A loop detector designed for vehicles cannot be used tor
pedestrians or even motorcycles, and vice versa. Furthermore, the location and
configuration of a loop detector is dependent on many conditions. These conditions

include the type and capability of traffic signal controller, signal control mode, traffic




variable to be measured, geometry of the intersection and approaches, and traffic flow
characteristics (e.g., volume, speed, etc.). Any change in these conditions affects the
detector adversely. This kind of fixed-point detection is a major disadvantage for traffic
control since detection points sh.ould vary with speed, volume and control objective. With
respect to reliability, it was noted that most cities with mature systems in the United
States report that at any time 25-30% of such detectors were not functional or not
operating properly (Lyles 1983).

(3). Disruptive installation and maintenance. Inductive loop detectors are
embedded in the road. Installation and maintenance require digging grooves in the road,
thus producing traffic disturbances.  Adverse weather conditions or pavement
reconstruction present additional challenges for maintaining loop detectors.

(4). The cost of loop detection for streets is highly sensitive to the distance of
these detectors from the nearest signalized intersection. To minimize the traffic detection
cost, it would be desirable to locate the loops near the stop line, but to implement the
traffic adaptive features of ATMS requires installing the detectors at least several hundred
feet away.

In summary, as the instrumentation and data requirements increase, conventional
devices become inadequate, expersive and often unreliable for advanced applications such
as vehicle guidance and navigation, adaptive control of congested street networks and
freeway corridors, real-time forecasting of traffic demand patterns, etc. For example,
although loop detectors deployed in sufficiently high numbers can identify the location

of unusual congestion, they cannot help control center personnel in detcrmining




congestion causes: accidents, disabled vehicles, spilled loads, construction or maintenance
activities, police or fire operations, or just heavier than normal traffic.

The use of remotely controlled CCTV (closed-circuit television) can give the
control center visual access to the site of traffic flows and the operation of traffic signals.
Also, many important traffic data can be obtained from the video. Unfortunately.
extraction of traffic data from the video is carried out manually and is time consuming
at present. Typically, it ta es an operator five to ten hours to analyze a one-hour
recording. depending on the complexity of the scene and the amount of information to be
extracted (List 1989; Young 1989). Hence, it is impossible to provide real-time traffic
data in this way. To address this problem, computer vision systems have a great potential

to extract real-time traffic data from CCTV.

1.1.3 Computer Vision System for Traffic Data Collection and Analysis

Computer vision techniques lead the way to extract automatically the required
traffic data in the viewing field of the camera. The computer vision system (CVS)
includes four basic parts as shown in Fig. 1.1. In image acquisition, the traffic scenes
shot by the video camera are digitized and stored in a computer frame by frame. Then
these digital images are processed and analyzed by the computer until all the necessary
traffic data have been extracted. The advantages of the CVS are listed below.

(1) It is able to obtain the data that cannot be easily or accurately obtained by
conventional detection devices, such as turning movements and vehicle classification by

body shape.




Data Extraction /
- |
% Image Processing / Pattern Recognition / '
/// 7.7, 4/%///////// / Qe /

Fig. 1.1 Basic parts of a computer vision system

(2) It also has multitasking capabilities, i.e., while it performs its basic detection
function, it can simultaneously derive traffic measurements locally (using a
microprocessor) or at a central location, perform surveillance functions, act as a vehicle

counting and classification station, detect incidents, and recognize special vehicles



(ambulances, fire trucks, buses, etc.).

(3) The CVS can detect traffic at multiple points on a roadway within the field of
the camera’s view thereby becoming cost-etfective. For mstance, it was estimated by
Michalopoulos et al. (1986, 1990) that in Minnesota the cost of fully instrumenting an
intersection with a CVS (40 cameras, one microprocessor) would be lower than that of
loop detectors assuming that at least 3 loops per approach were required. It was also
estimated that a CVS would save 35% in maintenance costs and reduce the man-hours
required for maintenance by about 70% compared with a lcop system. The savings can
further increase if the same microprocessor also performs control functions, thereby
eliminating the need for a separate controller.

(4) The CVS does not use any sensor embedded in the road, instead, it employs
CCTV cameras to overlook the traffic scenes. Therefore, installation of CVS does not
disturb the pavement and shoulder, resuiting in an undisturbed traftic flow and improved
reliability, especially during reconstruction operations. Once the basic hardware is on site,
the detection zones can be easily placed in minutes in any configuration using a mouse
and a television monitor. The zones can also be re-positioned to adapt to changing traftic
control or data collection requirements. Once these detection zones are placed, the system
generates presence and passage signals compatible with loops, measures speeds, classities
vehicles, and generates essential traffic parameters such as volumes, speed. and
occupancy.

(5) The system allows visual inspection of the detection results along with the

actual conditions for validation purposes and for optimizing the detector placement.



Using a CVS for traffic data collection becomes more and more feasible for the
following reasons. Firstly, the established trend of falling prices for video equipment has
led to an enormous increase in the use of video equipment for traffic monitoring and
control, surveillance of motorways, tunnels and urban streets. Secondly, image processing
hardware costs have fallen while computational power has increased, making automatic

video scene analysis a realistic possibility.

1.2 LITERATURE REVIEW

In this section, a brief review is presented of research and development in the
application of computer vision systems (CVS) for traffic monitoring and data collection.
Detailed reviews of particular systems will be presented in chapters 3, 4, 5, and 6,
respectively.

Research on the CVS for traffic monitoring and data collection has been in
progress in Europe, Japan and the United States for about two decades. Most of this
research work, dating back to the 1970’s, was referred to in Hilbert (1978), Dickinson
(1984) and Inigo (1985).

The earliest research on the application of image-based systems for traffic
monitoring was performed at the University of Tokyo in 1973 (Onoe 1973, 1976). At
that time, the developed system was limited to a crude estimate of vehicle speeds. In the
early 198()'s, at the same university, experiments were conducted to demonstrate that

traffic-flow data could be obtained in real time from TV data (Takaba 1982). In 1989,



Shimizu and Shigehara of the Metropolitan Expressway Public Corporation (Shimizu
1989) reported on their evalvation of five image-processing systems, all demonstrating
comparable performance. As a result of these experiments, the authors started to
investigate the methods for utilizing these systems in their traffic control system.

Over the past ten years, the British have been very active in research directed
toward the application of image processing to the traffic monitoring problem (Dickinson
1989: Hoose 1989; Rourke 1989: Wan 1989). The British researchers have not restricted
themselves to PC/AT compatible systems but rather have investigated the use of ditferent
processing architectures and r ore complex algorithms (Wan 1989). They have also
explored vehicle classificati-n (Houghton 1989 Rourke 1989) and tracking (Houghton
1989). Researchers in other European countries (Burkhard 1987; Blosseville 1989;
Enkelmann 1989; Versavel 1989) have also explored the use of image-based systems for
traffic surveillance. Versavel (1989) described a product, Camera and Computer-Aided
Traffic Sensor (CCATS), “or vehicle length and speed measurement. The CCATS, which
was developed in conjunction with the Belgian Government and the University of Leuven,
was produced by the Traficon NV (previously named Devlonics) company. Blosseville,
et al. (1989) developed another experimental traffic sensor system called TITAN with tho
goal of fully autoraating the process, from lane detection to vehicle detection. In the case
of light traffic conditions, TITAN was able to measure traffic volume and vehicle speed.
But in the case of congested traffic, only flow speed could be obtained. No quantitative
performance data have been reported, but the processed imagery provided in the papers

(Blosseville 1989) clearly indicates that the TITAN system performs quite well.
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In the mid-197()'s, the U.S. Department of Transportation made the first significant
effort in the United States to apply imaging technology for automatic traffic monitoring.
The Federal Highway Administration (FHWA) funded research at the Jet Propulsion
Laboratory (JPL) in Pasadena to develop a breadboard system called a Wide Area
Detection System (WADS), for vehicle detection and vehicle speed measurement (Hilbert
1978). The system’s name was later changed to SCAN (Sensor for Control of Arterials
and Networks). The program concluded with a field test of WADS in the Los Angeles
vicinity along the Santa Monica Freeway (Schlutsmeyer 1982). For more detail on other
efforts in the United States see (Inigo 1985; Michalopoulos 1990). The Institute of
Transportation Studies at the University of California at Berkeley performed a research
project to review, evaluate, select, and test detectors for freeway surveillance and control
(Labell 1989; Spencer 1989). This was sponsored by the California Department of
Transportation (Caltrans) and the FHWA. As part of the project, the California
Polytechnic State University, San Luis Obispo, completed an evaluation of eight image
processing traffic monitoring systems (three are commercially available, and the remaining
five are prototypes) for Caltrans in 1991 (Chatziioanou 1991; Hockaday 1991). The result
of the evaluation indicated that accuracy of measurement was over 95% for "ideal”
conditions, but lighting transition periods. shadows and reflections may each reduce
accuracy by up to 20-30 percent. Therefore, further studies were needed to improve the
algorithms.

Artificial neural networks (Krose 1991; Maren 1990; Zornetzer 1390) are an

emerging computational technology which can significantly enhance computer vision
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systems. They offer the advantages of learning from example, self-organization. fault
tolerance, fast data processing, and ease of insertion info existing and newly developed
systems. Neural networks achieve these abilities by using large numbers of simple,
interconnected processing units which operate in logical parallelism.

In recent years, more and more researchers are focused on the applications of
neural works to solving problems in transportation engineering, such as traffic control
problems (Funabiki 1993), incident detection (Hsiao 1994), gap acceptance at stop-
controlled intersections (Pant 1994), urban noise prediction (Cammarata 1993), pavement-
crack detection (Kaseko 1994), and vehicle license character recognition (Lisa 1993). etc.

Neural network technology could be considered when developing a CVS for traftic
data collection and analysis. It can help to solve complex problems which may be poorly
structured and cannot be adequately described by a set of rules or equations. For
instance, it is difficult for traditional pattern recognition techniques to locate a vehicle
license plate or to determine *he number of axles of a vehicle from video images. In
these cases, the ability of a neural network to detect and locate objects in images (Vaillant
1993) could be considered. The main idea of the neural network method is to train itself
to detect the presence or absence of an object by scanning all possible locations in the
image. By using the appropriate neural network architecture (Maren 1990; Vaillant
1993), this process can be very efficiently accomplished without it being necessary to
recompute the entire network state at each location. In order to solve problems in vehicle
tracking or high-density pedestrian flow measurement, a neural network with recurrent

architecture similar to that developed by Elman (1990) could be considered. This is
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because the Elman recurrent net has the simplest architecture and can predict the motion
of moving objects (Meng 1993).

The reviewed literatures indicate that a variety of computer vision systems have
been developed for traffic data collection. However, few systems are able to extract
certain higher level traffic information such as vehicle count by body shape, count of
vehicles intending to tum, and measurement of pedestrian flow at intersections. In
addition, previous systems mostly suffered from problems of accuracy reduction caused
by shadows and reflections from vehicles or environment. In order to meet practical

requirements, improvements are necessary to address these problems.

1.3  SCOPE AND OBJECTIVES

The primary objective of this research is to develop theoretical models and
algorithms which could be considered in advancing of existing computer vision systems
in some particular areas of traffic data collection and analysis.

The new models and algorithms are limited to the processing of two-dimensional
video images that are taken in daytime situation. Three dimensional images and images
taken at night are not considered in this study. The new algorithms intend to generate
real-time traffic data on vehicle count, speed, volume and classification as well as
pedestrian count and volume measurement. These algorithms also intend to increase the
detection accuracy by reducing the errors that may result from the effect of shadows. The

errors caused by occlusion will not be dealt with.
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The specific objectives and scopes are described below,

1. To increase the detection accuracy by solving shadow problem. One of the
problems the existing video traffic detection systems suffer from is accuracy reduction
caused by shadows from vehicles. Such reduction could be up to 20-30 % due to the
inherent weakness of the systems to deal with this problem (Chatziioanou 1991). To
increase the detection accuracy, color images are utilized in this study instead of
monockrome images. A new method is developed for video vehicle detection on the
basis of color image processing techniques. But its capability is limited to the processing
of images in which color is synthesized with a weighted sum of three principle colors:
red, green and blue.

2. To expand the capability for blinking signal lights detection. New models and
algorithm are developed to detect turning signal lights in the front of vehicles which are
within about 30 meters from a video sensor. They are not intended to provide the
detection of the lights in motion or too far from the video sensor. The detection of other
kinds of blinking lights such as ones on emergency vehicles or police cars is not provided
although the models and algorithm can be extended for this application.

3. To increase the capability of vehicle classification. The capability of the
existing systems is limited in classifying vehicles into several simple categories
(Houghton 1989; Lu 1991; Pan 1991; Rourke 1989). The newly developed models and
algorithm intend to extract vehicle information not only on length but also on height,
width, and shape in order to make complicated classification. The information on vehicle

shape includes the front shape of vehicle and the number of units of a vchicle, the number
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of axles is not included.

4. To introduce a new algorithm for estimating the number of pedestrians at
intersections.  Currently, pedestrian count is usually performed <.anually. Manual
counting is expensive and not suitable for a large volume of pedestrians. Another way
to count pedestrian is the usage of automatic counter, which consists of detector pads laid
on the sidewalk and connected to a counting device (Cameron 1977). This deviic is
probably the best volume determination system currently available, but it cannot be used
at intersections due to the presence of vehicles. Also, this device is inflexible after
installation and incapable of measuring other pedestrian flow data such as speed and
walking direction. In this research, on the basis of computer vision techniques, a new
algorithm is developed for automatically counting the number of pedestrians at
intersections. The algorithm is able to differentiate pedestrians from vehicles, and detect
pedestrians moving in both directions on a crosswalk under "ideal" conditions. It doesn’t

consider conditions such as lighting transition periods, shadows and reflections.

1.4  THESIS ORGANIZATION

In the following chapters, detailed descriptions of the newly developed models and
algorithms will be presented for traffic data collection and analysis using the computer
vision system.

In Chapter 2, four general methods are presented for moving object detection,

color detection, noise removal and perspective projection, respectively. These methods
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are employed in each of the four algorithms developed in chapters 3 to 6.

Chapter 3 presents the development of a new algorithm to measure traftic volume
and speed. The algorithm, based on the new models, will overcome the disadvantages
of previous approaches and improve detection accuracy.

In Chapter 4, two models are developed to detect vehicle signal lights and
recognize turning-signal lights, respectively. Using these models, a new algorithm is
formed for detection of vehicles intending to turn at intersections. The algorithm will
process color image sequences in order to distinguish signal lights and the reflections of
objects as well as differentiate turning signal lights from other vehicle lights.

In Chapter 5, four models are developed to form a tree type of vehicle classifier.
The new models can be used to obtain vehicle data not only of length but also of height,
width and type of vehicle shape. Using these new kinds of data as classification
parameters, the classifier is able to classify vehicles into many complicated categories.
Therefore, the gap between the requirement for vehicle classification data and its
availability can be greatly reduced.

Vehicles and pedestrians are two primary elements of traffic. Besides vehicle
data, pedestrian flow data are also heavily in demand to facilitate the geometric and
operational design of intersections. Unfortunately, the literature review indicated that no
device is available that can automatically collect and analyze pedestrian flow data at
intersections. To make use of computer vision techniques, Chapter 6 presents a new
method that can automatically measure the pedestrian volume at intersections. The most

important function of the new approach is its capability to measure the multidirectional
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flow on a crosswalk without being affected by vehicles passing through the detection spot.
Concluding remarks and recommendations for future work are presented in

Chapter 7.
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CHAPTER 2

METHODOLOGY

2.1 INTRODUCTION

A computer vision system which is illustrated in Fig. 2.1 is proposed in this thesis

for the purpose of traffic data collection. The method developed to support this system

4 IMAGE ACQUISITION
Video image § | Frozen frame Image
acquisition capture digitization
\
-7 l
- ( IMAGE PROCESSING

/
' -
_- | . Moving objec urin
/,// i 'I lsegmenm“ml extractiole I Measuring
< -' %‘

s

IMAGE ANALYSIS
Velicle Traffic flow [ | Tuming [/} Podostrian
vehicle flow .
‘ classification} |measurement detoction | {measurement

Fig. 2.1 A Computer Vision System for traffic data collection and analysis

utilizes video images as input. These images are digitized to facilitate computer
processing of traffic information included in the images. The method consists of eight
newly developed models which are NR model, PP model, DOS model, DOB model. LM
model, WHE model, PCE model, and TTC model (See Fig. 2.2). These models are used
to develop four algorithms, each dedicated to a specific function of traffic data collection.
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In this chapter, general methods for image processing will be developed and
presented. These approaches are moving object detection, color detection, noise removal
and perspective projection which arc common to all the processes in the following

chapters.

2.2 MOVING OBJECT DETECTION

The purpose of moving object detection is to separate all moving objects from
stationary backgrounds in the traffic images. Since the stationary background such as
road surface or marks on the pavement surface will be overlapped while a moving object
passes by, moving objects can be segmented by testing color changes when the scenc
shifts from background to a moving object.

Supposc that a reference image, say P, which contains only stationary
components is stored in the computer. It is compared with an image having the same
environment but including moving objects such as vehicles or pedestrians, say P, which
is called measured image. As a result, a difference image is obtained as

P,=|P- P (2.1)
In the difference image, P, only moving objects remain because the stationary
background is removed due to the difference between the two images.

The difference image 1is still a grey-level or color image. In order to make
geometric measurements within the image, it is necessary to convert the difference image

into a binary image in which each pixel has one of only two status, considered as of
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interest or background. The operation to convert a grey-level or color image into a
binary image is called segmentation. There were two major approaches to image
segmentation: edge based and region based (Young 1986). In edge-based methods, the
local discontinuities are detected first and then connected to form longer, hopefully
complete, boundaries. In region methods, areas of image with homogeneous properties
(such as intensity or color) are found, which in tumn give the boundaries. The two
methods are complementary and one may be preferred over the other for some
applications. In the casc of traffic image segmentation, thresholding (one of region
segmentation techniques) is preferred.

A binary image is obtained by thresholding:

(2.2)

1, if P,>e
P={ >

0, otherwise

where P, denotes a binary image. € denotes a predetermined threshold. All pixels above
€ are treated as black and all below as white. The system treats black as moving object

and white as background.
23 COLOR DETECTION
A method is developed in this section to detect the occurrence of a particular color

in images. Before the method is presented, a brief description of color precedes in the

following section.

-21-



2.3.1 Color Representation in Digital Image
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an White
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Fig. 2.3 RGB color cube

Color in a digital image used in this study is synthesized with a weighwed sum of
three principle colors: red, green and blue. Let R, G and B denote unit vectors
corresponding to the three principal colors; then every color is represented by components
of these vectors. These three values are called tristimulus values that range from the

weakest 0, indicating the dimmest level, to the strongest, say 31 or 256 etc., indicating
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the brightest. Any color in the digital image is represented by a vector (R, G, B). If one
thinks of the origin-corner of a cube, vectors R, G and B extend along each of the three
edges as shown in Fig. 2.3, White light is represented by a line equidistant from all three
edges, i.c. the line which joins the furthest corner to the crigin. This line is called central
line. The stronger the light the longer the line, indicating a brighter degree of light. If
the light is colored, the line inclines more towards one of the edges or lies somewhere
between two of them. The direction in which it inclines represents the hue, defining what
kind of color it is, and the extent to which it departs from the central line is the
saturation, the purity of the color; if it coincides with an edge, it is fully saturated in that
color. In a color image, each pixel with a particular color can locate itself in this cube.

As shown in Fig. 2.3, suppose pixel i locates itself at point (R, G, B,) in the color
cube, then its brightness is defined as the length of the line joining the origin to the point.

Let A, denote the brightness of pixel i and be calculated as

A =R +G?+B (2.3)

R,G,B 20

The brightness A, ranges from 0.00, indicating black, to a maximum value, indicating
white, when all the values of R, G,, and B, are equal to the maximum value. The values

between them are the brightness of the other colors in the color cube.

2.3.2 Color Detection Functions

To identify the occurrence of a particular color in an R-G-B image, one can select
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all the pixels which have precisely the required values of R, G and B. This represents
a single point in the color cube.

In the real world there are variations in the perceived color of objects which have
the same color. These variations are due to illumination conditions, surface texture or
orientation effects as well as the electronic noise from the video capture system. It is
therefore realistic to look for ranges of color combinations rather than single-point colors.

Let (cg ¢ cp) denote a color with variation limits of rg, r; and rgin R, G, and
B, respectively. In order to define the region of this color, the variations must be
estimated. This can be done by sampling the pixcl brightness over a training area to give
three histograms, onc for each hue. Meanwhile, ¢; and r,, where i = R, G, and B, can be

calculated as follows.

c, = 1 Y'Y ity (i =R, G, B (2.4)
N =y el
and
Y Y ity (2.5)
ro=2% |bne (i =R, G, B)
'2 N-1

where (x,y) are coordinates of a point in an image; R(x,y), G(x.y), and B(x,y) arc the
tristimulus values of a pixel p(x,y) in the training area; Q denotes the training arca which
includes N pixels; and z is a statistic based upon the desired "confidence” in the value of
r: 1.96 for 95% confidence, and 3.0 for 99.7% confidence.

In order to test an input pixel against a required color, each of its tristimulus
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values, R(x,y), G(x,y) and B(x,y), is tested separately. If, for example, the value of R(x,y)
is located within the iegion [cg-ry, cptrgl, the region of variation of a color, then the pixel
is regarded as 1/3 match of the color. Otherwise, if the value of R(x,y) is not within the
region [cg-ry, cp+rgl, then the pixel is regarded as 1/3 different from the color. The above

procedure can be generally expressed by a function as

1
fxy) = { E
0

, otherwise

if (cr) S ilxy) S (cr) (=R G B (26

where fy(x,y), fi(xy) and fo(x,y) are match indexes for each of the tristimulus values,
R(x,v), G(xy) and B(x,y), respectively.
For determining the color of the pixel, a function is defined as
fo(xy) = fa(x,y) + fe(x.y) + fy(x,y) 2.7
where f,(x,y) denotes a color detection finction which has four values: 0, 1/3, 2/3, and
1. Each value presents a level of color match. The value of 1 means a 100% match of

two colors while the value of 0 a compleie difference.

2.3.3 Application of Color Detection Functions

The color detection function can be used to detect the asphalt pavement surface
and the shadow of vehicle. To detect the asphalt pavement surface, a study was made
of its color and inherent variation. The result showed that the values of R, G and B were
in approximately equal balance representing the color of asphalt pavement surface.

Therefore, this color is normally found in a ball-shaped range with radius r and center (c,
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Fig. 2.4 Color in the color cube

¢, ¢) in the color cube as shown in Fig. 2.4. Variation of the illumination condition on
the pavement surface changes the location of this range along the central line. The
brighter the pavement surface, the higher the position of the range and the dimmer, the
lower. This is because the surface of asphalt pavement has a fixed hue and saturation
under sunlight condition. Its tristimulus values shift on a line, the central line, when the

brightness varies.
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The position of the color of asphalt pavement surface can be found by computing

the value of ¢ as follows:

c=%(%+%+%) (2.8)

where cg, ¢ and ¢y are obtained by Equation (2.4).
The radius r is then determined to form a ball-shaped range that includes most of

pixels in €. r is expressed as

re o (rg +rg *rg) (2.9)

3
where ry, 1 and rg are obtained by Equation (2.5).
Sequentially, the match indexes can be calculated with the reference of parameters
c arrd r, and

l
=\ if (e-n) < i(xy) £ (car

fxy) ={ 3 Jolemn = i) = e (i=R,G, B (210)
0

, otherwise
Hence, from Equation (2.7), the color detection function can be computed.

Shadows on the pavement surface can also be detected by the color detection
function. The difference existing between the colors of the pavement surface with and
without shadow is the change of brightness. If the color of the pavement surface without
shadow is (c, ¢, ¢) with variation limit of r, then the color of the pavement surface with
shadow is equivalent to a color shift from (c, ¢, ¢) to (Wge, Wge, wyc). Consequently, the

match indexes will have the following form
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1
foey) = { 3
0

, otherwise

if (wc-r) <ilxy) < (wc+
if (Wc-r) <ixy) < (we+r) ( =R, G, B 11

where w, ®; and g denote weights that will be discussed below.

Discussion of w, g, and w,

The values of wg, ®; and w, define the quantitative relationship between the
colors of the pavement surface with and without shadow. If the color of the pavement
surface without shadow is at point (¢, ¢, ¢) in the color cube, then it will shift 1o (g,
wgc, Wye) when the pavement surface is covered with the shadow of vehicle or pedestrian.
The values of g -, and w, vary from greater than zero to less than one, depending
upon the variation of brightness of the pavement surface while being covered with
shadow. The more remarkable the variation, the smaller the values of wg, w,;, and w,
meaning the further the distance between points (¢, ¢, ¢) and (Wgc, WC, WyC).

The values of w,, ®;, and ®, are obtained as follows:

o=y i) (i =R, G, B) 2.12)

(x,y) € CN

where, similar to the previous definitions, Q denotes the training arca which includes N
pixels; R (x,y), G(x,y), and B(x,y) are the tristimulus values of the pixel p(x,y).

In practice, 2 can be obtained by using a training image where only the color of
pavement surface under shadow is known to occur.

Since the brightness on the pavement surface varies hour by hour with light and
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weather conditions, it is necessary to update periodically the values of w;, @, and w, for
satisfactory detection of shadow on the pavement surface over an extended period of time.
Normally, the values of w, g, and w, are updated after a constant time interval, say one
minute, if no sudden luminance change occurs on the detected pavement surface during
this period of time. But they must be updated immediately after any major change of

luminance due to weather conditions.

2.4 NOISE REMOVAL MODEL (NR meodel)

There are two kinds of noises that usuvally occur in images after the segmentation
operation. One belongs 10 fine noise. This kind of noise is usually an isolated point. In
other words, each noise point has non-noise neighbours. The other kinds of noises are
called coarse noises because each of them is composed of a cluster of points. The
method for coarse noises removal is application dependent because it needs to distinguish
the coarse noises from clusters of interest before the elimination. For example, in some
cases (Lu 1988), the size, width, and height of a cluster are used as classification
parameters to make differentiations. The removal of the coarse noises will not be
discussed herc. The model developed in this section is for fine noise removal.

A 3 x 3 pixel scanning window can be used for fine noise detection and
elimination. Figure 2.5 shows the scanning window that contains the scanned pixel (x,y)
itself and its 8-neighbour pixels.

The 8 neighbours of a pixel p(x.y) is defined by a set of pixels {p,(x-1,y+1),
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Fig. 2.5 3 x 3 pixel scanning window

p(xy+1), plx+1y+1), px+1y), psix+1y-1), pxy-1), pfx-1.y-1), pfx-1,y)} and

denoted by Ny(x,y), e.g. Ngxy) = {p), P2 oos Ps}-
With reference to the neighbourhood arrangement N,(x,y), the point p(xy) is

regarded as a fine noise depending on whether or not the following condition is satistied.
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Condition
Let {p,, p,» ..., ps) be eight neighbours of the pixel p(x,y).
If pxy) =0 n 3i(p =0),
or pxy)y=0n 3i(p, #0), where p, € Ng(x,y),
then this pixel is a noise point. This is illustrated in Fig. 2.6.
If a pixel is a fine noise point, then its value will be replaced by the weighted

average of the values of 8-neighbour pixels, and

8
plxy) = % YW p, (2.13)
1=

where W, is the weight of the neighbour pixel p,, and p, € Ng(x,y).
2.5 PERSPECTIVE PROJECTION MODEL (PP model)

The purpose of the perspective projection model (PP model) is to transform
images from image planc to horizontal plane. As exemplified in Fig. 2.7, if point A, is
an image of a space point A and its location in an image plane is known, the PP modcl

can locate another image of the point, A, in a horizontal plane defined in the figure.

2.5.1 Principle of Perspective Projection
The relationship between a camera and a scene defines the geometry of the
picture-taking process. The simplest model of the picture-taking process is the pinhole-

camera model that is usually used to derive the direct perspective transformation that
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Fig. 2.6 Find a noise point

shows how points on an object are projected onto points in an image. A basic pinhole-
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Fig. 2.7 Perspective Projection

camera model is shown in Fig. 2.8. The camera is represented by a pinhole lens together
with an image plane lying a distance of d behind the lens. The actual lens on a real
photographic or television camera can always be replaced by a mathematically equivalent
pinhole lens at an appropriate distance from the image plane. The image of a point A in
three-dimensional space is determined by the intersection of the image plane with the
projecting ray defined by the line that joins A and the lens centre. The intersection point
A, is the image point corresponding to the object point A.

While th» model of Fig. 2.8 gives a mapping from the scene to the image plane
in which the images are flipped left to right and upside down, it is more convenient to
intercept the projecting ray with a front image plane as shown in Fig. 2.9. The process

illustrated in Fig. 2.9 is called central projection, the lens point being the center of
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Fig. 2.8 Basic pinhole-camera model

projection.

For simplicity, the center of the image plane is defined as the origin, and the Z-
axis as the line that intersects the pinhole and the origin. Thus the pinhole is at (0, 0, -d)
and points on the image plane are at (x,, y,, 0).

The direct perspective transformation for the simple case depicted in Fig. 2.9 can
be derived intuitively. By inspection, the answer involves only similar triangles. 1f A =
(x, y, z) denotes a point in three-dimensional space and A, = (x,, y,, () a corresponding

point in image plane, then clearly
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or

Fig. 2.9 Central projection model

X, _ x
d d+z
yA = y
d d+z

x, = d X
A deg
ya =Ly
A dez

(2.14)

Equation (2.14) maps an object point expressed in three-dimensional coordinates into an
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image point on an image plane.
Equivalently, each point in the image plane can be mapped onto a line in three-

dimensional space by a back projection:

X = (d;z) x,
(2.15)
y = (d;z) v,

These equations represent a line passing from the center of projection through the image
point A,, where z (depth) is a free parameter. In other words, all points on this line are

projected to the image point A, = (x,, ¥4 24).

2.52 PP Model

An image plane is defined as a plane that is perpendicular to the projection line
(Fig 2.9). A horizontal plane is defined as a plane that is horizontal in three-dimensional
space.

In practice, the transformations given in the previous section are hard 1o use
because of the awkwardness of the coordinate system. Itis true that the single coordinate
system of Fig. 2.9 is very convenient for locating points in the image plane. Bul it is
notably inconvenient for locating points in the horizontal plane, since it is constrained to
measure distances to a set of axes whose position is determined by the camera. In other
words, the system used in the last section is "camera centric,” and this is often unnatural
and bothersome. In order to meet the situation for traffic data collection, it is required

to project points {rom the image plane onto the herizontal plane as illustrated in Fig. 2.7.

- 36 -



In a global coordinate system, a projection of a point from (€, 1, {) to (¢, n,, {)

can be derived intuitively by inspection of Fig. 2.10, and

g, =11 ¢
H-C

n =M 4 (2.16)
H - ¢

g, =0

The above equation requires that the points be expressed as (€, n, £) by the global
coordinate system. Unfortunately, in practice, the points in the image plane are expressed
as (x, y, z) by the image coordinate system. Therefore, a transformation between the two
coordinate systems are required as shown in Fig. 2.i11.  Mathematically, this

transformation can be represcnted in the following form:

I‘ E TRLIPIY XX
2.1
[ n = i by by YV (2.17)
4 Iy Iy Iy 27

where
x, ¥, z = coordinates in the image coordinate system,
& M, { = coordinates in the global coordinate system.

It will be a one-to-one mapping, if the determinant of matrix T does not equal to 0, as
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Fig. 2.10 Projection of point in global coordinate system
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Fig. 2.11 Coordinates transformation
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# 0 (2.18)

The transformation T is a combination of translation, scaling, and rotation and can

be represented as
T=R*S*E (2.19)
where E, S, and R are transformation matrixes for the operations of translation, scw.’ing,

and rotation, respcectively. They are discussed below.

Translation

The transformation matrix for translation is defined as E, and

100
010 (2.20)
001

E

The following equation performs a translation mapping as shown in Fig. 2.12.

3 100 X=Xy
al=lo1o Yoy, (2.21)
¢ 001 22,

Scaling

The transformation matrix for scaling is defined as S, and
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Fig. 2.12 Translation

s 00

X

(2.22)
s =|0s 0

OOSZ

The following equation performs a translation mapping as shown in Fig. 2.13.

3 5, 00 X
n = 0 5, 0 y (2.23)
C J 0 0 s Z
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Fig. 2.13 Scaling

Rotation

Due to the camera mount tilt and camera mount pan, the transformation involves
two rotation operations. Refer to Fig. 2.14, for the tilt rotation about the X axis with an

angle 8 (counterclockwise is positive, -n/2 £ 6 < (). we have

9

g 1 0 0 X
n = | 0 cos® sinB y (2.24)
g 0 -sin@ cosO | |_ z

where the transformation matrix for the tilt rotation is expressed as
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Fig. 2.14 Tilt rotation about X-axis

1 0 0
R = 0 cos@ sin@ (2.25)

X

0 -sin6 cosO

Similarly, a transformation matrix can be derived for pan rotation about the Y axis with

an angle o (counterclockwise is positive, -t/2 < o < ®/2) as (see Fig. 2.15)

cosa. 0 sino
R=| 0 1 0 (2.26)

-sinot () cosox
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Fig. 2.15 Pan rotation about Y-axis

The product of R, and R, integrates the pan rotation about Z axis and tilt rotation

about X axis. This product is R and computed as

cosoe () sino 1 0 0
R=R *R = 0 1 0 0 cosB sind
-sinat 0 coso 0 -sin@ cosB

(2.27)

coso.  -sinowsin®  sinocosO
= 0 cosf sinB

-sin0t —cososing  cosocoso

Get back to the transformation T which is the product of transformation m*rixes

E, S, and R for translation, scaling, and rotation, respectively. The transformation matrix

T is computed as



T=R*»S*E

coso.  -sinosin®  sinocosO s, 00 100
= 0 cos sin® 0s, O 010
-sino.  —cososin®  ~osocosO 0 0 s, 001 (2.28)

s, coso. - sinosin® s sinocos®

0 sycose szsinO

-s,sinot -5 cososin® s, cosocos®

Therefore, a general transformation of a point from the image coordinate system to the

global coordinate system can be represented in the following form:

3 X=X,
2.29)
‘n = T * y"yo (
4 z2-2,
or
§ = xs,cosot - ys sinosin® + zs sinoicos®
= X,5,0080 + y,s.sinasin® - z,s sinoicosd
T = 50080 + z58i10 — y,5,c0s0 - z5,5in6 (2.30)

€ = -xs;sino - yscosasin® + zs cosoicos6

+ X,8,8in00 + y,s.cosasin® - zys,cosocosd
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Note tha* the transformation of points from the image plane is a special case of
the above transformation due to the fact that 2 is equal to zero. In this case. the above

equation is simplified as

€ = xs,cosa - ys sinosin® - x5 coso + y5 sinasin® - zgs sinowos

N = ys,cos® - yscos@ - zssind (2.3

JX
"

-Xs SinGt - ys cososin® + x8 sinol + y s cosasin® - 25 cosowosd

Substituting the above equations into Equation (2.16), the mapping of the points

from the image plane onto the horizontal plane is given as

H(xs cosot - ys sinosin® - x;s coso ~ y,s sinosin® -~ z,s sinocos8)

g = . : . :
H + xs sino. + ys)cosusm@ - X5 8in0 = ys cososin® + zs cosocosd
H ( ysycosB - ¥5,0088 -z sinB) (2.32)
n, = . . - —
H + xs sino. + ysycosozsme - X5, 8in0 = Y8 cososin® + zs cosowosB
g, =0

In practice, the above equations can be further simplified by properly creating the

coordinate systems. This will be discussed in the following section.

2.5.3 A Special Case of Perspective Projection

If an image coordinate system and the global coordinate system have relations as
illustrated in Fig. 2.16, the general expression of the mapping of a point from the image
plane onto the horizontal plane can be expressed in a simpler equation than Equation

(2.32). This simpler equation is derived by the following procedure.
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Fig. 2.16 Two coordinate system's

Rotation
As shown in Fig. 2.16, there is only the camera mount tilt but no camera mount
pan. In other words, the tilt rotation about X axis is -n/2 <6 < 0 while the pan rotation

about Y axis is oo = 0. Substitute 8 # 0 and oo = 0 into Equation (2.32), it becomes

H(xs, - x,5)

& = H +yssinB - y,5sinf + z,5,cos8
_ H (yscos® - ys.cos® - z,5s5in0) (2.33)
' H +ys;sin@ - y;ssin@ + z5,c0s0
¢ =0
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Fig. 2.17 Translation

Translation
As illustrated in Fig. 2.17, the original of the global coordinate system is
expressed as (x, Y, 2o) in the image coordinate system, and these coordinates can be

derived intuitively. By inspection, the answer involves only similar triangles. Therefore,

X, ¥, and z, are derived as

x, =0
_ H sin®
Yy 5, (2.34)
d - H cos®
Z, =
s

where s, and s, are scaling coefficients. H and d are distances as defined in Fig. 2.17.
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Substituting the above equations for x, y,, and z, respectively in Equation (2.33), it gives

£ = Hxs,
! ysysine + dcos0
H(ysycose - dsin®) (2.35)
n = -
ysysme + dcos®
6 =0

Scaling
Distance in the image plane (XOY plane) is measured in the number of pixels
while the distance in the horizontal plane (Eon plane) is measured in meters. The scaling

parameters s, and s, can be determined as follows.

¢

2tan_~
5, = 24 - k.d
NX
(2.36)
2tan_2.
s, = d = kyd

where, as illustrated in Fig. 2.18, ¢, and ¢, are the view angles of the camera respectively
in X and Y direction. N, and N, are the number of pixels in a row and a column
respectively.

Substitute above equations for s,, and s, respectively in Equation (2.35), then it

becomes
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H x k

& " yksin® + cos®

_ H(Qykcos® - sin®) (2.37)
n‘ yk sin + cos@
& =0

where, as illustrated in Fig. 2.17 and Fig. 2.18, H is the distance between the video
camera and horizontal plane; © denotes the angle ot the camera mount tilt, (-2 < 0 <
0); ¢, ¢, denote the view angles of the camera in X and Y direction respectively, (0 <

¢, ¢, < 2m); and k,, k, are coefficients that are given as the following equations:

2tan& 2tan.q_)’.
§ = 2 v = 2 (2.38)
x N, y Ny

Equation (2.37) can be easily used for mapping a point in the image plane onto

the horizontal plane.
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Fig. 2.18 View angles of the camera
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CHAPTER 3

VEHICLE ALGORITHM

3.1 INTRODUCTION

Vehicle detection is fundamentally important for traffic planning, maintenance and
traffic control. Unfortunately, vehicle detection is the weakest link in traffic surveillance
and control.

Published literaturec was reviewed relating to topics on vehicle detection. The
result indicated that in the last two decades a variety of new techniques was studied o
overcome the drawbacks of the commonly used inductive loop detectors. For instance,
Braston (1975) tried to use a time-lapse photography method to measure speeds and
headway. Ashworth (1976) and Polus (1978) proposed a video recording system to obtain
data on speeds, occupancies, and volumes. Also, Ashworth (1976) tried to use an
ultrasonic detector to measure vehicle occupancy. These methods didn't use computer
vision techniques. The data were still collected by human observers. Almost at the same
time, image processing techniques were introduced for traffic data collection and a varicty
of image processing systems have been developed since 1970°s.  The majority of the
systems were reviewed by Dickinson (1984a, 1984h, 1989), Inigo (1985, 1989) and
Gilbert (1991).

A survey of existing video image processing systems shows that the majority are
derived from monochrome images. This is because monochrome video equipment is
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inexpensive and already widely used for traffic monitoring purposes. The storage
capacity required by a monochrome image is only about one-third of that needed by a
color image. However, monochrome image limits accuracy due to its low resolution. For
example, shadows of vehicles usually make detection false alarms (Inigo 1989;
Schlutsmeyer 1982), because it is difficult to distinguish vehicle shadows from some
vehicles due to the similarity of their grey levels.

Color image analysis, once a costly process, now offers an effective way to
overcome such problems. With the falling prices of color video equipment and computer
memory, the application of color image analysis for traffic monitoring has become a
realistic possibility.

In this chapter, a new method, called vehicle algorithm, has been developed to
process color images in order to reduce detection errors caused by shadow or similarity
of vehicle color and pavement color. To verify the accuracy of the detection, the
algorithm have two kinds of real-time output: vehicle speed and volume. In scction 3.2,
a method for r Jucing the data is presented. A vehicle detection method is presented in
section 3.3. Individual vehicle speeds and traffic volumes are derived by using the
information extracted from video images. This procedure is presented in section 3.4. In

section 3.5, experimental results and analysis are discussed.

3.2 SET UP DETECTION LINE

The practical problem faced by the real-time algorithm of image processing is the
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large number of data to be processed. For instance, a grey-level picture with resolution
of 512 x 512 pixels contains 262,144 data while the color one will contain three times
more data than this number (i.c., 786.432). It was obscrved thot the data could be
reduced because it was only necessary to test for changes (i.e., vehicle absence / presence)
at selected spatial regions, or windows, in the scerc in order to count all the vehicles
within that scene and estimate their velocities.

Instcad of processing all the pixels in a frame, the vehicle algorithm only
precesses a number of pixels chosen from each frame to make the process suitable for
real-time purposes. These pixels form a number of detection lines. Each line, used for
vehicle detection in one lane, is one pixel wide. The length and location of the line can
be arbitrarily determined by users on a TV screen depending upon the requirements.
Figure 3.1 shows the examples of the detection lines set up horizontally and vertically.
Detection lines work like sensors embedded under the pavement for recording vehicle
presence and passage. When these particular detection lines are overlaid by vehicles,
pixels in those lines manifest the colors of those vehicles respectively By means of
detecting the color of these pixels, the algorithm can determine the presence or absence
of vehicles.

Suppose the position of a pixel is described by (x,y *) in an image sequence, where
x and y are coordinates in the image coordinate system defining the position of the pixe!
in a frame; ¢ defines the position of the frame in a sequence of consccutive frames. A

pixel linc that contains n adjacent pixels p,, p,, ..., p, is expressed as a matrix, and
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{ p] { (xp yp t)
b1 _ (xp ¥ O G.D
L pﬂ . L (x"’ y"’ t) .

Define the value of the pixel at (x,y,f) as a vector P(x,y,t), and
P(x,y,t) = (R(x,y,t), G(x.y.t), B(xyt) )
where R(x.y,t), G(x,y,t) and B(x,y,t) denote the tristimulus values of the pixel. The values

of the pixel line are expressed as

Pp) Rp) Gp,) Bp)
P(pz) R(pz) G(pz) B(pz) (3.2)

Pe)| | Re) G B |

3.3 VEHICLE DETECTION

3.3.1 Extraction of Object

Information carried by pixels is classified into threc categorics: object, shadow,
and pavement surface. Objecr in this context refers to something whose color is
significantly different from that of pavement surfacc and shadows in the detection arca.
In order to determine in which category a pixel belongs, two color detection functions f,

and f, are introduced according to Equation (2.7) of Chapter Two. The function f; is for
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detection of pavement surface without shadow, and function f, is for detection of
shadows. The objects in an image can be extracted by the following procedure.
(1) Determinc the color of the pavernient surface without shadow;
(2) Test pixel p, p, < {p), ps - Pa}s DY fii
if f,(p,) 2 2/3, then the pixel is regarded as pavement surface; otherwise,
if fi(p;) < 2/3, then the pixel is regarded as object or shadow;
(3) Determine the color of the shadow on the pavement;
(4) Test the pixel by f:
if fi(p,) 2 2/3 the pixel is shadow; otherwise,
if f,(p,) < 2/3 the pixel is object.
Since only the object will be used for further analysis, both the pavement surface and
shadow are regarded as background and neglected. Therefore, the processed pixels are
classified into cither object or background category. Instead of the original vector value
of a pixel P(p;), a new value Pg(p,) will be used to indicate in which category the pixel
belongs. The value of Pyp,) is either 0 or 1. A pixel with a value of 0 is interpreted as
a white point representing the background, and a pixel with a value of 1 is interpreted as
a black point representing the object. Referring to the above decision rules, the value of

Pg(p,) is determined as follows:
. . 2 2
1, if and only if [f,(p) < .§.] N [f,p) < ..3_]

P,p) ={ (3.3)
0, L) = %] Ulhe) 2 2]

w| o

The image with pixels represented by values of Py is called binary image in which every
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pixel has one of only two options, either object or background, for the purposes of the

analysis at hand.

3.3.2 Vehicle Detection

The objects extracted from an image are further classified into two categories:
vehicle and noise. A noise refers to any object on the pavement surface other than a
vehicle. Noise can be distinguished from vehicle by measuring the size of the object.
The size of an object in a binary image is defined as the number of pixels in a cluster in
which all the pixel values are equal to 1. The procedure for differentiating vehicles from

noises is as follows.

1. Detection of object boundaries in the line image

The boundaries of the objects in a linc image can be obtained through the
following steps:

Step 1. Locate left boundary of the first object in a line image. Suppose the
image includes » pixels, p,, p, ..., p,. The values of these pixels arc Py(p,), Py(p,), ...
Py(p,).

If a pixel p, € [p, p, ..., p,] satisfies the following conditions, then it is the left

boundary of the first object.

p,"!

Pp, ) =1 N Y P(p)=0 (3.4)
PP,

Step 2. Locate the right boundary of the first object. If a pixel p, € |p,., p,+ 1,
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v Py oy P,] satisfies all of the following conditions, then it is another boundary of the

first object.

Py,

[IPp)=1 N P(p,+1)=0 (3.5)
PP,

Step 3. Locate the left boundaries of the other objects. Let a, denote the left
boundary of the kth object, where g, = a,, a;, . For example, a, denotes the left
boundary of the second object, and aj; the third one. A pixel at a, should make all of the

following equations true

a,~1

p, € lp, *1,p) N P(p =110 Y P(p)=0 (3.6)

i=h,_ +1

Step 4. Locate the right boundaries of the other objects. Let b, denote the right
boundary of the kth object, where b, = b,, b,, ~~-. For example, b, denotes the right
boundary of the second object and b, the third etc. After the left boundary of an object
is found at pixel a,, its right boundary must exist at b, that makes all of the following
equations truc

bl
P, € lp,,p] N Pp,+1)=0 0N IIP(p) =1 (3.7

ira,

2. Object measurement
The real size of an object can be obtained if two of its boundaries are found in the

image. Let L denote the real length of an object in term of meters, and
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L= ,/ L2+ L} (3.8)

where L,, L, = lengths of the projections of L in horizontal and vertical directions,
respectively. Referring to Fig. 3.2, L, and L, can be obtained according to the PP model
(Equation (2.37)) as follows.

(1) Determine L,

L, =| &k, y,) - E&, 3. |

3.9)
_ Hk x, Hk x
yk,sin0 + cos®  yksin + cosd
where
(x,, y,) = coordinates of the left boundary of the object;
(x,, ¥,) = coordinates of the right boundary of the object;
H = distance between the video camera and the horizontal plane;
0 = angle of the camera mount tilt (-2 < 6 < 0);
k, k, = coefficients that arc determined by Equation (2.38):
2tan9.’. 2tan-q-)l
2 2 3.10)
k = k =
! N, Y N,

where

¢, , ¢, = view angles of the camera in X and Y directions respectively (0< ¢,, 9,
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< 27m);

N,, N, = total number of pixels respectively in a row and a column of the frame.

Fig. 3.2 Length projection

(2) Determine L: similarly, L, is calculated as

L, =[N0 %) - 0, 3 |

3.11)
_ H(\',,k),cose - §inB) H(vakycosB - sinB)
) y,k,sin@ + cosd yk sinf + cosd

3. Removal of noise object
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Assume that a detection line is carefully placed on an area of asphalt pavement
containing as few surface color variations as possible. This reduces the size of the noises
to a minimum. In other words, it is assumed that the size of noise is smaller than that
of a vehicle. A predetermined threshold, B, gives the maximum acceptable size of noises
in a binary image. If the size of an object is larger than threshold B, the object is
regarded as a vehicle; otherwise, it is regarded as a noise and removed from the image.
This operation is expressed as follows.

a. Determine the number of objects in image r;

b. Compare the size of each object L with the threshold, B.

c. If L < B, then it is determined that the object is a noise. The pixels

between two boundaries are set the value of 0,

3.4 MEASUREMENT OF SPEED AND VOLUME

In order to determine the vehicle movement between two consecutive images, a
reference point should be determined. If the detection line is drawn horizontally in the
images, then cither a left or right boundary of a vehicle can be defined as a reference
point. But if the detection line is drawn vertically, then only the bottom boundary could
be used as a reference point shown in Fig. 3.3. The location change of a reference point
in two images is the distance that the vehicle moved during a time interval.

Let m denote the number of consecutive images in which a reference point can

be observed. As exemplified in Fig. 3.4, if the left boundary of the vehicle is used as a
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Fig. 3.3 Reference point

reference point, then the value of m is G because the reference point was observed in six
successive images. Normally, the value of m is determined depending upon the average
speed of vehicles: the slower the speed, the greater the value of m and the faster the

speed, the smaller the valuc of m.

3.4.1 Speed Measurement
Denote p, as a reference point of a vehicle in image t, and p, = (x,, y,). Itis

obvious that the variation of the positions of a reference point in two successive images
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Fig. 3.4 Sequence of binary images

is the distance that a vehicle passed during the time interval between image ¢ and image
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t+ 1. If the positions of a reference point in two consecutive images are measured as p,
and p,,, respectively in the image plane, then the real distance that point moves in the

horizontal plane can be calculated as

D‘ - ’ AEHZ + An,z (3.12)

where
D, = real distance between point p, and p,,,;
4k, an, = distances mn directions & and n, respectively.

Similar to Equations (3.9) and (3.11), a€, and an, can be computed below.

88, = | EGh Vo) = £, 9) |

(3.13)
_ Hk x, _ Hk x,
Yink,sind + cos®  yksin® + cosd
and
’T‘(x +}? yu] n(xp )',) l
(3.14)

H(y,, kcos0 - sinB)  H(ykcos® - sin6)
Ymk,sind + cosd ylkysine + cosO

Suppose the time interval ietween image ¢ and image t+1 (¢ = 1, 2, 3, ..., m-I"
is 7, seconds, then the average speed of a vehicle passing through the detection line is

calculated as
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m-1
3.60 Y D,
Speed (kmlh) = L (3.15)

m-}
3T,

1=)

where the average speed of a vehicle is measured during time interval 7,-T,, and 3.60 is

a coefficient that translates the speed unit from meters per second to kilometres per hour.

3.4.2 Traffic Volume Measurement

Traffic volume is defined as the number of vehicles passing a given point during
a specified period of time, or the number of vehicles that pass over a given section of a
lane or a roadway during a specified period of time. If N vehicles are counted in the

image sequence of m frames, the traffic volume is computed as

3600 N
m-1t (3 |6)

37

=]

Volume (vehlh) =

3.5. EXPERIMENTAL RESULTS

The developed algorithm was tested based on videotaped data recorded in real
traffic situations under a varicty of environmental conditions. The main purpose in
collecting these data was to capture as many different conditions as possible in order to
achieve high performance from the algorithms. These videotaped data were recorded in

different months in 1990 and 1991 in Montreal, Canada. Data covered a number of
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weather conditions including clear, cloudy, rain and snow.

In order to determine the accuracy of the detection, vekicie speeds measured by
the algorithin werc verified because the accuracy of the speed measurement is very
sensitive to the accuracy of vehicle boundary detection. An accurate specd measurcment
must be a result of accurate boundary detection. To find approximate accuracy of the
algorithm in speed measurement, an experiment took place in May 1991 on Decarie
Expressway in Montreal, involving two cars. The drivers were asked to pass through the
detection arca repeatedly and record their speeds, as indicated on their respective
speedometers. Traffic flow during the experimental period was recorded using a video
recorder. The speeds of those two cars were measured by the algorithm in the laboratory
using the developed software. In the experiment, error of the algorithm was defined as
the deviation between the actual speed and the one generated by the alyorithm. With a
sampling of 76 readings, the goodness of fit test indicated that errors fell within a normal
distribution with an estimated mecan of 1.2 km/h and an estimated standard deviation of
4.9 km/h at the level of significance 0.05. According to the characteristic of the normal
distribution, 95.4% of the samples fall in the range [x+2s]. Therefore, the errors should
belong . £9.8 km/h with 95.4% probability. Since the speed obtained from speedometer
is known to have a small error, in the order of +3%, the above results may have to be
slightly adjusted to indicate the actual accuracy of the algorithm. In addition, to get the
actual accuracy, a large nnmber of speed data is required to be obtained from other more
accurate ways such as using radar guns. Error analysic indicated that errors in vehicle

boundary detection can oc easily reduced by increasing the resolution of the image. The

- 67 -



errors in speed measure:.ient is reduced linearly with the accuracy increase in boundary
detection. For example, the error can be decreased to +4.5 km/h by merely changing the
resolution of the detection line from 25€ to 312 pixels.

The above accuracy of +9.8 km/h was obtained when the speed of the traffic flow
was between 80-110 km/h. Other experiments were also performed in order to test the
accuiacy in other speed ranges. The results show that the accuracy of the algorithm
becomes higher when the vehicle speed is lower than 80 km/h. But when the vehicle
speed exceeds 110 km/h, the accuracy of the algorithm is lower. This is duc to the
limitation of the hardware speed. When the speed of a vehicle is high, its front and rear
boundaries become hazy in the images as exemplified in Fig. 3.5. With the help of
high-speed image digitizing devices, this problem could be solved and the accuracy

improved.

A & ") i

Fig. 3.5 Hazy boundaries of a vehicle

In conclusion, color images can be used in real-time video traffic detection. This

method is able to reduce detection errors caused by shadow. It can be considered as an
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improvement to cxisting video detection systems. The algorithms develop in this thesis
is incapable of dealing with vehicle occlusions and its accuracy in speed measurement

requires further verification.
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CHAPTER 4

SIGNAL ALGORITHM

4.1 INTRODUCTION

Besides speed and volume, one of the other factors which affects the capacity of
intersections is the presence of turning vehicles.  Traffic problems such as traffic
congestion, fuel consumption, air pollution, and noise pollution usually occur al
intersections, particularly when heavy left-turning traffic is present

The left-turning volume is important in the study of any traffic system because it
significantly affects vehicle speeds and intersection delays. 1If the data relative to turning
demands arc available, the traffic-responsive control systems can become more \a"fcclivc
in reducing traffic delay and increasing intersection capacity.  Unfortunately, present
detection systems are incapable of detecting tuming vehicles before they enter the
intersections. This is because these detectors perform a "blind" type of detection, i.e. only
the presence or absence of a vehicle over the sensors can be detected.

To find a vehicle that intends to turn before its turning movement, computer vision
techniques are used to detect the situation of the vehicle’s wrn indicator. The literature
review shows that little work has been done in this arca. Lu et al (1988) proposed an
algorithm for detection of left-turning vehicles at intersections during the daytime. On
the basis of assnming that the signal lights of left-turning vehicles will likely be the
brightest spots in the pictures, Lu's algorithm tried to search for these signal lights in
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order to detect the turning movements.  In other words, the algorithm utilized the image
analysis techniques to extract the turning lights from pictures. The accuracy of the
algorithm was about 80% which indicated that improvements were necded. However, it
is extremely difficult for the algorithm to attain greater accuracy because of the following
difficulties.

1. The algorithm distinguished reflections from signal lights by examining the size
of bright clusters in the images. When the sizes and shapes of the reflections were
similar to those of the signal lights, the algorithm was incapable of scparating them.

2. Variation of the size of signal lights was another challenge to the algorithm,
In Lu’s algorithm, the signal lights were extracted using a simple threshold. This method
made the accurate recognition of signal lights difficult because their sizes vary widely duc
to the different types of vehicles and their distance from the camera.

3. The blink of these turning lights made it even more difficult to detect them.
This is because such blinking not only affects the size of the bright clusters in images bui
also affects the grey values of these clusters. When an image shows a blinking light at
its dimmest level, the algorithm will completely fail to extract this turning light because
it analyzed only one picture.

In this chapter, two models will be developed respectively for recognizing vehicle
signal Jights and determining turning-signal lights. These models are used to form a new
algorithm, signal algorithm, to detect vehicles intending to turn at intersections. There
are two significant differences between the new algorithm and that of Lu: (1) instead of

processing a grey-level image, the signal algorithm will process color images in order to
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distinguish signal lights from bright reflections of objects: (2) instead of an isolated
image, a sequence of images will be analyzed by the signal algorithm. Problems such as
variation in size of the signal lights and the fact that they are blinking can be solved by
the algorithm. However, the algorithm is incapable of detecting moving flashing lights
or flashing lights in a distance of 30 meters away from a video sensor.

There are six scctions in this chapter. Section 4.2 discusses the characteristics of
vehicle turning lights. These characteristics will be used in the detection models to
distinguish turning lights from other objects or other types of vehicle light (such as
parking lights, headlights, etc.). The third section will develop a new model (DOS
model) to segment signal lights in the images. The method 1o remove the noises
remaining in the segmented images is presented in section 4.4, In section 4.5, another
model, DOB model, will be developed tn distinguish blinking lights from non-blinking
ones. In section 4.6, DOS and DOB models are integrated to form the signal algorithm
far detection of vehicles intending to turn. The experiment results will also be discussed

in this section.
4.2 CHARACTERISTICS OF TURNING LIGHTS

The characteristics of turning lights are discussed below.
1. Signalling: Driver’s manuals in Canada state that a driver "should signal his
intentions continuously and for a sufficient distance before making a turn” (Driver’s

Handbook 1983). The purpose of signalling before making a turn, for drivers in Canada,
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is the same as in other countrics -- safety. Thus, turning vehicles which do not signal
will be ignored in this study.

2. Blinking: When signal lightsare on indicating the intention of a vehicle to turn.
they blink from fifteen to twenty times every 10 seconds. This blinking is an important
characteristic of turning lights, and is used in the new algorithm to make the appropriate
distinction between turning and non-turning vehicles.

3. Color: The color of turning lights in front of vehicles is mostly yellow which
wavelength varies from 570um to 600 ym. This is another important characteristic of
turning lights. This feature can be used to distinguish turning lights from other objects

in the images.

4.3 SIGNAL LIGHT DETECTION MODEL (DOS model)

In this section, the DOS model was developed to segment signal lights (including
turning and parking lights) in the digitized video images.

Color and brightness are the two most sensitive parameters for differentiating
turning lights fron. other objects. The color of all turning lights in the front of vehicles
is yellow, which is difterent from the colors of most other objects. Even if yellow objects
appear in images, they can easily be distinguished because their brightness is difterent
from that of illuminated turning lights. Basced on these two parameters, the following
DQOS model is proposed:

P(x, y, 1) = [ *Py(x. v, 1) “4.1)
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where
P(x, v, 1) = output value of pixel (x, v, );
P(x, y, t) = input value of pixel (v, v, #):
f. = color filter;
f, = brightness filter.
The filters £, and f, arc discussed as follows:
The color filter £. masks out the colors that are not within the acceptable range of

yellow. The filter f. is expressed as

{ 0, if [Bxy.n) > Glxy.n-€]l U [Blxyn) > Ruy.n-€l U [Gxyn > Ryl
fc =

1, others (4.2)
where
R, G, and B = the tristimulus values of the pixel;
g, = threshold of minimum differences required between red and blue in mixture;
g, = threshold of minimum differences required between green and blue in
mixture.

The £, value of 1 indicates that the chromaticity value (R, G, B) produces the color
of turning lights. Otherwise, the f. value of 0 indicates that the color is not in the
acceptable range. The two thresholds €, and €, mainly depend upon the colors of turning
lights and satisfy conditions below:

€.€20,and g, 2 ¢,

The values of €, and €, can be determined by outputting and analyzing the (R, G, B)

-74 -



values of several wrning lights when initialization.

The brightness filter f, is used to discard pixels with a low brightness. It is

expressed below.

4.3)

; {0, if IRyt < BN [Glryn < B
- -

1, others

where

B, = brightness threshold for red component;

B, = brightness threshold for green component.
If cither R or G is less than the corresponding threshold, the value of f, will be O
indicating that the pixel is not a turned-on signal light due to the low brightness. The
component of blue is not necessarily considered in this filter because the color with a
large value of blue component (e.g. B > R or B > G) is not possiblec among the acceptable
colors and can be masked out by the color filter. The values of the thresholds B, and B,
are determined by comparing the chromaticity values (R, G, B) of signal lights at on-and-
off situations.

Figure 4.1 shows a traffic image of four cars in a queuc with their left-turning
lights on. The image became what is shown in Fig. 4.2 after passing through the color
filter £. Then, it was further filtered by the brightness filter. The result is shown in Fig.

4.3 where the background in Fig. 4.1 was discarded.
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Fig. 4.2 Image after color filtering
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Fig. 4.3 Image after brightness filtering

4.4 NOISE REMOVAL

Although the background was discarded after an image was processed by the DOS
model, noises still remained in the image along with turning lights as shown in Fig. 4.3.
The noises must be removed before the turning lights can be detected.

Usually, noises in the images are isolated pixels or short pixel lines. To detect
such kinds of noise, a 5-pixel scanning window, as a special case of 3 x 3 window
defined in Chapter 2, is introduced. This 5-pixel scanning window shown as Fig. 4.4
includes the scanning pixel (x, v, #) and its 4-neighbour pixels, say (x-1, v, 1), (x+1, v, ).

(x. -1, nand (x, ¥+1, 1).
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Fig. 44 5-pixel scanning window

Let vectors P, P, P, P,, and P, denote the chromaticity values of these pixels

respectively, anc

F Rx, »1 Gx,y1) Bxy T
P, Rx-1, v, ) G(x-1, ¥, ) Blx-1, v, 1)
P, = Rix+1, v, 1) G(x+1, v, 1) B(x+l, ». ) (4.4)
P, R(x, y=1, 1) G(x, y-1, 1) B(x, y-1, 1)
P, L R(x, y+1, 1) G(x, y+l, 1) B(x, y+1, 1) |
If the following condition exits,
[P#000)]n[(P =P,=(000))v P;=P,=(000})] (4.5)
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then the pixel (x, y, 1) is determined as a noise and eliminated by setting P(x, y, 1) = (0,
0, 0). Figure 4.5 shows an image obtained after eliminating noises on the image of

Fig.4.3.

Fig. 4.5 Image after noise removal

4.5 BLINK DETECTION MODEL (DOB model)

Blinking lights cannot be detected from an isolated image. However, they can be
detected from a series of consecutive images as shown in Fig. 4.6. The DOB model is

developed in this section for the detection of blinking lights by means of processing an

image sequence.
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Fig. 4.6 An image sequence

Assumr that the signal lights are all that remains in the images after removal of
background and noises. In this kind of image as exemplified in Fig. 4.5, the bright
clusters are the signal lights.

In order to determine whether these lights blink or not, two parameters are set up.
These two parameters are size and brightness of a cluster. The size of a cluster, denoted
as s, is the number of pixels contained in the cluster; and the brightness of a cluster,
denoted as A4, is the summation of the brightness of all pixels contained in the cluster.

The size of a cluster in each image is mathematically expressed as follows:
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where

The variation of the size of a light during a period of time is defined as

where

where

s(H) = EZ F [P(x. v, D]

(el

s(t) = size of a cluster in image r of the sequence;
, = an arca in image ¢ that just includes one cluster:;
P(x, v, 1) = chromaticity value of pixel (x. y) in image £
F = (-1 value function, and
0, if P(x, y, 1) = (0, 0, O

FIP(x. v. 1)] = {
1, if P(x, v, 1) # (0, 0. 0).

¢
i

AS = Sm-u

§
max

=max{s(t) |r=1,2 ...m};

Snm 1

Sue =Min{ s(t) | 1=1,2, .., m};

m = number of images in a sequence.

The brightness of a cluster is expressed as

A =YY Ay

(rylefl

A (1) = brightness of the cluster in image 1 of the sequence;
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A(x, y, r) = brightness of pixel (x,v) in image £
(2, = an arca in image ¢ that just includes one cluster,

The variation of the brightness of a light is defined as

A = P~ A (4.10)

where
A =max{ Aftj | t=1,2 ....m};
Mo =min{ A(t) | t=1,2, .., m},
m = number of images in a sequence.
Considering the variations of the size and the brighmess, a decision function for

blink detection is proposed as follows.

- A+ ah @.11)

where

n = decision function, and 0 € u < I;

4s = variation of the size;

a)\ = variation of the brighiness.
The decision function « synthetically reflects the change of the blinking lights in size and
brightess. 1f the change is significant, then the detected light is blinking; otherwise, if
the change is slight, then the light is not blinking. A threshold 8 is set up to determine
whether the signal light is blinking or not. The decision rule is as follows:

if u > B. then the light is blinking; otherwise,
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if u < P, then the light is not blinking.

The value of §§ is recommended to be 0.25 ~ 0.30 according to experiments of this study.

4.6  SIGNAL ALGORITHM AND EXPERIMENTAL RESULTS

4.6.1 Signal Algorithm

The signal algorithm, which is developed to detect vehicles intending to turn at
intersections, is divided into four stages as depicted in Fig. 4.7 and discussed below,
Stage 1: Image Acquisition

This stage consists of two steps as follows:

Step 1: Digitize video images. A digitizer fetches frozen frames from the video
camera and digitizes them inty two-dimensional arrays of pixels by converting the analog
signals into digital signals. The value of a pixel is a vector of three compunents (R, G,
B).

Step 2: Fetch the relevant parts of the images into the RAM of a computer. The
relevant parts arc the image portion containing the left-turning vehicles and their
surrounding background as shown in Fig. 4.8. This step significantly reduces the size of
the traffic images.

Stage 2: Image Segmentation

In this stage, the algorithm segments the images by using the  DOS model

developed in the preceding section. In the segmented images, the signal lights are

scparated from other objects in the images. Two steps contained in this stage are
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Step 1: Discard background from images. The background filter (Equation 4.1)
developed in the preceding section is used for this purpose. The turned-on signal lights
of vchicles are separated from other surrounding objects.  Consequently. those
surrounding objects are removed from the images and segmented images are obtained.

Step 2: Remove noises from the segmented images.  The noise filter (Equation
4.5) developed in the preceding section is used in this step in order to obtain a noise-free

image.

Stage 3: Extraciion of Bright Clusters

A bright cluster is a group of adjacent pixels. In this stage, the segmented images
are scanned in order to locate the bright clusters that are likely to be signal lights or other
bright objects. Three major steps are included in this stage and presented below.

Step 1: It any bright segment (a group of horizontally adjacent pixels in a row)
is found at the current scanned row of the image, proceed to step 2. Otherwise, continue
to scan pixel by pixel until the end of the row. When the present row is scanned and a
bright pixel is found. this pixel is considered as the left boundary point of a bright
segment. Then the algorithm scarches for the right boundary point of the bright scgment.
A pixel is considered as a right boundary point if the following two pixels are not bright.

Step 2: After a bright segment is found in step 1, step 2 examines the possibility
that the scgment may belong to any existing cluster. If so. the segment will be added to
that existing cluster. Otherwise, a new cluster will be created for this segment.

Figure 4.9 illustrates the algorithm for determining whether the bright segment
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v Cluster |

—

New bright segment

Fig. 4.9 New segment and existing cluster

belongs to any existing cluster. This algorithm does not search every existing cluster for
making such determination. Instead, it ascertains whether the pixels corresponding to this
gment belong to any existing cluster. In Fig. 4.9, the light-shadowed squares are
the pixels in the existing cluster /, and the duark-shadowed squares are the pixels of a new
segment in the current scanning line. Pixels a and b are the two boundary points of the
new segment. In addition, pixels a’ and b’ correspond to a and b, respectively. Pixels
a’-1 and a’+1 are the two pixels adjacent to pixel a’, as are pixels b’-1 and b’+1 adjacent

to pixel b'.
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Since the images obtained are high resolution with 512x512 pixels per image, any
bright object in the image will have a smooth boundary line. Therefore, this algorithm
checks if any of pixels a'-1, a’, and a’+1 or any of pixels »'-1, b’, and.b’+/ belong to
an existing cluster.  If so, the new segment belongs to the same cluster. If not, a new
cluster will be created for the new segment. For instance, in Fig. 4.9, pixels a’, a'+ 7, and
b'-1 belong to cluster /. Thus, the new segment, with two boundary pixels a and b,
belongs to cluster /.

Step 3: This step checks if the currently scanned line is the last row of the image.
If so0, o back to stage 1 for the left images of the sequence, or proceed to stage 4 if this
is the last image of the sequence. Otherwise. scan the next row of the image and go back

10 step 1 of this stage.

Stage 4: Recognition of Left turning Vehicles

In this stage, the blink detection model (DOB model)is utilized to exam the bright
clusters for recognition of left-turning lights of vehicles. This stage includes two steps
as follows:

Step 1@ Detection of blink, The status of the bright clusters in the images are
classified into either blinking or not blinking category by the DOB model. Those clusters
that are not blinking lights will be discarded in this step.

Step 2: Count the number of left-turning lights.  After step 1 is completed, the
remaining clusters are left-turning lights. The number of clusters arc counted in this step

in order to estimate the number of left-turning vehicles.
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4.6.2 Experimental Results

A series of experiments have been conducted to verify the signal algorithm, The
conditions.of the experiments were as follows:

1. The traffic scenes of two intersections in downtown Montreal were videotaped
by a video recorder;

2. The digitized images were color ones, and the chromaticity value (R, G, B)
ranged from (0, 0. () to (255, 255, 255);

3. The microprocessor used was PC 386/25; and

4. The software was written in the TURBO PASCAL computer language.

About 50 image sequences, each lasts abou' one minute, were used in the
experiments. The results indicated the following conclusions:

1. The DOS model is sensitive to the thresholds. Theretore, the proper selection
of the thresholds is important when using the DGS model.

2. The noise removal model is very effective for removing isolated or fine noises.

3. The accuracy of the DOB model for distinguishing blinking lights from non-
blinking ones was about 94%. The error analysis indicated that errors usually occurred
because some turning lights blinked so fast that no image showing the off moment of the

blinking circle was fetched in the image sequences.

4.6.3 Discussion
The accuracy of 94% is a significant increase compared to the previous algorithm

with an accuracy of 80%. This is because the newly developed DOS and DOB models
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employed new criteria in the detection such as color, characleristic of blink, and vzriation
in size and brightness of the signal lights, they can solve the problems that are very
ditficult for the previously developed algorithm (Lu 1988).  The signal algorithm no
longer suffers from the difficultics of accurately recognizing the signal lights with
variation in size, or detecting them from among the reflections of small objects whose
sizes and shapes are similar.  Also, the algorithm is able to distinguish turning signal
lights from turned-on parking lights of vehicles. This function was not available in the
previous algorithm.  The signal algorithm was developed for detection of wvehicles
intending to turn at intersections. It is, particularly, useful in the case where there is no
special turning lane.  Although the algorithm may nut ptovide an accurate practical
estimate of the number of turning vehicles, simply due to a fact that some drivers do not
use their turning indicators, it provides a method for detecting emergency vehicles such

as ambulances and police cars.
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CHAPTER 5

CLASSIFIER ALGORITHM

5.1 INTRODUCTION

Vehicle classification can be defined as observation of highway vehicles and the
subsequent sorting of the resulting data into a fixed set of categorics (Traffic 1985). In
practice, vehicle-classification data are extremely important because they are involved in
most aspects of transportation and traffic engineering such as pavement design, pavement-
maintenance scheduling, commodity flow analysis, highway-capacity analysis, weight
enforcement, and environmental analysis.

The number of availzble categories varics widely depending on the type of sensing
devices. For instance, vehicles can be categorized into four groups based cnurely on
overall length (raw data obtained from loops), or vehicles can be divided into cight groups
based on the number of axles and axle spacings (raw data obtained from axle sensors).
Due to the fact that no currently uscd detector uses inputs from both presence and axle
sensors at the same time, there appears to be a significant gap between what available
systems can deliver and what users desire.

In this chapter, four models were developed to form a new vehicle classification
algorithm, called classifier algorithm. The new algorithm intends to extract data not only
on length but ilso on height, width and profile featurcs of vehicles. These data are
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usually not available with other sensors. With these detailea vehicle data, the classifier
algorithm is able to divide vehicles into many complicated categorics, thereby reducing
the gap between the requirement and the availability. Similar to current methods which
arc used in video traffic detection systcms such' as AUTOSCOFE (1995) and CCATS
(1995), the algorithm does not intend to detect the number of axles directly because that
may be impossible for computer vision techniques under occlusion situations. However,
the number of axles may approximately be estims*ed using vehicle length and number of
units. In section 5.2, commonly used detectors for vehicle classification are reviewed.
Section 5.3 presents the requirements of the new tree type classifier. Four models and
the classifier algorithm are presented in section 5.4. The experimental results are

discussed in Section 5.5. Finally, a summary of this ckapter is introduced in Section 5.6.
5.2 DETECTOR TECHNOLOGIES FOR VEHICLE CLASSIFICATION

The detector technologies that can be employed for traffic data collection include
(1) loop detectors, (2) piezo electric detectors, (3) infrared detectors, (4) microwave
detectors, (5) ultrasonic detectors, and (6) video image analysis.

Loop Detectors

The inductive loop detector is currently the most widely used detector for traffic
control and data collection. Although vehicle classification is not the strongest function
of such kinds of detectors, some of them are able to provide the length of passing

vehicles. This is usually determined by detecting the speed of the vehicle and measuring
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the time taken to pass the site.  Vehicle classification is then undertaken by considering
a combination of parameters that loop detectors can provide. Lvles and Wyman (1983)
pointed out the accuracics of loop detectors. The minimum error for detectors using
overall length as a vehicle classification parameter was 5 - 8% whereas the maximum was
82% if there was an incorrect tuning of loop detectors. Pursula and Kosonen (1989) once
discussed the use of analog signals produced by loop detectors in vehicle classification.
That was performed according to the features (the 1ength, height, and form) of the analog
signal generated by the passing vehicles. But their design required that vehicles travel
at uniform speed, an operational condition not found in most practical situations.

Piezo Electric Detector

Piczo electric cable is used to provide an accurate axle detector for traffic data
collection, especially vehicle classification. But a disadvantage is the fact that the
detectors operating on the piczo electric principle cannot provide detailed information
about size of vehicles since outputs are provided as an axle crosses the detector, and there
is no overall vehicle detection zone.  Therefore, systems using such axle sensors
experienced numerous errors ranging from a low of 15 - 20% to a maximum of about two
thirds of all non-two-axle vehicles observed being misclassified (Lyles 1983).

Infrared and Microwave Detectors

Both the infrared and microwave detectors represent above ground vehicle sensors
that utilize, respectively, the infrared and microwave wavelengths of the electromagnetic
spectrum. Pan (1991) developed a vehicle classification system usicg a photo-clectronic

sensor. The sensor used for vehicle detection and dimension measurement consists of two



parts: an infrared transmitter and a light sensitive recciver. By placing the transmitter and
receiver side-by-side, opposite cach other, an uninterrupted beam from the transmitter to
the receiver will form. The output signal {rom the receiver changes when the continuous
bcam is interrupted by the passage of a vehicle. Once the measurements are taken,
vehicles are classified on the basis of these measurements.

Ultrasonic Detectors

Miyasako (1989) proposed an ultrasonic vehicle classifier with which vehicles
were classificd by comparing their profiles with a library of standardized profile data.
An overhead ultrasonic transducer was used to measure the profiles of vehicles while they

passed under it. The application of Miyasako’s design was limited by its accuracy.

From the above overview of existing detectors, it can be seen that the detector
techniques developed for vehicle classification arc based on sensors either for measuring
vehicle length or for counting the number of axles, wheelbases, and axle spacings. Both
length and axle sensors used in these systems perform a "blind" type of detection, that is,
only the presence or absence of a vehicle over the sensors can be detected. Two
fundamental problems exist in such systems. The problems are: (1) any single sensing
device cannot provide adequate information for comprehensive classification of vehicles,
(for example, buses cannot be accurately separated from trucks; vans, pickup trucks, and
other two-axle four-tire vehicles overlap with passenger cars; and motorcycles cannot be
reliably detected or differentiated from other vehicles); (2) portable sensing devices are

prone to both purposeful and accidental damage.
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To solve these problems and improve vehicle classification systems, video image
analysis techniques have been introduced in this area.

Video Image Analysis

Video image analysis techniques have grcat potential to improve vehicle
classification systems because video images contain much more detailed information
about passing vehicles than the other detectors can provide. In other words, a lot of data,
such as width, height, and profile characteristics of vehicle (or type of vehicle shape) that
are not easily obtained by other kinds of detector, can be extracted by image analysis.
Therefore, many complicated categorics could be obtained.

In recent years, video-image-analysis techniques have becn applied with varying
degrees of success to automatically detect and measure the presence and speed of vehicles
in real time (Taylor and Young 1988). However, vchicle classification, as one of scveral
difficult tasks for applying image analysis techniques in the area of traffic-data collection,
has not been fully developed. Blosseville {1990) proposed a traffic sensor calied TITAN
bascd on image processing techniques. Although the feasibility of image processing for
vehicle classification was proved, the significant advantage of this technique was not
shown in their study because vehicles can only be classified into either light or heavy
categorics. Two other systems were developed separately by two rescarch groups (Pan
1991; Lu 1992) using infrared images for vehicle classification. However, these
rescarchers stayed with the same classification parameters in their studies, that is, number
of axles and axle spacings. In addition, the use of the infrared system is usually more

expensive than the use of the ordinary camera system. This is because purchase and
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installation of new infrared systems will cost more than modifying the ordinary camera
systems that already exist. A mcthod is needed ior automatically performing a

comprchensive classification of vehicles at low cost.

53 REQUIREMENTS OF THE VEHICLE CLASSIFIER

There is a wide variation of vehicle classification emanating from different
government authorities and traffic engineers. Besed on their needs, they can define their
own classification scheme. For instance, the Federal Highway Administration (FHWA)
has classified vehicles into 13 categories (Traffic 1985). However, in Canada, the
classification scheme is different from the FHWA scheme because of differcnt needs and
laws. For example, there are 20 categories used in the province of Quebec and 18 in the
province of Ontario. Traffic engincers usually classify vehicles into four categories for
the purposcs of capacity analysis. These four categories are passenger cars, trucks,
recreational vehicles and buses. Many vans and small panel trucks may be classified as
passenger cars. This classification scheme is based on the number of wheels of a vehicle
and for what it is used. But for the purpose of pavement design and maintenance
scheduling, only heavy vehicles are considered. Therefore, vehicles are only divided into
two groups: light and hecavy vehicles. Heavy vehicles are further divided into several
categories by the combinations of the size, weight and number of axles. In this kind of
classification scheme, the size, weight and number of axles of vehicles become the most

important parameters for the classification.
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A classifier algorithm, which is a tree type classifier, will be developed in this
chapter. In order to enable the classifier to classify vehicles into as many catcgories as
possible, it will meet the following rocquirements in two categorics: functional
requirements and performance criteria.

Functional Requirements

The sensors of the classifier should be able to provide information about
dimension of vehicles and type of vehicle shapes. The dimension of vehicles includes
length, width and height. The type of vehicle shapes, which will be called profile
charccteristics of vehicles in this thesis, include (1) the front shape of the vehicle: flat
front or projecting front; and (2) the number of uiits of which a vehicle is composed.
profile characteristics passing the detection site.

The classification schemes that arc available with the classifier algorithm are
formed by the combination of a vehicle’s length, height, and profile characteristics. In
other words, the classifier algorithm should be able to segregate vehicles on the basis of
different combinations of their size and profile characteristics. Consequently, the
algorithm can meet different application requircments and users can classify vehicles
according to their own classification scheme.

Performance Criteria

The classifier algorithm should meet the following performance requircments.

It is important that the algorithm does not require adjustment after initial sct up.

The algorithm should be able to work at all typical road driving speeds, not those

necessarily at or below the national specd limit.  Any vehicle in a video image may be
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measured and classified no matter what position it is in the image.

The algorithm model should be able to differentiate buses from trucks, and
separate single unit trucks from single trailer trucks.
The errors in estimations of width and height of vehicles must be less than 0.2m

and (.4m, respectively. The number of units of vehicles should be obtained at an

accuracy of more than 95%.

5.4 MODELS AND CLASSIFIER ALGORITHM

A vehicle classification algorithm, called classifier algorithm, is proposed in this
section based on four models as shown in Fig. 5.1 Each model will be presented in the

following sub-scctions.

5.4.1 Model Of Length Measurement (LM Model)

The length of a vehicle is defined as the length from its front bumper to its rear
once. The model of length measurement (LM model) is developed 1o measure the actual
length of vehicles from video images.

A coordinate system as shown in Fig. 5.2 is set up in the images for measurement
of vehicle length. The origin of the coordinate system is located at the center of the
frame. To measure the length of vehicles in a lane, a line of pixels is considered as a
detector that is parallel with the movement of the vehicles and located in the middle of

the lane. Vehicles moving in the lanc can be detected by means of checking the value
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Video Images

LM Model PCE Model WHE Model
Profile | Character
Length Height
TTC Model
Vehicle Categories

Fig. 5.1 Flow chart of the classifier algonthm

variations of the pixels in this detector. Details of the algorithm for the vehicle detection
were described in Chapter Three. Following is a brief summery of the algorithm:

Step 1. Extraction of object. Two color detection functions f, and f, (Equation
2.7) are employed in order to differentiatc moving objects from bachground and shadows.
Then the original color image is transformed to a binary image (Equation 3.3)

Step 2. Measure the size of the vehicle in euach frame. The length of the vehicles
can be obtained in this step. Because the detection line for length measurement is placed
horizontally in the image planc, Equation (3.9) can be expressed in the following simple

way:
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Detection Line

Detected Lane

Fig. 5.2 Vehicle length measurement

L o=]8&. ) - &0, ¥ |

Hk x, Hk x

«

vh sin@ + cos® vk sin® + cos (5.1

Hk (x,-x)

vk sin@ + cosf

where

L, = length of the vehicle measured in image 1, in term of meters:

(1, V) = coordinates of the left boundary of the vehicle. y = constant;
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(x,, y) = coordinates of the right boundary of the vehicle, y = constant;

H = distance from the video camera to ihe horizontal plane,

0 = angle of the camera mount tilt (-/2 < 6 < 0);

k, k, = coefficienw. as determined by Equation (2.38).

Step 3. Determine the overall I2ngth of the vehicle. Note that L, is not necessarily
the overall length of the vehicle, since it may represent the length of only a part of the
vehicle while it enters or leaves the detection arca. Therefore, the overall length of a
vehicle is obtained only from those images that include the whole vehicle. In other
words, the overall length is represented as

L=max{Llt=12 .,m) (5.2)
where

L = overall length of a vehicle, in meters;

L, = length of the vehicle measured in frame #,

m = number of consecutive images showing the vehicle.

Figure 5.3 shows an example of a group of consccutive images in which a vehicle

is measured when passing through the detector.

5.4.2 Model of Width And Height Estimation (WHE Model)

The appearance of vehicles in a frame is exemplified in Fig. 5.4. Since both the
width and height of a vehicle are projected in the vertical direction of the image plane,
determining the width and length separately is a complicated process. The WHE model

is proposed to estimate the width and height of vehicles according to the measures of the
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Fig. 5.3 Vehicle Length Measurement

distance from the lower to upper boundaries of the vehicles in the video images. The
block diagram of the WHE model is shown in Fig. 5.5. Details of the WHE model are

described below.

1. Determine the lower and upper boundaries in the images

To estimate the width and height of a vehicle, the lower and upper boundaries of
the vehicle must be detected from the video images. As in a similar method used for the
LM model. only one line of pixels placed perpendicular to the movement of the vehicles

is employed as a detector. as exemplified in Fig. 5.6. By means of checking the



Perspective projection of width

Perspective projection of height

Fig. 5.4 Appearance of vehicle in a frame

variations of the pixel values, both boundaries of a vehicle can be determined.

2. Project the boundaries into the horizontal plane

Any point in the image plane has a perspective projection in the horizontal planc.
If the position of a point is determined in the image plane, its position in the horizontal
plan can be calculated by using the perspective projection model (Equation 2.37). As
illustrated in Fig. 5.7, two boundary points of a vehicle in the image plane have two

corresponding points in the horizontal plane. Their coordinates can be derived as

En)=T[xy)]
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{(P(x,()) i=1,2, ...n}

!

Determine the upper and lower

boundary points in image plane

Project the boundary points

into horizontal plane

n40 u D)

Estimate width and heights

|

w, h(t)

Fig. 5.5 Flow chart of the WHE model

(5.3)

E M) =T[(xy]

where
(x, y,) = coordinates of the lower boundary in the image plane;
(x, y») = coordinates of the upper boundary in the 1mage plane;
(€, m,) = coordinates of the lower boundary in the horizontal plane;

(€& M) = coordinates of the upper boundary in the horizontal plane;
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Since xand & sre constant and have no relation to the measurement, they are therefore

neglected. Considering only the transformation between y and 1, we have

H (n, sing +y, tan%‘. cos0)

n cos@ -y, lan.q_;i sin@

5.4)

H (n, sind +y, tan% c0s0)

M

n_cos@ -y, tan% sinQ

where
¢, = vertical visual angle of the camera;
¢, = horizontal visual angle of the camera;
0 = rotation angle from camera’s lens axle to vertical line, in degrees;
H = vertical distance from vidco camera to the horizontal plane;
n, = number of pixel rows in a video image;

n, = number of pixel columns in an image.

3. Estimate the width and height

Il a vehicle overlays the detector and its two boundaries are transformm.ed into the
horizontal plane, then the width and height of the vehicle can be estimated by the WHE
model. The details of the WHE model are described below.,

Ina frame 1, suppose that the coordinates of the two boundaries are extracted from

the video image plane and projected onto the horizontal plane. The corresponding
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Fig. 5.8 Estimation of width and height of vchicle

coordinates obtained in the horizontal plane are n,(t) and M, () respectively representing

the lower and upper boundary. By inspection of Fig. 5.8, it is casily verified that

Ay MM (0 -w(r)
H N0

or (SS’

h(t) = L[nh(t)-n"(t)-w(l)]
n,(1)

b
where
h(1) = height of vehicle in image ¢, in meters:

w(t) = width of the vehicle in image ¢, in meters;
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n,(t) = coordinate of the lower boundary in the horizontal plane,

N,(t) = coordinate of the upper boundary in the horizontal plane;

H = distance from camera to the horizontal plan, in meters.

Because there is only one equation with two unknown variables (h and w), onc
variablc must be estimated. Regarding w(z) as an independent variable, it can first be
estimated on the base of following two assumptions:

Assumption 1: The width of vehicles varies from 1.6m to 2.6m.

Assumption 2: The lowest part of vehicles is 0.6m (such as the hood of a car)
and the highest part is 4.0m (such as the roof of a heavy truck).

From the above equation, it is easy to conclude that a smaller estimation than
actual width of a vehicle will result in a larger estimation than actual height. On the
contrary, a larger estimation in width will cause a smaller estimaticn in height. Therefore,
estimation of width is limited not only by assumption one but also by assumption two.

With these assumptions, the minimum estimated width of a wvehicle can be
obtained as

w, =max{ 1.6 ,w’, } (5.6)
where

w, = minimum estimation of the width, in meters;

1.6 = minimum possible width of vehicle, in melers;

w’, = result of following equation:
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_ 4.0 nb(Anmsu) (57)

where

an,, = max { N1, 1 =1,2,..m };

Ns(4N,a) = coordinate of the upper boundary corresponding to an,,,;

H = distance from camera to the horizontal plan, in meters;

4.0 = the largest possible height of vehicle, in meters;

In the same way, the maximum estimation of a vehicle’s width can be obtained
as w, and

w, =min{ 2.6 ,w’, } (5.8)

where

w, = maximum estimation of the width of a vehicle, in meters;

2.6 = the largest possible width of vehicle, in meters;

w’, = result of following equation:

_ 0& n,(an,,,) (59)
H

w2 = AT]mm
where
an,,, = min { N,()N,(t) 1 =1.2,....m };
Ny(&1|,.) = coordinate of the upper boundary corresponding to an,,,;
H = distance from camera to the horizontal plane, in meters;

0.6 = minimum possible height of vehicle, in meters.

The actual width of the vehicle must be somewhere between w, and w,, and
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w=w, + 3w, -w) (5.10)
where
w = estimated width of the vehicle, in meters;
w, = minimum estimation of the width, in meters;
w, = maximum estimation of the width, in meters;
S = coefficient given by

5 = MERC! 0<8<1 (5.11)

= ’
(w,-w," ) +(w, ~w,)

where w, w, w’,, and w’, arc defined in previous equations.

Substituting w for w(z) in Equation (5.5), the estimated height of the vehicle in

image ¢ can be calculated as

ey = o - n@ - wl (5.12)
X0

4. A case study

Following is a casc of using the WHE model to estimate width and height of

vehicles in a real case.

Traffic scenes of Decaric Expressway were videotaped in 1993. The video camera
was mounted at a height of 8m and tilted at an angle of 30 degree from the horizontal

linc as shown in Fig. 5.9. Figure 5.10 is a sample of the scenc taken by the video

camcra.
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\_ .

Fig. 5.9 Set up of video camera

TABLE 5.1 Coordinates of the perspective projections of a vehicle

t v(1) vilt) n,(1) (1) an(r)
1 45 99 16.4 20.7 43
2 45 102 16.4 21.0 4.6
3 45 111 16.4 21.9 5.5
4 45 123 16.4 23.2 6.8
5 45 123 16.4 23.2 6.8
6 45 123 16.4 23.2 6.8

Table 5.1 shows the results of the perspective projections from the video image
into the horizontal plane. Column one shows the index number of the images. Columns
two and three list the coordinates of the lower and upper boundaries of the vehizle in the
image plane, respectively. Columns four and five illustrate the mapping results by using

Equation (5.4). The parameters employed in this case are listed below.
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Fig. 5.10 A frame of video image

H = 8m (vertical distance from video camera to the horizontal plane);

¢, = 350 (vertical visual angle of the camera);

¢, = 35¢ (horizontal visual angle of the camera);

0 = 60¢ (rotation angle between X’-Z’ plane and the horizontal plane);

n, = 400 (number of pixel rows in an image).
Column six shows the distanice between two boundary points. From this column, it was
found that an,,;, = an,(1) = 4.3 is the smallest one =nd an,,,, = an,(4) = 6.8 is the largest

one. Therefore, the corresponding n,(an,,,,) and n,(an .,,) are 20.7 and 23.2, respectively.
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By substituting these data into Equation (5.6) through Equation (5.11), the width of the
vehicle was estimated as 1.6m which is very close to the actual width of the detected
vehicle (TOYOTA Previa/92 seven-passenger van). Table 5.2 shows the results from

Equation (5.6) to Equation (5.11).

TABLE 5.2 Results of the estimation of width

W,

»

W,

W,

W,

5

w

-4.8

2.7

1.6

2.6

0.02

1.6

With the estimated width of the vehicle, the height series of this vehicle was

obtained by using Equation (5.12). The results are shown in Table 5.3.

TABLE 5.3 Height series of the vehicle

h(t) h(l1) h(2) h(3) h(4) h(5) h(6)
Value(m) 1.0 1.1 1.4 1.8 1.8 1.8

5.43 Model For Extracting The Profile Characteristics Of Vehicle (PCE Model)

The model created in this section is able to extract two profile characteristics of
a vehicle. The first is the front shape of a vehicle: flat front or projecting front. The
second is the number of units of which a vehicle is composed. Figure 5.11 shows the
block diagram of the PCE model.

The model works on the basis of two assumptions.
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PCE Model h(1), h(2), ..., h(m)

Detect the front Detect the number
shape of vehicle of units of vehicle

Profile characteristics of vehicle

Fig. 5.11 Flow chart of the PCE model

Assumption 1: The time interval between any two consecutive video images 1s
so short that a vehicle can only move less than 1.0m during this period of time.

Assumption 2: The characteristic parts of a vehicle. such as the projecting part
of a projecting-front vehicle or the space between the trailer and its tractor of a trailer
truck, arc longer than 1.0m.

Thes~ assumptions ensure that if a fixed area is predetermined in each frame of
an mmage sequence which records the movement of a vehicle. then any characteristic part
of the vehicle can be seen in at least one frame at that fixed area. Therefore, the profile
charactenistics of a vehicle concerning both its shape and the number of units are reflected

in a height series. This series is composed of the heights of a vehicle at different
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sections. Let h(1), h(2), ..., h(1), ..., h(m} denote a height serics which can be obtained
from m consecutive video frames by using the WHE model. As shown in Fig. 5.12, h(1)
is the height of some point in the front part of the vehicle and h(m) is the height of some
point in the rear part. Let h,,, denote the largest value among the height series, and h,,,,,

=max { h() | t=1, .., m }. The profile characteristic of th~ shape of a vehicle is

extracted under the following rule:

h(1)
h

max

IF < B,

(5.13)
THEN the vehicle has a projecting front

ELSE the vehicle has a flat front

where [, = a predetermined threshold, 0.7 < B, < 1.0

Y

h(l) h(2) h(3) e o o o o o h(t) e ¢ e o o o h(m)

Fig. 5.12 Height series of a vehicle

This rule can be verified intuitively. If a vehicle has a4 projecting front, then the
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difference between h,,, and k(1) should be relatively large because of the lower height
of the projecting part. Therefore, the ratio of h(/) and h,,, is small. Otherwise, if a
vehicle has a flat front, the values of h,,, and h(7) should be close, making the ratio of
h(1) and h,,,, large. For instance, the values of the ratio h(!)/n,,,, for a pickup truck and
van are (.7 and 1.0, respectively. If the threshold B, is 0.8, then the above rule is able
to classify the pickup into the category of projecting-front vehicle while the van into the
category of flat-front vehicle.

The profile characteristic regarding the number of units can be obtained by the

following procedure.

Step 1: Calculate gradient of each height. If the height series is regarded as a

function h(t), a gradient h’ is defined as

() = E’l _ h(t+Ar) - h(1) (5.14)
dt At

For discrete height series with Ar = 1, Equation (5.14) can be implemented digitally by
h'(t) = h(e+1) - h(t) t=1,2 .. mi

Step 2: Find the boundaries of each unit of the vehicle. Since there must be a
sharp drop in height at the end of each unit, a greater value of rate can be expected on
the corresponding boundary. Thus, the number of units of a vehicle is determined by
counting the number of h’s whose values are greater than a predetermined threshold f3,.
The threshold f, is empirically determined as 2.0 £ B, £ 3.0. It is based on the
assumptions that the height of trailers is more than 3.5m but smaller than 4.0m, and the

height of the link between units is more than 1.0m but smaller than 1.5m. For example,
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a height series of a truck is obtained as h(/)=1.8m, h(2)=1.8m, h(3)=2.6m. h(4)=2.6m,
h(5)=1.2m, h(6)=3.9m, h(7)=3.9m, h(8)=3.9m, h(9)=3.9m, h(10)=3.9m. Observing its
gradients which are k'(1)=0, h’(2)=0.8, h’(3)=0, h'($)=-1.4, h’(5)=2.7, h'(6)=0, h'(7)=0,
h’(8)=0, h’(9)=0, it can be determined that the vehicle is a two-unit truck by using the

above rule with the threshold 8, = 2.0.

5.44 Tree Type Classifier (TTC Model)

A tree type classifier (TTC), proposed in this section, is a two-level classifier that
is able to classify vehicles into user defined categorics. At the [irst level, vehicles are
divided into several categorics by a combination of various lengths and heights. The
height of a vehicle is defined as the measure extending from the ground to its highest
roof. At the second level, vehicles are further divided according to their profile
characteristics, such as buses are differentiated from trucks; and single unit trucks, single
unit trailer trucks and multi-trailer trucks are differentiated from each other.

First level classification: Classifying vehicles by length and height. An algorithm
based on k-nearest-neighbour rule (kNN rule) (Fukunaka 1972) was developed in this
level. In order to utilize the kNN rule, vehicles are expressed as patiern vectors whose
components arc the vehicle’s length and height. A pattern vector is defined as

e= (L, h) (5.15)
where
e = pattern vector of a vehicle;

L = length of the vehicle, in meters;
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h = height of the vehicle, in meters.
A certain number of vehicles with known vehicle types (e.g. cars, vans, buses, trucks, and
trailer trucks, etc) are chosen to form a prototype space. If a given vehicle i is
represented by a pattern vector e; in the prototype space, such as
e, = (L, h) (5.16)
then the prototype space forms a set of all given pattern vectors, and this set can be
expressed as
S=1{e,, e, .. €, .6} 5.17)
where
S = a set of vectors representing the prototype space;
n = number of the known vehicles.
Since the types of the n vehicles are known, the prototype space can be divided into
several clusters of the pattern vectors. Each cluster containing several different types of
vehicles forms a subset within S. The pattern vectors within the same subset represent,
therefore, the vehicles of the same group. Let §,, §,, ..., and S, denote g subsets in S.
Then the following relations exist:
§=85,VUSV..US, (5.18)
and
SN, =.=§n§=..=5,nN§=0 (5.19)
where i, j=1, 2, .., qand i #j.
The purpose of the kNN approach is to determine to which subset a new pattern

vector, e,,, wWhere e,,, & S, belongs. This pattern vector represents a detected vehicle in
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the video image. In other words. the algorithm will classify detected vehicles into several
user defined groups.

With the modified ANN rule in mind, the algorithm searches for the A (A is a
predetermined integer) nearest neighbours of the unknown vector e, within the prototype
space. Then, e,,, is classified into one of the subsets in the prototype space. The chosen
subset is the one that contains more of these k ncighbours than the other ones. Details
of the algorithm are described through an easy example as follows.

Table 5.4 shows fourteen vehicles with known vehicle types and sizes. These

vehicles are chosen to form a prototype space as shown in Fig. 5.13.

TABLE 5.4 Vehicles to form a prototype space

Vehicle type  Length(m) Height(m) | Vehicle type  Length(m)  Hceight(m)
(h (2) (3) (D (2) (3
car 4.1 1.5 bus 12.0 30
pickup 6.0 2.1 truck 1.4 3.0
pickup 5.1 1.7 truck 8.0 28
pickup 5.6 1.8 truck 9.5 39
van 4.3 1.9 truck 15.0 39
van 5.1 2.0 truck 12.0 39
van 4.5 2.5 truck v.5 32

Step 1: Define groups of vehicles by users. There is a wide variation of vehicle
classifications emanating from different government authorities and traffic engincers.

Based on their needs, users can define their own vehicle classification scheme by the
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Fig. 5.13 A prototype space

combinations of length and height of vehicles. Suppose two groups are defined in this
sample case. Group one includes all types of cars, vans, and pickups while group two
includes buses, ambulances, and all types of trucks.

Step 2: Predetermine the value of integer k. Methods for choosing k can be found
in pattern recognition reference (Duda 1973). In this study, k& = 3 was chosen.

Step 3: Calculate the distance. d,. Let d, denote the distance between pattern
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vectors e,,, and e, and be defined as

d = \/(Lm.. - L) +(h, -hY i=1,2,...m (16)

new

Suppose there is an unknown vector e,,, = (7.0, 2.5) representing a detected vehicle. The

distance from e,,, to every pattern vector e, is calculated and shown in Table 5.5.

TABLE 5.5 Distance from e, (7.0, 2.5) to every ¢,

new

Vector e, Distance d,  Group No. Vector ¢,  Distance ¢, Group No.
(h 2 (3) (H (2) (3
(4.0, 1.5) 3.2 l (12.0. 3.0) 5.0 2
(6.0, 2.1) L1 1 (74, 3.0h 0.6° 2
(5.1, 1.7) 2.1 1 (8.0, 2.8) 1.0° 2
(5.6, 1.8) 1.6 1 (95,39 29 2
(4.3, 1.9) 2.8 ! (15.0. 3.9) 8.1 2
(5.1,2.0) 20 1 (12.0, 3.9) 5.2 2
(4.5.2.5) 2.5 1 (9.5, 3.2) 2.6 2

* The three nearest neighbours of the unknown vector ¢, (7.0, 2.5).

new

Step 4: Select the k smallest ds. The values of ds are compared, and the &
smallest ds are selected. Then k corresponding pattern vectors in the prototype space to
these smallest ds are found. These k pattern vectors may come from different subsets.
Each of these & pattern vectors is assigned a name of the corresponding subset. In the
sample case, the values of d;s shown in Table 5.5 are compared and three (k = 3) smallest

ones are selected as 0.6, 1.0, and 1.1. Then the three corresponding pzttern vectors, (7.4,
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3.0), (8.0, 2.8), and (6.0, 2.1) in the prowtype space to these three smallest ds are found
as the ncarest neighbours of the unknown vector e, (7.0, 2.5). This is shown in Table
5.5 and Fig. 5.14.

Step §: Determine to which group e,,, belongs. The vector e,,, is classified into
the subset most frequently named among the k pattern vectors. In this case, e, is
classified into group two because there are two of its three nearest neighbours coming
from group two. But if two or more subsets are named with the same number of pattern
vectors in these k nearest neighbours, then the sums of their corresponding distances are
calculated and compared. If only one subset exists having the smallest sum of such
distances, then e,,, belongs to that subset. Otherwise, e,,, is unidentified.

Second level classification: Classifying vehicles by the profile characteristics.
Bascd on the profile characteristics of a vehicle, the algorithm can differentiate buses
from trucks, single unit trucks from uailer trucks, and single trailer trucks from multi-unit
trailer trucks in this level of lassification. Details of the algorithm are as follows.

Step 1: Differeniiate buses from trucks. The profile shape of the front part of a
vehicle is used to separate buses from trucks. If a vehicle in a group that includes both
buses and trucks is found to have not only a similar size as a bus but also a flat front,
then it is classified as a bus (note that school buses were excluded in this study).
Otherwise, the vehicle is classified as a truck with a projecting front.

Step 2: Differentiate trailer trucks from single unit trucks. The number of units

in a truck is used in this separation. If a truck is found to be in the group that contains
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Fig. 5.14 The nearest neighbours of the unknown vector

single unit trucks and trailer trucks and has two or more than two units, then it is
classified as a trailer truck. Otherwise, if a truck is found to have only one unit, then it

is classified as a single unit truck.

Step 3: Differentiate single trailer trucks from multi-trailer trucks. If a vehicle is

classified as a trailer truck in step 2, the number of units will play a major rolc in further
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classification. If a trailer truck has two units, then it is classified as a single trailer truck.
Otherwise, if the number of units of a trailer truck is more than two, it is classified as a
multi-unit trailer truck.

Although the TTC model is ready to classify vehicles by the number of axles, the
classifier algorithm does not intend to detect the number of axles directly from images
because it may be impossible for computer vision techniques to detect the number of
axles direci:. -ader occlusion situations. However, the number of axles may

approximately be estimated using vehicle length and number of units.

5.5 EXPERIMENTAL RESULTS

5.5.1 Experiments and analysis

The four newly developed models were tested in the laboratory and their accuracies
were evaluated. The traffic scene of Decarie Expressway in Montréal was videotaped in
different seasons of 1992 and 1993. The video tapes were played back in the laboratory,
and 580 vehicles with known sizes were selected from the tapes. The experimental
results arc presenied below.

TABLE 5.6 Results of vehicle size measurement

Sample size Mean of errors Std. deviations
Length 580 0.3 0.04
Width, height 580 0.2 0.03
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Accuracy of length measurement

The selected vehicles were detected by the LM model. As » result of comparison
of the measured sizes with the actual ones, it was found that the mean of errors in length
measurement was 0.3m with standard deviations of 0.04m (sec Table 5.6). Error analysis
indicated that most errors occurred in vehicle boundary detection. For example, if the
boundary of a vehicle is mis-detected with one pixel error on the video image plane, then
its len,u1 will be miscalculated with an error of (25m/512) 0.05m under the condition that
the length of the detection area is 25m and the resolution of the video image in a
horizontal direction is 512 pixels. Therefore, it was concluded that the resolution of video
images will effect the accuracy of length measurement. Furthermore, vehicle speed is
another important facet affecting accuracy. This is because the boundary of vehicles
becomes fuzzier in digitized video images at high speed, leading 1o more errors in
boundary detection.

In order to reduce error in length measurement, two aspects of the image digitizer
need improvement. First, the speed of digitizing should be increased in order to sharpen
the edges of vehicles. Second, the resolution of the digitizer should be higher to reduce

systcm errors.

Accuracy of width and height estimation
The 580 selected vehicles were also utilized in the test of the WHE model. The
results showed that the mean of errors in estimation of width and height was ().2m with

standard deviations of 0.03m (see Table 5.6). This accuracy is good cnough to meet the
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requirement of vehicle classification because no precise height is necessary for vehicle
classification on the basis of the KNN rule. For example, a height estimation of 1.2m for
a passcnger car is regarded as the same as an estimation of 1.4m for the purpose of

separating this car from a van which has a height of at least 1.6m.

TABLE 5.7 Results of profile characteristic extraction

Sample size Right Wrong Accuracy
Front shape 648 612 36 94%
Number of units 648 635 13 98%

Accuracy of profile characteristic extraction

The PCE model was also tested by means of detecting those 580 vehicles and
another 68 selected trucks including both trailer trucks and single unit trucks. The
experimental results (sec Table 5.7) showed that 612 vehicles out of 648 were correctly
classified into either the projecting-front or flat-front group. Therefore, the accuracy was
about 94%. Error analysis indicated that the selection of the value of threshold B, is very
important. Although there is not any fixed value of B, that can fit all kinds of vehicles,
a properly selected value is able to effectively increase the accuracy of the PCE model.
The experiments indicated that B, = 0.7 was suitable for most kinds of vehicles chosen
from the videotape for the test.

The experimental results also showed that the accuracy for counting the number

of units was about 98% if the speed of vehicles was less than 70 km/h. But the accuracy
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was reduced when the speed of vehicles was over 70 km/h, This is due to the constraints
of the hardware and software. Although the digitizer worked at a rate of 30 frames per
second, the actual rate of image input to the PCE model was only less than 20 frames per
second due to time consumption in image processing. As assumed previously, the space
between the power unit and the following trailer unit of trailer trucks is only about 1m,
but a vehicle travelling at a speed of 70 km/h may move about 0.97m during the time
interval of taking two consecutive images (about 1/20 second). Thus, in such a situation,
the space behind the power unit of a trailer truck is likely to be missed in detection. To
increase the accuracy of the PCE model when the speed of vehicles is in the range of
100-150 km/h, more advanced hardware and software tools should be used in order to

meet the speed 1cquirement.

TABLE 5.8 Results of the tree type classifier

Sample size Right Wrong Accuracy
First level 280 254 26 90%
Second level 30 (bus) 28 2 93%
68 (truck) 64 4 94%

Results of classification
Table 5.8 shows the experimertal results of the tree type classifier. In order vo test
the first level classification, three vehicle groups were defined. Group I included two-axle

vehicles such as passenger cars, vans, pickups, ambulances and single unit trucks; in
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group II were buses and recreation vehicles and motor homes; and group III single unit
trucks, single trailer trucks and multi-trailer trucks. In each group, 10 vehicles of
different types were sclected to form a prototype space. Another 280 vehicles randomly
chosen from the 580 vehicles were classified by the kNN method. The results showed
that 254 vehicles ocut of the 280 were cormrectly classified. Therefore, the accuracy of the
first level classification was over 90%. Most errors occurred due to the size overlap that
happened among vehicles in groups II and III.  For instance, 18 recreation vehicles in
group II were classified into group III because their lengths and heights were similar to
single unit trucks in Group IIl. Perhaps a more acute division of groups would reduce
the size overlap and increasc the accuracy.

The second level classification was tested with separating vehicles in group II into
buses and trucks and classifying trucks in group Il into three categorics namely one-unit,
two-vnit, and three-unit trucks. In the experiment, 28 buses out of 30 in group II were
differentiated from trucks and 64 tmcks out of 68 in group III were correctly classified
by the number of units. Error analysis indicated that when the vehicles rnoved at specd
of over 70 km/h their profile characteristics usually cannot be extracted by the PCE model
due to the congtraints of the low hardware speed. Thercfore, errors occurred. For
instance. foui single trailer trucks that consisted of two units, one of which was a power
unit and the other was a trailer unit were misclassified as single unit trucks whose power

part and trailer part were on a single frame.

5.5.2 FHWA Classification
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The Federal Highway Administration (FHWA) has classified vehicles into 13

categories (Traffic 1985). That classification scheme was based on whether the vehicle

is a passenger-carrying or non-passenger vehicle. Non-passenger vehicles were further

subdivided by number of axles and number of units including both power and trailer

units. The FHWA classification scheme with definitions is described in the following

table.
TABLE 5.9 FHWA classification scheme
Categories Type Description
1 Motorcycles All two- or three-wheel motorized vehicles. This
(Optional) category includes motorcycles, motor scooters,
mopeds, motor-powered bicycles, and three-wheel
motorcycles.

2 Passenger cars All sedans, coupes, and station wagons
manufactured primarily for the purpose of carrying
passengers and including those passenger cars
pulling recreational or other light trailers.

3 Other two-axle, All two-axle four-tirc vehicles, other than

four-tire single passenger cars. Included in this category are

unit vehicles pickups, panels, vans, and other vehicles such as
campers, motor homes, ambulances, hearses, and
carryalls. Other two-axle, four-tire single unit
vehicles pulling recreational or other light trailers
arc included in this category.

4 Buscs All vehicles manufactured as traditional passenger-

carrying buses with two axles and six tires or three
or more axles. This category includes only
traditional buses (including school buses)
functioning as passenger-carrying vehicles. All
two-axle, four-tirc minibuses should be classified
as other two-axle, four-tire single unit vehicles.
Modified buses should be considered to be a truck
and be appropriately classified.
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Two-axle, six-
tire, single unit
trucks

All vehicles on a single frame including trucks,
camping and recreation vehicles, motor homes,
etc., having two axles and dual rear wheels.

Three-axle single
unit trucks

All vehicles on a single frame including trucks,
camping and recreation vehicles, motor homes,
etc., having three axles.

Four or more axle
single unit trucks

All trucks on a single frame with four or more
axles.

Four or less axle
single trailer
trucks

All vehicles with four or less axles consisting of
two units, one of which is a tractor or straight
truck power unit.

Five-axle single
trailer trucks

All five-axle vehicles consisting of two units, onc
of which is a tractor or straight truck power unit.

10

Six or more axle
single trailer
trucks

All vehicles with six or more axles consisting of
two units, one of which is a tractor or straight
truck power unit.

1]

Five or less axle
multi-trailer
trucks

All vehicles with five or less axles consisting of
three or more units, one of which is a tractor or
straight truck power unit,

12

Six-axle multi-
trailer trucks

All six-axle vchicles consisting of three or more
units, one of which is a tractor or straight truck
power unit.

13

Seven or more
axle multi-trailer
trucks

All vehicles with seven or more axles consisting
of three or more units, one of which is a tractor or
straight truck power unit.

Duc to several constraints, this study was not intended to determine the accuracy

of the classifier algorithm to classify vehicles into a set of FHWA (the Federal Highway

Administration) classifications. The main constraints in this study include: () A limited

number of vehicle types with vehicle sizes were known; and (2) no predetermined set of

vehicle c'assifications. However, the capability of the classifier algorithm to classify

vehicles into the FHWA classification scheme is discussed below.
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1. For the first category -- motorcycles (optional) -- this study did not have enough
samples to make a definite claim. However, because the LM model is able to reliably
obtain length of motorcycles and WHE model is able to estimate approximate the height
and width of motorcycles, the TTC model may be able to differentiate motorcycles from
other small cars by considering width as one of classifying parameters.
also due to the significant difference between motorcycles and other vehicles, .

2. For passenger cars, the experiments showed that the TTC mode! is able to
separate passenger cars from most other vehicles in the third category duc to their lower
height and profile characteristic of projecting front. The errors mostly occurred when
differentiating passenger cars from small pickups with a similar height.

3. Although the TTC model is able to differentiate small vehicles in the third
category such as vans and pickups from vehicles in the fifth category, it will not separate
other single unit vehicles in the third category from the single unit trucks in the fifth
category due to their similar heights and lengths.

4. Buses defined in the fourth category can be reliably distinguished by the TTC
model. This is because the WHE model and the PCE model provide the information
about height and profile characteristics for classification. Other available detector systems
cannot properly differentiate buses from trucks due to lack of such information.

5. The FHWA scheme divided trucks and trailers into categories ianging from the
fifth to the thirteenth category by the number of axles and number of units. Although the
number of units can be obtained by the PCE model, the number of axles is not directly

measured by the algorithm. However, the number of axles could be estimated by both
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the number of units and overall length of vehicles. Therefore, the TTC model is abl o
classify vehicles among these categories. This study did not have cnough samples to

make a definite claim.

5.6 SUMMARY

In this chapter, four modcls have been proposed to form an automatic vehicle
classificr. These models are: (1) the LM model for vehicle length measurement; (2) the
WHE model for width and height estimation; (3) the PCE model that is able to extract
two important profile characteristics of vehicles; and (4) the tree type classifier (TTC
model). With the information obtained by the LM, WHE and PCE models, the TTC
model classifics vehicles into user-defined categories by perforning two levels of
classification. At the first level, vehicles are separated by using height and length as
classification parameters. At the second level, vehicles are further differentiated on the
basis of their profile characteristics. Although the TTC model is presently a two-level
classifier, its structure permits expansion to a multi-level classifier if more detailed
information about vehicles is available.

The models were tested in the laboratory by means of measuring the sizes of 580
videotaped vehicles, extracting profile characteristics of 648 vehicles, and classifying 280
vehicles into a user-defined category. The performance of the models was satisfactory

to meet all the functional and performance requirements.
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There are two important functions of the new models. The first comes from the
WHE model that provides an effective way to estimate width and height of vehicles. This
capability is not available from other detector systems. The second is that the PCE model
provides an approach to obtaining two important profile characteristics of vehicle. With
these characteristics, not only can buses be differentiated from trucks, but also vans can

be separated from cars.
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CHAPTER6

PEDESTRIAN ALGORITHM

6.1 INTRODUCTION

Statistics of pedestrian accidents show that 52.5 percent involve pedestrians
crossing or entering the street at or between intersections (National Safety Council. 1986).
Pedestrian control at intersections is one of the important ways to reduce the number and
severity of traffic accidents involving pedestrians. On the other hand, pedestrian control
is also needed to prevent reduction in intersection capacity. For example, pedestrian
control at unsignalized irtersections can prevent considerable reduction of vehicular
capucity caused by a stcady stream of pedestrians preempting crosswalks. At signalized
intersections, special pedestrian signals can reduce the congestion caused by conflicts
between vehicular turning movements and pedestrians.

In order to help bring pedestrian control to reality, pedestrian flow data are
essentially demanded. Pedestrian flow data consist of characteristics such as volume,
density, speed, and direction. Pedestrian volume, defined as the number of people passing
a perpendicular line of sight across the width of a walkway during a specified period of
time, is the most important when considering pedestrian control at intersections. This
chapter will mainly concentrate on pedestrian volume measurement. Currently,
measirement of pedestrian volurre is often performed manually. Manual counting is
expensive and not suited to a large volume of pedestrians. Application of computer
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vision techniques leads an effective way to collect automatically pedestrian volume data
at traffic intersections. A literature review indicated that a full study in this field has not
been performed.  One of few studies was reported by Hwang and Takaba (1983). They
placed a number of detection points on the surface of a path. Using image analysis
techniques, they counted the number of pedestrians walking in a common direction undei
the assumption that some separation exists between the pedestrians. Instead of detection
points, Lu et al (1990) proposed a different algorithm by laying a white grid over the
observation surface. The number of pedestrians was obtained by measuring the number
of black objects and their sizes in the processed image. The walking direction of
pedestrians was determined by comparing two sequential images under the assumption
that pedestrians walk cith. in a northbound or southbound direction,

Although the studies of Hwang (1983) and Lu (1990)) were pioneering, the
algorithms developed for measurement of pedestrian volume data at intersections were
still limited. This is because the previous algorithms assumed that pedestrians were the
only moving objects on the scene and moved in a certain direction. They did not study
the other moving objects likely to appear within the detection arca. The sitwation at an
intersection is much more complicated because not only are there pedestrian movements
but also vehicular ones at intersections.  Furthermore, the directions of pedestrian
movements are likely to vary on the crosswalk. Therefore, extraction of pedestrian
information from scenes at intersections becomes more difficult,

This chapter will propose a new algorithm used in a computer vision system for

measurement of pedestrian volume.  From scction 6.2 though 6.5, the details of cach
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procedure used in the algorithm are presented respectively. These procedures are: (1)
extraction of moving object from video image, (2) fine noise removal, (3) distinguish
pedestrian from vehicle, and (4) pedestrian number estimation and volume calculation.
With the integration of these procedures, the new algorithm is proposed in Section 6.6.
In the same section, the experimental results and analysis are discussed. The new
algorithm is able to measure pedestrian volume at intersections, which means that the new
algorithm is capable of measuring multidirectional flow on a crosswalk without being

affected by vehicles passing thyough the detection spot.

6.2 EXTRACTION OF MOVING OBJECT FROM VIDEO IMAGE

Pedestrians are not thb~  ~ly moving object in the scenes of an intersection. In
order to extract pedestrians from the video images, all the moving objects must be
extracted. There are alternative approaches to extracting moving objects from the scenes
of intersections. The first one is based on the color detection functions, f;, (Equation 2.7)

and the second is based on image subtraction (Equation 2.1).

1. Color detection method

I an object moves on a uniform-color asphalt pavement, then it can be extracted
from the video image by using the color detection method.

Let p(x, v, t) denote a pixel with a vector value of P(p) = (R(p), G(p), B(p)) in an

R-G-B image . Let Pg(p) denoie a binary value of pixel p after the following operation:
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Step 1. Determine the color of the pavement surface by using the method
introduced in Section 2.3.
. Step 2. Calculate the value of color detection function (Equation 2.7):

folP) = flp) + flp) + filp)

where

folp) = color detection function which has four values: 0, 1/3, 2/3, and 1.

fx(p) = match index for value of R(p);

fo{p) = match index for value of G(p);

fa(p) = match index for value of B(p);
To determine the match indexes, refer to Equation (2.6).

Step 3. Delerminc the binary value, Pg(p).

(6.1)

After the above operation, if pixel p has the value of Py(p) = 1, then it belongs to a
moving object. Otherwise, if pixel p has the value of Pgp) = 0, then it belongs to the

background.

2. Image Subtraction Method
If an object does not move on the uniform-color pavement surface, then the color
detection function will no longer work. Qur previous work (Lu, Yuan and Yan 1991)

showed that the image subtraction method will be an alternative in such situations. A
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binary image which shows moving object can be obtained by means of image subtraction

as

1 if |Pp) - P> e
Pa(p)={ if |Pp)-P@pl 62)

0 otherwise

where
P(p) = value of pixel p in a measured image;
P’(p) = value of pixel p in the reference image;
€ = a predetermined threshold to determine whether a pixel belongs to moving

object or not.

Note that the value of P could be an integer value for grey-scale images or a
vector for color images. To process a grey-scale image, the difference of P(p) and P'(p)
can be obtained directly by comparing their grey levels. Otherwise, to process a color

image, the istimulus values of a pixel should be transformed as:

P(p) = w,R(p) + w,G(p) + w,B(p) (6.3)

where
w = (w, w, w,) is the optimal projection transformation. In order to save
computation time, it is not necessary to process the whole image. Instead, only the pixels
on a line that is perpendicular to the crosswalk are chosen to be analyzed. This pixel line

is horizontal in the video image as shown in Fig. 6.1.



Fig. 6.1 A scene of intersection

6.3 FINE NOISE REMOVAL

A fine noise is usually an isolated point which has nonnoise neighbours. To detect
the fine noises in a oixel line, a 3-pixel scanning window, as a special case of 3 x 3
window defined in Chapter 2, is utilized. This 3-pixel scanning window includes the
scanning pixel p = (x, y) and its 2-neighbour pixels, say p, = (x-1, y) and p, = (x+/, v),
where y is a fixed constant determining where the pixel line is located in the image.

Let N, denote a set of neighbours of pixel p(x, y), and
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N,p) = {p, p,} (6.4)

where

p (x, ¥)
Prj=|&-1,y (6:5)
P; (x+1, y)
If the following condition exits,
lPB(P) = 1] a [VI( PB(PI) = 0 )]7
(6.6)

P € Nz(P)-

then the pixel p is determined as a fine noisc and climinated by setting Py(p) = 0.

6.4  DISTINGUISH PEDESTRIAN FROM VEHICLE

Since a vehicle occupies more space in the detection area than a pedestrian, the
number of adjacent pixels representing a vehicle must be larger than that representing a
pedestrian.  Therefore, a pedestrian can be distinguished by counting the number of
adjacent pixels in the binary image. If the number is less than a threshold, say B, then
the pixels possibly belong to a pedestrian.  The threshold B gives the largest possible

width of pedestrians in images. The valuc of B can be calculated as

B=i:t [ ND,/D,] (6.7
where

Inr = symbol means to round to the ncarest integer;
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N, = number of pixels in a row of a frame;
D, = maximum width of pedestrians, in meters;
D, =real distance, in meters, covered by the camera’s field of view in ashorizontal

direction. D, can be computed by using the perspective projection model (Equaiion 2.37)

as follows:
) H kN, 6.8)
* yksin® + cos®
where
H = distance beiween the video camera and the horizontal plane;
0 = angle of the camera mount tilt (-2 < 6 < 0);
k, k, = coefficients that are determined by the following equations:
21ani‘. 2tan$’. )
2 2 6.9)
k = k =
* N, ! N,

where

¢, , ¢, = vicw angles of the camera in X and Y dircctions, respectively, (0 < ¢,
. ¢, < 2m).

The width of a moving object in the image is determined by counting the number
of adjacent pixels that are equal to 1. Let (a, y) and (b, y) denote respectively the first
and last pixel equalling 1. The width of the moving object is W, and

W=Ib-d+1 (6.10)

Comparc the values of W and B, and remove the vchicles from the image
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according to the result of the comparison:
if W < B, then the segment belongs to pedestrian; otherwise,
if W > B, then the segment belongs to vehicle.

In the above operation, all big segments of moving objects arc regarded as
vehicles and removed from the image. This simple threshold method may cause error
when pedestrian density is high in the image. For instance, when the pedestrians arc so
closely passing one another that no space could be found between them in an image, the
pixels belonging to these pedestrians may be removed from the image if the width of the
pixel segment is larger than the threshold B.  But this will not affect the calculation of
pedestrian volume because the pedestrians will be counted according to an image
scquence, not only one isolated image. Therefore, in an image sequence, there are images

that show the same group of pedesirians with spaces appearing between them.

6.5 ESTIMATION OF PEDESTRIAN VOLUME

Suppose the detection line is composed of n pixels, p,, p, .... p,. The values of

these pixels can form a vector v, and
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-

Py,

. . @6.11)

_PB(I’n) ]

where

Py = binary value of the pixel p,. Pyp,) =0 or L.

If there are segments of pixcls that equal 1 in a binary image, the center of cach
segment can be easily found. Suppose that points (a, , b), (a, . b), ..., (a, , b) are the

centers of the g scgments in an image and
(a,, b), (a,, b), ... (a,. bye { p.py..p, } (6.12)

Another vector I in which only the values of pixcls (a, , b), (a,. b). ..., (a, . b) remain

equalling 1 can be obtained from vector v, by the following transformation:

: eln P[)(p|)

(6.13)

e Pp)

where
= vector that records the centers of the pedestrian segments;
vp = vector that records the segments of pedestrians:

E = transfer matrix defined as £ = | ¢, |, where
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n

{1, if i=j N ie{a,a,..a);
{) , others. (6.14)

i,j=12,..,n (Number of components in vector P )

Since uie number of pedestrian passing through the detection line cannot be
accurately estimated from an isolated image, therefore, a series of consecutive images
must be used. Let m denote the number of consecutive images in an image sequence that
covers a time interval 7. For cach image, there is a corresponding vector I(z), where t =
1, 2 ..., m. Therefore, during the time interval 7, the image sequence corresponds to a

series of vectors, I(1), I(2), ..., I{m). Let L denote a matrix that is defined as follows:

[1701) LAy - L(n)
L = 17(2) = L(Zvl) o L(2’n) (615)
: i Lix,t)
|1 Tom) | | L(m,1) - L(m,n) |

Matrix L records the pedestrian flow during the time period 7. The number of pedestrians
recorded in the matrix can be determined by the following procedure.

(1) Scan matrix L from left to right, and row by row, until an element L(x,t) that
equals 1 s encountered, where x = 1, 2, ... n, t =1, 2, ..., m as shown in Fig. 6.2.

(2) It is obvious that the center of a pedestrian crossing the detection area remains
approximately in the same position in every image. Therefore, if L(x,z) actually recorded
the centre of a pedestrian in image ¢, elements below it in the following rows should have
also recorded the centre of the same pedestrian.  In other words, information about a

pedestrian should be recorded by a group of elements within several consecutive rows of
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Fig. 6.2 Find first value of | in L matrix

matrix L. Hence, as shown in Fig. 6.3, a n, x n-element window was utitized for
checking and processing some specific neighbours of element L(x,f).

The number of elements in cach row of the window, n, is the maximum variation
of the centre of a pedestrian. Since it was assumed that pedestrians cross the detection
line perpendicularly, the variations of their centres should not exceed this range. n, con

be determined by using the following equation:

n, = IntOdd [ 0.5N,/ D, ] (6 16)

where

IntOdd = symbol means to round to the nearest odd integer,;
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t+1

t+n1—1

Fig. 6.3 nxn_-element window

0.5 = maximum variation of the centre of a pedestrian, in meters;

N, = number of pixels in a row of a frame:

D, = real distance. in meters, covered by the detection line and can be computed
by using the Equation (6.8).

The number of rows of the window. n, should be equal to the number of
consecutive images that cover the period of time in which a pedestrian can cross the

detection line completely. Refer to Fig. 6.4, n, can be approximated as

n=Int{N:D/V] (6.17)

where
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Fig. 6.4 A pedestrian crossing the detection line

N, = number of frames that can be obtained in a second;
V = average walk speed of pedestrians (m/sec),
D = denotes a distance, in meters, as defined in Fig. 6.4.

From Fig. 6.4, D can be obtained easily by applying similar triangles as

D=17m/H
where
1.7 = average height of pedestrians;
H = distance between video camera and the horizontz! plane;

N, = coordinate of the detection line in the horizontal plane.
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n, can he obtained by mapping the detection line from the image plane onto the
horizontal plane, and

_ H(bkycos@ - 5inB) (6.19)
T\, bky.s‘ine + ¢0s0 .

where

b = Y-coordinate of the detection line in the image planc;
6 = angle of the camera mount tilt, (-2 < 6 < 0);

k. k, = coetficicnts that are determined by using Equation (6.9).

(3) Create a (-1 vector 1, called index vector. The value of I(j) is determined as

follows:
o ) n -1 n -l
O, if V(LG j*) =0, i =x- 5= R
1) ={ 2
: ) n.-1 n, -l
L, if 3, (La, j+» =1, i =x- 5= K , Xt 5 (5.20)

j=0,1,2, ., n-1

I

In other words, if all the elements in row j of the window are equal to zeros, I{j) is sct
to zero; otherwise, if any one of the elements in row j is equal to 1, I(j) is set to 1. Fig.
6.5 depicts an example of this procedure.

(4) As shown in Fig. 6.6, if the number of successive I(j) = 0 is equal Lo or less
than two, then change the value of I(5)'s from 0 to 1; otherwise no change.

(5) Scan the elements from I{0) to I(n,-1). If the number of successive I(j)=1 from
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Fig. 6.5 Example of creating vector [/

which a pedestrian should appear, and

B, = 0.6n,
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1(0) is equal to or greater than a threshold B,, then add one to an accumulator of
pedestrian number, indicating that a pedestrian is found. Meanwhile, set to zero the
window elements that correspond to the successive I(j)=1 elements. This is shown in
Fig. 6.7. Otherwise, if the number of successive I(j)=1 from I(0) is less than §,, then
only change window element (x,1) itself from ! to O as shown in Fig. 6.8, meaning that

it is a noise. The threshold B, represents the minimum number of consecutive igiages in



Original Revision \
1 | — e 1 \
N\
1 = — 1
0 | — 1
0 Gemr— 1
1 e 1
1 = e 1
0 S 0
0 e 0
_2_ — O
N Mmmmma \ \

Fig. 6.6 Example of changing the value of I{j)

n, = number of rows of the window and is determined by Equation (6.17).

Figure 6.9 shows an example of the above operation. Suppose an element L(x,1)
is found equalling 1 in L matrix (Fig. 6.9a), and a 3 x 10 window (Fig. 6.9b) is used for
the processing. According to the values of tiie elements in the window, an index vector
is obtained as Fig. 6.9c. Scanning the index vector, it is found that /(2) which equals O
has no same-value neighbours. Therefore, the value of /(2) is switched to 1 as shown in
Fig. 6.9d. In the revised inde'. vector of Fig. 6.9d, I(0), I(]), ..., I(5) are successively
equal 1o 1. Since the number of successive equal-1 elements is six that is equal to B, (B,
= 0.6 x 10 = 6 in this case). a pedestrian is detected, and all the elements ir 'he first six

rows of the window are set to O as illustrated in Fig. 6.9e. Consequeritly, the L matrix
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is updated (Fig. 6.9f).

Revision
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Fig. 6.7 Example of changing elements in the window
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Fig. 6.8 Example of changing elements in the window
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Fig. 6.9 Example of processing L matrix




(6) Continue to scan matrix L from the element (x,r) and return to (1) until all the
elements in matrix L have been scanned.
The volume of pedestrians can be calculated as
Vol = N/ 60T (6.22)
wlere
Vol = volume of pedestrians, in pedestrians per minute;
T = a period of time, in seconds:

N, = number of pedestrians counted in time 7.

6.6 ALGORITHM AND EXPERIMENTAL RESULTS

6.6.1 Pedestrian Algorithm
The algorithm developed for pedestrian volume measurement consists of ten steps.
A flow chart of the algorithm is shown in Fig. 6.10. The details of cach step arc
described below.
Step 1:  Locate a horizontal detection line that includes pixles from
point p,=(x,, b) to p,=(x, , b) in the images.
Step 2: Input an 1mage and extract the values of pixels P(p,), P(p,),
ey P(p,).
Step 3:  Extract moving objects from p,. p., ..., p, and convert their
values P(p,) into binary ones P,(p,) by using Equation (5.1)

or (6.2).
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Step 4:  Remove the fine noises in the image by using 3_pixel noise

Locate detection line

! -

__.I Input an image I.__
*

Extract moving object

v

Remove fine noises

¢

Remove vehicles

R

Find center of pedestrian

N
2 Image enough’

Determine number of pedestrians

i

Calculate the volume

Fig. 6.10 Flow chart of the pedestrian algorithm
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Step S:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

removal model (Equation 6.6).

Remove vehicles in the image by using models introduced
in Section 6.4,

Find the center of each pedestrian in the image and store it
in a 0-1 vector I(i) (See Equation 6.13).

If this is not the last image in the sequence, then i =7 + 1
and return to step 2; otherwise, go to step 8.

Determine the number of pedestrians in the time period of
T from matrix L, where L = [I'(i)}, i = 0, 1, ..., m (scc
Section 6.5).

Calculate volume of pedestrian flow in time period T by
using Equation (6.22).

Set i = 0 and return to step 2, or stop the procedure under

user’s instruction.

6.6.2 Experimental Results and Analysis

The software for simulation of the above design was written in Turbo PASCAL,
and has been tried on an IBM PC/AT 386 computer. In order the verify the algorithm,
real traffic and pedestrian situations were recorded at different intersections in downtown
Montreal, Quebec, under cloudy weather conditions. These videotaped data included
pedestrian flow conditions at every Level Of Service (LOS): A, B, C, D and E, as

specified in the Highway Capacity Manual (HCM) (1985).
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In the¢ HCM, average



pedestrian space for A, B, C, D and E arc greater than 130, between 40 to 130, between
24 10 40, between 15 to 24, and between 6 to 15 ft* per pedestrian, respectively. This is
illustrated in Fig. 6.11. °

A total of 120 observations have been analyzed in order to estimate the accuracy
of the algorithm. These 120 observations were collected from two videotape sessions,
cach spanning a period of approximate two hours. Each observation was taken during a
period of about 45 seconds considering with the green traffic signal light. The actual
count of the number of pedestrians in cach observation was compared with that predicted
by the algorithm and the difference as well as percentage of error were calculated
accordingly. The data is presented in Appendix A. A statistical analysis was carried out

and the results are presented Table 6.1.

TABLE 6.1 Mean and standard deviation of all samples

Calculated Errors
Sample Size Mecan Standard Deviation
Session 1 60 71.2% 4.8%
Session 2 60 9.4% 5.5%
Both Sessions 120 8.3% 5.3%

Error analysis indicated that the major reason behind detection false alarms was
overlapped pedestrians under high density situation (equivalent to LOS E). In order to

estimate errors under different density conditions, the data was divided into three groups
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LEVEL OF SERVICE A
—————— . 0 oy
Pedasan Space > 130 sq ft/ped Flow Rate < 2 ped/min/ft

At walkway LOS A, pedestnans basically move in desired paths without altenng
thew movements in response to other pudestrians Walking speeds e freely
selected, ang conficts between padestrians are unlikely

LEVEL OF SERVICE B

Pedestnan Space > 40 sq ft/ped Flow Rate < 7 ped/min/ft

At LOS B, sutficient area s provided o allow pedestrians to freely select
walking speeds, to bypass other pedestrians, and 10 avoxd cro~ «ng conflicts with
others At this level, pedestnans begin to be aware of other pedestrians, and to
respond 10 ther presance in the selection ot walking path.

g
7

- -
- @

LEVEL OF SERVICE C

Pedestnan Space. > 24 3§ ﬂ‘/pod Flow Rate < 10 ped/mm/ft

--.&__.-..._..\@)

At LOS C, sutficcent space is available 1o sedect normal walking spesds, and to
bypass other pedestnans in pnmanly umdirectional streams. Where reverse-
direction or crossing movaments exst, minor conflicts will occur, and speeus
and volurrie will be somewhat lower.

e

LEVEL OF SERVICE D

Pedestnan Space. > 15 sq ft/ped Flow Rate < 15 ped/min/ft - @
Msiiiebubliod o] _— pomosesas ——ernovas aeen

At LOS D, treedom to select indvidual walkung speed and to bypau‘other
pedestnans s restricted Where crossing of reverse-flow movements exist, the
probabiirty of confict rs tegh, and s avoxdance requires frequent changes in
speed and positon The LOS prowdes reasonably flud flow; however, B
considerabla fncton and interacton between pedestnans s kkely to ocar” . —

@
s

LEVEL OF SERVICE E
Pedestnan Space > 8 sq ft/ped Flow Rate. « 25 ped/min/#t

At LOS E, wirtually all pedestnans would have thelr normal waliung speed
restncted, requinng frequent adjustment of gart At the lower range of thus LOS,
forward movement s poasible cnly by “shutfling ™ Insutficient space is provided
for passing of slower pedastnans Cross- of reverse fiow movements are
possible only with extreme difficultes Design volumes approach the limit of
walkway capactty, with resutung stoppages and interruptions to flow

LEVEL OF SERVICE F
Pedestnan Space ¢ 8 sq fi/ped Flow Rate variable

At LOS F, all walking speeds are severely restncted, and forwasd progress 1
made only by "'shuffing * There I1s frequent, unavoxdable contact with other 5
pedestnans Cross. and raverse-flow movements sre virtually impossible Flowns
sporadic and unstable Space 18 more characteristic of queued pedestnans than L
of moving pedestnan streams

Fig. 6.11 Pedestrian flow conditions
(From Highway Capacity Manual--1985)
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according to the number of pedestrians observed in each observation. These three groups
are for pedestrian number less than 2(), between 20 to 29, and more than 29 representing
low, medium, and high density, respectively. The average error and standard deviation
associated with each group were calculated and shown in tables 6.2, 6.3, and 6.4,

respectively.

TABLE 6.2 Means and Standard deviations (Pedestrians less than 20)

Calculated Errors
Sample Size Mean Standard Deviation
Session 1 27 3.7% 4.4%
Session 2 17 4.6% 5.2%
Both Sessions 44 3.9% 4.7%

TABLE 6.3 Means and Standard deviations (Pedestrian between 20 to 29)

Calculated Errors
Sample Size Mean Standard Deviation
Session 1 12 8.6% 2.8%
Session 2 11 8.0% 3.1%
Both Sessions 23 8.3% 3.0%
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TABLE 6.4 Means and Standard deviations (Pedestrians more than 29)

Calculated Errors
Sample Size Mean Standard Deviation
Session 1 21 11.0% 2.6%
Session 2 32 12.7% 3.9%
Both Sessions 53 12.0% 3.6%

The above results show that errors in detection increase with the increase
pedestrian density. To verify this finding, "Before-and-After tests" (Refer to Appendix
B) were applied according the data shown in Table 6.5 which summarizes that given in
tables 6.2 to 6.4. Test results indicated that the hypothesis of no change in mean between

every two groups is rejected at a 5% level of significance.

TABLE 6.5 Means and standard deviations under different density

Pedestrian Numbers Sample Size Mean Standard Deviation
0-19 44 3.9% 4.7%
20 - 29 23 8.3% 3.0%
30 and up 53 12.0% 3.6%

In conclusion, the experimental results fully support the theoretical prediction of
the developed pedestrian algorithm. The overall accuracy was above 91% when

examining low, medium and high density pedestrian flow situations. Error analysis
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indicated that detection errors were usually caused by overlapped pedestrians seen on
images. Overlapping occurs when pedestrian are walking abreast, when they are closcly
following onc another, or when they are closely passing one another. When the number
of overlapped pedestrians and the degree of overlapping increases, the accuracy of the
algorithm decreases. In order to overcome this drawback, the angle of the camera mount
tilt, © should be reduced as much as possibly practical to near -n/2. In other words, if
the camera can be placed directly above pedestrians, the occurrence of overlapping can

be significantly reduced.
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CHAPTER "7

CONCLUSIONS

7.1  SUMMARIES AND CONCLUDING REMARKS

Eight newly developed models (NR model, PP model, DOS model, DOB maodel,
LM model, WHE model, PCE model, and TTC modcl) and four algorithms (vchicle
algorithm, signal algorithm, classifier algorithm and pedestrian algorithm) are presented
in this thesis for collection and analysis of real-time traffic data on vehicle count, speed,
volume and classification as well as pedestrian count and velume measurement. The NR
model was developed to remove noises in digitized video images. The PP modeld is an
extension of the model documented in Duda (1973) and Bow (1992), and is used 0
measure objects in images. Instead of projecting a three-dimensional point onto an image
plane, the newly developed PP model enables the user to convert the projection in order
to convert the measures in the image plane into their real sizes.  The models of DOS and
DOB were developed for the detection ¢ vehicle turning signal lights. In order 0
determine the overall dimension of a wvehicle from video images, the LM and WHE
models were developed. The LM model is able to measure the Iength of a vehicle while
the WHE model is able to estimate its width and height. The PCE model was developed
to provide characteristics of the type of vehicle shape. The TTC model provides a new
method for vehicle classification.

The four algorithms, ecach dedicated for a specific function of traffic data
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collection and analysis, were developed by integrating the eight newly developed models.

The vehicle algorithm was designed to analyze video images in order o measure
traffic volume and wvehicle speed. In contrast to other algorithms which were limited to
processing monochrome images, this algorithm is able to process color images in order
to reduce detection errors caused by shadows. Although its accuracy is estimated with
limited number of data as a proof of concert, more data is needed to precisely determine
its accuracy. The algorithm is incapable of reducing the errors caused by vehicle image
occlusion.  This algorithm has verified that color image processing has a great potential
to increase detection accuracy, by solving shadow related problems, and to perform real-
time vehicle detection from color images.

The signal algorithm provides a new method for detecting vehicles intending to
turn atintersections based on signal light detection. Signal light detection is not reported
in litcrature pertaining to video traffic detections. Unlike current detection algorithms,
the developed signal algorithm offers extra features based on processing and detection of
signal lights. Two models (DOS and DOB) were used in this algorithm. Because DOS
and DOB introduced color and blink of signal lights as criteria for the detection, the
signal algorithm no longer suffers from the difficultics of accurately recognizing signal
lights of various sizes or difterentiating them from the reflections of small objects whose
sizes and shapes are similar.  Also, it is able to distinguish turning signal light. from
other illuminated vehicle lights. These functions are not available in the algorithm
developed carlier by Luet al (1988). Although the algorithm may not provide an accurale

practical estimate of the number of turning vehicles, simply due to a fact that some
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drivers do not use their turning indicators, it provides a method for detecting emergency
vehicles such as ambulances and police cars.  The limitation of the new algorithim is that
it cannot detect moving lights and lights in a distance of more than 30 meters away from
a video sensor.

The classificer algorithm was developed for vehicle classification,  In order to
increase its capability, it considered more geometrical parameters ir the classitication
process than those used in current systems.  For instance, the classifier algorithm is able
to differentiate buses from trucks, and vans from cars. Three models (LM, WHE and
PCE) were utilized in the classifier algorithm to provide information about overall length,
width, height and type of wvehicle shape. Also, the TTC model was used o classity
vehicles according to the overall dimension and shape. Although the classifier algorithm
does not detect the number of axles directly, as it is the case with existing video detection
systems (Autoscope 1995, CCATS 1995), it is capable of estimating the number of axles
approximately based on lengths and number of units of each vehicle. This feature
represents an extension 10 the current developments.

The pedestrian algorithm provides a new method for automatic measurement of
pedestrian flow and overcomes a common disadvantage associated with the previous
algorithms (Hwang 1983; Lu 1990). The latter cat ‘ot output satisfactory results when
measuring pedestrian flows at intersecuons.  This is because they were incapable of
differentiating vehicles from pedestrians and detecting pedestrian movements in various
directions. The newly developed algorithm was designed to measure the multidirectional

flow on a crosswalk without this function being affected by passing vehicles. The overall
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accuracy of the pedestrian algorithm was satisfactory when examining actual low- to
average-density pedestrian flow situations. The accuracy was reduced under the situations
of heavy-density pedestrians, lighting transition periods and shadows.

The computer software for each algorithm has been implemented and tested in the
laboratory. The experimental results showed that the algorithms can generate and predict
traffic data with satisfactory accuracy. However, the software is still in the prototype
stage.

The contributions of this thesis can be summarized as follows:

* Developed a color image processing method which can perform real-time
detection and reduce errors caused by shadow. This mrthod has a potential for
improving accuracy of the existing systems;

* Provide methods to increase accuracy in some ways for collection and analysis of
(1) vehicle count, speed and volume, (2) vehicle classification, and (3) pedestrian
count and volumec;

* Provide methods to solve problems of existing systems, such as (1) shadow related
problems, (2) inability to detect vehicles intending to turn at intersections, (3)
inability to count pedestrian at intersections, and (4) limited number of categorics
available in vehicle classification;

* Developed new functions: (1) detection of blink lights, and (2) estimating 3-D size
of object from 2-D images.

In conclusion, computer vision techniques have a great potential in traffic data

collection and analysis. They can supplement other available techniques and be used to
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provide more accurate real-time data.  With the help of cemputer vision systems,
capabilitics of traffic control and management systems can be improved. Currently., the
existing video traffic detection systems still suffer from a number of problems.
Considerable work is still needed to modify these systems in order to increase their

accuracy and expand their capability.

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The current work could be extended in the future from the following aspects.

Interface development and enhancement. Although the interfaces for the
software ol two algorithms (vchicle and pedestrian) were fully developed to facilitate
operation, such interfaces were not fully developed for the other two algorithms. Future
work is needed in interface development and enhancement.

Integration of algorithms. The modules of the four algorithms could be
intcgrated to form a computer vision system. This system should be able to provide all
the required analysis of traffic data collected from a common input of vidco images.

Enhancement of the vehicle algorithm. The vchicle algorithm could be
expanded to derive more traffic flow data from image sequences. These data include
hcadway, density and spacing. Also, the vehicle algorithm could be advanced to make
incident detection possible.

Advancement of detection method. The mcthod developed for moving object

detection could be modified to detect and recognize stopped vehicles instead of simply
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detecting moving vehicles.  Such advancement will enable the vehicle algorithm to
determine the vehicle queue length.

Enhancement of classifier algorithm. The classifie: algorithm could be
expanded to determine the number of axles of a vehicle.  Although the number of axles
could be estimated by applying LM and PCE models to find out the number of units and
overall length of the vehicle, it is not accurate enough for classifying vehicles by their
number of axles. In this case, a ncural network (Vaillant 1993) or Hough transformation
(Bow 1992) should be considered to detect and locate the axles in images.

New application of the classifier algorithm. The classifier algorithm could be
modified to meet the requirements of vehicle classification for an electronic-toll-collection
system.

Advancement of the DOS and DOB models. The mode., of DOS and DOB
were develort for the detection of turning-signal lights of vehicles. Their capabilities
could be extended to permit the detection of emergency vehicles when emergency lights
are turned on. Also, after slight modification, the models will be able to detect any kind
of blinking signal lights.

Enhancement of signal algorithm. Although the developed signal algorithm can
detect stationary vehicle signal lights, it is incapable of dealing with those in motion. A
ncural network with recurrent architecture (EIman 1990; Meng 1993) could be considered
to cnable the signal algorithm to predict the location of a moving signal light at a
subsequent moment and match the same signal light in different image frames.

Advancement of pedestrian algorithm. The pedestrian algorithm could be
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advanced to generate satisfactory results under heavy pedestrian flow  situations.
Rescarchers in the U.K have been working on measuring heavy pedestrian tlows (Hamer
1994). Although they did not consider the situation of pedestrians at an intersection, thei
prospective methods for dealing with heavy pedestrian flow will be helpltul in measuring

the same at intersections.
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APPENDIX A

TABLE A-1 Experimental data on pedestrian counting

Session 1. Session 2.

Actual  Output Diff. Error % | Actual  Output Dittf.  Error %
29 32 3 10 47 55 8 17
6 6 0 0 42 48 6 14
2 2 0 0 38 32 -6 16
9 9 0 0 52 44 -8 15
10 10 0 0 35 38 3 9
13 14 1 8 38 34 -4 11
31 35 4 13 53 60 7 13
34 31 -3 9 30 28 -2 7
15 16 ] 7 14 12 -2 4
30 27 -3 10 48 56 6 17
45 40 -5 11 33 37 4 12
38 34 -4 11 21 23 2 10
13 13 0 0 32 30 -2 6
49 54 5 10 17 19 2 12
21 20 -1 5 5 5 0 0
16 15 -1 6 17 16 -1 6
3 3 0 0 24 23 -1 4
9 10 ] 11 16 17 1 6
34 36 2 6 34 33 -1 3
30 32 2 7 27 30 3 1
30 27 -3 0 38 43 5 13




36 32 -4 11 1 12 ] 9
12 13 I 8 32 29 -3 9
21 23 2 10 4 4 0 0
27 29 2 7 46 55 9 20
34 37 3 9 43 48 5 12
10 11 1 10 20 21 1 5
10 10 0 0 36 3i -5 14
36 41 5 14 31 28 -3 10
39 44 S 13 32 29 -3 9
23 27 4 4 3 3 0 0
5 5 0 0 33 31 -2 6
8 8 0 0 21 22 ] 5
29 26 -3 10 16 16 0 0
46 53 7 15 39 33 -6 15
25 27 2 8 48 40 -8 17
20 21 1 5 32 28 -4 13
39 33 -6 15 49 42 -7 14
16 14 -2 13 2 2 0 0
3 3 0 0 18 18 0 0
32 36 4 13 33 39 6 18
32 30 -2 6 26 24 -2 8
26 24 -2 8 47 38 -9 19
15 15 0 0 11 10 -1 9
5 5 0 0 8 9 1 13
13 14 ] 8 45 50 5 11
19 21 2 10 45 51 6 13
38 34 -4 11 50 43 -7 14
26 29 3 12 40 36 -4 10
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6 6 0 0 11 10 -1 9
13 14 ] 8 25 23 -2 8
13 19 ! 6 23 25 2 9
32 35 3 9 6 6 0 0
9 9 0 0 12 12 0 0
38 42 4 11 27 23 -4 15
27 24 -3 11 52 60 8 15
17 16 -1 6 24 22 -2 8
4 4 0 0 35 30 -5 4
24 21 -3 13 7 7 0 0
37 42 5 12 20 19 -1 5
Note:  Actual =  The actual number of pedestrians who pass though the detection

line during the time of observation (about 45 seconds);
Output = The number of pedestrians detected by the pedestrian algorithm;
Diff. = Output - Actual:

Error = (Diff. / Actual)*100 %

The equations used for determining the computed means and standard deviations of above

sample are

=N
Std. Dev. = \JN_II E( error, - computed mean )?

where N denotes the number of samples.
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APPENDIX B

The equations of Beforc-and-After tests (McShane 1990) are presented below.

Hy = My ~ M (B-1)

(B-2)

where p, and p,, indicates two means: 6, and 6, indicates two standard deviations; and
N, and N, are the number of samples; p, and 6, are the mean and standard deviation of
a new distribution that is the difference between the two means, p, and pg.

The hypothesis of interest is "Hy: This new distribution has zero mean,” which
would indicate no change in the mean as a result of pedestrian density change. Using an
o = 0.05 confidence, a table showing the probability to the left of a point Z 1n a standard

normal distribution indicates that a Z of -1.645 or 1.645 1s appropriate. Thus if

(observed mean) - (hvpothesized mean)
yp
standard deviation

< -1.645

. B-3
o (observed mean) - (hvpothesized mean) ( )

: Y > 1.645
standard deviation

then the hypothesis is rejected at a S% level of significance.
Using the data summarized in Table 6.5, the calculations necessary for the tests
is presented below.

1. Test between groups with low and medium pedestrian densities:
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From the equations indicated in Equations (B-1) and (B-2):

M, = H, ~ M =39 -83 =-144%

o, = L 20 0.945 %
; 2:
and then the quantity indicated by Equation (B-3):
(4D - O 47 ¢ 1645
0.945

so that the hypothesis of no change in the mean is rejected at a 5% level of significance.

2. Test between groups with medium and high pedestrian densities:

Similarly. p, and 6, are obtained as -3.7% and 0.797%. respectively. Since

(-3.7) - (O)
0.797

= -44 < -1.645

the hypothesis of no change in the mean is also rejected at a 5% level of significance.
As a result of above tests, it can be concluded that the errors in pedestrian

detection will increase with the increase in pedestrian density.
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