INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
conﬁm:ingfromlefttorightinequalsecﬁonswithsmalloverlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313:7614700 800.521-0600

DESIGN OF THE INTERCONNECTION NETWORK FOR THE EARTH SYSTEM

OI-LING OLIVER TSUI

A THESIS
IN
THE DEPARTMENT
OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIALLY FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF APPLIED SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC. CANADA

April 1997

© OI-LING OLIVER TSUI 1997

vl

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Waellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre référence

L’auteur a accord€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-26006-2

Canada

—

—

Abstract

Design of the Interconnection Network for the EARTH System

Oi-Ling Oliver Tsui

This thesis describes the design of a low-cost and high-bandwidth interconnection net-
work for the EARTH multithreaded multiprocessor system. The interconnection network
consists of a hierarchy of 4 x 4 crossbar switches, and a network interface on each EARTH
processor node. The interconnection network is capable of transferring multiple messages
simultaneously between nodes. The interconnection network also supports random routing
that allows the data connection to be routed automatically around the busy ports. In addi-
tion, the interconnection network provides broadcast facility which allows one node to send
a message to all destination nodes. The logical design of the 4 x 4 crossbar switch and the
network interface has been translated to a physical implementation based on LSI Logic’s
LCA300K compacted array technology. Although the 4 x 4 crossbar switch is designed for
the needs of the EARTH system. it can be used in a wide variety of data communication

networks.

iii

Acknowledgment

[would like to express my sincerest thanks to my thesis supervisor. Dr. Herbert Hum.
for all his guidance and advice during the course of this research. | would also like to thank
David Hargreaves, who is the engineer of the VLSI laboratory, for his technical support
throughout the implementation and simulation of this project. Finally, I would also like to
express my deepest thanks to my family for their unwavering support and encouragement

throughout my study.

iv

Contents

List of Figures viii
List of Tables x
1 Introduction 1
LI Multiprocessors 2
1.2 The EARTHSYSTEM 3
1.3 Proposed Interconnection Network for the EARTH System 6

1.4 Problem Statement 8
1.5 Contributions 10
1.6 Swmopsis 11

2 Design of 4 x 4 Crossbar Switch 12
2.1 Basic Architecture of 4 x 4 Crossbar Switch 12
211 FIFOo 14

2.1.2 Control Unit 20

2.1.3 Crossbar....................: 23

214 Arbiter ... L 25

3 Simulation Results of 4 x 4 Crossbar Switch

3.1 Maximum Clock Frequency
3.2 Pin Numbers and Chip Area
3.3 Switching Waveforms
3.4 Connection Latency

Data Network

4.1 Building a Data Network
4.2 Routing in Data Network
4.2.1 Routing Algorithms
4.22 Control Commands.
4.2.3 Message Format
4.3 Comparison with Other Switching Chips

Network Interface

5.1 Architecture of Network Interface
3.1.1 Send FIFO
5.1.2 Receive FIFO

Simulation Results of Network Interface

6.1 Maximum Clock Frequency
6.2 Pin Numbers and Chip Area
6.3 Switching Waveforms.
Conclusion

Tl Summary ...

vi

31

31

35

35

37

40

40

44

44

48

51

56

56

60

63

63

66

66

69

7.2 Future Work . .

Verilog Code

A.l 4x4CrossbarSwitch

A.2 Network Interface

vii

70

72

List of Figures

1.1 The EARTH Architecture _ _

1.2 The Organization of Interconnection Network

2.1 4 x 4 Crossbar Switch Block Diagram e

2.2 Signal Waveforms for RCLK and WCLK |

2.3 FIFO Block Diagram
2.4 Write/Read Pointer Logic Design _
2.5 FlagsLogic Design __

2.8 Crossbar: (a) Symbolic View (b) Data Bus Logic

2.9 Arbiter with Diagonal Wrapped Wave Front

viii

16

16

18

33

36

4.1

4.2

4.3

4.4

6.1

6.2

An Example of Routing Algorithm for Message Broadcast

An Example of Message for 3-Stage Data Network.

Network Interface Block Diagram

Send FIFO Logic Block Diagram _

Data Waveforms: (a) Send FIFO (b) Receive FIFO

Switching Waveforms for Network Interface

52

58

58

List of Tables

3.1

3.2

3.3

4.1

4.2

4.3

5.1

5.2

6.1

6.2

6.3

Measurement of Timing Parameters Along Critical Path 32
Area for 4 x 4 Crossbar Switch 38
Switching Characteristics of 4 x 4 Crossbar Switch 39
Command Definitions __ .. 47
The Examples of Routing Commands for a 3-Stage Data Network 19
Output Utilization Rate for Different Switching Chips 55
Status Flag Definitions for Send FIFO 61
Status Flag Definitions for RECEIVE FIFO 62
Measurement of Timing Parameters for Data Waveforms 64
Area for Network Interface 67
Switching Characteristics of Network Interface 67

Chapter 1

Introduction

Since conventional serial RISC-based computers were invented in early 1970s, their perfor-
mance has steadily improved to match the needs of engineering and business applications.
However, it is impossible to achieve further improvements in the performance of such con-
ventional serial computers indefinitely due to the fundamental physical limitation imposed
by the speed of light. Recent trends show that the performance of these computers is
beginning to saturate [16].

As very large scale integration (VLSI) technology advances. it is now possible to build
very fast and low-cost microprocessors. The increase in demand and production of these mi-
croprocessors keeps driving their prices down. Therefore. an inexpensive parallel computer
can be constructed by connecting off-the-shelf microprocessors together. Also. connecting
microprocessors into parallel computer overcomes the saturation of performance in serial
computers [16]. Typically, the cost of such a parallel computer is considerably much less
than the massively parallel computers such as the Thinking Machine CM-5 or the super

computer offerings of SGI/Cray.

1.1 Multiprocessors

According to Flynn [9], computers are classified into four categories based on the type of

instruction and data streams. They are:
e Single instruction stream, single data stream (SISD);
e Single instruction stream, multiple data stream (SIMD);
e Multiple instruction stream, single data stream (MISD);
e Multiple instruction stream, multiple data stream (MIMD).

A conventional serial computer falls into the SISD category. A vector processor machine
falls under the SIMD category in which the same instruction is manipulated by multiple
processors using different data streams. A multiprocessor system in which each processor
is capable of executing its own instruction and manipulating its own data is classified as
MIMD.

MIMD architecture has become the choice for general-purpose multiprocessors system
in recent years [7]. This view is supported by the following factor: MIMD architecture offers
flexibility and scalability. MIMD machines can function either as single-user or multi-user
machines. If MIMD machines are running on only one application, a high performance
may be obtained. On the other hand, MIMD machines are capable of running many tasks
simultaneously. Theoretically. a higher performance on MIMD machines can be achieved by
adding more processors into the system. Ideally, MIMD machines with n processors should
simply be n times faster than SISD machines built from the same technology but this is
rarely the case. The primary reason is that the speedup of MIMD machines depends heavily

on the ratio between the serial part and the parallel part of a given application [1. 13].

Although multiprocessors have been considered as the direction of the future develop-
ment of the computer systems. Arvind and lannucci state that two fundamental issues in

multiprocessing remain to be addressed. They are [3]:

e Most von Neumann processors are likely to “idle™ during long memory reference. and

such references are unavoidable in parallel machines.

e Waits for synchronization events often require task switching, which is expensive on
von Neumann machines. Therefore. only certain types of parallelism can be exploited

efficiently.

Multiprocessor systems based on multithreaded architectures have been proposed to
be the potential processing nodes for future parallel machines due to their toleration of
long latencies for interprocessor communication and svnchronization in parallel program
executions [15]. Multithreaded processors hide the long memory latency by suspending the
execution of the current thread upon encountering the long memory latency operation and

performing rapid context switching to another thread.

1.2 The EARTH SYSTEM

EARTH (Efficient Architecture for Running THreads) [14] is a multiprocessor model based

on multithreaded architectures. Although no prototype of EARTH has been implemented

(Massively parallel Architecture for Non-numerical and Numerical Application) [12] multi-
processor system developed at GMD-FIRST in Berlin. Germany.
The EARTH architecture is illustrated in Figure 1.1. Each processing element (PE) in

the EARTH model consists of an Execution Unit (EU). Synchronization Unit (SU). The SU

local
memory

cache

PE

Interconnection Network

Figure 1.1: The EARTH Architecture

and EU share a local memory, which is cached for better performance. The local memory
is part of a distributed shared memory architecture in which the aggregate of the local
memories of all processing elements represents a global memory address space. The EU
is a high-end off-the-shelf processor which is responsible for executing threads. The SU
supports dataflow-like thread synchronizations and communication with other processing
nodes. Unlike the MANNA machine which uses two Intel i860 XP RISC processors for
execution unit and synchronization unit. EARTH recommends the use of one processor
dedicated to be the EU while the SU is implemented as a customized VLSI chip. This is
because synchronization events involve only simple ALU tasks which do not require floating
point units. The EU and SU are linked together by two buffering queues as shown in

Figure 1.1. The EARTH system operates as follows:

EU: The EU fetches a thread id from the ready queue, and executes the thread. If long
latency memory operations are issued, EU will place them into the event queue and

perform context switching to another ready thread.

SU: The SU fetches incoming messages from the event queue (from local EU). and the net-
work (from remote processing node). [n response to the messages, the SU reads/writes
to local memory. sends messages. receives messages, updates synchronié‘ation vari-
ables, and arranges threads for execution by placing their thread id’s to the ready

queue.

Interconnection Network: The interconnection network provides physical connections
among the EARTH nodes. All the incoming and outgoing messages handled by the

SU are transferred through the interconnection network.

In the EARTH system. dividing the execution and synchronization into two separate

5

units has two major advantages. First, incoming synchronization requests will not interrupt
the processor since these requests will be handled by the SU. Second. long latency operations
such as block moves will not tie up the processor especially when the interconnection network
is congested and the block move is stalled. It is the responsibility of the compiler to place
long latency operations at the end of a thread. When the processor encounters long latency

operations. it will simply switch to another thread.

1.3 Proposed Interconnection Network for the EARTH Sys-
tem

The purpose of this thesis work is to design the interconnection network for the EARTH
multiprocessor system. The organization of the interconnection network design is shown in
Figure 1.2. The interconnection network consists of a data network, and a set of identical
network interfaces which interface each EARTH processing node to the data network. The

following goals drove our interconnection network design:

e The interconnection network must deliver high performance. and support point-to-
point communications among EARTH processing nodes. We also want the intercon-
nection network to be capable of handling multiple connections simultaneously so that

the bandwidth can be maximized.

® The interconnection network must be cost-effective. Building a full crossbar network
is costly [2]. Therefore. we focus our design on a multistage network since a multistage
network can be constructed at significantly lower cost than a full crossbar network. A
multistage network also produces a full connection network as a full crossbar network

does. The full connection network means any source node can reach any destination

1
" Interconnection Network '
1
EARTH Node i—e! ‘Network Interface: - R
: - o :
' . : '
' 1
t v '
B . 1
EARTH Node =} Network Enteeface: o !
: S -
' o P '
] . . '
t ol 4
' : T R '
EARTH Node 11 Network Interface T '
: _____ N :
. N . . 3
. ' . Date Network '
. ! . :
t 1
1 _]
EARTH Node “—>1 Netwark Interface :
: :
t [}
1 '
] L]
EARTH Node +—*1 “Network Interface ‘
! ;
t [}
f '
' '
EARTH Node i—>1 Netwark Interfsce '
' ‘
' t

Figure 1.2: The Organization of Interconnection Network

~1

node.

o The interconnection network must be scalable and flexible. The number of ports in
the network are freely configurable. The ports can be connected to processing nodes

or other units.

1.4 Problem Statement

A top-down approach is adopted for the design of the interconnection network. Many
specific criteria are used in the design of the EARTH switching system but those considered

important to the EARTH system are listed below:

e The interconnection network should be modularly expandable. It should be straight-

forward to add inputs and outputs, both physically and with respect to software.

e The interconnection network should be compact and should readily interface to pro-

cessing nodes for the EARTH system.

e The design of network interface and data network could be implemented on two cus-
tomized VLSI chips. There must be a minimum number of pins per input and output
port. Since customized VLSI chips have only a relatively limited number of pins avail-
able. it is necessary to limit the number of pins required for control of the system in

addition to the inputs and outputs which must be used.

e The system should use only standard subcircuits and available technology to assure

practicality.

Other criteria which are more specific to the EARTH system are also considered important

and are listed below:

e The interconnection network should be designed so that each input requests connec-
tion to needed outputs and no central controller is necessary. Control of the intercon-
nection network should be simple and rapid, requiring a very short time with respect

to actual data processing. There should be little control overhead.

¢ The interconnection network should be nonblocking in the sense that any input could
be immediately connected to any output not already in use with no interference from

existing connections.

e There must be a mechanism which allows the data connection to be routed automat-

ically around busy ports. This mechanism is referred to as random routing [6].

e There must be a mechanism to inform the input that the output is busy.

® There should be a mechanism which allows the connection of one input to all outputs.
This is often referred to as message broadcast. Message broadcast facilitv allows a
single source node to send a message to all destination nodes in one pass. Hence. the
source node is not required to duplicate the message and to send the message to each

of the destination nodes individually.

The design of the interconnection network is written in Verilog HDL (Hardware Descrip-
tion Language). All circuit designs are synthesized using the Design Analyzer (DA) tool of
Synopsys. and the synthesized circuits are mapped into LSI Logic's LCA300K technology.

Unlike PaRC [4. 5]. which is the network chip used as building block for constructing
the interconnection network for the Monsoon [11] multiprocessor system. the network chip
designed for the EARTH svstem uses only a simple buffer management scheme (one buffer

per input port) and random routing to achieve high throughput of network links.

1.5 Contributions

We have designed a high throughput and low latency 4 x 4 crossbar switch as a building
block for constructing a data network to be used by the EARTH system. As shown in
Section 4.1, high throughput can be achieved by taking advantage of the 4 x 4 crossbar
switch to perform random routing. The implementation cost of random routing is only a
relatively small fraction of the total cost of the 4 x 4 crossbar switch (see Section 2.1.2).
In our design of the 4 x 4 crossbar switch, no complicated buffer management scheme is
required by random routing. Each input port uses a 4-bit shifted register contents as a hint
on which output port is chosen by the incoming message. If the selected output is begin
blocked by another message, the contents of the register is shifted thus the incoming message
is able to choose another output port which may be free. Since the hardware cost for a
4-bit shifted register is low, this means that better hardware support for delivering messages
should focus primarily on reducing the connection latency which is defined to be the time it
takes to transfer the first byte of data from the input port to the output port. Furthermore.
our 4 x 4 crossbar switch also supports broadcast facility. In broadcasting, a data set is
sent from one node to all other nodes without replication of data taking place. Therefore,
the bandwidth requirement can be substantially decreased for this kind of communication.
Our 4 x 4 crossbar switch is designed to form an interconnection network for the EARTH
multithreaded multiprocessor system, but its architecture is general enough to be used by
other multiprocessor systems as well.

The simulation in Chapter 3 shows that the 4 x 4 crossbar switch has data transfer rate

of 66.7 Mbytes/second/port. and the connection latency is equal to 4 clock cvcles.

10

1.6 Synopsis

The remainder of the thesis is organized as follows: To begin, Chapter 2 describes the logical
design of the 4 x 4 crossbar switch. The simulation results for the 4 x 4 crossbar switch
are given in Chapter 3. Chapter 4 describes how the data network can be constructed
by using 4 x 4 crossbar switches as building blocks. Topics related to routing issues are
discussed as well. Furthermore. the comparisons with other switching chips are also given.
In Chapter 5, the logical design of the network interface is presented. The simulation results
for the network interface are given in Chapter 6. Finally, Chapter 7 summarizes the work
carried out in this thesis. The complete source code files for the designs of the 4 x 4 crossbar

switch and the network interface are given in Appendix A.

11

Chapter 2

Design of 4 x 4 Crossbar Switch

Since building a full crossbar network is costly, the basic architecture of the data network is
a multistage [8] interconnection network. The data network consists of a hierarchy of 4 x 4
crossbar switches. The data network is designed to perform only one simple job: delivering
messages. Other jobs such as duplicating messages, combining messages, or acknowledging
delivery messages will not be performed by the data network. It just focuses on exchanging

data between EARTH nodes. In this chapter, we describe the design of 4 x 4 crossbar switch

in detail.

2.1 Basic Architecture of 4 x 4 Crossbar Switch

The 4 x 4 crossbar switch is a four input, four output message router that routes a message
entering on an input port to an output port selected by the message header. Each port is
I-byvte wide.

The 4 x 4 crossbar switch employs virtual cut-through routing technique [17]. If an
output port is not already occupied by another message, the head of the incoming message

is advanced into this output port as soon as the head of the message is received and decoded.

12

The message is then moved forward through this established link until the link is closed by
the tail of the message. If the selected output port is blocked by another message. the 4 x 4
crossbar switch will automatically reroute the message around the busy output port. This
automatic routing around a busy port is known as random routing! [6]. If random routing
fails to find an unoccupied output port, the incoming message is blocked and stored inte
the memory buffer at the input port. An example of random routing is given in Section 4.1.
The 4 x 4 crossbar switch also supports broadcast routing. If the head of the incoming
message is decoded to be a broadcast message, the message is then routed to the multiple
output ports.

In the 4 x 4 crossbar switch a total interconnection of inputs and outputs is implemented.
As a result, each input can be directly connected to all outputs. All these connections are
independent of each other and therefore can function simultaneously without interfering
each other. The 4 x 4 crossbar switch has four independent data ports and is therefore
capable of performing four simultaneous communications.

The 4 x 4 crossbar switch has four first-in first-out (FIFO) memory buffers, four control
units, a crossbar and an arbiter as is shown in Figure 2.1. The control units and the arbiter
are driven by a single central clock signal. The main reason for the 4 x 4 crossbar switch
having only one FIFO buffer per input port is that this buffering scheme allows for a high
speed design. If multiple buffers are used for each of the input ports. each output port
is required to connect to multiple loads. The impedance of the connection may become
unstable. This leads to the degradation of the data transfer rate because the data transfer
is encumbered by the need to cater for different numbers of connections and variable loads.

Each FIFO has its own clock signals to clock data into and out of the memory buffer.

"There are limitations on the random routing which are dependent on the interconnection topology.

13

The crossbar is pure combinational logic thus it is not driven by any clock signal.

2.1.1 FIFO

The main function of the four FIFO’s is to provide data buffering for the 4 x 4 crossbar
switch. If an incoming message is blocked due to the selected output port being already
occupied, the incoming message is stored in the FIFO until the selected output port is free.
Each FIFO is controlled by separate clocked read and write signals. The FIFO is designed
to be a circular queue and its depth is 32 bytes. The minimum length of a message is 12
bytes long?. Therefore, each FIFO is able to store more than two short messages. As soon
as the first message is sent off the switch, the second message is ready to make a connection
to a output port immediately. The reason for doing this is to keep the output ports as
busy as possible. If any output port is idle, it means part of the bandwidth of the switch is
wasted. [t is true that better bandwidth can be obtained by using a FIFO which is more
than 32 bytes in depth. However, a larger FIFO also means higher hardware cost. The
write operation is controlled by a write clock (WCLK). A byte of data is written into the
FIFO on the rising edge of the WCLK signal. The read operation is controlled in a similar
manner by a read clock (RCLK). A byte of data is read from the FIFO on the rising edge
of the RCLK signal.

FIFO provides two status flags: AFULL and EMPTY. The status flags are responsible
for controlling data flow. When the AFULL flag is HIGH, it indicates that the FIFO is full.
Hence. no additional data can be written into the FIFO otherwise the FIFO will overflow.
When the EMPTY flag is HIGH, it indicates that the FIFO is empty. Hence. no data

can be read from the FIFO until the EMPTY flag becomes LOW. Both of the status flags

*Message format is described in Section 4.23

14

are synchronous. The transition of AFULL flag from LOW to HIGH is according to the
WCLK clock signal while the transition from HIGH to LOW is according to the RCLK
clock signal. Similarly, the transition of EMPTY flag from LOW to HIGH is according to
the RCLK clock signal while the transition from HIGH to LOW is according to the WCLK
clock signal. Both WCLK and RCLK are pulse signals with respect to the master clock,
and their positive edges never overlap each other. The signal waveforms for WCLK and
RCLK are shown in Figure 2.2. The synchronous flag architecture assures that the flags
maintain their status for at least half clock cycle. Figure 2.3 shows the logic block diagram
of the FIFO. The FIFO is composed of Reset Logic, Write Pointer Logic. Read Pointer

Logic. Flags Logic, and Register File.

Reset Logic:

The FIFO has four 5-bit registers (Riail, Rep, Rhead, and Rup) to provide the input and
output addresses for the Register File during read/write operations. On rising edge of the

RESET signal. all four registers are reset to zero.

Write Pointer Logic:

As shown in Figure 2.4a. the Write Pointer Logic produces two 5-bit address signals:
TAIL and TP. On the rising edge of WCLK. the result computed by the 5-bit ADDER is
loaded into Ri,; to give TAIL. This is equivalent to incrementing TAIL by one on every
positive edge of WCLK. On the other hand, the contents of Ry, is loaded into R¢p on the
falling edge of WCLK to produce TP. TAIL goes to the Flags Logic whereas TP goes to
Register File. Using two separate address signals to represent the tail position of FIFO

makes sure that input data will be written into the right register within the Register File.

WCLK

‘]

4 X 4 Crossbar Switch J-——— Arbiter :
‘]

!

Control 1

]

3

Unit
)
Control !
Unit |
1 [
1 l Crossbar | !
! Control !
FIFO L Unit —t—
1
1

S O e e e - e e e e - - - - e e .., - - - -

Figure 2.2: Signal Waveforms for RCLK and WCLK

i
! Reset FIFO .
RESET 1 Logic .
! I
1
DATA_IN Register File —?" DATA_OUT
0' ' 9
'
TP HP
! £ Jd :
1
1
[
WCLK —,lhl-. Write Pli):mer Read Pointer __;,l; RCLK

Logic |
. |

1

HEAD :

!

[}

[
§

Figure 2.3: FIFO Block Diagram

16

Note that data is written into the Register File on the rising edge of WCLK, using TAIL
as the address signal for the Register File may violate the address signal hold time because

TAIL also changes its value on the rising edge of WCLK.

Read Pointer Logic:

Similar to Write Pointer Logic. the Read Pointer Logic produces two 5-bit address signals:
HEAD and HP (Figure 2.4b). On the rising edge of RCLK, the result computed by the
5-bit ADDER is loaded into Rpeaq to produce HEAD. This is equivalent to incrementing
HEAD by one on every positive edge of RCLK. On the other hand, the contents of Rpead is
loaded into Rpp on the falling edge of RCLK to produce HP. HEAD goes to the Flags Logic
whereas HP goes to Register File. Using two separate address signals to represent the head
position of FIFO makes sure that output data will read from the right register within the
Register File. Note that data is read from the Register File on the rising edge of RCLK.
using HEAD as the address signal for the Register File may violate the address signal hold

time because HEAD also changes its value on the rising edge of RCLK.

Flags Logic:

The Flags Logic provides two status flags: AFULL and EMPTY. To generate EMPTY
is straight forward. we just need to compare HEAD and TAIL to see whether they are equal
or not. When HEAD and TAIL are equal, EMPTY is set to HIGH. AFULL is set to HIGH
when the condition is met: HEAD = TAIL + 1. In order to determine AFULL. we first
add 1 to TAIL and compare the result with HEAD. The detailed implementation of the

Flags Logic is given in Figure 2.5.

Register File:

17

Write Pointer Logic

Read Pointer Logic
ooJ:)ol 00001
| 5-bit ADDER | |_s5-bit ADDER |
A's "s
R i head
TALL <= 75 ' —— WCLK HEAD <— 75
R, Rpp
5 5
P = < l HP <=——X ,

(a)

Figure 2.4: Write/Read Pointer Logic Design

00001 Flags nglc .
v v 75
5-bit ADDER
yd
5 J! JI ”5
Bitwise XNOR Bitwise XNOR
g5 i
Reduction AND Reduction AND

I

—

Figure 2.5: Flags Logic Design

18

(b)

TAIL

EMPTY
AFULL

RCLK

Register File

HP TP
DOUT '\f 5 ¢ 3
DECODER DECODER
“
1o 32 15
l * - [] ' l L] [] [] l
REN | v v —‘l' ‘l’ v v WEN
1 31 31 1
1
// // R 0 //l
9 \j 9 /\ //9 ———
WCLK
[]
[)
REN ;. °
jil
< < R, —~ WEN 3,
9 9 A ~ -
It WCLK

Figure 2.6: Register File Logic Design

19

DATA_IN

Register File consists of 32 9-bit registers (Ro --- Ra;). It has two input address signals,
HP and TP. Both HP and TP are decoded into 32-bit control signal (REN and WEN
respectively) which can give direct control to the Register File. REN serves as the read
enable signal whereas WEN serves as the write enable signal for the Register File. REN is
used to control the tristate buffers so that the data stored in the corresponding register is
latched into the output data bus, DOUT. WEN is used to control the corresponding register
to latch the content from the input data bus. DATA_IN. The design of the Register File is

illustrated in Figure 2.6.

2.1.2 Control Unit

The main functions of the control unit are:

1. To monitor the incoming data appearing at the output bus of the FIFO.

2. To launch a request of connection if the head of a message is a routing command.

3. To perform random routing if the routing command is random routing type and the

selected output port is busy.

4. To schedule data transfer after the request of connection is granted.

5. To close the connection after the tail of message is detected.

The control unit is implemented as a finite state machine. and it is clocked bv a global
clock signal (CLK). The control unit undergoes six distinct states when it is activated by
the head of an incoming message until the transfer of the message is brought to completion.
The change of states occurs only on the rising edge of CLK and some conditions must be

met. Figure 2.7 depicts the six distinct states of the control logic, and its symbolic view.

20

DATA _IN contains no routing command

EMPTY = |

or

BroadcastPending = |

Idle State

and

EMPTY =0

BroadcastPending = 0

and
EMPTY = | y
Read Messag
State DATA_IN contains no routing command
l ‘[and
EMPTY =0
DATA_IN contains routing command
i
Make Connection
State
| GRANT=0000
GRANT != 0000 W ¢
Connection Graated [GRANT '= 0000 Random Route
EMPTY =1 State State
or
AFULL =1 “_l '__
GRANT = 0000
EMPTY =1 EMPTY =0
or and
AFULL = | AFULL =0
Data Transfer
DATA_IN contains no close command State
and
DATA_IN contains no abort command L
and
EMPTY =0 DATA_IN contains close command
and or
AFULL =0 DATA_IN contains abort command
(a)
CLK ——4—— —%— DATA_OUT
DATA_IN —5—> — > WCLK
BroadcastPending ———4——» Control Unit —5—> REQUEST
AFULL —4—> —~4—>BP
EMPTY ——> —%—> RCLK
GRANT 7 1

(b)

Figure 2.7: Control Unit: (a) State Diagram (b) Symbolic View

21

On the rising edge of RESET signal, the control unit is reset to Idle State. [n Idle
State, the control unit idles. It proceeds to Read Message State if and only if both of
the input signals EMPTY and BroadcastPending stay LOW. In Read Message State.
the pulse signal RCLK is generated. On the rising edge of RCLK, a byte of data from the
corresponding FIFO is latched into the 9-bit register Rgara out- The content of the register
is represented by the signal, DATA_OUT. which goes to the crossbar. The control unit
proceeds to Make Connection State if and only if the contents of Rqaea oy, is decoded
to be a routing command. The output signal BP is set to HIGH if the routing command
is broadcast type. In Make Connection State. the request of connection is made. De-
pending on the type of routing command. the request may ask for connection to one output
port. two output ports or four output ports. The control unit proceeds to Connection
Granted State if and only if the request of connection is granted. otherwise the control
unit proceeds to Random Route State from Make Connection State. In Random
Route State, control unit performs random routing if the the head of a message is a
random routing type. The control unit selects new target output port(s) by changing the
request so that an incoming message is routed around the busy port(s). If the new request
of connection is granted, the control unit proceeds to Connection Granted State. In
Connection Granted State, two input signal. EMPTY and AFULL. are examined. If
either EMPTY or AFULL is HIGH. the control unit remains in Connection Granted
State. If neither EMPTY nor AFULL is HIGH. the control unit proceeds to Data Trans-
fer State. In Data Transfer State, the RCLK pulse is generated during the first half of
clock cycle. On the rising edge of RCLK. a byte of data from the corresponding FIFO is
latched into the 9-bit register Ryata_oue- The content of the register is represented by the

signal. DATA_OUT, which goes to the crossbar. During the second half of clock cycle, the

22

WCLK pulse is generated. If the byte of data read from the FIFO is either a close or an

abort command, the control unit returns to Idle State or the idle condition.

2.1.3 Crossbar

The symbol view of the crossbar is shown in Figure 2.8a. The crossbar provides a logical
connection between an input port and an output port. It consists of four horizontal buses
(rows) and four vertical buses (columns). A horizontal bus intersects a vertical bus at a
crosspoint. Each of the horizontal bus and vertical bus is 9 bits wide. The four pairs of
input data bus and output data bus are interconnected together as shown in Figure 2.8b.
As shown in Figure 2.8a. each port has two data flow signals. For an input port. the
data flow signals are (WCLK_IN? and STOP-OUT). For an output port. the data flow
signals are (WCLK_OUTj and STOP_INj). The values of WCLK_OUTj and STOP_OUT:

are determined by the following boolean equations:

WCLK.OUTj = (WCLK.INO & GRANT,;) + (WCLK.INI ¢ GRANT,,) +
(WCLK.IN2 o GRANT;,) + (WCLK.IN3 ¢ GRANT;,)

STOP.OUTi = ((STOP.INO o GRANT.o) + (STOPINI & GRANT,,) +
(STOP.IN2 ¢ GRANT,;) + (STOP.IN3 ¢ GRANT;3))

(GRANT,; + GRANT,; + GRANT,, + GRANT, 3)

The first boolean equation means that if the physical link between input port i and
output port j is established. the data flow signal WCLK_OUT, will copy the value of
WCLK.IN from input port i. The second boolean equation means that if input port / is
connected to one or more output ports. the data flow signal STOP_OUT,; becomes HIGH

if and only if any of the STOP_IN signal from the connected output port(s) is HIGH.

23

grant

Crossbar

column number in the crossbar.

24

(b}

—>5—*] DATA_INO DATA_OUTO [——>5—=
—7" WCLK.INO WCLK OUT0 45—
<—>$—] SToP_ouTv STOP_IN0 re——~——
—75—"1 DATADVI DATA_OUTI [——75—=
— WOLKLN WCLK_OUT1 [——~—>
«—— sTop_ouTi STOP_IN1 fe—>~—
—5—"| DATAIN2 DATA_OUT2 ——F%—»
—;%- WCLK_IN? WCLK_OUT2 —-/l—>
<«—>— sTor_out2 STOP.IN? [~ —
—7%—™ DATA_IN3 DATA_OUT3 ——75—>
+— WCLK_IN3 WCLK_OUT3 —;%»
<—~— sTop_ouTs STOP_IN3 (e—>~——
(a)
DATA _ING]
grant 0'0 grant O.l grant 0'2 grant 03
DATA_IN1 n
grant | o grant | grant 4 5 grant) 5
DATA_IN: —& 4
L-l)—+ L|) e J)
B a1 g grant 5y grant 55 grant 5 4
DATA_IN3 —¢
[—{ >-—T) L—I >—
grant 19 grant 54 grant 5 4 grant 53
DATA_OUTO DATA_OUTI1 DATA_OUT? DATA_OUT3

— acontrol signal to the tristate buffer where i represents the row number and) represents the

Figure 2.8: Crossbar: (a) Symbolic View (b) Data Bus Logic

A logical connection is made by a routing command and maintained by a control signal
GRANT,; at each crosspoint, where 7 is the input port number and j is the output port
number (0 <7< 3,0 < ;< 3). Upon receipt of the close or abort command. the logical
connection will be closed.

At each crosspoint, there is a tristate buffer which can be activated to form a connection
between the corresponding input port and output port. When GRANT,; is HIGH, the
connection between input port ¢ and output port j is established. Whatever the value

appears at DATA_IN7 will also appears at DATA_OUTj.

2.1.4 Arbiter

Although the crossbar described in Section 2.1.3 is capable of supporting four logical con-
nections simultaneously, a problem arises when more than one input port want to connect
to a same output port. This conflicting demand for resources introduces delay to the inter-
connection network and reduces the network performance. Hence the 4 x 4 crossbar switch
must have an arbiter to resolve the conflicts and provide efficient and fair scheduling of
these resources.

The arbiter consists of 16 REQUEST; ; input signals. one per crosspoint. A REQUEST, ,
signal is asserted (HIGH) when the use of the particular crosspoint is needed. The arbiter
produces 16 GRANT, ; output signals, one per crosspoint. These output signals indicate
which crosspoint requests have been granted.

In order for the arbiter to provide fair arbitration services. the Wrapped Wave Front
Arbiter (WWFA) technique [21] is adopted in our arbiter design. The WWFA uses a wave
front to select which of the four arbitration calls have top priority during the arbitration

process. The wave front either moves diagonally from top left to the bottom right corner

of the arbiter or moves vertically from the top row to the bottom row of the arbiter. The
direction of movement depends on what mode the arbiter is operating in. If the arbiter
is operating in non-broadcast mode, the wave front moves diagonally. If the arbiter is
operating in broadcast mode, the wave front moves vertically. All the wave movements are
controlled by a 4-bit circular shift register.

When the 4 x 4 crossbar switch is operating in the non-broadcast mode. the four top
priority arbitration cells selected by the diagonal wave front are guaranteed to be located in
different rows and columns. This maximizes the probability that multiple arbitration cells
will win the arbitration. Figure 2.9 shows the arbitration process where the diagonal wave
front consists of cells (0,1), (1.0). (3.2) and (2.3).

When the 4 x 4 crossbar switch is operating in the broadcast mode. the four top priority
arbitration cells selected by the horizontal wave front are guaranteed to be located in the
same row. This maximizes the probability that multiple arbitration cells in the same row
will win the arbitration. Figure 2.10 shows the arbitration process where the horizontal
wave front consists of cells (1,0). (1,1), (1,2) and (1.3).

The logic block diagram of the arbiter is illustrated in Figure 2.11. The arbiter consists
of a 4-bit circular shift register, a wave front generator (WFG) and a conflict resolver (CR).
On the rising edge of the RESET signal. the shift register is initialized to have value 0001
in binary. Then the shift register is shifted to the right by one bit for every clock cycle.
The 4-bit output of the shift register is used by the WFG to generate the wave front. As
mentioned above. two types of wave front can be generated depending on the value of input
signal. BroadcastPending. If BroadcastPending is HIGH. it indicates that the 4 x 4 crossbar
switch is operating in a broadcast mode. The horizontal wave front is generated. If the

BroadcastPending is LOW. it indicates that the 4 x 4 crossbar switch is operating in a

26

3
g
2

1= ’@_' @ 1 wn

< =1 aa an == uxn (n p—

|~
]
v
‘\
5
\ l‘
i
*
S
‘

oo an an —t a2 13—

|

g

i

l
‘ i
“OHe-

Figure 2.9: Arbiter with diagonal wrapped wave front. The diagonal wave for which (0.1).
(1.0), (3.2) and (2.3) has the top priority. Double circles indicate the granted requests and

the single circles indicate the denied requests

Q. [} 0.3)
I oy ==

Figure 2.10: Arbiter with horizontal wrapped wave front. The horizontal wave for which
(1.0). (1.1), (1.2) and (1.3) has the top priority. Double circles indicate the granted requests

and the single circles indicate the denied requests

27

non-broadcast mode. The diagonal wave front is generated.

CR is used to resolve the conflicts when more than one input port make the requests
for the same output port. The CR performs the arbitration process and those arbitration
cells with top priority according to the wave front generated by the WFG will win the
arbitration. In case there is only one request signal in a column, the request is granted

immediately regardless of the wave front.

We have completed the design of the 4 x 4 crossbar switch. The detailed block diagram

of the 4 x 4 crossbar switch with all signal connections is shown in Figure 2.12.

28

CLK ——={ 4.Bit Circular

RESET —————»

Shift Register

BroadcastPending ———————a

REQUEST ; —f——=
REQUEST | —f——=
REQUEST , | —4——=

REQUEST , | ———

——7%—" GRANT
7<= GRANT
—7—= GRANT,_

—>{—= GRANT 3

WFG - Wave Front Generator
CR - Conflicts Resolver

Figure 2.11: Arbiter Block Diagram

29

ax

DATA_OUTHI®
YLK Uy
Tor_pa

DATA_CUTTIO
VX _ouvTe
STOY e

| et

DATA MWL wax o FToP_OUTY

naTa e FTOP_ OUTY
KN

S TR S W R

. 1
' '
' t
1 N N 4
N £ < p. L]
: DR’ § '
' D T § 3 '
CATAN | WKLR ARRL]
1 - ARXL WK DATAN '
4 e :
' - FIFO e '
’ BarTY tnev ax =13 NOUT marTy '
' '
: ' | | I}
: WA SATAN RGK WK DATAI® MY :
N ST DaTa 0UT DaTA OUT aeEgT :
] ax AR araL
> ax
r‘ '
’ COMTROL oy v CONTROL
. '
N (RO S » ¢
' » :
] 13QUEST canet | CRANT o '
3 i :
' . :
J i :
' Dreets cs Pty : '
' $ ImuET € I :
' € uET: U €€ . '
] @ charen € t 1 '
: ax AEET ! | '
! ' '
s ' | [
1 i :
' taTa 0 TaTA 3C | v
' my.om T AT ———— ; ¢
' . vz K e t '
' —_— wawm ez ! '
1 ! : :
1 ! i t
T Data oy oara o ~ ”~ +
' wax am w2 oo b N L
T o m e . ~ L)
] ! | T
L . . :
. Data o DaTA XY N ™ +
T wax o g oy b A L
— . b !
' ; : H
' : } '
] ; '
; i ! ; '
') ;
! ! : '
1 H
' ' ! '
' : ! '
: . i '
' CEANT TR ! 4
. [
’ wix e ~ '
) contROL A N '
' 38 H ¢
N -) i
1y DATA v !
: t
H MK DATA.N EMPTY !
' : ,
] : :
: 1
: i noeT perry '
' t
' '
' t
'

'
]
'
'
t
1
)
]
]
]
'
[}
]
)
]
1
]
'
[}
!
'
'
L]
)
'
]
]
'
'
]
[}
'
]
[}
|
'
)
1
[}
]
]
'
]
'
]
1
[}
'
[}
'
!
[}
1
'
]
'
)
[}
[}
'
t

o
o

Figure 2.12: Detailed 4 x 4 Crossbar Switch Block Diagram

dama ornng
WCLK U
sTORNG

saTAotTIRY
weiK OUT)
STOP_N:

Chapter 3

Simulation Results of 4 x 4

Crossbar Switch

We have described the design of the 4 x 4 crossbar switch in Chapter 2. The design of the
4 x4 crossbar switch has been synthesized using the Design Analyzer (DA) tool of Synopsys.
and the synthesized circuit has been mapped into LSI Logic’s LCA300K technology. In this

chapter. the simulation results of the 4 x 4 crossbar switch will be presented.

3.1 Maximum Clock Frequency

In order to determine the maximum clock frequency for the 4 x 4 crossbar switch. we need
to examine the critical path of the circuit. The critical path of the 4 x 4 crossbar switch
is found to be located within a FIFO and it is highlighted in Figure 3.1. The critical path
exists between the read clock (RCLK) and the data output (DOUT). The waveforms of the

signals are illustrated in Figure 3.2, and the timing parameters of the waveforms are given

in Table 3.1.

31

e e e e e e e e e e e - e = - -

]
DATA_IN —t+—>{ Register File i DATA_OUT
I
I A
: TP HP
!

1
I
I
I
wcLk ——»] Write Pointer | | Read Pointer |qg— pcx
Logic Logic

== critical path

Figure 3.1: Critical Path of 4 x 4 Crossbar Switch

Parameter Description Max. | Min. | Unit
tcrN Delay from JCLK to JRCLK for negative edge 1 ns
lcrp Delay from 1CLK to tRCLK 3 1 ns
tpup Delay between RCLK and HP 1 ns
torp Data access time 5 ns
tpTs Data setup time 3 ns
tRrH RCLK pulse width 2 ns

Table 3.1: Measurement of Timing Parameters Along Critical Path

32

CLK

RCLK

HP

DOUT

CK

—lee— t S—
CKH CKL
e t
—\ CRN
—/ _
CRP U RKkH
-\
] __ /
——— t
XDHP
<— t
DTD DTS

33

Figure 3.2: Signal Waveforms for the Critical Path

As described in Section 2.1.2, RCLK is a pulse generated by the corresponding control
unit in state two and state six during the first half of clock cycle. When CLK changes from
LOW to HIGH, RCLK will go HIGH after 3 ns due to the delay. In order for the registers
(Rhead and Ryp) within Read Pointer Logic to be loaded properly, RCLK must stay HIGH
for at least 2 ns. That means the minimum pulse width of RCLK is 2 ns. The minimum
time for CLK to stay HIGH, tcpy, is computed as:

{CKH = tCRP(maz) +tRKH
= 3ns+2ns
= 35mns

When CLK changes from HIGH to LOW, RCLK will go LOW after 1 ns due to the delay.
After the falling edge of RCLK, HP changes value after 1 ns delay. Then the register file will
decode HP and put the data on DOUT. However, it takes 5 ns for DOUT to have correct
value after HP is changed due to the internal delay of the register file. The minimum setup
time for DOUT is 3 ns. If the setup time for DOUT is less than 3 ns, the corresponding
control unit will not be able to latch the correct data from DOUT. The minimum time for

CLK to stay LOW, tcpp. is computed as:

tckL = tcrn +tpHP +tpTD +tpTS
= lns+1lns+5ns+3ns
= 10ns
Hence. the minimum clock cycle time. tcr . is calculated as:
tck = tcrH +tonL
= H5ns+10ns

= 15 ns

34

Finally. the maximum clock frequency f.r is obtained as:

1
fma.z: = E

— ISns
= 66.7MH:

From the above result, the maximum bandwidth for the 4 x 4 crossbar switch is equal to
66.7 Mbytes/second/port.

Note that data access time for the FIFO consumes exactly one quarter of the minimum
cl'ock cycle time. Therefore, the overall performance of the 4 x 4 crossbar switch depends
heavily on how fast the data can be retrieved from the FIFO. In order to minimize the
data access time, we use tristate buffers instead of using a multiplexer to produce data
on the output data bus in our FIFO design since a multiplexer not only requires more

combinational logic to implement, but also introduces longer delays in our design.

3.2 Pin Numbers and Chip Area

The design of a 4 x 4 crossbar switch is mapped into the LSI Logic's 0.6-Micron LCA300k
compacted array technology. The total number of pins used by the 4 x 4 crossbar switch is

90. The total area! for the 4 x 4 crossbar switch is summarized in Table 3.2.

3.3 Switching Waveforms

Figure 3.3 shows the switching waveforms for the 4 x 4 crossbar switch. Note that the port
numbers in the signal names are dropped since the the timing parameters are measured
for the worst case during simulations, and they are applicable to all ports. The measured

values for the timing parameters are summarized in Table 3.3.

'A gate is defined as four transistors, the equivalent of one NAND gate.

35

Reset Timing

RESET

STOP_OUT

WCLK_OUT

DATA_OUT

RS

AN

<t

\\W{\a}[

\\\\\Rin\T\@L

Receiver Timing

R
Cwre T Ly
y N
WCLK_IN —/ N
! ps ' oy
DATA_IN
=~ Uwst
STOP_OUT
Sender Timing
t —
CcK
[2
CKL e—— ———3n

CLK

WCLK_OUT

DATA_OUT

STOP_IN

Figure 3.3: Switching Waveforms for 4 x 4 Crossbar Switch

36

3.4 Connection Latency

Connection latency is defined as the time from the point that the head of a message reaches
an input port till the first byte of data reaches an output port. For connection latency with
no route contention, the first byte of data takes up to 4 clock periods to reaches the output

port.

37

Type Area (gate equivalents)
Combinational 2056
Non-combinational 17056
Wire Interconnection 6837

Total 25949

Table 3.2: Area for 4 x 4 Crossbar Switch

38

Parameter Description Max. | Min. | Unit
lrs RESET pulse width 2 ns
trssT RESET to STOP_OUT and output time 2 ns
lrswT RESET to WCLK_OUT and output time 3 ns
trspT RESET to DATA_OUT and output time 6 ns
twi WCLK_IN cyvcle time 15 ns
lwiy WCLK.N HIGH time 10 ns
twrr WCLKIN LOW time 5 ns
tips DATA N set-up time 1 ns
‘IDH DATA_IN hold time 1 ns
twsT WCLK.IN to STOP.OUT 4 ns
lck CLK cycle time 15 ns
leky CLK HIGH time 5 ns
lekL CLK LOW time 10 ns
lewn Delay from {CLK to tWCLK.OUT 1 ns
tcup Delay from t1CLK to {WCLK_.OUT i ns
tops DATA_OUT set-up time 1 ns
lopH DATA_OUT hold time 1 ns
lsrs STOP.IN set-up time 3 ns
lsra STOP_IN hold time 1 ns

Table 3.3: Switching Characteristics of 4 x 4 Crossbar Switch

39

Chapter 4

Data Network

In this chapter, we discuss how a data network with more than four EARTH nodes can be
built by using 4 x 4 crossbar switches as basic elements. Then. a routing scheme for such

data networks will be discussed.

4.1 Building a Data Network

A single 4 x 4 crossbar switch can connect up to four EARTH nodes together. Since a
4 x 4 crossbar switch described in Chapter 2 is designed to be scalable, a larger EARTH
system with more than four nodes can be implemented by connecting various 4 x 4 crossbar
switches. There are many different ways to connect various 4 x 4 crossbar switches to form
a larger data network. One possible way is to construct the data network into multistage
topology. For example, Figure 4.1 illustrates the data network for the EARTH systems with
8 nodes (N = 8). The data network shown in Figure 4.1 is a modified version of indirect
binary n-cube network [19]. The indirect binary n-cube network originally consists of log, N
stages of 2 x 2 switching elements but it has been modified to function with log, zl stages

of 4 x 4 switching elements.

40

The multistage topology of the data network supports the following features:

Virtual Cut-Through Routing

The multistage data network employs virtual cut-through routing. Virtual cut-through
routing allows the head of a message to be transferred out of a 4 x 4 crossbar switch before
the end of the message has been received. With virtual cut-through routing, the message
can be transferred before the entire path (from source node to destined node) is physically

established.

Scalable:

A larger data network can be built by using additional crossbar switches. However, one
basic requirement for the data network still must be met: the data network must provide
full access capability. which means that any input node of the network should be able to
access any output node in one pass through the network. With 4 x 4 crossbar switches as
basic elements, the multistage data network with 16. 32, 64 or even more processing nodes

is possible.

Random Routing:

Random routing allows a message to be routed to another output port of the switch so that
a busy output port can be avoided. In order for the random routing to work properly. the
data network topology is chosen carefully so that the following requirements for random

routing are satisfied:

e Multiple paths exist between any two nodes.

41

e The distance between any two nodes in the data network includes the same number

of 4 x 4 crossbar switches.

Figure 4.2 demonstrates how random routing is done from node 0 to node 6 in the 8-node
data network. The third output port of the crossbar switch (shown shaded) is already
occupied by another message while the fourth output port is free at the time. Therefore.

the incoming message from node 0 is routed to the fourth output instead.

Broadcast:

The multistage data network provides a broadcast facility in which a node is able to send
a block of data to all the destination nodes. This is supported by the use of a broadcast

command in the head of the message.

Full-Duplex Connection:

Each input data port can directly connect to all output data ports in the multistage data
network. All logical connections are independent of each other and thus can be established
simultaneously without interfering each other. One input data port and one output data

port can be linked together to form a full-duplex connection.

Data Rate:

The maximum clock rate! is defined to be 66.7 MHz. Each 4 x 4 crossbar switch in the mul-
tistage data network is capable of transferring a byte of data every clock cvcle. Therefore.

the data network has a bandwidth up to 66.7 Mbytes/second/port.

'Based on the simulation results in Chapter 3.

42

Input Nodes Output Nodes

0 — 0
I — I
2 /7 2
3 3
4 4
5 5
6 6
7 7
stage 1 stage 2

Figure 4.1: Data Network with 8 Nodes

Input Nodes already busy Output Nodes
0 : 0
1 1
2 2
3 3
4 ~o 4
5 - 5
6 6
7 7

Figure 4.2: An example of random routing in 8-node data network A dashed line represents
the original path between node 0 and node 6. A thick line represents the final path after

random routing is used.

43

4.2 Routing in Data Network

The primary function of the data network is to transfer information among the processing
nodes of the EARTH multiprocessor system in an efficient manner. Routing is the com-
munication methods and algorithms used to implement the above function. This section

provides an overview of some basic issues in routing applied to our proposed data network.

4.2.1 Routing Algorithms

The routing scheme of the data network can be straight forward if the modified version of
indirect binary n-cube network is chosen to be our data network topology. The data network
exhibits self-routing capability [2], that is, routing can be performed in a distributed manner
using the destination-address as the reference when the routing header is created. Thus.
any output node of the network can be reached from any input node by simply following
the binary address of the output node. The routing header is assigned by the input node
according to the following routing algorithms.

The routing algorithm uses the (¢ + 1)th most significant bit of the destination address
toset up the switch in the ith stage, selecting the upper output port (port 0 or port 1) of the
switch if this bit is 0 and lower output port (port 2 or port 3) if this bit is 1. The selection
of the output port at the last stage is given by the combination of the least significant bit
and most significant bit. For example, in the 16-node data network of Figure 4.3. output
node 10 (1010 in binary) can be reached from any of the input nodes by choosing the upper
output port in stage 1, lower output port in stage 2 and upper output port in stage 3. In
stage 3. the output port is determined by the combination of the least significant bit and
the most significant bit (01 in binary) which is output port 1.

The above routing algorithm applies only to one-to-one message-passing. However.

44

for one-to-all message-passing (broadcast), another routing algorithm is used. When an
input node wants to broadcast message to all the output nodes, the input node routes the
broadcast message to the upper port and the lower port of the switches between the first
stage and the (n —1)th stage, where n is the total number of stages in the data network. In
the nth stage (the last stage), the broadcast message is routed to all output ports of eack
of the switches. Figure 4.4 illustrates the paths when the brc;adcast message traverses from

input node 4 to all output nodes.

4.2.2 Control Commands

The physical port width of the data network is 9 bits. each transfer unit (data and control)
consists of a byte data and a control bit. The most significant bit of the transfer unit is
called the control bit and is used to distinguish between commands and data. The remaining
8 bits serves as data or commands. If the control bit is set to 1. the transfer unit carries
either routing or control information. If control bit is set to 0. the transfer unit carries a
data byte which has to be transferred to the corresponding output node. Table 4.1 shows
the definitions of the control commands which are recognized by the data network.

In order to set up a communication path in the interconnection network properly, the
SU must consist of a routing table in which the information of the network topology is
stored. Before a message is ready to be sent. SU should retrieve the routing commands
from the routing table according to the address of the destination node. Then, the routing
commands are appended to the message. The routing table is programmable so that its
contents can be written at boot time. Since the routing table is programmable. the network
designer can configure the routing table in one of the three possible ways. First. the routing

commands from stage 1 to stage n — 1 in the network can be random routing type only.

Input Nodes Output Nodes

[0
1 1
2 2
3 :\\ / 1\ //: 3
4 — 4
$ T \V/ :
6 6
7 7
8 8
9 9
10 — 10
0 J/A\N 1
12 —— / \\~— J \"— 12
13— 13
14 14
15 15
stage 1 stage 2 stage 3

Figure 4.3: Data Network with 16 Nodes

Input Nodes stage 1 stage 2 stage 3 Output Nodes
0 0
1 1
2 T 2
3 — _\ /._ 3
4 4
5 — 5
6 — 6
7 —1_ | 7
&8 8
9
10 — 10
0 J/A\\ i
12— 12
13 — 13
14 i3
15 15

Figure 4.4: An example of routing algorithm for message broadcast. The thick lines indicate

the paths for which the broadcasting message propagates through the data network.

46

Name Code Data/Control Function

DATA Oxxxxxxxx | Data Data byte

ROUTE.0 111110000 | Control Route to port 0

ROUTE.1 111110001 | Control Route to port 1

ROUTE22 111110010 | Control Route to port 2

ROUTE.3 111110011 | Control Route to port 3

ROUTE_U 111110100 | Control Random route to upper port (port 0 or port 1)

ROUTE_L 111110101 | Control Random route to lower port (port 2 or port 3)

ROUTE_UL | 111110110 | Control Random route to upper port and lower port

ROUTE.A 111110111 } Control Route to all ports

TAG._1 100xxxxxx | Control First byte of the ordering tag which contains the
binary address of input node.

TAG2 101xxxxxx | Control Second byte of the ordering tag which contains the
message number assigned by input node.

CLOSE 111000000 | Control Close connection

ABORT 111010000 | Control Abort connection

FILLER 111111111 | Control Do nothing

Table 4.1: Command Definitions

47

Second, the routing commands from stage | to stage n — 1 can be a combination of random
routing type and non-random routing type. Third, the routing commands from stage 1 to
stage n — 1 can be non-random routing type only. Table 4.2a through Table 4.2¢ illustrate
three different sets of routing commands, each of them can be used to route a message from

node 4 to node 13 in the 16 nodes 3-stage data network shown in Figure 4.3.

4.2.3 Message Format

A message is typically generated by the SU of an input node and injected into the inter-
connection network. Finally, the message reaches the SU of an output node. The message
consists of a sequence of control commands and data. The control commands are interleaved
with the data to form the message in order to accomplish flow control on the interconnection

network. Normally, the sequences of commands and data are as follows:

Message sent: routing commands — ordering tag — data — close

Message received: ordering tag — data — close

At the beginning of each message. an input node should put one routing command per stage
in the data network on the way to an output node. then the ordering tag followed by some
data bytes. and finally a close command is at the end of the message.

The purpose of the routing commands is to provide desired path through the data
network. When a message enters the switch. the first byte of the routing commands is
examined. Once this byte is used to select an outgoing port of a switch. it is discarded
from the head of the message. In any case. an output node should never receive any routing
commands because they are already consumed by the data network. If the path between
input node and output node goes through n stages within the data network, there have to

be n routing commands in the header of every message.

48

Stage | Routing Command Type
1 111110101 Random Routing
2 111110100 Random Routing
3 111110011 Non-Random Routing
(a)
Stage | Routing Command Type
1 111110101 Random Routing
2 111110001 Non-Random Routing
3 111110011 Non-Random Routing
(b)
Stage | Routing Command Type
1 111110010 Non-Random Routing
2 111110000 Non-Random Routing
3 111110011 Non-Random Routing

Table 4.2: The examples of routing commands for a 3-stage data network: (a) The routing
commands from stage 1 to stage 2 in the network can be random routing type only. (b)
The routing commands from stage 1 to stage 2 in the network can be a combination of

random routing type and non-random routing type. (c) The routing commands from stage

(c)

I to stage 2 can be non-random type only.

49

Our data network can have only one byte of routing command for each message. For the
deterministic routing, only two bits of the routing command are needed for each stage since
each switching elements has four output ports. However, using only one byte of routing
command for each message imposes the limitation on the size of the data network. The size
of the data network cannot be larger than four stages. Therefore, using one byte of routing
command per stage gives us flexibility to expand the data network. No matter how large
the data network is, it always requires one byte of routing command per stage.

When an input node sends several messages to the same output node, it is possible that
the output node receives the messages out of order caused by random routing. In order
to provide solution for this undesired situation, the input node must include the ordering
tag in each of its outgoing messages. Each of the ordering tag is two bytes long. The
first byte contains the binary address of the input node and the second byte contains the
number which indicates how many messages have been sent to the corresponding output
node. Therefore, the output node can use the information provided by the ordering tag to
reorder the out-of-order messages after they are received.

Although the physical port width of the data network is 1 byte. the logical data struc-
tures that the data network handles are 8-byte wide. The communication protocol requires
that the network interface to the data network provides eight data bytes as the unit of
exchange. In case of data block transfer, the data block routed through the data network
is composed of consecutive 8-byte quantities.

When the message is routed through the data network, routing commands are only
executed and consumed by the switches. A switch only executes and consumes the first
routing command. Then the switch will make logical connection to its corresponding output

port. After the logical connection is established. all further commands and data are passed

50

on until a close command is detected. When the close command is detected by the switch.
the close command will be passed on and the logical connection will be closed. Figure 4.5
shows an example of message before and after transferring through the 3-stage data network.
No data and commands (except routing commands) can be consumed or modified by the
data network.

The filler command is created by the SU of an input node and is used to fill the unused
data byte. The filler command does not generate any operation within the data network.

The filler command will be destroyed by the network interface at the destination node.

4.3 Comparison with Other Switching Chips

Small switching chips are increasingly being viewed as a building block for interconnection
network because of their low hardware cost. Furthermore, they can be connected in many
different network topologies. This section briefly outlines some of the difference between
our 4 x 4 crossbar switch and some of other designs.

The PaRC [4. 5] and Arctic [10] are designed to provide the interconnection networks
for Monsoon [5] and =T [20] multiprocessor systems respectively. Both of them have 4 input
ports and 4 output ports. They are different from our 4 x 4 crossbar switch in that there are
multiple input buffers in each of the input ports. Each of their buffers can hold exactly one
message. and each of them is directlv connected to all output ports. The main reason for
doing this is to maximize the chip’s throughput. This buffering scheme allows large number
of messages to be the candidates for output ports at the same time but it requires complex
scheduling hardware support for the output ports.

Other switching chip such as Myrinet (18] switch has only one long FIFO in each of

the input ports. A key difference between our 4 x 4 crossbar switch and Myrinet switch is

51

Data
Network

Rounng Command)
T -.,«*‘2

Close Command

Routing Command

Close Command

Message Sent Message Received

Figure 4.5: An Example of Message for 3-Stage Data Network.

52

that Myrinet switch does not support random routing. Without using random routing. the
message at the head of the FIFO is blocked if the selected output port is being occupied
by another message. Nothing can be read from this FIFO until the selected output port
becomes free. This imposes a strict limitation on the throughput of the Myrinet switch. Our
design offers random routing to reduce the number of blocking. Therefore, the throughput
of our design is better than that of the Myrinet switch.

In order to compare the throughput of different designs, a simple analysis will be used
to compute their output utilization rates. The output utilization rate is defined to be the
probability that at least one out of M messages is routed to a given output port, where M
is the total number of buffers of a chip.

PaRC has 4 separate buffers per input port, the probability that at least one out of
16 randomly addressed messages is routed to a given output port is 1 — (3)! which is
approximately equal to 0.99. The term (%)16 computes the probability that none of the 16
messages is routed to a given output port. If we subtract this term from 1. it gives the
probability that a given output port is utilized by at least one of the messages.

Similarly Arctic has 3 buffers per input port. the probability that at least one out of
12 randomly addressed messages is routed to a given output port is | — (3)'? which is
approximately equal to 0.97. Myrinet switch has one buffer per input port. the probability
that at least one out of 4 randomly addressed messages is routed to a given output port
is 1 — (%)4 which is approximately equal to 0.68. Qur design has one buffer per input but
it emplovs random routing so that the probability that at least one out of 4 randomly
addressed messages is routed to a given output portis | — (%)3(%) which is approximately
equal to 0.91.

This simple analysis shows that our 4 x 4 crossbar switch can achieve high output

utilization rate by using random routing, even though it has only one FIFO buffer in each
of the input ports. Note that the analysis is not precise because it assumes each of the
buffers has a message which is randomly addressed. This analysis allows us to compute
the best case utilization rate for the different switching chips. Nevertheless, this analysis
provides a quick comparison between different switching chips based on their buffering

schemes. Table 4.3 summarizes the output utilization rate for the different switching chips.

Switching Chip | Output Utilization Rate
PaRC 99%
Arctic 97%
Myrinet 68%
Our Design 91%

Table 4.3: Output Utilization Rate for Different Switching Chips

N1
wn

Chapter 5

Network Interface

This chapter describes the design of the network interface. Network interface performs
data transfer and protocol conversion between an EARTH node and the data network.
An EAKTH node is connected to the data network via a network interface. The network
interface interfaces an EARTH node to the data network. It isolates each from the details
of others. Network interface gives an EARTH node a simple and uniform view of the data
network. and the data network gets a simple and uniform view of an EARTH node. The

architecture to implement the network interface will be explained.

5.1 Architecture of Network Interface

The network interface has one input channel to retrieve data from the data network. and
one output channel to provide data to the data network. Both channels are independent
of each other and they can work simultaneously without interfering with each other. Each
channel has a buffer that is able to store up to 8 8-byte-words (64 bytes). The buffer is
useful to connect both sides of the network interface (EARTH node and data network)

which have different data transfer rates. The difference of data transfer rates result from

56

the fact that the width of the data path on each side of the network interface is different.
The data path is 8-byte wide on the EARTH node side whereas the data path is 1-bvte wide
on the data network side. On the EARTH node side, the network interface can execute one
request per clock cycle in pipeline mode. The response to a request can be made within
the same clock cycle. If there is enough space in the send buffer, the network interface can
take an 8-byte word per clock cycle to send. If there is any data in the receive buffer, the
network interface is able to provide one 8-byte-word per clock cycle to receive data.

The network interface does not start an operation on the EARTH node side, if chip
select signal, CS, is LOW. In this case all other control signals (R/W and DATA_-TYPE)
are ignored. If CS is HIGH, the network interface latches the DATA_TYPE and R/W signals
and executes the operation within the same clock cycle. The operation can be read. write
or reset. For the read operation, the network interface provides data to the EARTH node.
For the write operation, the network interface takes the data from the EARTH node. The
EARTH node must first check the interface’s status information before data is written to or
read from the network interface. For the reset operation, all data and control information
stored in the network interface will be cleared. The block diagram of the network interface

is shown in Figure 5.1.

5.1.1 Send FIFO

The Send FIFO accepts data from the EARTH node. It then transfers the data through
the data network to the RECEIVE FIFO of the network interface at the destination node.
The logic block diagram of the SEND FIFO is shown in Figure 5.2.

The Send FIFO has 8-byte input port (DATA) and 1-byte output port (DATA_OUT).

The input port is controlled by the master clock (CLK) and three other signals (CS, R/W

57

DATA <=5 —>
STATUS <—>5—

s —4—=
DATA_TYPE ——5—>
RW ————>

CLK —7—>

RESET ——74—>

/’9 > DATA_OUT

Send FIFO —v‘l—-> SEND_CLK
<——z$— SEND_STOP
/9 DATA_IN
Receive FIFOQ <—ﬂ’]—— RECEIVE_CLK

/1 = RECEIVE_STOP

Figure 5.1: Network Interface Block Diagram

DATA_OUT

DATA
CLK ‘ Memory
CS ——» Write Buffer
RW ———» Control
DATA_TYPE]
Write
Pointer
Flag Logic
SEND_2
SEND_4
SEND_8
SEND_FULL

CLK —*

Read
Pointer

Read > SEND_CLK
Control {®<— SEND_STOP

SEND_EMPTY =

Figure 5.2: Send FIFO Logic Block Diagram

and DATA_TYPE). When both CS and R/W are HIGH and DATA_TYPE is not equal
to 00 (in binary), data is written into the buffer on the rising edge of CLK signal. The
2-bit DATA_TYPE signal determines how many bytes of data are written in the buffer. If
DATA_TYPE is equal to 01 (in binary), only the lower 2 bytes of DATA are written into
the buffer. If DATA_TYPE is equal to 10 (in binary), only the lower 4 bytes of DATA are
written into the buffer. If DATA_TYPE is equal to 11 (in binary), only the complete 8-byte
words of DATA are written into the buffer.

In case DATA_TYPE is equal to 00 (in binary), and both CS and R/W are HIGH.
the network interface performs reset after the rising edge of CLK. All data and control
information stored in the network interface will be lost. After the reset. the network interface
returns to the empty condition.

The output port of the SEND FIFO is controlled in a different manner. When the buffer
is not empty and the input SEND_STOP is LOW, a byte of data is continually read from
the buffer every clock cycle. A pulse signal. SEND_CLK, is generated for each byte of data
read out from the buffer.

The SEND FIFO provides five status flags: SEND_EMPTY. SEND_FULL. SEND_2.
SEND_1 and SEND.8. The flags represent the current state of the SEND FIFO and can
change dynamically according to either the write or read operation. The definitions of the
flags are given in Table 5.1.

Since the EARTH node can write faster than the network interface is able to transfer
data. it is possible to overflow the SEND FIFO. In order to avoid an overflow. the EARTH
node should check the current state of the SEND FIFO to determine how much space is

free before writing data into the SEND FIFO.

5.1.2 Receive FIFO

The Receive FIFO receives data from the data network. It then provides the data to the
EARTH node. The logic block diagram of the Receive FIFO is shown in Figure 5.3.

The Receive FIFO has 1-byte input port (DATAIN) and 8-byte output port (DATA).
The input port is controlled by a write clock (RECEIVE_CLK). On the rising edge of
RECEIVE_CLK, the data is written into the buffer. If an incoming data from the data
network is a filler command, it is consumed by the Receive FIFO and never reaches the
EARTH node. When the Receive FIFQ is full, RECEIVE_STOP is set to HIGH so that
the output channel of the data network will stop transferring data until RECEIVE_.STOP
becomes LOW.

The output port of the Receive FIFO is controlled by the master clock (CLK) and two
other signals (CS and R/W). When CS is HIGH and R/W is LOW, data is read from the
buffer. If the head of the buffer contains a command, the EARTH node only takes the lower
byte. If the head of the buffer contains data, the EARTH node take the complete 8-byte
words.

The Receive FIFO provides seven status flags: RECEIVE_LEMPTY, RECEIVE_FULL.
RECEIVE.8. RECEIVE_16. RECEIVE_24. DAHOD and CAHOD. The flags represents the
current state of the Receive FIFO and can change dynamically according to either the write
or read operation. The definitions of the flags are given in Table 5.2.

Since the EARTH node can read faster than the network interface is able to receive data.
it is possible for the EARTH node to read when the Receive FIFO is empty. In order to
avoid an underflow. the EARTH node should check the current state of the Receive FIFO to

determine how many bytes of data are already stored before reading data from the Receive

FIFO.

60

Flag Name Description
SEND_EMPTY | When SEND_EMPTY is HIGH, the Send FIFO is empty.
SEND_FULL When SEND_FULL is HIGH, the Send FIFO is full.
SEND.2 When SEND_2 is HIGH. the free space of SEND FIFO is less than 2 bytes.
SEND 4 When SEND_4 is HIGH, the free space of SEND FIFO is less than 4 bytes.
SEND_8 When SEND_8 is HIGH, the free space of SEND FIFO is less than 8 bytes.
Table 5.1: Status Flag Definitions for Send FIFO
DATA DATA_IN
Memory
CLk—=t o Buffer
=1 Control
RW —— oy
Write
Read Poiater
Pointer
Flag Logic

J Write [*— RECEIVE_CLK

DAHOD

Control [~ RECEIVE_STOP

CAHOD

RECEIVE_&

RECEIVE_16

RECEIVE_24

RECEIVE_EMPTY

RECEVE_FULL

Figure 5.3: Receive FIFO Logic Block Diagram

61

Flag Name

Description

RECEIVE_EMPTY

When RECEIVE_EMPTY is HIGH, the RECEIVE FIFO is empty.

RECEIVE_FULL

When RECEIVE_FULL is HIGH, the RECEIVE FIFO is full.

RECEIVE_8 When RECEIVE.8 is HIGH, the RECEIVE FIFO contains at least 8
bytes of data.

RECEIVE_16 When RECEIVE_16 is HIGH. the RECEIVE FIFO contains at least
16 bytes of data.

RECEIVE_24 When RECEIVE_24 is HIGH, the RECEIVE FIFO contains at least
24 bytes of data.

DAHOD When DAHOD is HIGH. the head of the RECEIVE FIFO contains a
data.

CAHOD When CAHOD is HIGH, the head of the RECEIVE FIFO contains a

control command.

Table 5.2: Status Flag Definitions for RECEIVE FIFO

62

Chapter 6

Simulation Results of Network

Interface

The design of the network interface has been described in Chapter 5. The simulation results

of the network interface will be presented in this chapter.

6.1 Maximum Clock Frequency

The speed of the network interface is limited by the data access time of the two FIFO's.
Figure 6.1 shows the data waveforms of the Send FIFO and the Receive FIFO. and the
related timing parameters are given in Table 6.1.

In Figure 6.1a. the maximum time for the data, DATA_OUT, to become ready after the
CLK changing from LOW to HIGH is found to be 4 ns. Also the minimum setup time for

the data before the CLK changing from High to LOW is found to be 3 ns. Therefore. the

63

ax /|

/

p— DATS

! pHrs

-

@)

s/

o LLLLLLL)/

_

— ¢ DATR

DHTR

i

)

Figure 6.1: Data Waveforms: (a) Send FIFO (b) Receive FIFO

Parameter Description Max. | Min. | Unit
tpaTs Data access time for Send FIFO 4 ns
tDHTS Data setup time for Send FIFO 3 ns
tDATR Data access time for Receive FIFQ 6 ns
LDHTR Data setup time for Receive FIFQ 2 ns

Table 6.1: Measurement of Timing Parameters for Data Waveforms

64

minimum time for the CLK to stay HIGH, tch-g, can be computed as:

tckH = tpars+tpHuTs

4ns+ 3 ns

= 7mns
In Figure 6.1b, the maximum time for the data, DATA, to become ready after the CLK
changing from HIGH to LOW is found to be 6 ns. Also the minimum setup time for the
data before the CLK changing from LOW to HIGH is found to be 2 ns. Therefore, the

minimum time for the CLK to stay LOW, tcrp, can be computed as:

tckr = tpaTtr+tDHTR
= 6ns+2ns
= 8ns

Hence. the maximum clock cycle time, tcp:. is calculated as:

tck = tcrkH +tchL
= T7Tns+8ns
= 1l3ns
Finally, the maximum clock frequency f,..r is obtained as:

1

fma.r = ch

1
15 ns

= 66.7TMH:
From the above calculation result. the peak transfer rates for the network interface are
equal to 533.3 Mbytes/second on the EARTH node side and 66.7 Mbytes/second on the

data network side.

6.2 Pin Numbers and Chip Area

The design of the network interface is mapped into the Logic’s 0.6-Micron LCA300K com-
pacted array technology. The total number of pins used by the network interface is 112.

The total area for the network interface is summarized in Table 6.2.

6.3 Switching Waveforms

Figure 6.2 shows the switching waveforms for the Network Interface. The measured values

for the timing parameters are summarized in Table 6.3.

66

Type Area (gate equivalents)
Combinational 13725
Non-combinational 27923
Wire Interconnection 30198

Total 71846

Table 6.2: Area for Network Interface

Parameter Description Max. | Min. | Unit
tpast DATA setup time 4 ns
tDAHT DATA hold time 1 ns
lessT CS setup time 6 ns
lesHT CS hold time 1 ns
trwsT R/W setup time 6 ns
LRWHT R/W hold time 1 ns
Iprst DATA_TYPE setup time 6 ns
IpTHT DATA_TYPE hold time 1 ns
lrcks RECEIVE_CLK pulse width 1 ns
tprst DATAN setup time 5 ns
IpIHT DATA_IN hold time 1 ns
tcTRs RECEIVE_CLK to RECEIVE.STOP 4 ns
trs RESET pulse width 2 ns
trspo RESET to DATA_OUT and output time 3 ns
lprssc RESET to SEND.CLK and output time 3 ns

Table 6.3: Switching Characteristics of Network Interface

cLx : /| \
///AE RLLLTTTTT

s — /| _\L

tRwHT

_

-
s, SRR I

side
re—— lRexs
RECEIVECLK ___________ /
D

2* N7

- loms
RECEIVE_STOP
on Reset
S
RESET / | \

o TTTTTTITIN
oo TTTTTTITIX

Lrspo

Figure 6.2: Switching Waveforms for Network Interface

68

Chapter 7

Conclusion

Interconnection networks play an important role in the performance of any multiprocessor
system. An interconnection network with high network latency can significantly degrade
the system performance. In this thesis. we designed a low-cost and high-bandwidth inter-
connection network for the EARTH multithreaded multiprocessor system. We believe that
the contents of this thesis can be successfully used to build a prototype interconnection

network for EARTH.

7.1 Summary

Our design of the 4 x 4 switching chip is a very powerful building block for constructing
interconnection networks. The design of the 4 x 4 switching chip is not limited to the
EARTH system, it can be used in a large variety of interconnection networks which require
high throughput and low latency. Each port of our 4 x 4 switching chip provides 66.7
Mbytes/second of bandwidth. When a message comes into the 4 x 4 switching chip and its
output port is available, the connection latency will be at most 4 clock cycle (60 ns).

A number of aspects of the design contribute to achieving this high performance. In

69

particular, the employment of random routing helps enormously. Random routing can
greatly reduce the amount of blocking that occurs since a message can be rerouted to around
the busy output port. In addition, all logical connections between inputs and outputs are
independent of each other and thus can be established simultaneously without hindering
each other. Hence, the maximum data transfer rate of 266.7 Mbytes/second is achievable
since up to 4 different connections can be established simultaneously. In order to provide
fair and fast arbitration services for the large number of incoming messages. the arbiter
uses WWFA technique to resolve conflicts among the messages which are competing for the
same output port. The response time for the arbiter is very fast, the arbiter can process
a request within the same clock cycle the request is made. Also the 4 x 4 switching chip
allows a message to be sent off the chip before the entire message has been received. This
virtual cut-through routing is essential in minimizing the connection latency of messages.
Furthermore, the 4 x 4 switching chip provides broadcast facilitv. This facility greatly
reduces the amount of traffic within the network if the network involves a lot of one-to-all
communications.

The network interface also helps to make effective use of the bandwidth. The network
interface does not require idle time between messages: as long as there are messages stored
into the Send FIFO, they will be injected into the data network continuously. On the other
hand. the SU can retrieve the messages from the network interface continuously as long as

there are enough messages stored into the Receive FIFO.

7.2 Future Work

The design of the interconnection network for the EARTH multithreaded multiprocessor

system has been completed, and the simulations of the 4 x 4 crossbar switch and the

70

network interface have been done. In the future it may be desirable to build a prototype
interconnection network for the EARTH system. There are several modifications to the
4 X 4 switching chip that any future version should consider.

One change would be to increase the reliability of the chip. It can be done by adding
a cyclic-redundancy-check (CRC) error checking unit into the 4 x 4 switching chip. The
CRC error checking unit is used to ensure that messages have not been corrupted during
transmission.

The other change would be to add multicast facility into the 4 x 4 switching chip. The
multicast facility allows a source node to send messages to a group of destination nodes.
This feature is very useful when the interconnection network involves a lot of messages for
which only destination nodes that are actively interested in a particular multicast service
will have such messages routed to them. This reduces bandwidth consumption to the link

between the source node and destination node of multicast messages.

Appendix A

Verilog Code

A.1 4 x 4 Crossbar Switch

module SWITCH (CLK, RESET,
DATA_INO, WCLK_INO, STOP_OUTO,
DATA_IN1, WCLK_IN1, STOP_OUT1,
DATA_IN2, WCLK_IN2, STOP_OUT2,
DATA_IN3, WCLK_IN3, STOP_OUT3,
DATA_OUTO, WCLK_OUTO, STOP_INO,
DATA_OUT1, WCLK_OUT1, STOP_IN1,
DATA_OUT2, WCLK_OUT2, STOP_IN2,
DATA_OUT3, WCLK_OUT3, STOP_IN3);

input CLK, RESET;

input [8:0] DATA_INO, DATA_IN1, DATA_IN2, DATA_IN3;
input WCLK_INO, WCLK_IN1, WCLK_IN2, WCLK_IN3;

input STOP_INO, STOP_IN1, STOP_IN2, STOP_IN3;

output [8:0] DATA_OUTO, DATA_OUT1, DATA_OUT2, DATA_OUT3;
output WCLK_OUTO, WCLK_OUT1, WCLK_OUT2, WCLK_OUT3;
output STOP_OUTO, STOP_OUT1, STOP_OUT2, STOP_OUT3;

wire BroadcastPending;

/* FIFOs’ signals */

wire fifoO_EMPTY, fifol EMPTY, fifo2_EMPTY, fifo3_EMPTY;
wire [8:0] fifoO_DATA_OUT, fifol_DATA_QUT, fifo2 _DATA_OUT, fifo3_DATA_QUT;

/* CONTROLs’ signals */

72

wire contO_RCLK, conti_RCLK, cont2 RCLK, cont3_RCLK;

wire contO_WCLK, conti_WCLK, cont2_WCLK, cont3_WCLK;

wire [3:0] contO_request, contl_request, cont2_request, cont3_request;
wire contO_BP, conti_BP, cont2_BP, cont3_BP;

wire [8:0] contO_DATA_OUT, contl_DATA_OUT, cont2_DATA_OUT, cont3_DATA_OUT;

/* CROSSBARs’ signals */
wire cbO_STOP_OUT, cb1l_STOP_OUT, cb2_STOP_OUT, cb3_STOP_OUT;

/* ARBITERs’ signals */
wire [3:0] arb_granto, arb_grantl, arb_grant2, arb_grant3;

assign BroadcastPending=contO_BP|cont1_BP|cont2_BP|cont3_BP;

FIFO fifoO (RESET, WCLK_INO, contO_RCLK, DATA_INO, STOP_OUTO,
fifoO_EMPTY, fifoO_DATA_OUT),

fifol (RESET, WCLK_IN1, conti_RCLK, DATA_IN1, STOP_OUT1,
fifol EMPTY, fifol_DATA_OUT),

fifo2 (RESET, WCLK_IN2, cont2_RCLK, DATA_IN2, STOP_OUT2,
fifo2 EMPTY, fifo2_DATA_OUT),

fifo3 (RESET, WCLK_IN3, cont3_RCLK, DATA_IN3, STOP_OUT3,
fifo3_EMPTY, fifo3_DATA_OUT);

CONTROL controlO (CLK, RESET, fifoO_DATA_OUT, cbO_STOP_OUT, fifoO_EMPTY,
arb_grant0, BroadcastPending, contO_WCLK, contO_RCLK,
contO_request, contO_BP,contO_DATA_OUT),

controll (CLK, RESET, fifol_DATA_OUT, cbi_STOP_QOUT, fifol EMPTY,
arb_granti, BroadcastPending, cont1_WCLK, cont1_RCLK,
contl_request, conti_BP,conti_DATA_OUT),

control2 (CLK, RESET, fifo2_DATA_OUT, cb2_STOP_OUT, fifo2_EMPTY,
arb_grant2, BroadcastPending, cont2_WCLK, cont2_RCLK,
cont2_request, cont2_BP,cont2_DATA_OUT),

control3 (CLK, RESET, fifo3_DATA_OUT, cb3_STOP_OUT, fifo3_EMPTY,
arb_grant3, BroadcastPending, cont3_WCLK, cont3_RCLK,
cont3_request, cont3_BP,cont3_DATA_OUT);

CROSSBAR crossbar (contO_DATA_OUT, contO_WCLK,
contl_DATA_OUT, conti_WCLK,
cont2_DATA_OUT, cont2_WCLK,
cont3_DATA_OUT, cont3_WCLK,
STOP_INO, STOP_INi, STOP_IN2, STOP_IN3,
arb_grant0O, arb_grantl, arb_grant2, arb_grant3,
cbO_STOP_QUT, cb1_STOP_OUT, cb2_STOP_OUT, cb3_STOP_OUT,
DATA_OUTO, WCLK_QUTO,
DATA_OUT1, WCLK_OQUT1,
DATA_QOUT2, WCLK_QUT2,
DATA_OUT3, WCLK_OUT3);

ARBITER arbiter (CLK, BroadcastPending, RESET,
contO_request, conti_request, cont2_request,
cont3_request, arb_granto, arb_granti, arb_grant2,
arb_grant3);

endmodule

module FIFO (RESET,WCLK,RCLK,DATA_IN,AFULL,EMPTY,DOUT);
input RESET,WCLK,RCLK;
input [8:0] DATA_IN;
output AFULL,EMPTY;
output [8:0] DOUT;

reg [4:0] HEAD,HP,TAIL,TP;
wire [4:0] S,H;

MEMORY_BANK_FF mbff (WCLK,TP,HP,DATA_IN,DOUT) ;

ADDER_SB_FF addS5_0 (TAIL,5°b00001,S,),
add5_1 (HEAD,5’b00001,H,);

&(HEAD™~TAIL),
&(S™~HEAD) ;

assign EMPTY
AFULL

alwvays Q(posedge RESET or posedge WCLK) begin

if (RESET)
TAIL = 5°b00000;
else
TAIL = S;
end

always @(posedge RESET or negedge WCLK) begin

if (RESET)
TP = 5’b00000;
else
TP = TAIL;
end

always @(posedge RESET or posedge RCLK) begin

if (RESET)
HEAD = 5°b00000;
else
HEAD = H;
end

always Q(posedge RESET or negedge RCLK) begin

74

if (RESET)
HP = 5’b00000;
else
HP = HEAD;
end
endmodule

module HALFADDER_FF (A,B,S,C);
input A,B;
output C,S;

xor g0 (S,A,B);
and gi (C,A,B);
endmodule

module FULLADDER_FF (A,B,Ci,S,Co);
input A,B,Ci;
output S,Co;

wire T1,T2,T3;

HALFADDER_FF haO (A,B,T1,T2);
HALFADDER_FF hal (Ci,T1,S,T3);
or g0 (Co,T2,T3);

endmodule

module ADDER_SB_FF (A,B,S,C);
input [4:0] A,B;
output [4:0] S;
output C;

wire [3:0] carry;

HALFADDER_FF haO (A[0],B[0],S[0],carry[0]);

FULLADDER_FF fa1l (A[11,B[1],carry[0],S[1],carry[1]);

FULLADDER_FF fa2 (A[2],B[2],carry[1],S[2],carry[2]);

FULLADDER_FF fa3 (A[3],B[3],carry[2],S[3],carry[3]);

FULLADDER _FF fa4 (A[4],B[4],carry[3],S[4],C);
endmodule

module MEMORYCELL_FF (WCLK,TPEQ,HPEQ,DIN,DOQUT) ;
input WCLK;
input TPEQ,HPEQ;
input [8:0] DIN;

-l

(34}

output [8:0] DOUT;
reg [8:0] MEM;
assign DOUT = (HPEQ==1’b1) ? MEM : 9’bzzzzzzzzz:

always @(posedge WCLK) begin
if(TPEQ)
MEM = DIN;
end
endmodule

module MEMORY_BANK_FF (WCLK,TP,HP,DIN,DOUT);
input WCLK;
input [4:0] TP,HP;
input [8:0] DIN;
output [8:0] DOUT;

tri [8:0] DOUT;
wire [31:0] HPEQ,TPEQ;

FIFO_MUXS5X32 fmO (HP,HPEQ),
fm1i (TP,TPEQ):

MEMORYCELL_FF mcO (WCLK,TPEQ[O] ,HPEQ[O] ,DIN,DOUT),
mcl (WCLK,TPEQ[1] ,HPEQ[1] ,DIN,DOUT),
mc2 (WCLK,TPEQ[2] ,HPEQ[2] ,DIN,DOUT),
mc3 (WCLK,TPEQ[3] ,HPEQ[3] ,DIN,DOUT),
mc4 (WCLK,TPEQ[4] ,HPEQ[4] ,DIN,DOUT),
mc5 (WCLK,TPEQ[5] ,HPEQ[S] ,DIN,DOUT),
mc6 (WCLK,TPEQ[6] ,HPEQ[6] ,DIN,DOUT),
mc7 (WCLK,TPEQ[7] ,HPEQ[7] ,DIN,DOUT),
mc8 (WCLK,TPEQ[8] ,HPEQ[8] ,DIN,DOUT),
mc® (WCLK,TPEQ[9] ,HPEQ[9] ,DIN,DOUT),
mci10 (WCLK,TPEQ[lO],HPEQ[IO],DIN,DOUT),
mcil (WCLK,TPEQ[II],HPEQ[II],DIN,DOUT),
mci2 (WCLK,TPEQ[12],HPEQ[12],DIN,DOUT),
mci3 (WCLK,TPEQ[lB],HPEQ[13],DIN,DOUT).
mc14 (WCLK,TPEQ[14],HPEQ[14],DIN,DOUT),
mci5 (WCLK,TPEQ[IS],HPEQ[lS],DIN,DOUT),
mci6 (WCLK,TPEQ[lG],HPEQ[IS],DIN,DDUT),
mcl? (WCLK,TPEQ[i?],HPEQ[I?],DIN,DOUT),
mcl18 (WCLK,TPEQ[lS],HPEQ[lB],DIN,DOUT),
mci19 (WCLK,TPEQ[IS],HPEQ[IS],DIN,DOUT),
mc20 (WCLK,TPEQ[20],HPEQ[20],DIN,DOUT),
mc21 (WCLK,TPEQ[21],HPEQ[21],DIN,DOUT),
mc22 (WCLK,TPEQ[22],HPEQ[22],DIN,DOUT),

76

endmodule

mc23
mc24
mc25
mc26
mc27
mc28
mc29
mc30
mc31

(WCLK, TPEQ[23] ,HPEQ[23],DIN,DOUT),
(WCLK,TPEQ[24] ,HPEQ[24] ,DIN,DQUT),
(WCLK,TPEQ[25] ,HPEQ([25] ,DIN,DOUT),
(WCLK, TPEQ[26] ,HPEQ[26] ,DIN,DOUT),
(WCLK,TPEQ[27] ,HPEQ[27] ,DIN,DQUT),
(WCLK, TPEQ[28] ,HPEQ[28] ,DIN,DOUT),
(WCLK,TPEQ[29] ,HPEQ[29] ,DIN,DOUT),
(WCLK, TPEQ[30] ,HPEQ[30] ,DIN,DOUT),
(WCLK,TPEQ[31] ,HPEQ[31] ,DIN,DOUT) ;

module FIFO_MUX5X32 (A,B);

input [4:0] A;
output [31:0]

wire [4:0] nA;

B;

assign nA = ~4;

assign B[0]
B[1]
B[2]
B([3]
B[4]
B[5]
B[6]
B[7]
B[8]
B[9]
B[10]
B[11]
B[12]
B[13]
B[14]
B[15]
B[16]
B[17]
B[18]
B[19]
B[20]
B[21]
B[22]
B[23]
B[24]
B[25]
B[26]

nA[4)&nA[3]&nA[2]&nA[1]&na[0],
nAl4]&nA(3]&nA[2]&nA[1]& A[0],
nA[41&nA[3]&nA[2]& A[1]&nal0],
nA{4]&nA[3]&na[2]& A[1]& AfO],
nA(4]&nA[3]& A[2]&nA[1]&nA[0],
nA[4]&nA[3]& A[2]&nA(1]& A[0],
nA(4]enA(3]1& A[2]& A[1]e&naf0],
nA(4]enA[3]& Al2]& A[1]& A[O],
nA(4]& A[3]&nA[2]&nA[1]&nA[0],
nA(4]& A[3]&na[2]&nA(1]& A[0],
nAl4]& A[3]&nA[2]& A[1]&nA[0],
nA[4]& A[3]&nA[2]& A[1]& A[o0],
nAl4]& A[3]& A[2]&nA[1]&na(0],
nA[4]& A[3]& A[2]&nal1]& A[O],
nAf4]e A[3]& A[2]% A[1]&naAl0],
nA(4]& A[3]% A[2]& a[1]2 A[0],

A[4]&nA[3]&nA[2]&nA[1]1&nAfo0],

A[4]&nA[3]&nA[2]&nAa[1]& A[o],

A[4]&nA[3]&nA[2]& A[1]&naf0],

Al4]énA[3]&nA([2]2 A[1]& A[O],

A[4]2nA[3]& A[2]&nA[1]&nA[0],
A(4]&nAa[3]& A[2]&nA[1]& A[o],
A(4]&nA[3]& A[2]& A[1]&nalo0],
A(4]lenA[3]% A[2]& A[1]& A[o0],
A[4]& A[3]&nA[2]&nA[1]&nAl0],
Af4]& A[3]&nA[2]&nAl1]& A[O],
Al4]& A[3]&nA[2]& A[1]&nAfO],

T

B[27] = A[4]% A[3]1&nA(2]% Al1]% A[0],
B[28] = A[4]& A[3]& A[2)&na[1]&naf0],

B[29] = Al4]& A[3]& A[2]&nA[1]& a[0],
B[30] = Al[4]% A[3]& A[2]% a[1]&na[o],
B[31] = A[4]& A[3]& A[2]%& A[1]Z A[0];

endmodule

module CONTROL (CLK, RESET, DATA_IN, AFULL, EMPTY,
grant,
BroadcastPending,
WCLK, RCLK,
request,
BP,
DATA_OUT) ;

input CLK, RESET;

input [8:0] DATA_IN;
input AFULL, EMPTY;
input [3:0] grant;
input BroadcastPending;

output [3:0] request;
output BP;

output WCLK, RCLK;
output [8:0] DATA_OUT;

reg [8:0] DATA_OUT;

reg [2:0] PRES_STATE;

reg [2:0] NEXT_STATE;

reg [5:0] StateTable;

reg [8:0] RegRoute;

wire [3:0] InitialRequest;

wire CLKbar;

vire IsRequest, IsGrant, IsClose, IsAbort;

wire IsRequest_1iPort,IsRequest_2Port,IsRequest_4Port;

wire IsGrant_1Port,IsGrant_2Port,IsGrant_2PortA,IsGrant_2PortB,

IsGrant_4Port;

wire ClearRegRoute,LoadRegRoute;
wire LoadRequest,ClearRequest,ShiftRequest,
S_A11,S_3.2,S_1_0,Shift_3_2,Shift_1_0;

parameter s0=3’b000;
parameter s1=3'b001;
parameter s2=3'b010;
parameter s3=3’b011;

parameter s4=3’b100;
parameter s5=3’b101;

ClearLoadShiftReg CLSReg (Shift_3_2, Shift_1_0, LoadRequest,

assign

assign

assign

assign

assign

assign

assign

ClearRequest, InitialRequest, request);

CLKbar="CLK,
ClearRegRoute=StateTable[0]&CLK,
LoadRegRoute=StateTable[1]&CLKbar,
RCLK=((StateTable[1] |StateTable[5])&
('NEXT_STATEEIJ&NEXT-STATEEOJ))&CLK,
WCLK=StateTable[5]&CLKbar;

IsRequest=(&RegRoute[8:4])&(RegRoute[3]),
IsRequest_1Port=IsRequest&(‘(RegRoute[2]&RegRoute[1])),
IsRequest_2Port=IsRequest&RegRoute[2]&
RegRoute[1]&("RegRoute[0]),
IsRequest_4Port=IsRequest&(&RegRoute[2:0]),
BP=IsRequest&RegRoute [2]&RegRoute[1];

IsGrant_1Port=IsRequest_1Port&(lgrant),
IsGrant_2PortA=IsRequest_2Port&(grant[0] |grant[1]),
IsGrant_2PortB=IsRequest_2Port&(grant[3] |grant[2]),
IsGrant_2Port=IsGrant_2PortA&IsGrant_2PortB,
IsGrant_4Port=(&grant)&IsRequest_4Port,
IsGrant=IsGrant_1Port|IsGrant_2Port|IsGrant_4Port;

IsClose=DATA_OUT[8] &DATA_OUT[7]&DATA_OUT[6]&
("DATA_OUT[5])&("DATA_OUT[4]),

IsAbort=DATA_OUT[8]&DATA_OUT[7]&DATA_OUT[6]&
("DATA_OUT[S])&DATA_OUT[4];

ClearRequest=StateTable[0]&CLK,
LoadRequest=StateTable[2]&CLK,
ShiftRequest=StateTable[3]&CLK;

('IsGrant)&IsRequest&RegRoute[2]&('RegRoute[1]),
(‘IsGrant)&IsRequest_2Port&(”IsGrant_2PortB),
S_1_0=("IsGrant)&IsRequest_2Port&(~IsGrant_2PortA),
Shift_3_2=ShiftRequest&(S_All(S_3_2),
Shift_1_O=ShiftRequest&(S_Al1l]S_1_0);

S_All=
=3.2

InitialRequest[0]=IsRequest&(('(RegRoute[1]IRegRoute[O]))
| (RegRoute[2]&RegRoute[1])),
InitialRequest[1]=IsRequest&(RegRoute[0]&
(RegRoute[1] “~“RegRoute[2])),
InitialRequest[2]=IsRequest&((RegRoute[2]&RegRoute[0])l
(RegRoute[1]&(~RegRoute[0]))),

79

InitialRequest[3]=IsRequest&RegRoute[1]&RegRoute[0];

always @(posedge ClearRegRoute or posedge LoadRegRoute) begin
if(ClearRegRoute) RegRoute=9’b000000000;
else RegRoute=DATA_OUT;
end

always Q@(posedge RESET or posedge CLK) begin
if (RESET==1'b1) PRES_STATE=s0;
else PRES_STATE=NEXT_STATE;
end

always Q@(posedge RESET or posedge RCLK) begin
if (RESET)
DATA_QUT=9’b000000000;
else
DATA_OUT=DATA_IN;
end

always Q(PRES_STATE or BroadcastPending or EMPTY or AFULL or IsRequest or
IsGrant or IsClose or IsAbort) begin
case (PRES_STATE)
sO: begin

if ((EMPTY==1’b0)&&(BroadcastPending==1’b0))
begin
StateTable=6’b000001;
NEXT_STATE=s1;
end

else
begin
StateTable=6’b000001;
NEXT_STATE=s0;
end

end

sl: begin

if (IsRequest==1’b1)
begin
StateTable=6’b000010;
NEXT_STATE=s2;
end

else if(EMPTY==1'b1)
begin
StateTable=6’b000010;
NEXT_STATE=s0;
end

else
begin

80

s2:

s3:

s4:

sS5:

StateTable=6’b000010;
NEXT_STATE=s1;
end

end

begin

if (IsGrant==1'b1)
begin
StateTable=6’b000100;
NEXT_STATE=s4;
end

else
begin
StateTable=6'b000100;
NEXT_STATE=s3;
end

end

begin

if (IsGrant==1’b1)
begin
StateTable=6’b001000;
NEXT_STATE=s4;
end

else
begin
StateTable=6'b001000;
NEXT_STATE=s3;
end

end

begin

if ((EMPTY==1’b0)&& (AFULL==1'b0))

begin
StateTable=6'b010000;
NEXT_STATE=sS;
end

else
begin
StateTable=6’b010000;
NEXT_STATE=s4;
end

end

begin

if((IsClose==1'b1)||(IsAbo
begin
StateTable=6'b100000;

81

==1’'b1))

NEXT_STATE=sO0;
end

else if((EMPTY==1'b1) || (AFULL==1’b1))
begin
StateTable=6’b100000;
NEXT_STATE=s4;
end

else
begin
StateTable=6’b100000;
NEXT_STATE=s5;

end
end
endcase
end
endmodule

module EDGE_C_L_S_DFF (q,d,Shift,Load,Clear,init);

input d,Shift,Clear,Load,init;
output q;
reg q;

alwvays Q@(posedge Shift or posedge Load or posedge Clear) begin
if(Clear) q=1’b0;
else if (Load) q=init;
else q=d;
end
endmodule

module ClearLoadShiftReg (Shift_3_2, Shift_1_0, Load, Clear, init, r);
input Shift_3_2, Shift_1_0, Load, Clear;
input [3:0] init;
output [3:0] r;

EDGE_C_L_S_DFF c_l_s_dff0 (r[O],r[l],Shift_l_O,Load,Clear,init[O]),
c_l_s_dff1 (r[l],r[O],Shift_l-o,Load,Clear,init[1]),
c_l_s_dff2 (r[2],r[3],Shift-3_2,Load,Clear,init[2]),
c_l_s_dff3 (r[3],r[2],Shift_3-2,Load,Clear,init[3]);

endmodule

module ARBITER (CLK, BPENDING, RESET,
request0, requestl, request2, request3,
grant0O, grantl, grant2, grant3);

82

input CLK, BPENDING, RESET;
input [3:0] request0, requestl, request2, request3;
output [3:0] grantO, grantl, grant2, grant3;

reg [3:0] pW;

wire [3:0] busyO, busyi, busy2, busy3;
wire [3:0] B;

wire [3:0] muxO, muxi, mux2, mux3;
wire [3:0] NBPPW,BPPW;

wire NBPENDING;

reg TEMP;

assign grantO = requestO & busyo0,
grantil requestl & busyl,
grant2 = request2 & busy2,
grant3 = request3 & busy3;

“grant1[0]) & (“grant2[0]) & (~grant3[0]),

assign B[0] = (“grant0[0]) g
granti[1]) & (“grant2[1]) & (“grant3[1]),
gr

g (
B[1] = (“granto[1]) & (
& (“grantif2]) & (“grant2[2]) & (“grant3[2]),
& (“granti[3]) & (“grant2[3]) & (“grant3[3]);

B[2] = (“granto[2]) -
B[3] ("granto[3]) -

assign NBPENDING="BPENDING;

assign NBPPW([0]=NBPENDING&pW[0],
NBPPW[1]=NBPENDING&pW[1],
NBPPW [2]=NBPENDING&pW[2],
NBPPW [3] =NBPENDING&pW [3] ;

assign BPPW([0]=BPENDING&pW[0],
BPPW[1] =BPENDING&pW[1],
BPPW[2]=BPENDING&pW[2],
BPPW[3] =BPENDING&pW[3] ;

assign mux0[0]=request0[0]&(((request1[0])&(request2[0])&
(“request3([0])) INBPPW[3] |BPPW[0]),

mux1[0] =request1[0]&(((“request0[0])&("request2[0])&
(“request3[0])) INBPPW[0] IBPPW[1]),

mux2[0] =request2[0]&(((request0[0])&(request1[0])&
(“request3[0])) INBPPW([1] IBPPW[2]),

mux3 [0] =request3[0]&((("request0[0])&(request1[0])&
("request2(0])) INBPPW[2] IBPPW[3]),

mux0[1]=request0[1]&((("request1[1])&(request2[1])&
(“request3([1])) INBPPW[2] IBPPW[0]),

mux1[1]=request1[1]&((("request0[1])&("request2[1])&
(“request3([1])) INBPPW[3] |BPPW[1]),

83

mux2[1]=request2[1]&((("request0[1])&(requesti[1])e
(“request3[1])) INBPPW[0] | BPPW[2]),

mux3[1]=request3[1]&((("request0[1])&(request1[1])&
("request2{1])) INBPPW[1] |BPPW([3]),

mux0[2]=request0[2]&((("request1[2])&(request2[2])&
("request3[2])) INBPPW[1] |BPPW[0]),
mux1[2]=request1[2]&(((“request0[2])&(request2[2])e
("request3[2])) INBPPW([2] IBPPW[1]),
mux2[2]=request2[2]&(((~request0[2])&("request1[2])&
(“request3[2])) INBPPW[3] |BPPW[2]),
mux3[2]=request3[2]&(((‘request0[2])&('request1[2])&
(“request2[2])) INBPPW[0] IBPPW[3]),

mux0 [3]}=request0[3]&((("request1[3])&(request2[3])&
(“request3[3])) INBPPW[0] IBPPW[0]),

mux1[3]=request1[3]&((("request0[3])&("request2[3])e
(“request3[3])) INBPPW[1] IBPPW[1]),

mux2[3]=request2[3]&(((~request0[3])&(“requesti[3])«
("request3[3])) INBPPW[2] |BPPW[2]),

mux3 [3]=request3[3]&((("request0[3])&(~requesti[3])&
("request2[3])) INBPPW[3] |BPPW[3]);

assign busyO = (B&muxO) | ("B&busy0),

busyl = (B&mux1)|(~B&busy1),
busy2 = (B&mux2)|("B&busy2),
busy3 = (B&mux3) | (“B&busy3);

alwvays Q@(posedge RESET or negedge CLK) begin

if (RESET)
pW = 4’b0001;

else begin
TEMP=pW[3];
pWl3]=pwW[2];
pWl2]=pW[1];
pWl1]l=pW[o0];
pW[O]=TEMP;

end

end

endmodule

module CROSSBAR (DATA_INO,
WCLK_INO,
DATA_IN1,
WCLK_IN1,
DATA_IN2,
WCLK_IN2,

84

DATA_IN3,
WCLK_IN3,
STOP_INO, STOP_IN1, STOP_IN2, STOP_IN3,
grantO, granti, grant2, grant3,
STOP_OUTO, STOP_OUT1, STOP_OUT2, STOP_OUT3,
DATA_QOUTO,
WCLK_OuTo,
DATA_OUT1,
WCLK_OUT1,
DATA_OUT2,
WCLK_0OUT2,
DATA_OUT3,
WCLK_0OUT3) ;

input [8:0] DATA_INO,DATA_IN1,DATA_IN2,DATA_IN3;

input WCLK_INO,WCLK_IN1,WCLK_IN2,WCLK_IN3;
input STOP_INO, STOP_IN1, STOP_IN2, STOP_IN3;
input [3:0] grantO, grantl, grant2, grant3;

output [8:0] DATA_OUTO,DATA_OUT1,DATA_QUT2,DATA_OUT3;
output WCLK_OUTO,WCLK_OUT1,WCLK_OUT2,WCLK_QUT3;

output STOP_OUTO, STOP_OUT1, STOP_OUT2, STOP_QUT3;

tri [8:0] DATA_OUTO,DATA_OUT1,DATA_OUT2,DATA_OUT3;

wire WCLK_OUTO,WCLK_OUT1,WCLK_OUT2,WCLK_QUT3;

wire STOP_QUTO, STOP_OUTi, STOP_QOUT2, STOP_OUTS3:

wire [3:0] SOUT;
wire [3:0] RGIR;

assign DATA_OUTO =
DATA_OUTO =
DATA_OUTO =
DATA_OUTO =

DATA_OUTL =
DATA_OUT1 =
DATA_OUT1 =
DATA_OUT1L =

DATA_OUT2

DATA_OUT2 =
DATA_OUT2 =
DATA_OUT2 =

DATA_OUT3

DATA_QUT3 =
DATA_QUT3 =

(grant0[0]==1’b1)
(grant1[0]==1'b1)
(grant2[0]==1"b1)
(grant3[0]==1’b1)

(grant0[1]==1’b1)
(granti[1]l==1’b1)
(grant2[1]==1’b1)
(grant3[1]==1"b1)

(grant0[2]==1’b1)
(grant1[2]==1’b1)
(grant2[2]==1'b1)
(grant3[2]==1'b1)

(grant0[3]==1’b1)
(grant1[3]==1'b1)
(grant2[3]==1'b1)

85

NN) N N N Y N

N Y N N

-~

DATA_INO :
DATA_IN1 :
DATA_IN2 :
DATA_IN3 :

DATA_INO :
DATA_IN1 :
DATA_IN2 :
DATA_IN3 :

DATA_INO :
DATA_IN1 :
DATA_IN2 :
DATA_IN3 :

DATA_INO :
? DATA_IN1 :
? DATA_IN2 :

9’bzzzzzzzzzZ,
S’bzzzzzzzzz,
9’bzzzzzzzzZz,
9'bzzzzzzzzz,

9’bzzzzzzzzzZ,
9’bzzzzzzzzz,
9’bzzzzzzzzz,
9'bzzzzzzzzz,

9’bzzzzzzzzZ,
9’bzzzzzzzzz,
9’bzzzzzzzzz,
9’bzzz2zzz222Z,

S’bzzzzzzzzz,
9’bzzzzz2zz2=2,
9'bzzzz2zz2z,

DATA_OUT3 = (grant3[3]==1’b1) ? DATA_IN3 : 9’bzzzz22z22z;

assign WCLK_OUTO =(WCLK_INO&grant0[0])|(WCLK_INi&grant1[0]) |
(WCLK_IN2&grant2[0]) | (WCLK_IN3ggrant3[0]),

WCLK_OUT1 =(WCLK_INOZgrantO[1]) | (WCLK_INi&grant1[1])]|
(WCLK_IN2&grant2(1]) | (WCLK_IN3&grant3[1]),

WCLK_OUT2 =(WCLK_INO&grantO[2]) | (WCLK_IN1&grant1[2]) |
(WCLK_IN2&grant2[2]) | (NCLK_IN3&grant3[2]),

WCLK_OUT3 =(WCLK_INO&grantO[3]) | (WCLK_INi&granti[3]) |
(WCLK_IN2&grant2[3]) | (NCLK_IN3&grant3[3]);

assign SOUT[0]=(STOP_INO&grant0[0])|(STOP_INi&granto[1]) |
(STOP_IN2&grant0[2]) | (STOP_IN3&granto[3]),
SOUT[1]=(STOP_INO&grant1[0]) | (STOP_INi&grant1[1]) |
(STOP_IN2&granti[2]) | (STOP_IN3&grant1[3]),
SOUT[2]=(STOP_INO&grant2[0]) | (STOP_IN1&grant2[1]) |
(STOP_IN2&grant2(2]) | (STOP_IN3&grant2[3]),

SOUT [3]=(STOP_INO%grant3[0]) | (STOP_INi&grant3[1]) |
(STOP_IN2&grant3[2]) | (STOP_IN3&grant3[3]);

assign RGIR[0] = |granto,
RGIR[1] = |granti,
RGIR[2] = lgrant2,
RGIR[3] = |grant3;

assign STOP_OUTO = RGIR[0] & SOUT[0],

STOP_OUT1 = RGIR[1] & SOUT[1],
STOP_OUT2 = RGIR[2] & SOUT([2],
STOP_OUT3 = RGIR[3] & SOUT([3];

endmodule

86

A.2 Network Interface

module Network_Interface (CLK,RESET,DATA,CS,DATA_TYPE,HRITE_READ,STATUS,
DATA_OUT,SEND_CLK,SEND_STOP,
DATA_IN,RECEIVE_CLK,RECEIVE_STDP);

inout [71:0] DATA;

input CLK,RESET,CS,HRITE_READ,SEND_STUP,RECEIVE_CLK;
input [1:0] DATA_TYPE;

input [8:0] DATA_IN;

output SEND_CLK;
output RECEIVE_STOP;
output [8:0] DATA_OUT;
output [11:0] STATUS;

wire [71:0] DTSF,DFRF;

wire SEND_EMPTY,SEND_FULL,SEND_2,SEND_4,SEND_8:

wvire RECEIVE_EMPTY,RECEIVE-FULL,RECEIVE_S,RECEIVE_16,RECEIVE_24;
vire DAHOD,CAHOD;

SEND_FIFO sf (CLK, RESET, DTSF, CS, DATA_TYPE, WRITE_READ,
SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_8,
DATA_OUT, SEND_CLK, SEND_STOP);

RECEIVE_FIFO rf (CLK,RESET,DFRF,CS,DATA_TYPE,HRITE_READ,
RECEIVE_EMPTY,RECEIVE_FULL,
RECEIVE_8,RECEIVE_16,RECEIVE_24,

DAHOD, CAHOD,
DATA_IN,RECEIVE_CLK) ;

assign STATUS = {SEND_2,SEND_4,SEND_8,SEND_EMPTY, SEND_FULL,
RECEIVE_8,RECEIVE_16,RECEIVE_24,
RECEIVE_EMPTY,RECEIVE_FULL,
DAHOD, CAHOD};

assign RECEIVE_STOP = {RECEIVE_FULL};

assign DATA = (CS==1’b1l && WRITE_READ==1'b0) ? DFRF : 72’ Hzz222z2z22z;

assign DTSF = (CS==1’b1 &% WRITE_READ==1’b1) ? DATA : 72'Hzz2z2z22z;

endmodule

module SEND_FIFO (CLK, RESET, DATA, CS, DATA_TYPE, WRITE_READ,
SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_8,
DATA_OUT, SEND_CLK, SEND_STOP);

87

input CLK, RESET;
input [71:0] DATA;
input CS;

input [1:0] DATA_TYPE;
input WRITE_READ;

output SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_8;
output [8:0] DATA_OUT;

output SEND_CLK;

input SEND_STOP;

wire SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_S8;
wire [8:0] DATA_OUT;

reg SEND_CLK;

/* On rising edge of TAIL -INCREMENT, TAIL is incremented by 2, 4 or 8 */
/* depends on DATA_TYPE. */
wire TAIL_INCREMENT;

/* On the rising edge of TAIL_HEAD_RESET, both HEAD and TAIL are */
/* reset to O. */
wire TAIL_HEAD_RESET;

/* On the rising edge of HEAD -INCREMENT, HEAD is incremented by 1. */
wire HEAD_INCREMENT;

wire [5:0] B,S,H;

wire [5:0] TP_1, TP_2, TP_3, TP_4, TP_5, TP_6, TP_7;
reg [5:0] TAIL, HEAD;

reg [5:0] TP,HP;

wire NSE;

SF_MEMORYBANK sfb (CLK,CS,WRITE_READ,DATA_TYPE,
™°,TP_1,TP_2,TP_3,TP_4,TP_5,TP_6,TP_7,
HP,DATA,DATA_OUT) ;

SF_STATUS sfs (HEAD, TAIL, SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_8);

SF_ADDER_6B add8_0 (TAIL,B,S,),
add8_1 (TP,6’b000001,TP_
adds_2 (TP,6°'b000010,TP_
add8_3 (TP,6°b000011,TP_
add8_4 (TP,6’'b000100,TP_
add8_5 (TP,6'b000101,TP_
add8_6 (TP,6°b000110,TP_
add8_7 (TP,6’b000111,TP_

add8_8 (HEAD,6’'b000001,H,);

always Q(CLK) begin
if(CLK)
SEND_CLK=0;
else begin
if (NSE)
SEND_CLK=1;
else
SEND_CLK=0;
end
end

assign NSE = ~(SEND_EMPTY | SEND_STOP);

assign TAIL_INCREMENT = CS & WRITE_READ & (IDATA_TYPE) ;
assign TAIL_HEAD_RESET = CS & WRITE_READ & (" (IDATA_TYPEY) ;

assign HEAD_INCREMENT = NSE & (|DATA_TYPE);

assign B[5] = 0,

B[4] = 0,

B[3] = &DATA_TYPE,

B[2] = DATA_TYPE[1]&(DATA_TYPE[0]),
B[1] = ("DATA_TYPE[1])&DATA_TYPE[O],
B[O] = 0;

alwvays Q@(posedge RESET or negedge CLK) begin
if (RESET)

TP = 0;
else
TP = TAIL;

end

always @(posedge RESET or posedge CLK) begin
if (RESET)
TAIL = 0;
else begin
if (TAIL_HEAD_RESET)

TAIL = HEAD;
else if (TAIL_INCREMENT)
TAIL = S;
else
TAIL = TAIL;
end
end

always @(posedge RESET or posedge CLK) begin
if (RESET)
HP = 0;

89

else
HP = HEAD;
end

always @(posedge RESET or negedge CLK) begin
if (RESET)
HEAD = 0;
else begin
if (NSE)
HEAD = H;
else
HEAD

HEAD;
end
end
endmodule

module SF_STATUS(HEAD, TAIL, SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_8);

input [5:0] HEAD, TAIL;
output SEND_EMPTY, SEND_FULL, SEND_2, SEND_4, SEND_8;

wire sfa,sfb;

wire s2a,s2b,s2c,s2d;
wire s4a,s4b,s4c,sd4d;
wire s8a,s8b,s8c,s8d;
wire TGTH,TLTH;

(TGTH&sfa) | (TLTH&sfb),

assign SEND_FULL

SEND_2 = (TGTH&(s2als2b)) | (TLTH&(s2cls2d)),
SEND_4 = (TGTH&(s4als4b)) | (TLTH&(s4cls4d)),
SEND_8 = (TGTH&(s8als8b))|(TLTH&(s8c|s8d));

SF_COMPARE_UNIT commO (HEAD,6°b111111,TAIL,, ,sfa);
SF_COMPARE_UNIT commi (TAIL,G’bOOOOOl,HEAD,,,sfb);
SF_COMPARE_UNIT comm2 (HEAD,G’billilO,TAIL,,sZa,st);
SF_COMPARE_UNIT comm3 (TAIL,G’bOOOOlO,HEAD,s2c,,de);
SF_COMPARE_UNIT comm4 (HEAD,6°b111100,TAIL, ,s4a,s4b);
SF_COMPARE_UNIT commS (TAIL,G’bOOOlOO,HEAD,S4C,,s4d);
SF_COMPARE_UNIT comm6 (HEAD,G’blllOOO,TAIL,,sBa,sSb);
SF_COMPARE_UNIT comm?7 (TAIL,6°b001000,HEAD,s8c, ,s8d);
SF_COMPARATOR_6B comm8 (TAIL,HEAD,TGTH,TLTH,SEND-EMPTY);

endmodule

module SF_MEMDRYCELL(CLK,TPEQ_O,TPEQ_I,TPEQ-Z,TPEQ-S,TPEQ_4,
TPEQ_5,TPEQ_6,TPEQ_7 ,HPEQ,DATA ,DOUT) ;

90

input CLK,TPEQ_O,TPEQ_l,TPEQ_2,TPEQ_3,TPEQ_4,TPEQ_5,TPEQ_G,TPEQ_?,HPEQ;
input [71:0] DATA;
output [8:0] DOUT;

reg [8:0] MEM;
assign DOUT=(HPEQ==1’b1) ? MEM : 9’'bzzzzzzzzz;

always @(posedge CLK) begin
1f (TPEQ_0)
MEM=DATA[8:0];
else if(TPEQ_1)
MEM=DATA[17:9];
else if(TPEQ_2)
MEM=DATA[26:18] ;
else if (TPEQ_3)
MEM=DATA[35:27];
else if(TPEQ_4)
MEM=DATA{44:36] ;
else if(TPEQ_5)
MEM=DATA[53:45] ;
else if (TPEQ_6)
MEM=DATA[62:54] ;
else if(TPEQ_7)
MEM=DATA[71:63] ;
end

endmodule

module SF_MEMORYBANK (CLK,CS,WRITE_READ,DATA_TYPE,
TP, TP_1,TP_2,TP_3,TP_4,TP_S5,TP_6,TP_7,
HP,DATA,DOUT) ;

input CLK,CS,WRITE_READ;

input [1:0] DATA_TYPE;

input [5:0] TP,TP_l,TP_2,TP-3,TP_4,TP_5,TP_6,TP_7;
input [71:0] DATA;

input [5:0] HP;

output [8:0] DOUT;

tri [8:0] DOUT;
wire [63:0] TPEQ_O,TPEQ-l,TPEQ-Z,TPEQ_3,TPEQ-4,TPEQ_S,TPEQ_6,TPEQ-7,HPEQ;

wire G2,G4,G8;
assign G2=CS&WRITE_READ&(|DATA_TYPE),

91

G4=CS&WRITE_READ& (DATA_TYPE[1]),
G8=CS&WRITE_READ& (¢DATA_TYPE) ;

SF_MUX6X64 sfmO (HP,HPEQ) ;

SF_MUX6X64_EN sfm_en0 (TP, TPEQ_0,G2),
sfm_en1 (TP_1,TPEQ_1,G2),
sfm_en2 (TP_2,TPEQ_2,G4),
sfm_en3 (TP_3,TPEQ_3,G4),
sfm_en4 (TP_4,TPEQ_4,G8),
sfm_en5 (TP_5,TPEQ_5,G8),
sfm_ené (TP_6,TPEQ_6,G8),
sfm_en7 (TP_7,TPEQ_7,G8);

SF_MEMORYCELL sfmcO (CLK,TPEQ_0[0],TPEQ_1[0],TPEQ_2[0],TPEQ_3[0],
TPEQ_4[0] ,TPEQ_5[0],TPEQ_6[0],TPEQ_7[0],
HPEQ[0] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc1 (CLK,TPEQ_O[1],TPEQ_1[1],TPEQ_2[1],TPEQ_3[1],
TPEQ_4[1],TPEQ_S[1],TPEQ_6[1],TPEQ_7[1],
HPEQ[1] ,DATA,DQUT) ;

SF_MEMORYCELL sfmc2 (CLK,TPEQ_O[2],TPEQ_1[2],TPEQ_2[2],TPEQ_3[2],
TPEQ_4[2],TPEQ_S[2],TPEQ_6[2],TPEQ_7[2],
HPEQ[2] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc3 (CLK,TPEQ_O[3],TPEQ_1[3],TPEQ_2[3],TPEQ_3[3],
TPEQ_4[3],TPEQ_5[3],TPEQ_6[3],TPEQ_7[3],
HPEQ[3] ,DATA,DOUT);

SF_MEMORYCELL sfmc4 (CLK,TPEQ_O0[4],TPEQ_1(4],TPEQ_2[4],TPEQ_3[4],
TPEQ_4[4] ,TPEQ_5[4],TPEQ_6[4],TPEQ_7[4],
HPEQ[4] ,DATA,DOUT);

SF_MEMORYCELL sfmc5 (CLK,TPEQ_O[S5],TPEQ_1[S],TPEQ_2[5] ,TPEQ_3[5],
TPEQ_4([5],TPEQ_5[S],TPEQ_6[5] , TPEQ_7 [5],
HPEQ[S] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc6 (CLK,TPEQ.O[6],TPEQ_1[6],TPEQ_2(6],TPEQ_3[6],
TPEQ_4[6],TPEQ_5[6] ,TPEQ_6[6] , TPEQ_7 [6],
HPEQ[6] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc7 (CLK,TPEQ_0[7],TPEQ_1[7],TPEQ_2[7],TPEQ_3[7].
TPEQ_4[7],TPEQ.5[7],TPEQ_6[7],TPEQ_7[7],
HPEQ[7] ,DATA,DQUT) ;

SF_MEMORYCELL sfmc8 (CLK,TPEQ_0[8],TPEQ_1[8],TPEQ_2[8],TPEQ_3[8],
TPEQ_4(8],TPEQ_5[8] ,TPEQ_6[8] ,TPEQ_7[8],
HPEQ[8] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc9 (CLK,TPEQ_0[9],TPEQ_1[9],TPEQ_2[S],TPEQ_3[3],
TPEQ_4[9],TPEQ.5[9],TPEQ_6[9] ,TPEQ_7[9],
HPEQ[9] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc10 (CLK,TPEQ_0[10],TPEQ_1[10],TPEQ_2[10],TPEQ_3[10],
TPEQ_4[10],TPEQ_5[10], TPEQ_6[10],TPEQ_7[10],
HPEQ[10] ,DATA,DOUT) ;

SF_MEMORYCELL sfmci11 (CLK,TPEQ_0[11],TPEQ_1{11],TPEQ_2(11],TPEQ_3[11],

92

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

sfmc12

sfmci3

sfmci4

sfmcis

sfmci6

sfmcl?7

sfmci18

sfmci9

sfmc20

sfmc21

sfmc22

sfmc23

sfmc24

sfmc2S

sfmc26

sfmc27

TPEQ_4(11],TPEQ_5[11] ,TPEQ_6[11],TPEQ_7[11],
HPEQ[11] ,DATA,DQUT) ;

(CLK,TPEQ_0[12],TPEQ.1[12] ,TPEQ_2[12],TPEQ_3[12],
TPEQ.4(12],TPEQ_5[12] ,TPEQ_6[12] ,TPEQ_7[12],
HPEQ([12] ,DATA,DOUT) ;
(CLK,TPEQ_0[13],TPEQ_1[13] ,TPEQ_2[13], TPEQ_3[13],
TPEQ_4[13],TPEQ_5[13],TPEQ_6[13],TPEQ_7[13],
HPEQ[13] ,DATA,DOUT) ;

(CLK,TPEQ_O([14],TPEQ_1[14] ,TPEQ_2[14],TPEQ_3[14],
TPEQ.4[14],TPEQ_5[14] ,TPEQ_6[14],TPEQ_7[14],
HPEQ[14] ,DATA,DOUT) ;
(CLK,TPEQ_O[15],TPEQ.1[15],TPEQ_2[15],TPEQ_3[15],
TPEQ_4([15],TPEQ_5[15] ,TPEQ_6[15],TPEQ_7[15],
HPEQ[15] ,DATA,DOUT) ;
(CLK,TPEQ_O[16],TPEQ_1{161,TPEQ_2[16],TPEQ_3[16],
TPEQ_4(16],TPEQ_5[16],TPEQ_6[16],TPEQ_7[16],
HPEQ[16] ,DATA,DOUT) ;
(CLK,TPEQ_O[17] ,TPEQ_1[17] ,TPEQ_2[17] ,TPEQ_3[17],
TPEQ_4[17] ,TPEQ_5[17],TPEQ_6[17],TPEQ_7[17],
HPEQ[17] ,DATA,DOUT) ;
(CLK,TPEQ_0[18],TPEQ_1[18],TPEQ_2[18] ,TPEQ_3[18],
TPEQ_4[(18],TPEQ_5[18],TPEQ_6[18],TPEQ_7[18],
HPEQ[18] ,DATA,DOUT) ;

(CLK,TPEQ_0([19] ,TPEQ_1[19],TPEQ_2[19] ,TPEQ_3[19],
TPEQ_4[19] ,TPEQ_5[19],TPEQ_6[19],TPEQ_7[19],
HPEQ[19] ,DATA,DOUT) ;

(CLK, TPEQ_0[20] ,TPEQ_1[20],TPEQ_2[20] ,TPEQ_3[20],
TPEQ_4[20] ,TPEQ_5[20] ,TPEQ_6[20] ,TPEQ_7[20],
HPEQ[20] ,DATA,DOUT) ;
(CLK,TPEQ_0[21],TPEQ_1[21],TPEQ_2[21] ,TPEQ_3[21],
TPEQ_4[21],TPEQ_5[21] ,TPEQ_6[21] ,TPEQ_7[21],
HPEQ[21] ,DATA,DOUT) ;

(CLK,TPEQ_0[22] ,TPEQ_1{22],TPEQ_2[22],TPEQ_3[22],
TPEQ_4[(22],TPEQ_5[22] ,TPEQ_6[22] , TPEQ_7 [22],
HPEQ([22] ,DATA,DOUT) ;
(CLK,TPEQ_0[23],TPEQ_1[23],TPEQ_2[23],TPEQ_3[23],
TPEQ_4[23],TPEQ_5[23] ,TPEQ_6[23] ,TPEQ_7 [23],
HPEQ[23] ,DATA,DOUT) ;
(CLK,TPEQ_O[24] ,TPEQ_1[24] ,TPEQ_2[24] ,TPEQG_3[24],
TPEQ_4[24],TPEQ_5([24] ,TPEQ_6[24] ,TPEQ_7[24],
HPEQ[24] ,DATA,DQUT) ;

(CLK,TPEQ_0[25] ,TPEQ_1[25],TPEQ_2[25] ,TPEQ_3[25],
TPEQ_4[25],TPEQ_5([25] ,TPEQ_6[25] ,TPEQ_7[25],
HPEQ[25] ,DATA,DOUT) ;

(CLK,TPEQ_0[26] ,TPEQ_1[26],TPEQ_2[26] ,TPEQ_3[26],
TPEQ_4[26],TPEQ_5[26] ,TPEQ_6[26] , TPEQ_7[26],
HPEQ[26] ,DATA,DOUT) ;

(CLK,TPEQ_0[27] ,TPEQ_1[27],TPEQ_2[27] ,TPEQ_3[27],

93

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

sfmc28

sfmc29

sfmc30

sfmc31

sfmc32

sfmc33

sfmc34

sfmc35

sfmc36

sfmc37

sfmc38

sfmc39

sfmc40

sfmc41

sfmc42

sfmc43

TPEQ_4[27],TPEQ_5[27],TPEQ-6[27],TPEQ_7[27],
HPEQ[27] ,DATA,DOUT) ;
(CLK,TPEQ_O[28],TPEQ-1[28],TPEQ_2[28],TPEQ_3[28],
TPEQ_4[28],TPEQ_5[28],TPEQ_6[28],TPEQ_7[28],
HPEQ[28] ,DATA,DOUT) ;
(CLK,TPEQ_O[ZS],TPEQ-1[2SJ,TPEQ_2[29],TPEQ_3[29],
TPEQ_4[29],TPEQ_5[29],TPEQ_6[29],TPEQ_7[29],
HPEQ[29] ,DATA,DOUT) ;
(CLK,TPEQ-O[SO],TPEQ_1[30],TPEQ;2[30],TPEQ_3[30],
TPEQ_4[30],TPEQ_5[30],TPEQ_S[SO],TPEQ_7[30],
HPEQ([30] ,DATA,DOUT);
(CLK,TPEQ_O[31],TPEQ_1[31],TPEQ_2[31],TPEQ_3[31],
TPEQ.4[31],TPEQ_S5[31],TPEQ_6[31],TPEQ_7[31],
HPEQ([31] ,DATA,DOUT);
(CLK,TPEQ_O[32],TPEQ_1[32],TPEQ_2[32],TPEQ_3[32],
TPEQ_4[32],TPEQ_5[32],TPEQ-6[32],TPEQ_7[32],
HPEQ([32] ,DATA,DOUT) ;
(CLK,TPEQ-O[33],TPEQ_1[33],TPEQ_2[33],TPEQ_3[33],
TPEQ-4[33],TPEQ_S[33],TPEQ_6[33],TPEQ_7[33],
HPEQ([33] ,DATA,DOUT) ;
(CLK,TPEQ_0[34],TPEQ_1[34],TPEQ_2[34],TPEQ_3[34],
TPEQ_4(34],TPEQ_5[34] ,TPEQ_6[34],TPEQ_7[34],
HPEQ[34] ,DATA,DOUT) ;
(CLK,TPEQ_O[SSJ,TPEQ_1[35],TPEQ_2[35],TPEQ-S[BS],
TPEQ_4[35] ,TPEQ_S[35] ,TPEQ_6[35], TPEQ_7[35],
HPEQ[35] ,DATA,DOUT) ;
(CLK,TPEQ_O[SG],TPEQ-I[SS],TPEQ_Z[SG],TPEQ_3[36],
TPEQ_4[36] ,TPEQ_5[36], TPEQ_6[36],TPEQ_7[36],
HPEQ{36] ,DATA,DOUT) ;
(CLK,TPEQ-O[S?],TPEQ_1[37],TPEQ_2[37],TPEQ_3[37],
TPEQ_4[37],TPEQ_5(37],TPEQ_6[37],TPEQ_7 [37],
HPEQ([37] ,DATA,DOUT) ;
(CLK,TPEQ_O[BB],TPEQ_I[SB],TPEQ_2[38],TPEQ_S[SB],
TPEQ_4[38],TPEQ_5[38] ,TPEQ_6[38] ,TPEQ_7[38] ,
HPEQ(38],DATA,DOUT);
(CLK,TPEQ_O[BQ],TPEQ_1[39],TPEQ-2[39],TPEQ_3[39],
TPEQ_4[39] ,TPEQ_S[39] ,TPEQ_6[39],TPEQ_7[39],
HPEQ([39] ,DATA,DOUT) ;
(CLK,TPEQ_O[40],TPEQ_1[40],TPEQ_2[40],TPEQ_3[40],
TPEQ_4[40] ,TPEQ_5[40] ,TPEQ_6[40] ,TPEQ_7 [40] ,
HPEQ[40] ,DATA,DOUT) ;
(CLK,TPEQ_0[41],TPEQ_1[41],TPEQ_2[41],TPEQ_3[41],
TPEQ_4[41] ,TPEQ_5[41],TPEQ_6[41],TPEQ_7[41],
HPEQ[41] ,DATA,DOUT) ;
(CLK,TPEQ_O[42],TPEQ_1[42],TPEQ_2[42],TPEQ_3[42],
TPEQ_4[42],TPEQ._5[42],TPEQ_6[42],TPEQ_7[42] ,
HPEQ[42] ,DATA,DOUT) ;
(CLK,TPEQ_O[43],TPEQ_1[43],TPEQ-2[43],TPEQ_3[43],

94

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

SF_MEMORYCELL

sfmc44

sfmc45

sfmc46

sfmc47

sfmc48

sfmc49

sfmc50

sfmc51

sfmc52

sfmcS53

sfmc54

sfmcSS

sfmc56

sfmcS57

sfmcS8

sfmcS59

TPEQ_4[43],TPEQ_5[43],TPEQ_6[43],TPEQ_7[43],
HPEQ([43] ,DATA,DOUT) ;
(CLK,TPEQ_0[44] ,TPEQ_1[44] ,TPEQ_2[44] , TPEQ_3[44],
TPEQ_4[44] ,TPEQ_5[44] ,TPEQ_6[44] ,TPEQ_7[44],

HPEQ [44] ,DATA,DOUT) ;
(CLK,TPEQ_0[45] ,TPEQ_1[45] ,TPEQ_2[45] , TPEQ_3[45],
TPEQ_4[45] ,TPEQ_5[45] ,TPEQ_6[45] , TPEQ_7[45],
HPEQ[45] ,DATA,DQUT) ;
(CLK,TPEQ_0[46] ,TPEQ_1[46] ,TPEQ_2[46],TPEQ_3[46],
TPEQ_4[46] ,TPEQ_5[46],TPEQ_6[46],TPEQ_7[46],
HPEQ[46] ,DATA,DOUT) ;
(CLK,TPEQ_0[47] ,TPEQ_1[47] ,TPEQ_2[47],TPEQ_3[47],
TPEQ_4[47] ,TPEQ_5[47],TPEQ_6[47] ,TPEQ_7[47],
HPEQ[47] ,DATA,DOUT) ;
(CLK,TPEQ_0[48] ,TPEQ_1[48] ,TPEQ_2[48] ,TPEQ_3[48],
TPEQ_4[48] ,TPEQ_5[48],TPEQ_6[48],TPEQ_7[48],
HPEQ[48] ,DATA,DOUT) ;
(CLK,TPEQ_0[49] ,TPEQ_1[49] ,TPEQ_2[49] ,TPEQ_3[49],
TPEQ_4[49] ,TPEQ_5[49], TPEQ_6[49],TPEQ_7[49],
HPEQ[49] ,DATA,DOUT) ;
(CLK,TPEQ.0[50] ,TPEQ_1[50] ,TPEQ_2[50], TPEQ_3[50],
TPEQ_4[50] ,TPEQ_5[50], TPEQ_6[50] , TPEQ_7[50],
HPEQ[S0] ,DATA,DOUT) ;
(CLK,TPEQ_0[51] ,TPEQ_1[51] ,TPEQ_2[51],TPEQ_3[511,
TPEQ_4[51],TPEQ_5(51],TPEQ_6[51] ,TPEQ_7[51],
HPEQ[51] ,DATA,DOUT);
(CLK,TPEQ_0[52] ,TPEQ_1[52] ,TPEQ_2[52] ,TPEQ_3[52],
TPEQ_4[52] ,TPEQ_5[52],TPEQ_6[52],TPEQ_7[52],
HPEQ[52] ,DATA,DOUT);
(CLK,TPEQ_0[53] , TPEQ_1[53],TPEQ_2[53],TPEQ_3[53],
TPEQ_4[53],TPEQ_5[53],TPEQ_6[53],TPEQ_7 (53],
HPEQ[53] ,DATA,DOUT) ;
(CLK,TPEQ_0[54] , TPEQ_1[54] ,TPEQ_2[54] ,TPEQ_3[54],
TPEQ_4[54] ,TPEQ_5[54],TPEQ_6[54],TPEQ_7 [54],
HPEQ([54],DATA,DOUT) ;
(CLK,TPEQ.0[55] , TPEQ_1[55], TPEQ_2[55] ,TPEQ_3[55],
TPEQ_4[55] ,TPEQ_5[55],TPEQ_6[55] , TPEQ_7 [55],
HPEQ[55] ,DATA,DOUT);
(CLK,TPEQ_0[56] , TPEQ_1[56],TPEQ_2[56] ,TPEQ_3[56],
TPEQ_4[56] ,TPEQ_5[56],TPEQ_6[56],TPEQ_7 [56],
HPEQ[S56],DATA,DOUT) ;

(CLK,TPEQ_O0[S7] ,TPEQ_1[57],TPEQ_2[57],TPEQ_3[57],
TPEQ_4(57] ,TPEQ_5[57],TPEQ_6[57],TPEQ_7 [57],
HPEQ([57] ,DATA,DOUT) ;
(CLK,TPEQ_0[58] , TPEQ_1[58] ,TPEQ_2[58] ,TPEQ_3[58],
TPEQ_4(58] ,TPEQ_S[58],TPEQ_6[58] ,TPEQ_7[58],
HPEQ[58] ,DATA,DOUT) ;
(CLK,TPEQ_0[59] , TPEQ_1[59] , TPEQ_2[59] ,TPEQ_3[59],

95

TPEQ_4[59] ,TPEQ_S[59], TPEQ_6[59] ,TPEQ_7[59],
HPEQ([59] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc60 (CLK,TPEQ_0[60],TPEQ_1[60],TPEQ_2[60],TPEQ_3[60] ,
TPEQ_4[60],TPEQ_5[60] , TPEQ_6[60] , TPEQ_7[60],
HPEQ([60] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc61 (CLK,TPEQ_O[61],TPEQ_1[61],TPEQ_2[61],TPEQ_3[61] ,
TPEQ_4[61] ,TPEQ_5[61] ,TPEQ_6[61] ,TPEQ_7[61],
HPEQ[61] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc62 (CLK,TPEQ_0(62],TPEQ_1[62],TPEQ_2[62],TPEQ_3[62] ,
TPEQ_4[62] ,TPEQ_5[62] ,TPEQ_6[62],TPEQ_7[62],
HPEQ(62] ,DATA,DOUT) ;

SF_MEMORYCELL sfmc63 (CLK,TPEQ_0[63],TPEQ_1[63],TPEQ_2[63],TPEQ_3[63] ,
TPEQ_4[63],TPEQ_5(63],TPEQ_6[63],TPEQ_7[63],
HPEQ([63] ,DATA,DOUT) ;

endmodule

module SF_MUX6X64 (A,B);

input [5:0] a4;
output [63:0] B;

wire [5:0] na;

assign nA = "A;

assign B[0O] = nA[5]&nA[4]2nA[3]1&nA[2]&nA[1]&nA[0],
B[1] = nA[5]2&nA[4]&nA[3]&nA[2]&nA[1]e A[O],
B[2] = nA[5]&nA[4]&nA[3]&nA[2]% A[1]&na[o],
B[3] = nA[5]&nA[4]&nA(3]&na[2]& A[1]% afo],
B[4] = nA[5]#nA([4]&nA[3]& A[2]&nA[1]1&nA[0],
B[S] = nA[5]&nA[4]&nA[3]& A[2]&nA[1]& A[O],
B(6] = nA[5]&nA[4]12nA[31& A[2]% A[1]&na[0],
B(7] = nA[5]&nA[4]enA[3]& A[2]1& A[1]% A[O],
B[8] = nA[5]e¢nA[4]& A[3]&nA[2]&nA[1]&nal0],
B[9] = nA[5]&¢nA[4]e A[3]&nA[2]énA[1]& A[O],
B[10] = nA[5]&nA[4]& A[3]&nA[2]1% A[1]&nA[0],
B[11] = nA[S]&nA[4]& A[3]&nA[2]1% A[1]& Afo],
B[12] = nA[5]&nA[4)& A[3]& A[2]2nA[1]&nA[0],
B[13] = nA[SlenA[4]le A[3]z A[2]&nAl1]& A[0],
B[14] = nA[S]&nA[4]& A[3]& A[2]& A[1]enafo],
B[15] = nA[S]&nA[4]& A[3]& A[2]& A[1le A[O],
B[16] = nA[5]& A[4]&nA(3]1&nA[2]&nA[1]&nA[0],
B[17] = nA(5]& A[4]enA[3]&nA[2]&nA[1]& A[O],
B[18] = nA(5]& A[4)enA[3]&nA[2]& A[1]&nA[0],
B[19] = nA[5]& A[4]&nA[3)&nA[2]& A[1]z A[O],
B[20] = nA[5]%¢ A[4]&nA[3]% A[2]&nA[1]znAl0],
B[21] = nA[51& A[4]&nA[3]% A[2]&nA[1]e A[O],

96

B[22] = nA[5]& A[4]&nA[31& A[2]% A[1]e&nA[O],

B[23] = nA[S]& A[4]1&nA[3]& A[2]& A[1]Z A[O],
B[24] = nA[5]& A[4]& A[3]2nA([2]%nA[1]&mA[0],
B[25] = nA[5]& A[4]& A[3]&nA[2]&nA[1]& A[O],
B[26] = nA[5]1& A[4]& A[3]&nA[2]& A[1]&nA[0],
B[27] = nA[5]& A[4]& A[31&nA[2]% A[1]l& A[O],
B(28] = nA[S]& A[4]% A[3]%& A[2]%&nA[1]&nA[0],
B[(29] = nA[5]& A[4]% A[3]& A[2]&na[1]& A[0],
B[30] = nA[5]& A[4]& A[3]% A[2]% A[1]&nA[oO],
B(31] = nA[5]& A[4]& A[3]% A[2]% A[1]& A[O],
B[32] = A[5]&nA[41&nA[3]&nA[2]&nA[1]&nAl0],
B[33] = A[5]&nA[4]&nA[3]1&nA[2]&nAl1]e A[O],
B[34] = A[S]&nA(4]&nA[3]&nA[2]& A[1]&nA[0],
B[35] = A[5]&nA[4]&nA[3]&nA[2]& A[1]& A[O],
B[36] = A[5]&#nA[4]&nA[3]& A[2]&nA[1]&nA[0],
B[37] = A[5]&nA[4]&nA[3]e A[2]&nA[1]& A[O],
B[38] = A[5]&nA[4]&nA[3]& A[2]& A[1]l&nA[0],
B[39] = A[S]lenA[4]&nA[3]% A[2]& A[1]lz A[0],
B[40] = A[5]enA[4]2 A[3]&nA[2]&nA[1]&nA[0],
B[41] = A[5}enA[4]& A[3]&nA[2]&nAl1l& A[O],
B[42] = a[sl&nA[4]& A[3]&nA[2]& A[1]&nalo0],
B[43] = A[S]&nA[4]& A[3)&nA[2] A[1]& A[O],
B[44] = A[5]enA[4]& A[3]& A[2]&nA[1]&nA[0],
B[45] = A[SlenA[4]e& A[3]& A[2]&nAl1]lg A[O],
B[46] = A[S]lenA[4]% A[3]& A[2]% A[1]l&nafo],
B[47] = A[SlenA[4]& A[3]& A(2]e A[1]z A[O],
B[48] = A[5]& A[4]&nA[3]&nA[2]&nA[1]2nA[0],
B[49] = A[5]e A[4)&mA[3]&nA[2]&nAl1]e A[O],
B[S0] = A[5]z A[4]&nA[3]&nA[2]& A[1]&nA[o0],
B[(51] = A[S]l& A[4l&nA[3]&na[2]& A[1]z A[O],
B(52] = A[5le Al4]ena[3]& A[2]&nA[1]&nA[0],
B[53] = A[S]% A[4]e&nA[3]e A[2]&nAl1]& A[0],
B[54] = A[S]& A[4]&nA[3]& A[2]%& Al1]&na(o0],
B[55] = A[5)& A[4]&nA[3]& a[2]& A[1]% A[0],
B[56] = A[5]% A[4]% A(3]&nA[2]&nA[1]&na[0],
B(S7] = A(5]& a[4]& A[3]&na[2]&nA[1]& A[O],
B[(58] = A(5]z A[4lz A[3]&nA[2]& A[1]znA[0],
B(5s] = a(5]l& aAl4]& a(3)&na[2]& A[1]% A[O],
B[60] = A[s]& Af4]e A[3]% A[2]&nA[1]&nA (0],
B(61] = A[5]& al4]e A[3]e a[2]&nA[1]e A[O],
B(62] = A[S]z A[4]z A[3]% A[2]% Al1]&nafo0],
B[63] = A[5]% A[4)& A[3]2& A[2]% A[1]% Alo];
endmodule

module SF_MUX6X64_EN (A,B,ENABLE);

97

input [5:0] a;
input ENABLE;

output [63:0] B;

wire [5:0] nA;
assign nA = “4;

assign B[0]
B[1]
B[2]
B[3]
B[4]
B[5]
B[6]
B[7]
B[8]
B[9]
B[10]
B[11]
B[12]
B[13]
B[14]
B[15]
B[16]
B[17]
B[18]
B[19]
B[20]
B[21]
B[22]
B[23]
B[24]
B[25]
B[26]
B[27]
B[28]
B[29]
B[30]
B[31]
B[32]
B([33]
B[34]
B(35]
B[36]
B[37]
B[38]
B[39]

nA[5]&nA[4]&nA[3]&nA[2]&nA[1]&nA [0]ZENABLE,
nA[5]&nA[4]&nA[3]&nA(2]&nAl1]& A[O]ZENABLE,
nA[5]&nA[4]1&nA[3]&nA[2]& A[1]&nA [0]&ENABLE,
nA(5]&nA[4]&nA[3]&nA[2]& A[1]% A[O]ZENABLE,
nA[5]&nA[4]&nA[3]& A[2)&nA[1]&nA [0]ZENABLE,
nA[5]enA[4]&nA[3]& A[2]&nA[1]& A[O]ZENABLE,
nA[5]&nA[4]&nA[3]& A[2]& A[1]2nA[O]ZENABLE,
nA[S5]&nA(4]&nA[3]& A[2]& A[1]& A[O]&ENABLE,
nA[5]1&nA(4]& A[3]&nA[2]&nA[1]&na [0]ZENABLE,
nA[S]é&nA[4]& A[3]&na[2]&nA[1]& A[O]&ENABLE,
nA[5]énA[4]& A[3]&nA[2]& A[1]&nA[0O]ZENABLE,
nA[5]&nA(4]& A[3]&nA[2]& A[1]& A[O]ZENABLE,
nA[5]&nA[4]% A[3]% A[2]#nA[1]&nA[0]&ENABLE,
nA[S]&nA(4]& A[3]% A[2]&nA[1]& A[OJZENABLE,
nA(5]&nA[4]& A[3]& A[21% A[1]&nA[0]&ENABLE,
nA(5]&nAal4]& A[3]& A[2]& A[1]e A[O]2ENABLE,
nA[S]& A[4]&nA[3]&nA[2]&nA[1]&nA[0]ZENABLE,
nA(5]& A[4]&nA[3]&nA[2]&nA[1]& A[O]&ENABLE,
nA[5]& A[41&nA[3]&nA[2]& A[1]&nA[0]&ENABLE,
nA[5]& A[4]&nA[3]&nA[2]& A[1]& A[OJZENABLE,
nA[5]& A[4]&nA[3]& A[2]&nA[1]2nA[0]ZENABLE,
nA(S]& A(4]1enA(3]& A[2]enA[1]& A[OJZENABLE,
nA[5]1& A[41&nA[3]& A[2]& A[1]&nA[0]&ENABLE,
nA[5]& A(4)emA[3]& A[2]e A[1]%2 A[OJZENABLE,
nA(5]& A[4]& A[3]&nA[2]%nA[1]&nA[0]&ENABLE,
nA(5]& A[4]& A[3]&nA[21e¢mA[1]& A[O]ZENABLE,
nA[5]& Al4]% A[3]enA[2]& A[1]&nA[O]&ENABLE,
nA[S]& A[4]1& A[3]&nA[2]& A[1]& A[OJ&ENABLE,
nA(S]& A[4]% A[3]& A[2]enA[1]&nA[0]ZENABLE,
nA[S]& A[4]% A[3]e A[2]&nA[1]& A[OJZENABLE,
nA[5]& A[4]% A[3]& A[2]% A[1]&nA[0]%ENABLE,
nA[5]& Al4le A[3]& A[2]%& A[1]& A[O]&ENABLE,

A[5]&nA[4]&nA[3]&nA[2]&nA [1]&nA [O] ZENABLE,

A[5]&nA[4]&nA[3]&nA[2]&nA[1]& A[O]&ENABLE,
A[5]&nA[4]&nA[3]enA[2]& A[1]&nA[0]%ZENABLE,
A[5]&nA[4]&nA(3]&nA[2]& A[1]& A[O]&ENABLE,

A(5]&nA[4]&nA(3]& A[2]&nA[1]&nA[O]ZENABLE,

A[S]&nA[4]&nA(3]& A[2]&nA[1]& A[O]ZENABLE,

A(5]&nA[4]&nA(3]& A[2]2 A[1]%nA[O]&ENABLE,

A[5]&nA[4]&nA[3]& A[2]e A[1]& A[O]&ENABLE,

98

B[40] = A[5]&nA[4]1& A[3]2nA[2]&nA[1]&nA[0]%ENABLE,
B[41] = A[S]&nA[4]& A[3]enA[2]#nA[1]& A[O]J&ENABLE,
B[42] = A[5)&mA[4]2 a[3]&nA[2]% A[1]&nA[O]&ENABLE,
B[43] = A[5]énA[4]% A[31#nA[2]& A[1]& A[O]ZENABLE,
B[44] = A[5]&nA[4]& A[3]& A[2]&nA[1]&nA[O]ZENABLE,
B[45] = A([5]&nA(4]% A[3]z A[2]#nA[1]& A[O]ZENABLE,
B[46] = A[5]¢nA[4]& A[3]% A[2]% A[1]&nA[O]ZENABLE,
B[47] = A[S]&nA[4]& A[3]& A[2]& A[1]& A[O]ZENABLE,
B[48] = A[S]& A[4]&nA(3]1&nA[2]2nA[1]&nA[O]ZENABLE,
B[49] = A[S]& A[4]&nA[3]1enA[2]2nA[1]& A[O]ZENABLE,
B[S0] = A[5]& A[4]&na[3]2nA[2]& A[1]&nA[O]ZENABLE,
B[S1] = A[S]% A[4]&nA[3]#nA[2]& A[1]& A[O]ZENABLE,
B[52] = A[5]%& A[4]&nA[3]% A[2]&nA[1]&nA[O]%ZENABLE,
B[53] = A[S]& A[4]&nA(3]1& A[21&nA[1]& A[OJ&ENABLE,
B[54] = A[S]& A[4)&na[3]z A[2]% A[1]&nA[0]%ZENABLE,
B(S5] = A[5]& A[4]&nA(3]% A[2]% A[1]& A[OJZENABLE,
B[56] = A[5]& A[4]& A[3]&nA[2]&nA[1]&nA[0]ZENABLE,
B(S7] = A[5]& A(4]& A[3]2nA[2]&nA[1]% A[O]ZENABLE,
B[58] = A[5]& A[4]& A[3]2nA[2]& A[1]&nA[O]%ENABLE,
B[SS] = A[5]& A[4]& A[3]2nA[2]& A[1]1& A[O]ZENABLE,
B[60] = A[5]& A[4]z A[31% A[2]2nA[1]%nA[0]&ENABLE,
B(61] = A[5]& A[4]& A[3]% A[2]&nA[1]J& A[OJZENABLE,
B(62] = A[S]& A[4]e A[3]% A[2]& A[1]&nA[0]ZENABLE,
B[(63] = A[5)& A[4]& A[3]1% A[2]& A[1]& A[O]ZENABLE;
endmodule

module SF_HALFADDER (A,B,S,C);

input A,B;
output C,S;

xor g0 (S,A,B);
and g1 (C,A,B);

endmodule

module SF_FULLADDER (A,B,Ci,S,Co);

input A,B,Ci;
output S,Co;

wire T1,T2,T3;

SF_HALFADDER haO (A,B,T1,T2);
SF_HALFADDER hal (Ci,T1,S,T3);

99

or g0 (Co,T2,T3);

endmodule

module SF_ADDER_6B (A,B,S,C);

input [5:0] A,B;
output [5:0] S;
output C;

wire [4:0] carry;

SF_HALFADDER haO (A[0],B[0],S[0],carry[0]);
SF_FULLADDER fa1l (A[1],B[1],carry[0],S[1],carry[1]);
SF_FULLADDER fa2 (A[2],B[2],carry[1],S[2],carry[2]);
SF_FULLADDER fa3 (A[3],B[3],carry(2],S[3],carry[3]);
SF_FULLADDER fa4 (A[4],B[4],carry[3],S[4],carry[4]);
SF_FULLADDER faS5 (A[5],B[5],carry[4],S[5],C);

endmodule

module SF_COMPARATOR_6B (A,B,AGTB,ALTB,AETB);

input [5:0] A,B;
output AGTB,ALTB,AETB;

wire [5:0] x,A_nB,nA_B;
wire [3:0] y;

assign A_nB = A&("B),
nA_B = ("A)&B;
assign y[3] = x[S]&x[4],
y[2] = x[s]ex[4]ex[3],
y[1] = x[5]&x[4]&x[3]&x[2],
y[o] = x[5]&x[4]&x[3]&x[2]&x[1];

assign x=A""B,
AETB = &x,
AGTB=A_nB[5] | (x[S]&A_nB[4]) | (y[3]&A_nB[3]) | (y[21&A_nB[2])|
(y[1l&A_nB[1]) | (y[0l&a_nB[0]),
ALTB=nA-B[5]l(x[S]&nA_B[4J)I(y[3]&nA_B[3])I(y[2]&nA_B[2])I
(y(1l&na_B[1]) | (y[0]&nA_B[0]);
endmodule

100

module SF_COMPARATOR_7B (A,B,AGTB,ALTB,AETB) ;

input [6:0] A,B;
ocutput AGTB,ALTB,AETB;

wire [6:0] x,A_nB,nA_B;
wire [4:0] y;

assign A_nB = A&(°B),
nA_B = (TA)&B;

assign y[4] = x[6]&x[5],
y[3] = x[6l&x[5]&x[4],
y[2] = x[6]ex[s]&x[4]&x[3],
y[1] = x[6]ex[5]le&x[4]ex[3]ex[2],
y[0] = x[6lex[5]&x[4]ex[3]ex[2]ex[1];

assign x=A""B,
AETB = &x,
AGTB=A_nB[6] | (x[6]&A_nB([5]) | (y[4]&A_nB[4]) | (y[3]&A_nB[3])|
(y[2]&A_nB[2])|(y[1]&A_nB[1]) | (y[0]&A_nB[0]))
ALTB=nA_B[6] | (x[6]&nA_B[5])|(y[4]&nA_B[4])| (y[3]1&nA_B[3])1
(y[2]&nA_B[2])I(y[1]&nA_B[1])| (y[0l&nA_B[0]);

endmodule

module SF_COMPARE_UNIT (INPUTI,NUMBER,INPUT2,AGTB,ALTB,AETB);

input [5:0] INPUT1,NUMBER, INPUT?2;
output AGTB,ALTB,AETB;

wire [5:0] 4;
wire C;
reg [6:0] X,Y;

SF_ADDER_6B ad0 (INPUT1,NUMBER,A,C);
SF_COMPARATOR_7B commO(X,Y,AGTB,ALTB,AETB) ;

alwvays @(A or C) begin
xfel = c;
X[5:0] = a;

end

always @(INPUT2) begin
Y[6]=0;
Y[5:0] = INPUT2;

end

endmodule

101

module RECEIVE_FIFO (CLK,RESET,DATA,CS,DATA_TYPE,WRITE_READ,
RECEIVE_EMPTY,RECEIVE_FULL,RECEIVE_S,
RECEIVE_16,RECEIVE_24,
DAHOD,CAHOD,
DATA_IN,RECEIVE_CLK);

input CLK,RESET;

input [8:0] DATA_IN;
input CS;

input [1:0] DATA_TYPE;
input WRITE_READ;

output RECEIVE_EMPTY,RECEIVE_FULL,RECEIVE_S »RECEIVE_16 ,RECEIVE_24;
output DAHOD,CAHOD;
output [71:0] DATA;
input RECEIVE_CLK;

reg [5:0] TAIL,HEAD;

reg [5:0] HP,TP;

wire [5:0] A,B,S,H;

wire [5:0] HP_l,HP-Z,HP_S,HP_4,HP-S,HP_6,HP_7;
wire TAIL_HEAD_RESET;

wire HEAD_INCREMENT;

RF_MEMORYBANK rmb (RECEIVE-CLK,HP,HP_l,HP-2,HP-3,
HP_4,HP_5,HP_6,HP_7,TP,DATA,DATA_IN);

RF_STATUS rfs (HEAD,TAIL,RECEIVE_EMPTY,RECEIVE_FULL,
RECEIVE_8,RECEIVE_16 ,RECEIVE_24);

assign TAIL_HEAD_RESET = CS & WRITE_READ & ("CIDATA_TYPE));

assign HEAD_INCREMENT = CS & ("WRITE_READ);

DATA[8] & ("RECEIVE_EMPTY),
~(DATA[8] |RECEIVE_EMPTY) ;

assign CAHOD
DAHOD

RF_ADDER_6B add8_0 (TAIL,A,S,),
add8_1 (HEAD,B,H,),
add8_2 (HP,6’b000001,HP_1,)
add8_3 (HP,6°'b000010,HP_2,)
add8_4 (HP,6’b000011,HP_3,),

-4,)
-5,)

add8_5 (HP,6’b000100,HP
add8_6 (HP,6’b000101,HP

102

adds_7 (HP,S’bOOOIlO,HP_G,),
add8_8 (HP,6’b000111,HP_7,);

assign A[5] =
A[4] =
A[3] =
Af2] =
A[1] = o,
A[0] = ~(&DATA_IN);

3

1 OO0 O0OO0OO0O

assign B[5] = 0,

B[4] = o,

B[3] = DAHOD & (~CAHOD) & RECEIVE_S,
B[2] = o,

B[1] = o,

B[O] = CAHOD & (~DAHOD) & ~(RECEIVE_EMPTY) ;

always @(posedge RESET or posedge CLK) begin
if (RESET)

TP = 0;
else
TP = TAIL;

end

always Q(posedge RESET or posedge RECEIVE_CLK) begin
if (RESET)

TAIL = O;
else
TAIL = §;
end

always @(posedge RESET or posedge CLK) begin
if (RESET)
HEAD = 0;
else begin
if (TAIL_HEAD_RESET)

HEAD = TAIL;
else if (HEAD_INCREMENT)
HEAD = H;
else
HEAD = HEAD;
end
end

always Q(posedge RESET or negedge CLK) begin
if (RESET)
HP = 0;
else

103

HP = HEAD;
end

endmodule

module RF_STATUS(HEAD,TAIL,RECEIVE_EMPTY,RECEIVE_FULL,
RECEIVE_8,RECEIVE_16,RECEIVE_24) ;

input [5:0] HEAD, TAIL;
output RECEIVE_EHPTY,RECEIVE_FULL,RECEIVE-S,RECEIVE_iG,RECEIVE_24;

wire rfa,rfb;

wire r8a,r8b,r8c,r8d;
wire ri16a,r16b,ri6¢c,r16d;
vire r24a,r24b,r24c,r24d;
wire TGTH,TLTH;

assign RECEIVE_FULL = (TGTH&rfa) | (TLTd&rfb),

RECEIVE_8 = (TGTH&(r8alr8b)) | (TLTH&(r8c|r8d)),
RECEIVE_16 = (TGTH&(riGaIriGb))I(TLTH&(rIGCIrIGd)).
RECEIVE_24 = (TGTH&(r24alr24b))|(TLTH&(r24clr24d));

RF_COMPARE_UNIT commO (HEAD,G’blliili,TAIL,,,rfa),
commi (TAIL,G’bOOOOOl,HEAD,,,rfb),
comm?2 (HEAD,G’bOOlOOO,TAIL,,r8a,r8b),
comm3 (TAIL,6’b111000,HEAD,r8C,,r8d),
comm4 (HEAD,S’bOlOOOO,TAIL,,r16a,r16b),
commS (TAIL,6’b110000,HEAD,r16c,,r16d),
comm6 (HEAD,6°'b011000,TAIL,,r24a,r24b),
comm?7 (TAIL,6’b101000,HEAD,r24C,,r24d);

RF_COMPARATOR_6B comm8 (TAIL,HEAD,TGTH,TLTH,RECEIVE_EMPTY);
endmodule

module RF_MEMORYCELL(RECEIVE_CLK,
HPEQ_O,HPEQ_1,HPEQ_2,HPEQ_3,
HPEQ_4,HPEQ_5,HPEQ_6,HPEQ_7,
TPEQ,DATA,DIN);

input RECEIVE_CLK;

input HPEQ_O,HPEQ_I,HPEQ_Z,HPEQ_S,HPEQ_4,HPEQ_5,HPEQ_G,HPEQ_7;
input TPEQ;

output [71:0] DATA;

input [8:0] DIN;

reg [8:0] MEM;

104

(HPEQ_O==1’b1) ? MEM : 9’bzzzzzZzZZZ,
(HPEQ_1==1’b1) ? MEM : 9’bzzzzzZzzZZ,
(HPEQ_2==1’b1) ? MEM : 9'bzzzzzzz2Z,
(HPEQ_3==1’b1) ? MEM : 9’bzzzzzzz2Z,
(HPEQ_4==1’b1) ? MEM : 9'bzzzzzzzzz,
(HPEQ_5==1’b1) ? MEM : 9'bzzzzzzzzz,
(HPEQ_6==1’b1) ? MEM : 9°'bzzzzzzzzZ,
(HPEQ_7==1’b1) ? MEM : 9'bzzzzzzzzz;

assign DATA[8:0]
DATA[17:9]
DATA[26:18]
DATA[35:27]
DATA[44:36]
DATA[53:45]
DATA[62:54]
DATA[71:63]

always Q@(posedge RECEIVE_CLK) begin
if(TPEQ)
MEM = DIN;
end
endmodule

module RF_MEMORYBANK(RECEIVE_CLK,HP,HP_i,HP_2,HP_3,
HP_4,HP_5,HP_6 ,HP_7,TP,DATA,DIN);

input RECEIVE_CLK;
input [5:0] HP,HP_I,HP_2,HP_S,HP_4,HP_5,HP_6,HP_7;
input [5:0] TP;

output [71:0] DATA;

input [8:0] DIN;

tri [71:0] DATA;
wire [63:0] HPEQ_O,HPEQ_l,HPEQ_Z,HPEQ_S,HPEQ_4,HPEQ_5,HPEQ_6,HPEQ_?;
wire [63:0] TPEQ;

RF_MUX6X64 mO (HP,HPEQ_0),
m1i (HP_1,HPEQ_1),
m2 (HP_2,HPEQ_2),
m3 (HP_3,HPEQ_3),
m4 (HP_4,HPEQ_4),
mS (HP_S,HPEQ_5),
m6é (HP_6,HPEQ_6),
m7 (HP_7,HPEQ_7),
m8 (TP,TPEQ);

RF_MEMORYCELL rfmcO (RECEIVE_CLK,HPEQ_0[0],HPEQ_1[0] ,HPEQ_2[0],
HPEQ_3[0] ,HPEQ_4[0] ,HPEQ_5[0] ,HPEQ_6[0] ,
HPEQ_7[0] ,TPEQ[0] ,DATA,DIN) ;

RF_MEMORYCELL rfmc1 (RECEIVE_CLK,HPEQ_0[1],HPEQ_1[1] ,HPEQ_2[1],
HPEQ_3(1],HPEQ_4[1] ,HPEQ_S[1] ,HPEQ_6[1],
HPEQ_7 (1] ,TPEQ[1] ,DATA,DIN);

RF_MEMORYCELL rfmc2 (RECEIVE_CLK,HPEQ_0[2] ,HPEQ_1[2] ,HPEQ_2[2],
HPEQ_3[2] ,HPEQ_4[2] ,HPEQ_5[2] ,HPEQ_6[2],

105

HPEQ_7 [2] ,TPEQ[2] ,DATA,DIN) ;

RF_MEMORYCELL rfmc3 (RECEIVE_CLK,HPEQ_O[3],HPEQ_1[3],HPEQ_2[3],
HPEQ.3([3],HPEQ_4[3] ,HPEQ_5[3] ,HPEQ_6[3],
HPEQ_7 [3],TPEQ[3],DATA,DIN);

RF_MEMORYCELL rfmc4 (RECEIVE_CLK,HPEQ_O[4],HPEQ_1(4],HPEQ_2[4],
HPEQ_3[4] ,HPEQ_4[4] ,HPEQ_5[4],HPEQ_6[4],
HPEQ_7 [4] ,TPEQ[4] ,DATA,DIN) ;

RF_MEMORYCELL rfmc5 (RECEIVE_CLK,HPEQ_0[S],HPEQ_1[5],HPEQ_2[5],
HPEQ.3[5] ,HPEQ_4[5] ,HPEQ_S[5] ,HPEQ_6[5],
HPEQ.7[5],TPEQ[S5],DATA,DIN);

RF_MEMORYCELL rfmc6 (RECEIVE_CLK,HPEQ_0[6],HPEQ_1[6],HPEQ_2[6],
HPEQ_3[6] ,HPEQ_4[6] ,HPEQ_S[6] ,HPEQ_6[6] ,
HPEQ_7[6] ,TPEQ[6],DATA,DIN);

RF_MEMORYCELL rfmc7 (RECEIVE_CLK,HPEQ_0[7],HPEQ_1[7],HPEQ_2[7],
HPEQ_3[7] ,HPEQ_4[7] ,HPEQ_S[7] ,HPEQ_6[7],
HPEQ_7[7] ,TPEQ[7] ,DATA,DIN) ;

RF_MEMORYCELL rfmc8 (RECEIVE_CLK,HPEQ_0[8],HPEQ_1[8],HPEQ_2[8],
HPEQ_3[8] ,HPEQ_4[8] ,HPEQ_5[8] ,HPEQ_6[8],
HPEQ_7[8],TPEQ[8],DATA,DIN);

RF_MEMORYCELL rfmc9 (RECEIVE_CLK,HPEQ_0[9],HPEQ_1[9],HPEQ_2[9],
HPEQ_3[9] ,HPEQ_4[9] ,HPEQ_5[9] ,HPEQ_6[9],
HPEQ_7[9] ,TPEQ[9],DATA,DIN);

RF_MEMORYCELL rfmci10 (RECEIVE_CLK,HPEQ_0[10] ,HPEQ_1[10] ,HPEQ_2[10],
HPEQ_3[10] ,HPEQ_4[10] ,HPEQ_5[10],HPEQ_6[10],
HPEQ_7([10],TPEQ[10] ,DATA,DIN) ;

RF_MEMORYCELL rfmcii (RECEIVE_CLK,HPEQ_0[11] ,HPEQ_1[11] ,HPEQ_2[11],
HPEQ_3[11] ,HPEQ_4([11] ,HPEQ_5[11] ,HPEQ_6[11],
HPEQ_7[11] ,TPEQ[11] ,DATA,DIN);

RF_MEMORYCELL rfmci?2 (RECEIVE_CLK,HPEQ_0[12] ,HPEQ_1[12] ,HPEQ_2[12],
HPEQ_3[12] ,HPEQ_4(12] ,HPEQ_5[12] ,HPEQ_6[12],
HPEQ_7[12] ,TPEQ[12] ,DATA,DIN);

RF_MEMORYCELL rfmc13 (RECEIVE_CLK,HPEQ_0[13],HPEQ_1[13],HPEQ_2[13],
HPEQ_3(13] ,HPEQ_4([13] ,HPEQ_5[13] ,HPEQ_6[13],
HPEQ_7[13] ,TPEQ[13] ,DATA,DIN);

RF_MEMORYCELL rfmci4d (RECEIVE_CLK,HPEQ_0[14] ,HPEQ_1[14] ,HPEQ_2[14],
HPEQ_3[14] ,HPEQ_4[14] ,HPEQ_5[14] ,HPEQ_6[14],
HPEQ_7[14] ,TPEQ[14] ,DATA,DIN);

RF_MEMORYCELL rfmciS (RECEIVE_CLK,HPEQ_0[15] ,HPEQ_1[15] ,HPEQ_2[15],
HPEQ_3([15] ,HPEQ_4[15] ,HPEQ_5[15] ,HPEQ_6[15],
HPEQ_7[15] ,TPEQ[15] ,DATA,DIN);

RF_MEMORYCELL rfmc16 (RECEIVE_CLK,HPEQ_0[16] ,HPEQ_1[16] ,HPEQ_2[16],
HPEQ_3[16] ,HPEQ_4[16] ,HPEQ_S[16] ,HPEQ_6[16],
HPEQ_7[16] ,TPEQ[16] ,DATA,DIN);

RF_MEMORYCELL rfmc17 (RECEIVE_CLK,HPEQ_0[17],HPEQ_1[17],HPEQ_2[17],
HPEQ.3[17] ,HPEQ_4[17] ,HPEQ_5[17] ,HPEQ_6[17],
HPEQ_7[17],TPEQ[17] ,DATA,DIN);

RF_MEMORYCELL rfmci18 (RECEIVE_CLK,HPEQ_0[18] ,HPEQ_1[18] ,HPEQ_2[18],
HPEQ.3(18] ,HPEQ_4[18] ,HPEQ_5[18] ,HPEQ_6[18],

106

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

RF_MEMORYCELL

rfmci9

rfmc20

rfmc21

rfmc22

rfmc23

rfmc24

rfmc25

rfmc26

rfmc27

rfmc28

rfmc29

rfmc30

rfmc31

rfmc32

rfmc33

rfmc34

HPEQ_7 (18] ,TPEQ[18] ,DATA,DIN);
(RECEIVE-CLK,HPEQ_O[lQ],HPEQ_I[IS],HPEQ_Z[IS],
HPEQ_3[19],HPEQ_4[19],HPEQ_S[IS],HPEQ_GEISJ,
HPEQ_7[19] ,TPEQ[19] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_O[20],HPEQ_1[20],HPEQ_Z[ZO],
HPEQ_S[ZO],HPEQ_4[20],HPEQ_5[20],HPEQ_6[20],
HPEQ_7[20] ,TPEQ[20] ,DATA,DIN);
(RECEIVE_CLK,HPEQ-O[21],HPEQ-1[21],HPEQ_2[21],
HPEQ_3[21].HPEQ_4[21],HPEQ_5[21],HPEQ-6[21],
HPEQ_7(21],TPEQ[21] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_0[22],HPEQ-1[22],HPEQ-2[22],
HPEQ_3[22],HPEQ_4[22],HPEQ_5[22],HPEQ-6[22],
HPEQ_7[22] ,TPEQ[22] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_O[ZS],HPEQ_1[23],HPEQ_2[23],
HPEQ_3[23],HPEQ_4[23),HPEQ_S[23],HPEQ_6[23],
HPEQ_7[23] ,TPEQ[23] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_O[24],HPEQ_1[24],HPEQ_2[24],
HPEQ,3[24],HPEQ_4[24],HPEQ_5[24],HPEQ_6[24],
HPEQ_7[24],TPEQ[24] ,DATA,DIN);
(RECEIVE_CLK,HPEQ-O[ZS],HPEQ_1[25],HPEQ_2[25],
HPEQ_S[25],HPEQ-4[25],HPEQ-S[2S],HPEQ-6[25],
HPEQ_7[25] ,TPEQ[25] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_O[26],HPEQ_1[26],HPEQ-2[26],
HPEQ-3[26],HPEQ_4[26],HPEQ_5[26],HPEQ_6[26],
HPEQ_7[26] ,TPEQ[26] ,DATA,DIN) ;
(RECEIVE-CLK,HPEQ_O[27],HPEQ_1[27],HPEQ_2[27],
HPEQ_3(27] ,HPEQ_4[27] ,HPEQ_5[27] ,HPEQ_6[27],
HPEQ_7[27],TPEQ[27] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_O[28],HPEQ_1[28],HPEQ_2[28],
HPEQ_3 (28] ,HPEQ_4[28] ,HPEQ_5[28] ,HPEQ_6[28],
HPEQ_7[28],TPEQ[28] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[29] ,HPEQ_1[29] ,HPEQ_2[29],
HPEQ_3[29] ,HPEQ_4[29] ,HPEQ_5[29] ,HPEQ_6[29],
HPEQ_7[29] ,TPEQ[29] ,DATA,DIN) ;
(RECEIVE-CLK,HPEQ_O[SO],HPEQ_l[SO],HPEQ_2[30],
HPEQ_3[30] ,HPEQ_4[30] ,HPEQ_S[30] ,HPEQ_6[30],
HPEQ_7[30] ,TPEQ[30] ,DATA,DIN) ;
(RECEIVE-CLK,HPEQ_O[31],HPEQ_1[31],HPEQ_2[31],
HPEQ_3(31] ,HPEQ_4[31] ,HPEQ_5[31] ,HPEQ_6[31],
HPEQ_7[31],TPEQ[31] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_O[32],HPEQ_I[SZ],HPEQ_2[32],
HPEQ_3([32] ,HPEQ_4[32] ,HPEQ_5[32] ,HPEQ_6([32],
HPEQ_7[32],TPEQ[32] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_O[33],HPEQ_1[33],HPEQ_2[33],
HPEQ_3[33],HPEQ_4[33],HPEQ-5[33],HPEQ_6[33],
HPEQ_7[33],TPEQ[33],DATA,DIN) ;
(RECEIVE_CLK,HPEQ_O[34],HPEQ_1[34],HPEQ_2[34],
HPEQ_3[34],HPEQ_4[34],HPEQ_5[34],HPEQ_6[34],

107

HPEQ_7[34] ,TPEQ[34] ,DATA,DIN);

RF_MEMORYCELL rfmc35 (RECEIVE-CLK,HPEQ_O[SS],HPEQ_1[35],HPEQ-2[35],
HPEQ_3[35],HPEQ_4[35],HPEQ_S[SS],HPEQ_G[SS],
HPEQ_7[35] ,TPEQ[35] ,DATA,DIN);

RF_MEMORYCELL rfmc36 (RECEIVE_CLK,HPEQ-O[SS],HPEQ-I[SS],HPEQ_2[36],
HPEQ_3[36],HPEQ_4[36],HPEQ-5[36],HPEQ_6[36],
HPEQ_7[36] ,TPEQ[36] ,DATA,DIN);

RF_MEMORYCELL rfmc37 (RECEIVE-CLK,HPEQ_O[37],HPEQ_1[37],HPEQ_2[37],
HPEQ_3[37],HPEQ_4[37],HPEQ_S[S?],HPEQ_G[ST],
HPEQ_7[37] ,TPEQ[37],DATA,DIN);

RF_MEMORYCELL rfmc38 (RECEIVE_CLK,HPEQ-0[38],HPEQ_1[38],HPEQ_2[38],
HPEQ_3[38],HPEQ_4[38],HPEQ_5[38],HPEQ_6[38],
HPEQ_7[38] ,TPEQ[38] ,DATA,DIN);

RF_MEMORYCELL rfmc39 (RECEIVE-CLK,HPEQ_O[SS],HPEQ_1[39],HPEQ_2[39],
HPEQ-S[SQ],HPEQ_4[39],HPEQ_S[SS],HPEQ-S[SS],
HPEQ_7[39] ,TPEQ[39] ,DATA,DIN);

RF_MEMORYCELL rfmc40 (RECEIVE_CLK,HPEQ_0[40],HPEQ_1[40],HPEQ-2[40],
HPEQ_3[40],HPEQ-4[40],HPEQ_5[40],HPEQ_6[40],
HPEQ._7[40] ,TPEQ[40] ,DATA,DIN);

RF_MEMORYCELL rfmc41 (RECEIVE_CLK,HPEQ_O[41],HPEQ_1[41],HPEQ-2[41],
HPEQ_3[41],HPEQ-4[41],HPEQ_5[41],HPEQ_6[41],
HPEQ_7[41] ,TPEQ[41],DATA,DIN);

RF_MEMORYCELL rfmc42 (RECEIVE_CLK.HPEQ_0[42],HPEQ_1[42],HPEQ_2[42],
HPEQ-3[42],HPEQ_4[42],HPEQ_5[42],HPEQ_6[42],
HPEQ_7[42] ,TPEQ[42] ,DATA,DIN) ;

RF_MEMORYCELL rfmc43 (RECEIVE_CLK,HPEQ_O[43],HPEQ_1[43],HPEQ_2[43],
HPEQ_3[43],HPEQ_4[43],HPEQ_5[43],HPEQ_6[43],
HPEQ_7[43] ,TPEQ[43],DATA,DIN);

RF_MEMORYCELL rfmc44 (RECEIVE-CLK,HPEQ_O[44],HPEQ-1[44],HPEQ_2[44],
HPEQ_3[44] ,HPEQ_4[44] ,HPEQ_5[44] ,HPEQ_6[44],
HPEQ_7[44] ,TPEQ[44] ,DATA,DIN) ;

RF_MEMORYCELL rfmc45 (RECEIVE_CLK,HPEQ_O[45],HPEQ_1[45],HPEQ-2[45],
HPEQ_3(45] ,HPEQ_4[45] ,HPEQ_5[45] ,HPEQ_6[45] ,
HPEQ_7[45] ,TPEQ[45] ,DATA,DIN);

RF_MEMORYCELL rfmc46 (RECEIVE_CLK,HPEQ_0[46],HPEQ_1[46],HPEQ-2[46],
HPEQ_3[46] ,HPEQ_4[46] ,HPEQ_5 [46] ,HPEQ_6[46] ,
HPEQ_7[46] ,TPEQ[46] ,DATA,DIN);

RF_MEMORYCELL rfmc47 (RECEIVE_CLK,HPEQ_O[47],HPEQ_1[47],HPEQ_2[47],
HPEQ_3[47] ,HPEQ_4(47] ,HPEQ_S[47] ,HPEQ_6[47],
HPEQ_7[47] ,TPEQ[47],DATA,DIN);

RF_MEMORYCELL rfmc48 (RECEIVE_CLK,HPEQ_0[48],HPEQ_1[48],HPEQ_2[48],
HPEQ_3[48] ,HPEQ_4[48] ,HPEQ_5[48] ,HPEQ_6[48],
HPEQ_7[48] ,TPEQ[48] ,DATA,DIN) ;

RF_MEMORYCELL rfmc49 (RECEIVE_CLK,HPEQ_0[49] ,HPEQ_1[49] ,HPEQ_2[49],
HPEQ_3[49] ,HPEQ_4[49] ,HPEQ_5[49] ,HPEQ_6[49],
HPEQ_7[49] ,TPEQ[49],DATA,DIN);

RF_MEMORYCELL rfmcS50 (RECEIVE-CLK,HPEQ_O[SO],HPEQ_l[SO],HPEQ_2[SO],
HPEQ_3[50] ,HPEQ_4[50] ,HPEQ_S[50] ,HPEQ_6[50],

108

RF_MEMORYCELL rfmc51

RF_MEMORYCELL rfmc52

RF_MEMORYCELL rfmc53

RF_MEMORYCELL rfmc54

RF_MEMORYCEi.L rfmcS5

RF_MEMORYCELL rfmcS6

RF_MEMORYCELL rfmcS57

RF_MEMORYCELL rfmc58

RF_MEMORYCELL rfmcS59

RF_MEMORYCELL rfmc60

RF_MEMORYCELL rfmc61

RF_MEMORYCELL rfmc62

RF_MEMORYCELL rfmc63

endmodule

HPEQ_7[50] , TPEQ[S50] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[51] ,HPEQ_1[51] ,HPEQ_2([51],
HPEQ_3([51] ,HPEQ_4[51] ,HPEQ_S[51] ,HPEQ_6[51],
HPEQ_7[51] ,TPEQ[51] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_0[52] ,HPEQ_1[52] ,HPEQ_2[52],
HPEQ_3(52] ,HPEQ_4[52] ,HPEQ_5[52] ,HPEQ_6[52],
HPEQ_7[52] ,TPEQ[52] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_0[53] ,HPEQ_1[53] ,HPEQ_2[53],
HPEQ_3[53] ,HPEQ_4[53] ,HPEQ_5[53] ,HPEQ_6[53],
HPEQ_7[53] ,TPEQ[53] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[54] ,HPEQ_1[54] ,HPEQ_2[54],
HPEQ_3([54] ,HPEQ_4[54] ,HPEQ_5[54] ,HPEQ_6[54],
HPEQ_7[54] ,TPEQ[54] ,DATA ,DIN) ;
(RECEIVE_CLK,HPEQ_0[55] ,HPEQ_1[55] ,HPEQ_2[55],
HPEQ_3(55] ,HPEQ_4[55] ,HPEQ_5[55] ,HPEQ_6[55] ,
HPEQ_7[55] ,TPEQ[S5] ,DATA ,DIN) ;
(RECEIVE_CLK,HPEQ_0[56] ,HPEQ_1[56] ,HPEQ_2[56],
HPEQ_3[S6] ,HPEQ_4[56] ,HPEQ_5[56] ,HPEQ_6[56],
HPEQ_7[S6] ,TPEQ[S6] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_0[57] ,HPEQ_1[57] ,HPEQ_2[57],
HPEQ_3[57] ,HPEQ_4(57] ,HPEQ_5[57] ,HPEQ_6[57],
HPEQ_7[57] ,TPEQ[57],DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0(58] ,HPEQ_1[58] ,HPEQ_2[58],
HPEQ_3(58] ,HPEQ_4[58] ,HPEQ_5[58] ,HPEQ_6[58],
HPEQ_7[58] ,TPEQ[58] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[59] ,HPEQ_1[59] ,HPEQ_2[59],
HPEQ_3[59] ,HPEQ_4[59] ,HPEQ_5[59] ,HPEQ_6[59],
HPEQ_7[59] ,TPEQ[59] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[60] ,HPEQ_1[60] ,HPEQ_2[60] ,
HPEQ_3[60] ,HPEQ_4[60] ,HPEQ_5[60] ,HPEQ_6[60],
HPEQ_7[60] ,TPEQ[60] ,DATA,DIN);
(RECEIVE_CLK,HPEQ_0[61] ,HPEQ_1[61] ,HPEQ_2[61],
HPEQ_3[61] ,HPEQ_4([61] ,HPEQ_5[61] ,HPEQ_6[61],
HPEQ_7[61] ,TPEQ[61] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[62] ,HPEQ_1[62] ,HPEQ_2[62],
HPEQ_3([62] ,HPEQ_4[62] ,HPEQ_5[62] ,HPEQ_6[62],
HPEQ_7[62] ,TPEQ[62] ,DATA,DIN) ;
(RECEIVE_CLK,HPEQ_0[63] ,HPEQ_1[63] ,HPEQ_2[63],
HPEQ_3[63] ,HPEQ_4[63] ,HPEQ_5[63] ,HPEQ_6[63],
HPEQ_7[63],TPEQ[63] ,DATA,DIN);

module RF_MUX6X64 (A,B);

input [5:0] 4;
output [63:0] B;

109

wire [5:0] nA;

assign nA = “A;

assign B[0] = nA[5]&nA[4]&nA[3]&nA[2]&nA[1]1&nAl0],
B[1] = nA[S]&nA[4]&nA[3]&nA[2]&nA[1]% A[O],
B[2] = nA[5]&nA[4]2nA[3]&nA[2]& A[1]&nA[0],
B[3] = nA[S]&nA[4]&nA(3]&nA[2]& A[1]& A[O],
B[4] = nA[5]&nA[4]&nA[3]& A[2]&nA[1]&nA[0],
B(5] = nA[5]&nA[4]enA(3]& A[2]&nAl1]& A[O],
B(6] = nA[5]enA[4]lémA[3]& A[2]& A[1]&nA[o0],
B[7] = nA[SlemA[4]&nA[3]% A[2]& A[1]e A[0],
B(8] = nA[5]&nA[4]& A[3]&nA[2]&nA[1]&nA[0],
B[9] = nA[5]&nA[4]% A[3]&nA[2]&nA[1]& A[0],
B[10] = nA[S]&nA[4]& A[3]&nA[2]& A[1]&nAf0],
B[11] = nA[S]e&nA[4]& A[3]&nA[2]& A[1]& A[O],
B[12] = nA[5]&nA[4]% A[3]& A[2]&nA[1]&nA[0],
B[13] = nA[S]&nA[4]& A[3]& A[2]&nA[1]e A[O],
B[14] = nA[S5]&nA[4]& A[3]& A[2]& A[1]&nafo0],
B[15] = nA[5]&nA[4]% A[3]& A[2]& A[1]& A[0],
B[(16] = nA[S]& A[4]&nA[3]&nA[2]&nA[1]&nA[0],
B[(17] = nA[S]& A[4]&nA[3]&nA[2]&na[1]& A[O],
B(18] = nA[S]l& A[41&nA[3]&nA[2]% A[1]1&nafo0],
B[19] = nA[S]& A[4]&nA[3]&nA[2]% Al1]& A[O],
B[20] = nA[S]& A[4)&nA[3]& A[2]&nA[1]&nA[0],
B[21] = nA[S]& A[4]&nA[3]& A[2]&na[1]e& A[O],
B[22] = nA[5]& A[4]&nA[3]& A[2]& A[1]&nA[O],
B[23] = nA[5]& A[4]&nA[3]% aA[2]& A[1]e A[O],
B[24] = nA[5]& A[4]& A[3]&na[2]&nA[1]2nA[0],
B[25] = nA[5]& A[4]& A[3]&nA[2]&na[1]& A[O],
B[26] = nA[5]& A[4]% A[3]&na[2]& A[1]&nA[O],
B[27] = nA[5]2& A[4]& A[3]&znal2]& a[1]e A[O],
B[28] = nA[S5]& A(4]& A[3]& A[2]&nA[1]&nAl0],
B[29] = nA[S]& A[4]% A[3]% A[2]&nA[1]Z A[O],
B[30] = nA[5]& A[4]z A[3]& A[2]& A[1]&nA[O],
B[31] = nA[5]% A[4)% A[3]& A[2]& A[1]& A[0],
B[32] = A[5)é&nA[4]&nA[3]&nA[2]&nA[1]&nal0],
B[33] = A[5]&nA(4]&nA[3]&nA[2]&nA[1]& A[O],
B[34] = A[5]&nA[4]&nA[3]&nA(2]& A[1]&nA[O],
B[35] = A[5]enA[4]&nA(3]1&nAl[2]& A[1]& A[O],
B[36] = A[S]&nA[4)&nA(3]& A[2]&nA[1]&nA[0],
B[37] = A[5]&nA[4]&na(3]& A[2]&nA[1]& A[O],
B[38] = A[5]&nA[4]&nA[3]1& A[2]% A[1]&nA[0],
B[39] = A[S]&nA[4]&mA[3]& A[2]& A[1]1& A[O],
B[40] = A([5]&na[4]& A[3]&nA[2]&nA[1]lenAl0],
B[41] = A[5]&nAl4]% A[3]&nA[2]1&nA[1]Z A[O],
B[42] = A[5]l&nA[4]& A[3]&nA[2]& A[1]&nA[0],
B[43] = A[5]&nA[4]% A[3]&nA[2]& A[1]& A[O],

110

B(44] = A[5S]&nA[4]& A[3]%& A[2]&nA[1]&nA[0],
B[45] = A[5]enA[4]% A[3]% A[2]&nAl[1]& A[0],
B[46] = A[S]l&na(4]% A[3]& A[2]& A[1]&nA[o0],
B[47] = A[5]&nA(4]& A[3]& a[2]& A[1]& A[0],
B[48] = A[S]& A[4]&nA[3]&nA(2]&nA[1]1&nAl0],
B[49] = A[5]& A[4)&nA[31&nA(2]enA[1]& Af0],
B[S0] = A[5]& A[4]&nA[3]&nA[2]& A[1]&nA[0],
B(S1] = A[5]& A[4]1&nA[3]&na[2]1& A[1]& A[0],
B(52] = A[5]% A[4]&nA[3]1& A[2]&nA[1]&mA[0],
B[53] = A[5]% A[4]1&nA[3]& A[2]2nA[1]e Afo],
B(54] = A[S]& A[4]&nA[3]% A[2]& A[1]&nalo],
B[55] = A[5]& A[4]&na[3]& al2]% A[1]& A[O],
B{56] = A[5]& A[4]l& A[3]&nA[2]1%&nA[1]&nA[0],
B(s7] = A[5]& A[4]& A[3]&nA[2]12nA[1]& A[O],
B[S8] = A[5]& A[4]1& A[3]&nA[2]& A[1]&nA[0],
B(S9] = A[5]% A[4]& A[3]&nA[2]1% A[1]& A[O],
B{60] = A[5]& A[4]& A[3]%& A[2]&nAl[1]e&na[0],
B[61] = A[5]1% Al4]z A[3]& A[2]enA[1]& A[O],
B[62] = A[5]& A[4]& A[3]& A[2]& A[1]&nA[o],
B(63] = A[S]l& A[4]& A[3]e Al[2]& a[1]& A[O];
endmodule

module RF_HALFADDER (A,B,S,C);

input A,B;
output C,S;

xor g0 (S5,A,B);
and g1 (C,A,B);

endmodule

module RF_FULLADDER (A,B,Ci,S,Co);

input A,B,Ci;
output S,Co;

wire T1,T2,T3;
RF_HALFADDER haO (A,B,T1,T2);
RF_HALFADDER hail (Ci,T1,S,T3);
or g0 (Co,T2,T3);

endmodule

module RF_ADDER_6B (A,B,S,C);

111

input [5:0] A,B;
output [5:0] s;
output C;

wire [4:0] carry;

RF_HALFADDER haO (A[0],B[0],S[0],carry[0]);

RF_FULLADDER fai (A[1],B[1],carry[0],S[1],carry[1]);

RF_FULLADDER fa2 (A[2],B[2],carry[1],S[2],carry[2]);

RF_FULLADDER fa3 (A[3],B[3],carry[2],S[3],carry[3]);

RF_FULLADDER fa4 (A[4],B[4],carry[3],s[4],carry[4]);

RF_FULLADDER faS (A[5],B[S],carry[4],s(5],C);
endmodule

module RF_COMPARATOR_6B (A,B,AGTB,ALTB,AETB);

input [5:0] a,B;
output AGTB,ALTB,AETB;

wire [5:0] x,A_nB,nA_B;

wire [3:0] y;
assign A_nB = A&("B),
nA_B = (TA)&B;
assign y[3] = x[5]&x[4],
y[2] = x[5]e&x[4]ex[3],
y[1] = x[5]&x[4]&x[3]&x[2],
y[0] = x[5]&x[4]&x[3]&x[2]&x[1];

assign x=A""B,
AETB = &x,
AGTB=A_nB[5] | (x[5]&A_nB[4]) | (y[3]1&A_nB[3]) | (y[2]%A_nB[2]) |
(y[1]&A_nB([1]) I (y[0]l&A_nB[0]),
ALTB=nA_B[5] | (x[5]&nA_B[4]1) | (y(3]&nA_B[3])|(y[2]&na_B[2])]|
(y{1]l&nA_B[1]) | (y[0l&nA_B[0]);
endmodule

module RF_COMPARATOR_7B (A,B,AGTB,ALTB,AETB);

input (6:0] A,B;
output AGTB,ALTB,AETB;

wire [6:0] x,A_nB,nA_B;
wire [4:0] y;

112

assign A_nB = A&("B),
nA_B = ("A)&B;
assign y[4] = x[6]&x[s],
y[3] = x[6l&x(5]&x[4],
y[2] = x[6]&x[5]&x[4)&x[3],
y[1]l = x[6l&x[5lex[4]ex[3]ex[2],
y[0] = x[6]&x[S]&x[4]&x[3]&ex[2]&x[1];

assign x=A""B,

AETB = &x,

AGTB=A_nB[6] | (x[6]&A_nB[5]) | (y[4]&A_nB[4]) | (y[3]2A_nB[3])]|
(y[2]&A_nB[2]) | (y[1]&A_nB[1]) |
(y[0lza_nB[0]),

ALTB=nA_B[6] | (x[6]&nA_B[5]) | (y[41&nA_B[4]) | (y[3]&nA_B(3]) |
(y[2]1&nA_B[2]) | (y[1]&nA_B[1]) |
(y[0ol&nA_B[0]1);

endmodule

module RF_COMPARE_UNIT (INPUT1,NUMBER,INPUT2,AGTB,ALTB,AETB):

input [5:0] INPUT1,NUMBER,INPUTZ2;
output AGTB,ALTB,AETB;

wire [5:0] 4;
wire C;
reg [6:0] X,Y;

RF_ADDER_6B ad0O (INPUT1,NUMBER,A,C);
RF_COMPARATOR_7B commO(X,Y,AGTB,ALTB,AETB);

always @(A or C) begin
x[6] = ¢c;
X[5:0] = 4;

end

always Q(INPUT2) begin
Y[6]=0;
Y[5:0] = INPUT2;

end

endmodule

113

Bibliography

(1]

[2]

(3]

(6]

G.M. Amdahl. Validity of the single-processor approach to achieving large scale com-
puting capabilities. In AFIPS Conference Proceedings, Apr. 18-20. volume 30, pages

483-486. Atlantic City, N.J., 1967.

Anujan Varma and C.S. Raghavendra, editor. Interconnection Networks for Multipro-
cessors and Multicomputers Theory and Practice. IEEE Computer Society Press, Los

Alamitos, CA. 1994.

Arvind and Robert A. lannucci. Two Fundamental Issues in Multiprocessing. Tech-
nical report, MIT Laboratory for Computer Computer Science, May 1987. Computer

Structures Group Memo 226-6.

C. F. Joerg. Design and Implementation of a Packet Switching Routing Chip. Technical

report. MIT Laboratory for Computer Science. 1990. TR 482.

C. F. Joerg. The Monsoon Interconnection Network. In Proceedings of the 1991 IEEE

International Conference on Computer Design, October 1991.

Cypress Semiconductor Corporation. Raceway Crossbar. July 1995.

[7] David A. Patterson and John L. Hennessy. editor. Computer Architecture: A Quanti-

tative Approach. Second Edition, pages 634-641. Morgan Kaufman Publishers. 1994.

114

[8] D.P. Agrawal. Graph Theoretical Analysis and Design of Multistage Interconnection

Networks. IEEE Transactions on Computers, C-32(7):637-684, J uly 1983.

[9] M.J. Flynn. Very high-speed computers. In Proceedings of IEEE. volume 54. pages

1901-1909. December 1966.

[10] G. Andrew Boughton. Arctic Routing Chip. Technical report, MIT Laboratory for

Computer Computer Science. March 1994. Computer Structures Group Memo 373.

[11] G. M. Papadopoulos and D. E. Culler. Monsoon. In Proceedings of the 17th Interna-

tional Symposium on Computer Architecture. Seattle, Washington. May 1990.
[12] GMD-FIRST. Berlin, Germany. MANNA Hardware Reference Manual. 1993.

[13] J.L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM. 31(5):532-

533. May 1988.

[14] Herbert H.J. Hum, Kevin B. Theobald and Guang R. Gao. Building multithreaded
architectures with off-the-shelf microprocessors. In Proceedings of the 8th International
Parallel Processing Symposium. pages 288-294. Cancun. Mexico. April 1994. [EEE

Computer Society.

[15] Herbert H.J. Hum, Oliver C. Maquelin and Guang R. Gao. Costs and Benefits of
Multithreading with Off-the-Shelf RISC Processors. In Proceedings of EURO-PAR 95.

pages 117-128. Springer-Verlag, August 1995.
[16] Kai Hwang and Fayé A. Briggs. editor. Computer Architecture and Parallel Processing.

pages 1-49. McGraw-Hill Book Company. 1984.

[17] P. Kermani and L. Kleinrock. Virtual Cut-Through: A New Computer Communication

Switching Technique. Computer Networks, pages 267-286, March 1979.

115

(18] Myricom Inc. Myrinet Links and Routing, 1994.

[19] M. C. Pease. The Indirect Binary n-Cube Microprocessor Array. [EEE Transactions

on Computers, C-26(5):458-473, May 1977.

[20] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. *T: A multithreaded mas-
sively parallel architecture. In Proceedings of the 19th Annual International Sympostum

on Computer Architecture, pages 156-167. Gold Coast, Australia, May 1992.

[21] Yuval Tamir and Hsin-Chou Chi. Symmetric Crossbar Arbiters for VLSI Communi-

cation Switches. [EEE Transactions on Parallel and Distributed Systemns, 4(1):13-27.

1993.

116

iAol LEVALUATIUN
TEST TARGET (QA-3)

14

16

Il

125

150mm

© 1993, Applied image, Inc., All Rights Reserved

